4001715c <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
4001715c: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
40017160: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
40017164: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
40017168: 80 a6 80 01 cmp %i2, %g1
4001716c: 18 80 00 16 bgu 400171c4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
40017170: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) {
40017174: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40017178: 80 a0 60 00 cmp %g1, 0
4001717c: 02 80 00 0b be 400171a8 <_CORE_message_queue_Broadcast+0x4c>
40017180: a2 10 20 00 clr %l1
*count = 0;
40017184: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017188: 81 c7 e0 08 ret 4001718c: 91 e8 20 00 restore %g0, 0, %o0
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
40017190: 92 10 00 19 mov %i1, %o1 40017194: 40 00 21 0c call 4001f5c4 <memcpy> 40017198: 94 10 00 1a mov %i2, %o2
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
4001719c: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1;
400171a0: a2 04 60 01 inc %l1
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
400171a4: f4 20 40 00 st %i2, [ %g1 ]
/* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread =
400171a8: 40 00 0a 2c call 40019a58 <_Thread_queue_Dequeue> 400171ac: 90 10 00 10 mov %l0, %o0 400171b0: a4 92 20 00 orcc %o0, 0, %l2
400171b4: 32 bf ff f7 bne,a 40017190 <_CORE_message_queue_Broadcast+0x34>
400171b8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted;
400171bc: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
400171c0: b0 10 20 00 clr %i0
}
400171c4: 81 c7 e0 08 ret 400171c8: 81 e8 00 00 restore
4000f98c <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
4000f98c: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages;
4000f990: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
4000f994: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
4000f998: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
4000f99c: a0 10 00 18 mov %i0, %l0
/* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) {
4000f9a0: 80 8e e0 03 btst 3, %i3
4000f9a4: 02 80 00 07 be 4000f9c0 <_CORE_message_queue_Initialize+0x34>
4000f9a8: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
4000f9ac: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
4000f9b0: a4 0c bf fc and %l2, -4, %l2
} if (allocated_message_size < maximum_message_size)
4000f9b4: 80 a4 80 1b cmp %l2, %i3
4000f9b8: 0a 80 00 22 bcs 4000fa40 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f9bc: b0 10 20 00 clr %i0
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
4000f9c0: a2 04 a0 10 add %l2, 0x10, %l1
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages *
4000f9c4: 92 10 00 1a mov %i2, %o1 4000f9c8: 90 10 00 11 mov %l1, %o0 4000f9cc: 40 00 3d 44 call 4001eedc <.umul> 4000f9d0: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size)
4000f9d4: 80 a2 00 12 cmp %o0, %l2
4000f9d8: 0a 80 00 1a bcs 4000fa40 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f9dc: 01 00 00 00 nop
/* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required );
4000f9e0: 40 00 0b 7b call 400127cc <_Workspace_Allocate> 4000f9e4: 01 00 00 00 nop
return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
4000f9e8: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0)
4000f9ec: 80 a2 20 00 cmp %o0, 0
4000f9f0: 02 80 00 14 be 4000fa40 <_CORE_message_queue_Initialize+0xb4>
4000f9f4: 92 10 00 08 mov %o0, %o1
/* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize (
4000f9f8: 90 04 20 60 add %l0, 0x60, %o0 4000f9fc: 94 10 00 1a mov %i2, %o2 4000fa00: 40 00 13 91 call 40014844 <_Chain_Initialize> 4000fa04: 96 10 00 11 mov %l1, %o3
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000fa08: 82 04 20 54 add %l0, 0x54, %g1
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
4000fa0c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages );
4000fa10: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain);
4000fa14: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
4000fa18: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
4000fa1c: c0 24 20 54 clr [ %l0 + 0x54 ] 4000fa20: 82 18 60 01 xor %g1, 1, %g1 4000fa24: 80 a0 00 01 cmp %g0, %g1 4000fa28: 90 10 00 10 mov %l0, %o0 4000fa2c: 92 60 3f ff subx %g0, -1, %o1 4000fa30: 94 10 20 80 mov 0x80, %o2 4000fa34: 96 10 20 06 mov 6, %o3 4000fa38: 40 00 08 53 call 40011b84 <_Thread_queue_Initialize> 4000fa3c: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; }
4000fa40: 81 c7 e0 08 ret 4000fa44: 81 e8 00 00 restore
4000fa48 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
4000fa48: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing;
4000fa4c: 27 10 00 92 sethi %hi(0x40024800), %l3 4000fa50: a6 14 e3 ec or %l3, 0x3ec, %l3 ! 40024bec <_Per_CPU_Information> 4000fa54: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
4000fa58: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level );
4000fa5c: 7f ff de 14 call 400072ac <sparc_disable_interrupts> 4000fa60: c0 24 a0 34 clr [ %l2 + 0x34 ] 4000fa64: 82 10 00 08 mov %o0, %g1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
4000fa68: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000fa6c: 84 06 20 54 add %i0, 0x54, %g2
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
4000fa70: 80 a4 40 02 cmp %l1, %g2
4000fa74: 02 80 00 15 be 4000fac8 <_CORE_message_queue_Seize+0x80>
4000fa78: 86 06 20 50 add %i0, 0x50, %g3
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
4000fa7c: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
4000fa80: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) {
4000fa84: 80 a4 60 00 cmp %l1, 0
4000fa88: 02 80 00 10 be 4000fac8 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
4000fa8c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
4000fa90: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 4000fa94: 82 00 7f ff add %g1, -1, %g1 4000fa98: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
4000fa9c: 7f ff de 08 call 400072bc <sparc_enable_interrupts> 4000faa0: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
4000faa4: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
4000faa8: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size;
4000faac: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
4000fab0: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
4000fab4: 90 10 00 1a mov %i2, %o0 4000fab8: 40 00 1d f9 call 4001729c <memcpy> 4000fabc: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
4000fac0: 7f ff ff 83 call 4000f8cc <_Chain_Append> 4000fac4: 93 e8 00 11 restore %g0, %l1, %o1
return; } #endif } if ( !wait ) {
4000fac8: 80 8f 20 ff btst 0xff, %i4
4000facc: 32 80 00 08 bne,a 4000faec <_CORE_message_queue_Seize+0xa4>
4000fad0: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
4000fad4: 7f ff dd fa call 400072bc <sparc_enable_interrupts> 4000fad8: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
4000fadc: 82 10 20 04 mov 4, %g1 4000fae0: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); }
4000fae4: 81 c7 e0 08 ret 4000fae8: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
4000faec: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue;
4000faf0: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
4000faf4: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
4000faf8: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
4000fafc: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */ _ISR_Enable( level );
4000fb00: 90 10 00 01 mov %g1, %o0 4000fb04: 7f ff dd ee call 400072bc <sparc_enable_interrupts> 4000fb08: 35 10 00 47 sethi %hi(0x40011c00), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
4000fb0c: b2 10 00 1d mov %i5, %i1 4000fb10: 40 00 07 75 call 400118e4 <_Thread_queue_Enqueue_with_handler> 4000fb14: 95 ee a0 64 restore %i2, 0x64, %o2
400067f4 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) {
400067f4: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
400067f8: 03 10 00 51 sethi %hi(0x40014400), %g1 400067fc: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 ! 40014418 <_Thread_Dispatch_disable_level> 40006800: 80 a0 60 00 cmp %g1, 0
40006804: 02 80 00 0d be 40006838 <_CORE_mutex_Seize+0x44>
40006808: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 4000680c: 80 8e a0 ff btst 0xff, %i2
40006810: 02 80 00 0b be 4000683c <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
40006814: 90 10 00 18 mov %i0, %o0 40006818: 03 10 00 51 sethi %hi(0x40014400), %g1 4000681c: c2 00 61 9c ld [ %g1 + 0x19c ], %g1 ! 4001459c <_System_state_Current> 40006820: 80 a0 60 01 cmp %g1, 1
40006824: 08 80 00 05 bleu 40006838 <_CORE_mutex_Seize+0x44>
40006828: 90 10 20 00 clr %o0 4000682c: 92 10 20 00 clr %o1 40006830: 40 00 01 df call 40006fac <_Internal_error_Occurred> 40006834: 94 10 20 12 mov 0x12, %o2 40006838: 90 10 00 18 mov %i0, %o0 4000683c: 40 00 12 ad call 4000b2f0 <_CORE_mutex_Seize_interrupt_trylock> 40006840: 92 07 a0 54 add %fp, 0x54, %o1 40006844: 80 a2 20 00 cmp %o0, 0
40006848: 02 80 00 0a be 40006870 <_CORE_mutex_Seize+0x7c>
4000684c: 80 8e a0 ff btst 0xff, %i2 40006850: 35 10 00 51 sethi %hi(0x40014400), %i2
40006854: 12 80 00 09 bne 40006878 <_CORE_mutex_Seize+0x84>
40006858: b4 16 a2 7c or %i2, 0x27c, %i2 ! 4001467c <_Per_CPU_Information> 4000685c: 7f ff ed 13 call 40001ca8 <sparc_enable_interrupts> 40006860: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 40006864: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 40006868: 84 10 20 01 mov 1, %g2 4000686c: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 40006870: 81 c7 e0 08 ret 40006874: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006878: 82 10 20 01 mov 1, %g1 4000687c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 40006880: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 40006884: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 40006888: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 4000688c: 03 10 00 51 sethi %hi(0x40014400), %g1 40006890: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40006894: 84 00 a0 01 inc %g2 40006898: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 4000689c: 7f ff ed 03 call 40001ca8 <sparc_enable_interrupts> 400068a0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 400068a4: 90 10 00 18 mov %i0, %o0 400068a8: 7f ff ff ba call 40006790 <_CORE_mutex_Seize_interrupt_blocking> 400068ac: 92 10 00 1b mov %i3, %o1 400068b0: 81 c7 e0 08 ret 400068b4: 81 e8 00 00 restore
4000b2f0 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) {
4000b2f0: 9d e3 bf a0 save %sp, -96, %sp
{ Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
4000b2f4: 03 10 00 51 sethi %hi(0x40014400), %g1 4000b2f8: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 40014688 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000b2fc: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000b300: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000b304: 80 a0 a0 00 cmp %g2, 0
4000b308: 02 80 00 2f be 4000b3c4 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
4000b30c: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
4000b310: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED;
4000b314: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
4000b318: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
4000b31c: 84 10 20 01 mov 1, %g2 4000b320: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); }
4000b324: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000b328: 80 a0 a0 02 cmp %g2, 2
4000b32c: 02 80 00 05 be 4000b340 <_CORE_mutex_Seize_interrupt_trylock+0x50>
4000b330: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 4000b334: 80 a0 a0 03 cmp %g2, 3
4000b338: 12 80 00 07 bne 4000b354 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000b33c: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
4000b340: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000b344: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
4000b348: 88 00 e0 01 add %g3, 1, %g4
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000b34c: 02 80 00 03 be 4000b358 <_CORE_mutex_Seize_interrupt_trylock+0x68>
4000b350: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000b354: 30 80 00 2b b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling;
4000b358: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
4000b35c: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
4000b360: 80 a1 00 02 cmp %g4, %g2
4000b364: 12 80 00 03 bne 4000b370 <_CORE_mutex_Seize_interrupt_trylock+0x80>
4000b368: 01 00 00 00 nop
_ISR_Enable( *level_p );
4000b36c: 30 80 00 25 b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0; } if ( current > ceiling ) { 4000b370: 08 80 00 0f bleu 4000b3ac <_CORE_mutex_Seize_interrupt_trylock+0xbc>
4000b374: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
4000b378: 03 10 00 51 sethi %hi(0x40014400), %g1 4000b37c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 4000b380: 84 00 a0 01 inc %g2 4000b384: c4 20 60 18 st %g2, [ %g1 + 0x18 ]
_Thread_Disable_dispatch(); _ISR_Enable( *level_p );
4000b388: 7f ff da 48 call 40001ca8 <sparc_enable_interrupts> 4000b38c: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000b390: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 4000b394: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 4000b398: 7f ff f1 56 call 400078f0 <_Thread_Change_priority> 4000b39c: 94 10 20 00 clr %o2
the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch();
4000b3a0: 7f ff f2 b8 call 40007e80 <_Thread_Enable_dispatch> 4000b3a4: b0 10 20 00 clr %i0 4000b3a8: 30 80 00 1d b,a 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000b3ac: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */
4000b3b0: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000b3b4: 84 10 20 01 mov 1, %g2 4000b3b8: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */
4000b3bc: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000b3c0: 30 80 00 10 b,a 4000b400 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000b3c4: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 4000b3c8: 80 a0 80 01 cmp %g2, %g1
4000b3cc: 12 80 00 14 bne 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000b3d0: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000b3d4: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 4000b3d8: 80 a0 60 00 cmp %g1, 0
4000b3dc: 22 80 00 07 be,a 4000b3f8 <_CORE_mutex_Seize_interrupt_trylock+0x108>
4000b3e0: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 4000b3e4: 80 a0 60 01 cmp %g1, 1
4000b3e8: 12 80 00 0d bne 4000b41c <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
4000b3ec: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000b3f0: 10 80 00 08 b 4000b410 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 4000b3f4: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++;
4000b3f8: 82 00 60 01 inc %g1 4000b3fc: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000b400: 7f ff da 2a call 40001ca8 <sparc_enable_interrupts> 4000b404: d0 06 40 00 ld [ %i1 ], %o0
return 0;
4000b408: 81 c7 e0 08 ret 4000b40c: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p );
4000b410: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 4000b414: 7f ff da 25 call 40001ca8 <sparc_enable_interrupts> <== NOT EXECUTED 4000b418: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000b41c: 81 c7 e0 08 ret 4000b420: 81 e8 00 00 restore
40006a34 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) {
40006a34: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006a38: 90 10 00 18 mov %i0, %o0 40006a3c: 40 00 05 ec call 400081ec <_Thread_queue_Dequeue> 40006a40: a0 10 00 18 mov %i0, %l0 40006a44: 80 a2 20 00 cmp %o0, 0
40006a48: 12 80 00 0e bne 40006a80 <_CORE_semaphore_Surrender+0x4c>
40006a4c: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level );
40006a50: 7f ff ec 92 call 40001c98 <sparc_disable_interrupts> 40006a54: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006a58: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40006a5c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 40006a60: 80 a0 40 02 cmp %g1, %g2
40006a64: 1a 80 00 05 bcc 40006a78 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40006a68: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40006a6c: 82 00 60 01 inc %g1
{ Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006a70: b0 10 20 00 clr %i0
#endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1;
40006a74: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level );
40006a78: 7f ff ec 8c call 40001ca8 <sparc_enable_interrupts> 40006a7c: 01 00 00 00 nop
} return status; }
40006a80: 81 c7 e0 08 ret 40006a84: 81 e8 00 00 restore
40005688 <_Event_Seize>: rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) {
40005688: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events; ISR_Level level; RTEMS_API_Control *api; Thread_blocking_operation_States sync_state; executing = _Thread_Executing;
4000568c: 03 10 00 51 sethi %hi(0x40014400), %g1 40005690: e0 00 62 88 ld [ %g1 + 0x288 ], %l0 ! 40014688 <_Per_CPU_Information+0xc>
executing->Wait.return_code = RTEMS_SUCCESSFUL;
40005694: c0 24 20 34 clr [ %l0 + 0x34 ]
api = executing->API_Extensions[ THREAD_API_RTEMS ]; _ISR_Disable( level );
40005698: 7f ff f1 80 call 40001c98 <sparc_disable_interrupts> 4000569c: e4 04 21 5c ld [ %l0 + 0x15c ], %l2
pending_events = api->pending_events;
400056a0: c2 04 80 00 ld [ %l2 ], %g1
seized_events = _Event_sets_Get( pending_events, event_in ); if ( !_Event_sets_Is_empty( seized_events ) &&
400056a4: a2 8e 00 01 andcc %i0, %g1, %l1
400056a8: 02 80 00 0f be 400056e4 <_Event_Seize+0x5c>
400056ac: 80 8e 60 01 btst 1, %i1 400056b0: 80 a4 40 18 cmp %l1, %i0
400056b4: 22 80 00 06 be,a 400056cc <_Event_Seize+0x44>
400056b8: 82 28 40 11 andn %g1, %l1, %g1
(seized_events == event_in || _Options_Is_any( option_set )) ) {
400056bc: 80 8e 60 02 btst 2, %i1
400056c0: 22 80 00 09 be,a 400056e4 <_Event_Seize+0x5c> <== NEVER TAKEN
400056c4: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
400056c8: 82 28 40 11 andn %g1, %l1, %g1
api->pending_events =
400056cc: c2 24 80 00 st %g1, [ %l2 ]
_Event_sets_Clear( pending_events, seized_events ); _ISR_Enable( level );
400056d0: 7f ff f1 76 call 40001ca8 <sparc_enable_interrupts> 400056d4: 01 00 00 00 nop 400056d8: e2 26 c0 00 st %l1, [ %i3 ] 400056dc: 81 c7 e0 08 ret 400056e0: 81 e8 00 00 restore
*event_out = seized_events; return; } if ( _Options_Is_no_wait( option_set ) ) { 400056e4: 22 80 00 09 be,a 40005708 <_Event_Seize+0x80>
400056e8: f2 24 20 30 st %i1, [ %l0 + 0x30 ]
_ISR_Enable( level );
400056ec: 7f ff f1 6f call 40001ca8 <sparc_enable_interrupts> 400056f0: 01 00 00 00 nop
executing->Wait.return_code = RTEMS_UNSATISFIED;
400056f4: 82 10 20 0d mov 0xd, %g1 ! d <PROM_START+0xd> 400056f8: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
*event_out = seized_events;
400056fc: e2 26 c0 00 st %l1, [ %i3 ] 40005700: 81 c7 e0 08 ret 40005704: 81 e8 00 00 restore
* * NOTE: Since interrupts are disabled, this isn't that much of an * issue but better safe than sorry. */ executing->Wait.option = (uint32_t) option_set; executing->Wait.count = (uint32_t) event_in;
40005708: f0 24 20 24 st %i0, [ %l0 + 0x24 ]
executing->Wait.return_argument = event_out;
4000570c: f6 24 20 28 st %i3, [ %l0 + 0x28 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40005710: 84 10 20 01 mov 1, %g2 40005714: 03 10 00 51 sethi %hi(0x40014400), %g1 40005718: c4 20 62 98 st %g2, [ %g1 + 0x298 ] ! 40014698 <_Event_Sync_state>
_ISR_Enable( level );
4000571c: 7f ff f1 63 call 40001ca8 <sparc_enable_interrupts> 40005720: 01 00 00 00 nop
if ( ticks ) {
40005724: 80 a6 a0 00 cmp %i2, 0
40005728: 02 80 00 0f be 40005764 <_Event_Seize+0xdc>
4000572c: 90 10 00 10 mov %l0, %o0
_Watchdog_Initialize(
40005730: c2 04 20 08 ld [ %l0 + 8 ], %g1
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
40005734: 05 10 00 16 sethi %hi(0x40005800), %g2 40005738: 84 10 a1 3c or %g2, 0x13c, %g2 ! 4000593c <_Event_Timeout>
) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000573c: 11 10 00 51 sethi %hi(0x40014400), %o0
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40005740: c0 24 20 50 clr [ %l0 + 0x50 ]
the_watchdog->routine = routine;
40005744: c4 24 20 64 st %g2, [ %l0 + 0x64 ]
the_watchdog->id = id;
40005748: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
the_watchdog->user_data = user_data;
4000574c: c0 24 20 6c clr [ %l0 + 0x6c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40005750: f4 24 20 54 st %i2, [ %l0 + 0x54 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40005754: 90 12 20 dc or %o0, 0xdc, %o0 40005758: 40 00 0d fb call 40008f44 <_Watchdog_Insert> 4000575c: 92 04 20 48 add %l0, 0x48, %o1
NULL ); _Watchdog_Insert_ticks( &executing->Timer, ticks ); } _Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
40005760: 90 10 00 10 mov %l0, %o0 40005764: 40 00 0c 0d call 40008798 <_Thread_Set_state> 40005768: 92 10 21 00 mov 0x100, %o1
_ISR_Disable( level );
4000576c: 7f ff f1 4b call 40001c98 <sparc_disable_interrupts> 40005770: 01 00 00 00 nop
sync_state = _Event_Sync_state;
40005774: 03 10 00 51 sethi %hi(0x40014400), %g1 40005778: f0 00 62 98 ld [ %g1 + 0x298 ], %i0 ! 40014698 <_Event_Sync_state>
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
4000577c: c0 20 62 98 clr [ %g1 + 0x298 ]
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
40005780: 80 a6 20 01 cmp %i0, 1
40005784: 12 80 00 04 bne 40005794 <_Event_Seize+0x10c>
40005788: b2 10 00 10 mov %l0, %i1
_ISR_Enable( level );
4000578c: 7f ff f1 47 call 40001ca8 <sparc_enable_interrupts> 40005790: 91 e8 00 08 restore %g0, %o0, %o0
* An interrupt completed the thread's blocking request. * The blocking thread was satisfied by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ _Thread_blocking_operation_Cancel( sync_state, executing, level );
40005794: 40 00 08 42 call 4000789c <_Thread_blocking_operation_Cancel> 40005798: 95 e8 00 08 restore %g0, %o0, %o2
400057fc <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) {
400057fc: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40005800: e2 06 21 5c ld [ %i0 + 0x15c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
40005804: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
40005808: 7f ff f1 24 call 40001c98 <sparc_disable_interrupts> 4000580c: a0 10 00 18 mov %i0, %l0 40005810: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
40005814: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005818: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) {
4000581c: 82 88 c0 02 andcc %g3, %g2, %g1
40005820: 12 80 00 03 bne 4000582c <_Event_Surrender+0x30>
40005824: 09 10 00 51 sethi %hi(0x40014400), %g4
_ISR_Enable( level );
40005828: 30 80 00 42 b,a 40005930 <_Event_Surrender+0x134>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() &&
4000582c: 88 11 22 7c or %g4, 0x27c, %g4 ! 4001467c <_Per_CPU_Information> 40005830: da 01 20 08 ld [ %g4 + 8 ], %o5 40005834: 80 a3 60 00 cmp %o5, 0
40005838: 22 80 00 1d be,a 400058ac <_Event_Surrender+0xb0>
