=============================================================================== 4001715c <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 4001715c: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 40017160: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 40017164: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 40017168: 80 a6 80 01 cmp %i2, %g1 4001716c: 18 80 00 16 bgu 400171c4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 40017170: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 40017174: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40017178: 80 a0 60 00 cmp %g1, 0 4001717c: 02 80 00 0b be 400171a8 <_CORE_message_queue_Broadcast+0x4c> 40017180: a2 10 20 00 clr %l1 *count = 0; 40017184: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 40017188: 81 c7 e0 08 ret 4001718c: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 40017190: 92 10 00 19 mov %i1, %o1 40017194: 40 00 21 0c call 4001f5c4 40017198: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 4001719c: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 400171a0: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 400171a4: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 400171a8: 40 00 0a 2c call 40019a58 <_Thread_queue_Dequeue> 400171ac: 90 10 00 10 mov %l0, %o0 400171b0: a4 92 20 00 orcc %o0, 0, %l2 400171b4: 32 bf ff f7 bne,a 40017190 <_CORE_message_queue_Broadcast+0x34> 400171b8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 400171bc: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 400171c0: b0 10 20 00 clr %i0 } 400171c4: 81 c7 e0 08 ret 400171c8: 81 e8 00 00 restore =============================================================================== 4000f98c <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 4000f98c: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 4000f990: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 4000f994: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 4000f998: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 4000f99c: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 4000f9a0: 80 8e e0 03 btst 3, %i3 4000f9a4: 02 80 00 07 be 4000f9c0 <_CORE_message_queue_Initialize+0x34> 4000f9a8: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 4000f9ac: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 4000f9b0: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 4000f9b4: 80 a4 80 1b cmp %l2, %i3 4000f9b8: 0a 80 00 22 bcs 4000fa40 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 4000f9bc: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 4000f9c0: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 4000f9c4: 92 10 00 1a mov %i2, %o1 4000f9c8: 90 10 00 11 mov %l1, %o0 4000f9cc: 40 00 3d 44 call 4001eedc <.umul> 4000f9d0: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 4000f9d4: 80 a2 00 12 cmp %o0, %l2 4000f9d8: 0a 80 00 1a bcs 4000fa40 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 4000f9dc: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 4000f9e0: 40 00 0b 7b call 400127cc <_Workspace_Allocate> 4000f9e4: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 4000f9e8: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 4000f9ec: 80 a2 20 00 cmp %o0, 0 4000f9f0: 02 80 00 14 be 4000fa40 <_CORE_message_queue_Initialize+0xb4> 4000f9f4: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 4000f9f8: 90 04 20 60 add %l0, 0x60, %o0 4000f9fc: 94 10 00 1a mov %i2, %o2 4000fa00: 40 00 13 91 call 40014844 <_Chain_Initialize> 4000fa04: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000fa08: 82 04 20 54 add %l0, 0x54, %g1 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 4000fa0c: c2 24 20 50 st %g1, [ %l0 + 0x50 ] the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); 4000fa10: 82 04 20 50 add %l0, 0x50, %g1 the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); 4000fa14: c2 24 20 58 st %g1, [ %l0 + 0x58 ] _Thread_queue_Initialize( 4000fa18: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 4000fa1c: c0 24 20 54 clr [ %l0 + 0x54 ] 4000fa20: 82 18 60 01 xor %g1, 1, %g1 4000fa24: 80 a0 00 01 cmp %g0, %g1 4000fa28: 90 10 00 10 mov %l0, %o0 4000fa2c: 92 60 3f ff subx %g0, -1, %o1 4000fa30: 94 10 20 80 mov 0x80, %o2 4000fa34: 96 10 20 06 mov 6, %o3 4000fa38: 40 00 08 53 call 40011b84 <_Thread_queue_Initialize> 4000fa3c: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 4000fa40: 81 c7 e0 08 ret 4000fa44: 81 e8 00 00 restore =============================================================================== 4000fa48 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 4000fa48: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 4000fa4c: 27 10 00 92 sethi %hi(0x40024800), %l3 4000fa50: a6 14 e3 ec or %l3, 0x3ec, %l3 ! 40024bec <_Per_CPU_Information> 4000fa54: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 4000fa58: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 4000fa5c: 7f ff de 14 call 400072ac 4000fa60: c0 24 a0 34 clr [ %l2 + 0x34 ] 4000fa64: 82 10 00 08 mov %o0, %g1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000fa68: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000fa6c: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 4000fa70: 80 a4 40 02 cmp %l1, %g2 4000fa74: 02 80 00 15 be 4000fac8 <_CORE_message_queue_Seize+0x80> 4000fa78: 86 06 20 50 add %i0, 0x50, %g3 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 4000fa7c: c4 04 40 00 ld [ %l1 ], %g2 the_chain->first = new_first; 4000fa80: c4 26 20 50 st %g2, [ %i0 + 0x50 ] the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 4000fa84: 80 a4 60 00 cmp %l1, 0 4000fa88: 02 80 00 10 be 4000fac8 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 4000fa8c: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 4000fa90: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 4000fa94: 82 00 7f ff add %g1, -1, %g1 4000fa98: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 4000fa9c: 7f ff de 08 call 400072bc 4000faa0: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 4000faa4: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 4000faa8: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 4000faac: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 4000fab0: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 4000fab4: 90 10 00 1a mov %i2, %o0 4000fab8: 40 00 1d f9 call 4001729c 4000fabc: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 4000fac0: 7f ff ff 83 call 4000f8cc <_Chain_Append> 4000fac4: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 4000fac8: 80 8f 20 ff btst 0xff, %i4 4000facc: 32 80 00 08 bne,a 4000faec <_CORE_message_queue_Seize+0xa4> 4000fad0: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 4000fad4: 7f ff dd fa call 400072bc 4000fad8: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 4000fadc: 82 10 20 04 mov 4, %g1 4000fae0: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 4000fae4: 81 c7 e0 08 ret 4000fae8: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 4000faec: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 4000faf0: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 4000faf4: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 4000faf8: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 4000fafc: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 4000fb00: 90 10 00 01 mov %g1, %o0 4000fb04: 7f ff dd ee call 400072bc 4000fb08: 35 10 00 47 sethi %hi(0x40011c00), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 4000fb0c: b2 10 00 1d mov %i5, %i1 4000fb10: 40 00 07 75 call 400118e4 <_Thread_queue_Enqueue_with_handler> 4000fb14: 95 ee a0 64 restore %i2, 0x64, %o2 =============================================================================== 400067f4 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 400067f4: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 400067f8: 03 10 00 51 sethi %hi(0x40014400), %g1 400067fc: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 ! 40014418 <_Thread_Dispatch_disable_level> 40006800: 80 a0 60 00 cmp %g1, 0 40006804: 02 80 00 0d be 40006838 <_CORE_mutex_Seize+0x44> 40006808: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 4000680c: 80 8e a0 ff btst 0xff, %i2 40006810: 02 80 00 0b be 4000683c <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 40006814: 90 10 00 18 mov %i0, %o0 40006818: 03 10 00 51 sethi %hi(0x40014400), %g1 4000681c: c2 00 61 9c ld [ %g1 + 0x19c ], %g1 ! 4001459c <_System_state_Current> 40006820: 80 a0 60 01 cmp %g1, 1 40006824: 08 80 00 05 bleu 40006838 <_CORE_mutex_Seize+0x44> 40006828: 90 10 20 00 clr %o0 4000682c: 92 10 20 00 clr %o1 40006830: 40 00 01 df call 40006fac <_Internal_error_Occurred> 40006834: 94 10 20 12 mov 0x12, %o2 40006838: 90 10 00 18 mov %i0, %o0 4000683c: 40 00 12 ad call 4000b2f0 <_CORE_mutex_Seize_interrupt_trylock> 40006840: 92 07 a0 54 add %fp, 0x54, %o1 40006844: 80 a2 20 00 cmp %o0, 0 40006848: 02 80 00 0a be 40006870 <_CORE_mutex_Seize+0x7c> 4000684c: 80 8e a0 ff btst 0xff, %i2 40006850: 35 10 00 51 sethi %hi(0x40014400), %i2 40006854: 12 80 00 09 bne 40006878 <_CORE_mutex_Seize+0x84> 40006858: b4 16 a2 7c or %i2, 0x27c, %i2 ! 4001467c <_Per_CPU_Information> 4000685c: 7f ff ed 13 call 40001ca8 40006860: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 40006864: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 40006868: 84 10 20 01 mov 1, %g2 4000686c: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 40006870: 81 c7 e0 08 ret 40006874: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 40006878: 82 10 20 01 mov 1, %g1 4000687c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 40006880: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 40006884: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 40006888: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 4000688c: 03 10 00 51 sethi %hi(0x40014400), %g1 40006890: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40006894: 84 00 a0 01 inc %g2 40006898: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 4000689c: 7f ff ed 03 call 40001ca8 400068a0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 400068a4: 90 10 00 18 mov %i0, %o0 400068a8: 7f ff ff ba call 40006790 <_CORE_mutex_Seize_interrupt_blocking> 400068ac: 92 10 00 1b mov %i3, %o1 400068b0: 81 c7 e0 08 ret 400068b4: 81 e8 00 00 restore =============================================================================== 4000b2f0 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 4000b2f0: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 4000b2f4: 03 10 00 51 sethi %hi(0x40014400), %g1 4000b2f8: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 40014688 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 4000b2fc: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 4000b300: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 4000b304: 80 a0 a0 00 cmp %g2, 0 4000b308: 02 80 00 2f be 4000b3c4 <_CORE_mutex_Seize_interrupt_trylock+0xd4> 4000b30c: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 4000b310: c4 00 60 08 ld [ %g1 + 8 ], %g2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 4000b314: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 4000b318: c4 26 20 60 st %g2, [ %i0 + 0x60 ] the_mutex->nest_count = 1; 4000b31c: 84 10 20 01 mov 1, %g2 4000b320: c4 26 20 54 st %g2, [ %i0 + 0x54 ] return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 4000b324: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 4000b328: 80 a0 a0 02 cmp %g2, 2 4000b32c: 02 80 00 05 be 4000b340 <_CORE_mutex_Seize_interrupt_trylock+0x50> 4000b330: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 4000b334: 80 a0 a0 03 cmp %g2, 3 4000b338: 12 80 00 07 bne 4000b354 <_CORE_mutex_Seize_interrupt_trylock+0x64> 4000b33c: 01 00 00 00 nop _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 4000b340: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000b344: 80 a0 a0 03 cmp %g2, 3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 4000b348: 88 00 e0 01 add %g3, 1, %g4 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000b34c: 02 80 00 03 be 4000b358 <_CORE_mutex_Seize_interrupt_trylock+0x68> 4000b350: c8 20 60 1c st %g4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 4000b354: 30 80 00 2b b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 4000b358: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 current = executing->current_priority; 4000b35c: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 if ( current == ceiling ) { 4000b360: 80 a1 00 02 cmp %g4, %g2 4000b364: 12 80 00 03 bne 4000b370 <_CORE_mutex_Seize_interrupt_trylock+0x80> 4000b368: 01 00 00 00 nop _ISR_Enable( *level_p ); 4000b36c: 30 80 00 25 b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110> return 0; } if ( current > ceiling ) { 4000b370: 08 80 00 0f bleu 4000b3ac <_CORE_mutex_Seize_interrupt_trylock+0xbc> 4000b374: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 4000b378: 03 10 00 51 sethi %hi(0x40014400), %g1 4000b37c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 4000b380: 84 00 a0 01 inc %g2 4000b384: c4 20 60 18 st %g2, [ %g1 + 0x18 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 4000b388: 7f ff da 48 call 40001ca8 4000b38c: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 4000b390: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 4000b394: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 4000b398: 7f ff f1 56 call 400078f0 <_Thread_Change_priority> 4000b39c: 94 10 20 00 clr %o2 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 4000b3a0: 7f ff f2 b8 call 40007e80 <_Thread_Enable_dispatch> 4000b3a4: b0 10 20 00 clr %i0 4000b3a8: 30 80 00 1d b,a 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 4000b3ac: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */ 4000b3b0: c0 24 20 54 clr [ %l0 + 0x54 ] _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED; 4000b3b4: 84 10 20 01 mov 1, %g2 4000b3b8: c4 24 20 50 st %g2, [ %l0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */ 4000b3bc: c6 20 60 1c st %g3, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 4000b3c0: 30 80 00 10 b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110> /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 4000b3c4: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 4000b3c8: 80 a0 80 01 cmp %g2, %g1 4000b3cc: 12 80 00 14 bne 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c> 4000b3d0: b0 10 20 01 mov 1, %i0 switch ( the_mutex->Attributes.lock_nesting_behavior ) { 4000b3d4: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 4000b3d8: 80 a0 60 00 cmp %g1, 0 4000b3dc: 22 80 00 07 be,a 4000b3f8 <_CORE_mutex_Seize_interrupt_trylock+0x108> 4000b3e0: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 4000b3e4: 80 a0 60 01 cmp %g1, 1 4000b3e8: 12 80 00 0d bne 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN 4000b3ec: 82 10 20 02 mov 2, %g1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 4000b3f0: 10 80 00 08 b 4000b410 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 4000b3f4: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 4000b3f8: 82 00 60 01 inc %g1 4000b3fc: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 4000b400: 7f ff da 2a call 40001ca8 4000b404: d0 06 40 00 ld [ %i1 ], %o0 return 0; 4000b408: 81 c7 e0 08 ret 4000b40c: 91 e8 20 00 restore %g0, 0, %o0 case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p ); 4000b410: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 4000b414: 7f ff da 25 call 40001ca8 <== NOT EXECUTED 4000b418: b0 10 20 00 clr %i0 <== NOT EXECUTED 4000b41c: 81 c7 e0 08 ret 4000b420: 81 e8 00 00 restore =============================================================================== 40006a34 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 40006a34: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 40006a38: 90 10 00 18 mov %i0, %o0 40006a3c: 40 00 05 ec call 400081ec <_Thread_queue_Dequeue> 40006a40: a0 10 00 18 mov %i0, %l0 40006a44: 80 a2 20 00 cmp %o0, 0 40006a48: 12 80 00 0e bne 40006a80 <_CORE_semaphore_Surrender+0x4c> 40006a4c: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 40006a50: 7f ff ec 92 call 40001c98 40006a54: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 40006a58: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40006a5c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 40006a60: 80 a0 40 02 cmp %g1, %g2 40006a64: 1a 80 00 05 bcc 40006a78 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 40006a68: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 40006a6c: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 40006a70: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 40006a74: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 40006a78: 7f ff ec 8c call 40001ca8 40006a7c: 01 00 00 00 nop } return status; } 40006a80: 81 c7 e0 08 ret 40006a84: 81 e8 00 00 restore =============================================================================== 40005688 <_Event_Seize>: rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) { 40005688: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set pending_events; ISR_Level level; RTEMS_API_Control *api; Thread_blocking_operation_States sync_state; executing = _Thread_Executing; 4000568c: 03 10 00 51 sethi %hi(0x40014400), %g1 40005690: e0 00 62 88 ld [ %g1 + 0x288 ], %l0 ! 40014688 <_Per_CPU_Information+0xc> executing->Wait.return_code = RTEMS_SUCCESSFUL; 40005694: c0 24 20 34 clr [ %l0 + 0x34 ] api = executing->API_Extensions[ THREAD_API_RTEMS ]; _ISR_Disable( level ); 40005698: 7f ff f1 80 call 40001c98 4000569c: e4 04 21 5c ld [ %l0 + 0x15c ], %l2 pending_events = api->pending_events; 400056a0: c2 04 80 00 ld [ %l2 ], %g1 seized_events = _Event_sets_Get( pending_events, event_in ); if ( !_Event_sets_Is_empty( seized_events ) && 400056a4: a2 8e 00 01 andcc %i0, %g1, %l1 400056a8: 02 80 00 0f be 400056e4 <_Event_Seize+0x5c> 400056ac: 80 8e 60 01 btst 1, %i1 400056b0: 80 a4 40 18 cmp %l1, %i0 400056b4: 22 80 00 06 be,a 400056cc <_Event_Seize+0x44> 400056b8: 82 28 40 11 andn %g1, %l1, %g1 (seized_events == event_in || _Options_Is_any( option_set )) ) { 400056bc: 80 8e 60 02 btst 2, %i1 400056c0: 22 80 00 09 be,a 400056e4 <_Event_Seize+0x5c> <== NEVER TAKEN 400056c4: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 400056c8: 82 28 40 11 andn %g1, %l1, %g1 api->pending_events = 400056cc: c2 24 80 00 st %g1, [ %l2 ] _Event_sets_Clear( pending_events, seized_events ); _ISR_Enable( level ); 400056d0: 7f ff f1 76 call 40001ca8 400056d4: 01 00 00 00 nop 400056d8: e2 26 c0 00 st %l1, [ %i3 ] 400056dc: 81 c7 e0 08 ret 400056e0: 81 e8 00 00 restore *event_out = seized_events; return; } if ( _Options_Is_no_wait( option_set ) ) { 400056e4: 22 80 00 09 be,a 40005708 <_Event_Seize+0x80> 400056e8: f2 24 20 30 st %i1, [ %l0 + 0x30 ] _ISR_Enable( level ); 400056ec: 7f ff f1 6f call 40001ca8 400056f0: 01 00 00 00 nop executing->Wait.return_code = RTEMS_UNSATISFIED; 400056f4: 82 10 20 0d mov 0xd, %g1 ! d 400056f8: c2 24 20 34 st %g1, [ %l0 + 0x34 ] *event_out = seized_events; 400056fc: e2 26 c0 00 st %l1, [ %i3 ] 40005700: 81 c7 e0 08 ret 40005704: 81 e8 00 00 restore * * NOTE: Since interrupts are disabled, this isn't that much of an * issue but better safe than sorry. */ executing->Wait.option = (uint32_t) option_set; executing->Wait.count = (uint32_t) event_in; 40005708: f0 24 20 24 st %i0, [ %l0 + 0x24 ] executing->Wait.return_argument = event_out; 4000570c: f6 24 20 28 st %i3, [ %l0 + 0x28 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 40005710: 84 10 20 01 mov 1, %g2 40005714: 03 10 00 51 sethi %hi(0x40014400), %g1 40005718: c4 20 62 98 st %g2, [ %g1 + 0x298 ] ! 40014698 <_Event_Sync_state> _ISR_Enable( level ); 4000571c: 7f ff f1 63 call 40001ca8 40005720: 01 00 00 00 nop if ( ticks ) { 40005724: 80 a6 a0 00 cmp %i2, 0 40005728: 02 80 00 0f be 40005764 <_Event_Seize+0xdc> 4000572c: 90 10 00 10 mov %l0, %o0 _Watchdog_Initialize( 40005730: c2 04 20 08 ld [ %l0 + 8 ], %g1 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 40005734: 05 10 00 16 sethi %hi(0x40005800), %g2 40005738: 84 10 a1 3c or %g2, 0x13c, %g2 ! 4000593c <_Event_Timeout> ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 4000573c: 11 10 00 51 sethi %hi(0x40014400), %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40005740: c0 24 20 50 clr [ %l0 + 0x50 ] the_watchdog->routine = routine; 40005744: c4 24 20 64 st %g2, [ %l0 + 0x64 ] the_watchdog->id = id; 40005748: c2 24 20 68 st %g1, [ %l0 + 0x68 ] the_watchdog->user_data = user_data; 4000574c: c0 24 20 6c clr [ %l0 + 0x6c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40005750: f4 24 20 54 st %i2, [ %l0 + 0x54 ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 40005754: 90 12 20 dc or %o0, 0xdc, %o0 40005758: 40 00 0d fb call 40008f44 <_Watchdog_Insert> 4000575c: 92 04 20 48 add %l0, 0x48, %o1 NULL ); _Watchdog_Insert_ticks( &executing->Timer, ticks ); } _Thread_Set_state( executing, STATES_WAITING_FOR_EVENT ); 40005760: 90 10 00 10 mov %l0, %o0 40005764: 40 00 0c 0d call 40008798 <_Thread_Set_state> 40005768: 92 10 21 00 mov 0x100, %o1 _ISR_Disable( level ); 4000576c: 7f ff f1 4b call 40001c98 40005770: 01 00 00 00 nop sync_state = _Event_Sync_state; 40005774: 03 10 00 51 sethi %hi(0x40014400), %g1 40005778: f0 00 62 98 ld [ %g1 + 0x298 ], %i0 ! 40014698 <_Event_Sync_state> _Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; 4000577c: c0 20 62 98 clr [ %g1 + 0x298 ] if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) { 40005780: 80 a6 20 01 cmp %i0, 1 40005784: 12 80 00 04 bne 40005794 <_Event_Seize+0x10c> 40005788: b2 10 00 10 mov %l0, %i1 _ISR_Enable( level ); 4000578c: 7f ff f1 47 call 40001ca8 40005790: 91 e8 00 08 restore %g0, %o0, %o0 * An interrupt completed the thread's blocking request. * The blocking thread was satisfied by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ _Thread_blocking_operation_Cancel( sync_state, executing, level ); 40005794: 40 00 08 42 call 4000789c <_Thread_blocking_operation_Cancel> 40005798: 95 e8 00 08 restore %g0, %o0, %o2 =============================================================================== 400057fc <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 400057fc: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 40005800: e2 06 21 5c ld [ %i0 + 0x15c ], %l1 option_set = (rtems_option) the_thread->Wait.option; 40005804: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 40005808: 7f ff f1 24 call 40001c98 4000580c: a0 10 00 18 mov %i0, %l0 40005810: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 40005814: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 40005818: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 4000581c: 82 88 c0 02 andcc %g3, %g2, %g1 40005820: 12 80 00 03 bne 4000582c <_Event_Surrender+0x30> 40005824: 09 10 00 51 sethi %hi(0x40014400), %g4 _ISR_Enable( level ); 40005828: 30 80 00 42 b,a 40005930 <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 4000582c: 88 11 22 7c or %g4, 0x27c, %g4 ! 4001467c <_Per_CPU_Information> 40005830: da 01 20 08 ld [ %g4 + 8 ], %o5 40005834: 80 a3 60 00 cmp %o5, 0 40005838: 22 80 00 1d be,a 400058ac <_Event_Surrender+0xb0> 4000583c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 40005840: c8 01 20 0c ld [ %g4 + 0xc ], %g4 40005844: 80 a4 00 04 cmp %l0, %g4 40005848: 32 80 00 19 bne,a 400058ac <_Event_Surrender+0xb0> 4000584c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 40005850: 09 10 00 51 sethi %hi(0x40014400), %g4 40005854: da 01 22 98 ld [ %g4 + 0x298 ], %o5 ! 