RTEMS 4.11Annotated Report
Fri Mar 18 20:44:12 2011
400069f0 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
400069f0: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
400069f4: 23 10 00 55 sethi %hi(0x40015400), %l1
400069f8: e0 04 60 94 ld [ %l1 + 0x94 ], %l0 ! 40015494 <_API_extensions_List>
400069fc: a2 14 60 94 or %l1, 0x94, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40006a00: a2 04 60 04 add %l1, 4, %l1
40006a04: 80 a4 00 11 cmp %l0, %l1
40006a08: 02 80 00 09 be 40006a2c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40006a0c: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40006a10: c2 04 20 08 ld [ %l0 + 8 ], %g1
40006a14: 9f c0 40 00 call %g1
40006a18: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40006a1c: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40006a20: 80 a4 00 11 cmp %l0, %l1
40006a24: 32 bf ff fc bne,a 40006a14 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
40006a28: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
40006a2c: 81 c7 e0 08 ret
40006a30: 81 e8 00 00 restore
40006a34 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
40006a34: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40006a38: 23 10 00 55 sethi %hi(0x40015400), %l1
40006a3c: e0 04 60 94 ld [ %l1 + 0x94 ], %l0 ! 40015494 <_API_extensions_List>
40006a40: a2 14 60 94 or %l1, 0x94, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40006a44: a2 04 60 04 add %l1, 4, %l1
40006a48: 80 a4 00 11 cmp %l0, %l1
40006a4c: 02 80 00 0a be 40006a74 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
40006a50: 25 10 00 55 sethi %hi(0x40015400), %l2
40006a54: a4 14 a0 cc or %l2, 0xcc, %l2 ! 400154cc <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
40006a58: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40006a5c: 9f c0 40 00 call %g1
40006a60: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40006a64: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40006a68: 80 a4 00 11 cmp %l0, %l1
40006a6c: 32 bf ff fc bne,a 40006a5c <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
40006a70: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
40006a74: 81 c7 e0 08 ret
40006a78: 81 e8 00 00 restore
40010958 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40010958: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
4001095c: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
40010960: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
40010964: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40010968: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
4001096c: 80 8e e0 03 btst 3, %i3
40010970: 02 80 00 07 be 4001098c <_CORE_message_queue_Initialize+0x34>
40010974: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
40010978: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
4001097c: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40010980: 80 a6 c0 12 cmp %i3, %l2
40010984: 18 80 00 22 bgu 40010a0c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010988: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
4001098c: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40010990: 92 10 00 1a mov %i2, %o1
40010994: 90 10 00 11 mov %l1, %o0
40010998: 40 00 3f e0 call 40020918 <.umul>
4001099c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
400109a0: 80 a2 00 12 cmp %o0, %l2
400109a4: 0a 80 00 1a bcs 40010a0c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400109a8: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
400109ac: 40 00 0c aa call 40013c54 <_Workspace_Allocate>
400109b0: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
400109b4: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
400109b8: 80 a2 20 00 cmp %o0, 0
400109bc: 02 80 00 14 be 40010a0c <_CORE_message_queue_Initialize+0xb4>
400109c0: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
400109c4: 90 04 20 60 add %l0, 0x60, %o0
400109c8: 94 10 00 1a mov %i2, %o2
400109cc: 40 00 14 8c call 40015bfc <_Chain_Initialize>
400109d0: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
400109d4: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
400109d8: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
400109dc: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
400109e0: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400109e4: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
400109e8: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
400109ec: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
400109f0: 82 18 60 01 xor %g1, 1, %g1
400109f4: 80 a0 00 01 cmp %g0, %g1
400109f8: 90 10 00 10 mov %l0, %o0
400109fc: 94 10 20 80 mov 0x80, %o2
40010a00: 92 60 3f ff subx %g0, -1, %o1
40010a04: 40 00 09 e0 call 40013184 <_Thread_queue_Initialize>
40010a08: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40010a0c: 81 c7 e0 08 ret
40010a10: 81 e8 00 00 restore
40006d80 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40006d80: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40006d84: 21 10 00 54 sethi %hi(0x40015000), %l0
40006d88: c2 04 22 a0 ld [ %l0 + 0x2a0 ], %g1 ! 400152a0 <_Thread_Dispatch_disable_level>
40006d8c: 80 a0 60 00 cmp %g1, 0
40006d90: 02 80 00 05 be 40006da4 <_CORE_mutex_Seize+0x24>
40006d94: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40006d98: 80 8e a0 ff btst 0xff, %i2
40006d9c: 12 80 00 1a bne 40006e04 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40006da0: 03 10 00 54 sethi %hi(0x40015000), %g1
40006da4: 90 10 00 18 mov %i0, %o0
40006da8: 40 00 13 ac call 4000bc58 <_CORE_mutex_Seize_interrupt_trylock>
40006dac: 92 07 a0 54 add %fp, 0x54, %o1
40006db0: 80 a2 20 00 cmp %o0, 0
40006db4: 02 80 00 12 be 40006dfc <_CORE_mutex_Seize+0x7c>
40006db8: 80 8e a0 ff btst 0xff, %i2
40006dbc: 02 80 00 1a be 40006e24 <_CORE_mutex_Seize+0xa4>
40006dc0: 01 00 00 00 nop
40006dc4: c4 04 22 a0 ld [ %l0 + 0x2a0 ], %g2
40006dc8: 03 10 00 55 sethi %hi(0x40015400), %g1
40006dcc: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 400154d8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006dd0: 86 10 20 01 mov 1, %g3
40006dd4: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40006dd8: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006ddc: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40006de0: 82 00 a0 01 add %g2, 1, %g1
40006de4: c2 24 22 a0 st %g1, [ %l0 + 0x2a0 ]
40006de8: 7f ff eb ce call 40001d20 <sparc_enable_interrupts>
40006dec: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006df0: 90 10 00 18 mov %i0, %o0
40006df4: 7f ff ff c0 call 40006cf4 <_CORE_mutex_Seize_interrupt_blocking>
40006df8: 92 10 00 1b mov %i3, %o1
40006dfc: 81 c7 e0 08 ret
40006e00: 81 e8 00 00 restore
40006e04: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1
40006e08: 80 a0 60 01 cmp %g1, 1
40006e0c: 28 bf ff e7 bleu,a 40006da8 <_CORE_mutex_Seize+0x28>
40006e10: 90 10 00 18 mov %i0, %o0
40006e14: 90 10 20 00 clr %o0
40006e18: 92 10 20 00 clr %o1
40006e1c: 40 00 01 d8 call 4000757c <_Internal_error_Occurred>
40006e20: 94 10 20 12 mov 0x12, %o2
40006e24: 7f ff eb bf call 40001d20 <sparc_enable_interrupts>
40006e28: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006e2c: 03 10 00 55 sethi %hi(0x40015400), %g1
40006e30: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 400154d8 <_Per_CPU_Information+0xc>
40006e34: 84 10 20 01 mov 1, %g2
40006e38: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40006e3c: 81 c7 e0 08 ret
40006e40: 81 e8 00 00 restore
40006fc0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40006fc0: 9d e3 bf a0 save %sp, -96, %sp
40006fc4: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006fc8: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006fcc: 40 00 07 46 call 40008ce4 <_Thread_queue_Dequeue>
40006fd0: 90 10 00 10 mov %l0, %o0
40006fd4: 80 a2 20 00 cmp %o0, 0
40006fd8: 02 80 00 04 be 40006fe8 <_CORE_semaphore_Surrender+0x28>
40006fdc: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
40006fe0: 81 c7 e0 08 ret