4000583c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 40005840: c8 01 20 0c ld [ %g4 + 0xc ], %g4 40005844: 80 a4 00 04 cmp %l0, %g4
40005848: 32 80 00 19 bne,a 400058ac <_Event_Surrender+0xb0>
4000584c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005850: 09 10 00 51 sethi %hi(0x40014400), %g4 40005854: da 01 22 98 ld [ %g4 + 0x298 ], %o5 ! 40014698 <_Event_Sync_state>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) &&
40005858: 80 a3 60 02 cmp %o5, 2
4000585c: 02 80 00 07 be 40005878 <_Event_Surrender+0x7c> <== NEVER TAKEN
40005860: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005864: c8 01 22 98 ld [ %g4 + 0x298 ], %g4
* If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005868: 80 a1 20 01 cmp %g4, 1
4000586c: 32 80 00 10 bne,a 400058ac <_Event_Surrender+0xb0>
40005870: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005874: 80 a0 40 03 cmp %g1, %g3
40005878: 02 80 00 04 be 40005888 <_Event_Surrender+0x8c>
4000587c: 80 8c a0 02 btst 2, %l2
40005880: 02 80 00 0a be 400058a8 <_Event_Surrender+0xac> <== NEVER TAKEN
40005884: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
40005888: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
4000588c: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005890: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0;
40005894: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005898: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
4000589c: 84 10 20 03 mov 3, %g2 400058a0: 03 10 00 51 sethi %hi(0x40014400), %g1 400058a4: c4 20 62 98 st %g2, [ %g1 + 0x298 ] ! 40014698 <_Event_Sync_state>
} _ISR_Enable( level );
400058a8: 30 80 00 22 b,a 40005930 <_Event_Surrender+0x134>
} /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
400058ac: 80 89 21 00 btst 0x100, %g4
400058b0: 02 80 00 20 be 40005930 <_Event_Surrender+0x134>
400058b4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 400058b8: 02 80 00 04 be 400058c8 <_Event_Surrender+0xcc>
400058bc: 80 8c a0 02 btst 2, %l2
400058c0: 02 80 00 1c be 40005930 <_Event_Surrender+0x134> <== NEVER TAKEN
400058c4: 01 00 00 00 nop 400058c8: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
400058cc: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400058d0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0;
400058d4: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400058d8: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
400058dc: 7f ff f0 f3 call 40001ca8 <sparc_enable_interrupts> 400058e0: 90 10 00 18 mov %i0, %o0 400058e4: 7f ff f0 ed call 40001c98 <sparc_disable_interrupts> 400058e8: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
400058ec: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 400058f0: 80 a0 60 02 cmp %g1, 2
400058f4: 02 80 00 06 be 4000590c <_Event_Surrender+0x110>
400058f8: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
400058fc: 7f ff f0 eb call 40001ca8 <sparc_enable_interrupts> 40005900: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
40005904: 10 80 00 08 b 40005924 <_Event_Surrender+0x128> 40005908: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT;
4000590c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
40005910: 7f ff f0 e6 call 40001ca8 <sparc_enable_interrupts> 40005914: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005918: 40 00 0d e5 call 400090ac <_Watchdog_Remove> 4000591c: 90 04 20 48 add %l0, 0x48, %o0 40005920: 33 04 00 ff sethi %hi(0x1003fc00), %i1 40005924: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 40005928: 40 00 08 6b call 40007ad4 <_Thread_Clear_state> 4000592c: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level );
40005930: 7f ff f0 de call 40001ca8 <sparc_enable_interrupts> 40005934: 81 e8 00 00 restore
4000593c <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) {
4000593c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location );
40005940: 90 10 00 18 mov %i0, %o0 40005944: 40 00 09 5c call 40007eb4 <_Thread_Get> 40005948: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000594c: c2 07 bf fc ld [ %fp + -4 ], %g1 40005950: 80 a0 60 00 cmp %g1, 0
40005954: 12 80 00 1c bne 400059c4 <_Event_Timeout+0x88> <== NEVER TAKEN
40005958: a0 10 00 08 mov %o0, %l0
* * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level );
4000595c: 7f ff f0 cf call 40001c98 <sparc_disable_interrupts> 40005960: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
40005964: 03 10 00 51 sethi %hi(0x40014400), %g1
return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) {
40005968: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 40014688 <_Per_CPU_Information+0xc> 4000596c: 80 a4 00 01 cmp %l0, %g1
40005970: 12 80 00 09 bne 40005994 <_Event_Timeout+0x58>
40005974: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005978: 03 10 00 51 sethi %hi(0x40014400), %g1 4000597c: c4 00 62 98 ld [ %g1 + 0x298 ], %g2 ! 40014698 <_Event_Sync_state> 40005980: 80 a0 a0 01 cmp %g2, 1
40005984: 32 80 00 05 bne,a 40005998 <_Event_Timeout+0x5c>
40005988: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
4000598c: 84 10 20 02 mov 2, %g2 40005990: c4 20 62 98 st %g2, [ %g1 + 0x298 ]
} the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005994: 82 10 20 06 mov 6, %g1 40005998: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
4000599c: 7f ff f0 c3 call 40001ca8 <sparc_enable_interrupts> 400059a0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
400059a4: 90 10 00 10 mov %l0, %o0 400059a8: 13 04 00 ff sethi %hi(0x1003fc00), %o1 400059ac: 40 00 08 4a call 40007ad4 <_Thread_Clear_state> 400059b0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
400059b4: 03 10 00 51 sethi %hi(0x40014400), %g1 400059b8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 400059bc: 84 00 bf ff add %g2, -1, %g2 400059c0: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 400059c4: 81 c7 e0 08 ret 400059c8: 81 e8 00 00 restore
4000b4a0 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
4000b4a0: 9d e3 bf 98 save %sp, -104, %sp 4000b4a4: a0 10 00 18 mov %i0, %l0
if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; }
4000b4a8: e4 06 20 08 ld [ %i0 + 8 ], %l2
) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000b4ac: ac 06 60 04 add %i1, 4, %l6
- HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size;
4000b4b0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) {
4000b4b4: 80 a5 80 19 cmp %l6, %i1
4000b4b8: 0a 80 00 67 bcs 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000b4bc: b0 10 20 00 clr %i0
/* Integer overflow occured */ return NULL; } if ( boundary != 0 ) {
4000b4c0: 80 a6 e0 00 cmp %i3, 0
4000b4c4: 02 80 00 08 be 4000b4e4 <_Heap_Allocate_aligned_with_boundary+0x44>
4000b4c8: 82 05 20 07 add %l4, 7, %g1
if ( boundary < alloc_size ) {
4000b4cc: 80 a6 c0 19 cmp %i3, %i1
4000b4d0: 0a 80 00 61 bcs 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000b4d4: 80 a6 a0 00 cmp %i2, 0
return NULL; } if ( alignment == 0 ) { 4000b4d8: 22 80 00 03 be,a 4000b4e4 <_Heap_Allocate_aligned_with_boundary+0x44>
4000b4dc: b4 10 00 14 mov %l4, %i2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000b4e0: 82 05 20 07 add %l4, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000b4e4: b8 10 20 04 mov 4, %i4
if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size;
4000b4e8: a2 10 20 00 clr %l1
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000b4ec: c2 27 bf f8 st %g1, [ %fp + -8 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000b4f0: b8 27 00 19 sub %i4, %i1, %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000b4f4: 10 80 00 50 b 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194> 4000b4f8: ba 10 3f f8 mov -8, %i5
/* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) {
4000b4fc: 80 a6 00 16 cmp %i0, %l6
4000b500: 08 80 00 4c bleu 4000b630 <_Heap_Allocate_aligned_with_boundary+0x190>
4000b504: a2 04 60 01 inc %l1
if ( alignment == 0 ) {
4000b508: 80 a6 a0 00 cmp %i2, 0
4000b50c: 12 80 00 04 bne 4000b51c <_Heap_Allocate_aligned_with_boundary+0x7c>
4000b510: aa 04 a0 08 add %l2, 8, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
4000b514: 10 80 00 3a b 4000b5fc <_Heap_Allocate_aligned_with_boundary+0x15c> 4000b518: b0 10 00 15 mov %l5, %i0
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000b51c: c2 07 bf f8 ld [ %fp + -8 ], %g1
uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size;
4000b520: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000b524: b0 0e 3f fe and %i0, -2, %i0
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000b528: a6 20 40 17 sub %g1, %l7, %l3
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size;
4000b52c: b0 04 80 18 add %l2, %i0, %i0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000b530: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000b534: a6 04 c0 18 add %l3, %i0, %l3
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
4000b538: b0 07 00 18 add %i4, %i0, %i0 4000b53c: 40 00 16 55 call 40010e90 <.urem> 4000b540: 90 10 00 18 mov %i0, %o0 4000b544: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) {
4000b548: 80 a6 00 13 cmp %i0, %l3
4000b54c: 08 80 00 07 bleu 4000b568 <_Heap_Allocate_aligned_with_boundary+0xc8>
4000b550: 80 a6 e0 00 cmp %i3, 0 4000b554: 90 10 00 13 mov %l3, %o0 4000b558: 40 00 16 4e call 40010e90 <.urem> 4000b55c: 92 10 00 1a mov %i2, %o1 4000b560: b0 24 c0 08 sub %l3, %o0, %i0
} alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) {
4000b564: 80 a6 e0 00 cmp %i3, 0
4000b568: 02 80 00 18 be 4000b5c8 <_Heap_Allocate_aligned_with_boundary+0x128>
4000b56c: 80 a6 00 15 cmp %i0, %l5
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000b570: 82 05 40 19 add %l5, %i1, %g1
/* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size;
4000b574: a6 06 00 19 add %i0, %i1, %l3
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000b578: 10 80 00 0a b 4000b5a0 <_Heap_Allocate_aligned_with_boundary+0x100> 4000b57c: c2 27 bf fc st %g1, [ %fp + -4 ]
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) {
4000b580: 80 a2 00 01 cmp %o0, %g1
4000b584: 0a 80 00 2b bcs 4000b630 <_Heap_Allocate_aligned_with_boundary+0x190>
4000b588: b0 22 00 19 sub %o0, %i1, %i0 4000b58c: 92 10 00 1a mov %i2, %o1 4000b590: 40 00 16 40 call 40010e90 <.urem> 4000b594: 90 10 00 18 mov %i0, %o0 4000b598: b0 26 00 08 sub %i0, %o0, %i0
return 0; } alloc_begin = boundary_line - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size;
4000b59c: a6 06 00 19 add %i0, %i1, %l3 4000b5a0: 90 10 00 13 mov %l3, %o0 4000b5a4: 40 00 16 3b call 40010e90 <.urem> 4000b5a8: 92 10 00 1b mov %i3, %o1 4000b5ac: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000b5b0: 80 a2 00 13 cmp %o0, %l3
4000b5b4: 1a 80 00 04 bcc 4000b5c4 <_Heap_Allocate_aligned_with_boundary+0x124>
4000b5b8: 80 a6 00 08 cmp %i0, %o0
4000b5bc: 0a bf ff f1 bcs 4000b580 <_Heap_Allocate_aligned_with_boundary+0xe0>
4000b5c0: c2 07 bf fc ld [ %fp + -4 ], %g1
boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) {
4000b5c4: 80 a6 00 15 cmp %i0, %l5
4000b5c8: 2a 80 00 1b bcs,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194>
4000b5cc: e4 04 a0 08 ld [ %l2 + 8 ], %l2 4000b5d0: a6 27 40 12 sub %i5, %l2, %l3 4000b5d4: 90 10 00 18 mov %i0, %o0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
4000b5d8: a6 04 c0 18 add %l3, %i0, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000b5dc: 40 00 16 2d call 40010e90 <.urem> 4000b5e0: 92 10 00 14 mov %l4, %o1
uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) {
4000b5e4: 90 a4 c0 08 subcc %l3, %o0, %o0
4000b5e8: 02 80 00 06 be 4000b600 <_Heap_Allocate_aligned_with_boundary+0x160>
4000b5ec: 80 a6 20 00 cmp %i0, 0 4000b5f0: 80 a2 00 17 cmp %o0, %l7
4000b5f4: 2a 80 00 10 bcs,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194>
4000b5f8: e4 04 a0 08 ld [ %l2 + 8 ], %l2
boundary ); } } if ( alloc_begin != 0 ) {
4000b5fc: 80 a6 20 00 cmp %i0, 0
4000b600: 22 80 00 0d be,a 4000b634 <_Heap_Allocate_aligned_with_boundary+0x194><== NEVER TAKEN
4000b604: e4 04 a0 08 ld [ %l2 + 8 ], %l2 <== NOT EXECUTED
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000b608: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000b60c: 90 10 00 10 mov %l0, %o0
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000b610: 82 00 40 11 add %g1, %l1, %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000b614: 92 10 00 12 mov %l2, %o1
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000b618: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000b61c: 94 10 00 18 mov %i0, %o2 4000b620: 7f ff ee 16 call 40006e78 <_Heap_Block_allocate> 4000b624: 96 10 00 19 mov %i1, %o3
boundary ); } /* Statistics */ if ( stats->max_search < search_count ) {
4000b628: 10 80 00 08 b 4000b648 <_Heap_Allocate_aligned_with_boundary+0x1a8> 4000b62c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
if ( alloc_begin != 0 ) { break; } block = block->next;
4000b630: e4 04 a0 08 ld [ %l2 + 8 ], %l2
if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
4000b634: 80 a4 80 10 cmp %l2, %l0
4000b638: 32 bf ff b1 bne,a 4000b4fc <_Heap_Allocate_aligned_with_boundary+0x5c>
4000b63c: f0 04 a0 04 ld [ %l2 + 4 ], %i0 4000b640: b0 10 20 00 clr %i0
boundary ); } /* Statistics */ if ( stats->max_search < search_count ) {
4000b644: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 4000b648: 80 a0 40 11 cmp %g1, %l1
4000b64c: 2a 80 00 02 bcs,a 4000b654 <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000b650: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count; } return (void *) alloc_begin; }
4000b654: 81 c7 e0 08 ret 4000b658: 81 e8 00 00 restore
4000b94c <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000b94c: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL;
4000b950: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000b954: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000b958: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block;
4000b95c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size;
4000b960: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000b964: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000b968: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000b96c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000b970: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) {
4000b974: 80 a4 40 19 cmp %l1, %i1
4000b978: 0a 80 00 9f bcs 4000bbf4 <_Heap_Extend+0x2a8>
4000b97c: b0 10 20 00 clr %i0
return false; } extend_area_ok = _Heap_Get_first_and_last_block(
4000b980: 90 10 00 19 mov %i1, %o0 4000b984: 94 10 00 13 mov %l3, %o2 4000b988: 98 07 bf fc add %fp, -4, %o4 4000b98c: 7f ff ed 5c call 40006efc <_Heap_Get_first_and_last_block> 4000b990: 9a 07 bf f8 add %fp, -8, %o5
page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) {
4000b994: 80 8a 20 ff btst 0xff, %o0
4000b998: 02 80 00 97 be 4000bbf4 <_Heap_Extend+0x2a8>
4000b99c: aa 10 00 12 mov %l2, %l5 4000b9a0: ba 10 20 00 clr %i5 4000b9a4: b8 10 20 00 clr %i4 4000b9a8: b0 10 20 00 clr %i0 4000b9ac: ae 10 20 00 clr %l7 4000b9b0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if (
4000b9b4: 80 a0 40 11 cmp %g1, %l1
4000b9b8: 1a 80 00 05 bcc 4000b9cc <_Heap_Extend+0x80>
4000b9bc: ec 05 40 00 ld [ %l5 ], %l6 4000b9c0: 80 a6 40 16 cmp %i1, %l6
4000b9c4: 2a 80 00 8c bcs,a 4000bbf4 <_Heap_Extend+0x2a8>
4000b9c8: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) {
4000b9cc: 80 a4 40 01 cmp %l1, %g1
4000b9d0: 02 80 00 06 be 4000b9e8 <_Heap_Extend+0x9c>
4000b9d4: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 4000b9d8: 2a 80 00 05 bcs,a 4000b9ec <_Heap_Extend+0xa0>
4000b9dc: b8 10 00 15 mov %l5, %i4 4000b9e0: 10 80 00 04 b 4000b9f0 <_Heap_Extend+0xa4> 4000b9e4: 90 10 00 16 mov %l6, %o0 4000b9e8: ae 10 00 15 mov %l5, %l7 4000b9ec: 90 10 00 16 mov %l6, %o0 4000b9f0: 40 00 16 62 call 40011378 <.urem> 4000b9f4: 92 10 00 13 mov %l3, %o1 4000b9f8: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) {
4000b9fc: 80 a5 80 19 cmp %l6, %i1
4000ba00: 12 80 00 05 bne 4000ba14 <_Heap_Extend+0xc8>
4000ba04: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000ba08: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000ba0c: 10 80 00 04 b 4000ba1c <_Heap_Extend+0xd0> 4000ba10: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 4000ba14: 2a 80 00 02 bcs,a 4000ba1c <_Heap_Extend+0xd0>
4000ba18: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000ba1c: ea 02 20 04 ld [ %o0 + 4 ], %l5 4000ba20: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000ba24: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block );
4000ba28: 80 a5 40 12 cmp %l5, %l2
4000ba2c: 12 bf ff e2 bne 4000b9b4 <_Heap_Extend+0x68>
4000ba30: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000ba34: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 4000ba38: 80 a6 40 01 cmp %i1, %g1
4000ba3c: 3a 80 00 04 bcc,a 4000ba4c <_Heap_Extend+0x100>
4000ba40: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000ba44: 10 80 00 05 b 4000ba58 <_Heap_Extend+0x10c> 4000ba48: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000ba4c: 80 a0 40 11 cmp %g1, %l1
4000ba50: 2a 80 00 02 bcs,a 4000ba58 <_Heap_Extend+0x10c>
4000ba54: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000ba58: c4 07 bf fc ld [ %fp + -4 ], %g2 4000ba5c: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000ba60: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size =
4000ba64: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000ba68: 88 10 e0 01 or %g3, 1, %g4
extend_last_block->prev_size = extend_first_block_size;
4000ba6c: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag =
4000ba70: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED; extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000ba74: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 4000ba78: 80 a0 c0 02 cmp %g3, %g2
4000ba7c: 08 80 00 04 bleu 4000ba8c <_Heap_Extend+0x140>
4000ba80: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000ba84: 10 80 00 06 b 4000ba9c <_Heap_Extend+0x150> 4000ba88: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000ba8c: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 4000ba90: 80 a0 80 01 cmp %g2, %g1
4000ba94: 2a 80 00 02 bcs,a 4000ba9c <_Heap_Extend+0x150>
4000ba98: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) {
4000ba9c: 80 a5 e0 00 cmp %l7, 0
4000baa0: 02 80 00 14 be 4000baf0 <_Heap_Extend+0x1a4>
4000baa4: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size;
4000baa8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment;
4000baac: 92 10 00 12 mov %l2, %o1 4000bab0: 40 00 16 32 call 40011378 <.urem> 4000bab4: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000bab8: 80 a2 20 00 cmp %o0, 0
4000babc: 02 80 00 04 be 4000bacc <_Heap_Extend+0x180> <== ALWAYS TAKEN
4000bac0: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000bac4: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 4000bac8: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin =
4000bacc: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size;
4000bad0: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size =
4000bad4: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000bad8: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000badc: 90 10 00 10 mov %l0, %o0 4000bae0: 7f ff ff 90 call 4000b920 <_Heap_Free_block> 4000bae4: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
4000bae8: 10 80 00 09 b 4000bb0c <_Heap_Extend+0x1c0> 4000baec: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) {
4000baf0: 80 a7 20 00 cmp %i4, 0
4000baf4: 02 80 00 05 be 4000bb08 <_Heap_Extend+0x1bc>
4000baf8: c2 07 bf f8 ld [ %fp + -8 ], %g1
{ uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000bafc: b8 27 00 01 sub %i4, %g1, %i4 4000bb00: b8 17 20 01 or %i4, 1, %i4
) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag =
4000bb04: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
4000bb08: 80 a6 20 00 cmp %i0, 0
4000bb0c: 02 80 00 15 be 4000bb60 <_Heap_Extend+0x214>
4000bb10: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000bb14: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down(
4000bb18: a2 24 40 18 sub %l1, %i0, %l1 4000bb1c: 40 00 16 17 call 40011378 <.urem> 4000bb20: 90 10 00 11 mov %l1, %o0
); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size)
4000bb24: c4 06 20 04 ld [ %i0 + 4 ], %g2 4000bb28: a2 24 40 08 sub %l1, %o0, %l1
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
4000bb2c: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000bb30: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000bb34: 84 10 a0 01 or %g2, 1, %g2
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
4000bb38: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bb3c: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block );
4000bb40: 90 10 00 10 mov %l0, %o0 4000bb44: 82 08 60 01 and %g1, 1, %g1 4000bb48: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000bb4c: a2 14 40 01 or %l1, %g1, %l1 4000bb50: 7f ff ff 74 call 4000b920 <_Heap_Free_block> 4000bb54: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bb58: 10 80 00 0f b 4000bb94 <_Heap_Extend+0x248> 4000bb5c: 80 a6 20 00 cmp %i0, 0
); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) {
4000bb60: 80 a7 60 00 cmp %i5, 0
4000bb64: 02 80 00 0b be 4000bb90 <_Heap_Extend+0x244>
4000bb68: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bb6c: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000bb70: c2 07 bf f8 ld [ %fp + -8 ], %g1
) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin );
4000bb74: 86 20 c0 1d sub %g3, %i5, %g3 4000bb78: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bb7c: 84 10 c0 02 or %g3, %g2, %g2 4000bb80: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000bb84: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000bb88: 84 10 a0 01 or %g2, 1, %g2 4000bb8c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bb90: 80 a6 20 00 cmp %i0, 0
4000bb94: 32 80 00 09 bne,a 4000bbb8 <_Heap_Extend+0x26c>
4000bb98: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4000bb9c: 80 a5 e0 00 cmp %l7, 0
4000bba0: 32 80 00 06 bne,a 4000bbb8 <_Heap_Extend+0x26c>
4000bba4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000bba8: d2 07 bf fc ld [ %fp + -4 ], %o1 4000bbac: 7f ff ff 5d call 4000b920 <_Heap_Free_block> 4000bbb0: 90 10 00 10 mov %l0, %o0
*/ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000bbb4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
4000bbb8: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bbbc: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
4000bbc0: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bbc4: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bbc8: 84 10 c0 02 or %g3, %g2, %g2 4000bbcc: c4 20 60 04 st %g2, [ %g1 + 4 ]
} _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
4000bbd0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true;
4000bbd4: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
4000bbd8: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */ stats->size += extended_size;
4000bbdc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000bbe0: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size;