40014698 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 40005858: 80 a3 60 02 cmp %o5, 2 4000585c: 02 80 00 07 be 40005878 <_Event_Surrender+0x7c> <== NEVER TAKEN 40005860: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 40005864: c8 01 22 98 ld [ %g4 + 0x298 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 40005868: 80 a1 20 01 cmp %g4, 1 4000586c: 32 80 00 10 bne,a 400058ac <_Event_Surrender+0xb0> 40005870: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 40005874: 80 a0 40 03 cmp %g1, %g3 40005878: 02 80 00 04 be 40005888 <_Event_Surrender+0x8c> 4000587c: 80 8c a0 02 btst 2, %l2 40005880: 02 80 00 0a be 400058a8 <_Event_Surrender+0xac> <== NEVER TAKEN 40005884: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 40005888: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 4000588c: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 40005890: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 40005894: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 40005898: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 4000589c: 84 10 20 03 mov 3, %g2 400058a0: 03 10 00 51 sethi %hi(0x40014400), %g1 400058a4: c4 20 62 98 st %g2, [ %g1 + 0x298 ] ! 40014698 <_Event_Sync_state> } _ISR_Enable( level ); 400058a8: 30 80 00 22 b,a 40005930 <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 400058ac: 80 89 21 00 btst 0x100, %g4 400058b0: 02 80 00 20 be 40005930 <_Event_Surrender+0x134> 400058b4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 400058b8: 02 80 00 04 be 400058c8 <_Event_Surrender+0xcc> 400058bc: 80 8c a0 02 btst 2, %l2 400058c0: 02 80 00 1c be 40005930 <_Event_Surrender+0x134> <== NEVER TAKEN 400058c4: 01 00 00 00 nop 400058c8: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 400058cc: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 400058d0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 400058d4: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 400058d8: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 400058dc: 7f ff f0 f3 call 40001ca8 400058e0: 90 10 00 18 mov %i0, %o0 400058e4: 7f ff f0 ed call 40001c98 400058e8: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 400058ec: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 400058f0: 80 a0 60 02 cmp %g1, 2 400058f4: 02 80 00 06 be 4000590c <_Event_Surrender+0x110> 400058f8: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 400058fc: 7f ff f0 eb call 40001ca8 40005900: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 40005904: 10 80 00 08 b 40005924 <_Event_Surrender+0x128> 40005908: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 4000590c: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 40005910: 7f ff f0 e6 call 40001ca8 40005914: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 40005918: 40 00 0d e5 call 400090ac <_Watchdog_Remove> 4000591c: 90 04 20 48 add %l0, 0x48, %o0 40005920: 33 04 00 ff sethi %hi(0x1003fc00), %i1 40005924: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 40005928: 40 00 08 6b call 40007ad4 <_Thread_Clear_state> 4000592c: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 40005930: 7f ff f0 de call 40001ca8 40005934: 81 e8 00 00 restore =============================================================================== 4000593c <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 4000593c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 40005940: 90 10 00 18 mov %i0, %o0 40005944: 40 00 09 5c call 40007eb4 <_Thread_Get> 40005948: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 4000594c: c2 07 bf fc ld [ %fp + -4 ], %g1 40005950: 80 a0 60 00 cmp %g1, 0 40005954: 12 80 00 1c bne 400059c4 <_Event_Timeout+0x88> <== NEVER TAKEN 40005958: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 4000595c: 7f ff f0 cf call 40001c98 40005960: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 40005964: 03 10 00 51 sethi %hi(0x40014400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 40005968: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 40014688 <_Per_CPU_Information+0xc> 4000596c: 80 a4 00 01 cmp %l0, %g1 40005970: 12 80 00 09 bne 40005994 <_Event_Timeout+0x58> 40005974: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 40005978: 03 10 00 51 sethi %hi(0x40014400), %g1 4000597c: c4 00 62 98 ld [ %g1 + 0x298 ], %g2 ! 40014698 <_Event_Sync_state> 40005980: 80 a0 a0 01 cmp %g2, 1 40005984: 32 80 00 05 bne,a 40005998 <_Event_Timeout+0x5c> 40005988: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 4000598c: 84 10 20 02 mov 2, %g2 40005990: c4 20 62 98 st %g2, [ %g1 + 0x298 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 40005994: 82 10 20 06 mov 6, %g1 40005998: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 4000599c: 7f ff f0 c3 call 40001ca8 400059a0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 400059a4: 90 10 00 10 mov %l0, %o0 400059a8: 13 04 00 ff sethi %hi(0x1003fc00), %o1 400059ac: 40 00 08 4a call 40007ad4 <_Thread_Clear_state> 400059b0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 400059b4: 03 10 00 51 sethi %hi(0x40014400), %g1 400059b8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 400059bc: 84 00 bf ff add %g2, -1, %g2 400059c0: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 400059c4: 81 c7 e0 08 ret 400059c8: 81 e8 00 00 restore =============================================================================== 4000b4a0 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 4000b4a0: 9d e3 bf 98 save %sp, -104, %sp 4000b4a4: a0 10 00 18 mov %i0, %l0 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 4000b4a8: e4 06 20 08 ld [ %i0 + 8 ], %l2 ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 4000b4ac: ac 06 60 04 add %i1, 4, %l6 - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; 4000b4b0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { 4000b4b4: 80 a5 80 19 cmp %l6, %i1 4000b4b8: 0a 80 00 67 bcs 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4> 4000b4bc: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 4000b4c0: 80 a6 e0 00 cmp %i3, 0 4000b4c4: 02 80 00 08 be 4000b4e4 <_Heap_Allocate_aligned_with_boundary+0x44> 4000b4c8: 82 05 20 07 add %l4, 7, %g1 if ( boundary < alloc_size ) { 4000b4cc: 80 a6 c0 19 cmp %i3, %i1 4000b4d0: 0a 80 00 61 bcs 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4> 4000b4d4: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 4000b4d8: 22 80 00 03 be,a 4000b4e4 <_Heap_Allocate_aligned_with_boundary+0x44> 4000b4dc: b4 10 00 14 mov %l4, %i2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 4000b4e0: 82 05 20 07 add %l4, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; 4000b4e4: b8 10 20 04 mov 4, %i4 if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size; 4000b4e8: a2 10 20 00 clr %l1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 4000b4ec: c2 27 bf f8 st %g1, [ %fp + -8 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; 4000b4f0: b8 27 00 19 sub %i4, %i1, %i4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000b4f4: 10 80 00 50 b 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194> 4000b4f8: ba 10 3f f8 mov -8, %i5 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 4000b4fc: 80 a6 00 16 cmp %i0, %l6 4000b500: 08 80 00 4c bleu 4000b630 <_Heap_Allocate_aligned_with_boundary+0x190> 4000b504: a2 04 60 01 inc %l1 if ( alignment == 0 ) { 4000b508: 80 a6 a0 00 cmp %i2, 0 4000b50c: 12 80 00 04 bne 4000b51c <_Heap_Allocate_aligned_with_boundary+0x7c> 4000b510: aa 04 a0 08 add %l2, 8, %l5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; 4000b514: 10 80 00 3a b 4000b5fc <_Heap_Allocate_aligned_with_boundary+0x15c> 4000b518: b0 10 00 15 mov %l5, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 4000b51c: c2 07 bf f8 ld [ %fp + -8 ], %g1 uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; 4000b520: ee 04 20 14 ld [ %l0 + 0x14 ], %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000b524: b0 0e 3f fe and %i0, -2, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 4000b528: a6 20 40 17 sub %g1, %l7, %l3 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 4000b52c: b0 04 80 18 add %l2, %i0, %i0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000b530: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 4000b534: a6 04 c0 18 add %l3, %i0, %l3 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size; 4000b538: b0 07 00 18 add %i4, %i0, %i0 4000b53c: 40 00 16 55 call 40010e90 <.urem> 4000b540: 90 10 00 18 mov %i0, %o0 4000b544: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 4000b548: 80 a6 00 13 cmp %i0, %l3 4000b54c: 08 80 00 07 bleu 4000b568 <_Heap_Allocate_aligned_with_boundary+0xc8> 4000b550: 80 a6 e0 00 cmp %i3, 0 4000b554: 90 10 00 13 mov %l3, %o0 4000b558: 40 00 16 4e call 40010e90 <.urem> 4000b55c: 92 10 00 1a mov %i2, %o1 4000b560: b0 24 c0 08 sub %l3, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 4000b564: 80 a6 e0 00 cmp %i3, 0 4000b568: 02 80 00 18 be 4000b5c8 <_Heap_Allocate_aligned_with_boundary+0x128> 4000b56c: 80 a6 00 15 cmp %i0, %l5 uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 4000b570: 82 05 40 19 add %l5, %i1, %g1 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 4000b574: a6 06 00 19 add %i0, %i1, %l3 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 4000b578: 10 80 00 0a b 4000b5a0 <_Heap_Allocate_aligned_with_boundary+0x100> 4000b57c: c2 27 bf fc st %g1, [ %fp + -4 ] uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 4000b580: 80 a2 00 01 cmp %o0, %g1 4000b584: 0a 80 00 2b bcs 4000b630 <_Heap_Allocate_aligned_with_boundary+0x190> 4000b588: b0 22 00 19 sub %o0, %i1, %i0 4000b58c: 92 10 00 1a mov %i2, %o1 4000b590: 40 00 16 40 call 40010e90 <.urem> 4000b594: 90 10 00 18 mov %i0, %o0 4000b598: b0 26 00 08 sub %i0, %o0, %i0 return 0; } alloc_begin = boundary_line - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 4000b59c: a6 06 00 19 add %i0, %i1, %l3 4000b5a0: 90 10 00 13 mov %l3, %o0 4000b5a4: 40 00 16 3b call 40010e90 <.urem> 4000b5a8: 92 10 00 1b mov %i3, %o1 4000b5ac: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 4000b5b0: 80 a2 00 13 cmp %o0, %l3 4000b5b4: 1a 80 00 04 bcc 4000b5c4 <_Heap_Allocate_aligned_with_boundary+0x124> 4000b5b8: 80 a6 00 08 cmp %i0, %o0 4000b5bc: 0a bf ff f1 bcs 4000b580 <_Heap_Allocate_aligned_with_boundary+0xe0> 4000b5c0: c2 07 bf fc ld [ %fp + -4 ], %g1 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 4000b5c4: 80 a6 00 15 cmp %i0, %l5 4000b5c8: 2a 80 00 1b bcs,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194> 4000b5cc: e4 04 a0 08 ld [ %l2 + 8 ], %l2 4000b5d0: a6 27 40 12 sub %i5, %l2, %l3 4000b5d4: 90 10 00 18 mov %i0, %o0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 4000b5d8: a6 04 c0 18 add %l3, %i0, %l3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000b5dc: 40 00 16 2d call 40010e90 <.urem> 4000b5e0: 92 10 00 14 mov %l4, %o1 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 4000b5e4: 90 a4 c0 08 subcc %l3, %o0, %o0 4000b5e8: 02 80 00 06 be 4000b600 <_Heap_Allocate_aligned_with_boundary+0x160> 4000b5ec: 80 a6 20 00 cmp %i0, 0 4000b5f0: 80 a2 00 17 cmp %o0, %l7 4000b5f4: 2a 80 00 10 bcs,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194> 4000b5f8: e4 04 a0 08 ld [ %l2 + 8 ], %l2 boundary ); } } if ( alloc_begin != 0 ) { 4000b5fc: 80 a6 20 00 cmp %i0, 0 4000b600: 22 80 00 0d be,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194><== NEVER TAKEN 4000b604: e4 04 a0 08 ld [ %l2 + 8 ], %l2 <== NOT EXECUTED block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 4000b608: c2 04 20 4c ld [ %l0 + 0x4c ], %g1 block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 4000b60c: 90 10 00 10 mov %l0, %o0 block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 4000b610: 82 00 40 11 add %g1, %l1, %g1 block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 4000b614: 92 10 00 12 mov %l2, %o1 block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 4000b618: c2 24 20 4c st %g1, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 4000b61c: 94 10 00 18 mov %i0, %o2 4000b620: 7f ff ee 16 call 40006e78 <_Heap_Block_allocate> 4000b624: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 4000b628: 10 80 00 08 b 4000b648 <_Heap_Allocate_aligned_with_boundary+0x1a8> 4000b62c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 if ( alloc_begin != 0 ) { break; } block = block->next; 4000b630: e4 04 a0 08 ld [ %l2 + 8 ], %l2 if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { 4000b634: 80 a4 80 10 cmp %l2, %l0 4000b638: 32 bf ff b1 bne,a 4000b4fc <_Heap_Allocate_aligned_with_boundary+0x5c> 4000b63c: f0 04 a0 04 ld [ %l2 + 4 ], %i0 4000b640: b0 10 20 00 clr %i0 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 4000b644: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 4000b648: 80 a0 40 11 cmp %g1, %l1 4000b64c: 2a 80 00 02 bcs,a 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4> 4000b650: e2 24 20 44 st %l1, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 4000b654: 81 c7 e0 08 ret 4000b658: 81 e8 00 00 restore =============================================================================== 4000b94c <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b94c: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 4000b950: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 4000b954: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b958: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 4000b95c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 4000b960: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 4000b964: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 4000b968: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 4000b96c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b970: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 4000b974: 80 a4 40 19 cmp %l1, %i1 4000b978: 0a 80 00 9f bcs 4000bbf4 <_Heap_Extend+0x2a8> 4000b97c: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 4000b980: 90 10 00 19 mov %i1, %o0 4000b984: 94 10 00 13 mov %l3, %o2 4000b988: 98 07 bf fc add %fp, -4, %o4 4000b98c: 7f ff ed 5c call 40006efc <_Heap_Get_first_and_last_block> 4000b990: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 4000b994: 80 8a 20 ff btst 0xff, %o0 4000b998: 02 80 00 97 be 4000bbf4 <_Heap_Extend+0x2a8> 4000b99c: aa 10 00 12 mov %l2, %l5 4000b9a0: ba 10 20 00 clr %i5 4000b9a4: b8 10 20 00 clr %i4 4000b9a8: b0 10 20 00 clr %i0 4000b9ac: ae 10 20 00 clr %l7 4000b9b0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 4000b9b4: 80 a0 40 11 cmp %g1, %l1 4000b9b8: 1a 80 00 05 bcc 4000b9cc <_Heap_Extend+0x80> 4000b9bc: ec 05 40 00 ld [ %l5 ], %l6 4000b9c0: 80 a6 40 16 cmp %i1, %l6 4000b9c4: 2a 80 00 8c bcs,a 4000bbf4 <_Heap_Extend+0x2a8> 4000b9c8: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 4000b9cc: 80 a4 40 01 cmp %l1, %g1 4000b9d0: 02 80 00 06 be 4000b9e8 <_Heap_Extend+0x9c> 4000b9d4: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 4000b9d8: 2a 80 00 05 bcs,a 4000b9ec <_Heap_Extend+0xa0> 4000b9dc: b8 10 00 15 mov %l5, %i4 4000b9e0: 10 80 00 04 b 4000b9f0 <_Heap_Extend+0xa4> 4000b9e4: 90 10 00 16 mov %l6, %o0 4000b9e8: ae 10 00 15 mov %l5, %l7 4000b9ec: 90 10 00 16 mov %l6, %o0 4000b9f0: 40 00 16 62 call 40011378 <.urem> 4000b9f4: 92 10 00 13 mov %l3, %o1 4000b9f8: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 4000b9fc: 80 a5 80 19 cmp %l6, %i1 4000ba00: 12 80 00 05 bne 4000ba14 <_Heap_Extend+0xc8> 4000ba04: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 4000ba08: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 4000ba0c: 10 80 00 04 b 4000ba1c <_Heap_Extend+0xd0> 4000ba10: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 4000ba14: 2a 80 00 02 bcs,a 4000ba1c <_Heap_Extend+0xd0> 4000ba18: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000ba1c: ea 02 20 04 ld [ %o0 + 4 ], %l5 4000ba20: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000ba24: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 4000ba28: 80 a5 40 12 cmp %l5, %l2 4000ba2c: 12 bf ff e2 bne 4000b9b4 <_Heap_Extend+0x68> 4000ba30: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 4000ba34: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 4000ba38: 80 a6 40 01 cmp %i1, %g1 4000ba3c: 3a 80 00 04 bcc,a 4000ba4c <_Heap_Extend+0x100> 4000ba40: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 4000ba44: 10 80 00 05 b 4000ba58 <_Heap_Extend+0x10c> 4000ba48: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 4000ba4c: 80 a0 40 11 cmp %g1, %l1 4000ba50: 2a 80 00 02 bcs,a 4000ba58 <_Heap_Extend+0x10c> 4000ba54: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 4000ba58: c4 07 bf fc ld [ %fp + -4 ], %g2 4000ba5c: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 4000ba60: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 4000ba64: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 4000ba68: 88 10 e0 01 or %g3, 1, %g4 extend_last_block->prev_size = extend_first_block_size; 4000ba6c: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 4000ba70: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 4000ba74: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 4000ba78: 80 a0 c0 02 cmp %g3, %g2 4000ba7c: 08 80 00 04 bleu 4000ba8c <_Heap_Extend+0x140> 4000ba80: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 4000ba84: 10 80 00 06 b 4000ba9c <_Heap_Extend+0x150> 4000ba88: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 4000ba8c: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 4000ba90: 80 a0 80 01 cmp %g2, %g1 4000ba94: 2a 80 00 02 bcs,a 4000ba9c <_Heap_Extend+0x150> 4000ba98: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 4000ba9c: 80 a5 e0 00 cmp %l7, 0 4000baa0: 02 80 00 14 be 4000baf0 <_Heap_Extend+0x1a4> 4000baa4: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 4000baa8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 4000baac: 92 10 00 12 mov %l2, %o1 4000bab0: 40 00 16 32 call 40011378 <.urem> 4000bab4: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 4000bab8: 80 a2 20 00 cmp %o0, 0 4000babc: 02 80 00 04 be 4000bacc <_Heap_Extend+0x180> <== ALWAYS TAKEN 4000bac0: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 4000bac4: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 4000bac8: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 4000bacc: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 4000bad0: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 4000bad4: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 4000bad8: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 4000badc: 90 10 00 10 mov %l0, %o0 4000bae0: 7f ff ff 90 call 4000b920 <_Heap_Free_block> 4000bae4: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 4000bae8: 10 80 00 09 b 4000bb0c <_Heap_Extend+0x1c0> 4000baec: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 4000baf0: 80 a7 20 00 cmp %i4, 0 4000baf4: 02 80 00 05 be 4000bb08 <_Heap_Extend+0x1bc> 4000baf8: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 4000bafc: b8 27 00 01 sub %i4, %g1, %i4 4000bb00: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 4000bb04: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 4000bb08: 80 a6 20 00 cmp %i0, 0 4000bb0c: 02 80 00 15 be 4000bb60 <_Heap_Extend+0x214> 4000bb10: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000bb14: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 4000bb18: a2 24 40 18 sub %l1, %i0, %l1 4000bb1c: 40 00 16 17 call 40011378 <.urem> 4000bb20: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 4000bb24: c4 06 20 04 ld [ %i0 + 4 ], %g2 4000bb28: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 4000bb2c: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 4000bb30: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 4000bb34: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 4000bb38: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bb3c: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 4000bb40: 90 10 00 10 mov %l0, %o0 4000bb44: 82 08 60 01 and %g1, 1, %g1 4000bb48: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 4000bb4c: a2 14 40 01 or %l1, %g1, %l1 4000bb50: 7f ff ff 74 call 4000b920 <_Heap_Free_block> 4000bb54: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 4000bb58: 10 80 00 0f b 4000bb94 <_Heap_Extend+0x248> 4000bb5c: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 4000bb60: 80 a7 60 00 cmp %i5, 0 4000bb64: 02 80 00 0b be 4000bb90 <_Heap_Extend+0x244> 4000bb68: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bb6c: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 4000bb70: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 4000bb74: 86 20 c0 1d sub %g3, %i5, %g3 4000bb78: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 4000bb7c: 84 10 c0 02 or %g3, %g2, %g2 4000bb80: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 4000bb84: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000bb88: 84 10 a0 01 or %g2, 1, %g2 4000bb8c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 4000bb90: 80 a6 20 00 cmp %i0, 0 4000bb94: 32 80 00 09 bne,a 4000bbb8 <_Heap_Extend+0x26c> 4000bb98: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4000bb9c: 80 a5 e0 00 cmp %l7, 0 4000bba0: 32 80 00 06 bne,a 4000bbb8 <_Heap_Extend+0x26c> 4000bba4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 4000bba8: d2 07 bf fc ld [ %fp + -4 ], %o1 4000bbac: 7f ff ff 5d call 4000b920 <_Heap_Free_block> 4000bbb0: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 4000bbb4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 4000bbb8: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bbbc: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 4000bbc0: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bbc4: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 4000bbc8: 84 10 c0 02 or %g3, %g2, %g2 4000bbcc: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 4000bbd0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 4000bbd4: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 4000bbd8: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 4000bbdc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 4000bbe0: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 4000bbe4: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 4000bbe8: 02 80 00 03 be 4000bbf4 <_Heap_Extend+0x2a8> <== NEVER TAKEN 4000bbec: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 4000bbf0: e8 26 c0 00 st %l4, [ %i3 ] 4000bbf4: 81 c7 e0 08 ret 4000bbf8: 81 e8 00 00 restore =============================================================================== 4000b65c <_Heap_Free>: #include #include #include bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 4000b65c: 9d e3 bf a0 save %sp, -96, %sp 4000b660: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4000b664: 40 00 16 0b call 40010e90 <.urem> 4000b668: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 4000b66c: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000b670: a2 06 7f f8 add %i1, -8, %l1 4000b674: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 4000b678: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b67c: 80 a2 00 0c cmp %o0, %o4 4000b680: 0a 80 00 05 bcs 4000b694 <_Heap_Free+0x38> 4000b684: 82 10 20 00 clr %g1 4000b688: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4000b68c: 80 a0 40 08 cmp %g1, %o0 4000b690: 82 60 3f ff subx %g0, -1, %g1 Heap_Block *next_block = NULL; uintptr_t block_size = 0; uintptr_t next_block_size = 0; bool next_is_free = false; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 4000b694: 80 a0 60 00 cmp %g1, 0 4000b698: 02 80 00 6a be 4000b840 <_Heap_Free+0x1e4> 4000b69c: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b6a0: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000b6a4: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000b6a8: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b6ac: 80 a0 40 0c cmp %g1, %o4 4000b6b0: 0a 80 00 05 bcs 4000b6c4 <_Heap_Free+0x68> <== NEVER TAKEN 4000b6b4: 86 10 20 00 clr %g3 4000b6b8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 4000b6bc: 80 a0 c0 01 cmp %g3, %g1 4000b6c0: 86 60 3f ff subx %g0, -1, %g3 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 