40006fe4: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40006fe8: 7f ff eb 4a call 40001d10 <sparc_disable_interrupts>
40006fec: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006ff0: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40006ff4: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40006ff8: 80 a0 40 02 cmp %g1, %g2
40006ffc: 1a 80 00 05 bcc 40007010 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
40007000: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40007004: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40007008: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
4000700c: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40007010: 7f ff eb 44 call 40001d20 <sparc_enable_interrupts>
40007014: 01 00 00 00 nop
}
return status;
}
40007018: 81 c7 e0 08 ret
4000701c: 81 e8 00 00 restore
4000bbf0 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000bbf0: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
4000bbf4: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000bbf8: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bbfc: 80 a6 a0 00 cmp %i2, 0
4000bc00: 02 80 00 12 be 4000bc48 <_Chain_Initialize+0x58> <== NEVER TAKEN
4000bc04: 90 10 00 18 mov %i0, %o0
4000bc08: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
4000bc0c: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
4000bc10: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
4000bc14: 10 80 00 05 b 4000bc28 <_Chain_Initialize+0x38>
4000bc18: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bc1c: 84 10 00 01 mov %g1, %g2
4000bc20: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000bc24: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
4000bc28: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000bc2c: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bc30: 80 a6 a0 00 cmp %i2, 0
4000bc34: 12 bf ff fa bne 4000bc1c <_Chain_Initialize+0x2c>
4000bc38: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000bc3c: 40 00 16 80 call 4001163c <.umul>
4000bc40: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bc44: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
4000bc48: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
4000bc4c: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000bc50: 81 c7 e0 08 ret
4000bc54: 81 e8 00 00 restore
40005c80 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40005c80: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40005c84: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40005c88: 7f ff f0 22 call 40001d10 <sparc_disable_interrupts>
40005c8c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40005c90: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40005c94: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005c98: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40005c9c: 86 88 40 02 andcc %g1, %g2, %g3
40005ca0: 02 80 00 3e be 40005d98 <_Event_Surrender+0x118>
40005ca4: 09 10 00 55 sethi %hi(0x40015400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005ca8: 88 11 20 cc or %g4, 0xcc, %g4 ! 400154cc <_Per_CPU_Information>
40005cac: da 01 20 08 ld [ %g4 + 8 ], %o5
40005cb0: 80 a3 60 00 cmp %o5, 0
40005cb4: 32 80 00 1d bne,a 40005d28 <_Event_Surrender+0xa8>
40005cb8: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40005cbc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40005cc0: 80 89 21 00 btst 0x100, %g4
40005cc4: 02 80 00 33 be 40005d90 <_Event_Surrender+0x110>
40005cc8: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005ccc: 02 80 00 04 be 40005cdc <_Event_Surrender+0x5c>
40005cd0: 80 8c a0 02 btst 2, %l2
40005cd4: 02 80 00 2f be 40005d90 <_Event_Surrender+0x110> <== NEVER TAKEN
40005cd8: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cdc: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40005ce0: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40005ce4: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005ce8: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cec: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40005cf0: 7f ff f0 0c call 40001d20 <sparc_enable_interrupts>
40005cf4: 90 10 00 11 mov %l1, %o0
40005cf8: 7f ff f0 06 call 40001d10 <sparc_disable_interrupts>
40005cfc: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40005d00: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40005d04: 80 a0 60 02 cmp %g1, 2
40005d08: 02 80 00 26 be 40005da0 <_Event_Surrender+0x120>
40005d0c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40005d10: 90 10 00 11 mov %l1, %o0
40005d14: 7f ff f0 03 call 40001d20 <sparc_enable_interrupts>
40005d18: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005d1c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005d20: 40 00 0a 50 call 40008660 <_Thread_Clear_state>
40005d24: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005d28: 80 a6 00 04 cmp %i0, %g4
40005d2c: 32 bf ff e5 bne,a 40005cc0 <_Event_Surrender+0x40>
40005d30: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005d34: 09 10 00 55 sethi %hi(0x40015400), %g4
40005d38: da 01 21 20 ld [ %g4 + 0x120 ], %o5 ! 40015520 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40005d3c: 80 a3 60 02 cmp %o5, 2
40005d40: 02 80 00 07 be 40005d5c <_Event_Surrender+0xdc> <== NEVER TAKEN
40005d44: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005d48: da 01 21 20 ld [ %g4 + 0x120 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005d4c: 80 a3 60 01 cmp %o5, 1
40005d50: 32 bf ff dc bne,a 40005cc0 <_Event_Surrender+0x40>
40005d54: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005d58: 80 a0 40 03 cmp %g1, %g3
40005d5c: 02 80 00 04 be 40005d6c <_Event_Surrender+0xec>
40005d60: 80 8c a0 02 btst 2, %l2
40005d64: 02 80 00 09 be 40005d88 <_Event_Surrender+0x108> <== NEVER TAKEN
40005d68: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005d6c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40005d70: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40005d74: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005d78: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005d7c: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40005d80: 82 10 20 03 mov 3, %g1
40005d84: c2 21 21 20 st %g1, [ %g4 + 0x120 ]
}
_ISR_Enable( level );
40005d88: 7f ff ef e6 call 40001d20 <sparc_enable_interrupts>
40005d8c: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40005d90: 7f ff ef e4 call 40001d20 <sparc_enable_interrupts>
40005d94: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40005d98: 7f ff ef e2 call 40001d20 <sparc_enable_interrupts>
40005d9c: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40005da0: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40005da4: 7f ff ef df call 40001d20 <sparc_enable_interrupts>
40005da8: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005dac: 40 00 0f 31 call 40009a70 <_Watchdog_Remove>
40005db0: 90 06 20 48 add %i0, 0x48, %o0
40005db4: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40005db8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005dbc: 40 00 0a 29 call 40008660 <_Thread_Clear_state>
40005dc0: 81 e8 00 00 restore
40005dc8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40005dc8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40005dcc: 90 10 00 18 mov %i0, %o0
40005dd0: 40 00 0b 0e call 40008a08 <_Thread_Get>
40005dd4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1
40005ddc: 80 a0 60 00 cmp %g1, 0
40005de0: 12 80 00 15 bne 40005e34 <_Event_Timeout+0x6c> <== NEVER TAKEN
40005de4: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40005de8: 7f ff ef ca call 40001d10 <sparc_disable_interrupts>
40005dec: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40005df0: 03 10 00 55 sethi %hi(0x40015400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40005df4: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 400154d8 <_Per_CPU_Information+0xc>
40005df8: 80 a4 00 01 cmp %l0, %g1
40005dfc: 02 80 00 10 be 40005e3c <_Event_Timeout+0x74>
40005e00: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005e04: 82 10 20 06 mov 6, %g1