4000bbe4: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000bbe8: 02 80 00 03 be 4000bbf4 <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000bbec: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000bbf0: e8 26 c0 00 st %l4, [ %i3 ] 4000bbf4: 81 c7 e0 08 ret 4000bbf8: 81 e8 00 00 restore
4000b65c <_Heap_Free>: #include <rtems/system.h> #include <rtems/score/sysstate.h> #include <rtems/score/heap.h> bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) {
4000b65c: 9d e3 bf a0 save %sp, -96, %sp 4000b660: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4000b664: 40 00 16 0b call 40010e90 <.urem> 4000b668: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
4000b66c: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000b670: a2 06 7f f8 add %i1, -8, %l1 4000b674: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
4000b678: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b67c: 80 a2 00 0c cmp %o0, %o4
4000b680: 0a 80 00 05 bcs 4000b694 <_Heap_Free+0x38>
4000b684: 82 10 20 00 clr %g1 4000b688: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4000b68c: 80 a0 40 08 cmp %g1, %o0 4000b690: 82 60 3f ff subx %g0, -1, %g1
Heap_Block *next_block = NULL; uintptr_t block_size = 0; uintptr_t next_block_size = 0; bool next_is_free = false; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000b694: 80 a0 60 00 cmp %g1, 0
4000b698: 02 80 00 6a be 4000b840 <_Heap_Free+0x1e4>
4000b69c: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000b6a0: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000b6a4: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000b6a8: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b6ac: 80 a0 40 0c cmp %g1, %o4
4000b6b0: 0a 80 00 05 bcs 4000b6c4 <_Heap_Free+0x68> <== NEVER TAKEN
4000b6b4: 86 10 20 00 clr %g3 4000b6b8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 4000b6bc: 80 a0 c0 01 cmp %g3, %g1 4000b6c0: 86 60 3f ff subx %g0, -1, %g3
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000b6c4: 80 a0 e0 00 cmp %g3, 0
4000b6c8: 02 80 00 5e be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b6cc: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000b6d0: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
4000b6d4: 80 89 20 01 btst 1, %g4
4000b6d8: 02 80 00 5a be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b6dc: 88 09 3f fe and %g4, -2, %g4
_HAssert( false ); return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block
4000b6e0: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b6e4: 80 a0 40 09 cmp %g1, %o1
4000b6e8: 02 80 00 07 be 4000b704 <_Heap_Free+0xa8>
4000b6ec: 96 10 20 00 clr %o3
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000b6f0: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b6f4: c6 00 e0 04 ld [ %g3 + 4 ], %g3 4000b6f8: 86 08 e0 01 and %g3, 1, %g3
return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b6fc: 80 a0 00 03 cmp %g0, %g3 4000b700: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000b704: 80 8b 60 01 btst 1, %o5
4000b708: 12 80 00 26 bne 4000b7a0 <_Heap_Free+0x144>
4000b70c: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000b710: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000b714: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b718: 80 a0 c0 0c cmp %g3, %o4
4000b71c: 0a 80 00 04 bcs 4000b72c <_Heap_Free+0xd0> <== NEVER TAKEN
4000b720: 94 10 20 00 clr %o2 4000b724: 80 a2 40 03 cmp %o1, %g3 4000b728: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000b72c: 80 a2 a0 00 cmp %o2, 0
4000b730: 02 80 00 44 be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b734: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b738: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) {
4000b73c: 80 8b 20 01 btst 1, %o4
4000b740: 02 80 00 40 be 4000b840 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b744: 80 8a e0 ff btst 0xff, %o3
_HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 4000b748: 22 80 00 0f be,a 4000b784 <_Heap_Free+0x128>
4000b74c: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000b750: 88 00 80 04 add %g2, %g4, %g4 4000b754: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next;
4000b758: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000b75c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000b760: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000b764: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block ); stats->free_blocks -= 1;
4000b768: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 4000b76c: 82 00 7f ff add %g1, -1, %g1 4000b770: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size;
4000b774: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b778: 82 13 60 01 or %o5, 1, %g1 4000b77c: 10 80 00 27 b 4000b818 <_Heap_Free+0x1bc> 4000b780: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b784: 88 13 60 01 or %o5, 1, %g4 4000b788: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b78c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000b790: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b794: 86 08 ff fe and %g3, -2, %g3 4000b798: 10 80 00 20 b 4000b818 <_Heap_Free+0x1bc> 4000b79c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 4000b7a0: 22 80 00 0d be,a 4000b7d4 <_Heap_Free+0x178>
4000b7a4: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000b7a8: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next;
4000b7ac: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000b7b0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000b7b4: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000b7b8: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block; prev->next = new_block;
4000b7bc: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block;
4000b7c0: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b7c4: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size ); next_block->prev_size = size;
4000b7c8: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b7cc: 10 80 00 13 b 4000b818 <_Heap_Free+0x1bc> 4000b7d0: c2 22 20 04 st %g1, [ %o0 + 4 ]
) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before;
4000b7d4: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next;
4000b7d8: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before; block_before->next = new_block; next->prev = new_block;
4000b7dc: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000b7e0: 86 10 a0 01 or %g2, 1, %g3 4000b7e4: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b7e8: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000b7ec: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b7f0: 86 08 ff fe and %g3, -2, %g3 4000b7f4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
4000b7f8: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b7fc: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
4000b800: 82 00 60 01 inc %g1
{ Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block;
4000b804: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b808: 80 a0 c0 01 cmp %g3, %g1
4000b80c: 1a 80 00 03 bcc 4000b818 <_Heap_Free+0x1bc>
4000b810: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000b814: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
} } /* Statistics */ --stats->used_blocks;
4000b818: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees; stats->free_size += block_size; return( true );
4000b81c: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks;
4000b820: 82 00 7f ff add %g1, -1, %g1 4000b824: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000b828: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 4000b82c: 82 00 60 01 inc %g1 4000b830: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000b834: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 4000b838: 84 00 40 02 add %g1, %g2, %g2 4000b83c: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true ); }
4000b840: 81 c7 e0 08 ret 4000b844: 81 e8 00 00 restore
400127fc <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) {
400127fc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
40012800: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 40012804: 7f ff f9 a3 call 40010e90 <.urem> 40012808: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
4001280c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
40012810: a2 06 7f f8 add %i1, -8, %l1 40012814: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
40012818: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4001281c: 80 a2 00 02 cmp %o0, %g2
40012820: 0a 80 00 05 bcs 40012834 <_Heap_Size_of_alloc_area+0x38>
40012824: 82 10 20 00 clr %g1 40012828: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4001282c: 80 a0 40 08 cmp %g1, %o0 40012830: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
40012834: 80 a0 60 00 cmp %g1, 0
40012838: 02 80 00 15 be 4001288c <_Heap_Size_of_alloc_area+0x90>
4001283c: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40012840: e2 02 20 04 ld [ %o0 + 4 ], %l1 40012844: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
40012848: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4001284c: 80 a4 40 02 cmp %l1, %g2
40012850: 0a 80 00 05 bcs 40012864 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
40012854: 82 10 20 00 clr %g1 40012858: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4001285c: 80 a0 40 11 cmp %g1, %l1 40012860: 82 60 3f ff subx %g0, -1, %g1
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if (
40012864: 80 a0 60 00 cmp %g1, 0
40012868: 02 80 00 09 be 4001288c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
4001286c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40012870: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block )
40012874: 80 88 60 01 btst 1, %g1
40012878: 02 80 00 05 be 4001288c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
4001287c: a2 24 40 19 sub %l1, %i1, %l1
return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; return true;
40012880: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
40012884: a2 04 60 04 add %l1, 4, %l1 40012888: e2 26 80 00 st %l1, [ %i2 ]
return true; }
4001288c: 81 c7 e0 08 ret 40012890: 81 e8 00 00 restore
40007e14 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
40007e14: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
40007e18: 23 10 00 1f sethi %hi(0x40007c00), %l1
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
40007e1c: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40007e20: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40007e24: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40007e28: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40007e2c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
40007e30: 80 8e a0 ff btst 0xff, %i2
40007e34: 02 80 00 04 be 40007e44 <_Heap_Walk+0x30>
40007e38: a2 14 61 c0 or %l1, 0x1c0, %l1 40007e3c: 23 10 00 1f sethi %hi(0x40007c00), %l1 40007e40: a2 14 61 c8 or %l1, 0x1c8, %l1 ! 40007dc8 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40007e44: 03 10 00 5b sethi %hi(0x40016c00), %g1 40007e48: c2 00 60 3c ld [ %g1 + 0x3c ], %g1 ! 40016c3c <_System_state_Current> 40007e4c: 80 a0 60 03 cmp %g1, 3
40007e50: 12 80 01 2d bne 40008304 <_Heap_Walk+0x4f0>
40007e54: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)(
40007e58: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 40007e5c: da 04 20 18 ld [ %l0 + 0x18 ], %o5 40007e60: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007e64: c2 04 20 08 ld [ %l0 + 8 ], %g1 40007e68: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 40007e6c: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 40007e70: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40007e74: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 40007e78: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 40007e7c: 90 10 00 19 mov %i1, %o0 40007e80: 92 10 20 00 clr %o1 40007e84: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e88: 96 10 00 12 mov %l2, %o3 40007e8c: 94 12 a1 30 or %o2, 0x130, %o2 40007e90: 9f c4 40 00 call %l1 40007e94: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) {
40007e98: 80 a4 a0 00 cmp %l2, 0
40007e9c: 12 80 00 07 bne 40007eb8 <_Heap_Walk+0xa4>
40007ea0: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40007ea4: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ea8: 90 10 00 19 mov %i1, %o0 40007eac: 92 10 20 01 mov 1, %o1 40007eb0: 10 80 00 38 b 40007f90 <_Heap_Walk+0x17c> 40007eb4: 94 12 a1 c8 or %o2, 0x1c8, %o2
return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 40007eb8: 22 80 00 08 be,a 40007ed8 <_Heap_Walk+0xc4>
40007ebc: 90 10 00 14 mov %l4, %o0
(*printer)(
40007ec0: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ec4: 90 10 00 19 mov %i1, %o0 40007ec8: 92 10 20 01 mov 1, %o1 40007ecc: 94 12 a1 e0 or %o2, 0x1e0, %o2 40007ed0: 10 80 01 0b b 400082fc <_Heap_Walk+0x4e8> 40007ed4: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
40007ed8: 7f ff e6 fb call 40001ac4 <.urem> 40007edc: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40007ee0: 80 a2 20 00 cmp %o0, 0
40007ee4: 22 80 00 08 be,a 40007f04 <_Heap_Walk+0xf0>
40007ee8: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40007eec: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ef0: 90 10 00 19 mov %i1, %o0 40007ef4: 92 10 20 01 mov 1, %o1 40007ef8: 94 12 a2 00 or %o2, 0x200, %o2 40007efc: 10 80 01 00 b 400082fc <_Heap_Walk+0x4e8> 40007f00: 96 10 00 14 mov %l4, %o3 40007f04: 7f ff e6 f0 call 40001ac4 <.urem> 40007f08: 92 10 00 12 mov %l2, %o1
); return false; } if (
40007f0c: 80 a2 20 00 cmp %o0, 0
40007f10: 22 80 00 08 be,a 40007f30 <_Heap_Walk+0x11c>
40007f14: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)(
40007f18: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f1c: 90 10 00 19 mov %i1, %o0 40007f20: 92 10 20 01 mov 1, %o1 40007f24: 94 12 a2 28 or %o2, 0x228, %o2 40007f28: 10 80 00 f5 b 400082fc <_Heap_Walk+0x4e8> 40007f2c: 96 10 00 13 mov %l3, %o3
); return false; } if ( !_Heap_Is_prev_used( first_block ) ) {
40007f30: 80 88 60 01 btst 1, %g1
40007f34: 32 80 00 07 bne,a 40007f50 <_Heap_Walk+0x13c>
40007f38: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40007f3c: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f40: 90 10 00 19 mov %i1, %o0 40007f44: 92 10 20 01 mov 1, %o1 40007f48: 10 80 00 12 b 40007f90 <_Heap_Walk+0x17c> 40007f4c: 94 12 a2 60 or %o2, 0x260, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40007f50: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
40007f54: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40007f58: c2 05 a0 04 ld [ %l6 + 4 ], %g1
); return false; } if ( _Heap_Is_free( last_block ) ) {
40007f5c: 80 88 60 01 btst 1, %g1
40007f60: 12 80 00 07 bne 40007f7c <_Heap_Walk+0x168>
40007f64: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40007f68: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f6c: 90 10 00 19 mov %i1, %o0 40007f70: 92 10 20 01 mov 1, %o1 40007f74: 10 80 00 07 b 40007f90 <_Heap_Walk+0x17c> 40007f78: 94 12 a2 90 or %o2, 0x290, %o2
); return false; } if (
40007f7c: 02 80 00 08 be 40007f9c <_Heap_Walk+0x188> <== ALWAYS TAKEN
40007f80: 15 10 00 51 sethi %hi(0x40014400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)(
40007f84: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 40007f88: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 40007f8c: 94 12 a2 a8 or %o2, 0x2a8, %o2 <== NOT EXECUTED
40007f90: 9f c4 40 00 call %l1 40007f94: b0 10 20 00 clr %i0 40007f98: 30 80 00 db b,a 40008304 <_Heap_Walk+0x4f0>
block = next_block; } while ( block != first_block ); return true; }
40007f9c: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
40007fa0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40007fa4: ae 10 00 10 mov %l0, %l7 40007fa8: 10 80 00 32 b 40008070 <_Heap_Walk+0x25c> 40007fac: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40007fb0: 80 a0 80 1c cmp %g2, %i4
40007fb4: 18 80 00 05 bgu 40007fc8 <_Heap_Walk+0x1b4>
40007fb8: 82 10 20 00 clr %g1 40007fbc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 40007fc0: 80 a0 40 1c cmp %g1, %i4 40007fc4: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40007fc8: 80 a0 60 00 cmp %g1, 0
40007fcc: 32 80 00 08 bne,a 40007fec <_Heap_Walk+0x1d8>
40007fd0: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40007fd4: 15 10 00 51 sethi %hi(0x40014400), %o2 40007fd8: 96 10 00 1c mov %i4, %o3 40007fdc: 90 10 00 19 mov %i1, %o0 40007fe0: 92 10 20 01 mov 1, %o1 40007fe4: 10 80 00 c6 b 400082fc <_Heap_Walk+0x4e8> 40007fe8: 94 12 a2 d8 or %o2, 0x2d8, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
40007fec: 7f ff e6 b6 call 40001ac4 <.urem> 40007ff0: 92 10 00 1d mov %i5, %o1
); return false; } if (
40007ff4: 80 a2 20 00 cmp %o0, 0
40007ff8: 22 80 00 08 be,a 40008018 <_Heap_Walk+0x204>
40007ffc: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)(
40008000: 15 10 00 51 sethi %hi(0x40014400), %o2 40008004: 96 10 00 1c mov %i4, %o3 40008008: 90 10 00 19 mov %i1, %o0 4000800c: 92 10 20 01 mov 1, %o1 40008010: 10 80 00 bb b 400082fc <_Heap_Walk+0x4e8> 40008014: 94 12 a2 f8 or %o2, 0x2f8, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008018: 82 08 7f fe and %g1, -2, %g1
block = next_block; } while ( block != first_block ); return true; }
4000801c: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008020: c2 00 60 04 ld [ %g1 + 4 ], %g1
); return false; } if ( _Heap_Is_used( free_block ) ) {
40008024: 80 88 60 01 btst 1, %g1
40008028: 22 80 00 08 be,a 40008048 <_Heap_Walk+0x234>
4000802c: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008030: 15 10 00 51 sethi %hi(0x40014400), %o2 40008034: 96 10 00 1c mov %i4, %o3 40008038: 90 10 00 19 mov %i1, %o0 4000803c: 92 10 20 01 mov 1, %o1 40008040: 10 80 00 af b 400082fc <_Heap_Walk+0x4e8> 40008044: 94 12 a3 28 or %o2, 0x328, %o2
); return false; } if ( free_block->prev != prev_block ) {
40008048: 80 a3 00 17 cmp %o4, %l7
4000804c: 22 80 00 08 be,a 4000806c <_Heap_Walk+0x258>
40008050: ae 10 00 1c mov %i4, %l7
(*printer)(
40008054: 15 10 00 51 sethi %hi(0x40014400), %o2 40008058: 96 10 00 1c mov %i4, %o3 4000805c: 90 10 00 19 mov %i1, %o0 40008060: 92 10 20 01 mov 1, %o1 40008064: 10 80 00 49 b 40008188 <_Heap_Walk+0x374> 40008068: 94 12 a3 48 or %o2, 0x348, %o2
return false; } prev_block = free_block; free_block = free_block->next;
4000806c: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
40008070: 80 a7 00 10 cmp %i4, %l0
40008074: 32 bf ff cf bne,a 40007fb0 <_Heap_Walk+0x19c>
40008078: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 4000807c: 35 10 00 52 sethi %hi(0x40014800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
40008080: 31 10 00 52 sethi %hi(0x40014800), %i0
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
40008084: b4 16 a1 08 or %i2, 0x108, %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
40008088: b0 16 20 f0 or %i0, 0xf0, %i0
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
4000808c: 37 10 00 52 sethi %hi(0x40014800), %i3
block = next_block; } while ( block != first_block ); return true; }
40008090: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40008094: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008098: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000809c: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
400080a0: 80 a0 c0 1d cmp %g3, %i5
400080a4: 18 80 00 05 bgu 400080b8 <_Heap_Walk+0x2a4> <== NEVER TAKEN
400080a8: 84 10 20 00 clr %g2 400080ac: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 400080b0: 80 a0 80 1d cmp %g2, %i5 400080b4: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
400080b8: 80 a0 a0 00 cmp %g2, 0
400080bc: 12 80 00 07 bne 400080d8 <_Heap_Walk+0x2c4>
400080c0: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
400080c4: 15 10 00 51 sethi %hi(0x40014400), %o2 400080c8: 90 10 00 19 mov %i1, %o0 400080cc: 92 10 20 01 mov 1, %o1 400080d0: 10 80 00 2c b 40008180 <_Heap_Walk+0x36c> 400080d4: 94 12 a3 80 or %o2, 0x380, %o2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block;
400080d8: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
400080dc: c2 27 bf fc st %g1, [ %fp + -4 ] 400080e0: b8 40 20 00 addx %g0, 0, %i4 400080e4: 90 10 00 17 mov %l7, %o0 400080e8: 7f ff e6 77 call 40001ac4 <.urem> 400080ec: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
400080f0: 80 a2 20 00 cmp %o0, 0
400080f4: 02 80 00 0c be 40008124 <_Heap_Walk+0x310>
400080f8: c2 07 bf fc ld [ %fp + -4 ], %g1 400080fc: 80 8f 20 ff btst 0xff, %i4
40008100: 02 80 00 0a be 40008128 <_Heap_Walk+0x314>
40008104: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008108: 15 10 00 51 sethi %hi(0x40014400), %o2 4000810c: 90 10 00 19 mov %i1, %o0 40008110: 92 10 20 01 mov 1, %o1 40008114: 94 12 a3 b0 or %o2, 0x3b0, %o2 40008118: 96 10 00 16 mov %l6, %o3 4000811c: 10 80 00 1b b 40008188 <_Heap_Walk+0x374> 40008120: 98 10 00 17 mov %l7, %o4
); return false; } if ( block_size < min_block_size && is_not_last_block ) {
40008124: 80 a5 c0 14 cmp %l7, %l4
40008128: 1a 80 00 0d bcc 4000815c <_Heap_Walk+0x348>
4000812c: 80 a7 40 16 cmp %i5, %l6 40008130: 80 8f 20 ff btst 0xff, %i4
40008134: 02 80 00 0a be 4000815c <_Heap_Walk+0x348> <== NEVER TAKEN
40008138: 80 a7 40 16 cmp %i5, %l6
(*printer)(
4000813c: 15 10 00 51 sethi %hi(0x40014400), %o2 40008140: 90 10 00 19 mov %i1, %o0 40008144: 92 10 20 01 mov 1, %o1 40008148: 94 12 a3 e0 or %o2, 0x3e0, %o2 4000814c: 96 10 00 16 mov %l6, %o3 40008150: 98 10 00 17 mov %l7, %o4 40008154: 10 80 00 3f b 40008250 <_Heap_Walk+0x43c> 40008158: 9a 10 00 14 mov %l4, %o5
); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 4000815c: 38 80 00 0e bgu,a 40008194 <_Heap_Walk+0x380>
40008160: b8 08 60 01 and %g1, 1, %i4 40008164: 80 8f 20 ff btst 0xff, %i4
40008168: 02 80 00 0b be 40008194 <_Heap_Walk+0x380>
4000816c: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008170: 15 10 00 52 sethi %hi(0x40014800), %o2 40008174: 90 10 00 19 mov %i1, %o0 40008178: 92 10 20 01 mov 1, %o1 4000817c: 94 12 a0 10 or %o2, 0x10, %o2 40008180: 96 10 00 16 mov %l6, %o3 40008184: 98 10 00 1d mov %i5, %o4 40008188: 9f c4 40 00 call %l1 4000818c: b0 10 20 00 clr %i0 40008190: 30 80 00 5d b,a 40008304 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008194: c2 07 60 04 ld [ %i5 + 4 ], %g1
); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
40008198: 80 88 60 01 btst 1, %g1
4000819c: 12 80 00 3f bne 40008298 <_Heap_Walk+0x484>
400081a0: 80 a7 20 00 cmp %i4, 0
false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ?
400081a4: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
400081a8: c2 04 20 08 ld [ %l0 + 8 ], %g1 400081ac: 05 10 00 51 sethi %hi(0x40014400), %g2
block = next_block; } while ( block != first_block ); return true; }
400081b0: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
400081b4: 80 a3 40 01 cmp %o5, %g1
400081b8: 02 80 00 07 be 400081d4 <_Heap_Walk+0x3c0>
400081bc: 86 10 a0 f0 or %g2, 0xf0, %g3
block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""),
400081c0: 80 a3 40 10 cmp %o5, %l0
400081c4: 12 80 00 04 bne 400081d4 <_Heap_Walk+0x3c0>
400081c8: 86 16 e0 b8 or %i3, 0xb8, %g3 400081cc: 19 10 00 51 sethi %hi(0x40014400), %o4 400081d0: 86 13 21 00 or %o4, 0x100, %g3 ! 40014500 <C.0.4109+0x44>
block->next, block->next == last_free_block ?