4000b6c4: 80 a0 e0 00 cmp %g3, 0 4000b6c8: 02 80 00 5e be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b6cc: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b6d0: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 4000b6d4: 80 89 20 01 btst 1, %g4 4000b6d8: 02 80 00 5a be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b6dc: 88 09 3f fe and %g4, -2, %g4 _HAssert( false ); return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 4000b6e0: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 4000b6e4: 80 a0 40 09 cmp %g1, %o1 4000b6e8: 02 80 00 07 be 4000b704 <_Heap_Free+0xa8> 4000b6ec: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b6f0: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000b6f4: c6 00 e0 04 ld [ %g3 + 4 ], %g3 4000b6f8: 86 08 e0 01 and %g3, 1, %g3 return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 4000b6fc: 80 a0 00 03 cmp %g0, %g3 4000b700: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 4000b704: 80 8b 60 01 btst 1, %o5 4000b708: 12 80 00 26 bne 4000b7a0 <_Heap_Free+0x144> 4000b70c: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 4000b710: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000b714: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b718: 80 a0 c0 0c cmp %g3, %o4 4000b71c: 0a 80 00 04 bcs 4000b72c <_Heap_Free+0xd0> <== NEVER TAKEN 4000b720: 94 10 20 00 clr %o2 4000b724: 80 a2 40 03 cmp %o1, %g3 4000b728: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 4000b72c: 80 a2 a0 00 cmp %o2, 0 4000b730: 02 80 00 44 be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b734: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000b738: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 4000b73c: 80 8b 20 01 btst 1, %o4 4000b740: 02 80 00 40 be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b744: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 4000b748: 22 80 00 0f be,a 4000b784 <_Heap_Free+0x128> 4000b74c: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 4000b750: 88 00 80 04 add %g2, %g4, %g4 4000b754: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 4000b758: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 4000b75c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 4000b760: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 4000b764: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 4000b768: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 4000b76c: 82 00 7f ff add %g1, -1, %g1 4000b770: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 4000b774: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b778: 82 13 60 01 or %o5, 1, %g1 4000b77c: 10 80 00 27 b 4000b818 <_Heap_Free+0x1bc> 4000b780: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b784: 88 13 60 01 or %o5, 1, %g4 4000b788: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b78c: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 4000b790: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b794: 86 08 ff fe and %g3, -2, %g3 4000b798: 10 80 00 20 b 4000b818 <_Heap_Free+0x1bc> 4000b79c: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 4000b7a0: 22 80 00 0d be,a 4000b7d4 <_Heap_Free+0x178> 4000b7a4: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 4000b7a8: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 4000b7ac: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 4000b7b0: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 4000b7b4: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 4000b7b8: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 4000b7bc: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 4000b7c0: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b7c4: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 4000b7c8: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b7cc: 10 80 00 13 b 4000b818 <_Heap_Free+0x1bc> 4000b7d0: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 4000b7d4: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 4000b7d8: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 4000b7dc: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 4000b7e0: 86 10 a0 01 or %g2, 1, %g3 4000b7e4: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b7e8: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 4000b7ec: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b7f0: 86 08 ff fe and %g3, -2, %g3 4000b7f4: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 4000b7f8: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 4000b7fc: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 4000b800: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 4000b804: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 4000b808: 80 a0 c0 01 cmp %g3, %g1 4000b80c: 1a 80 00 03 bcc 4000b818 <_Heap_Free+0x1bc> 4000b810: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 4000b814: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 4000b818: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 4000b81c: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 4000b820: 82 00 7f ff add %g1, -1, %g1 4000b824: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 4000b828: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 4000b82c: 82 00 60 01 inc %g1 4000b830: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 4000b834: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 4000b838: 84 00 40 02 add %g1, %g2, %g2 4000b83c: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 4000b840: 81 c7 e0 08 ret 4000b844: 81 e8 00 00 restore =============================================================================== 400127fc <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 400127fc: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 40012800: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 40012804: 7f ff f9 a3 call 40010e90 <.urem> 40012808: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 4001280c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 40012810: a2 06 7f f8 add %i1, -8, %l1 40012814: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 40012818: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4001281c: 80 a2 00 02 cmp %o0, %g2 40012820: 0a 80 00 05 bcs 40012834 <_Heap_Size_of_alloc_area+0x38> 40012824: 82 10 20 00 clr %g1 40012828: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4001282c: 80 a0 40 08 cmp %g1, %o0 40012830: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 40012834: 80 a0 60 00 cmp %g1, 0 40012838: 02 80 00 15 be 4001288c <_Heap_Size_of_alloc_area+0x90> 4001283c: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40012840: e2 02 20 04 ld [ %o0 + 4 ], %l1 40012844: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 40012848: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4001284c: 80 a4 40 02 cmp %l1, %g2 40012850: 0a 80 00 05 bcs 40012864 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 40012854: 82 10 20 00 clr %g1 40012858: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4001285c: 80 a0 40 11 cmp %g1, %l1 40012860: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 40012864: 80 a0 60 00 cmp %g1, 0 40012868: 02 80 00 09 be 4001288c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 4001286c: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40012870: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 40012874: 80 88 60 01 btst 1, %g1 40012878: 02 80 00 05 be 4001288c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 4001287c: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; return true; 40012880: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; 40012884: a2 04 60 04 add %l1, 4, %l1 40012888: e2 26 80 00 st %l1, [ %i2 ] return true; } 4001288c: 81 c7 e0 08 ret 40012890: 81 e8 00 00 restore =============================================================================== 40007e14 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 40007e14: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 40007e18: 23 10 00 1f sethi %hi(0x40007c00), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 40007e1c: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 40007e20: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 40007e24: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 40007e28: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 40007e2c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 40007e30: 80 8e a0 ff btst 0xff, %i2 40007e34: 02 80 00 04 be 40007e44 <_Heap_Walk+0x30> 40007e38: a2 14 61 c0 or %l1, 0x1c0, %l1 40007e3c: 23 10 00 1f sethi %hi(0x40007c00), %l1 40007e40: a2 14 61 c8 or %l1, 0x1c8, %l1 ! 40007dc8 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 40007e44: 03 10 00 5b sethi %hi(0x40016c00), %g1 40007e48: c2 00 60 3c ld [ %g1 + 0x3c ], %g1 ! 40016c3c <_System_state_Current> 40007e4c: 80 a0 60 03 cmp %g1, 3 40007e50: 12 80 01 2d bne 40008304 <_Heap_Walk+0x4f0> 40007e54: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 40007e58: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 40007e5c: da 04 20 18 ld [ %l0 + 0x18 ], %o5 40007e60: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007e64: c2 04 20 08 ld [ %l0 + 8 ], %g1 40007e68: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 40007e6c: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 40007e70: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40007e74: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 40007e78: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 40007e7c: 90 10 00 19 mov %i1, %o0 40007e80: 92 10 20 00 clr %o1 40007e84: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e88: 96 10 00 12 mov %l2, %o3 40007e8c: 94 12 a1 30 or %o2, 0x130, %o2 40007e90: 9f c4 40 00 call %l1 40007e94: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 40007e98: 80 a4 a0 00 cmp %l2, 0 40007e9c: 12 80 00 07 bne 40007eb8 <_Heap_Walk+0xa4> 40007ea0: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 40007ea4: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ea8: 90 10 00 19 mov %i1, %o0 40007eac: 92 10 20 01 mov 1, %o1 40007eb0: 10 80 00 38 b 40007f90 <_Heap_Walk+0x17c> 40007eb4: 94 12 a1 c8 or %o2, 0x1c8, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 40007eb8: 22 80 00 08 be,a 40007ed8 <_Heap_Walk+0xc4> 40007ebc: 90 10 00 14 mov %l4, %o0 (*printer)( 40007ec0: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ec4: 90 10 00 19 mov %i1, %o0 40007ec8: 92 10 20 01 mov 1, %o1 40007ecc: 94 12 a1 e0 or %o2, 0x1e0, %o2 40007ed0: 10 80 01 0b b 400082fc <_Heap_Walk+0x4e8> 40007ed4: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 40007ed8: 7f ff e6 fb call 40001ac4 <.urem> 40007edc: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 40007ee0: 80 a2 20 00 cmp %o0, 0 40007ee4: 22 80 00 08 be,a 40007f04 <_Heap_Walk+0xf0> 40007ee8: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 40007eec: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ef0: 90 10 00 19 mov %i1, %o0 40007ef4: 92 10 20 01 mov 1, %o1 40007ef8: 94 12 a2 00 or %o2, 0x200, %o2 40007efc: 10 80 01 00 b 400082fc <_Heap_Walk+0x4e8> 40007f00: 96 10 00 14 mov %l4, %o3 40007f04: 7f ff e6 f0 call 40001ac4 <.urem> 40007f08: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 40007f0c: 80 a2 20 00 cmp %o0, 0 40007f10: 22 80 00 08 be,a 40007f30 <_Heap_Walk+0x11c> 40007f14: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 40007f18: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f1c: 90 10 00 19 mov %i1, %o0 40007f20: 92 10 20 01 mov 1, %o1 40007f24: 94 12 a2 28 or %o2, 0x228, %o2 40007f28: 10 80 00 f5 b 400082fc <_Heap_Walk+0x4e8> 40007f2c: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 40007f30: 80 88 60 01 btst 1, %g1 40007f34: 32 80 00 07 bne,a 40007f50 <_Heap_Walk+0x13c> 40007f38: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 40007f3c: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f40: 90 10 00 19 mov %i1, %o0 40007f44: 92 10 20 01 mov 1, %o1 40007f48: 10 80 00 12 b 40007f90 <_Heap_Walk+0x17c> 40007f4c: 94 12 a2 60 or %o2, 0x260, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40007f50: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 40007f54: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40007f58: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 40007f5c: 80 88 60 01 btst 1, %g1 40007f60: 12 80 00 07 bne 40007f7c <_Heap_Walk+0x168> 40007f64: 80 a5 80 13 cmp %l6, %l3 (*printer)( 40007f68: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f6c: 90 10 00 19 mov %i1, %o0 40007f70: 92 10 20 01 mov 1, %o1 40007f74: 10 80 00 07 b 40007f90 <_Heap_Walk+0x17c> 40007f78: 94 12 a2 90 or %o2, 0x290, %o2 ); return false; } if ( 40007f7c: 02 80 00 08 be 40007f9c <_Heap_Walk+0x188> <== ALWAYS TAKEN 40007f80: 15 10 00 51 sethi %hi(0x40014400), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 40007f84: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 40007f88: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 40007f8c: 94 12 a2 a8 or %o2, 0x2a8, %o2 <== NOT EXECUTED 40007f90: 9f c4 40 00 call %l1 40007f94: b0 10 20 00 clr %i0 40007f98: 30 80 00 db b,a 40008304 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 40007f9c: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 40007fa0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 40007fa4: ae 10 00 10 mov %l0, %l7 40007fa8: 10 80 00 32 b 40008070 <_Heap_Walk+0x25c> 40007fac: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40007fb0: 80 a0 80 1c cmp %g2, %i4 40007fb4: 18 80 00 05 bgu 40007fc8 <_Heap_Walk+0x1b4> 40007fb8: 82 10 20 00 clr %g1 40007fbc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 40007fc0: 80 a0 40 1c cmp %g1, %i4 40007fc4: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 40007fc8: 80 a0 60 00 cmp %g1, 0 40007fcc: 32 80 00 08 bne,a 40007fec <_Heap_Walk+0x1d8> 40007fd0: 90 07 20 08 add %i4, 8, %o0 (*printer)( 40007fd4: 15 10 00 51 sethi %hi(0x40014400), %o2 40007fd8: 96 10 00 1c mov %i4, %o3 40007fdc: 90 10 00 19 mov %i1, %o0 40007fe0: 92 10 20 01 mov 1, %o1 40007fe4: 10 80 00 c6 b 400082fc <_Heap_Walk+0x4e8> 40007fe8: 94 12 a2 d8 or %o2, 0x2d8, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 40007fec: 7f ff e6 b6 call 40001ac4 <.urem> 40007ff0: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 40007ff4: 80 a2 20 00 cmp %o0, 0 40007ff8: 22 80 00 08 be,a 40008018 <_Heap_Walk+0x204> 40007ffc: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 40008000: 15 10 00 51 sethi %hi(0x40014400), %o2 40008004: 96 10 00 1c mov %i4, %o3 40008008: 90 10 00 19 mov %i1, %o0 4000800c: 92 10 20 01 mov 1, %o1 40008010: 10 80 00 bb b 400082fc <_Heap_Walk+0x4e8> 40008014: 94 12 a2 f8 or %o2, 0x2f8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40008018: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 4000801c: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40008020: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 40008024: 80 88 60 01 btst 1, %g1 40008028: 22 80 00 08 be,a 40008048 <_Heap_Walk+0x234> 4000802c: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 40008030: 15 10 00 51 sethi %hi(0x40014400), %o2 40008034: 96 10 00 1c mov %i4, %o3 40008038: 90 10 00 19 mov %i1, %o0 4000803c: 92 10 20 01 mov 1, %o1 40008040: 10 80 00 af b 400082fc <_Heap_Walk+0x4e8> 40008044: 94 12 a3 28 or %o2, 0x328, %o2 ); return false; } if ( free_block->prev != prev_block ) { 40008048: 80 a3 00 17 cmp %o4, %l7 4000804c: 22 80 00 08 be,a 4000806c <_Heap_Walk+0x258> 40008050: ae 10 00 1c mov %i4, %l7 (*printer)( 40008054: 15 10 00 51 sethi %hi(0x40014400), %o2 40008058: 96 10 00 1c mov %i4, %o3 4000805c: 90 10 00 19 mov %i1, %o0 40008060: 92 10 20 01 mov 1, %o1 40008064: 10 80 00 49 b 40008188 <_Heap_Walk+0x374> 40008068: 94 12 a3 48 or %o2, 0x348, %o2 return false; } prev_block = free_block; free_block = free_block->next; 4000806c: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 40008070: 80 a7 00 10 cmp %i4, %l0 40008074: 32 bf ff cf bne,a 40007fb0 <_Heap_Walk+0x19c> 40008078: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 4000807c: 35 10 00 52 sethi %hi(0x40014800), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 40008080: 31 10 00 52 sethi %hi(0x40014800), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 40008084: b4 16 a1 08 or %i2, 0x108, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 40008088: b0 16 20 f0 or %i0, 0xf0, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 4000808c: 37 10 00 52 sethi %hi(0x40014800), %i3 block = next_block; } while ( block != first_block ); return true; } 40008090: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40008094: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40008098: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000809c: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 400080a0: 80 a0 c0 1d cmp %g3, %i5 400080a4: 18 80 00 05 bgu 400080b8 <_Heap_Walk+0x2a4> <== NEVER TAKEN 400080a8: 84 10 20 00 clr %g2 400080ac: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 400080b0: 80 a0 80 1d cmp %g2, %i5 400080b4: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 400080b8: 80 a0 a0 00 cmp %g2, 0 400080bc: 12 80 00 07 bne 400080d8 <_Heap_Walk+0x2c4> 400080c0: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 400080c4: 15 10 00 51 sethi %hi(0x40014400), %o2 400080c8: 90 10 00 19 mov %i1, %o0 400080cc: 92 10 20 01 mov 1, %o1 400080d0: 10 80 00 2c b 40008180 <_Heap_Walk+0x36c> 400080d4: 94 12 a3 80 or %o2, 0x380, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 400080d8: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 400080dc: c2 27 bf fc st %g1, [ %fp + -4 ] 400080e0: b8 40 20 00 addx %g0, 0, %i4 400080e4: 90 10 00 17 mov %l7, %o0 400080e8: 7f ff e6 77 call 40001ac4 <.urem> 400080ec: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 400080f0: 80 a2 20 00 cmp %o0, 0 400080f4: 02 80 00 0c be 40008124 <_Heap_Walk+0x310> 400080f8: c2 07 bf fc ld [ %fp + -4 ], %g1 400080fc: 80 8f 20 ff btst 0xff, %i4 40008100: 02 80 00 0a be 40008128 <_Heap_Walk+0x314> 40008104: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 40008108: 15 10 00 51 sethi %hi(0x40014400), %o2 4000810c: 90 10 00 19 mov %i1, %o0 40008110: 92 10 20 01 mov 1, %o1 40008114: 94 12 a3 b0 or %o2, 0x3b0, %o2 40008118: 96 10 00 16 mov %l6, %o3 4000811c: 10 80 00 1b b 40008188 <_Heap_Walk+0x374> 40008120: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 40008124: 80 a5 c0 14 cmp %l7, %l4 40008128: 1a 80 00 0d bcc 4000815c <_Heap_Walk+0x348> 4000812c: 80 a7 40 16 cmp %i5, %l6 40008130: 80 8f 20 ff btst 0xff, %i4 40008134: 02 80 00 0a be 4000815c <_Heap_Walk+0x348> <== NEVER TAKEN 40008138: 80 a7 40 16 cmp %i5, %l6 (*printer)( 4000813c: 15 10 00 51 sethi %hi(0x40014400), %o2 40008140: 90 10 00 19 mov %i1, %o0 40008144: 92 10 20 01 mov 1, %o1 40008148: 94 12 a3 e0 or %o2, 0x3e0, %o2 4000814c: 96 10 00 16 mov %l6, %o3 40008150: 98 10 00 17 mov %l7, %o4 40008154: 10 80 00 3f b 40008250 <_Heap_Walk+0x43c> 40008158: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 4000815c: 38 80 00 0e bgu,a 40008194 <_Heap_Walk+0x380> 40008160: b8 08 60 01 and %g1, 1, %i4 40008164: 80 8f 20 ff btst 0xff, %i4 40008168: 02 80 00 0b be 40008194 <_Heap_Walk+0x380> 4000816c: b8 08 60 01 and %g1, 1, %i4 (*printer)( 40008170: 15 10 00 52 sethi %hi(0x40014800), %o2 40008174: 90 10 00 19 mov %i1, %o0 40008178: 92 10 20 01 mov 1, %o1 4000817c: 94 12 a0 10 or %o2, 0x10, %o2 40008180: 96 10 00 16 mov %l6, %o3 40008184: 98 10 00 1d mov %i5, %o4 40008188: 9f c4 40 00 call %l1 4000818c: b0 10 20 00 clr %i0 40008190: 30 80 00 5d b,a 40008304 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40008194: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 40008198: 80 88 60 01 btst 1, %g1 4000819c: 12 80 00 3f bne 40008298 <_Heap_Walk+0x484> 400081a0: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 400081a4: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 400081a8: c2 04 20 08 ld [ %l0 + 8 ], %g1 400081ac: 05 10 00 51 sethi %hi(0x40014400), %g2 block = next_block; } while ( block != first_block ); return true; } 400081b0: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 400081b4: 80 a3 40 01 cmp %o5, %g1 400081b8: 02 80 00 07 be 400081d4 <_Heap_Walk+0x3c0> 400081bc: 86 10 a0 f0 or %g2, 0xf0, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 400081c0: 80 a3 40 10 cmp %o5, %l0 400081c4: 12 80 00 04 bne 400081d4 <_Heap_Walk+0x3c0> 400081c8: 86 16 e0 b8 or %i3, 0xb8, %g3 400081cc: 19 10 00 51 sethi %hi(0x40014400), %o4 400081d0: 86 13 21 00 or %o4, 0x100, %g3 ! 40014500 block->next, block->next == last_free_block ? 400081d4: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 400081d8: 19 10 00 51 sethi %hi(0x40014400), %o4 400081dc: 80 a0 80 04 cmp %g2, %g4 400081e0: 02 80 00 07 be 400081fc <_Heap_Walk+0x3e8> 400081e4: 82 13 21 10 or %o4, 0x110, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 400081e8: 80 a0 80 10 cmp %g2, %l0 400081ec: 12 80 00 04 bne 400081fc <_Heap_Walk+0x3e8> 400081f0: 82 16 e0 b8 or %i3, 0xb8, %g1 400081f4: 09 10 00 51 sethi %hi(0x40014400), %g4 400081f8: 82 11 21 20 or %g4, 0x120, %g1 ! 40014520 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 400081fc: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 40008200: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 40008204: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 40008208: 90 10 00 19 mov %i1, %o0 4000820c: 92 10 20 00 clr %o1 40008210: 15 10 00 52 sethi %hi(0x40014800), %o2 40008214: 96 10 00 16 mov %l6, %o3 40008218: 94 12 a0 48 or %o2, 0x48, %o2 4000821c: 9f c4 40 00 call %l1 40008220: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 40008224: da 07 40 00 ld [ %i5 ], %o5 40008228: 80 a5 c0 0d cmp %l7, %o5 4000822c: 02 80 00 0c be 4000825c <_Heap_Walk+0x448> 40008230: 80 a7 20 00 cmp %i4, 0 (*printer)( 40008234: 15 10 00 52 sethi %hi(0x40014800), %o2 40008238: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 4000823c: 90 10 00 19 mov %i1, %o0 40008240: 92 10 20 01 mov 1, %o1 40008244: 94 12 a0 80 or %o2, 0x80, %o2 40008248: 96 10 00 16 mov %l6, %o3 4000824c: 98 10 00 17 mov %l7, %o4 40008250: 9f c4 40 00 call %l1 40008254: b0 10 20 00 clr %i0 40008258: 30 80 00 2b b,a 40008304 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 4000825c: 32 80 00 0a bne,a 40008284 <_Heap_Walk+0x470> 40008260: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 40008264: 15 10 00 52 sethi %hi(0x40014800), %o2 40008268: 90 10 00 19 mov %i1, %o0 4000826c: 92 10 20 01 mov 1, %o1 40008270: 10 80 00 22 b 400082f8 <_Heap_Walk+0x4e4> 40008274: 94 12 a0 c0 or %o2, 0xc0, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 40008278: 02 80 00 19 be 400082dc <_Heap_Walk+0x4c8> 4000827c: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 40008280: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 40008284: 80 a0 40 10 cmp %g1, %l0 40008288: 12 bf ff fc bne 40008278 <_Heap_Walk+0x464> 4000828c: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 40008290: 10 80 00 17 b 400082ec <_Heap_Walk+0x4d8> 40008294: 15 10 00 52 sethi %hi(0x40014800), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 40008298: 22 80 00 0a be,a 400082c0 <_Heap_Walk+0x4ac> 4000829c: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 400082a0: 90 10 00 19 mov %i1, %o0 400082a4: 92 10 20 00 clr %o1 400082a8: 94 10 00 18 mov %i0, %o2 400082ac: 96 10 00 16 mov %l6, %o3 400082b0: 9f c4 40 00 call %l1 400082b4: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 400082b8: 10 80 00 09 b 400082dc <_Heap_Walk+0x4c8> 400082bc: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 400082c0: 90 10 00 19 mov %i1, %o0 400082c4: 92 10 20 00 clr %o1 400082c8: 94 10 00 1a mov %i2, %o2 400082cc: 96 10 00 16 mov %l6, %o3 400082d0: 9f c4 40 00 call %l1 400082d4: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 400082d8: 80 a7 40 13 cmp %i5, %l3 400082dc: 32 bf ff 6d bne,a 40008090 <_Heap_Walk+0x27c> 400082e0: ac 10 00 1d mov %i5, %l6 return true; } 400082e4: 81 c7 e0 08 ret 400082e8: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 400082ec: 90 10 00 19 mov %i1, %o0 400082f0: 92 10 20 01 mov 1, %o1 400082f4: 94 12 a1 30 or %o2, 0x130, %o2 400082f8: 96 10 00 16 mov %l6, %o3 400082fc: 9f c4 40 00 call %l1 40008300: b0 10 20 00 clr %i0 40008304: 81 c7 e0 08 ret 40008308: 81 e8 00 00 restore =============================================================================== 40006fac <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40006fac: 9d e3 bf a0 save %sp, -96, %sp _Internal_errors_What_happened.the_source = the_source; 40006fb0: 05 10 00 51 sethi %hi(0x40014400), %g2 40006fb4: 82 10 a0 ac or %g2, 0xac, %g1 ! 