40005e08: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40005e0c: 7f ff ef c5 call 40001d20 <sparc_enable_interrupts>
40005e10: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005e14: 90 10 00 10 mov %l0, %o0
40005e18: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40005e1c: 40 00 0a 11 call 40008660 <_Thread_Clear_state>
40005e20: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005e24: 03 10 00 54 sethi %hi(0x40015000), %g1
40005e28: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 400152a0 <_Thread_Dispatch_disable_level>
40005e2c: 84 00 bf ff add %g2, -1, %g2
40005e30: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ]
40005e34: 81 c7 e0 08 ret
40005e38: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005e3c: 03 10 00 55 sethi %hi(0x40015400), %g1
40005e40: c4 00 61 20 ld [ %g1 + 0x120 ], %g2 ! 40015520 <_Event_Sync_state>
40005e44: 80 a0 a0 01 cmp %g2, 1
40005e48: 32 bf ff f0 bne,a 40005e08 <_Event_Timeout+0x40>
40005e4c: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40005e50: 84 10 20 02 mov 2, %g2
40005e54: c4 20 61 20 st %g2, [ %g1 + 0x120 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005e58: 10 bf ff ec b 40005e08 <_Event_Timeout+0x40>
40005e5c: 82 10 20 06 mov 6, %g1
4000be28 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000be28: 9d e3 bf 98 save %sp, -104, %sp
4000be2c: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000be30: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000be34: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000be38: 80 a6 40 12 cmp %i1, %l2
4000be3c: 18 80 00 6e bgu 4000bff4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000be40: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000be44: 80 a6 e0 00 cmp %i3, 0
4000be48: 12 80 00 75 bne 4000c01c <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000be4c: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000be50: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000be54: 80 a4 00 14 cmp %l0, %l4
4000be58: 02 80 00 67 be 4000bff4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000be5c: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000be60: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000be64: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000be68: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000be6c: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000be70: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000be74: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000be78: 80 a4 80 13 cmp %l2, %l3
4000be7c: 3a 80 00 4b bcc,a 4000bfa8 <_Heap_Allocate_aligned_with_boundary+0x180>
4000be80: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000be84: 80 a6 a0 00 cmp %i2, 0
4000be88: 02 80 00 44 be 4000bf98 <_Heap_Allocate_aligned_with_boundary+0x170>
4000be8c: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000be90: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000be94: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000be98: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000be9c: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000bea0: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000bea4: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000bea8: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000beac: a6 00 40 13 add %g1, %l3, %l3
4000beb0: 40 00 16 c9 call 400119d4 <.urem>
4000beb4: 90 10 00 18 mov %i0, %o0
4000beb8: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000bebc: 80 a4 c0 18 cmp %l3, %i0
4000bec0: 1a 80 00 06 bcc 4000bed8 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000bec4: ac 05 20 08 add %l4, 8, %l6
4000bec8: 90 10 00 13 mov %l3, %o0
4000becc: 40 00 16 c2 call 400119d4 <.urem>
4000bed0: 92 10 00 1a mov %i2, %o1
4000bed4: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000bed8: 80 a6 e0 00 cmp %i3, 0
4000bedc: 02 80 00 24 be 4000bf6c <_Heap_Allocate_aligned_with_boundary+0x144>
4000bee0: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000bee4: a6 06 00 19 add %i0, %i1, %l3
4000bee8: 92 10 00 1b mov %i3, %o1
4000beec: 40 00 16 ba call 400119d4 <.urem>
4000bef0: 90 10 00 13 mov %l3, %o0
4000bef4: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000bef8: 80 a2 00 13 cmp %o0, %l3
4000befc: 1a 80 00 1b bcc 4000bf68 <_Heap_Allocate_aligned_with_boundary+0x140>
4000bf00: 80 a6 00 08 cmp %i0, %o0
4000bf04: 1a 80 00 1a bcc 4000bf6c <_Heap_Allocate_aligned_with_boundary+0x144>
4000bf08: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000bf0c: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000bf10: 80 a5 40 08 cmp %l5, %o0
4000bf14: 28 80 00 09 bleu,a 4000bf38 <_Heap_Allocate_aligned_with_boundary+0x110>
4000bf18: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000bf1c: 10 80 00 23 b 4000bfa8 <_Heap_Allocate_aligned_with_boundary+0x180>
4000bf20: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000bf24: 1a 80 00 11 bcc 4000bf68 <_Heap_Allocate_aligned_with_boundary+0x140>
4000bf28: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000bf2c: 38 80 00 1f bgu,a 4000bfa8 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000bf30: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000bf34: b0 22 00 19 sub %o0, %i1, %i0
4000bf38: 92 10 00 1a mov %i2, %o1
4000bf3c: 40 00 16 a6 call 400119d4 <.urem>
4000bf40: 90 10 00 18 mov %i0, %o0
4000bf44: 92 10 00 1b mov %i3, %o1
4000bf48: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000bf4c: a6 06 00 19 add %i0, %i1, %l3
4000bf50: 40 00 16 a1 call 400119d4 <.urem>
4000bf54: 90 10 00 13 mov %l3, %o0
4000bf58: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000bf5c: 80 a2 00 13 cmp %o0, %l3
4000bf60: 0a bf ff f1 bcs 4000bf24 <_Heap_Allocate_aligned_with_boundary+0xfc>
4000bf64: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000bf68: 80 a5 80 18 cmp %l6, %i0
4000bf6c: 38 80 00 0f bgu,a 4000bfa8 <_Heap_Allocate_aligned_with_boundary+0x180>
4000bf70: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000bf74: 82 10 3f f8 mov -8, %g1
4000bf78: 90 10 00 18 mov %i0, %o0
4000bf7c: a6 20 40 14 sub %g1, %l4, %l3
4000bf80: 92 10 00 1d mov %i5, %o1
4000bf84: 40 00 16 94 call 400119d4 <.urem>
4000bf88: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000bf8c: 90 a4 c0 08 subcc %l3, %o0, %o0
4000bf90: 12 80 00 1b bne 4000bffc <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000bf94: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000bf98: 80 a6 20 00 cmp %i0, 0
4000bf9c: 32 80 00 08 bne,a 4000bfbc <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000bfa0: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000bfa4: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000bfa8: 80 a4 00 14 cmp %l0, %l4
4000bfac: 02 80 00 1a be 4000c014 <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000bfb0: 82 04 60 01 add %l1, 1, %g1
4000bfb4: 10 bf ff b0 b 4000be74 <_Heap_Allocate_aligned_with_boundary+0x4c>
4000bfb8: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000bfbc: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000bfc0: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000bfc4: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000bfc8: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000bfcc: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000bfd0: 90 10 00 10 mov %l0, %o0
4000bfd4: 92 10 00 14 mov %l4, %o1
4000bfd8: 94 10 00 18 mov %i0, %o2
4000bfdc: 7f ff ed 1c call 4000744c <_Heap_Block_allocate>
4000bfe0: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000bfe4: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000bfe8: 80 a0 40 11 cmp %g1, %l1
4000bfec: 2a 80 00 02 bcs,a 4000bff4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bff0: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000bff4: 81 c7 e0 08 ret
4000bff8: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000bffc: 1a bf ff e8 bcc 4000bf9c <_Heap_Allocate_aligned_with_boundary+0x174>