400081d4: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
400081d8: 19 10 00 51 sethi %hi(0x40014400), %o4 400081dc: 80 a0 80 04 cmp %g2, %g4
400081e0: 02 80 00 07 be 400081fc <_Heap_Walk+0x3e8>
400081e4: 82 13 21 10 or %o4, 0x110, %g1
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
400081e8: 80 a0 80 10 cmp %g2, %l0
400081ec: 12 80 00 04 bne 400081fc <_Heap_Walk+0x3e8>
400081f0: 82 16 e0 b8 or %i3, 0xb8, %g1 400081f4: 09 10 00 51 sethi %hi(0x40014400), %g4 400081f8: 82 11 21 20 or %g4, 0x120, %g1 ! 40014520 <C.0.4109+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
400081fc: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 40008200: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 40008204: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 40008208: 90 10 00 19 mov %i1, %o0 4000820c: 92 10 20 00 clr %o1 40008210: 15 10 00 52 sethi %hi(0x40014800), %o2 40008214: 96 10 00 16 mov %l6, %o3 40008218: 94 12 a0 48 or %o2, 0x48, %o2 4000821c: 9f c4 40 00 call %l1 40008220: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) {
40008224: da 07 40 00 ld [ %i5 ], %o5 40008228: 80 a5 c0 0d cmp %l7, %o5
4000822c: 02 80 00 0c be 4000825c <_Heap_Walk+0x448>
40008230: 80 a7 20 00 cmp %i4, 0
(*printer)(
40008234: 15 10 00 52 sethi %hi(0x40014800), %o2 40008238: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 4000823c: 90 10 00 19 mov %i1, %o0 40008240: 92 10 20 01 mov 1, %o1 40008244: 94 12 a0 80 or %o2, 0x80, %o2 40008248: 96 10 00 16 mov %l6, %o3 4000824c: 98 10 00 17 mov %l7, %o4 40008250: 9f c4 40 00 call %l1 40008254: b0 10 20 00 clr %i0 40008258: 30 80 00 2b b,a 40008304 <_Heap_Walk+0x4f0>
); return false; } if ( !prev_used ) { 4000825c: 32 80 00 0a bne,a 40008284 <_Heap_Walk+0x470>
40008260: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
40008264: 15 10 00 52 sethi %hi(0x40014800), %o2 40008268: 90 10 00 19 mov %i1, %o0 4000826c: 92 10 20 01 mov 1, %o1 40008270: 10 80 00 22 b 400082f8 <_Heap_Walk+0x4e4> 40008274: 94 12 a0 c0 or %o2, 0xc0, %o2
{ const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 40008278: 02 80 00 19 be 400082dc <_Heap_Walk+0x4c8>
4000827c: 80 a7 40 13 cmp %i5, %l3
return true; } free_block = free_block->next;
40008280: c2 00 60 08 ld [ %g1 + 8 ], %g1
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
40008284: 80 a0 40 10 cmp %g1, %l0
40008288: 12 bf ff fc bne 40008278 <_Heap_Walk+0x464>
4000828c: 80 a0 40 16 cmp %g1, %l6
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
40008290: 10 80 00 17 b 400082ec <_Heap_Walk+0x4d8> 40008294: 15 10 00 52 sethi %hi(0x40014800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 40008298: 22 80 00 0a be,a 400082c0 <_Heap_Walk+0x4ac>
4000829c: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
400082a0: 90 10 00 19 mov %i1, %o0 400082a4: 92 10 20 00 clr %o1 400082a8: 94 10 00 18 mov %i0, %o2 400082ac: 96 10 00 16 mov %l6, %o3 400082b0: 9f c4 40 00 call %l1 400082b4: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
400082b8: 10 80 00 09 b 400082dc <_Heap_Walk+0x4c8> 400082bc: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
400082c0: 90 10 00 19 mov %i1, %o0 400082c4: 92 10 20 00 clr %o1 400082c8: 94 10 00 1a mov %i2, %o2 400082cc: 96 10 00 16 mov %l6, %o3 400082d0: 9f c4 40 00 call %l1 400082d4: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
400082d8: 80 a7 40 13 cmp %i5, %l3
400082dc: 32 bf ff 6d bne,a 40008090 <_Heap_Walk+0x27c>
400082e0: ac 10 00 1d mov %i5, %l6
return true; }
400082e4: 81 c7 e0 08 ret 400082e8: 91 e8 20 01 restore %g0, 1, %o0
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
400082ec: 90 10 00 19 mov %i1, %o0 400082f0: 92 10 20 01 mov 1, %o1 400082f4: 94 12 a1 30 or %o2, 0x130, %o2 400082f8: 96 10 00 16 mov %l6, %o3 400082fc: 9f c4 40 00 call %l1 40008300: b0 10 20 00 clr %i0 40008304: 81 c7 e0 08 ret 40008308: 81 e8 00 00 restore
40006fac <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40006fac: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40006fb0: 05 10 00 51 sethi %hi(0x40014400), %g2 40006fb4: 82 10 a0 ac or %g2, 0xac, %g1 ! 400144ac <_Internal_errors_What_happened>
void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40006fb8: 90 10 00 18 mov %i0, %o0 40006fbc: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40006fc0: f0 20 a0 ac st %i0, [ %g2 + 0xac ]
_Internal_errors_What_happened.is_internal = is_internal;
40006fc4: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40006fc8: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40006fcc: 40 00 07 80 call 40008dcc <_User_extensions_Fatal> 40006fd0: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state;
40006fd4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 40006fd8: 03 10 00 51 sethi %hi(0x40014400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error );
40006fdc: 7f ff eb 2f call 40001c98 <sparc_disable_interrupts> <== NOT EXECUTED 40006fe0: c4 20 61 9c st %g2, [ %g1 + 0x19c ] ! 4001459c <_System_state_Current><== NOT EXECUTED 40006fe4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 40006fe8: 30 80 00 00 b,a 40006fe8 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
4000705c <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
4000705c: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
40007060: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
40007064: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
40007068: 80 a0 60 00 cmp %g1, 0
4000706c: 02 80 00 20 be 400070ec <_Objects_Allocate+0x90> <== NEVER TAKEN
40007070: b0 10 20 00 clr %i0
/* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007074: a2 04 20 20 add %l0, 0x20, %l1 40007078: 7f ff fd 86 call 40006690 <_Chain_Get> 4000707c: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007080: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 40007084: 80 a0 60 00 cmp %g1, 0
40007088: 02 80 00 19 be 400070ec <_Objects_Allocate+0x90>
4000708c: b0 10 00 08 mov %o0, %i0
/* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) {
40007090: 80 a2 20 00 cmp %o0, 0
40007094: 32 80 00 0a bne,a 400070bc <_Objects_Allocate+0x60>
40007098: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
4000709c: 40 00 00 1e call 40007114 <_Objects_Extend_information> 400070a0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400070a4: 7f ff fd 7b call 40006690 <_Chain_Get> 400070a8: 90 10 00 11 mov %l1, %o0
} if ( the_object ) {
400070ac: b0 92 20 00 orcc %o0, 0, %i0
400070b0: 02 80 00 0f be 400070ec <_Objects_Allocate+0x90>
400070b4: 01 00 00 00 nop
uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) -
400070b8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 400070bc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id ); block /= information->allocation_size;
400070c0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 400070c4: 40 00 26 c7 call 40010be0 <.udiv> 400070c8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
400070cc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 400070d0: 91 2a 20 02 sll %o0, 2, %o0 400070d4: c4 00 40 08 ld [ %g1 + %o0 ], %g2 400070d8: 84 00 bf ff add %g2, -1, %g2 400070dc: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
400070e0: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 400070e4: 82 00 7f ff add %g1, -1, %g1 400070e8: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
); } #endif return the_object; }
400070ec: 81 c7 e0 08 ret 400070f0: 81 e8 00 00 restore
40007470 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint32_t the_class ) {
40007470: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info; int the_class_api_maximum; if ( !the_class )
40007474: 80 a6 60 00 cmp %i1, 0
40007478: 02 80 00 17 be 400074d4 <_Objects_Get_information+0x64>
4000747c: a0 10 20 00 clr %l0
/* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007480: 40 00 10 f2 call 4000b848 <_Objects_API_maximum_class> 40007484: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40007488: 80 a2 20 00 cmp %o0, 0
4000748c: 02 80 00 12 be 400074d4 <_Objects_Get_information+0x64>
40007490: 80 a6 40 08 cmp %i1, %o0
return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 40007494: 18 80 00 10 bgu 400074d4 <_Objects_Get_information+0x64>
40007498: 03 10 00 50 sethi %hi(0x40014000), %g1
return NULL; if ( !_Objects_Information_table[ the_api ] )
4000749c: b1 2e 20 02 sll %i0, 2, %i0 400074a0: 82 10 63 7c or %g1, 0x37c, %g1 400074a4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 400074a8: 80 a0 60 00 cmp %g1, 0
400074ac: 02 80 00 0a be 400074d4 <_Objects_Get_information+0x64> <== NEVER TAKEN
400074b0: b3 2e 60 02 sll %i1, 2, %i1
return NULL; info = _Objects_Information_table[ the_api ][ the_class ];
400074b4: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
400074b8: 80 a4 20 00 cmp %l0, 0
400074bc: 02 80 00 06 be 400074d4 <_Objects_Get_information+0x64> <== NEVER TAKEN
400074c0: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 )
400074c4: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
400074c8: 80 a0 00 01 cmp %g0, %g1 400074cc: 82 60 20 00 subx %g0, 0, %g1 400074d0: a0 0c 00 01 and %l0, %g1, %l0
#endif return info; }
400074d4: 81 c7 e0 08 ret 400074d8: 91 e8 00 10 restore %g0, %l0, %o0
40018d74 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
40018d74: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40018d78: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
40018d7c: 82 22 40 01 sub %o1, %g1, %g1 40018d80: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40018d84: 80 a0 80 01 cmp %g2, %g1
40018d88: 0a 80 00 09 bcs 40018dac <_Objects_Get_no_protection+0x38>
40018d8c: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018d90: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 40018d94: d0 00 80 01 ld [ %g2 + %g1 ], %o0 40018d98: 80 a2 20 00 cmp %o0, 0
40018d9c: 02 80 00 05 be 40018db0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018da0: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL; return the_object;
40018da4: 81 c3 e0 08 retl 40018da8: c0 22 80 00 clr [ %o2 ]
/* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR;
40018dac: 82 10 20 01 mov 1, %g1
return NULL;
40018db0: 90 10 20 00 clr %o0
}
40018db4: 81 c3 e0 08 retl 40018db8: c2 22 80 00 st %g1, [ %o2 ]
40008d3c <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) {
40008d3c: 9d e3 bf 98 save %sp, -104, %sp
/* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40008d40: 92 96 20 00 orcc %i0, 0, %o1
40008d44: 12 80 00 06 bne 40008d5c <_Objects_Id_to_name+0x20>
40008d48: 83 32 60 18 srl %o1, 0x18, %g1 40008d4c: 03 10 00 77 sethi %hi(0x4001dc00), %g1 40008d50: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 4001dd98 <_Per_CPU_Information+0xc> 40008d54: d2 00 60 08 ld [ %g1 + 8 ], %o1 40008d58: 83 32 60 18 srl %o1, 0x18, %g1 40008d5c: 82 08 60 07 and %g1, 7, %g1
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008d60: 84 00 7f ff add %g1, -1, %g2 40008d64: 80 a0 a0 02 cmp %g2, 2
40008d68: 18 80 00 12 bgu 40008db0 <_Objects_Id_to_name+0x74>
40008d6c: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
40008d70: 10 80 00 12 b 40008db8 <_Objects_Id_to_name+0x7c> 40008d74: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ];
40008d78: 85 28 a0 02 sll %g2, 2, %g2 40008d7c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40008d80: 80 a2 20 00 cmp %o0, 0
40008d84: 02 80 00 0b be 40008db0 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40008d88: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location );
40008d8c: 7f ff ff cf call 40008cc8 <_Objects_Get> 40008d90: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40008d94: 80 a2 20 00 cmp %o0, 0
40008d98: 02 80 00 06 be 40008db0 <_Objects_Id_to_name+0x74>
40008d9c: 01 00 00 00 nop
return OBJECTS_INVALID_ID; *name = the_object->name;
40008da0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40008da4: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch();
40008da8: 40 00 02 3a call 40009690 <_Thread_Enable_dispatch> 40008dac: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; }
40008db0: 81 c7 e0 08 ret 40008db4: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
40008db8: 05 10 00 76 sethi %hi(0x4001d800), %g2 40008dbc: 84 10 a2 8c or %g2, 0x28c, %g2 ! 4001da8c <_Objects_Information_table> 40008dc0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 40008dc4: 80 a0 60 00 cmp %g1, 0
40008dc8: 12 bf ff ec bne 40008d78 <_Objects_Id_to_name+0x3c> <== ALWAYS TAKEN
40008dcc: 85 32 60 1b srl %o1, 0x1b, %g2
40008dd0: 30 bf ff f8 b,a 40008db0 <_Objects_Id_to_name+0x74> <== NOT EXECUTED
400075c4 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
400075c4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
400075c8: 85 2f 20 10 sll %i4, 0x10, %g2 400075cc: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
400075d0: 07 10 00 50 sethi %hi(0x40014000), %g3
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
400075d4: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
400075d8: 86 10 e3 7c or %g3, 0x37c, %g3 400075dc: 85 2e 60 02 sll %i1, 2, %g2 400075e0: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api;
400075e4: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
400075e8: f4 36 20 04 sth %i2, [ %i0 + 4 ]
information->size = size; information->local_table = 0;
400075ec: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
400075f0: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
400075f4: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
400075f8: c0 36 20 2c clrh [ %i0 + 0x2c ]
/* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0;
400075fc: c0 36 20 10 clrh [ %i0 + 0x10 ]
/* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40007600: 85 2e a0 02 sll %i2, 2, %g2
, bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
40007604: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40007608: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
4000760c: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend =
40007610: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40007614: 07 20 00 00 sethi %hi(0x80000000), %g3
/* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) {
40007618: 80 a0 a0 00 cmp %g2, 0
4000761c: 02 80 00 09 be 40007640 <_Objects_Initialize_information+0x7c>
40007620: b6 2e c0 03 andn %i3, %g3, %i3 40007624: 80 a6 e0 00 cmp %i3, 0
40007628: 12 80 00 07 bne 40007644 <_Objects_Initialize_information+0x80>
4000762c: 05 10 00 50 sethi %hi(0x40014000), %g2
_Internal_error_Occurred(
40007630: 90 10 20 00 clr %o0 40007634: 92 10 20 01 mov 1, %o1 40007638: 7f ff fe 5d call 40006fac <_Internal_error_Occurred> 4000763c: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table;
40007640: 05 10 00 50 sethi %hi(0x40014000), %g2 40007644: 84 10 a1 d0 or %g2, 0x1d0, %g2 ! 400141d0 <null_local_table.3194> 40007648: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000764c: 05 00 00 40 sethi %hi(0x10000), %g2
/* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40007650: 80 a0 00 1b cmp %g0, %i3 40007654: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007658: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000765c: b2 16 40 02 or %i1, %g2, %i1
} /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation;
40007660: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40007664: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007668: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000766c: b4 16 80 02 or %i2, %g2, %i2
/* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40007670: 80 88 60 03 btst 3, %g1
40007674: 02 80 00 04 be 40007684 <_Objects_Initialize_information+0xc0><== ALWAYS TAKEN
40007678: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
4000767c: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 40007680: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length;
40007684: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40007688: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
4000768c: c0 26 20 24 clr [ %i0 + 0x24 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40007690: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
40007694: 82 06 20 20 add %i0, 0x20, %g1
/* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) {
40007698: 80 a6 e0 00 cmp %i3, 0
4000769c: 02 80 00 04 be 400076ac <_Objects_Initialize_information+0xe8>
400076a0: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information );
400076a4: 7f ff fe 9c call 40007114 <_Objects_Extend_information> 400076a8: 81 e8 00 00 restore 400076ac: 81 c7 e0 08 ret 400076b0: 81 e8 00 00 restore
4000b020 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) {
4000b020: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000b024: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
if ( !api )
4000b028: 80 a4 20 00 cmp %l0, 0
4000b02c: 02 80 00 1d be 4000b0a0 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000b030: 01 00 00 00 nop
* Signal Processing */ asr = &api->Signal; _ISR_Disable( level );
4000b034: 7f ff db 19 call 40001c98 <sparc_disable_interrupts> 4000b038: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000b03c: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000b040: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000b044: 7f ff db 19 call 40001ca8 <sparc_enable_interrupts> 4000b048: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000b04c: 80 a4 e0 00 cmp %l3, 0
4000b050: 02 80 00 14 be 4000b0a0 <_RTEMS_tasks_Post_switch_extension+0x80>
4000b054: a2 07 bf fc add %fp, -4, %l1
return; asr->nest_level += 1;
4000b058: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b05c: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1;
4000b060: 82 00 60 01 inc %g1 4000b064: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b068: 94 10 00 11 mov %l1, %o2 4000b06c: 25 00 00 3f sethi %hi(0xfc00), %l2 4000b070: 40 00 07 93 call 4000cebc <rtems_task_mode> 4000b074: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000b078: c2 04 20 0c ld [ %l0 + 0xc ], %g1 4000b07c: 9f c0 40 00 call %g1 4000b080: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000b084: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b088: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
4000b08c: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b090: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
4000b094: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b098: 40 00 07 89 call 4000cebc <rtems_task_mode> 4000b09c: 94 10 00 11 mov %l1, %o2 4000b0a0: 81 c7 e0 08 ret 4000b0a4: 81 e8 00 00 restore
400073b0 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) {
400073b0: 9d e3 bf 98 save %sp, -104, %sp 400073b4: 11 10 00 77 sethi %hi(0x4001dc00), %o0 400073b8: 92 10 00 18 mov %i0, %o1 400073bc: 90 12 23 fc or %o0, 0x3fc, %o0 400073c0: 40 00 07 cb call 400092ec <_Objects_Get> 400073c4: 94 07 bf fc add %fp, -4, %o2
/* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
400073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 400073cc: 80 a0 60 00 cmp %g1, 0
400073d0: 12 80 00 24 bne 40007460 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
400073d4: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL: the_thread = the_period->owner;
400073d8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
400073dc: 03 00 00 10 sethi %hi(0x4000), %g1
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD);
400073e0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 400073e4: 80 88 80 01 btst %g2, %g1
400073e8: 22 80 00 0b be,a 40007414 <_Rate_monotonic_Timeout+0x64>
400073ec: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 400073f0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 400073f4: c2 04 20 08 ld [ %l0 + 8 ], %g1 400073f8: 80 a0 80 01 cmp %g2, %g1
400073fc: 32 80 00 06 bne,a 40007414 <_Rate_monotonic_Timeout+0x64>
40007400: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
40007404: 13 04 00 ff sethi %hi(0x1003fc00), %o1 40007408: 40 00 09 1a call 40009870 <_Thread_Clear_state> 4000740c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 40007410: 30 80 00 06 b,a 40007428 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40007414: 80 a0 60 01 cmp %g1, 1
40007418: 12 80 00 0d bne 4000744c <_Rate_monotonic_Timeout+0x9c>
4000741c: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007420: 82 10 20 03 mov 3, %g1 40007424: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40007428: 7f ff fe 65 call 40006dbc <_Rate_monotonic_Initiate_statistics> 4000742c: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40007430: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007434: 11 10 00 78 sethi %hi(0x4001e000), %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40007438: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000743c: 90 12 22 2c or %o0, 0x22c, %o0 40007440: 40 00 0e f0 call 4000b000 <_Watchdog_Insert> 40007444: 92 04 20 10 add %l0, 0x10, %o1 40007448: 30 80 00 02 b,a 40007450 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED;
4000744c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
40007450: 03 10 00 78 sethi %hi(0x4001e000), %g1 40007454: c4 00 61 68 ld [ %g1 + 0x168 ], %g2 ! 4001e168 <_Thread_Dispatch_disable_level> 40007458: 84 00 bf ff add %g2, -1, %g2 4000745c: c4 20 61 68 st %g2, [ %g1 + 0x168 ] 40007460: 81 c7 e0 08 ret 40007464: 81 e8 00 00 restore
40006dc0 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
40006dc0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
40006dc4: 03 10 00 78 sethi %hi(0x4001e000), %g1
*/ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
40006dc8: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
40006dcc: d2 00 61 64 ld [ %g1 + 0x164 ], %o1
if ((!the_tod) ||
40006dd0: 80 a4 20 00 cmp %l0, 0
40006dd4: 02 80 00 2b be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006dd8: b0 10 20 00 clr %i0
) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40006ddc: 11 00 03 d0 sethi %hi(0xf4000), %o0 40006de0: 40 00 46 fe call 400189d8 <.udiv> 40006de4: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) ||
40006de8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40006dec: 80 a0 40 08 cmp %g1, %o0
40006df0: 1a 80 00 24 bcc 40006e80 <_TOD_Validate+0xc0>
40006df4: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40006df8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 40006dfc: 80 a0 60 3b cmp %g1, 0x3b
40006e00: 18 80 00 20 bgu 40006e80 <_TOD_Validate+0xc0>
40006e04: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40006e08: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 40006e0c: 80 a0 60 3b cmp %g1, 0x3b
40006e10: 18 80 00 1c bgu 40006e80 <_TOD_Validate+0xc0>
40006e14: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40006e18: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40006e1c: 80 a0 60 17 cmp %g1, 0x17
40006e20: 18 80 00 18 bgu 40006e80 <_TOD_Validate+0xc0>
40006e24: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) ||
40006e28: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) ||
40006e2c: 80 a0 60 00 cmp %g1, 0
40006e30: 02 80 00 14 be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006e34: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) || 40006e38: 18 80 00 12 bgu 40006e80 <_TOD_Validate+0xc0>
40006e3c: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
40006e40: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) ||
40006e44: 80 a0 e7 c3 cmp %g3, 0x7c3
40006e48: 08 80 00 0e bleu 40006e80 <_TOD_Validate+0xc0>
40006e4c: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) )
40006e50: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
40006e54: 80 a0 a0 00 cmp %g2, 0
40006e58: 02 80 00 0a be 40006e80 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006e5c: 80 88 e0 03 btst 3, %g3 40006e60: 07 10 00 73 sethi %hi(0x4001cc00), %g3
(the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 40006e64: 12 80 00 03 bne 40006e70 <_TOD_Validate+0xb0>
40006e68: 86 10 e2 28 or %g3, 0x228, %g3 ! 4001ce28 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40006e6c: 82 00 60 0d add %g1, 0xd, %g1
else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40006e70: 83 28 60 02 sll %g1, 2, %g1 40006e74: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate(
40006e78: 80 a0 40 02 cmp %g1, %g2 40006e7c: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month ) return false; return true; }
40006e80: 81 c7 e0 08 ret 40006e84: 81 e8 00 00 restore
400078f0 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) {
400078f0: 9d e3 bf a0 save %sp, -96, %sp
*/ /* * Save original state */ original_state = the_thread->current_state;
400078f4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread );
400078f8: 40 00 04 0b call 40008924 <_Thread_Set_transient> 400078fc: 90 10 00 18 mov %i0, %o0
/* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority )
40007900: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 40007904: 80 a0 40 19 cmp %g1, %i1
40007908: 02 80 00 05 be 4000791c <_Thread_Change_priority+0x2c>
4000790c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40007910: 90 10 00 18 mov %i0, %o0 40007914: 40 00 03 87 call 40008730 <_Thread_Set_priority> 40007918: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
4000791c: 7f ff e8 df call 40001c98 <sparc_disable_interrupts> 40007920: 01 00 00 00 nop 40007924: b0 10 00 08 mov %o0, %i0
/* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state;
40007928: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
4000792c: 80 a6 60 04 cmp %i1, 4
40007930: 02 80 00 10 be 40007970 <_Thread_Change_priority+0x80>
40007934: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) )