400144ac <_Internal_errors_What_happened> void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40006fb8: 90 10 00 18 mov %i0, %o0 40006fbc: 94 10 00 1a mov %i2, %o2 _Internal_errors_What_happened.the_source = the_source; 40006fc0: f0 20 a0 ac st %i0, [ %g2 + 0xac ] _Internal_errors_What_happened.is_internal = is_internal; 40006fc4: f2 28 60 04 stb %i1, [ %g1 + 4 ] _Internal_errors_What_happened.the_error = the_error; 40006fc8: f4 20 60 08 st %i2, [ %g1 + 8 ] _User_extensions_Fatal( the_source, is_internal, the_error ); 40006fcc: 40 00 07 80 call 40008dcc <_User_extensions_Fatal> 40006fd0: 92 0e 60 ff and %i1, 0xff, %o1 RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; 40006fd4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 40006fd8: 03 10 00 51 sethi %hi(0x40014400), %g1 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); 40006fdc: 7f ff eb 2f call 40001c98 <== NOT EXECUTED 40006fe0: c4 20 61 9c st %g2, [ %g1 + 0x19c ] ! 4001459c <_System_state_Current><== NOT EXECUTED 40006fe4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 40006fe8: 30 80 00 00 b,a 40006fe8 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED =============================================================================== 4000705c <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 4000705c: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 40007060: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 40007064: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 40007068: 80 a0 60 00 cmp %g1, 0 4000706c: 02 80 00 20 be 400070ec <_Objects_Allocate+0x90> <== NEVER TAKEN 40007070: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 40007074: a2 04 20 20 add %l0, 0x20, %l1 40007078: 7f ff fd 86 call 40006690 <_Chain_Get> 4000707c: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 40007080: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 40007084: 80 a0 60 00 cmp %g1, 0 40007088: 02 80 00 19 be 400070ec <_Objects_Allocate+0x90> 4000708c: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 40007090: 80 a2 20 00 cmp %o0, 0 40007094: 32 80 00 0a bne,a 400070bc <_Objects_Allocate+0x60> 40007098: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 4000709c: 40 00 00 1e call 40007114 <_Objects_Extend_information> 400070a0: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 400070a4: 7f ff fd 7b call 40006690 <_Chain_Get> 400070a8: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 400070ac: b0 92 20 00 orcc %o0, 0, %i0 400070b0: 02 80 00 0f be 400070ec <_Objects_Allocate+0x90> 400070b4: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 400070b8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 400070bc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 400070c0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 400070c4: 40 00 26 c7 call 40010be0 <.udiv> 400070c8: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 400070cc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 400070d0: 91 2a 20 02 sll %o0, 2, %o0 400070d4: c4 00 40 08 ld [ %g1 + %o0 ], %g2 400070d8: 84 00 bf ff add %g2, -1, %g2 400070dc: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 400070e0: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 400070e4: 82 00 7f ff add %g1, -1, %g1 400070e8: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 400070ec: 81 c7 e0 08 ret 400070f0: 81 e8 00 00 restore =============================================================================== 40007470 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint32_t the_class ) { 40007470: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 40007474: 80 a6 60 00 cmp %i1, 0 40007478: 02 80 00 17 be 400074d4 <_Objects_Get_information+0x64> 4000747c: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 40007480: 40 00 10 f2 call 4000b848 <_Objects_API_maximum_class> 40007484: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 40007488: 80 a2 20 00 cmp %o0, 0 4000748c: 02 80 00 12 be 400074d4 <_Objects_Get_information+0x64> 40007490: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 40007494: 18 80 00 10 bgu 400074d4 <_Objects_Get_information+0x64> 40007498: 03 10 00 50 sethi %hi(0x40014000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 4000749c: b1 2e 20 02 sll %i0, 2, %i0 400074a0: 82 10 63 7c or %g1, 0x37c, %g1 400074a4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 400074a8: 80 a0 60 00 cmp %g1, 0 400074ac: 02 80 00 0a be 400074d4 <_Objects_Get_information+0x64> <== NEVER TAKEN 400074b0: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 400074b4: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 400074b8: 80 a4 20 00 cmp %l0, 0 400074bc: 02 80 00 06 be 400074d4 <_Objects_Get_information+0x64> <== NEVER TAKEN 400074c0: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 400074c4: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 400074c8: 80 a0 00 01 cmp %g0, %g1 400074cc: 82 60 20 00 subx %g0, 0, %g1 400074d0: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 400074d4: 81 c7 e0 08 ret 400074d8: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 40018d74 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 40018d74: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 40018d78: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 40018d7c: 82 22 40 01 sub %o1, %g1, %g1 40018d80: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 40018d84: 80 a0 80 01 cmp %g2, %g1 40018d88: 0a 80 00 09 bcs 40018dac <_Objects_Get_no_protection+0x38> 40018d8c: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 40018d90: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 40018d94: d0 00 80 01 ld [ %g2 + %g1 ], %o0 40018d98: 80 a2 20 00 cmp %o0, 0 40018d9c: 02 80 00 05 be 40018db0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 40018da0: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 40018da4: 81 c3 e0 08 retl 40018da8: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 40018dac: 82 10 20 01 mov 1, %g1 return NULL; 40018db0: 90 10 20 00 clr %o0 } 40018db4: 81 c3 e0 08 retl 40018db8: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 40008d3c <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 40008d3c: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 40008d40: 92 96 20 00 orcc %i0, 0, %o1 40008d44: 12 80 00 06 bne 40008d5c <_Objects_Id_to_name+0x20> 40008d48: 83 32 60 18 srl %o1, 0x18, %g1 40008d4c: 03 10 00 77 sethi %hi(0x4001dc00), %g1 40008d50: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 4001dd98 <_Per_CPU_Information+0xc> 40008d54: d2 00 60 08 ld [ %g1 + 8 ], %o1 40008d58: 83 32 60 18 srl %o1, 0x18, %g1 40008d5c: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 40008d60: 84 00 7f ff add %g1, -1, %g2 40008d64: 80 a0 a0 02 cmp %g2, 2 40008d68: 18 80 00 12 bgu 40008db0 <_Objects_Id_to_name+0x74> 40008d6c: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 40008d70: 10 80 00 12 b 40008db8 <_Objects_Id_to_name+0x7c> 40008d74: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 40008d78: 85 28 a0 02 sll %g2, 2, %g2 40008d7c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 40008d80: 80 a2 20 00 cmp %o0, 0 40008d84: 02 80 00 0b be 40008db0 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 40008d88: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 40008d8c: 7f ff ff cf call 40008cc8 <_Objects_Get> 40008d90: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 40008d94: 80 a2 20 00 cmp %o0, 0 40008d98: 02 80 00 06 be 40008db0 <_Objects_Id_to_name+0x74> 40008d9c: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 40008da0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 40008da4: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 40008da8: 40 00 02 3a call 40009690 <_Thread_Enable_dispatch> 40008dac: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 40008db0: 81 c7 e0 08 ret 40008db4: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 40008db8: 05 10 00 76 sethi %hi(0x4001d800), %g2 40008dbc: 84 10 a2 8c or %g2, 0x28c, %g2 ! 4001da8c <_Objects_Information_table> 40008dc0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 40008dc4: 80 a0 60 00 cmp %g1, 0 40008dc8: 12 bf ff ec bne 40008d78 <_Objects_Id_to_name+0x3c> <== ALWAYS TAKEN 40008dcc: 85 32 60 1b srl %o1, 0x1b, %g2 40008dd0: 30 bf ff f8 b,a 40008db0 <_Objects_Id_to_name+0x74> <== NOT EXECUTED =============================================================================== 400075c4 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 400075c4: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 400075c8: 85 2f 20 10 sll %i4, 0x10, %g2 400075cc: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 400075d0: 07 10 00 50 sethi %hi(0x40014000), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 400075d4: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 400075d8: 86 10 e3 7c or %g3, 0x37c, %g3 400075dc: 85 2e 60 02 sll %i1, 2, %g2 400075e0: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 400075e4: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; 400075e8: f4 36 20 04 sth %i2, [ %i0 + 4 ] information->size = size; information->local_table = 0; 400075ec: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 400075f0: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 400075f4: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 400075f8: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 400075fc: c0 36 20 10 clrh [ %i0 + 0x10 ] /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 40007600: 85 2e a0 02 sll %i2, 2, %g2 , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 40007604: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 40007608: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 4000760c: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 40007610: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 40007614: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 40007618: 80 a0 a0 00 cmp %g2, 0 4000761c: 02 80 00 09 be 40007640 <_Objects_Initialize_information+0x7c> 40007620: b6 2e c0 03 andn %i3, %g3, %i3 40007624: 80 a6 e0 00 cmp %i3, 0 40007628: 12 80 00 07 bne 40007644 <_Objects_Initialize_information+0x80> 4000762c: 05 10 00 50 sethi %hi(0x40014000), %g2 _Internal_error_Occurred( 40007630: 90 10 20 00 clr %o0 40007634: 92 10 20 01 mov 1, %o1 40007638: 7f ff fe 5d call 40006fac <_Internal_error_Occurred> 4000763c: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 40007640: 05 10 00 50 sethi %hi(0x40014000), %g2 40007644: 84 10 a1 d0 or %g2, 0x1d0, %g2 ! 400141d0 40007648: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 4000764c: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 40007650: 80 a0 00 1b cmp %g0, %i3 40007654: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 40007658: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 4000765c: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 40007660: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 40007664: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 40007668: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 4000766c: b4 16 80 02 or %i2, %g2, %i2 /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 40007670: 80 88 60 03 btst 3, %g1 40007674: 02 80 00 04 be 40007684 <_Objects_Initialize_information+0xc0><== ALWAYS TAKEN 40007678: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 4000767c: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 40007680: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 40007684: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40007688: 82 06 20 24 add %i0, 0x24, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 4000768c: c0 26 20 24 clr [ %i0 + 0x24 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40007690: c2 26 20 20 st %g1, [ %i0 + 0x20 ] _Chain_Initialize_empty( &information->Inactive ); 40007694: 82 06 20 20 add %i0, 0x20, %g1 /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 40007698: 80 a6 e0 00 cmp %i3, 0 4000769c: 02 80 00 04 be 400076ac <_Objects_Initialize_information+0xe8> 400076a0: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 400076a4: 7f ff fe 9c call 40007114 <_Objects_Extend_information> 400076a8: 81 e8 00 00 restore 400076ac: 81 c7 e0 08 ret 400076b0: 81 e8 00 00 restore =============================================================================== 4000b020 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 4000b020: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 4000b024: e0 06 21 5c ld [ %i0 + 0x15c ], %l0 if ( !api ) 4000b028: 80 a4 20 00 cmp %l0, 0 4000b02c: 02 80 00 1d be 4000b0a0 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 4000b030: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 4000b034: 7f ff db 19 call 40001c98 4000b038: 01 00 00 00 nop signal_set = asr->signals_posted; 4000b03c: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 4000b040: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 4000b044: 7f ff db 19 call 40001ca8 4000b048: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 4000b04c: 80 a4 e0 00 cmp %l3, 0 4000b050: 02 80 00 14 be 4000b0a0 <_RTEMS_tasks_Post_switch_extension+0x80> 4000b054: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 4000b058: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000b05c: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 4000b060: 82 00 60 01 inc %g1 4000b064: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000b068: 94 10 00 11 mov %l1, %o2 4000b06c: 25 00 00 3f sethi %hi(0xfc00), %l2 4000b070: 40 00 07 93 call 4000cebc 4000b074: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 4000b078: c2 04 20 0c ld [ %l0 + 0xc ], %g1 4000b07c: 9f c0 40 00 call %g1 4000b080: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 4000b084: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000b088: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 4000b08c: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000b090: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 4000b094: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000b098: 40 00 07 89 call 4000cebc 4000b09c: 94 10 00 11 mov %l1, %o2 4000b0a0: 81 c7 e0 08 ret 4000b0a4: 81 e8 00 00 restore =============================================================================== 400073b0 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 400073b0: 9d e3 bf 98 save %sp, -104, %sp 400073b4: 11 10 00 77 sethi %hi(0x4001dc00), %o0 400073b8: 92 10 00 18 mov %i0, %o1 400073bc: 90 12 23 fc or %o0, 0x3fc, %o0 400073c0: 40 00 07 cb call 400092ec <_Objects_Get> 400073c4: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 400073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 400073cc: 80 a0 60 00 cmp %g1, 0 400073d0: 12 80 00 24 bne 40007460 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 400073d4: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 400073d8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 400073dc: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 400073e0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 400073e4: 80 88 80 01 btst %g2, %g1 400073e8: 22 80 00 0b be,a 40007414 <_Rate_monotonic_Timeout+0x64> 400073ec: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 400073f0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 400073f4: c2 04 20 08 ld [ %l0 + 8 ], %g1 400073f8: 80 a0 80 01 cmp %g2, %g1 400073fc: 32 80 00 06 bne,a 40007414 <_Rate_monotonic_Timeout+0x64> 40007400: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 40007404: 13 04 00 ff sethi %hi(0x1003fc00), %o1 40007408: 40 00 09 1a call 40009870 <_Thread_Clear_state> 4000740c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 40007410: 30 80 00 06 b,a 40007428 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 40007414: 80 a0 60 01 cmp %g1, 1 40007418: 12 80 00 0d bne 4000744c <_Rate_monotonic_Timeout+0x9c> 4000741c: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 40007420: 82 10 20 03 mov 3, %g1 40007424: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 40007428: 7f ff fe 65 call 40006dbc <_Rate_monotonic_Initiate_statistics> 4000742c: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40007430: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 40007434: 11 10 00 78 sethi %hi(0x4001e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40007438: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 4000743c: 90 12 22 2c or %o0, 0x22c, %o0 40007440: 40 00 0e f0 call 4000b000 <_Watchdog_Insert> 40007444: 92 04 20 10 add %l0, 0x10, %o1 40007448: 30 80 00 02 b,a 40007450 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 4000744c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 40007450: 03 10 00 78 sethi %hi(0x4001e000), %g1 40007454: c4 00 61 68 ld [ %g1 + 0x168 ], %g2 ! 4001e168 <_Thread_Dispatch_disable_level> 40007458: 84 00 bf ff add %g2, -1, %g2 4000745c: c4 20 61 68 st %g2, [ %g1 + 0x168 ] 40007460: 81 c7 e0 08 ret 40007464: 81 e8 00 00 restore =============================================================================== 40006dc0 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 40006dc0: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 40006dc4: 03 10 00 78 sethi %hi(0x4001e000), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 40006dc8: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 40006dcc: d2 00 61 64 ld [ %g1 + 0x164 ], %o1 if ((!the_tod) || 40006dd0: 80 a4 20 00 cmp %l0, 0 40006dd4: 02 80 00 2b be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006dd8: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 40006ddc: 11 00 03 d0 sethi %hi(0xf4000), %o0 40006de0: 40 00 46 fe call 400189d8 <.udiv> 40006de4: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 40006de8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40006dec: 80 a0 40 08 cmp %g1, %o0 40006df0: 1a 80 00 24 bcc 40006e80 <_TOD_Validate+0xc0> 40006df4: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 40006df8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 40006dfc: 80 a0 60 3b cmp %g1, 0x3b 40006e00: 18 80 00 20 bgu 40006e80 <_TOD_Validate+0xc0> 40006e04: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 40006e08: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 40006e0c: 80 a0 60 3b cmp %g1, 0x3b 40006e10: 18 80 00 1c bgu 40006e80 <_TOD_Validate+0xc0> 40006e14: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 40006e18: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40006e1c: 80 a0 60 17 cmp %g1, 0x17 40006e20: 18 80 00 18 bgu 40006e80 <_TOD_Validate+0xc0> 40006e24: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 40006e28: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 40006e2c: 80 a0 60 00 cmp %g1, 0 40006e30: 02 80 00 14 be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006e34: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 40006e38: 18 80 00 12 bgu 40006e80 <_TOD_Validate+0xc0> 40006e3c: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 40006e40: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 40006e44: 80 a0 e7 c3 cmp %g3, 0x7c3 40006e48: 08 80 00 0e bleu 40006e80 <_TOD_Validate+0xc0> 40006e4c: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 40006e50: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 40006e54: 80 a0 a0 00 cmp %g2, 0 40006e58: 02 80 00 0a be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006e5c: 80 88 e0 03 btst 3, %g3 40006e60: 07 10 00 73 sethi %hi(0x4001cc00), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 40006e64: 12 80 00 03 bne 40006e70 <_TOD_Validate+0xb0> 40006e68: 86 10 e2 28 or %g3, 0x228, %g3 ! 4001ce28 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 40006e6c: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 40006e70: 83 28 60 02 sll %g1, 2, %g1 40006e74: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 40006e78: 80 a0 40 02 cmp %g1, %g2 40006e7c: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 40006e80: 81 c7 e0 08 ret 40006e84: 81 e8 00 00 restore =============================================================================== 400078f0 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 400078f0: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 400078f4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 400078f8: 40 00 04 0b call 40008924 <_Thread_Set_transient> 400078fc: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 40007900: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 40007904: 80 a0 40 19 cmp %g1, %i1 40007908: 02 80 00 05 be 4000791c <_Thread_Change_priority+0x2c> 4000790c: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 40007910: 90 10 00 18 mov %i0, %o0 40007914: 40 00 03 87 call 40008730 <_Thread_Set_priority> 40007918: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 4000791c: 7f ff e8 df call 40001c98 40007920: 01 00 00 00 nop 40007924: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 40007928: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 4000792c: 80 a6 60 04 cmp %i1, 4 40007930: 02 80 00 10 be 40007970 <_Thread_Change_priority+0x80> 40007934: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 40007938: 80 a4 60 00 cmp %l1, 0 4000793c: 12 80 00 03 bne 40007948 <_Thread_Change_priority+0x58> <== NEVER TAKEN 40007940: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 40007944: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 40007948: 7f ff e8 d8 call 40001ca8 4000794c: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 40007950: 03 00 00 ef sethi %hi(0x3bc00), %g1 40007954: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 40007958: 80 8e 40 01 btst %i1, %g1 4000795c: 02 80 00 5c be 40007acc <_Thread_Change_priority+0x1dc> 40007960: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 40007964: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 40007968: 40 00 03 45 call 4000867c <_Thread_queue_Requeue> 4000796c: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 40007970: 80 a4 60 00 cmp %l1, 0 40007974: 12 80 00 1c bne 400079e4 <_Thread_Change_priority+0xf4> <== NEVER TAKEN 40007978: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 4000797c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40007980: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40007984: c6 10 40 00 lduh [ %g1 ], %g3 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 40007988: c0 24 20 10 clr [ %l0 + 0x10 ] 4000798c: 84 10 c0 02 or %g3, %g2, %g2 40007990: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 40007994: 03 10 00 51 sethi %hi(0x40014400), %g1 40007998: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000799c: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2 _Priority_Add_to_bit_map( &the_thread->Priority_map ); if ( prepend_it ) 400079a0: 80 8e a0 ff btst 0xff, %i2 400079a4: 84 10 c0 02 or %g3, %g2, %g2 400079a8: c4 30 60 b8 sth %g2, [ %g1 + 0xb8 ] 400079ac: 02 80 00 08 be 400079cc <_Thread_Change_priority+0xdc> 400079b0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 400079b4: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 400079b8: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 400079bc: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 400079c0: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 400079c4: 10 80 00 08 b 400079e4 <_Thread_Change_priority+0xf4> 400079c8: e0 20 a0 04 st %l0, [ %g2 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 400079cc: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 400079d0: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 400079d4: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 400079d8: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 400079dc: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 400079e0: c4 24 20 04 st %g2, [ %l0 + 4 ] _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level ); 400079e4: 7f ff e8 b1 call 40001ca8 400079e8: 90 10 00 18 mov %i0, %o0 400079ec: 7f ff e8 ab call 40001c98 400079f0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_Get_highest() ].first; 400079f4: 03 10 00 50 sethi %hi(0x40014000), %g1 400079f8: da 00 63 74 ld [ %g1 + 0x374 ], %o5 ! 