4000c000: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c004: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c008: 80 a4 00 14 cmp %l0, %l4
4000c00c: 12 bf ff ea bne 4000bfb4 <_Heap_Allocate_aligned_with_boundary+0x18c><== NEVER TAKEN
4000c010: 82 04 60 01 add %l1, 1, %g1
4000c014: 10 bf ff f4 b 4000bfe4 <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000c018: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000c01c: 18 bf ff f6 bgu 4000bff4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c020: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000c024: 22 bf ff 8b be,a 4000be50 <_Heap_Allocate_aligned_with_boundary+0x28>
4000c028: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c02c: 10 bf ff 8a b 4000be54 <_Heap_Allocate_aligned_with_boundary+0x2c>
4000c030: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000c33c <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c33c: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c340: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c344: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c348: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c34c: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c350: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c354: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c358: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000c35c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c360: 80 a6 40 11 cmp %i1, %l1
4000c364: 18 80 00 86 bgu 4000c57c <_Heap_Extend+0x240>
4000c368: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c36c: 90 10 00 19 mov %i1, %o0
4000c370: 92 10 00 1a mov %i2, %o1
4000c374: 94 10 00 13 mov %l3, %o2
4000c378: 98 07 bf fc add %fp, -4, %o4
4000c37c: 7f ff ec 95 call 400075d0 <_Heap_Get_first_and_last_block>
4000c380: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c384: 80 8a 20 ff btst 0xff, %o0
4000c388: 02 80 00 7d be 4000c57c <_Heap_Extend+0x240>
4000c38c: ba 10 20 00 clr %i5
4000c390: b0 10 00 12 mov %l2, %i0
4000c394: b8 10 20 00 clr %i4
4000c398: ac 10 20 00 clr %l6
4000c39c: 10 80 00 14 b 4000c3ec <_Heap_Extend+0xb0>
4000c3a0: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c3a4: 2a 80 00 02 bcs,a 4000c3ac <_Heap_Extend+0x70>
4000c3a8: b8 10 00 18 mov %i0, %i4
4000c3ac: 90 10 00 15 mov %l5, %o0
4000c3b0: 40 00 16 dc call 40011f20 <.urem>
4000c3b4: 92 10 00 13 mov %l3, %o1
4000c3b8: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c3bc: 80 a5 40 19 cmp %l5, %i1
4000c3c0: 02 80 00 1c be 4000c430 <_Heap_Extend+0xf4>
4000c3c4: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c3c8: 80 a6 40 15 cmp %i1, %l5
4000c3cc: 38 80 00 02 bgu,a 4000c3d4 <_Heap_Extend+0x98>
4000c3d0: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c3d4: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c3d8: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c3dc: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c3e0: 80 a4 80 18 cmp %l2, %i0
4000c3e4: 22 80 00 1b be,a 4000c450 <_Heap_Extend+0x114>
4000c3e8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c3ec: 80 a6 00 12 cmp %i0, %l2
4000c3f0: 02 80 00 65 be 4000c584 <_Heap_Extend+0x248>
4000c3f4: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c3f8: 80 a0 40 11 cmp %g1, %l1
4000c3fc: 0a 80 00 6f bcs 4000c5b8 <_Heap_Extend+0x27c>
4000c400: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c404: 80 a0 40 11 cmp %g1, %l1
4000c408: 12 bf ff e7 bne 4000c3a4 <_Heap_Extend+0x68>
4000c40c: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c410: 90 10 00 15 mov %l5, %o0
4000c414: 40 00 16 c3 call 40011f20 <.urem>
4000c418: 92 10 00 13 mov %l3, %o1
4000c41c: 82 05 7f f8 add %l5, -8, %g1
4000c420: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c424: 80 a5 40 19 cmp %l5, %i1
4000c428: 12 bf ff e8 bne 4000c3c8 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000c42c: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000c430: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c434: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c438: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c43c: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c440: 80 a4 80 18 cmp %l2, %i0
4000c444: 12 bf ff ea bne 4000c3ec <_Heap_Extend+0xb0> <== NEVER TAKEN
4000c448: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000c44c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c450: 80 a6 40 01 cmp %i1, %g1
4000c454: 3a 80 00 54 bcc,a 4000c5a4 <_Heap_Extend+0x268>
4000c458: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c45c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c460: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c464: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c468: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c46c: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000c470: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c474: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c478: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c47c: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c480: 80 a1 00 01 cmp %g4, %g1
4000c484: 08 80 00 42 bleu 4000c58c <_Heap_Extend+0x250>
4000c488: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000c48c: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c490: 80 a5 e0 00 cmp %l7, 0
4000c494: 02 80 00 62 be 4000c61c <_Heap_Extend+0x2e0>
4000c498: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c49c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c4a0: 92 10 00 12 mov %l2, %o1
4000c4a4: 40 00 16 9f call 40011f20 <.urem>
4000c4a8: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c4ac: 80 a2 20 00 cmp %o0, 0
4000c4b0: 02 80 00 04 be 4000c4c0 <_Heap_Extend+0x184>
4000c4b4: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000c4b8: b2 06 40 12 add %i1, %l2, %i1
4000c4bc: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c4c0: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c4c4: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c4c8: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c4cc: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000c4d0: 90 10 00 10 mov %l0, %o0
4000c4d4: 92 10 00 01 mov %g1, %o1
4000c4d8: 7f ff ff 8e call 4000c310 <_Heap_Free_block>
4000c4dc: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c4e0: 80 a5 a0 00 cmp %l6, 0
4000c4e4: 02 80 00 3a be 4000c5cc <_Heap_Extend+0x290>
4000c4e8: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c4ec: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c4f0: a2 24 40 16 sub %l1, %l6, %l1
4000c4f4: 40 00 16 8b call 40011f20 <.urem>
4000c4f8: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c4fc: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000c500: a2 24 40 08 sub %l1, %o0, %l1
4000c504: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000c508: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c50c: 84 04 40 16 add %l1, %l6, %g2
4000c510: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c514: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c518: 90 10 00 10 mov %l0, %o0
4000c51c: 82 08 60 01 and %g1, 1, %g1
4000c520: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000c524: a2 14 40 01 or %l1, %g1, %l1
4000c528: 7f ff ff 7a call 4000c310 <_Heap_Free_block>
4000c52c: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c530: 80 a5 a0 00 cmp %l6, 0
4000c534: 02 80 00 33 be 4000c600 <_Heap_Extend+0x2c4>
4000c538: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c53c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c540: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c544: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c548: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c54c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c550: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c554: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000c558: 88 13 40 04 or %o5, %g4, %g4
4000c55c: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000c560: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c564: 82 00 80 14 add %g2, %l4, %g1