40007938: 80 a4 60 00 cmp %l1, 0
4000793c: 12 80 00 03 bne 40007948 <_Thread_Change_priority+0x58> <== NEVER TAKEN
40007940: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007944: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40007948: 7f ff e8 d8 call 40001ca8 <sparc_enable_interrupts> 4000794c: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40007950: 03 00 00 ef sethi %hi(0x3bc00), %g1 40007954: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 40007958: 80 8e 40 01 btst %i1, %g1
4000795c: 02 80 00 5c be 40007acc <_Thread_Change_priority+0x1dc>
40007960: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40007964: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 40007968: 40 00 03 45 call 4000867c <_Thread_queue_Requeue> 4000796c: 93 e8 00 10 restore %g0, %l0, %o1
} return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) {
40007970: 80 a4 60 00 cmp %l1, 0
40007974: 12 80 00 1c bne 400079e4 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
40007978: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
4000797c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40007980: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40007984: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007988: c0 24 20 10 clr [ %l0 + 0x10 ] 4000798c: 84 10 c0 02 or %g3, %g2, %g2 40007990: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40007994: 03 10 00 51 sethi %hi(0x40014400), %g1 40007998: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000799c: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2
_Priority_Add_to_bit_map( &the_thread->Priority_map ); if ( prepend_it )
400079a0: 80 8e a0 ff btst 0xff, %i2 400079a4: 84 10 c0 02 or %g3, %g2, %g2 400079a8: c4 30 60 b8 sth %g2, [ %g1 + 0xb8 ]
400079ac: 02 80 00 08 be 400079cc <_Thread_Change_priority+0xdc>
400079b0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next;
400079b4: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node;
400079b8: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next; after_node->next = the_node;
400079bc: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
400079c0: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
400079c4: 10 80 00 08 b 400079e4 <_Thread_Change_priority+0xf4> 400079c8: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
400079cc: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
400079d0: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
400079d4: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
400079d8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
400079dc: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
400079e0: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level );
400079e4: 7f ff e8 b1 call 40001ca8 <sparc_enable_interrupts> 400079e8: 90 10 00 18 mov %i0, %o0 400079ec: 7f ff e8 ab call 40001c98 <sparc_disable_interrupts> 400079f0: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_Get_highest() ].first;
400079f4: 03 10 00 50 sethi %hi(0x40014000), %g1 400079f8: da 00 63 74 ld [ %g1 + 0x374 ], %o5 ! 40014374 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void ) { Priority_Bit_map_control minor; Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400079fc: 03 10 00 51 sethi %hi(0x40014400), %g1 40007a00: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2 ! 400144b8 <_Priority_Major_bit_map> 40007a04: 03 10 00 4c sethi %hi(0x40013000), %g1 40007a08: 85 28 a0 10 sll %g2, 0x10, %g2 40007a0c: 87 30 a0 10 srl %g2, 0x10, %g3 40007a10: 80 a0 e0 ff cmp %g3, 0xff
40007a14: 18 80 00 05 bgu 40007a28 <_Thread_Change_priority+0x138>
40007a18: 82 10 61 d8 or %g1, 0x1d8, %g1 40007a1c: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 40007a20: 10 80 00 04 b 40007a30 <_Thread_Change_priority+0x140> 40007a24: 84 00 a0 08 add %g2, 8, %g2 40007a28: 85 30 a0 18 srl %g2, 0x18, %g2 40007a2c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007a30: 83 28 a0 10 sll %g2, 0x10, %g1 40007a34: 07 10 00 51 sethi %hi(0x40014400), %g3 40007a38: 83 30 60 0f srl %g1, 0xf, %g1 40007a3c: 86 10 e1 30 or %g3, 0x130, %g3 40007a40: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 40007a44: 03 10 00 4c sethi %hi(0x40013000), %g1 40007a48: 87 28 e0 10 sll %g3, 0x10, %g3 40007a4c: 89 30 e0 10 srl %g3, 0x10, %g4 40007a50: 80 a1 20 ff cmp %g4, 0xff
40007a54: 18 80 00 05 bgu 40007a68 <_Thread_Change_priority+0x178>
40007a58: 82 10 61 d8 or %g1, 0x1d8, %g1 40007a5c: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 40007a60: 10 80 00 04 b 40007a70 <_Thread_Change_priority+0x180> 40007a64: 82 00 60 08 add %g1, 8, %g1 40007a68: 87 30 e0 18 srl %g3, 0x18, %g3 40007a6c: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor );
40007a70: 83 28 60 10 sll %g1, 0x10, %g1 40007a74: 83 30 60 10 srl %g1, 0x10, %g1
Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
40007a78: 85 28 a0 10 sll %g2, 0x10, %g2 40007a7c: 85 30 a0 0c srl %g2, 0xc, %g2 40007a80: 84 00 40 02 add %g1, %g2, %g2 40007a84: 83 28 a0 02 sll %g2, 2, %g1 40007a88: 85 28 a0 04 sll %g2, 4, %g2 40007a8c: 84 20 80 01 sub %g2, %g1, %g2
* ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *)
40007a90: c6 03 40 02 ld [ %o5 + %g2 ], %g3 40007a94: 03 10 00 51 sethi %hi(0x40014400), %g1 40007a98: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information>
* is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir );
40007a9c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() &&
40007aa0: 80 a0 80 03 cmp %g2, %g3
40007aa4: 02 80 00 08 be 40007ac4 <_Thread_Change_priority+0x1d4>
40007aa8: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 40007aac: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 40007ab0: 80 a0 a0 00 cmp %g2, 0
40007ab4: 02 80 00 04 be 40007ac4 <_Thread_Change_priority+0x1d4>
40007ab8: 01 00 00 00 nop
_Thread_Executing->is_preemptible ) _Context_Switch_necessary = true;
40007abc: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 40007ac0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40007ac4: 7f ff e8 79 call 40001ca8 <sparc_enable_interrupts> 40007ac8: 81 e8 00 00 restore 40007acc: 81 c7 e0 08 ret 40007ad0: 81 e8 00 00 restore
40007ad4 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) {
40007ad4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
40007ad8: 7f ff e8 70 call 40001c98 <sparc_disable_interrupts> 40007adc: a0 10 00 18 mov %i0, %l0 40007ae0: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
40007ae4: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
40007ae8: 80 8e 40 01 btst %i1, %g1
40007aec: 02 80 00 2f be 40007ba8 <_Thread_Clear_state+0xd4>
40007af0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear);
40007af4: b2 28 40 19 andn %g1, %i1, %i1
current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) {
40007af8: 80 a6 60 00 cmp %i1, 0
40007afc: 12 80 00 2b bne 40007ba8 <_Thread_Clear_state+0xd4>
40007b00: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
40007b04: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40007b08: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40007b0c: c6 10 40 00 lduh [ %g1 ], %g3 40007b10: 84 10 c0 02 or %g3, %g2, %g2 40007b14: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40007b18: 03 10 00 51 sethi %hi(0x40014400), %g1 40007b1c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 40007b20: c4 10 60 b8 lduh [ %g1 + 0xb8 ], %g2 40007b24: 84 10 c0 02 or %g3, %g2, %g2 40007b28: c4 30 60 b8 sth %g2, [ %g1 + 0xb8 ]
_Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
40007b2c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40007b30: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
40007b34: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
40007b38: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
40007b3c: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40007b40: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
40007b44: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
40007b48: 7f ff e8 58 call 40001ca8 <sparc_enable_interrupts> 40007b4c: 01 00 00 00 nop 40007b50: 7f ff e8 52 call 40001c98 <sparc_disable_interrupts> 40007b54: 01 00 00 00 nop
* a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
40007b58: 03 10 00 51 sethi %hi(0x40014400), %g1 40007b5c: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40007b60: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 40007b64: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 40007b68: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 40007b6c: 80 a0 80 03 cmp %g2, %g3
40007b70: 1a 80 00 0e bcc 40007ba8 <_Thread_Clear_state+0xd4>
40007b74: 01 00 00 00 nop
_Thread_Heir = the_thread;
40007b78: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
40007b7c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 40007b80: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 40007b84: 80 a0 60 00 cmp %g1, 0
40007b88: 32 80 00 05 bne,a 40007b9c <_Thread_Clear_state+0xc8>
40007b8c: 84 10 20 01 mov 1, %g2 40007b90: 80 a0 a0 00 cmp %g2, 0
40007b94: 12 80 00 05 bne 40007ba8 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
40007b98: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Context_Switch_necessary = true;
40007b9c: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ba0: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40007ba4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
40007ba8: 7f ff e8 40 call 40001ca8 <sparc_enable_interrupts> 40007bac: 81 e8 00 00 restore
40007d30 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) {
40007d30: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
40007d34: 90 10 00 18 mov %i0, %o0 40007d38: 40 00 00 5f call 40007eb4 <_Thread_Get> 40007d3c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40007d40: c2 07 bf fc ld [ %fp + -4 ], %g1 40007d44: 80 a0 60 00 cmp %g1, 0
40007d48: 12 80 00 08 bne 40007d68 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40007d4c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state(
40007d50: 7f ff ff 61 call 40007ad4 <_Thread_Clear_state> 40007d54: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018> 40007d58: 03 10 00 51 sethi %hi(0x40014400), %g1 40007d5c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40007d60: 84 00 bf ff add %g2, -1, %g2 40007d64: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 40007d68: 81 c7 e0 08 ret 40007d6c: 81 e8 00 00 restore
40007d70 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) {
40007d70: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing;
40007d74: 2b 10 00 51 sethi %hi(0x40014400), %l5 40007d78: 82 15 62 7c or %l5, 0x27c, %g1 ! 4001467c <_Per_CPU_Information>
_ISR_Disable( level );
40007d7c: 7f ff e7 c7 call 40001c98 <sparc_disable_interrupts> 40007d80: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract(
40007d84: 25 10 00 51 sethi %hi(0x40014400), %l2
executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
40007d88: 39 10 00 51 sethi %hi(0x40014400), %i4 40007d8c: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40007d90: 2f 10 00 50 sethi %hi(0x40014000), %l7
_ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
40007d94: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40007d98: a6 07 bf f0 add %fp, -16, %l3 40007d9c: a4 14 a0 c8 or %l2, 0xc8, %l2
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) {
40007da0: 10 80 00 2b b 40007e4c <_Thread_Dispatch+0xdc> 40007da4: 2d 10 00 51 sethi %hi(0x40014400), %l6
heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
40007da8: fa 27 20 18 st %i5, [ %i4 + 0x18 ]
_Context_Switch_necessary = false;
40007dac: c0 28 60 18 clrb [ %g1 + 0x18 ]
/* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing )
40007db0: 80 a4 00 11 cmp %l0, %l1
40007db4: 02 80 00 2b be 40007e60 <_Thread_Dispatch+0xf0>
40007db8: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40007dbc: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 40007dc0: 80 a0 60 01 cmp %g1, 1
40007dc4: 12 80 00 03 bne 40007dd0 <_Thread_Dispatch+0x60>
40007dc8: c2 05 e3 78 ld [ %l7 + 0x378 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40007dcc: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40007dd0: 7f ff e7 b6 call 40001ca8 <sparc_enable_interrupts> 40007dd4: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
40007dd8: 40 00 0d 93 call 4000b424 <_TOD_Get_uptime> 40007ddc: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40007de0: 90 10 00 12 mov %l2, %o0 40007de4: 92 10 00 14 mov %l4, %o1 40007de8: 40 00 03 98 call 40008c48 <_Timespec_Subtract> 40007dec: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran );
40007df0: 90 04 60 84 add %l1, 0x84, %o0 40007df4: 40 00 03 7c call 40008be4 <_Timespec_Add_to> 40007df8: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40007dfc: c2 07 bf f8 ld [ %fp + -8 ], %g1 40007e00: c2 24 80 00 st %g1, [ %l2 ] 40007e04: c2 07 bf fc ld [ %fp + -4 ], %g1 40007e08: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
40007e0c: c2 05 a0 9c ld [ %l6 + 0x9c ], %g1 40007e10: 80 a0 60 00 cmp %g1, 0
40007e14: 02 80 00 06 be 40007e2c <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40007e18: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40007e1c: c4 00 40 00 ld [ %g1 ], %g2 40007e20: c4 24 61 58 st %g2, [ %l1 + 0x158 ]
*_Thread_libc_reent = heir->libc_reent;
40007e24: c4 04 21 58 ld [ %l0 + 0x158 ], %g2 40007e28: c4 20 40 00 st %g2, [ %g1 ]
} _User_extensions_Thread_switch( executing, heir );
40007e2c: 40 00 04 37 call 40008f08 <_User_extensions_Thread_switch> 40007e30: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers );
40007e34: 90 04 60 d0 add %l1, 0xd0, %o0 40007e38: 40 00 05 26 call 400092d0 <_CPU_Context_switch> 40007e3c: 92 04 20 d0 add %l0, 0xd0, %o1
if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing;
40007e40: 82 15 62 7c or %l5, 0x27c, %g1
_ISR_Disable( level );
40007e44: 7f ff e7 95 call 40001c98 <sparc_disable_interrupts> 40007e48: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) {
40007e4c: 82 15 62 7c or %l5, 0x27c, %g1 40007e50: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 40007e54: 80 a0 a0 00 cmp %g2, 0
40007e58: 32 bf ff d4 bne,a 40007da8 <_Thread_Dispatch+0x38>
40007e5c: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0;
40007e60: 03 10 00 51 sethi %hi(0x40014400), %g1 40007e64: c0 20 60 18 clr [ %g1 + 0x18 ] ! 40014418 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
40007e68: 7f ff e7 90 call 40001ca8 <sparc_enable_interrupts> 40007e6c: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40007e70: 7f ff f9 a7 call 4000650c <_API_extensions_Run_postswitch> 40007e74: 01 00 00 00 nop
}
40007e78: 81 c7 e0 08 ret 40007e7c: 81 e8 00 00 restore
40007eb4 <_Thread_Get>: Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) {
40007eb4: 82 10 00 08 mov %o0, %g1
uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40007eb8: 80 a2 20 00 cmp %o0, 0
40007ebc: 12 80 00 0a bne 40007ee4 <_Thread_Get+0x30>
40007ec0: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
40007ec4: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ec8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40007ecc: 84 00 a0 01 inc %g2 40007ed0: c4 20 60 18 st %g2, [ %g1 + 0x18 ]
_Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing;
40007ed4: 03 10 00 51 sethi %hi(0x40014400), %g1
Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL;
40007ed8: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing; goto done;
40007edc: 81 c3 e0 08 retl 40007ee0: d0 00 62 88 ld [ %g1 + 0x288 ], %o0
*/ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40007ee4: 87 32 20 18 srl %o0, 0x18, %g3 40007ee8: 86 08 e0 07 and %g3, 7, %g3
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
40007eec: 84 00 ff ff add %g3, -1, %g2 40007ef0: 80 a0 a0 02 cmp %g2, 2
40007ef4: 28 80 00 16 bleu,a 40007f4c <_Thread_Get+0x98>
40007ef8: 85 32 20 1b srl %o0, 0x1b, %g2
goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR;
40007efc: 82 10 20 01 mov 1, %g1 40007f00: 10 80 00 09 b 40007f24 <_Thread_Get+0x70> 40007f04: c2 22 80 00 st %g1, [ %o2 ]
goto done; } api_information = _Objects_Information_table[ the_api ];
40007f08: 09 10 00 50 sethi %hi(0x40014000), %g4 40007f0c: 88 11 23 7c or %g4, 0x37c, %g4 ! 4001437c <_Objects_Information_table> 40007f10: c6 01 00 03 ld [ %g4 + %g3 ], %g3
if ( !api_information ) {
40007f14: 80 a0 e0 00 cmp %g3, 0
40007f18: 32 80 00 05 bne,a 40007f2c <_Thread_Get+0x78> <== ALWAYS TAKEN
40007f1c: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
40007f20: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
40007f24: 81 c3 e0 08 retl 40007f28: 90 10 20 00 clr %o0
} information = api_information[ the_class ]; if ( !information ) {
40007f2c: 80 a2 20 00 cmp %o0, 0
40007f30: 12 80 00 04 bne 40007f40 <_Thread_Get+0x8c>
40007f34: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR; goto done;
40007f38: 81 c3 e0 08 retl 40007f3c: c4 22 80 00 st %g2, [ %o2 ]
} tp = (Thread_Control *) _Objects_Get( information, id, location );
40007f40: 82 13 c0 00 mov %o7, %g1 40007f44: 7f ff fd 83 call 40007550 <_Objects_Get> 40007f48: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */
40007f4c: 80 a0 a0 01 cmp %g2, 1
40007f50: 22 bf ff ee be,a 40007f08 <_Thread_Get+0x54>
40007f54: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
40007f58: 10 bf ff ea b 40007f00 <_Thread_Get+0x4c> 40007f5c: 82 10 20 01 mov 1, %g1
4000d200 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) {
4000d200: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing;
4000d204: 03 10 00 51 sethi %hi(0x40014400), %g1 4000d208: e0 00 62 88 ld [ %g1 + 0x288 ], %l0 ! 40014688 <_Per_CPU_Information+0xc>
/* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin();
4000d20c: 3f 10 00 34 sethi %hi(0x4000d000), %i7 4000d210: be 17 e2 00 or %i7, 0x200, %i7 ! 4000d200 <_Thread_Handler>
/* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level;
4000d214: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
4000d218: 7f ff d2 a4 call 40001ca8 <sparc_enable_interrupts> 4000d21c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
4000d220: 03 10 00 50 sethi %hi(0x40014000), %g1
doneConstructors = 1;
4000d224: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
4000d228: e2 08 61 d8 ldub [ %g1 + 0x1d8 ], %l1
/* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing );
4000d22c: 90 10 00 10 mov %l0, %o0 4000d230: 7f ff ee c6 call 40008d48 <_User_extensions_Thread_begin> 4000d234: c4 28 61 d8 stb %g2, [ %g1 + 0x1d8 ]
/* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch();
4000d238: 7f ff eb 12 call 40007e80 <_Thread_Enable_dispatch> 4000d23c: a3 2c 60 18 sll %l1, 0x18, %l1
/* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ {
4000d240: 80 a4 60 00 cmp %l1, 0
4000d244: 32 80 00 05 bne,a 4000d258 <_Thread_Handler+0x58>
4000d248: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
4000d24c: 40 00 19 fd call 40013a40 <_init> 4000d250: 01 00 00 00 nop
} #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000d254: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 4000d258: 80 a0 60 00 cmp %g1, 0
4000d25c: 12 80 00 06 bne 4000d274 <_Thread_Handler+0x74> <== NEVER TAKEN
4000d260: 01 00 00 00 nop
executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)(
4000d264: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 4000d268: 9f c0 40 00 call %g1 4000d26c: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument =
4000d270: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing );
4000d274: 7f ff ee c6 call 40008d8c <_User_extensions_Thread_exitted> 4000d278: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000d27c: 90 10 20 00 clr %o0 4000d280: 92 10 20 01 mov 1, %o1 4000d284: 7f ff e7 4a call 40006fac <_Internal_error_Occurred> 4000d288: 94 10 20 05 mov 5, %o2
40007f60 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) {
40007f60: 9d e3 bf a0 save %sp, -96, %sp 40007f64: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 40007f68: e2 0f a0 5f ldub [ %fp + 0x5f ], %l1 40007f6c: e0 00 40 00 ld [ %g1 ], %l0
/* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL;
40007f70: c0 26 61 5c clr [ %i1 + 0x15c ] 40007f74: c0 26 61 60 clr [ %i1 + 0x160 ]
extensions_area = NULL; the_thread->libc_reent = NULL;
40007f78: c0 26 61 58 clr [ %i1 + 0x158 ]
/* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40007f7c: 90 10 00 19 mov %i1, %o0 40007f80: 40 00 02 8e call 400089b8 <_Thread_Stack_Allocate> 40007f84: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40007f88: 80 a2 00 1b cmp %o0, %i3
40007f8c: 0a 80 00 5b bcs 400080f8 <_Thread_Initialize+0x198>
40007f90: 80 a2 20 00 cmp %o0, 0
40007f94: 22 80 00 57 be,a 400080f0 <_Thread_Initialize+0x190> <== NEVER TAKEN
40007f98: b0 10 20 00 clr %i0 <== NOT EXECUTED
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
40007f9c: c2 06 60 c8 ld [ %i1 + 0xc8 ], %g1
the_stack->size = size;
40007fa0: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
40007fa4: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
40007fa8: 03 10 00 51 sethi %hi(0x40014400), %g1 40007fac: d0 00 60 a8 ld [ %g1 + 0xa8 ], %o0 ! 400144a8 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40007fb0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40007fb4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40007fb8: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40007fbc: c0 26 60 6c clr [ %i1 + 0x6c ] 40007fc0: 80 a2 20 00 cmp %o0, 0
40007fc4: 02 80 00 08 be 40007fe4 <_Thread_Initialize+0x84>
40007fc8: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40007fcc: 90 02 20 01 inc %o0 40007fd0: 40 00 04 a2 call 40009258 <_Workspace_Allocate> 40007fd4: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area )
40007fd8: b6 92 20 00 orcc %o0, 0, %i3
40007fdc: 22 80 00 2c be,a 4000808c <_Thread_Initialize+0x12c>
40007fe0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
* if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) {
40007fe4: 80 a6 e0 00 cmp %i3, 0
40007fe8: 02 80 00 0b be 40008014 <_Thread_Initialize+0xb4>
40007fec: f6 26 61 64 st %i3, [ %i1 + 0x164 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40007ff0: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ff4: c4 00 60 a8 ld [ %g1 + 0xa8 ], %g2 ! 400144a8 <_Thread_Maximum_extensions> 40007ff8: 10 80 00 04 b 40008008 <_Thread_Initialize+0xa8> 40007ffc: 82 10 20 00 clr %g1 40008000: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
40008004: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008008: 80 a0 40 02 cmp %g1, %g2
4000800c: 08 bf ff fd bleu 40008000 <_Thread_Initialize+0xa0>
40008010: 87 28 60 02 sll %g1, 2, %g3
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
40008014: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
40008018: 90 10 00 19 mov %i1, %o0
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
4000801c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
40008020: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
40008024: 92 10 00 1d mov %i5, %o1
* General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout;
40008028: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
4000802c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible;
40008030: e2 2e 60 ac stb %l1, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
40008034: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
40008038: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
4000803c: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT;
40008040: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL; the_thread->resource_count = 0;
40008044: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008048: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
4000804c: 40 00 01 b9 call 40008730 <_Thread_Set_priority> 40008050: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread ); return false; }
40008054: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40008058: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
4000805c: c0 26 60 84 clr [ %i1 + 0x84 ] 40008060: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40008064: 83 28 60 02 sll %g1, 2, %g1 40008068: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
4000806c: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread );
40008070: 90 10 00 19 mov %i1, %o0 40008074: 40 00 03 68 call 40008e14 <_User_extensions_Thread_create> 40008078: b0 10 20 01 mov 1, %i0
if ( extension_status )
4000807c: 80 8a 20 ff btst 0xff, %o0
40008080: 12 80 00 1f bne 400080fc <_Thread_Initialize+0x19c>
40008084: 01 00 00 00 nop
return true; failed: if ( the_thread->libc_reent )
40008088: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 4000808c: 80 a2 20 00 cmp %o0, 0
40008090: 22 80 00 05 be,a 400080a4 <_Thread_Initialize+0x144>
40008094: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->libc_reent );
40008098: 40 00 04 79 call 4000927c <_Workspace_Free> 4000809c: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
400080a0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 400080a4: 80 a2 20 00 cmp %o0, 0
400080a8: 22 80 00 05 be,a 400080bc <_Thread_Initialize+0x15c>
400080ac: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
400080b0: 40 00 04 73 call 4000927c <_Workspace_Free> 400080b4: 01 00 00 00 nop
failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
400080b8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 400080bc: 80 a2 20 00 cmp %o0, 0
400080c0: 02 80 00 05 be 400080d4 <_Thread_Initialize+0x174> <== ALWAYS TAKEN
400080c4: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
400080c8: 40 00 04 6d call 4000927c <_Workspace_Free> <== NOT EXECUTED 400080cc: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