40014374 <_Thread_Ready_chain> RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void ) { Priority_Bit_map_control minor; Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 400079fc: 03 10 00 51 sethi %hi(0x40014400), %g1 40007a00: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2 ! 400144b8 <_Priority_Major_bit_map> 40007a04: 03 10 00 4c sethi %hi(0x40013000), %g1 40007a08: 85 28 a0 10 sll %g2, 0x10, %g2 40007a0c: 87 30 a0 10 srl %g2, 0x10, %g3 40007a10: 80 a0 e0 ff cmp %g3, 0xff 40007a14: 18 80 00 05 bgu 40007a28 <_Thread_Change_priority+0x138> 40007a18: 82 10 61 d8 or %g1, 0x1d8, %g1 40007a1c: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 40007a20: 10 80 00 04 b 40007a30 <_Thread_Change_priority+0x140> 40007a24: 84 00 a0 08 add %g2, 8, %g2 40007a28: 85 30 a0 18 srl %g2, 0x18, %g2 40007a2c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 40007a30: 83 28 a0 10 sll %g2, 0x10, %g1 40007a34: 07 10 00 51 sethi %hi(0x40014400), %g3 40007a38: 83 30 60 0f srl %g1, 0xf, %g1 40007a3c: 86 10 e1 30 or %g3, 0x130, %g3 40007a40: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 40007a44: 03 10 00 4c sethi %hi(0x40013000), %g1 40007a48: 87 28 e0 10 sll %g3, 0x10, %g3 40007a4c: 89 30 e0 10 srl %g3, 0x10, %g4 40007a50: 80 a1 20 ff cmp %g4, 0xff 40007a54: 18 80 00 05 bgu 40007a68 <_Thread_Change_priority+0x178> 40007a58: 82 10 61 d8 or %g1, 0x1d8, %g1 40007a5c: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 40007a60: 10 80 00 04 b 40007a70 <_Thread_Change_priority+0x180> 40007a64: 82 00 60 08 add %g1, 8, %g1 40007a68: 87 30 e0 18 srl %g3, 0x18, %g3 40007a6c: c2 08 40 03 ldub [ %g1 + %g3 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 40007a70: 83 28 60 10 sll %g1, 0x10, %g1 40007a74: 83 30 60 10 srl %g1, 0x10, %g1 Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 40007a78: 85 28 a0 10 sll %g2, 0x10, %g2 40007a7c: 85 30 a0 0c srl %g2, 0xc, %g2 40007a80: 84 00 40 02 add %g1, %g2, %g2 40007a84: 83 28 a0 02 sll %g2, 2, %g1 40007a88: 85 28 a0 04 sll %g2, 4, %g2 40007a8c: 84 20 80 01 sub %g2, %g1, %g2 * ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) 40007a90: c6 03 40 02 ld [ %o5 + %g2 ], %g3 40007a94: 03 10 00 51 sethi %hi(0x40014400), %g1 40007a98: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 40007a9c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() && 40007aa0: 80 a0 80 03 cmp %g2, %g3 40007aa4: 02 80 00 08 be 40007ac4 <_Thread_Change_priority+0x1d4> 40007aa8: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 40007aac: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 40007ab0: 80 a0 a0 00 cmp %g2, 0 40007ab4: 02 80 00 04 be 40007ac4 <_Thread_Change_priority+0x1d4> 40007ab8: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Context_Switch_necessary = true; 40007abc: 84 10 20 01 mov 1, %g2 ! 1 40007ac0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 40007ac4: 7f ff e8 79 call 40001ca8 40007ac8: 81 e8 00 00 restore 40007acc: 81 c7 e0 08 ret 40007ad0: 81 e8 00 00 restore =============================================================================== 40007ad4 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) { 40007ad4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 40007ad8: 7f ff e8 70 call 40001c98 40007adc: a0 10 00 18 mov %i0, %l0 40007ae0: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 40007ae4: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & state ) { 40007ae8: 80 8e 40 01 btst %i1, %g1 40007aec: 02 80 00 2f be 40007ba8 <_Thread_Clear_state+0xd4> 40007af0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear); 40007af4: b2 28 40 19 andn %g1, %i1, %i1 current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) { 40007af8: 80 a6 60 00 cmp %i1, 0 40007afc: 12 80 00 2b bne 40007ba8 <_Thread_Clear_state+0xd4> 40007b00: f2 24 20 10 st %i1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 40007b04: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40007b08: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40007b0c: c6 10 40 00 lduh [ %g1 ], %g3 40007b10: 84 10 c0 02 or %g3, %g2, %g2 40007b14: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 40007b18: 03 10 00 51 sethi %hi(0x40014400), %g1 40007b1c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 40007b20: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2 40007b24: 84 10 c0 02 or %g3, %g2, %g2 40007b28: c4 30 60 b8 sth %g2, [ %g1 + 0xb8 ] _Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 40007b2c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40007b30: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 40007b34: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 40007b38: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 40007b3c: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 40007b40: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 40007b44: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 40007b48: 7f ff e8 58 call 40001ca8 40007b4c: 01 00 00 00 nop 40007b50: 7f ff e8 52 call 40001c98 40007b54: 01 00 00 00 nop * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 40007b58: 03 10 00 51 sethi %hi(0x40014400), %g1 40007b5c: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40007b60: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 40007b64: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 40007b68: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 40007b6c: 80 a0 80 03 cmp %g2, %g3 40007b70: 1a 80 00 0e bcc 40007ba8 <_Thread_Clear_state+0xd4> 40007b74: 01 00 00 00 nop _Thread_Heir = the_thread; 40007b78: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 40007b7c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 40007b80: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 40007b84: 80 a0 60 00 cmp %g1, 0 40007b88: 32 80 00 05 bne,a 40007b9c <_Thread_Clear_state+0xc8> 40007b8c: 84 10 20 01 mov 1, %g2 40007b90: 80 a0 a0 00 cmp %g2, 0 40007b94: 12 80 00 05 bne 40007ba8 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN 40007b98: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Context_Switch_necessary = true; 40007b9c: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ba0: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40007ba4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 40007ba8: 7f ff e8 40 call 40001ca8 40007bac: 81 e8 00 00 restore =============================================================================== 40007d30 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 40007d30: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 40007d34: 90 10 00 18 mov %i0, %o0 40007d38: 40 00 00 5f call 40007eb4 <_Thread_Get> 40007d3c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 40007d40: c2 07 bf fc ld [ %fp + -4 ], %g1 40007d44: 80 a0 60 00 cmp %g1, 0 40007d48: 12 80 00 08 bne 40007d68 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 40007d4c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 40007d50: 7f ff ff 61 call 40007ad4 <_Thread_Clear_state> 40007d54: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 40007d58: 03 10 00 51 sethi %hi(0x40014400), %g1 40007d5c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40007d60: 84 00 bf ff add %g2, -1, %g2 40007d64: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 40007d68: 81 c7 e0 08 ret 40007d6c: 81 e8 00 00 restore =============================================================================== 40007d70 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 40007d70: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 40007d74: 2b 10 00 51 sethi %hi(0x40014400), %l5 40007d78: 82 15 62 7c or %l5, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> _ISR_Disable( level ); 40007d7c: 7f ff e7 c7 call 40001c98 40007d80: e2 00 60 0c ld [ %g1 + 0xc ], %l1 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 40007d84: 25 10 00 51 sethi %hi(0x40014400), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 40007d88: 39 10 00 51 sethi %hi(0x40014400), %i4 40007d8c: ba 10 20 01 mov 1, %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 40007d90: 2f 10 00 50 sethi %hi(0x40014000), %l7 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 40007d94: a8 07 bf f8 add %fp, -8, %l4 _Timestamp_Subtract( 40007d98: a6 07 bf f0 add %fp, -16, %l3 40007d9c: a4 14 a0 c8 or %l2, 0xc8, %l2 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { 40007da0: 10 80 00 2b b 40007e4c <_Thread_Dispatch+0xdc> 40007da4: 2d 10 00 51 sethi %hi(0x40014400), %l6 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 40007da8: fa 27 20 18 st %i5, [ %i4 + 0x18 ] _Context_Switch_necessary = false; 40007dac: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 40007db0: 80 a4 00 11 cmp %l0, %l1 40007db4: 02 80 00 2b be 40007e60 <_Thread_Dispatch+0xf0> 40007db8: e0 20 60 0c st %l0, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 40007dbc: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 40007dc0: 80 a0 60 01 cmp %g1, 1 40007dc4: 12 80 00 03 bne 40007dd0 <_Thread_Dispatch+0x60> 40007dc8: c2 05 e3 78 ld [ %l7 + 0x378 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 40007dcc: c2 24 20 78 st %g1, [ %l0 + 0x78 ] _ISR_Enable( level ); 40007dd0: 7f ff e7 b6 call 40001ca8 40007dd4: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 40007dd8: 40 00 0d 93 call 4000b424 <_TOD_Get_uptime> 40007ddc: 90 10 00 14 mov %l4, %o0 _Timestamp_Subtract( 40007de0: 90 10 00 12 mov %l2, %o0 40007de4: 92 10 00 14 mov %l4, %o1 40007de8: 40 00 03 98 call 40008c48 <_Timespec_Subtract> 40007dec: 94 10 00 13 mov %l3, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 40007df0: 90 04 60 84 add %l1, 0x84, %o0 40007df4: 40 00 03 7c call 40008be4 <_Timespec_Add_to> 40007df8: 92 10 00 13 mov %l3, %o1 _Thread_Time_of_last_context_switch = uptime; 40007dfc: c2 07 bf f8 ld [ %fp + -8 ], %g1 40007e00: c2 24 80 00 st %g1, [ %l2 ] 40007e04: c2 07 bf fc ld [ %fp + -4 ], %g1 40007e08: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 40007e0c: c2 05 a0 9c ld [ %l6 + 0x9c ], %g1 40007e10: 80 a0 60 00 cmp %g1, 0 40007e14: 02 80 00 06 be 40007e2c <_Thread_Dispatch+0xbc> <== NEVER TAKEN 40007e18: 90 10 00 11 mov %l1, %o0 executing->libc_reent = *_Thread_libc_reent; 40007e1c: c4 00 40 00 ld [ %g1 ], %g2 40007e20: c4 24 61 58 st %g2, [ %l1 + 0x158 ] *_Thread_libc_reent = heir->libc_reent; 40007e24: c4 04 21 58 ld [ %l0 + 0x158 ], %g2 40007e28: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 40007e2c: 40 00 04 37 call 40008f08 <_User_extensions_Thread_switch> 40007e30: 92 10 00 10 mov %l0, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 40007e34: 90 04 60 d0 add %l1, 0xd0, %o0 40007e38: 40 00 05 26 call 400092d0 <_CPU_Context_switch> 40007e3c: 92 04 20 d0 add %l0, 0xd0, %o1 if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 40007e40: 82 15 62 7c or %l5, 0x27c, %g1 _ISR_Disable( level ); 40007e44: 7f ff e7 95 call 40001c98 40007e48: e2 00 60 0c ld [ %g1 + 0xc ], %l1 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { 40007e4c: 82 15 62 7c or %l5, 0x27c, %g1 40007e50: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 40007e54: 80 a0 a0 00 cmp %g2, 0 40007e58: 32 bf ff d4 bne,a 40007da8 <_Thread_Dispatch+0x38> 40007e5c: e0 00 60 10 ld [ %g1 + 0x10 ], %l0 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 40007e60: 03 10 00 51 sethi %hi(0x40014400), %g1 40007e64: c0 20 60 18 clr [ %g1 + 0x18 ] ! 40014418 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 40007e68: 7f ff e7 90 call 40001ca8 40007e6c: 01 00 00 00 nop _API_extensions_Run_postswitch(); 40007e70: 7f ff f9 a7 call 4000650c <_API_extensions_Run_postswitch> 40007e74: 01 00 00 00 nop } 40007e78: 81 c7 e0 08 ret 40007e7c: 81 e8 00 00 restore =============================================================================== 40007eb4 <_Thread_Get>: Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 40007eb4: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 40007eb8: 80 a2 20 00 cmp %o0, 0 40007ebc: 12 80 00 0a bne 40007ee4 <_Thread_Get+0x30> 40007ec0: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 40007ec4: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ec8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40007ecc: 84 00 a0 01 inc %g2 40007ed0: c4 20 60 18 st %g2, [ %g1 + 0x18 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 40007ed4: 03 10 00 51 sethi %hi(0x40014400), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 40007ed8: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 40007edc: 81 c3 e0 08 retl 40007ee0: d0 00 62 88 ld [ %g1 + 0x288 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 40007ee4: 87 32 20 18 srl %o0, 0x18, %g3 40007ee8: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 40007eec: 84 00 ff ff add %g3, -1, %g2 40007ef0: 80 a0 a0 02 cmp %g2, 2 40007ef4: 28 80 00 16 bleu,a 40007f4c <_Thread_Get+0x98> 40007ef8: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 40007efc: 82 10 20 01 mov 1, %g1 40007f00: 10 80 00 09 b 40007f24 <_Thread_Get+0x70> 40007f04: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 40007f08: 09 10 00 50 sethi %hi(0x40014000), %g4 40007f0c: 88 11 23 7c or %g4, 0x37c, %g4 ! 4001437c <_Objects_Information_table> 40007f10: c6 01 00 03 ld [ %g4 + %g3 ], %g3 if ( !api_information ) { 40007f14: 80 a0 e0 00 cmp %g3, 0 40007f18: 32 80 00 05 bne,a 40007f2c <_Thread_Get+0x78> <== ALWAYS TAKEN 40007f1c: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 40007f20: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 40007f24: 81 c3 e0 08 retl 40007f28: 90 10 20 00 clr %o0 } information = api_information[ the_class ]; if ( !information ) { 40007f2c: 80 a2 20 00 cmp %o0, 0 40007f30: 12 80 00 04 bne 40007f40 <_Thread_Get+0x8c> 40007f34: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 40007f38: 81 c3 e0 08 retl 40007f3c: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 40007f40: 82 13 c0 00 mov %o7, %g1 40007f44: 7f ff fd 83 call 40007550 <_Objects_Get> 40007f48: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 40007f4c: 80 a0 a0 01 cmp %g2, 1 40007f50: 22 bf ff ee be,a 40007f08 <_Thread_Get+0x54> 40007f54: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 40007f58: 10 bf ff ea b 40007f00 <_Thread_Get+0x4c> 40007f5c: 82 10 20 01 mov 1, %g1 =============================================================================== 4000d200 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 4000d200: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 4000d204: 03 10 00 51 sethi %hi(0x40014400), %g1 4000d208: e0 00 62 88 ld [ %g1 + 0x288 ], %l0 ! 40014688 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 4000d20c: 3f 10 00 34 sethi %hi(0x4000d000), %i7 4000d210: be 17 e2 00 or %i7, 0x200, %i7 ! 4000d200 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 4000d214: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0 _ISR_Set_level(level); 4000d218: 7f ff d2 a4 call 40001ca8 4000d21c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 4000d220: 03 10 00 50 sethi %hi(0x40014000), %g1 doneConstructors = 1; 4000d224: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 4000d228: e2 08 61 d8 ldub [ %g1 + 0x1d8 ], %l1 /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 4000d22c: 90 10 00 10 mov %l0, %o0 4000d230: 7f ff ee c6 call 40008d48 <_User_extensions_Thread_begin> 4000d234: c4 28 61 d8 stb %g2, [ %g1 + 0x1d8 ] /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 4000d238: 7f ff eb 12 call 40007e80 <_Thread_Enable_dispatch> 4000d23c: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 4000d240: 80 a4 60 00 cmp %l1, 0 4000d244: 32 80 00 05 bne,a 4000d258 <_Thread_Handler+0x58> 4000d248: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 INIT_NAME (); 4000d24c: 40 00 19 fd call 40013a40 <_init> 4000d250: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 4000d254: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 4000d258: 80 a0 60 00 cmp %g1, 0 4000d25c: 12 80 00 06 bne 4000d274 <_Thread_Handler+0x74> <== NEVER TAKEN 4000d260: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 4000d264: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 4000d268: 9f c0 40 00 call %g1 4000d26c: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 4000d270: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 4000d274: 7f ff ee c6 call 40008d8c <_User_extensions_Thread_exitted> 4000d278: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 4000d27c: 90 10 20 00 clr %o0 4000d280: 92 10 20 01 mov 1, %o1 4000d284: 7f ff e7 4a call 40006fac <_Internal_error_Occurred> 4000d288: 94 10 20 05 mov 5, %o2 =============================================================================== 40007f60 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 40007f60: 9d e3 bf a0 save %sp, -96, %sp 40007f64: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 40007f68: e2 0f a0 5f ldub [ %fp + 0x5f ], %l1 40007f6c: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 40007f70: c0 26 61 5c clr [ %i1 + 0x15c ] 40007f74: c0 26 61 60 clr [ %i1 + 0x160 ] extensions_area = NULL; the_thread->libc_reent = NULL; 40007f78: c0 26 61 58 clr [ %i1 + 0x158 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 40007f7c: 90 10 00 19 mov %i1, %o0 40007f80: 40 00 02 8e call 400089b8 <_Thread_Stack_Allocate> 40007f84: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 40007f88: 80 a2 00 1b cmp %o0, %i3 40007f8c: 0a 80 00 5b bcs 400080f8 <_Thread_Initialize+0x198> 40007f90: 80 a2 20 00 cmp %o0, 0 40007f94: 22 80 00 57 be,a 400080f0 <_Thread_Initialize+0x190> <== NEVER TAKEN 40007f98: b0 10 20 00 clr %i0 <== NOT EXECUTED Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 40007f9c: c2 06 60 c8 ld [ %i1 + 0xc8 ], %g1 the_stack->size = size; 40007fa0: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 40007fa4: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 40007fa8: 03 10 00 51 sethi %hi(0x40014400), %g1 40007fac: d0 00 60 a8 ld [ %g1 + 0xa8 ], %o0 ! 400144a8 <_Thread_Maximum_extensions> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40007fb0: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 40007fb4: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 40007fb8: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 40007fbc: c0 26 60 6c clr [ %i1 + 0x6c ] 40007fc0: 80 a2 20 00 cmp %o0, 0 40007fc4: 02 80 00 08 be 40007fe4 <_Thread_Initialize+0x84> 40007fc8: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 40007fcc: 90 02 20 01 inc %o0 40007fd0: 40 00 04 a2 call 40009258 <_Workspace_Allocate> 40007fd4: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 40007fd8: b6 92 20 00 orcc %o0, 0, %i3 40007fdc: 22 80 00 2c be,a 4000808c <_Thread_Initialize+0x12c> 40007fe0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 40007fe4: 80 a6 e0 00 cmp %i3, 0 40007fe8: 02 80 00 0b be 40008014 <_Thread_Initialize+0xb4> 40007fec: f6 26 61 64 st %i3, [ %i1 + 0x164 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 40007ff0: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ff4: c4 00 60 a8 ld [ %g1 + 0xa8 ], %g2 ! 400144a8 <_Thread_Maximum_extensions> 40007ff8: 10 80 00 04 b 40008008 <_Thread_Initialize+0xa8> 40007ffc: 82 10 20 00 clr %g1 40008000: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 40008004: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 40008008: 80 a0 40 02 cmp %g1, %g2 4000800c: 08 bf ff fd bleu 40008000 <_Thread_Initialize+0xa0> 40008010: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 40008014: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 40008018: 90 10 00 19 mov %i1, %o0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 4000801c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ] the_thread->Start.budget_callout = budget_callout; 40008020: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 40008024: 92 10 00 1d mov %i5, %o1 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 40008028: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 4000802c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 40008030: e2 2e 60 ac stb %l1, [ %i1 + 0xac ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 40008034: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] the_thread->current_state = STATES_DORMANT; 40008038: 82 10 20 01 mov 1, %g1 the_thread->Wait.queue = NULL; 4000803c: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 40008040: c2 26 60 10 st %g1, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 40008044: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 40008048: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 4000804c: 40 00 01 b9 call 40008730 <_Thread_Set_priority> 40008050: fa 26 60 bc st %i5, [ %i1 + 0xbc ] _Thread_Stack_Free( the_thread ); return false; } 40008054: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40008058: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 4000805c: c0 26 60 84 clr [ %i1 + 0x84 ] 40008060: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40008064: 83 28 60 02 sll %g1, 2, %g1 40008068: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 4000806c: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 40008070: 90 10 00 19 mov %i1, %o0 40008074: 40 00 03 68 call 40008e14 <_User_extensions_Thread_create> 40008078: b0 10 20 01 mov 1, %i0 if ( extension_status ) 4000807c: 80 8a 20 ff btst 0xff, %o0 40008080: 12 80 00 1f bne 400080fc <_Thread_Initialize+0x19c> 40008084: 01 00 00 00 nop return true; failed: if ( the_thread->libc_reent ) 40008088: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 4000808c: 80 a2 20 00 cmp %o0, 0 40008090: 22 80 00 05 be,a 400080a4 <_Thread_Initialize+0x144> 40008094: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( the_thread->libc_reent ); 40008098: 40 00 04 79 call 4000927c <_Workspace_Free> 4000809c: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 400080a0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 400080a4: 80 a2 20 00 cmp %o0, 0 400080a8: 22 80 00 05 be,a 400080bc <_Thread_Initialize+0x15c> 400080ac: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 400080b0: 40 00 04 73 call 4000927c <_Workspace_Free> 400080b4: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 400080b8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 400080bc: 80 a2 20 00 cmp %o0, 0 400080c0: 02 80 00 05 be 400080d4 <_Thread_Initialize+0x174> <== ALWAYS TAKEN 400080c4: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 400080c8: 40 00 04 6d call 4000927c <_Workspace_Free> <== NOT EXECUTED 400080cc: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 400080d0: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 400080d4: 02 80 00 05 be 400080e8 <_Thread_Initialize+0x188> 400080d8: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( extensions_area ); 400080dc: 40 00 04 68 call 4000927c <_Workspace_Free> 400080e0: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); 400080e4: 90 10 00 19 mov %i1, %o0 400080e8: 40 00 02 4b call 40008a14 <_Thread_Stack_Free> 400080ec: b0 10 20 00 clr %i0 return false; 400080f0: 81 c7 e0 08 ret 400080f4: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 400080f8: b0 10 20 00 clr %i0 _Thread_Stack_Free( the_thread ); return false; } 400080fc: 81 c7 e0 08 ret 40008100: 81 e8 00 00 restore =============================================================================== 4000bdcc <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 4000bdcc: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 4000bdd0: 7f ff d8 2e call 40001e88 4000bdd4: a0 10 00 18 mov %i0, %l0 4000bdd8: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 4000bddc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 4000bde0: 80 88 60 02 btst 2, %g1 4000bde4: 02 80 00 2e be 4000be9c <_Thread_Resume+0xd0> <== NEVER TAKEN 4000bde8: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 4000bdec: 80 a0 60 00 cmp %g1, 0 4000bdf0: 12 80 00 2b bne 4000be9c <_Thread_Resume+0xd0> 4000bdf4: c2 24 20 10 st %g1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 4000bdf8: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 4000bdfc: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 4000be00: c6 10 40 00 lduh [ %g1 ], %g3 4000be04: 84 10 c0 02 or %g3, %g2, %g2 4000be08: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 4000be0c: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be10: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000be14: c4 10 62 08 lduh [ %g1 + 0x208 ], %g2 4000be18: 84 10 c0 02 or %g3, %g2, %g2 4000be1c: c4 30 62 08 sth %g2, [ %g1 + 0x208 ] _Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 4000be20: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000be24: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 4000be28: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 4000be2c: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 4000be30: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 4000be34: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 4000be38: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 4000be3c: 7f ff d8 17 call 40001e98 4000be40: 01 00 00 00 nop 4000be44: 7f ff d8 11 call 40001e88 4000be48: 01 00 00 00 nop if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 4000be4c: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be50: 82 10 63 cc or %g1, 0x3cc, %g1 ! 