4000c568: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000c56c: 80 a6 e0 00 cmp %i3, 0
4000c570: 02 80 00 03 be 4000c57c <_Heap_Extend+0x240> <== NEVER TAKEN
4000c574: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000c578: e8 26 c0 00 st %l4, [ %i3 ]
4000c57c: 81 c7 e0 08 ret
4000c580: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c584: 10 bf ff 9d b 4000c3f8 <_Heap_Extend+0xbc>
4000c588: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c58c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c590: 80 a0 40 02 cmp %g1, %g2
4000c594: 2a bf ff bf bcs,a 4000c490 <_Heap_Extend+0x154>
4000c598: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c59c: 10 bf ff be b 4000c494 <_Heap_Extend+0x158>
4000c5a0: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000c5a4: 80 a4 40 01 cmp %l1, %g1
4000c5a8: 38 bf ff ae bgu,a 4000c460 <_Heap_Extend+0x124>
4000c5ac: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c5b0: 10 bf ff ad b 4000c464 <_Heap_Extend+0x128>
4000c5b4: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c5b8: 80 a6 40 15 cmp %i1, %l5
4000c5bc: 1a bf ff 93 bcc 4000c408 <_Heap_Extend+0xcc>
4000c5c0: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c5c4: 81 c7 e0 08 ret
4000c5c8: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c5cc: 80 a7 60 00 cmp %i5, 0
4000c5d0: 02 bf ff d8 be 4000c530 <_Heap_Extend+0x1f4>
4000c5d4: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c5d8: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000c5dc: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000c5e0: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c5e4: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000c5e8: 84 10 80 03 or %g2, %g3, %g2
4000c5ec: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c5f0: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c5f4: 84 10 a0 01 or %g2, 1, %g2
4000c5f8: 10 bf ff ce b 4000c530 <_Heap_Extend+0x1f4>
4000c5fc: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c600: 32 bf ff d0 bne,a 4000c540 <_Heap_Extend+0x204>
4000c604: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c608: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c60c: 7f ff ff 41 call 4000c310 <_Heap_Free_block>
4000c610: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c614: 10 bf ff cb b 4000c540 <_Heap_Extend+0x204>
4000c618: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c61c: 80 a7 20 00 cmp %i4, 0
4000c620: 02 bf ff b1 be 4000c4e4 <_Heap_Extend+0x1a8>
4000c624: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c628: b8 27 00 02 sub %i4, %g2, %i4
4000c62c: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c630: 10 bf ff ad b 4000c4e4 <_Heap_Extend+0x1a8>
4000c634: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000c034 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c034: 9d e3 bf a0 save %sp, -96, %sp
4000c038: a0 10 00 18 mov %i0, %l0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
4000c03c: 80 a6 60 00 cmp %i1, 0
4000c040: 02 80 00 56 be 4000c198 <_Heap_Free+0x164>
4000c044: b0 10 20 01 mov 1, %i0
4000c048: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
4000c04c: 40 00 16 62 call 400119d4 <.urem>
4000c050: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c054: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c058: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c05c: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c060: 80 a2 00 01 cmp %o0, %g1
4000c064: 0a 80 00 4d bcs 4000c198 <_Heap_Free+0x164>
4000c068: b0 10 20 00 clr %i0
4000c06c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c070: 80 a2 00 03 cmp %o0, %g3
4000c074: 18 80 00 49 bgu 4000c198 <_Heap_Free+0x164>
4000c078: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c07c: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c080: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c084: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c088: 80 a0 40 02 cmp %g1, %g2
4000c08c: 18 80 00 43 bgu 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c090: 80 a0 c0 02 cmp %g3, %g2
4000c094: 0a 80 00 41 bcs 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c098: 01 00 00 00 nop
4000c09c: d8 00 a0 04 ld [ %g2 + 4 ], %o4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c0a0: 80 8b 20 01 btst 1, %o4
4000c0a4: 02 80 00 3d be 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c0a8: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c0ac: 80 a0 c0 02 cmp %g3, %g2
4000c0b0: 02 80 00 06 be 4000c0c8 <_Heap_Free+0x94>
4000c0b4: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c0b8: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c0bc: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000c0c0: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000c0c4: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000c0c8: 80 8b 60 01 btst 1, %o5
4000c0cc: 12 80 00 1d bne 4000c140 <_Heap_Free+0x10c>
4000c0d0: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000c0d4: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c0d8: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c0dc: 80 a0 40 0d cmp %g1, %o5
4000c0e0: 18 80 00 2e bgu 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c0e4: b0 10 20 00 clr %i0
4000c0e8: 80 a0 c0 0d cmp %g3, %o5
4000c0ec: 0a 80 00 2b bcs 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c0f0: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c0f4: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c0f8: 80 88 60 01 btst 1, %g1
4000c0fc: 02 80 00 27 be 4000c198 <_Heap_Free+0x164> <== NEVER TAKEN
4000c100: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c104: 22 80 00 39 be,a 4000c1e8 <_Heap_Free+0x1b4>
4000c108: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c10c: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000c110: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c114: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000c118: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000c11c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000c120: 82 00 ff ff add %g3, -1, %g1
4000c124: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000c128: 96 01 00 0b add %g4, %o3, %o3
4000c12c: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c130: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c134: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c138: 10 80 00 0e b 4000c170 <_Heap_Free+0x13c>
4000c13c: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c140: 22 80 00 18 be,a 4000c1a0 <_Heap_Free+0x16c>
4000c144: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c148: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000c14c: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000c150: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000c154: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000c158: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000c15c: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c160: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000c164: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000c168: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c16c: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c170: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000c174: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000c178: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c17c: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000c180: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000c184: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c188: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000c18c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c190: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000c194: b0 10 20 01 mov 1, %i0
}
4000c198: 81 c7 e0 08 ret
4000c19c: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c1a0: 82 11 20 01 or %g4, 1, %g1