400080d0: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
400080d4: 02 80 00 05 be 400080e8 <_Thread_Initialize+0x188>
400080d8: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( extensions_area );
400080dc: 40 00 04 68 call 4000927c <_Workspace_Free> 400080e0: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread );
400080e4: 90 10 00 19 mov %i1, %o0 400080e8: 40 00 02 4b call 40008a14 <_Thread_Stack_Free> 400080ec: b0 10 20 00 clr %i0
return false;
400080f0: 81 c7 e0 08 ret 400080f4: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */
400080f8: b0 10 20 00 clr %i0
_Thread_Stack_Free( the_thread ); return false; }
400080fc: 81 c7 e0 08 ret 40008100: 81 e8 00 00 restore
4000bdcc <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) {
4000bdcc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
4000bdd0: 7f ff d8 2e call 40001e88 <sparc_disable_interrupts> 4000bdd4: a0 10 00 18 mov %i0, %l0 4000bdd8: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000bddc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000bde0: 80 88 60 02 btst 2, %g1
4000bde4: 02 80 00 2e be 4000be9c <_Thread_Resume+0xd0> <== NEVER TAKEN
4000bde8: 82 08 7f fd and %g1, -3, %g1
current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) {
4000bdec: 80 a0 60 00 cmp %g1, 0
4000bdf0: 12 80 00 2b bne 4000be9c <_Thread_Resume+0xd0>
4000bdf4: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
4000bdf8: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 4000bdfc: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 4000be00: c6 10 40 00 lduh [ %g1 ], %g3 4000be04: 84 10 c0 02 or %g3, %g2, %g2 4000be08: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000be0c: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be10: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000be14: c4 10 62 08 lduh [ %g1 + 0x208 ], %g2 4000be18: 84 10 c0 02 or %g3, %g2, %g2 4000be1c: c4 30 62 08 sth %g2, [ %g1 + 0x208 ]
_Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000be20: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000be24: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
4000be28: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
4000be2c: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
4000be30: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
4000be34: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000be38: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000be3c: 7f ff d8 17 call 40001e98 <sparc_enable_interrupts> 4000be40: 01 00 00 00 nop 4000be44: 7f ff d8 11 call 40001e88 <sparc_disable_interrupts> 4000be48: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000be4c: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be50: 82 10 63 cc or %g1, 0x3cc, %g1 ! 400183cc <_Per_CPU_Information> 4000be54: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000be58: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 4000be5c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 4000be60: 80 a0 80 03 cmp %g2, %g3
4000be64: 1a 80 00 0e bcc 4000be9c <_Thread_Resume+0xd0>
4000be68: 01 00 00 00 nop
_Thread_Heir = the_thread;
4000be6c: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
4000be70: c2 00 60 0c ld [ %g1 + 0xc ], %g1 4000be74: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000be78: 80 a0 60 00 cmp %g1, 0
4000be7c: 32 80 00 05 bne,a 4000be90 <_Thread_Resume+0xc4>
4000be80: 84 10 20 01 mov 1, %g2 4000be84: 80 a0 a0 00 cmp %g2, 0
4000be88: 12 80 00 05 bne 4000be9c <_Thread_Resume+0xd0> <== ALWAYS TAKEN
4000be8c: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Context_Switch_necessary = true;
4000be90: 03 10 00 60 sethi %hi(0x40018000), %g1 4000be94: 82 10 63 cc or %g1, 0x3cc, %g1 ! 400183cc <_Per_CPU_Information> 4000be98: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
4000be9c: 7f ff d7 ff call 40001e98 <sparc_enable_interrupts> 4000bea0: 81 e8 00 00 restore
40008b3c <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) {
40008b3c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing;
40008b40: 23 10 00 51 sethi %hi(0x40014400), %l1 40008b44: a2 14 62 7c or %l1, 0x27c, %l1 ! 4001467c <_Per_CPU_Information> 40008b48: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready; _ISR_Disable( level );
40008b4c: 7f ff e4 53 call 40001c98 <sparc_disable_interrupts> 40008b50: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 40008b54: b0 10 00 08 mov %o0, %i0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last);
40008b58: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
40008b5c: c4 04 80 00 ld [ %l2 ], %g2 40008b60: 80 a0 80 01 cmp %g2, %g1
40008b64: 22 80 00 19 be,a 40008bc8 <_Thread_Yield_processor+0x8c>
40008b68: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
) { Chain_Node *next; Chain_Node *previous; next = the_node->next;
40008b6c: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
40008b70: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous; previous->next = next;
40008b74: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous;
40008b78: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40008b7c: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
40008b80: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last; the_chain->last = the_node;
40008b84: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
40008b88: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
40008b8c: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level );
40008b90: 7f ff e4 46 call 40001ca8 <sparc_enable_interrupts> 40008b94: 01 00 00 00 nop 40008b98: 7f ff e4 40 call 40001c98 <sparc_disable_interrupts> 40008b9c: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40008ba0: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 40008ba4: 80 a4 00 01 cmp %l0, %g1
40008ba8: 12 80 00 04 bne 40008bb8 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
40008bac: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
40008bb0: c2 04 80 00 ld [ %l2 ], %g1 40008bb4: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Context_Switch_necessary = true;
40008bb8: 03 10 00 51 sethi %hi(0x40014400), %g1 40008bbc: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 40008bc0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40008bc4: 30 80 00 05 b,a 40008bd8 <_Thread_Yield_processor+0x9c>
} else if ( !_Thread_Is_heir( executing ) )
40008bc8: 80 a4 00 01 cmp %l0, %g1
40008bcc: 02 80 00 03 be 40008bd8 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
40008bd0: 82 10 20 01 mov 1, %g1
_Context_Switch_necessary = true;
40008bd4: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40008bd8: 7f ff e4 34 call 40001ca8 <sparc_enable_interrupts> 40008bdc: 81 e8 00 00 restore
4000b9c8 <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) {
4000b9c8: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *new_first_node; Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level );
4000b9cc: 7f ff d8 b3 call 40001c98 <sparc_disable_interrupts> 4000b9d0: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
4000b9d4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000b9d8: 03 00 00 ef sethi %hi(0x3bc00), %g1 4000b9dc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 4000b9e0: 80 88 80 01 btst %g2, %g1
4000b9e4: 32 80 00 03 bne,a 4000b9f0 <_Thread_queue_Extract_priority_helper+0x28>
4000b9e8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
_ISR_Enable( level );
4000b9ec: 30 80 00 1a b,a 4000ba54 <_Thread_queue_Extract_priority_helper+0x8c>
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000b9f0: 88 06 60 3c add %i1, 0x3c, %g4
/* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next;
4000b9f4: c4 06 40 00 ld [ %i1 ], %g2
previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
4000b9f8: 80 a0 40 04 cmp %g1, %g4
4000b9fc: 02 80 00 11 be 4000ba40 <_Thread_queue_Extract_priority_helper+0x78>
4000ba00: c6 06 60 04 ld [ %i1 + 4 ], %g3
new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last;
4000ba04: c8 06 60 40 ld [ %i1 + 0x40 ], %g4
new_second_node = new_first_node->next;
4000ba08: da 00 40 00 ld [ %g1 ], %o5
previous_node->next = new_first_node; next_node->previous = new_first_node;
4000ba0c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node;
4000ba10: c2 20 c0 00 st %g1, [ %g3 ]
next_node->previous = new_first_node; new_first_node->next = next_node;
4000ba14: c4 20 40 00 st %g2, [ %g1 ]
new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
4000ba18: 80 a0 40 04 cmp %g1, %g4
4000ba1c: 02 80 00 0b be 4000ba48 <_Thread_queue_Extract_priority_helper+0x80>
4000ba20: c6 20 60 04 st %g3, [ %g1 + 4 ]
/* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n );
4000ba24: 84 00 60 38 add %g1, 0x38, %g2
new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous =
4000ba28: c4 23 60 04 st %g2, [ %o5 + 4 ]
_Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node;
4000ba2c: da 20 60 38 st %o5, [ %g1 + 0x38 ]
new_first_thread->Wait.Block2n.last = last_node;
4000ba30: c8 20 60 40 st %g4, [ %g1 + 0x40 ] 4000ba34: 82 00 60 3c add %g1, 0x3c, %g1
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
4000ba38: 10 80 00 04 b 4000ba48 <_Thread_queue_Extract_priority_helper+0x80> 4000ba3c: c2 21 00 00 st %g1, [ %g4 ]
} } else { previous_node->next = next_node;
4000ba40: c4 20 c0 00 st %g2, [ %g3 ]
next_node->previous = previous_node;
4000ba44: c6 20 a0 04 st %g3, [ %g2 + 4 ]
/* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) {
4000ba48: 80 8e a0 ff btst 0xff, %i2
4000ba4c: 22 80 00 04 be,a 4000ba5c <_Thread_queue_Extract_priority_helper+0x94>
4000ba50: c2 06 60 50 ld [ %i1 + 0x50 ], %g1
_ISR_Enable( level );
4000ba54: 7f ff d8 95 call 40001ca8 <sparc_enable_interrupts> 4000ba58: 91 e8 00 08 restore %g0, %o0, %o0
return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
4000ba5c: 80 a0 60 02 cmp %g1, 2
4000ba60: 02 80 00 06 be 4000ba78 <_Thread_queue_Extract_priority_helper+0xb0><== NEVER TAKEN
4000ba64: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
4000ba68: 7f ff d8 90 call 40001ca8 <sparc_enable_interrupts> 4000ba6c: b0 10 00 19 mov %i1, %i0 4000ba70: 10 80 00 08 b 4000ba90 <_Thread_queue_Extract_priority_helper+0xc8> 4000ba74: 33 04 00 ff sethi %hi(0x1003fc00), %i1
4000ba78: c2 26 60 50 st %g1, [ %i1 + 0x50 ] ! 1003fc50 <RAM_SIZE+0xfc3fc50><== NOT EXECUTED
} else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
4000ba7c: 7f ff d8 8b call 40001ca8 <sparc_enable_interrupts> <== NOT EXECUTED 4000ba80: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
4000ba84: 7f ff f5 8a call 400090ac <_Watchdog_Remove> <== NOT EXECUTED 4000ba88: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED 4000ba8c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED
4000ba90: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 4000ba94: 7f ff f0 10 call 40007ad4 <_Thread_Clear_state> 4000ba98: 81 e8 00 00 restore
4000867c <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) {
4000867c: 9d e3 bf 98 save %sp, -104, %sp
/* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue )
40008680: 80 a6 20 00 cmp %i0, 0
40008684: 02 80 00 19 be 400086e8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40008688: 01 00 00 00 nop
/* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
4000868c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 40008690: 80 a4 60 01 cmp %l1, 1
40008694: 12 80 00 15 bne 400086e8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40008698: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level );
4000869c: 7f ff e5 7f call 40001c98 <sparc_disable_interrupts> 400086a0: 01 00 00 00 nop 400086a4: a0 10 00 08 mov %o0, %l0 400086a8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
400086ac: 03 00 00 ef sethi %hi(0x3bc00), %g1 400086b0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 400086b4: 80 88 80 01 btst %g2, %g1
400086b8: 02 80 00 0a be 400086e0 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
400086bc: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true );
400086c0: 92 10 00 19 mov %i1, %o1 400086c4: 94 10 20 01 mov 1, %o2 400086c8: 40 00 0c c0 call 4000b9c8 <_Thread_queue_Extract_priority_helper> 400086cc: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
400086d0: 90 10 00 18 mov %i0, %o0 400086d4: 92 10 00 19 mov %i1, %o1 400086d8: 7f ff ff 4b call 40008404 <_Thread_queue_Enqueue_priority> 400086dc: 94 07 bf fc add %fp, -4, %o2
} _ISR_Enable( level );
400086e0: 7f ff e5 72 call 40001ca8 <sparc_enable_interrupts> 400086e4: 90 10 00 10 mov %l0, %o0 400086e8: 81 c7 e0 08 ret 400086ec: 81 e8 00 00 restore
400086f0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) {
400086f0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
400086f4: 90 10 00 18 mov %i0, %o0 400086f8: 7f ff fd ef call 40007eb4 <_Thread_Get> 400086fc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008700: c2 07 bf fc ld [ %fp + -4 ], %g1 40008704: 80 a0 60 00 cmp %g1, 0
40008708: 12 80 00 08 bne 40008728 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
4000870c: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread );
40008710: 40 00 0c e4 call 4000baa0 <_Thread_queue_Process_timeout> 40008714: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
40008718: 03 10 00 51 sethi %hi(0x40014400), %g1 4000871c: c4 00 60 18 ld [ %g1 + 0x18 ], %g2 ! 40014418 <_Thread_Dispatch_disable_level> 40008720: 84 00 bf ff add %g2, -1, %g2 40008724: c4 20 60 18 st %g2, [ %g1 + 0x18 ] 40008728: 81 c7 e0 08 ret 4000872c: 81 e8 00 00 restore
4001654c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) {
4001654c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016550: 35 10 00 f2 sethi %hi(0x4003c800), %i2 40016554: a4 07 bf e8 add %fp, -24, %l2 40016558: b2 07 bf f4 add %fp, -12, %i1 4001655c: ac 07 bf f8 add %fp, -8, %l6 40016560: a6 07 bf ec add %fp, -20, %l3
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40016564: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
40016568: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
4001656c: f2 27 bf fc st %i1, [ %fp + -4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40016570: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
40016574: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
40016578: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001657c: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
40016580: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016584: 37 10 00 f2 sethi %hi(0x4003c800), %i3
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016588: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
4001658c: b8 10 20 01 mov 1, %i4
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016590: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016594: ae 06 20 40 add %i0, 0x40, %l7
{ /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain;
40016598: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
4001659c: c2 06 a3 e4 ld [ %i2 + 0x3e4 ], %g1
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400165a0: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400165a4: 94 10 00 14 mov %l4, %o2
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot;
400165a8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400165ac: 90 10 00 15 mov %l5, %o0 400165b0: 40 00 11 93 call 4001abfc <_Watchdog_Adjust_to_chain> 400165b4: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400165b8: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400165bc: e0 06 e3 30 ld [ %i3 + 0x330 ], %l0
/* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) {
400165c0: 80 a4 00 0a cmp %l0, %o2
400165c4: 08 80 00 06 bleu 400165dc <_Timer_server_Body+0x90>
400165c8: 92 24 00 0a sub %l0, %o2, %o1
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400165cc: 90 10 00 11 mov %l1, %o0 400165d0: 40 00 11 8b call 4001abfc <_Watchdog_Adjust_to_chain> 400165d4: 94 10 00 14 mov %l4, %o2 400165d8: 30 80 00 06 b,a 400165f0 <_Timer_server_Body+0xa4>
} else if ( snapshot < last_snapshot ) { 400165dc: 1a 80 00 05 bcc 400165f0 <_Timer_server_Body+0xa4>
400165e0: 90 10 00 11 mov %l1, %o0
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400165e4: 92 10 20 01 mov 1, %o1 400165e8: 40 00 11 5d call 4001ab5c <_Watchdog_Adjust> 400165ec: 94 22 80 10 sub %o2, %l0, %o2
} watchdogs->last_snapshot = snapshot;
400165f0: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400165f4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 400165f8: 40 00 02 bc call 400170e8 <_Chain_Get> 400165fc: 01 00 00 00 nop
if ( timer == NULL ) {
40016600: 92 92 20 00 orcc %o0, 0, %o1
40016604: 02 80 00 0c be 40016634 <_Timer_server_Body+0xe8>
40016608: 01 00 00 00 nop
static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
4001660c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 40016610: 80 a0 60 01 cmp %g1, 1
40016614: 02 80 00 05 be 40016628 <_Timer_server_Body+0xdc>
40016618: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
4001661c: 80 a0 60 03 cmp %g1, 3
40016620: 12 bf ff f5 bne 400165f4 <_Timer_server_Body+0xa8> <== NEVER TAKEN
40016624: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40016628: 40 00 11 a9 call 4001accc <_Watchdog_Insert> 4001662c: 92 02 60 10 add %o1, 0x10, %o1 40016630: 30 bf ff f1 b,a 400165f4 <_Timer_server_Body+0xa8>
* of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level );
40016634: 7f ff e3 78 call 4000f414 <sparc_disable_interrupts> 40016638: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
4001663c: c2 07 bf f4 ld [ %fp + -12 ], %g1 40016640: 80 a0 40 16 cmp %g1, %l6
40016644: 12 80 00 0a bne 4001666c <_Timer_server_Body+0x120> <== NEVER TAKEN
40016648: 01 00 00 00 nop
ts->insert_chain = NULL;
4001664c: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40016650: 7f ff e3 75 call 4000f424 <sparc_enable_interrupts> 40016654: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) {
40016658: c2 07 bf e8 ld [ %fp + -24 ], %g1 4001665c: 80 a0 40 13 cmp %g1, %l3
40016660: 12 80 00 06 bne 40016678 <_Timer_server_Body+0x12c>
40016664: 01 00 00 00 nop 40016668: 30 80 00 1a b,a 400166d0 <_Timer_server_Body+0x184>
ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level );
4001666c: 7f ff e3 6e call 4000f424 <sparc_enable_interrupts> <== NOT EXECUTED 40016670: 01 00 00 00 nop <== NOT EXECUTED 40016674: 30 bf ff ca b,a 4001659c <_Timer_server_Body+0x50> <== NOT EXECUTED
/* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level );
40016678: 7f ff e3 67 call 4000f414 <sparc_disable_interrupts> 4001667c: 01 00 00 00 nop 40016680: 84 10 00 08 mov %o0, %g2
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
40016684: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
40016688: 80 a4 00 13 cmp %l0, %l3
4001668c: 02 80 00 0e be 400166c4 <_Timer_server_Body+0x178>
40016690: 80 a4 20 00 cmp %l0, 0
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
40016694: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
40016698: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) {
4001669c: 02 80 00 0a be 400166c4 <_Timer_server_Body+0x178> <== NEVER TAKEN
400166a0: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
400166a4: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
400166a8: 7f ff e3 5f call 4000f424 <sparc_enable_interrupts> 400166ac: 01 00 00 00 nop
/* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data );
400166b0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 400166b4: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 400166b8: 9f c0 40 00 call %g1 400166bc: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
400166c0: 30 bf ff ee b,a 40016678 <_Timer_server_Body+0x12c>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level );
400166c4: 7f ff e3 58 call 4000f424 <sparc_enable_interrupts> 400166c8: 90 10 00 02 mov %g2, %o0 400166cc: 30 bf ff b3 b,a 40016598 <_Timer_server_Body+0x4c>
* the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false;
400166d0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/* * Block until there is something to do. */ _Thread_Disable_dispatch();
400166d4: 7f ff ff 6e call 4001648c <_Thread_Disable_dispatch> 400166d8: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
400166dc: d0 06 00 00 ld [ %i0 ], %o0 400166e0: 40 00 0e 9b call 4001a14c <_Thread_Set_state> 400166e4: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400166e8: 7f ff ff 6f call 400164a4 <_Timer_server_Reset_interval_system_watchdog> 400166ec: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400166f0: 7f ff ff 82 call 400164f8 <_Timer_server_Reset_tod_system_watchdog> 400166f4: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400166f8: 40 00 0b fd call 400196ec <_Thread_Enable_dispatch> 400166fc: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016700: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
40016704: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016708: 40 00 11 cb call 4001ae34 <_Watchdog_Remove> 4001670c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016710: 40 00 11 c9 call 4001ae34 <_Watchdog_Remove> 40016714: 90 10 00 17 mov %l7, %o0 40016718: 30 bf ff a0 b,a 40016598 <_Timer_server_Body+0x4c>
4001671c <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) {
4001671c: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016720: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 40016724: 80 a0 60 00 cmp %g1, 0
40016728: 12 80 00 49 bne 4001684c <_Timer_server_Schedule_operation_method+0x130>
4001672c: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch();
40016730: 7f ff ff 57 call 4001648c <_Thread_Disable_dispatch> 40016734: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40016738: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 4001673c: 80 a0 60 01 cmp %g1, 1
40016740: 12 80 00 1f bne 400167bc <_Timer_server_Schedule_operation_method+0xa0>
40016744: 80 a0 60 03 cmp %g1, 3
/* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
40016748: 7f ff e3 33 call 4000f414 <sparc_disable_interrupts> 4001674c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40016750: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40016754: c4 00 63 e4 ld [ %g1 + 0x3e4 ], %g2 ! 4003cbe4 <_Watchdog_Ticks_since_boot>
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
40016758: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
4001675c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40016760: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40016764: 80 a0 40 03 cmp %g1, %g3
40016768: 02 80 00 08 be 40016788 <_Timer_server_Schedule_operation_method+0x6c>
4001676c: 88 20 80 04 sub %g2, %g4, %g4
/* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval;
40016770: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016774: 80 a3 40 04 cmp %o5, %g4
40016778: 08 80 00 03 bleu 40016784 <_Timer_server_Schedule_operation_method+0x68>
4001677c: 86 10 20 00 clr %g3
delta_interval -= delta;
40016780: 86 23 40 04 sub %o5, %g4, %g3
} else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval;
40016784: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
} ts->Interval_watchdogs.last_snapshot = snapshot;
40016788: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
4001678c: 7f ff e3 26 call 4000f424 <sparc_enable_interrupts> 40016790: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016794: 90 06 20 30 add %i0, 0x30, %o0 40016798: 40 00 11 4d call 4001accc <_Watchdog_Insert> 4001679c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400167a0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 400167a4: 80 a0 60 00 cmp %g1, 0
400167a8: 12 80 00 27 bne 40016844 <_Timer_server_Schedule_operation_method+0x128>
400167ac: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
400167b0: 7f ff ff 3d call 400164a4 <_Timer_server_Reset_interval_system_watchdog> 400167b4: 90 10 00 18 mov %i0, %o0 400167b8: 30 80 00 23 b,a 40016844 <_Timer_server_Schedule_operation_method+0x128>
} } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 400167bc: 12 80 00 22 bne 40016844 <_Timer_server_Schedule_operation_method+0x128>
400167c0: 01 00 00 00 nop
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
400167c4: 7f ff e3 14 call 4000f414 <sparc_disable_interrupts> 400167c8: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
400167cc: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot;
400167d0: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400167d4: 03 10 00 f2 sethi %hi(0x4003c800), %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
400167d8: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
400167dc: 80 a0 80 03 cmp %g2, %g3
400167e0: 02 80 00 0d be 40016814 <_Timer_server_Schedule_operation_method+0xf8>
400167e4: c2 00 63 30 ld [ %g1 + 0x330 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval;
400167e8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
400167ec: 80 a0 40 0d cmp %g1, %o5
} } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot;
400167f0: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 400167f4: 08 80 00 07 bleu 40016810 <_Timer_server_Schedule_operation_method+0xf4>
400167f8: 86 20 c0 01 sub %g3, %g1, %g3
/* * We advanced in time. */ delta = snapshot - last_snapshot;
400167fc: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
40016800: 80 a1 00 0d cmp %g4, %o5
40016804: 08 80 00 03 bleu 40016810 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
40016808: 86 10 20 00 clr %g3
delta_interval -= delta;
4001680c: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval;
40016810: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