400183cc <_Per_CPU_Information> 4000be54: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000be58: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 4000be5c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 4000be60: 80 a0 80 03 cmp %g2, %g3 4000be64: 1a 80 00 0e bcc 4000be9c <_Thread_Resume+0xd0> 4000be68: 01 00 00 00 nop _Thread_Heir = the_thread; 4000be6c: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 4000be70: c2 00 60 0c ld [ %g1 + 0xc ], %g1 4000be74: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000be78: 80 a0 60 00 cmp %g1, 0 4000be7c: 32 80 00 05 bne,a 4000be90 <_Thread_Resume+0xc4> 4000be80: 84 10 20 01 mov 1, %g2 4000be84: 80 a0 a0 00 cmp %g2, 0 4000be88: 12 80 00 05 bne 4000be9c <_Thread_Resume+0xd0> <== ALWAYS TAKEN 4000be8c: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Context_Switch_necessary = true; 4000be90: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be94: 82 10 63 cc or %g1, 0x3cc, %g1 ! 400183cc <_Per_CPU_Information> 4000be98: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 4000be9c: 7f ff d7 ff call 40001e98 4000bea0: 81 e8 00 00 restore =============================================================================== 40008b3c <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) { 40008b3c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 40008b40: 23 10 00 51 sethi %hi(0x40014400), %l1 40008b44: a2 14 62 7c or %l1, 0x27c, %l1 ! 4001467c <_Per_CPU_Information> 40008b48: e0 04 60 0c ld [ %l1 + 0xc ], %l0 ready = executing->ready; _ISR_Disable( level ); 40008b4c: 7f ff e4 53 call 40001c98 40008b50: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 40008b54: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last); 40008b58: c2 04 a0 08 ld [ %l2 + 8 ], %g1 if ( !_Chain_Has_only_one_node( ready ) ) { 40008b5c: c4 04 80 00 ld [ %l2 ], %g2 40008b60: 80 a0 80 01 cmp %g2, %g1 40008b64: 22 80 00 19 be,a 40008bc8 <_Thread_Yield_processor+0x8c> 40008b68: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 40008b6c: c6 04 00 00 ld [ %l0 ], %g3 previous = the_node->previous; 40008b70: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; previous->next = next; 40008b74: c6 20 80 00 st %g3, [ %g2 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 40008b78: c4 20 e0 04 st %g2, [ %g3 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40008b7c: 84 04 a0 04 add %l2, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 40008b80: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 40008b84: e0 24 a0 08 st %l0, [ %l2 + 8 ] old_last_node->next = the_node; 40008b88: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last_node; 40008b8c: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 40008b90: 7f ff e4 46 call 40001ca8 40008b94: 01 00 00 00 nop 40008b98: 7f ff e4 40 call 40001c98 40008b9c: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 40008ba0: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 40008ba4: 80 a4 00 01 cmp %l0, %g1 40008ba8: 12 80 00 04 bne 40008bb8 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN 40008bac: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) ready->first; 40008bb0: c2 04 80 00 ld [ %l2 ], %g1 40008bb4: c2 24 60 10 st %g1, [ %l1 + 0x10 ] _Context_Switch_necessary = true; 40008bb8: 03 10 00 51 sethi %hi(0x40014400), %g1 40008bbc: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40008bc0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40008bc4: 30 80 00 05 b,a 40008bd8 <_Thread_Yield_processor+0x9c> } else if ( !_Thread_Is_heir( executing ) ) 40008bc8: 80 a4 00 01 cmp %l0, %g1 40008bcc: 02 80 00 03 be 40008bd8 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN 40008bd0: 82 10 20 01 mov 1, %g1 _Context_Switch_necessary = true; 40008bd4: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 40008bd8: 7f ff e4 34 call 40001ca8 40008bdc: 81 e8 00 00 restore =============================================================================== 4000b9c8 <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) { 4000b9c8: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *new_first_node; Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level ); 4000b9cc: 7f ff d8 b3 call 40001c98 4000b9d0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 4000b9d4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 4000b9d8: 03 00 00 ef sethi %hi(0x3bc00), %g1 4000b9dc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 4000b9e0: 80 88 80 01 btst %g2, %g1 4000b9e4: 32 80 00 03 bne,a 4000b9f0 <_Thread_queue_Extract_priority_helper+0x28> 4000b9e8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 _ISR_Enable( level ); 4000b9ec: 30 80 00 1a b,a 4000ba54 <_Thread_queue_Extract_priority_helper+0x8c> */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000b9f0: 88 06 60 3c add %i1, 0x3c, %g4 /* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next; 4000b9f4: c4 06 40 00 ld [ %i1 ], %g2 previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { 4000b9f8: 80 a0 40 04 cmp %g1, %g4 4000b9fc: 02 80 00 11 be 4000ba40 <_Thread_queue_Extract_priority_helper+0x78> 4000ba00: c6 06 60 04 ld [ %i1 + 4 ], %g3 new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; 4000ba04: c8 06 60 40 ld [ %i1 + 0x40 ], %g4 new_second_node = new_first_node->next; 4000ba08: da 00 40 00 ld [ %g1 ], %o5 previous_node->next = new_first_node; next_node->previous = new_first_node; 4000ba0c: c2 20 a0 04 st %g1, [ %g2 + 4 ] new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node; 4000ba10: c2 20 c0 00 st %g1, [ %g3 ] next_node->previous = new_first_node; new_first_node->next = next_node; 4000ba14: c4 20 40 00 st %g2, [ %g1 ] new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { 4000ba18: 80 a0 40 04 cmp %g1, %g4 4000ba1c: 02 80 00 0b be 4000ba48 <_Thread_queue_Extract_priority_helper+0x80> 4000ba20: c6 20 60 04 st %g3, [ %g1 + 4 ] /* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n ); 4000ba24: 84 00 60 38 add %g1, 0x38, %g2 new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous = 4000ba28: c4 23 60 04 st %g2, [ %o5 + 4 ] _Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node; 4000ba2c: da 20 60 38 st %o5, [ %g1 + 0x38 ] new_first_thread->Wait.Block2n.last = last_node; 4000ba30: c8 20 60 40 st %g4, [ %g1 + 0x40 ] 4000ba34: 82 00 60 3c add %g1, 0x3c, %g1 last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); 4000ba38: 10 80 00 04 b 4000ba48 <_Thread_queue_Extract_priority_helper+0x80> 4000ba3c: c2 21 00 00 st %g1, [ %g4 ] } } else { previous_node->next = next_node; 4000ba40: c4 20 c0 00 st %g2, [ %g3 ] next_node->previous = previous_node; 4000ba44: c6 20 a0 04 st %g3, [ %g2 + 4 ] /* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) { 4000ba48: 80 8e a0 ff btst 0xff, %i2 4000ba4c: 22 80 00 04 be,a 4000ba5c <_Thread_queue_Extract_priority_helper+0x94> 4000ba50: c2 06 60 50 ld [ %i1 + 0x50 ], %g1 _ISR_Enable( level ); 4000ba54: 7f ff d8 95 call 40001ca8 4000ba58: 91 e8 00 08 restore %g0, %o0, %o0 return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 4000ba5c: 80 a0 60 02 cmp %g1, 2 4000ba60: 02 80 00 06 be 4000ba78 <_Thread_queue_Extract_priority_helper+0xb0><== NEVER TAKEN 4000ba64: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 4000ba68: 7f ff d8 90 call 40001ca8 4000ba6c: b0 10 00 19 mov %i1, %i0 4000ba70: 10 80 00 08 b 4000ba90 <_Thread_queue_Extract_priority_helper+0xc8> 4000ba74: 33 04 00 ff sethi %hi(0x1003fc00), %i1 4000ba78: c2 26 60 50 st %g1, [ %i1 + 0x50 ] ! 1003fc50 <== NOT EXECUTED } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 4000ba7c: 7f ff d8 8b call 40001ca8 <== NOT EXECUTED 4000ba80: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED (void) _Watchdog_Remove( &the_thread->Timer ); 4000ba84: 7f ff f5 8a call 400090ac <_Watchdog_Remove> <== NOT EXECUTED 4000ba88: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED 4000ba8c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED 4000ba90: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 4000ba94: 7f ff f0 10 call 40007ad4 <_Thread_Clear_state> 4000ba98: 81 e8 00 00 restore =============================================================================== 4000867c <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 4000867c: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 40008680: 80 a6 20 00 cmp %i0, 0 40008684: 02 80 00 19 be 400086e8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 40008688: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 4000868c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 40008690: 80 a4 60 01 cmp %l1, 1 40008694: 12 80 00 15 bne 400086e8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 40008698: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 4000869c: 7f ff e5 7f call 40001c98 400086a0: 01 00 00 00 nop 400086a4: a0 10 00 08 mov %o0, %l0 400086a8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 400086ac: 03 00 00 ef sethi %hi(0x3bc00), %g1 400086b0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 400086b4: 80 88 80 01 btst %g2, %g1 400086b8: 02 80 00 0a be 400086e0 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 400086bc: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 400086c0: 92 10 00 19 mov %i1, %o1 400086c4: 94 10 20 01 mov 1, %o2 400086c8: 40 00 0c c0 call 4000b9c8 <_Thread_queue_Extract_priority_helper> 400086cc: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 400086d0: 90 10 00 18 mov %i0, %o0 400086d4: 92 10 00 19 mov %i1, %o1 400086d8: 7f ff ff 4b call 40008404 <_Thread_queue_Enqueue_priority> 400086dc: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 400086e0: 7f ff e5 72 call 40001ca8 400086e4: 90 10 00 10 mov %l0, %o0 400086e8: 81 c7 e0 08 ret 400086ec: 81 e8 00 00 restore =============================================================================== 400086f0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 400086f0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 400086f4: 90 10 00 18 mov %i0, %o0 400086f8: 7f ff fd ef call 40007eb4 <_Thread_Get> 400086fc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 40008700: c2 07 bf fc ld [ %fp + -4 ], %g1 40008704: 80 a0 60 00 cmp %g1, 0 40008708: 12 80 00 08 bne 40008728 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 4000870c: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 40008710: 40 00 0c e4 call 4000baa0 <_Thread_queue_Process_timeout> 40008714: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 40008718: 03 10 00 51 sethi %hi(0x40014400), %g1 4000871c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40008720: 84 00 bf ff add %g2, -1, %g2 40008724: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 40008728: 81 c7 e0 08 ret 4000872c: 81 e8 00 00 restore =============================================================================== 4001654c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 4001654c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 40016550: 35 10 00 f2 sethi %hi(0x4003c800), %i2 40016554: a4 07 bf e8 add %fp, -24, %l2 40016558: b2 07 bf f4 add %fp, -12, %i1 4001655c: ac 07 bf f8 add %fp, -8, %l6 40016560: a6 07 bf ec add %fp, -20, %l3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40016564: ec 27 bf f4 st %l6, [ %fp + -12 ] the_chain->permanent_null = NULL; 40016568: c0 27 bf f8 clr [ %fp + -8 ] the_chain->last = _Chain_Head(the_chain); 4001656c: f2 27 bf fc st %i1, [ %fp + -4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40016570: e6 27 bf e8 st %l3, [ %fp + -24 ] the_chain->permanent_null = NULL; 40016574: c0 27 bf ec clr [ %fp + -20 ] the_chain->last = _Chain_Head(the_chain); 40016578: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 4001657c: aa 06 20 30 add %i0, 0x30, %l5 _Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); 40016580: a8 10 00 12 mov %l2, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 40016584: 37 10 00 f2 sethi %hi(0x4003c800), %i3 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 40016588: a2 06 20 68 add %i0, 0x68, %l1 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 4001658c: b8 10 20 01 mov 1, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 40016590: ba 06 20 08 add %i0, 8, %i5 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 40016594: ae 06 20 40 add %i0, 0x40, %l7 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 40016598: f2 26 20 78 st %i1, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 4001659c: c2 06 a3 e4 ld [ %i2 + 0x3e4 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 400165a0: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 400165a4: 94 10 00 14 mov %l4, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 400165a8: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 400165ac: 90 10 00 15 mov %l5, %o0 400165b0: 40 00 11 93 call 4001abfc <_Watchdog_Adjust_to_chain> 400165b4: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 400165b8: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 400165bc: e0 06 e3 30 ld [ %i3 + 0x330 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 400165c0: 80 a4 00 0a cmp %l0, %o2 400165c4: 08 80 00 06 bleu 400165dc <_Timer_server_Body+0x90> 400165c8: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 400165cc: 90 10 00 11 mov %l1, %o0 400165d0: 40 00 11 8b call 4001abfc <_Watchdog_Adjust_to_chain> 400165d4: 94 10 00 14 mov %l4, %o2 400165d8: 30 80 00 06 b,a 400165f0 <_Timer_server_Body+0xa4> } else if ( snapshot < last_snapshot ) { 400165dc: 1a 80 00 05 bcc 400165f0 <_Timer_server_Body+0xa4> 400165e0: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 400165e4: 92 10 20 01 mov 1, %o1 400165e8: 40 00 11 5d call 4001ab5c <_Watchdog_Adjust> 400165ec: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 400165f0: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 400165f4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 400165f8: 40 00 02 bc call 400170e8 <_Chain_Get> 400165fc: 01 00 00 00 nop if ( timer == NULL ) { 40016600: 92 92 20 00 orcc %o0, 0, %o1 40016604: 02 80 00 0c be 40016634 <_Timer_server_Body+0xe8> 40016608: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 4001660c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 40016610: 80 a0 60 01 cmp %g1, 1 40016614: 02 80 00 05 be 40016628 <_Timer_server_Body+0xdc> 40016618: 90 10 00 15 mov %l5, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 4001661c: 80 a0 60 03 cmp %g1, 3 40016620: 12 bf ff f5 bne 400165f4 <_Timer_server_Body+0xa8> <== NEVER TAKEN 40016624: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 40016628: 40 00 11 a9 call 4001accc <_Watchdog_Insert> 4001662c: 92 02 60 10 add %o1, 0x10, %o1 40016630: 30 bf ff f1 b,a 400165f4 <_Timer_server_Body+0xa8> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 40016634: 7f ff e3 78 call 4000f414 40016638: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 4001663c: c2 07 bf f4 ld [ %fp + -12 ], %g1 40016640: 80 a0 40 16 cmp %g1, %l6 40016644: 12 80 00 0a bne 4001666c <_Timer_server_Body+0x120> <== NEVER TAKEN 40016648: 01 00 00 00 nop ts->insert_chain = NULL; 4001664c: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 40016650: 7f ff e3 75 call 4000f424 40016654: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 40016658: c2 07 bf e8 ld [ %fp + -24 ], %g1 4001665c: 80 a0 40 13 cmp %g1, %l3 40016660: 12 80 00 06 bne 40016678 <_Timer_server_Body+0x12c> 40016664: 01 00 00 00 nop 40016668: 30 80 00 1a b,a 400166d0 <_Timer_server_Body+0x184> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 4001666c: 7f ff e3 6e call 4000f424 <== NOT EXECUTED 40016670: 01 00 00 00 nop <== NOT EXECUTED 40016674: 30 bf ff ca b,a 4001659c <_Timer_server_Body+0x50> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 40016678: 7f ff e3 67 call 4000f414 4001667c: 01 00 00 00 nop 40016680: 84 10 00 08 mov %o0, %g2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 40016684: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 40016688: 80 a4 00 13 cmp %l0, %l3 4001668c: 02 80 00 0e be 400166c4 <_Timer_server_Body+0x178> 40016690: 80 a4 20 00 cmp %l0, 0 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 40016694: c2 04 00 00 ld [ %l0 ], %g1 the_chain->first = new_first; 40016698: c2 27 bf e8 st %g1, [ %fp + -24 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 4001669c: 02 80 00 0a be 400166c4 <_Timer_server_Body+0x178> <== NEVER TAKEN 400166a0: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 400166a4: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 400166a8: 7f ff e3 5f call 4000f424 400166ac: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 400166b0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 400166b4: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 400166b8: 9f c0 40 00 call %g1 400166bc: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 400166c0: 30 bf ff ee b,a 40016678 <_Timer_server_Body+0x12c> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 400166c4: 7f ff e3 58 call 4000f424 400166c8: 90 10 00 02 mov %g2, %o0 400166cc: 30 bf ff b3 b,a 40016598 <_Timer_server_Body+0x4c> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 400166d0: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 400166d4: 7f ff ff 6e call 4001648c <_Thread_Disable_dispatch> 400166d8: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 400166dc: d0 06 00 00 ld [ %i0 ], %o0 400166e0: 40 00 0e 9b call 4001a14c <_Thread_Set_state> 400166e4: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 400166e8: 7f ff ff 6f call 400164a4 <_Timer_server_Reset_interval_system_watchdog> 400166ec: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 400166f0: 7f ff ff 82 call 400164f8 <_Timer_server_Reset_tod_system_watchdog> 400166f4: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 400166f8: 40 00 0b fd call 400196ec <_Thread_Enable_dispatch> 400166fc: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 40016700: 90 10 00 1d mov %i5, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 40016704: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 40016708: 40 00 11 cb call 4001ae34 <_Watchdog_Remove> 4001670c: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 40016710: 40 00 11 c9 call 4001ae34 <_Watchdog_Remove> 40016714: 90 10 00 17 mov %l7, %o0 40016718: 30 bf ff a0 b,a 40016598 <_Timer_server_Body+0x4c> =============================================================================== 4001671c <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 4001671c: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 40016720: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 40016724: 80 a0 60 00 cmp %g1, 0 40016728: 12 80 00 49 bne 4001684c <_Timer_server_Schedule_operation_method+0x130> 4001672c: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 40016730: 7f ff ff 57 call 4001648c <_Thread_Disable_dispatch> 40016734: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 40016738: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 4001673c: 80 a0 60 01 cmp %g1, 1 40016740: 12 80 00 1f bne 400167bc <_Timer_server_Schedule_operation_method+0xa0> 40016744: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 40016748: 7f ff e3 33 call 4000f414 4001674c: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 40016750: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40016754: c4 00 63 e4 ld [ %g1 + 0x3e4 ], %g2 ! 