4000c1a4: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c1a8: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c1ac: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c1b0: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c1b4: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c1b8: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000c1bc: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c1c0: 86 0b 7f fe and %o5, -2, %g3
4000c1c4: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c1c8: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c1cc: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c1d0: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c1d4: 80 a0 40 02 cmp %g1, %g2
4000c1d8: 08 bf ff e6 bleu 4000c170 <_Heap_Free+0x13c>
4000c1dc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c1e0: 10 bf ff e4 b 4000c170 <_Heap_Free+0x13c>
4000c1e4: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c1e8: 82 12 a0 01 or %o2, 1, %g1
4000c1ec: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c1f0: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000c1f4: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c1f8: 82 08 7f fe and %g1, -2, %g1
4000c1fc: 10 bf ff dd b 4000c170 <_Heap_Free+0x13c>
4000c200: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000cd64 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000cd64: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000cd68: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000cd6c: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000cd70: c0 26 40 00 clr [ %i1 ]
4000cd74: c0 26 60 04 clr [ %i1 + 4 ]
4000cd78: c0 26 60 08 clr [ %i1 + 8 ]
4000cd7c: c0 26 60 0c clr [ %i1 + 0xc ]
4000cd80: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000cd84: 80 a0 40 02 cmp %g1, %g2
4000cd88: 02 80 00 17 be 4000cde4 <_Heap_Get_information+0x80> <== NEVER TAKEN
4000cd8c: c0 26 60 14 clr [ %i1 + 0x14 ]
4000cd90: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000cd94: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000cd98: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000cd9c: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000cda0: 80 8b 60 01 btst 1, %o5
4000cda4: 02 80 00 03 be 4000cdb0 <_Heap_Get_information+0x4c>
4000cda8: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000cdac: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000cdb0: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000cdb4: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000cdb8: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cdbc: 94 02 a0 01 inc %o2
info->total += the_size;
4000cdc0: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cdc4: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000cdc8: 80 a3 00 04 cmp %o4, %g4
4000cdcc: 1a 80 00 03 bcc 4000cdd8 <_Heap_Get_information+0x74>
4000cdd0: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000cdd4: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000cdd8: 80 a0 80 01 cmp %g2, %g1
4000cddc: 12 bf ff ef bne 4000cd98 <_Heap_Get_information+0x34>
4000cde0: 88 0b 7f fe and %o5, -2, %g4
4000cde4: 81 c7 e0 08 ret
4000cde8: 81 e8 00 00 restore
40013678 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40013678: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4001367c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40013680: 7f ff f8 d5 call 400119d4 <.urem>
40013684: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40013688: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4001368c: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40013690: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
40013694: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40013698: 80 a0 80 01 cmp %g2, %g1
4001369c: 0a 80 00 15 bcs 400136f0 <_Heap_Size_of_alloc_area+0x78>
400136a0: b0 10 20 00 clr %i0
400136a4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
400136a8: 80 a0 80 03 cmp %g2, %g3
400136ac: 18 80 00 11 bgu 400136f0 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400136b0: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400136b4: c8 00 a0 04 ld [ %g2 + 4 ], %g4
400136b8: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400136bc: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400136c0: 80 a0 40 02 cmp %g1, %g2
400136c4: 18 80 00 0b bgu 400136f0 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400136c8: 80 a0 c0 02 cmp %g3, %g2
400136cc: 0a 80 00 09 bcs 400136f0 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400136d0: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400136d4: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400136d8: 80 88 60 01 btst 1, %g1
400136dc: 02 80 00 05 be 400136f0 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400136e0: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
400136e4: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
400136e8: 84 00 a0 04 add %g2, 4, %g2
400136ec: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
400136f0: 81 c7 e0 08 ret
400136f4: 81 e8 00 00 restore
40008450 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008450: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008454: 23 10 00 20 sethi %hi(0x40008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008458: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
4000845c: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
40008460: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
40008464: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
40008468: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
4000846c: 80 8e a0 ff btst 0xff, %i2
40008470: 02 80 00 04 be 40008480 <_Heap_Walk+0x30>
40008474: a2 14 63 e4 or %l1, 0x3e4, %l1
40008478: 23 10 00 20 sethi %hi(0x40008000), %l1
4000847c: a2 14 63 ec or %l1, 0x3ec, %l1 ! 400083ec <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40008480: 03 10 00 5f sethi %hi(0x40017c00), %g1
40008484: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 ! 40017c18 <_System_state_Current>
40008488: 80 a0 60 03 cmp %g1, 3
4000848c: 12 80 00 33 bne 40008558 <_Heap_Walk+0x108>
40008490: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40008494: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40008498: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
4000849c: c4 04 20 08 ld [ %l0 + 8 ], %g2
400084a0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400084a4: 90 10 00 19 mov %i1, %o0
400084a8: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400084ac: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
400084b0: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
400084b4: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
400084b8: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
400084bc: 92 10 20 00 clr %o1
400084c0: 96 10 00 14 mov %l4, %o3
400084c4: 15 10 00 55 sethi %hi(0x40015400), %o2
400084c8: 98 10 00 13 mov %l3, %o4
400084cc: 9f c4 40 00 call %l1
400084d0: 94 12 a1 08 or %o2, 0x108, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
400084d4: 80 a5 20 00 cmp %l4, 0
400084d8: 02 80 00 2a be 40008580 <_Heap_Walk+0x130>
400084dc: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
400084e0: 12 80 00 30 bne 400085a0 <_Heap_Walk+0x150>
400084e4: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400084e8: 7f ff e5 7f call 40001ae4 <.urem>
400084ec: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
400084f0: 80 a2 20 00 cmp %o0, 0
400084f4: 12 80 00 34 bne 400085c4 <_Heap_Walk+0x174>
400084f8: 90 04 a0 08 add %l2, 8, %o0
400084fc: 7f ff e5 7a call 40001ae4 <.urem>
40008500: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
40008504: 80 a2 20 00 cmp %o0, 0
40008508: 32 80 00 38 bne,a 400085e8 <_Heap_Walk+0x198>
4000850c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008510: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008514: 80 8f 20 01 btst 1, %i4
40008518: 22 80 00 4d be,a 4000864c <_Heap_Walk+0x1fc>
4000851c: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008520: c2 05 60 04 ld [ %l5 + 4 ], %g1