} ts->TOD_watchdogs.last_snapshot = snapshot;
40016814: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
40016818: 7f ff e3 03 call 4000f424 <sparc_enable_interrupts> 4001681c: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40016820: 90 06 20 68 add %i0, 0x68, %o0 40016824: 40 00 11 2a call 4001accc <_Watchdog_Insert> 40016828: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
4001682c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 40016830: 80 a0 60 00 cmp %g1, 0
40016834: 12 80 00 04 bne 40016844 <_Timer_server_Schedule_operation_method+0x128>
40016838: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
4001683c: 7f ff ff 2f call 400164f8 <_Timer_server_Reset_tod_system_watchdog> 40016840: 90 10 00 18 mov %i0, %o0
} } _Thread_Enable_dispatch();
40016844: 40 00 0b aa call 400196ec <_Thread_Enable_dispatch> 40016848: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node );
4001684c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 40016850: 40 00 02 10 call 40017090 <_Chain_Append> 40016854: 81 e8 00 00 restore
4000ac7c <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec )
4000ac7c: c6 02 00 00 ld [ %o0 ], %g3 4000ac80: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) {
4000ac84: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000ac88: 80 a0 c0 02 cmp %g3, %g2
4000ac8c: 14 80 00 0b bg 4000acb8 <_Timespec_Greater_than+0x3c>
4000ac90: 90 10 20 01 mov 1, %o0
return true; if ( lhs->tv_sec < rhs->tv_sec )
4000ac94: 80 a0 c0 02 cmp %g3, %g2
4000ac98: 06 80 00 08 bl 4000acb8 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
4000ac9c: 90 10 20 00 clr %o0
#include <rtems/system.h> #include <rtems/score/timespec.h> #include <rtems/score/tod.h> bool _Timespec_Greater_than(
4000aca0: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000aca4: c2 02 60 04 ld [ %o1 + 4 ], %g1 4000aca8: 80 a0 80 01 cmp %g2, %g1
4000acac: 14 80 00 03 bg 4000acb8 <_Timespec_Greater_than+0x3c>
4000acb0: 90 10 20 01 mov 1, %o0 4000acb4: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; }
4000acb8: 81 c3 e0 08 retl
40008dcc <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40008dcc: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40008dd0: 23 10 00 51 sethi %hi(0x40014400), %l1
the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008dd4: b2 0e 60 ff and %i1, 0xff, %i1
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40008dd8: a2 14 62 38 or %l1, 0x238, %l1 40008ddc: 10 80 00 09 b 40008e00 <_User_extensions_Fatal+0x34> 40008de0: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL )
40008de4: 80 a0 60 00 cmp %g1, 0
40008de8: 02 80 00 05 be 40008dfc <_User_extensions_Fatal+0x30>
40008dec: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008df0: 92 10 00 19 mov %i1, %o1 40008df4: 9f c0 40 00 call %g1 40008df8: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
40008dfc: e0 04 20 04 ld [ %l0 + 4 ], %l0
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40008e00: 80 a4 00 11 cmp %l0, %l1
40008e04: 32 bf ff f8 bne,a 40008de4 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40008e08: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } }
40008e0c: 81 c7 e0 08 ret <== NOT EXECUTED 40008e10: 81 e8 00 00 restore <== NOT EXECUTED
40008c90 <_User_extensions_Handler_initialization>: #include <rtems/score/userext.h> #include <rtems/score/wkspace.h> #include <string.h> void _User_extensions_Handler_initialization(void) {
40008c90: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
40008c94: 03 10 00 4e sethi %hi(0x40013800), %g1 40008c98: 82 10 63 38 or %g1, 0x338, %g1 ! 40013b38 <Configuration>
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40008c9c: 05 10 00 51 sethi %hi(0x40014400), %g2
initial_extensions = Configuration.User_extension_table;
40008ca0: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
40008ca4: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 40008ca8: 82 10 a2 38 or %g2, 0x238, %g1 40008cac: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40008cb0: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
40008cb4: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40008cb8: c6 20 a2 38 st %g3, [ %g2 + 0x238 ] 40008cbc: 05 10 00 51 sethi %hi(0x40014400), %g2 40008cc0: 82 10 a0 1c or %g2, 0x1c, %g1 ! 4001441c <_User_extensions_Switches_list> 40008cc4: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40008cc8: c0 20 60 04 clr [ %g1 + 4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40008ccc: c6 20 a0 1c st %g3, [ %g2 + 0x1c ]
initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) {
40008cd0: 80 a4 e0 00 cmp %l3, 0
40008cd4: 02 80 00 1b be 40008d40 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40008cd8: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control )
40008cdc: 83 2c a0 02 sll %l2, 2, %g1 40008ce0: a1 2c a0 04 sll %l2, 4, %l0 40008ce4: a0 24 00 01 sub %l0, %g1, %l0 40008ce8: a0 04 00 12 add %l0, %l2, %l0 40008cec: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
40008cf0: 40 00 01 6a call 40009298 <_Workspace_Allocate_or_fatal_error> 40008cf4: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
40008cf8: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
40008cfc: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
40008d00: 92 10 20 00 clr %o1 40008d04: 40 00 14 37 call 4000dde0 <memset> 40008d08: a0 10 20 00 clr %l0
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008d0c: 10 80 00 0b b 40008d38 <_User_extensions_Handler_initialization+0xa8> 40008d10: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table;
40008d14: 90 04 60 14 add %l1, 0x14, %o0 40008d18: 92 04 c0 09 add %l3, %o1, %o1 40008d1c: 40 00 13 f2 call 4000dce4 <memcpy> 40008d20: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40008d24: 90 10 00 11 mov %l1, %o0 40008d28: 40 00 0b c6 call 4000bc40 <_User_extensions_Add_set> 40008d2c: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++;
40008d30: a2 04 60 34 add %l1, 0x34, %l1
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008d34: 80 a4 00 12 cmp %l0, %l2
40008d38: 0a bf ff f7 bcs 40008d14 <_User_extensions_Handler_initialization+0x84>
40008d3c: 93 2c 20 05 sll %l0, 5, %o1 40008d40: 81 c7 e0 08 ret 40008d44: 81 e8 00 00 restore
40008d8c <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) {
40008d8c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40008d90: 23 10 00 51 sethi %hi(0x40014400), %l1 40008d94: a2 14 62 38 or %l1, 0x238, %l1 ! 40014638 <_User_extensions_List> 40008d98: 10 80 00 08 b 40008db8 <_User_extensions_Thread_exitted+0x2c> 40008d9c: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL )
40008da0: 80 a0 60 00 cmp %g1, 0
40008da4: 22 80 00 05 be,a 40008db8 <_User_extensions_Thread_exitted+0x2c>
40008da8: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
40008dac: 9f c0 40 00 call %g1 40008db0: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
40008db4: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40008db8: 80 a4 00 11 cmp %l0, %l1
40008dbc: 32 bf ff f9 bne,a 40008da0 <_User_extensions_Thread_exitted+0x14>
40008dc0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } }
40008dc4: 81 c7 e0 08 ret 40008dc8: 81 e8 00 00 restore
4000b140 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) {
4000b140: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; _ISR_Disable( level );
4000b144: 7f ff de e0 call 40002cc4 <sparc_disable_interrupts> 4000b148: a0 10 00 18 mov %i0, %l0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
4000b14c: c2 06 00 00 ld [ %i0 ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000b150: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) {
4000b154: 80 a0 40 11 cmp %g1, %l1
4000b158: 02 80 00 1f be 4000b1d4 <_Watchdog_Adjust+0x94>
4000b15c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) { 4000b160: 02 80 00 1a be 4000b1c8 <_Watchdog_Adjust+0x88>
4000b164: a4 10 20 01 mov 1, %l2 4000b168: 80 a6 60 01 cmp %i1, 1
4000b16c: 12 80 00 1a bne 4000b1d4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b170: 01 00 00 00 nop
case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units;
4000b174: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 4000b178: 10 80 00 07 b 4000b194 <_Watchdog_Adjust+0x54> 4000b17c: b4 00 80 1a add %g2, %i2, %i2
break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) {
4000b180: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 4000b184: 80 a6 80 19 cmp %i2, %i1
4000b188: 3a 80 00 05 bcc,a 4000b19c <_Watchdog_Adjust+0x5c>
4000b18c: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000b190: b4 26 40 1a sub %i1, %i2, %i2
break;
4000b194: 10 80 00 10 b 4000b1d4 <_Watchdog_Adjust+0x94> 4000b198: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level );
4000b19c: 7f ff de ce call 40002cd4 <sparc_enable_interrupts> 4000b1a0: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b1a4: 40 00 00 92 call 4000b3ec <_Watchdog_Tickle> 4000b1a8: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b1ac: 7f ff de c6 call 40002cc4 <sparc_disable_interrupts> 4000b1b0: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000b1b4: c2 04 00 00 ld [ %l0 ], %g1 4000b1b8: 80 a0 40 11 cmp %g1, %l1
4000b1bc: 02 80 00 06 be 4000b1d4 <_Watchdog_Adjust+0x94>
4000b1c0: 01 00 00 00 nop
while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval;
4000b1c4: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
4000b1c8: 80 a6 a0 00 cmp %i2, 0
4000b1cc: 32 bf ff ed bne,a 4000b180 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000b1d0: c2 04 00 00 ld [ %l0 ], %g1
} break; } } _ISR_Enable( level );
4000b1d4: 7f ff de c0 call 40002cd4 <sparc_enable_interrupts> 4000b1d8: 91 e8 00 08 restore %g0, %o0, %o0
400090ac <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) {
400090ac: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level );
400090b0: 7f ff e2 fa call 40001c98 <sparc_disable_interrupts> 400090b4: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
400090b8: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
400090bc: 80 a6 20 01 cmp %i0, 1
400090c0: 22 80 00 1d be,a 40009134 <_Watchdog_Remove+0x88>
400090c4: c0 24 20 08 clr [ %l0 + 8 ]
400090c8: 0a 80 00 1c bcs 40009138 <_Watchdog_Remove+0x8c>
400090cc: 03 10 00 51 sethi %hi(0x40014400), %g1 400090d0: 80 a6 20 03 cmp %i0, 3
400090d4: 18 80 00 19 bgu 40009138 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
400090d8: 01 00 00 00 nop 400090dc: c2 04 00 00 ld [ %l0 ], %g1
break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE;
400090e0: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) )
400090e4: c4 00 40 00 ld [ %g1 ], %g2 400090e8: 80 a0 a0 00 cmp %g2, 0
400090ec: 02 80 00 07 be 40009108 <_Watchdog_Remove+0x5c>
400090f0: 05 10 00 51 sethi %hi(0x40014400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
400090f4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 400090f8: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 400090fc: 84 00 c0 02 add %g3, %g2, %g2 40009100: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009104: 05 10 00 51 sethi %hi(0x40014400), %g2 40009108: c4 00 a1 50 ld [ %g2 + 0x150 ], %g2 ! 40014550 <_Watchdog_Sync_count> 4000910c: 80 a0 a0 00 cmp %g2, 0
40009110: 22 80 00 07 be,a 4000912c <_Watchdog_Remove+0x80>
40009114: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009118: 05 10 00 51 sethi %hi(0x40014400), %g2 4000911c: c6 00 a2 84 ld [ %g2 + 0x284 ], %g3 ! 40014684 <_Per_CPU_Information+0x8> 40009120: 05 10 00 51 sethi %hi(0x40014400), %g2 40009124: c6 20 a0 c0 st %g3, [ %g2 + 0xc0 ] ! 400144c0 <_Watchdog_Sync_level>
{ Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous;
40009128: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
4000912c: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009130: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009134: 03 10 00 51 sethi %hi(0x40014400), %g1 40009138: c2 00 61 54 ld [ %g1 + 0x154 ], %g1 ! 40014554 <_Watchdog_Ticks_since_boot> 4000913c: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
40009140: 7f ff e2 da call 40001ca8 <sparc_enable_interrupts> 40009144: 01 00 00 00 nop
return( previous_state ); }
40009148: 81 c7 e0 08 ret 4000914c: 81 e8 00 00 restore
4000a954 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) {
4000a954: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Chain_Node *node; _ISR_Disable( level );
4000a958: 7f ff df b2 call 40002820 <sparc_disable_interrupts> 4000a95c: a0 10 00 18 mov %i0, %l0 4000a960: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000a964: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a968: 94 10 00 19 mov %i1, %o2 4000a96c: 90 12 23 28 or %o0, 0x328, %o0 4000a970: 7f ff e6 47 call 4000428c <printk> 4000a974: 92 10 00 10 mov %l0, %o1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
4000a978: e2 06 40 00 ld [ %i1 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000a97c: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
4000a980: 80 a4 40 19 cmp %l1, %i1
4000a984: 02 80 00 0e be 4000a9bc <_Watchdog_Report_chain+0x68>
4000a988: 11 10 00 71 sethi %hi(0x4001c400), %o0
node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch );
4000a98c: 92 10 00 11 mov %l1, %o1 4000a990: 40 00 00 10 call 4000a9d0 <_Watchdog_Report> 4000a994: 90 10 20 00 clr %o0
_ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next )
4000a998: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ;
4000a99c: 80 a4 40 19 cmp %l1, %i1
4000a9a0: 12 bf ff fc bne 4000a990 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000a9a4: 92 10 00 11 mov %l1, %o1
{ Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name );
4000a9a8: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a9ac: 92 10 00 10 mov %l0, %o1 4000a9b0: 7f ff e6 37 call 4000428c <printk> 4000a9b4: 90 12 23 40 or %o0, 0x340, %o0 4000a9b8: 30 80 00 03 b,a 4000a9c4 <_Watchdog_Report_chain+0x70>
} else { printk( "Chain is empty\n" );
4000a9bc: 7f ff e6 34 call 4000428c <printk> 4000a9c0: 90 12 23 50 or %o0, 0x350, %o0
} _ISR_Enable( level );
4000a9c4: 7f ff df 9b call 40002830 <sparc_enable_interrupts> 4000a9c8: 81 e8 00 00 restore
40008c9c <rtems_iterate_over_all_threads>: #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) {
40008c9c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine )
40008ca0: 80 a6 20 00 cmp %i0, 0
40008ca4: 02 80 00 1d be 40008d18 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40008ca8: 21 10 00 99 sethi %hi(0x40026400), %l0 40008cac: a0 14 23 90 or %l0, 0x390, %l0 ! 40026790 <_Objects_Information_table+0x4>
#endif #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40008cb0: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { if ( !_Objects_Information_table[ api_index ] )
40008cb4: c2 04 00 00 ld [ %l0 ], %g1 40008cb8: 80 a0 60 00 cmp %g1, 0
40008cbc: 22 80 00 14 be,a 40008d0c <rtems_iterate_over_all_threads+0x70>
40008cc0: a0 04 20 04 add %l0, 4, %l0
continue; information = _Objects_Information_table[ api_index ][ 1 ];
40008cc4: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40008cc8: 80 a4 a0 00 cmp %l2, 0
40008ccc: 12 80 00 0b bne 40008cf8 <rtems_iterate_over_all_threads+0x5c>
40008cd0: a2 10 20 01 mov 1, %l1
continue; for ( i=1 ; i <= information->maximum ; i++ ) {
40008cd4: 10 80 00 0e b 40008d0c <rtems_iterate_over_all_threads+0x70> 40008cd8: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40008cdc: 83 2c 60 02 sll %l1, 2, %g1 40008ce0: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40008ce4: 80 a2 20 00 cmp %o0, 0
40008ce8: 02 80 00 04 be 40008cf8 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40008cec: a2 04 60 01 inc %l1
continue; (*routine)(the_thread);
40008cf0: 9f c6 00 00 call %i0 40008cf4: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) {
40008cf8: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 40008cfc: 80 a4 40 01 cmp %l1, %g1
40008d00: 28 bf ff f7 bleu,a 40008cdc <rtems_iterate_over_all_threads+0x40>
40008d04: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 40008d08: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40008d0c: 80 a4 00 13 cmp %l0, %l3
40008d10: 32 bf ff ea bne,a 40008cb8 <rtems_iterate_over_all_threads+0x1c>
40008d14: c2 04 00 00 ld [ %l0 ], %g1 40008d18: 81 c7 e0 08 ret 40008d1c: 81 e8 00 00 restore
40013eec <rtems_partition_create>: uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) {
40013eec: 9d e3 bf a0 save %sp, -96, %sp 40013ef0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) )
40013ef4: 80 a4 20 00 cmp %l0, 0
40013ef8: 02 80 00 1f be 40013f74 <rtems_partition_create+0x88>
40013efc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME; if ( !starting_address )
40013f00: 80 a6 60 00 cmp %i1, 0
40013f04: 02 80 00 1c be 40013f74 <rtems_partition_create+0x88>
40013f08: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !id )
40013f0c: 80 a7 60 00 cmp %i5, 0
40013f10: 02 80 00 19 be 40013f74 <rtems_partition_create+0x88> <== NEVER TAKEN
40013f14: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 40013f18: 02 80 00 32 be 40013fe0 <rtems_partition_create+0xf4>
40013f1c: 80 a6 a0 00 cmp %i2, 0
40013f20: 02 80 00 30 be 40013fe0 <rtems_partition_create+0xf4>
40013f24: 80 a6 80 1b cmp %i2, %i3
40013f28: 0a 80 00 13 bcs 40013f74 <rtems_partition_create+0x88>
40013f2c: b0 10 20 08 mov 8, %i0 40013f30: 80 8e e0 07 btst 7, %i3
40013f34: 12 80 00 10 bne 40013f74 <rtems_partition_create+0x88>
40013f38: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 40013f3c: 12 80 00 0e bne 40013f74 <rtems_partition_create+0x88>
40013f40: b0 10 20 09 mov 9, %i0 40013f44: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40013f48: c4 00 62 a8 ld [ %g1 + 0x2a8 ], %g2 ! 4003caa8 <_Thread_Dispatch_disable_level> 40013f4c: 84 00 a0 01 inc %g2 40013f50: c4 20 62 a8 st %g2, [ %g1 + 0x2a8 ]
* This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013f54: 25 10 00 f2 sethi %hi(0x4003c800), %l2 40013f58: 40 00 12 4a call 40018880 <_Objects_Allocate> 40013f5c: 90 14 a0 b4 or %l2, 0xb4, %o0 ! 4003c8b4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) {
40013f60: a2 92 20 00 orcc %o0, 0, %l1
40013f64: 12 80 00 06 bne 40013f7c <rtems_partition_create+0x90>
40013f68: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40013f6c: 40 00 15 e0 call 400196ec <_Thread_Enable_dispatch> 40013f70: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013f74: 81 c7 e0 08 ret 40013f78: 81 e8 00 00 restore
_Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address;
40013f7c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013f80: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013f84: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40013f88: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40013f8c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size );
40013f90: 40 00 5e f1 call 4002bb54 <.udiv> 40013f94: 90 10 00 1a mov %i2, %o0
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
40013f98: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013f9c: 94 10 00 08 mov %o0, %o2
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
40013fa0: 96 10 00 1b mov %i3, %o3 40013fa4: a6 04 60 24 add %l1, 0x24, %l3 40013fa8: 40 00 0c 5f call 40017124 <_Chain_Initialize> 40013fac: 90 10 00 13 mov %l3, %o0
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40013fb0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
40013fb4: a4 14 a0 b4 or %l2, 0xb4, %l2
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40013fb8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40013fbc: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40013fc0: 85 28 a0 02 sll %g2, 2, %g2 40013fc4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
40013fc8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id;
40013fcc: c2 27 40 00 st %g1, [ %i5 ]
name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch();
40013fd0: 40 00 15 c7 call 400196ec <_Thread_Enable_dispatch> 40013fd4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013fd8: 81 c7 e0 08 ret 40013fdc: 81 e8 00 00 restore
if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE;
40013fe0: b0 10 20 08 mov 8, %i0
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
40013fe4: 81 c7 e0 08 ret 40013fe8: 81 e8 00 00 restore
40006f24 <rtems_rate_monotonic_period>: rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) {
40006f24: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location );
40006f28: 11 10 00 77 sethi %hi(0x4001dc00), %o0 40006f2c: 92 10 00 18 mov %i0, %o1 40006f30: 90 12 23 fc or %o0, 0x3fc, %o0 40006f34: 40 00 08 ee call 400092ec <_Objects_Get> 40006f38: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
40006f3c: c2 07 bf fc ld [ %fp + -4 ], %g1 40006f40: 80 a0 60 00 cmp %g1, 0
40006f44: 12 80 00 66 bne 400070dc <rtems_rate_monotonic_period+0x1b8>
40006f48: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
40006f4c: 25 10 00 78 sethi %hi(0x4001e000), %l2
case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) {
40006f50: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 40006f54: a4 14 a3 cc or %l2, 0x3cc, %l2 40006f58: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 40006f5c: 80 a0 80 01 cmp %g2, %g1
40006f60: 02 80 00 06 be 40006f78 <rtems_rate_monotonic_period+0x54>
40006f64: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40006f68: 40 00 0b 2d call 40009c1c <_Thread_Enable_dispatch> 40006f6c: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40006f70: 81 c7 e0 08 ret 40006f74: 81 e8 00 00 restore
} if ( length == RTEMS_PERIOD_STATUS ) { 40006f78: 12 80 00 0e bne 40006fb0 <rtems_rate_monotonic_period+0x8c>
40006f7c: 01 00 00 00 nop
switch ( the_period->state ) {
40006f80: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40006f84: 80 a0 60 04 cmp %g1, 4
40006f88: 18 80 00 06 bgu 40006fa0 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40006f8c: b0 10 20 00 clr %i0 40006f90: 83 28 60 02 sll %g1, 2, %g1 40006f94: 05 10 00 70 sethi %hi(0x4001c000), %g2 40006f98: 84 10 a3 a4 or %g2, 0x3a4, %g2 ! 4001c3a4 <CSWTCH.2> 40006f9c: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch();
40006fa0: 40 00 0b 1f call 40009c1c <_Thread_Enable_dispatch> 40006fa4: 01 00 00 00 nop
return( return_value );
40006fa8: 81 c7 e0 08 ret 40006fac: 81 e8 00 00 restore
} _ISR_Disable( level );
40006fb0: 7f ff ee ff call 40002bac <sparc_disable_interrupts> 40006fb4: 01 00 00 00 nop 40006fb8: a6 10 00 08 mov %o0, %l3
switch ( the_period->state ) {
40006fbc: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 40006fc0: 80 a4 60 02 cmp %l1, 2
40006fc4: 02 80 00 19 be 40007028 <rtems_rate_monotonic_period+0x104>
40006fc8: 80 a4 60 04 cmp %l1, 4
40006fcc: 02 80 00 33 be 40007098 <rtems_rate_monotonic_period+0x174>
40006fd0: 80 a4 60 00 cmp %l1, 0
40006fd4: 12 80 00 44 bne 400070e4 <rtems_rate_monotonic_period+0x1c0><== NEVER TAKEN
40006fd8: 01 00 00 00 nop
case RATE_MONOTONIC_INACTIVE: { _ISR_Enable( level );
40006fdc: 7f ff ee f8 call 40002bbc <sparc_enable_interrupts> 40006fe0: 01 00 00 00 nop
/* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period );
40006fe4: 7f ff ff 76 call 40006dbc <_Rate_monotonic_Initiate_statistics> 40006fe8: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40006fec: 82 10 20 02 mov 2, %g1 40006ff0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
40006ff4: 03 10 00 1c sethi %hi(0x40007000), %g1 40006ff8: 82 10 63 b0 or %g1, 0x3b0, %g1 ! 400073b0 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40006ffc: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40007000: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40007004: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40007008: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length;
4000700c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40007010: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007014: 11 10 00 78 sethi %hi(0x4001e000), %o0 40007018: 92 04 20 10 add %l0, 0x10, %o1 4000701c: 40 00 0f f9 call 4000b000 <_Watchdog_Insert> 40007020: 90 12 22 2c or %o0, 0x22c, %o0 40007024: 30 80 00 19 b,a 40007088 <rtems_rate_monotonic_period+0x164>
case RATE_MONOTONIC_ACTIVE: /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period );
40007028: 7f ff ff 81 call 40006e2c <_Rate_monotonic_Update_statistics> 4000702c: 90 10 00 10 mov %l0, %o0
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007030: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007034: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007038: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length; _ISR_Enable( level );
4000703c: 7f ff ee e0 call 40002bbc <sparc_enable_interrupts> 40007040: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007044: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007048: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
4000704c: 13 00 00 10 sethi %hi(0x4000), %o1 40007050: 40 00 0d 39 call 4000a534 <_Thread_Set_state> 40007054: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level );
40007058: 7f ff ee d5 call 40002bac <sparc_disable_interrupts> 4000705c: 01 00 00 00 nop
local_state = the_period->state;
40007060: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40007064: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007068: 7f ff ee d5 call 40002bbc <sparc_enable_interrupts> 4000706c: 01 00 00 00 nop
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007070: 80 a4 e0 03 cmp %l3, 3
40007074: 12 80 00 05 bne 40007088 <rtems_rate_monotonic_period+0x164>
40007078: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