4003cbe4 <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 40016758: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 4001675c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40016760: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 40016764: 80 a0 40 03 cmp %g1, %g3 40016768: 02 80 00 08 be 40016788 <_Timer_server_Schedule_operation_method+0x6c> 4001676c: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 40016770: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 40016774: 80 a3 40 04 cmp %o5, %g4 40016778: 08 80 00 03 bleu 40016784 <_Timer_server_Schedule_operation_method+0x68> 4001677c: 86 10 20 00 clr %g3 delta_interval -= delta; 40016780: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 40016784: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 40016788: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 4001678c: 7f ff e3 26 call 4000f424 40016790: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 40016794: 90 06 20 30 add %i0, 0x30, %o0 40016798: 40 00 11 4d call 4001accc <_Watchdog_Insert> 4001679c: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 400167a0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 400167a4: 80 a0 60 00 cmp %g1, 0 400167a8: 12 80 00 27 bne 40016844 <_Timer_server_Schedule_operation_method+0x128> 400167ac: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 400167b0: 7f ff ff 3d call 400164a4 <_Timer_server_Reset_interval_system_watchdog> 400167b4: 90 10 00 18 mov %i0, %o0 400167b8: 30 80 00 23 b,a 40016844 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 400167bc: 12 80 00 22 bne 40016844 <_Timer_server_Schedule_operation_method+0x128> 400167c0: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 400167c4: 7f ff e3 14 call 4000f414 400167c8: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 400167cc: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 400167d0: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 400167d4: 03 10 00 f2 sethi %hi(0x4003c800), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 400167d8: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 400167dc: 80 a0 80 03 cmp %g2, %g3 400167e0: 02 80 00 0d be 40016814 <_Timer_server_Schedule_operation_method+0xf8> 400167e4: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 400167e8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 400167ec: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 400167f0: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 400167f4: 08 80 00 07 bleu 40016810 <_Timer_server_Schedule_operation_method+0xf4> 400167f8: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 400167fc: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 40016800: 80 a1 00 0d cmp %g4, %o5 40016804: 08 80 00 03 bleu 40016810 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 40016808: 86 10 20 00 clr %g3 delta_interval -= delta; 4001680c: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 40016810: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 40016814: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 40016818: 7f ff e3 03 call 4000f424 4001681c: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 40016820: 90 06 20 68 add %i0, 0x68, %o0 40016824: 40 00 11 2a call 4001accc <_Watchdog_Insert> 40016828: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 4001682c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 40016830: 80 a0 60 00 cmp %g1, 0 40016834: 12 80 00 04 bne 40016844 <_Timer_server_Schedule_operation_method+0x128> 40016838: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 4001683c: 7f ff ff 2f call 400164f8 <_Timer_server_Reset_tod_system_watchdog> 40016840: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 40016844: 40 00 0b aa call 400196ec <_Thread_Enable_dispatch> 40016848: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 4001684c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 40016850: 40 00 02 10 call 40017090 <_Chain_Append> 40016854: 81 e8 00 00 restore =============================================================================== 4000ac7c <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 4000ac7c: c6 02 00 00 ld [ %o0 ], %g3 4000ac80: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 4000ac84: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 4000ac88: 80 a0 c0 02 cmp %g3, %g2 4000ac8c: 14 80 00 0b bg 4000acb8 <_Timespec_Greater_than+0x3c> 4000ac90: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 4000ac94: 80 a0 c0 02 cmp %g3, %g2 4000ac98: 06 80 00 08 bl 4000acb8 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 4000ac9c: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 4000aca0: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000aca4: c2 02 60 04 ld [ %o1 + 4 ], %g1 4000aca8: 80 a0 80 01 cmp %g2, %g1 4000acac: 14 80 00 03 bg 4000acb8 <_Timespec_Greater_than+0x3c> 4000acb0: 90 10 20 01 mov 1, %o0 4000acb4: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 4000acb8: 81 c3 e0 08 retl =============================================================================== 40008dcc <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40008dcc: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008dd0: 23 10 00 51 sethi %hi(0x40014400), %l1 the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 40008dd4: b2 0e 60 ff and %i1, 0xff, %i1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008dd8: a2 14 62 38 or %l1, 0x238, %l1 40008ddc: 10 80 00 09 b 40008e00 <_User_extensions_Fatal+0x34> 40008de0: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 40008de4: 80 a0 60 00 cmp %g1, 0 40008de8: 02 80 00 05 be 40008dfc <_User_extensions_Fatal+0x30> 40008dec: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 40008df0: 92 10 00 19 mov %i1, %o1 40008df4: 9f c0 40 00 call %g1 40008df8: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 40008dfc: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008e00: 80 a4 00 11 cmp %l0, %l1 40008e04: 32 bf ff f8 bne,a 40008de4 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN 40008e08: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 40008e0c: 81 c7 e0 08 ret <== NOT EXECUTED 40008e10: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 40008c90 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 40008c90: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 40008c94: 03 10 00 4e sethi %hi(0x40013800), %g1 40008c98: 82 10 63 38 or %g1, 0x338, %g1 ! 40013b38 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008c9c: 05 10 00 51 sethi %hi(0x40014400), %g2 initial_extensions = Configuration.User_extension_table; 40008ca0: e6 00 60 3c ld [ %g1 + 0x3c ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 40008ca4: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 40008ca8: 82 10 a2 38 or %g2, 0x238, %g1 40008cac: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 40008cb0: c0 20 60 04 clr [ %g1 + 4 ] the_chain->last = _Chain_Head(the_chain); 40008cb4: c2 20 60 08 st %g1, [ %g1 + 8 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008cb8: c6 20 a2 38 st %g3, [ %g2 + 0x238 ] 40008cbc: 05 10 00 51 sethi %hi(0x40014400), %g2 40008cc0: 82 10 a0 1c or %g2, 0x1c, %g1 ! 4001441c <_User_extensions_Switches_list> 40008cc4: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 40008cc8: c0 20 60 04 clr [ %g1 + 4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008ccc: c6 20 a0 1c st %g3, [ %g2 + 0x1c ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 40008cd0: 80 a4 e0 00 cmp %l3, 0 40008cd4: 02 80 00 1b be 40008d40 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 40008cd8: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 40008cdc: 83 2c a0 02 sll %l2, 2, %g1 40008ce0: a1 2c a0 04 sll %l2, 4, %l0 40008ce4: a0 24 00 01 sub %l0, %g1, %l0 40008ce8: a0 04 00 12 add %l0, %l2, %l0 40008cec: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 40008cf0: 40 00 01 6a call 40009298 <_Workspace_Allocate_or_fatal_error> 40008cf4: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 40008cf8: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 40008cfc: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 40008d00: 92 10 20 00 clr %o1 40008d04: 40 00 14 37 call 4000dde0 40008d08: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 40008d0c: 10 80 00 0b b 40008d38 <_User_extensions_Handler_initialization+0xa8> 40008d10: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 40008d14: 90 04 60 14 add %l1, 0x14, %o0 40008d18: 92 04 c0 09 add %l3, %o1, %o1 40008d1c: 40 00 13 f2 call 4000dce4 40008d20: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 40008d24: 90 10 00 11 mov %l1, %o0 40008d28: 40 00 0b c6 call 4000bc40 <_User_extensions_Add_set> 40008d2c: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 40008d30: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 40008d34: 80 a4 00 12 cmp %l0, %l2 40008d38: 0a bf ff f7 bcs 40008d14 <_User_extensions_Handler_initialization+0x84> 40008d3c: 93 2c 20 05 sll %l0, 5, %o1 40008d40: 81 c7 e0 08 ret 40008d44: 81 e8 00 00 restore =============================================================================== 40008d8c <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 40008d8c: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d90: 23 10 00 51 sethi %hi(0x40014400), %l1 40008d94: a2 14 62 38 or %l1, 0x238, %l1 ! 40014638 <_User_extensions_List> 40008d98: 10 80 00 08 b 40008db8 <_User_extensions_Thread_exitted+0x2c> 40008d9c: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 40008da0: 80 a0 60 00 cmp %g1, 0 40008da4: 22 80 00 05 be,a 40008db8 <_User_extensions_Thread_exitted+0x2c> 40008da8: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 40008dac: 9f c0 40 00 call %g1 40008db0: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 40008db4: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008db8: 80 a4 00 11 cmp %l0, %l1 40008dbc: 32 bf ff f9 bne,a 40008da0 <_User_extensions_Thread_exitted+0x14> 40008dc0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 40008dc4: 81 c7 e0 08 ret 40008dc8: 81 e8 00 00 restore =============================================================================== 4000b140 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 4000b140: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 4000b144: 7f ff de e0 call 40002cc4 4000b148: a0 10 00 18 mov %i0, %l0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000b14c: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000b150: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 4000b154: 80 a0 40 11 cmp %g1, %l1 4000b158: 02 80 00 1f be 4000b1d4 <_Watchdog_Adjust+0x94> 4000b15c: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 4000b160: 02 80 00 1a be 4000b1c8 <_Watchdog_Adjust+0x88> 4000b164: a4 10 20 01 mov 1, %l2 4000b168: 80 a6 60 01 cmp %i1, 1 4000b16c: 12 80 00 1a bne 4000b1d4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 4000b170: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 4000b174: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 4000b178: 10 80 00 07 b 4000b194 <_Watchdog_Adjust+0x54> 4000b17c: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 4000b180: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 4000b184: 80 a6 80 19 cmp %i2, %i1 4000b188: 3a 80 00 05 bcc,a 4000b19c <_Watchdog_Adjust+0x5c> 4000b18c: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 4000b190: b4 26 40 1a sub %i1, %i2, %i2 break; 4000b194: 10 80 00 10 b 4000b1d4 <_Watchdog_Adjust+0x94> 4000b198: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 4000b19c: 7f ff de ce call 40002cd4 4000b1a0: 01 00 00 00 nop _Watchdog_Tickle( header ); 4000b1a4: 40 00 00 92 call 4000b3ec <_Watchdog_Tickle> 4000b1a8: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 4000b1ac: 7f ff de c6 call 40002cc4 4000b1b0: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 4000b1b4: c2 04 00 00 ld [ %l0 ], %g1 4000b1b8: 80 a0 40 11 cmp %g1, %l1 4000b1bc: 02 80 00 06 be 4000b1d4 <_Watchdog_Adjust+0x94> 4000b1c0: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 4000b1c4: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 4000b1c8: 80 a6 a0 00 cmp %i2, 0 4000b1cc: 32 bf ff ed bne,a 4000b180 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 4000b1d0: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 4000b1d4: 7f ff de c0 call 40002cd4 4000b1d8: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 400090ac <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 400090ac: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 400090b0: 7f ff e2 fa call 40001c98 400090b4: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 400090b8: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 400090bc: 80 a6 20 01 cmp %i0, 1 400090c0: 22 80 00 1d be,a 40009134 <_Watchdog_Remove+0x88> 400090c4: c0 24 20 08 clr [ %l0 + 8 ] 400090c8: 0a 80 00 1c bcs 40009138 <_Watchdog_Remove+0x8c> 400090cc: 03 10 00 51 sethi %hi(0x40014400), %g1 400090d0: 80 a6 20 03 cmp %i0, 3 400090d4: 18 80 00 19 bgu 40009138 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 400090d8: 01 00 00 00 nop 400090dc: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 400090e0: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 400090e4: c4 00 40 00 ld [ %g1 ], %g2 400090e8: 80 a0 a0 00 cmp %g2, 0 400090ec: 02 80 00 07 be 40009108 <_Watchdog_Remove+0x5c> 400090f0: 05 10 00 51 sethi %hi(0x40014400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 400090f4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 400090f8: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 400090fc: 84 00 c0 02 add %g3, %g2, %g2 40009100: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 40009104: 05 10 00 51 sethi %hi(0x40014400), %g2 40009108: c4 00 a1 50 ld [ %g2 + 0x150 ], %g2 ! 40014550 <_Watchdog_Sync_count> 4000910c: 80 a0 a0 00 cmp %g2, 0 40009110: 22 80 00 07 be,a 4000912c <_Watchdog_Remove+0x80> 40009114: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 40009118: 05 10 00 51 sethi %hi(0x40014400), %g2 4000911c: c6 00 a2 84 ld [ %g2 + 0x284 ], %g3 ! 40014684 <_Per_CPU_Information+0x8> 40009120: 05 10 00 51 sethi %hi(0x40014400), %g2 40009124: c6 20 a0 c0 st %g3, [ %g2 + 0xc0 ] ! 400144c0 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 40009128: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 4000912c: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 40009130: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 40009134: 03 10 00 51 sethi %hi(0x40014400), %g1 40009138: c2 00 61 54 ld [ %g1 + 0x154 ], %g1 ! 40014554 <_Watchdog_Ticks_since_boot> 4000913c: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 40009140: 7f ff e2 da call 40001ca8 40009144: 01 00 00 00 nop return( previous_state ); } 40009148: 81 c7 e0 08 ret 4000914c: 81 e8 00 00 restore =============================================================================== 4000a954 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 4000a954: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 4000a958: 7f ff df b2 call 40002820 4000a95c: a0 10 00 18 mov %i0, %l0 4000a960: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 4000a964: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a968: 94 10 00 19 mov %i1, %o2 4000a96c: 90 12 23 28 or %o0, 0x328, %o0 4000a970: 7f ff e6 47 call 4000428c 4000a974: 92 10 00 10 mov %l0, %o1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000a978: e2 06 40 00 ld [ %i1 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000a97c: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 4000a980: 80 a4 40 19 cmp %l1, %i1 4000a984: 02 80 00 0e be 4000a9bc <_Watchdog_Report_chain+0x68> 4000a988: 11 10 00 71 sethi %hi(0x4001c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 4000a98c: 92 10 00 11 mov %l1, %o1 4000a990: 40 00 00 10 call 4000a9d0 <_Watchdog_Report> 4000a994: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next ) 4000a998: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; 4000a99c: 80 a4 40 19 cmp %l1, %i1 4000a9a0: 12 bf ff fc bne 4000a990 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 4000a9a4: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 4000a9a8: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a9ac: 92 10 00 10 mov %l0, %o1 4000a9b0: 7f ff e6 37 call 4000428c 4000a9b4: 90 12 23 40 or %o0, 0x340, %o0 4000a9b8: 30 80 00 03 b,a 4000a9c4 <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 4000a9bc: 7f ff e6 34 call 4000428c 4000a9c0: 90 12 23 50 or %o0, 0x350, %o0 } _ISR_Enable( level ); 4000a9c4: 7f ff df 9b call 40002830 4000a9c8: 81 e8 00 00 restore =============================================================================== 40008c9c : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 40008c9c: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 40008ca0: 80 a6 20 00 cmp %i0, 0 40008ca4: 02 80 00 1d be 40008d18 <== NEVER TAKEN 40008ca8: 21 10 00 99 sethi %hi(0x40026400), %l0 40008cac: a0 14 23 90 or %l0, 0x390, %l0 ! 40026790 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 40008cb0: a6 04 20 0c add %l0, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { if ( !_Objects_Information_table[ api_index ] ) 40008cb4: c2 04 00 00 ld [ %l0 ], %g1 40008cb8: 80 a0 60 00 cmp %g1, 0 40008cbc: 22 80 00 14 be,a 40008d0c 40008cc0: a0 04 20 04 add %l0, 4, %l0 continue; information = _Objects_Information_table[ api_index ][ 1 ]; 40008cc4: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 40008cc8: 80 a4 a0 00 cmp %l2, 0 40008ccc: 12 80 00 0b bne 40008cf8 40008cd0: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 40008cd4: 10 80 00 0e b 40008d0c 40008cd8: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 40008cdc: 83 2c 60 02 sll %l1, 2, %g1 40008ce0: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 40008ce4: 80 a2 20 00 cmp %o0, 0 40008ce8: 02 80 00 04 be 40008cf8 <== NEVER TAKEN 40008cec: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 40008cf0: 9f c6 00 00 call %i0 40008cf4: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 40008cf8: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 40008cfc: 80 a4 40 01 cmp %l1, %g1 40008d00: 28 bf ff f7 bleu,a 40008cdc 40008d04: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 40008d08: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 40008d0c: 80 a4 00 13 cmp %l0, %l3 40008d10: 32 bf ff ea bne,a 40008cb8 40008d14: c2 04 00 00 ld [ %l0 ], %g1 40008d18: 81 c7 e0 08 ret 40008d1c: 81 e8 00 00 restore =============================================================================== 40013eec : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 40013eec: 9d e3 bf a0 save %sp, -96, %sp 40013ef0: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 40013ef4: 80 a4 20 00 cmp %l0, 0 40013ef8: 02 80 00 1f be 40013f74 40013efc: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 40013f00: 80 a6 60 00 cmp %i1, 0 40013f04: 02 80 00 1c be 40013f74 40013f08: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 40013f0c: 80 a7 60 00 cmp %i5, 0 40013f10: 02 80 00 19 be 40013f74 <== NEVER TAKEN 40013f14: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 40013f18: 02 80 00 32 be 40013fe0 40013f1c: 80 a6 a0 00 cmp %i2, 0 40013f20: 02 80 00 30 be 40013fe0 40013f24: 80 a6 80 1b cmp %i2, %i3 40013f28: 0a 80 00 13 bcs 40013f74 40013f2c: b0 10 20 08 mov 8, %i0 40013f30: 80 8e e0 07 btst 7, %i3 40013f34: 12 80 00 10 bne 40013f74 40013f38: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 40013f3c: 12 80 00 0e bne 40013f74 40013f40: b0 10 20 09 mov 9, %i0 40013f44: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40013f48: c4 00 62 a8 ld [ %g1 + 0x2a8 ], %g2 ! 4003caa8 <_Thread_Dispatch_disable_level> 40013f4c: 84 00 a0 01 inc %g2 40013f50: c4 20 62 a8 st %g2, [ %g1 + 0x2a8 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 40013f54: 25 10 00 f2 sethi %hi(0x4003c800), %l2 40013f58: 40 00 12 4a call 40018880 <_Objects_Allocate> 40013f5c: 90 14 a0 b4 or %l2, 0xb4, %o0 ! 4003c8b4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 40013f60: a2 92 20 00 orcc %o0, 0, %l1 40013f64: 12 80 00 06 bne 40013f7c 40013f68: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 40013f6c: 40 00 15 e0 call 400196ec <_Thread_Enable_dispatch> 40013f70: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 40013f74: 81 c7 e0 08 ret 40013f78: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 40013f7c: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 40013f80: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 40013f84: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 40013f88: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 40013f8c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 40013f90: 40 00 5e f1 call 4002bb54 <.udiv> 40013f94: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 40013f98: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 40013f9c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 40013fa0: 96 10 00 1b mov %i3, %o3 40013fa4: a6 04 60 24 add %l1, 0x24, %l3 40013fa8: 40 00 0c 5f call 40017124 <_Chain_Initialize> 40013fac: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40013fb0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 40013fb4: a4 14 a0 b4 or %l2, 0xb4, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40013fb8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40013fbc: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40013fc0: 85 28 a0 02 sll %g2, 2, %g2 40013fc4: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 40013fc8: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 40013fcc: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 40013fd0: 40 00 15 c7 call 400196ec <_Thread_Enable_dispatch> 40013fd4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40013fd8: 81 c7 e0 08 ret 40013fdc: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 40013fe0: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 40013fe4: 81 c7 e0 08 ret 40013fe8: 81 e8 00 00 restore =============================================================================== 40006f24 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 40006f24: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 40006f28: 11 10 00 77 sethi %hi(0x4001dc00), %o0 40006f2c: 92 10 00 18 mov %i0, %o1 40006f30: 90 12 23 fc or %o0, 0x3fc, %o0 40006f34: 40 00 08 ee call 400092ec <_Objects_Get> 40006f38: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 40006f3c: c2 07 bf fc ld [ %fp + -4 ], %g1 40006f40: 80 a0 60 00 cmp %g1, 0 40006f44: 12 80 00 66 bne 400070dc 40006f48: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 40006f4c: 25 10 00 78 sethi %hi(0x4001e000), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 40006f50: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 40006f54: a4 14 a3 cc or %l2, 0x3cc, %l2 40006f58: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 40006f5c: 80 a0 80 01 cmp %g2, %g1 40006f60: 02 80 00 06 be 40006f78 40006f64: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 40006f68: 40 00 0b 2d call 40009c1c <_Thread_Enable_dispatch> 40006f6c: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 40006f70: 81 c7 e0 08 ret 40006f74: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 40006f78: 12 80 00 0e bne 40006fb0 40006f7c: 01 00 00 00 nop switch ( the_period->state ) { 40006f80: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40006f84: 80 a0 60 04 cmp %g1, 4 40006f88: 18 80 00 06 bgu 40006fa0 <== NEVER TAKEN 40006f8c: b0 10 20 00 clr %i0 40006f90: 83 28 60 02 sll %g1, 2, %g1 40006f94: 05 10 00 70 sethi %hi(0x4001c000), %g2 40006f98: 84 10 a3 a4 or %g2, 0x3a4, %g2 ! 4001c3a4 40006f9c: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 40006fa0: 40 00 0b 1f call 40009c1c <_Thread_Enable_dispatch> 40006fa4: 01 00 00 00 nop return( return_value ); 40006fa8: 81 c7 e0 08 ret 40006fac: 81 e8 00 00 restore } _ISR_Disable( level ); 40006fb0: 7f ff ee ff call 40002bac 40006fb4: 01 00 00 00 nop 40006fb8: a6 10 00 08 mov %o0, %l3 switch ( the_period->state ) { 40006fbc: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 40006fc0: 80 a4 60 02 cmp %l1, 2 40006fc4: 02 80 00 19 be 40007028 40006fc8: 80 a4 60 04 cmp %l1, 4 40006fcc: 02 80 00 33 be 40007098 40006fd0: 80 a4 60 00 cmp %l1, 0 40006fd4: 12 80 00 44 bne 400070e4 <== NEVER TAKEN 40006fd8: 01 00 00 00 nop case RATE_MONOTONIC_INACTIVE: { _ISR_Enable( level ); 40006fdc: 7f ff ee f8 call 40002bbc 40006fe0: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 40006fe4: 7f ff ff 76 call 40006dbc <_Rate_monotonic_Initiate_statistics> 40006fe8: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 40006fec: 82 10 20 02 mov 2, %g1 40006ff0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 40006ff4: 03 10 00 1c sethi %hi(0x40007000), %g1 40006ff8: 82 10 63 b0 or %g1, 0x3b0, %g1 ! 400073b0 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40006ffc: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 40007000: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 40007004: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 40007008: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 4000700c: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40007010: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 40007014: 11 10 00 78 sethi %hi(0x4001e000), %o0 40007018: 92 04 20 10 add %l0, 0x10, %o1 4000701c: 40 00 0f f9 call 4000b000 <_Watchdog_Insert> 40007020: 90 12 22 2c or %o0, 0x22c, %o0 40007024: 30 80 00 19 b,a 40007088 case RATE_MONOTONIC_ACTIVE: /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 40007028: 7f ff ff 81 call 40006e2c <_Rate_monotonic_Update_statistics> 4000702c: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 40007030: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 40007034: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 40007038: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 4000703c: 7f ff ee e0 call 40002bbc 40007040: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 40007044: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007048: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 4000704c: 13 00 00 10 sethi %hi(0x4000), %o1 40007050: 40 00 0d 39 call 4000a534 <_Thread_Set_state> 40007054: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 40007058: 7f ff ee d5 call 40002bac 4000705c: 01 00 00 00 nop local_state = the_period->state; 40007060: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 40007064: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 40007068: 7f ff ee d5 call 40002bbc 4000706c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 40007070: 80 a4 e0 03 cmp %l3, 3 40007074: 12 80 00 05 bne 40007088 40007078: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 4000707c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007080: 40 00 09 fc call 40009870 <_Thread_Clear_state> 40007084: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 40007088: 40 00 0a e5 call 40009c1c <_Thread_Enable_dispatch> 4000708c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40007090: 81 c7 e0 08 ret 40007094: 81 e8 00 00 restore case RATE_MONOTONIC_EXPIRED: /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 40007098: 7f ff ff 65 call 40006e2c <_Rate_monotonic_Update_statistics> 4000709c: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 400070a0: 7f ff ee c7 call 40002bbc 400070a4: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 400070a8: 82 10 20 02 mov 2, %g1 400070ac: 92 04 20 10 add %l0, 0x10, %o1 400070b0: 11 10 00 78 sethi %hi(0x4001e000), %o0 400070b4: 90 12 22 2c or %o0, 0x22c, %o0 ! 