40008524: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008528: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000852c: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008530: 80 88 a0 01 btst 1, %g2
40008534: 02 80 00 0b be 40008560 <_Heap_Walk+0x110>
40008538: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
4000853c: 02 80 00 33 be 40008608 <_Heap_Walk+0x1b8>
40008540: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008544: 92 10 20 01 mov 1, %o1
40008548: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000854c: b0 10 20 00 clr %i0
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008550: 9f c4 40 00 call %l1
40008554: 94 12 a2 80 or %o2, 0x280, %o2
40008558: 81 c7 e0 08 ret
4000855c: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40008560: 90 10 00 19 mov %i1, %o0
40008564: 92 10 20 01 mov 1, %o1
40008568: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000856c: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40008570: 9f c4 40 00 call %l1
40008574: 94 12 a2 68 or %o2, 0x268, %o2
40008578: 81 c7 e0 08 ret
4000857c: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40008580: 90 10 00 19 mov %i1, %o0
40008584: 92 10 20 01 mov 1, %o1
40008588: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000858c: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40008590: 9f c4 40 00 call %l1
40008594: 94 12 a1 a0 or %o2, 0x1a0, %o2
40008598: 81 c7 e0 08 ret
4000859c: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400085a0: 90 10 00 19 mov %i1, %o0
400085a4: 92 10 20 01 mov 1, %o1
400085a8: 96 10 00 14 mov %l4, %o3
400085ac: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400085b0: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400085b4: 9f c4 40 00 call %l1
400085b8: 94 12 a1 b8 or %o2, 0x1b8, %o2
400085bc: 81 c7 e0 08 ret
400085c0: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
400085c4: 90 10 00 19 mov %i1, %o0
400085c8: 92 10 20 01 mov 1, %o1
400085cc: 96 10 00 13 mov %l3, %o3
400085d0: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400085d4: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
400085d8: 9f c4 40 00 call %l1
400085dc: 94 12 a1 d8 or %o2, 0x1d8, %o2
400085e0: 81 c7 e0 08 ret
400085e4: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
400085e8: 92 10 20 01 mov 1, %o1
400085ec: 96 10 00 12 mov %l2, %o3
400085f0: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400085f4: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
400085f8: 9f c4 40 00 call %l1
400085fc: 94 12 a2 00 or %o2, 0x200, %o2
40008600: 81 c7 e0 08 ret
40008604: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40008608: ee 04 20 08 ld [ %l0 + 8 ], %l7
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
4000860c: 80 a4 00 17 cmp %l0, %l7
40008610: 02 80 01 18 be 40008a70 <_Heap_Walk+0x620>
40008614: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008618: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000861c: 80 a0 40 17 cmp %g1, %l7
40008620: 08 80 00 12 bleu 40008668 <_Heap_Walk+0x218> <== ALWAYS TAKEN
40008624: ac 10 00 17 mov %l7, %l6
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40008628: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
4000862c: 92 10 20 01 mov 1, %o1
40008630: 96 10 00 16 mov %l6, %o3
40008634: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008638: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
4000863c: 9f c4 40 00 call %l1
40008640: 94 12 a2 b0 or %o2, 0x2b0, %o2
40008644: 81 c7 e0 08 ret
40008648: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
4000864c: 92 10 20 01 mov 1, %o1
40008650: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008654: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40008658: 9f c4 40 00 call %l1
4000865c: 94 12 a2 38 or %o2, 0x238, %o2
40008660: 81 c7 e0 08 ret
40008664: 81 e8 00 00 restore
40008668: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
4000866c: 80 a7 40 17 cmp %i5, %l7
40008670: 0a bf ff ef bcs 4000862c <_Heap_Walk+0x1dc> <== NEVER TAKEN
40008674: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008678: c2 27 bf fc st %g1, [ %fp + -4 ]
4000867c: 90 05 e0 08 add %l7, 8, %o0
40008680: 7f ff e5 19 call 40001ae4 <.urem>
40008684: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40008688: 80 a2 20 00 cmp %o0, 0
4000868c: 12 80 00 2d bne 40008740 <_Heap_Walk+0x2f0> <== NEVER TAKEN
40008690: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008694: c4 05 e0 04 ld [ %l7 + 4 ], %g2
40008698: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
4000869c: 84 05 c0 02 add %l7, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400086a0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400086a4: 80 88 a0 01 btst 1, %g2
400086a8: 12 80 00 2f bne 40008764 <_Heap_Walk+0x314> <== NEVER TAKEN
400086ac: 84 10 00 10 mov %l0, %g2
400086b0: 10 80 00 17 b 4000870c <_Heap_Walk+0x2bc>
400086b4: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400086b8: 80 a4 00 16 cmp %l0, %l6
400086bc: 02 80 00 33 be 40008788 <_Heap_Walk+0x338>
400086c0: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400086c4: 18 bf ff da bgu 4000862c <_Heap_Walk+0x1dc>
400086c8: 90 10 00 19 mov %i1, %o0
400086cc: 80 a5 80 1d cmp %l6, %i5
400086d0: 18 bf ff d8 bgu 40008630 <_Heap_Walk+0x1e0> <== NEVER TAKEN
400086d4: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400086d8: 90 05 a0 08 add %l6, 8, %o0
400086dc: 7f ff e5 02 call 40001ae4 <.urem>
400086e0: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
400086e4: 80 a2 20 00 cmp %o0, 0
400086e8: 12 80 00 16 bne 40008740 <_Heap_Walk+0x2f0>
400086ec: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400086f0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
400086f4: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
400086f8: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400086fc: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008700: 80 88 60 01 btst 1, %g1
40008704: 12 80 00 18 bne 40008764 <_Heap_Walk+0x314>
40008708: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
4000870c: d8 05 e0 0c ld [ %l7 + 0xc ], %o4
40008710: 80 a3 00 02 cmp %o4, %g2
40008714: 22 bf ff e9 be,a 400086b8 <_Heap_Walk+0x268>
40008718: ec 05 e0 08 ld [ %l7 + 8 ], %l6
(*printer)(
4000871c: 90 10 00 19 mov %i1, %o0
40008720: 92 10 20 01 mov 1, %o1
40008724: 96 10 00 17 mov %l7, %o3
40008728: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000872c: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
40008730: 9f c4 40 00 call %l1
40008734: 94 12 a3 20 or %o2, 0x320, %o2
40008738: 81 c7 e0 08 ret
4000873c: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008740: 90 10 00 19 mov %i1, %o0
40008744: 92 10 20 01 mov 1, %o1
40008748: 96 10 00 16 mov %l6, %o3
4000874c: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008750: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008754: 9f c4 40 00 call %l1
40008758: 94 12 a2 d0 or %o2, 0x2d0, %o2
4000875c: 81 c7 e0 08 ret
40008760: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40008764: 90 10 00 19 mov %i1, %o0
40008768: 92 10 20 01 mov 1, %o1
4000876c: 96 10 00 16 mov %l6, %o3
40008770: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008774: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40008778: 9f c4 40 00 call %l1
4000877c: 94 12 a3 00 or %o2, 0x300, %o2
40008780: 81 c7 e0 08 ret
40008784: 81 e8 00 00 restore
40008788: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
4000878c: 35 10 00 56 sethi %hi(0x40015800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008790: 31 10 00 56 sethi %hi(0x40015800), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008794: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008798: b4 16 a0 e0 or %i2, 0xe0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
4000879c: b0 16 20 c8 or %i0, 0xc8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400087a0: 37 10 00 56 sethi %hi(0x40015800), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400087a4: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400087a8: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400087ac: 80 a0 40 16 cmp %g1, %l6