4000707c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007080: 40 00 09 fc call 40009870 <_Thread_Clear_state> 40007084: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007088: 40 00 0a e5 call 40009c1c <_Thread_Enable_dispatch> 4000708c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007090: 81 c7 e0 08 ret 40007094: 81 e8 00 00 restore
case RATE_MONOTONIC_EXPIRED: /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period );
40007098: 7f ff ff 65 call 40006e2c <_Rate_monotonic_Update_statistics> 4000709c: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
400070a0: 7f ff ee c7 call 40002bbc <sparc_enable_interrupts> 400070a4: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400070a8: 82 10 20 02 mov 2, %g1 400070ac: 92 04 20 10 add %l0, 0x10, %o1 400070b0: 11 10 00 78 sethi %hi(0x4001e000), %o0 400070b4: 90 12 22 2c or %o0, 0x22c, %o0 ! 4001e22c <_Watchdog_Ticks_chain> 400070b8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
400070bc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
400070c0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400070c4: 40 00 0f cf call 4000b000 <_Watchdog_Insert> 400070c8: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
400070cc: 40 00 0a d4 call 40009c1c <_Thread_Enable_dispatch> 400070d0: 01 00 00 00 nop
return RTEMS_TIMEOUT;
400070d4: 81 c7 e0 08 ret 400070d8: 81 e8 00 00 restore
#endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID;
400070dc: 81 c7 e0 08 ret 400070e0: 91 e8 20 04 restore %g0, 4, %o0
}
400070e4: 81 c7 e0 08 ret <== NOT EXECUTED 400070e8: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
400070ec <rtems_rate_monotonic_report_statistics_with_plugin>: */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) {
400070ec: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print )
400070f0: 80 a6 60 00 cmp %i1, 0
400070f4: 02 80 00 79 be 400072d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
400070f8: 90 10 00 18 mov %i0, %o0
return; (*print)( context, "Period information by period\n" );
400070fc: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007100: 9f c6 40 00 call %i1 40007104: 92 12 63 b8 or %o1, 0x3b8, %o1 ! 4001c3b8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" );
40007108: 90 10 00 18 mov %i0, %o0 4000710c: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007110: 9f c6 40 00 call %i1 40007114: 92 12 63 d8 or %o1, 0x3d8, %o1 ! 4001c3d8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007118: 90 10 00 18 mov %i0, %o0 4000711c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007120: 9f c6 40 00 call %i1 40007124: 92 12 60 00 mov %o1, %o1 ! 4001c400 <CSWTCH.2+0x5c>
Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED "
40007128: 90 10 00 18 mov %i0, %o0 4000712c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007130: 9f c6 40 00 call %i1 40007134: 92 12 60 28 or %o1, 0x28, %o1 ! 4001c428 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " "
40007138: 90 10 00 18 mov %i0, %o0 4000713c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40007140: 9f c6 40 00 call %i1 40007144: 92 12 60 78 or %o1, 0x78, %o1 ! 4001c478 <CSWTCH.2+0xd4>
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007148: 3b 10 00 77 sethi %hi(0x4001dc00), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context,
4000714c: 2b 10 00 71 sethi %hi(0x4001c400), %l5
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007150: 82 17 63 fc or %i5, 0x3fc, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context,
40007154: 27 10 00 71 sethi %hi(0x4001c400), %l3
struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context,
40007158: 35 10 00 71 sethi %hi(0x4001c400), %i2
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
4000715c: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007160: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
40007164: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
40007168: a4 07 bf f8 add %fp, -8, %l2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
4000716c: aa 15 60 c8 or %l5, 0xc8, %l5
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time;
40007170: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007174: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007178: a6 14 e0 e0 or %l3, 0xe0, %l3
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time;
4000717c: b8 07 bf d0 add %fp, -48, %i4
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007180: 10 80 00 52 b 400072c8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc> 40007184: b4 16 a1 00 or %i2, 0x100, %i2
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007188: 40 00 17 a7 call 4000d024 <rtems_rate_monotonic_get_statistics> 4000718c: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
40007190: 80 a2 20 00 cmp %o0, 0
40007194: 32 80 00 4c bne,a 400072c4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007198: a0 04 20 01 inc %l0
continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
4000719c: 92 10 00 16 mov %l6, %o1 400071a0: 40 00 17 ce call 4000d0d8 <rtems_rate_monotonic_get_status> 400071a4: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
400071a8: d0 07 bf d8 ld [ %fp + -40 ], %o0 400071ac: 92 10 20 05 mov 5, %o1 400071b0: 40 00 00 ae call 40007468 <rtems_object_get_name> 400071b4: 94 10 00 12 mov %l2, %o2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
400071b8: d8 1f bf a0 ldd [ %fp + -96 ], %o4 400071bc: 92 10 00 15 mov %l5, %o1 400071c0: 90 10 00 18 mov %i0, %o0 400071c4: 94 10 00 10 mov %l0, %o2 400071c8: 9f c6 40 00 call %i1 400071cc: 96 10 00 12 mov %l2, %o3
); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) {
400071d0: d2 07 bf a0 ld [ %fp + -96 ], %o1 400071d4: 80 a2 60 00 cmp %o1, 0
400071d8: 12 80 00 08 bne 400071f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
400071dc: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
400071e0: 90 10 00 18 mov %i0, %o0 400071e4: 13 10 00 6d sethi %hi(0x4001b400), %o1 400071e8: 9f c6 40 00 call %i1 400071ec: 92 12 62 58 or %o1, 0x258, %o1 ! 4001b658 <_rodata_start+0x158>
continue;
400071f0: 10 80 00 35 b 400072c4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8> 400071f4: a0 04 20 01 inc %l0
struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400071f8: 40 00 0e 5f call 4000ab74 <_Timespec_Divide_by_integer> 400071fc: 90 10 00 14 mov %l4, %o0
(*print)( context,
40007200: d0 07 bf ac ld [ %fp + -84 ], %o0 40007204: 40 00 44 1a call 4001826c <.div> 40007208: 92 10 23 e8 mov 0x3e8, %o1 4000720c: 96 10 00 08 mov %o0, %o3 40007210: d0 07 bf b4 ld [ %fp + -76 ], %o0 40007214: d6 27 bf 9c st %o3, [ %fp + -100 ] 40007218: 40 00 44 15 call 4001826c <.div> 4000721c: 92 10 23 e8 mov 0x3e8, %o1 40007220: c2 07 bf f0 ld [ %fp + -16 ], %g1 40007224: b6 10 00 08 mov %o0, %i3 40007228: d0 07 bf f4 ld [ %fp + -12 ], %o0 4000722c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007230: 40 00 44 0f call 4001826c <.div> 40007234: 92 10 23 e8 mov 0x3e8, %o1 40007238: d8 07 bf b0 ld [ %fp + -80 ], %o4 4000723c: d6 07 bf 9c ld [ %fp + -100 ], %o3 40007240: d4 07 bf a8 ld [ %fp + -88 ], %o2 40007244: 9a 10 00 1b mov %i3, %o5 40007248: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 4000724c: 92 10 00 13 mov %l3, %o1 40007250: 9f c6 40 00 call %i1 40007254: 90 10 00 18 mov %i0, %o0
struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007258: d2 07 bf a0 ld [ %fp + -96 ], %o1 4000725c: 94 10 00 11 mov %l1, %o2 40007260: 40 00 0e 45 call 4000ab74 <_Timespec_Divide_by_integer> 40007264: 90 10 00 1c mov %i4, %o0
(*print)( context,
40007268: d0 07 bf c4 ld [ %fp + -60 ], %o0 4000726c: 40 00 44 00 call 4001826c <.div> 40007270: 92 10 23 e8 mov 0x3e8, %o1 40007274: 96 10 00 08 mov %o0, %o3 40007278: d0 07 bf cc ld [ %fp + -52 ], %o0 4000727c: d6 27 bf 9c st %o3, [ %fp + -100 ] 40007280: 40 00 43 fb call 4001826c <.div> 40007284: 92 10 23 e8 mov 0x3e8, %o1 40007288: c2 07 bf f0 ld [ %fp + -16 ], %g1 4000728c: b6 10 00 08 mov %o0, %i3 40007290: d0 07 bf f4 ld [ %fp + -12 ], %o0 40007294: 92 10 23 e8 mov 0x3e8, %o1 40007298: 40 00 43 f5 call 4001826c <.div> 4000729c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 400072a0: d4 07 bf c0 ld [ %fp + -64 ], %o2 400072a4: d6 07 bf 9c ld [ %fp + -100 ], %o3 400072a8: d8 07 bf c8 ld [ %fp + -56 ], %o4 400072ac: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 400072b0: 92 10 00 1a mov %i2, %o1 400072b4: 90 10 00 18 mov %i0, %o0 400072b8: 9f c6 40 00 call %i1 400072bc: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) {
400072c0: a0 04 20 01 inc %l0
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ;
400072c4: 82 17 63 fc or %i5, 0x3fc, %g1
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
400072c8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 400072cc: 80 a4 00 01 cmp %l0, %g1
400072d0: 08 bf ff ae bleu 40007188 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
400072d4: 90 10 00 10 mov %l0, %o0 400072d8: 81 c7 e0 08 ret 400072dc: 81 e8 00 00 restore
4001549c <rtems_signal_send>: rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) {
4001549c: 9d e3 bf 98 save %sp, -104, %sp 400154a0: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set )
400154a4: 80 a6 60 00 cmp %i1, 0
400154a8: 02 80 00 2e be 40015560 <rtems_signal_send+0xc4>
400154ac: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
400154b0: 40 00 10 9c call 40019720 <_Thread_Get> 400154b4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400154b8: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
400154bc: a2 10 00 08 mov %o0, %l1
switch ( location ) {
400154c0: 80 a0 60 00 cmp %g1, 0
400154c4: 12 80 00 27 bne 40015560 <rtems_signal_send+0xc4>
400154c8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400154cc: e0 02 21 5c ld [ %o0 + 0x15c ], %l0
asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400154d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 400154d4: 80 a0 60 00 cmp %g1, 0
400154d8: 02 80 00 24 be 40015568 <rtems_signal_send+0xcc>
400154dc: 01 00 00 00 nop
if ( asr->is_enabled ) {
400154e0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 400154e4: 80 a0 60 00 cmp %g1, 0
400154e8: 02 80 00 15 be 4001553c <rtems_signal_send+0xa0>
400154ec: 01 00 00 00 nop
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
400154f0: 7f ff e7 c9 call 4000f414 <sparc_disable_interrupts> 400154f4: 01 00 00 00 nop
*signal_set |= signals;
400154f8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 400154fc: b2 10 40 19 or %g1, %i1, %i1 40015500: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40015504: 7f ff e7 c8 call 4000f424 <sparc_enable_interrupts> 40015508: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
4001550c: 03 10 00 f3 sethi %hi(0x4003cc00), %g1 40015510: 82 10 61 14 or %g1, 0x114, %g1 ! 4003cd14 <_Per_CPU_Information> 40015514: c4 00 60 08 ld [ %g1 + 8 ], %g2 40015518: 80 a0 a0 00 cmp %g2, 0
4001551c: 02 80 00 0f be 40015558 <rtems_signal_send+0xbc>
40015520: 01 00 00 00 nop 40015524: c4 00 60 0c ld [ %g1 + 0xc ], %g2 40015528: 80 a4 40 02 cmp %l1, %g2
4001552c: 12 80 00 0b bne 40015558 <rtems_signal_send+0xbc> <== NEVER TAKEN
40015530: 84 10 20 01 mov 1, %g2
_Context_Switch_necessary = true;
40015534: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40015538: 30 80 00 08 b,a 40015558 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
4001553c: 7f ff e7 b6 call 4000f414 <sparc_disable_interrupts> 40015540: 01 00 00 00 nop
*signal_set |= signals;
40015544: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40015548: b2 10 40 19 or %g1, %i1, %i1 4001554c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40015550: 7f ff e7 b5 call 4000f424 <sparc_enable_interrupts> 40015554: 01 00 00 00 nop
} else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch();
40015558: 40 00 10 65 call 400196ec <_Thread_Enable_dispatch> 4001555c: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
40015560: 81 c7 e0 08 ret 40015564: 81 e8 00 00 restore
} _Thread_Enable_dispatch();
40015568: 40 00 10 61 call 400196ec <_Thread_Enable_dispatch> 4001556c: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
40015570: 81 c7 e0 08 ret 40015574: 81 e8 00 00 restore
4000cebc <rtems_task_mode>: rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) {
4000cebc: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set )
4000cec0: 80 a6 a0 00 cmp %i2, 0
4000cec4: 02 80 00 5f be 4000d040 <rtems_task_mode+0x184>
4000cec8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing;
4000cecc: 03 10 00 51 sethi %hi(0x40014400), %g1 4000ced0: e2 00 62 88 ld [ %g1 + 0x288 ], %l1 ! 40014688 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ced4: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ced8: e0 04 61 5c ld [ %l1 + 0x15c ], %l0
asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000cedc: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000cee0: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000cee4: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000cee8: 80 a0 60 00 cmp %g1, 0
4000ceec: 02 80 00 03 be 4000cef8 <rtems_task_mode+0x3c>
4000cef0: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE;
4000cef4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000cef8: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 4000cefc: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000cf00: 7f ff f1 f8 call 400096e0 <_CPU_ISR_Get_level> 4000cf04: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000cf08: a7 2c e0 0a sll %l3, 0xa, %l3 4000cf0c: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000cf10: a4 14 c0 12 or %l3, %l2, %l2
/* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK )
4000cf14: 80 8e 61 00 btst 0x100, %i1
4000cf18: 02 80 00 06 be 4000cf30 <rtems_task_mode+0x74>
4000cf1c: e4 26 80 00 st %l2, [ %i2 ]
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000cf20: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000cf24: 80 a0 00 01 cmp %g0, %g1 4000cf28: 82 60 3f ff subx %g0, -1, %g1 4000cf2c: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000cf30: 80 8e 62 00 btst 0x200, %i1
4000cf34: 02 80 00 0b be 4000cf60 <rtems_task_mode+0xa4>
4000cf38: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000cf3c: 80 8e 22 00 btst 0x200, %i0
4000cf40: 22 80 00 07 be,a 4000cf5c <rtems_task_mode+0xa0>
4000cf44: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000cf48: 82 10 20 01 mov 1, %g1 4000cf4c: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000cf50: 03 10 00 50 sethi %hi(0x40014000), %g1 4000cf54: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 40014378 <_Thread_Ticks_per_timeslice> 4000cf58: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
/* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK )
4000cf5c: 80 8e 60 0f btst 0xf, %i1
4000cf60: 02 80 00 06 be 4000cf78 <rtems_task_mode+0xbc>
4000cf64: 80 8e 64 00 btst 0x400, %i1
*/ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK );
4000cf68: 90 0e 20 0f and %i0, 0xf, %o0
*/ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000cf6c: 7f ff d3 4f call 40001ca8 <sparc_enable_interrupts> 4000cf70: 91 2a 20 08 sll %o0, 8, %o0
*/ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) {
4000cf74: 80 8e 64 00 btst 0x400, %i1
4000cf78: 02 80 00 14 be 4000cfc8 <rtems_task_mode+0x10c>
4000cf7c: 84 10 20 00 clr %g2
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
4000cf80: c6 0c 20 08 ldub [ %l0 + 8 ], %g3
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000cf84: b0 0e 24 00 and %i0, 0x400, %i0
* Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode(
4000cf88: 80 a0 00 18 cmp %g0, %i0 4000cf8c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
4000cf90: 80 a0 40 03 cmp %g1, %g3
4000cf94: 22 80 00 0e be,a 4000cfcc <rtems_task_mode+0x110>
4000cf98: 03 10 00 51 sethi %hi(0x40014400), %g1
) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level );
4000cf9c: 7f ff d3 3f call 40001c98 <sparc_disable_interrupts> 4000cfa0: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000cfa4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000cfa8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000cfac: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted;
4000cfb0: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals; _ISR_Enable( _level );
4000cfb4: 7f ff d3 3d call 40001ca8 <sparc_enable_interrupts> 4000cfb8: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) {
4000cfbc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false;
4000cfc0: 80 a0 00 01 cmp %g0, %g1 4000cfc4: 84 40 20 00 addx %g0, 0, %g2
needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) )
4000cfc8: 03 10 00 51 sethi %hi(0x40014400), %g1 4000cfcc: c6 00 61 9c ld [ %g1 + 0x19c ], %g3 ! 4001459c <_System_state_Current> 4000cfd0: 80 a0 e0 03 cmp %g3, 3
4000cfd4: 12 80 00 1b bne 4000d040 <rtems_task_mode+0x184> <== NEVER TAKEN
4000cfd8: 82 10 20 00 clr %g1
*/ RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void ) { Thread_Control *executing; executing = _Thread_Executing;
4000cfdc: 07 10 00 51 sethi %hi(0x40014400), %g3 4000cfe0: 86 10 e2 7c or %g3, 0x27c, %g3 ! 4001467c <_Per_CPU_Information> 4000cfe4: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
if ( !_States_Is_ready( executing->current_state ) ||
4000cfe8: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 4000cfec: 80 a1 20 00 cmp %g4, 0
4000cff0: 32 80 00 0b bne,a 4000d01c <rtems_task_mode+0x160> <== NEVER TAKEN
4000cff4: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED
4000cff8: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 4000cffc: 80 a0 40 03 cmp %g1, %g3
4000d000: 02 80 00 0b be 4000d02c <rtems_task_mode+0x170>
4000d004: 80 88 a0 ff btst 0xff, %g2
( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
4000d008: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000d00c: 80 a0 60 00 cmp %g1, 0
4000d010: 02 80 00 07 be 4000d02c <rtems_task_mode+0x170> <== NEVER TAKEN
4000d014: 80 88 a0 ff btst 0xff, %g2
_Context_Switch_necessary = true;
4000d018: 84 10 20 01 mov 1, %g2 4000d01c: 03 10 00 51 sethi %hi(0x40014400), %g1 4000d020: 82 10 62 7c or %g1, 0x27c, %g1 ! 4001467c <_Per_CPU_Information> 4000d024: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 4000d028: 30 80 00 03 b,a 4000d034 <rtems_task_mode+0x178>
if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) 4000d02c: 02 80 00 05 be 4000d040 <rtems_task_mode+0x184>
4000d030: 82 10 20 00 clr %g1
_Thread_Dispatch();
4000d034: 7f ff eb 4f call 40007d70 <_Thread_Dispatch> 4000d038: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4000d03c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000d040: 81 c7 e0 08 ret 4000d044: 91 e8 00 01 restore %g0, %g1, %o0
4000a744 <rtems_task_set_priority>: rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) {
4000a744: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000a748: 80 a6 60 00 cmp %i1, 0
4000a74c: 02 80 00 07 be 4000a768 <rtems_task_set_priority+0x24>
4000a750: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000a754: 03 10 00 61 sethi %hi(0x40018400), %g1 4000a758: c2 08 60 a4 ldub [ %g1 + 0xa4 ], %g1 ! 400184a4 <rtems_maximum_priority> 4000a75c: 80 a6 40 01 cmp %i1, %g1
4000a760: 18 80 00 1c bgu 4000a7d0 <rtems_task_set_priority+0x8c>
4000a764: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority )
4000a768: 80 a6 a0 00 cmp %i2, 0
4000a76c: 02 80 00 19 be 4000a7d0 <rtems_task_set_priority+0x8c>
4000a770: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location );
4000a774: 40 00 07 fb call 4000c760 <_Thread_Get> 4000a778: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a77c: c2 07 bf fc ld [ %fp + -4 ], %g1 4000a780: 80 a0 60 00 cmp %g1, 0
4000a784: 12 80 00 13 bne 4000a7d0 <rtems_task_set_priority+0x8c>
4000a788: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority;
4000a78c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000a790: 80 a6 60 00 cmp %i1, 0
4000a794: 02 80 00 0d be 4000a7c8 <rtems_task_set_priority+0x84>
4000a798: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 ||
4000a79c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 4000a7a0: 80 a0 60 00 cmp %g1, 0
4000a7a4: 02 80 00 06 be 4000a7bc <rtems_task_set_priority+0x78>
4000a7a8: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 4000a7ac: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 4000a7b0: 80 a0 40 19 cmp %g1, %i1
4000a7b4: 08 80 00 05 bleu 4000a7c8 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000a7b8: 01 00 00 00 nop
the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false );
4000a7bc: 92 10 00 19 mov %i1, %o1 4000a7c0: 40 00 06 77 call 4000c19c <_Thread_Change_priority> 4000a7c4: 94 10 20 00 clr %o2
} _Thread_Enable_dispatch();
4000a7c8: 40 00 07 d9 call 4000c72c <_Thread_Enable_dispatch> 4000a7cc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000a7d0: 81 c7 e0 08 ret 4000a7d4: 81 e8 00 00 restore
40015eb4 <rtems_timer_cancel>: */ rtems_status_code rtems_timer_cancel( rtems_id id ) {
40015eb4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location );
40015eb8: 11 10 00 f3 sethi %hi(0x4003cc00), %o0 40015ebc: 92 10 00 18 mov %i0, %o1 40015ec0: 90 12 21 74 or %o0, 0x174, %o0 40015ec4: 40 00 0b be call 40018dbc <_Objects_Get> 40015ec8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) {
40015ecc: c2 07 bf fc ld [ %fp + -4 ], %g1 40015ed0: 80 a0 60 00 cmp %g1, 0
40015ed4: 12 80 00 0c bne 40015f04 <rtems_timer_cancel+0x50>
40015ed8: 01 00 00 00 nop
case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015edc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40015ee0: 80 a0 60 04 cmp %g1, 4
40015ee4: 02 80 00 04 be 40015ef4 <rtems_timer_cancel+0x40> <== NEVER TAKEN
40015ee8: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015eec: 40 00 13 d2 call 4001ae34 <_Watchdog_Remove> 40015ef0: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015ef4: 40 00 0d fe call 400196ec <_Thread_Enable_dispatch> 40015ef8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015efc: 81 c7 e0 08 ret 40015f00: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
40015f04: 81 c7 e0 08 ret 40015f08: 91 e8 20 04 restore %g0, 4, %o0
4001639c <rtems_timer_server_fire_when>: rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
4001639c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server;
400163a0: 03 10 00 f3 sethi %hi(0x4003cc00), %g1 400163a4: e2 00 61 b4 ld [ %g1 + 0x1b4 ], %l1 ! 4003cdb4 <_Timer_server>
rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
400163a8: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server )
400163ac: 80 a4 60 00 cmp %l1, 0
400163b0: 02 80 00 33 be 4001647c <rtems_timer_server_fire_when+0xe0>
400163b4: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set )
400163b8: 03 10 00 f2 sethi %hi(0x4003c800), %g1 400163bc: c2 08 62 b8 ldub [ %g1 + 0x2b8 ], %g1 ! 4003cab8 <_TOD_Is_set> 400163c0: 80 a0 60 00 cmp %g1, 0
400163c4: 02 80 00 2e be 4001647c <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
400163c8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED; if ( !routine )
400163cc: 80 a6 a0 00 cmp %i2, 0
400163d0: 02 80 00 2b be 4001647c <rtems_timer_server_fire_when+0xe0>
400163d4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) )
400163d8: 90 10 00 19 mov %i1, %o0 400163dc: 7f ff f4 01 call 400133e0 <_TOD_Validate> 400163e0: b0 10 20 14 mov 0x14, %i0 400163e4: 80 8a 20 ff btst 0xff, %o0
400163e8: 02 80 00 27 be 40016484 <rtems_timer_server_fire_when+0xe8>
400163ec: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time );
400163f0: 7f ff f3 c8 call 40013310 <_TOD_To_seconds> 400163f4: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400163f8: 27 10 00 f2 sethi %hi(0x4003c800), %l3 400163fc: c2 04 e3 30 ld [ %l3 + 0x330 ], %g1 ! 4003cb30 <_TOD_Now> 40016400: 80 a2 00 01 cmp %o0, %g1
40016404: 08 80 00 1e bleu 4001647c <rtems_timer_server_fire_when+0xe0>
40016408: a4 10 00 08 mov %o0, %l2 4001640c: 11 10 00 f3 sethi %hi(0x4003cc00), %o0 40016410: 92 10 00 10 mov %l0, %o1 40016414: 90 12 21 74 or %o0, 0x174, %o0 40016418: 40 00 0a 69 call 40018dbc <_Objects_Get> 4001641c: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) {
40016420: c2 07 bf fc ld [ %fp + -4 ], %g1 40016424: b2 10 00 08 mov %o0, %i1 40016428: 80 a0 60 00 cmp %g1, 0
4001642c: 12 80 00 14 bne 4001647c <rtems_timer_server_fire_when+0xe0>
40016430: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker );
40016434: 40 00 12 80 call 4001ae34 <_Watchdog_Remove> 40016438: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
4001643c: 82 10 20 03 mov 3, %g1 40016440: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016444: c2 04 e3 30 ld [ %l3 + 0x330 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
40016448: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001644c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40016450: c2 04 60 04 ld [ %l1 + 4 ], %g1 40016454: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40016458: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
4001645c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
40016460: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
40016464: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016468: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
4001646c: 9f c0 40 00 call %g1 40016470: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016474: 40 00 0c 9e call 400196ec <_Thread_Enable_dispatch> 40016478: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4001647c: 81 c7 e0 08 ret 40016480: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
40016484: 81 c7 e0 08 ret 40016488: 81 e8 00 00 restore