4001e22c <_Watchdog_Ticks_chain> 400070b8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 400070bc: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 400070c0: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 400070c4: 40 00 0f cf call 4000b000 <_Watchdog_Insert> 400070c8: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 400070cc: 40 00 0a d4 call 40009c1c <_Thread_Enable_dispatch> 400070d0: 01 00 00 00 nop return RTEMS_TIMEOUT; 400070d4: 81 c7 e0 08 ret 400070d8: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 400070dc: 81 c7 e0 08 ret 400070e0: 91 e8 20 04 restore %g0, 4, %o0 } 400070e4: 81 c7 e0 08 ret <== NOT EXECUTED 400070e8: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED =============================================================================== 400070ec : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 400070ec: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 400070f0: 80 a6 60 00 cmp %i1, 0 400070f4: 02 80 00 79 be 400072d8 <== NEVER TAKEN 400070f8: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 400070fc: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007100: 9f c6 40 00 call %i1 40007104: 92 12 63 b8 or %o1, 0x3b8, %o1 ! 4001c3b8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 40007108: 90 10 00 18 mov %i0, %o0 4000710c: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007110: 9f c6 40 00 call %i1 40007114: 92 12 63 d8 or %o1, 0x3d8, %o1 ! 4001c3d8 (*print)( context, "--- Wall times are in seconds ---\n" ); 40007118: 90 10 00 18 mov %i0, %o0 4000711c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007120: 9f c6 40 00 call %i1 40007124: 92 12 60 00 mov %o1, %o1 ! 4001c400 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 40007128: 90 10 00 18 mov %i0, %o0 4000712c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007130: 9f c6 40 00 call %i1 40007134: 92 12 60 28 or %o1, 0x28, %o1 ! 4001c428 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 40007138: 90 10 00 18 mov %i0, %o0 4000713c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007140: 9f c6 40 00 call %i1 40007144: 92 12 60 78 or %o1, 0x78, %o1 ! 4001c478 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 40007148: 3b 10 00 77 sethi %hi(0x4001dc00), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 4000714c: 2b 10 00 71 sethi %hi(0x4001c400), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 40007150: 82 17 63 fc or %i5, 0x3fc, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 40007154: 27 10 00 71 sethi %hi(0x4001c400), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 40007158: 35 10 00 71 sethi %hi(0x4001c400), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 4000715c: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 40007160: ae 07 bf a0 add %fp, -96, %l7 if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 40007164: ac 07 bf d8 add %fp, -40, %l6 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 40007168: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 4000716c: aa 15 60 c8 or %l5, 0xc8, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 40007170: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 40007174: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 40007178: a6 14 e0 e0 or %l3, 0xe0, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 4000717c: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 40007180: 10 80 00 52 b 400072c8 40007184: b4 16 a1 00 or %i2, 0x100, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 40007188: 40 00 17 a7 call 4000d024 4000718c: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 40007190: 80 a2 20 00 cmp %o0, 0 40007194: 32 80 00 4c bne,a 400072c4 40007198: a0 04 20 01 inc %l0 continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 4000719c: 92 10 00 16 mov %l6, %o1 400071a0: 40 00 17 ce call 4000d0d8 400071a4: 90 10 00 10 mov %l0, %o0 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 400071a8: d0 07 bf d8 ld [ %fp + -40 ], %o0 400071ac: 92 10 20 05 mov 5, %o1 400071b0: 40 00 00 ae call 40007468 400071b4: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 400071b8: d8 1f bf a0 ldd [ %fp + -96 ], %o4 400071bc: 92 10 00 15 mov %l5, %o1 400071c0: 90 10 00 18 mov %i0, %o0 400071c4: 94 10 00 10 mov %l0, %o2 400071c8: 9f c6 40 00 call %i1 400071cc: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 400071d0: d2 07 bf a0 ld [ %fp + -96 ], %o1 400071d4: 80 a2 60 00 cmp %o1, 0 400071d8: 12 80 00 08 bne 400071f8 400071dc: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 400071e0: 90 10 00 18 mov %i0, %o0 400071e4: 13 10 00 6d sethi %hi(0x4001b400), %o1 400071e8: 9f c6 40 00 call %i1 400071ec: 92 12 62 58 or %o1, 0x258, %o1 ! 4001b658 <_rodata_start+0x158> continue; 400071f0: 10 80 00 35 b 400072c4 400071f4: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 400071f8: 40 00 0e 5f call 4000ab74 <_Timespec_Divide_by_integer> 400071fc: 90 10 00 14 mov %l4, %o0 (*print)( context, 40007200: d0 07 bf ac ld [ %fp + -84 ], %o0 40007204: 40 00 44 1a call 4001826c <.div> 40007208: 92 10 23 e8 mov 0x3e8, %o1 4000720c: 96 10 00 08 mov %o0, %o3 40007210: d0 07 bf b4 ld [ %fp + -76 ], %o0 40007214: d6 27 bf 9c st %o3, [ %fp + -100 ] 40007218: 40 00 44 15 call 4001826c <.div> 4000721c: 92 10 23 e8 mov 0x3e8, %o1 40007220: c2 07 bf f0 ld [ %fp + -16 ], %g1 40007224: b6 10 00 08 mov %o0, %i3 40007228: d0 07 bf f4 ld [ %fp + -12 ], %o0 4000722c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007230: 40 00 44 0f call 4001826c <.div> 40007234: 92 10 23 e8 mov 0x3e8, %o1 40007238: d8 07 bf b0 ld [ %fp + -80 ], %o4 4000723c: d6 07 bf 9c ld [ %fp + -100 ], %o3 40007240: d4 07 bf a8 ld [ %fp + -88 ], %o2 40007244: 9a 10 00 1b mov %i3, %o5 40007248: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 4000724c: 92 10 00 13 mov %l3, %o1 40007250: 9f c6 40 00 call %i1 40007254: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 40007258: d2 07 bf a0 ld [ %fp + -96 ], %o1 4000725c: 94 10 00 11 mov %l1, %o2 40007260: 40 00 0e 45 call 4000ab74 <_Timespec_Divide_by_integer> 40007264: 90 10 00 1c mov %i4, %o0 (*print)( context, 40007268: d0 07 bf c4 ld [ %fp + -60 ], %o0 4000726c: 40 00 44 00 call 4001826c <.div> 40007270: 92 10 23 e8 mov 0x3e8, %o1 40007274: 96 10 00 08 mov %o0, %o3 40007278: d0 07 bf cc ld [ %fp + -52 ], %o0 4000727c: d6 27 bf 9c st %o3, [ %fp + -100 ] 40007280: 40 00 43 fb call 4001826c <.div> 40007284: 92 10 23 e8 mov 0x3e8, %o1 40007288: c2 07 bf f0 ld [ %fp + -16 ], %g1 4000728c: b6 10 00 08 mov %o0, %i3 40007290: d0 07 bf f4 ld [ %fp + -12 ], %o0 40007294: 92 10 23 e8 mov 0x3e8, %o1 40007298: 40 00 43 f5 call 4001826c <.div> 4000729c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 400072a0: d4 07 bf c0 ld [ %fp + -64 ], %o2 400072a4: d6 07 bf 9c ld [ %fp + -100 ], %o3 400072a8: d8 07 bf c8 ld [ %fp + -56 ], %o4 400072ac: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 400072b0: 92 10 00 1a mov %i2, %o1 400072b4: 90 10 00 18 mov %i0, %o0 400072b8: 9f c6 40 00 call %i1 400072bc: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 400072c0: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 400072c4: 82 17 63 fc or %i5, 0x3fc, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 400072c8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 400072cc: 80 a4 00 01 cmp %l0, %g1 400072d0: 08 bf ff ae bleu 40007188 400072d4: 90 10 00 10 mov %l0, %o0 400072d8: 81 c7 e0 08 ret 400072dc: 81 e8 00 00 restore =============================================================================== 4001549c : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 4001549c: 9d e3 bf 98 save %sp, -104, %sp 400154a0: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 400154a4: 80 a6 60 00 cmp %i1, 0 400154a8: 02 80 00 2e be 40015560 400154ac: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 400154b0: 40 00 10 9c call 40019720 <_Thread_Get> 400154b4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 400154b8: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 400154bc: a2 10 00 08 mov %o0, %l1 switch ( location ) { 400154c0: 80 a0 60 00 cmp %g1, 0 400154c4: 12 80 00 27 bne 40015560 400154c8: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 400154cc: e0 02 21 5c ld [ %o0 + 0x15c ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 400154d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 400154d4: 80 a0 60 00 cmp %g1, 0 400154d8: 02 80 00 24 be 40015568 400154dc: 01 00 00 00 nop if ( asr->is_enabled ) { 400154e0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 400154e4: 80 a0 60 00 cmp %g1, 0 400154e8: 02 80 00 15 be 4001553c 400154ec: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 400154f0: 7f ff e7 c9 call 4000f414 400154f4: 01 00 00 00 nop *signal_set |= signals; 400154f8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 400154fc: b2 10 40 19 or %g1, %i1, %i1 40015500: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 40015504: 7f ff e7 c8 call 4000f424 40015508: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 4001550c: 03 10 00 f3 sethi %hi(0x4003cc00), %g1 40015510: 82 10 61 14 or %g1, 0x114, %g1 ! 4003cd14 <_Per_CPU_Information> 40015514: c4 00 60 08 ld [ %g1 + 8 ], %g2 40015518: 80 a0 a0 00 cmp %g2, 0 4001551c: 02 80 00 0f be 40015558 40015520: 01 00 00 00 nop 40015524: c4 00 60 0c ld [ %g1 + 0xc ], %g2 40015528: 80 a4 40 02 cmp %l1, %g2 4001552c: 12 80 00 0b bne 40015558 <== NEVER TAKEN 40015530: 84 10 20 01 mov 1, %g2 _Context_Switch_necessary = true; 40015534: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40015538: 30 80 00 08 b,a 40015558 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 4001553c: 7f ff e7 b6 call 4000f414 40015540: 01 00 00 00 nop *signal_set |= signals; 40015544: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40015548: b2 10 40 19 or %g1, %i1, %i1 4001554c: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 40015550: 7f ff e7 b5 call 4000f424 40015554: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 40015558: 40 00 10 65 call 400196ec <_Thread_Enable_dispatch> 4001555c: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 40015560: 81 c7 e0 08 ret 40015564: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 40015568: 40 00 10 61 call 400196ec <_Thread_Enable_dispatch> 4001556c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 40015570: 81 c7 e0 08 ret 40015574: 81 e8 00 00 restore =============================================================================== 4000cebc : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 4000cebc: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 4000cec0: 80 a6 a0 00 cmp %i2, 0 4000cec4: 02 80 00 5f be 4000d040 4000cec8: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 4000cecc: 03 10 00 51 sethi %hi(0x40014400), %g1 4000ced0: e2 00 62 88 ld [ %g1 + 0x288 ], %l1 ! 40014688 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000ced4: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 4000ced8: e0 04 61 5c ld [ %l1 + 0x15c ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000cedc: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 4000cee0: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000cee4: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 4000cee8: 80 a0 60 00 cmp %g1, 0 4000ceec: 02 80 00 03 be 4000cef8 4000cef0: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 4000cef4: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 4000cef8: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 4000cefc: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 4000cf00: 7f ff f1 f8 call 400096e0 <_CPU_ISR_Get_level> 4000cf04: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 4000cf08: a7 2c e0 0a sll %l3, 0xa, %l3 4000cf0c: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 4000cf10: a4 14 c0 12 or %l3, %l2, %l2 /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 4000cf14: 80 8e 61 00 btst 0x100, %i1 4000cf18: 02 80 00 06 be 4000cf30 4000cf1c: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 4000cf20: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 4000cf24: 80 a0 00 01 cmp %g0, %g1 4000cf28: 82 60 3f ff subx %g0, -1, %g1 4000cf2c: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 4000cf30: 80 8e 62 00 btst 0x200, %i1 4000cf34: 02 80 00 0b be 4000cf60 4000cf38: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 4000cf3c: 80 8e 22 00 btst 0x200, %i0 4000cf40: 22 80 00 07 be,a 4000cf5c 4000cf44: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 4000cf48: 82 10 20 01 mov 1, %g1 4000cf4c: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 4000cf50: 03 10 00 50 sethi %hi(0x40014000), %g1 4000cf54: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 40014378 <_Thread_Ticks_per_timeslice> 4000cf58: c2 24 60 78 st %g1, [ %l1 + 0x78 ] /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 4000cf5c: 80 8e 60 0f btst 0xf, %i1 4000cf60: 02 80 00 06 be 4000cf78 4000cf64: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 4000cf68: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 4000cf6c: 7f ff d3 4f call 40001ca8 4000cf70: 91 2a 20 08 sll %o0, 8, %o0 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 4000cf74: 80 8e 64 00 btst 0x400, %i1 4000cf78: 02 80 00 14 be 4000cfc8 4000cf7c: 84 10 20 00 clr %g2 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 4000cf80: c6 0c 20 08 ldub [ %l0 + 8 ], %g3 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 4000cf84: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 4000cf88: 80 a0 00 18 cmp %g0, %i0 4000cf8c: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 4000cf90: 80 a0 40 03 cmp %g1, %g3 4000cf94: 22 80 00 0e be,a 4000cfcc 4000cf98: 03 10 00 51 sethi %hi(0x40014400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 4000cf9c: 7f ff d3 3f call 40001c98 4000cfa0: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 4000cfa4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 4000cfa8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 4000cfac: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 4000cfb0: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 4000cfb4: 7f ff d3 3d call 40001ca8 4000cfb8: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 4000cfbc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 4000cfc0: 80 a0 00 01 cmp %g0, %g1 4000cfc4: 84 40 20 00 addx %g0, 0, %g2 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) 4000cfc8: 03 10 00 51 sethi %hi(0x40014400), %g1 4000cfcc: c6 00 61 9c ld [ %g1 + 0x19c ], %g3 ! 4001459c <_System_state_Current> 4000cfd0: 80 a0 e0 03 cmp %g3, 3 4000cfd4: 12 80 00 1b bne 4000d040 <== NEVER TAKEN 4000cfd8: 82 10 20 00 clr %g1 */ RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void ) { Thread_Control *executing; executing = _Thread_Executing; 4000cfdc: 07 10 00 51 sethi %hi(0x40014400), %g3 4000cfe0: 86 10 e2 7c or %g3, 0x27c, %g3 ! 4001467c <_Per_CPU_Information> 4000cfe4: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 if ( !_States_Is_ready( executing->current_state ) || 4000cfe8: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 4000cfec: 80 a1 20 00 cmp %g4, 0 4000cff0: 32 80 00 0b bne,a 4000d01c <== NEVER TAKEN 4000cff4: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED 4000cff8: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 4000cffc: 80 a0 40 03 cmp %g1, %g3 4000d000: 02 80 00 0b be 4000d02c 4000d004: 80 88 a0 ff btst 0xff, %g2 ( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) { 4000d008: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000d00c: 80 a0 60 00 cmp %g1, 0 4000d010: 02 80 00 07 be 4000d02c <== NEVER TAKEN 4000d014: 80 88 a0 ff btst 0xff, %g2 _Context_Switch_necessary = true; 4000d018: 84 10 20 01 mov 1, %g2 4000d01c: 03 10 00 51 sethi %hi(0x40014400), %g1 4000d020: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 4000d024: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 4000d028: 30 80 00 03 b,a 4000d034 if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) 4000d02c: 02 80 00 05 be 4000d040 4000d030: 82 10 20 00 clr %g1 _Thread_Dispatch(); 4000d034: 7f ff eb 4f call 40007d70 <_Thread_Dispatch> 4000d038: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 4000d03c: 82 10 20 00 clr %g1 ! 0 } 4000d040: 81 c7 e0 08 ret 4000d044: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 4000a744 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 4000a744: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 4000a748: 80 a6 60 00 cmp %i1, 0 4000a74c: 02 80 00 07 be 4000a768 4000a750: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 4000a754: 03 10 00 61 sethi %hi(0x40018400), %g1 4000a758: c2 08 60 a4 ldub [ %g1 + 0xa4 ], %g1 ! 400184a4 4000a75c: 80 a6 40 01 cmp %i1, %g1 4000a760: 18 80 00 1c bgu 4000a7d0 4000a764: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 4000a768: 80 a6 a0 00 cmp %i2, 0 4000a76c: 02 80 00 19 be 4000a7d0 4000a770: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 4000a774: 40 00 07 fb call 4000c760 <_Thread_Get> 4000a778: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 4000a77c: c2 07 bf fc ld [ %fp + -4 ], %g1 4000a780: 80 a0 60 00 cmp %g1, 0 4000a784: 12 80 00 13 bne 4000a7d0 4000a788: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 4000a78c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 4000a790: 80 a6 60 00 cmp %i1, 0 4000a794: 02 80 00 0d be 4000a7c8 4000a798: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 4000a79c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 4000a7a0: 80 a0 60 00 cmp %g1, 0 4000a7a4: 02 80 00 06 be 4000a7bc 4000a7a8: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 4000a7ac: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 4000a7b0: 80 a0 40 19 cmp %g1, %i1 4000a7b4: 08 80 00 05 bleu 4000a7c8 <== ALWAYS TAKEN 4000a7b8: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 4000a7bc: 92 10 00 19 mov %i1, %o1 4000a7c0: 40 00 06 77 call 4000c19c <_Thread_Change_priority> 4000a7c4: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 4000a7c8: 40 00 07 d9 call 4000c72c <_Thread_Enable_dispatch> 4000a7cc: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 4000a7d0: 81 c7 e0 08 ret 4000a7d4: 81 e8 00 00 restore =============================================================================== 40015eb4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 40015eb4: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 40015eb8: 11 10 00 f3 sethi %hi(0x4003cc00), %o0 40015ebc: 92 10 00 18 mov %i0, %o1 40015ec0: 90 12 21 74 or %o0, 0x174, %o0 40015ec4: 40 00 0b be call 40018dbc <_Objects_Get> 40015ec8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 40015ecc: c2 07 bf fc ld [ %fp + -4 ], %g1 40015ed0: 80 a0 60 00 cmp %g1, 0 40015ed4: 12 80 00 0c bne 40015f04 40015ed8: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 40015edc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40015ee0: 80 a0 60 04 cmp %g1, 4 40015ee4: 02 80 00 04 be 40015ef4 <== NEVER TAKEN 40015ee8: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 40015eec: 40 00 13 d2 call 4001ae34 <_Watchdog_Remove> 40015ef0: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 40015ef4: 40 00 0d fe call 400196ec <_Thread_Enable_dispatch> 40015ef8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40015efc: 81 c7 e0 08 ret 40015f00: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 40015f04: 81 c7 e0 08 ret 40015f08: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 4001639c : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 4001639c: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 400163a0: 03 10 00 f3 sethi %hi(0x4003cc00), %g1 400163a4: e2 00 61 b4 ld [ %g1 + 0x1b4 ], %l1 ! 4003cdb4 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 400163a8: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 400163ac: 80 a4 60 00 cmp %l1, 0 400163b0: 02 80 00 33 be 4001647c 400163b4: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 400163b8: 03 10 00 f2 sethi %hi(0x4003c800), %g1 400163bc: c2 08 62 b8 ldub [ %g1 + 0x2b8 ], %g1 ! 4003cab8 <_TOD_Is_set> 400163c0: 80 a0 60 00 cmp %g1, 0 400163c4: 02 80 00 2e be 4001647c <== NEVER TAKEN 400163c8: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 400163cc: 80 a6 a0 00 cmp %i2, 0 400163d0: 02 80 00 2b be 4001647c 400163d4: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 400163d8: 90 10 00 19 mov %i1, %o0 400163dc: 7f ff f4 01 call 400133e0 <_TOD_Validate> 400163e0: b0 10 20 14 mov 0x14, %i0 400163e4: 80 8a 20 ff btst 0xff, %o0 400163e8: 02 80 00 27 be 40016484 400163ec: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 400163f0: 7f ff f3 c8 call 40013310 <_TOD_To_seconds> 400163f4: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 400163f8: 27 10 00 f2 sethi %hi(0x4003c800), %l3 400163fc: c2 04 e3 30 ld [ %l3 + 0x330 ], %g1 ! 4003cb30 <_TOD_Now> 40016400: 80 a2 00 01 cmp %o0, %g1 40016404: 08 80 00 1e bleu 4001647c 40016408: a4 10 00 08 mov %o0, %l2 4001640c: 11 10 00 f3 sethi %hi(0x4003cc00), %o0 40016410: 92 10 00 10 mov %l0, %o1 40016414: 90 12 21 74 or %o0, 0x174, %o0 40016418: 40 00 0a 69 call 40018dbc <_Objects_Get> 4001641c: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 40016420: c2 07 bf fc ld [ %fp + -4 ], %g1 40016424: b2 10 00 08 mov %o0, %i1 40016428: 80 a0 60 00 cmp %g1, 0 4001642c: 12 80 00 14 bne 4001647c 40016430: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 40016434: 40 00 12 80 call 4001ae34 <_Watchdog_Remove> 40016438: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 4001643c: 82 10 20 03 mov 3, %g1 40016440: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 40016444: c2 04 e3 30 ld [ %l3 + 0x330 ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 40016448: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 4001644c: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 40016450: c2 04 60 04 ld [ %l1 + 4 ], %g1 40016454: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40016458: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 4001645c: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 40016460: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 40016464: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 40016468: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 4001646c: 9f c0 40 00 call %g1 40016470: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 40016474: 40 00 0c 9e call 400196ec <_Thread_Enable_dispatch> 40016478: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 4001647c: 81 c7 e0 08 ret 40016480: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 40016484: 81 c7 e0 08 ret 40016488: 81 e8 00 00 restore