400087b0: 28 80 00 0c bleu,a 400087e0 <_Heap_Walk+0x390> <== ALWAYS TAKEN
400087b4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
400087b8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
400087bc: 92 10 20 01 mov 1, %o1
400087c0: 96 10 00 17 mov %l7, %o3
400087c4: 15 10 00 55 sethi %hi(0x40015400), %o2
400087c8: 98 10 00 16 mov %l6, %o4
400087cc: 94 12 a3 58 or %o2, 0x358, %o2
400087d0: 9f c4 40 00 call %l1
400087d4: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
400087d8: 81 c7 e0 08 ret
400087dc: 81 e8 00 00 restore
400087e0: 80 a0 40 16 cmp %g1, %l6
400087e4: 0a bf ff f6 bcs 400087bc <_Heap_Walk+0x36c>
400087e8: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
400087ec: 82 1d c0 15 xor %l7, %l5, %g1
400087f0: 80 a0 00 01 cmp %g0, %g1
400087f4: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400087f8: 90 10 00 1d mov %i5, %o0
400087fc: c2 27 bf fc st %g1, [ %fp + -4 ]
40008800: 7f ff e4 b9 call 40001ae4 <.urem>
40008804: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008808: 80 a2 20 00 cmp %o0, 0
4000880c: 02 80 00 05 be 40008820 <_Heap_Walk+0x3d0>
40008810: c2 07 bf fc ld [ %fp + -4 ], %g1
40008814: 80 88 60 ff btst 0xff, %g1
40008818: 12 80 00 79 bne 400089fc <_Heap_Walk+0x5ac>
4000881c: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008820: 80 a4 c0 1d cmp %l3, %i5
40008824: 08 80 00 05 bleu 40008838 <_Heap_Walk+0x3e8>
40008828: 80 a5 c0 16 cmp %l7, %l6
4000882c: 80 88 60 ff btst 0xff, %g1
40008830: 12 80 00 7c bne 40008a20 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
40008834: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008838: 2a 80 00 06 bcs,a 40008850 <_Heap_Walk+0x400>
4000883c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008840: 80 88 60 ff btst 0xff, %g1
40008844: 12 80 00 82 bne 40008a4c <_Heap_Walk+0x5fc>
40008848: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000884c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40008850: 80 88 60 01 btst 1, %g1
40008854: 02 80 00 19 be 400088b8 <_Heap_Walk+0x468>
40008858: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
4000885c: 80 a7 20 00 cmp %i4, 0
40008860: 22 80 00 0e be,a 40008898 <_Heap_Walk+0x448>
40008864: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
40008868: 90 10 00 19 mov %i1, %o0
4000886c: 92 10 20 00 clr %o1
40008870: 94 10 00 18 mov %i0, %o2
40008874: 96 10 00 17 mov %l7, %o3
40008878: 9f c4 40 00 call %l1
4000887c: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40008880: 80 a4 80 16 cmp %l2, %l6
40008884: 02 80 00 43 be 40008990 <_Heap_Walk+0x540>
40008888: ae 10 00 16 mov %l6, %l7
4000888c: f8 05 a0 04 ld [ %l6 + 4 ], %i4
40008890: 10 bf ff c5 b 400087a4 <_Heap_Walk+0x354>
40008894: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008898: 96 10 00 17 mov %l7, %o3
4000889c: 90 10 00 19 mov %i1, %o0
400088a0: 92 10 20 00 clr %o1
400088a4: 94 10 00 1a mov %i2, %o2
400088a8: 9f c4 40 00 call %l1
400088ac: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400088b0: 10 bf ff f5 b 40008884 <_Heap_Walk+0x434>
400088b4: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400088b8: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400088bc: c2 04 20 08 ld [ %l0 + 8 ], %g1
400088c0: 05 10 00 55 sethi %hi(0x40015400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
400088c4: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400088c8: 80 a0 40 0d cmp %g1, %o5
400088cc: 02 80 00 05 be 400088e0 <_Heap_Walk+0x490>
400088d0: 86 10 a0 c8 or %g2, 0xc8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
400088d4: 80 a4 00 0d cmp %l0, %o5
400088d8: 02 80 00 3e be 400089d0 <_Heap_Walk+0x580>
400088dc: 86 16 e0 90 or %i3, 0x90, %g3
block->next,
block->next == last_free_block ?
400088e0: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400088e4: 19 10 00 55 sethi %hi(0x40015400), %o4
400088e8: 80 a1 00 01 cmp %g4, %g1
400088ec: 02 80 00 05 be 40008900 <_Heap_Walk+0x4b0>
400088f0: 84 13 20 e8 or %o4, 0xe8, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400088f4: 80 a4 00 01 cmp %l0, %g1
400088f8: 02 80 00 33 be 400089c4 <_Heap_Walk+0x574>
400088fc: 84 16 e0 90 or %i3, 0x90, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008900: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008904: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
40008908: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
4000890c: 90 10 00 19 mov %i1, %o0
40008910: 92 10 20 00 clr %o1
40008914: 15 10 00 56 sethi %hi(0x40015800), %o2
40008918: 96 10 00 17 mov %l7, %o3
4000891c: 94 12 a0 20 or %o2, 0x20, %o2
40008920: 9f c4 40 00 call %l1
40008924: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40008928: da 05 80 00 ld [ %l6 ], %o5
4000892c: 80 a7 40 0d cmp %i5, %o5
40008930: 12 80 00 1a bne 40008998 <_Heap_Walk+0x548>
40008934: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
40008938: 02 80 00 29 be 400089dc <_Heap_Walk+0x58c>
4000893c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008940: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008944: 80 a4 00 01 cmp %l0, %g1
40008948: 02 80 00 0b be 40008974 <_Heap_Walk+0x524> <== NEVER TAKEN
4000894c: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
40008950: 80 a5 c0 01 cmp %l7, %g1
40008954: 02 bf ff cc be 40008884 <_Heap_Walk+0x434>
40008958: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
4000895c: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008960: 80 a4 00 01 cmp %l0, %g1
40008964: 12 bf ff fc bne 40008954 <_Heap_Walk+0x504>
40008968: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
4000896c: 90 10 00 19 mov %i1, %o0
40008970: 92 10 20 01 mov 1, %o1
40008974: 96 10 00 17 mov %l7, %o3
40008978: 15 10 00 56 sethi %hi(0x40015800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
4000897c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40008980: 9f c4 40 00 call %l1
40008984: 94 12 a1 08 or %o2, 0x108, %o2
40008988: 81 c7 e0 08 ret
4000898c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40008990: 81 c7 e0 08 ret
40008994: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
40008998: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
4000899c: 90 10 00 19 mov %i1, %o0
400089a0: 92 10 20 01 mov 1, %o1
400089a4: 96 10 00 17 mov %l7, %o3
400089a8: 15 10 00 56 sethi %hi(0x40015800), %o2
400089ac: 98 10 00 1d mov %i5, %o4
400089b0: 94 12 a0 58 or %o2, 0x58, %o2
400089b4: 9f c4 40 00 call %l1
400089b8: b0 10 20 00 clr %i0
400089bc: 81 c7 e0 08 ret
400089c0: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400089c4: 09 10 00 55 sethi %hi(0x40015400), %g4
400089c8: 10 bf ff ce b 40008900 <_Heap_Walk+0x4b0>
400089cc: 84 11 20 f8 or %g4, 0xf8, %g2 ! 400154f8 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
400089d0: 19 10 00 55 sethi %hi(0x40015400), %o4
400089d4: 10 bf ff c3 b 400088e0 <_Heap_Walk+0x490>
400089d8: 86 13 20 d8 or %o4, 0xd8, %g3 ! 400154d8 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
400089dc: 92 10 20 01 mov 1, %o1
400089e0: 96 10 00 17 mov %l7, %o3
400089e4: 15 10 00 56 sethi %hi(0x40015800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
400089e8: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
400089ec: 9f c4 40 00 call %l1
400089f0: 94 12 a0 98 or %o2, 0x98, %o2
400089f4: 81 c7 e0 08 ret
400089f8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
400089fc: 92 10 20 01 mov 1, %o1
40008a00: 96 10 00 17 mov %l7, %o3
40008a04: 15 10 00 55 sethi %hi(0x40015400), %o2
40008a08: 98 10 00 1d mov %i5, %o4
40008a0c: 94 12 a3 88 or %o2, 0x388, %o2
40008a10: 9f c4 40 00 call %l1
40008a14: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
40008a18: 81 c7 e0 08 ret
40008a1c: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
40008a20: 90 10 00 19 mov %i1, %o0
40008a24: 92 10 20 01 mov 1, %o1
40008a28: 96 10 00 17 mov %l7, %o3
40008a2c: 15 10 00 55 sethi %hi(0x40015400), %o2
40008a30: 98 10 00 1d mov %i5, %o4
40008a34: 94 12 a3 b8 or %o2, 0x3b8, %o2
40008a38: 9a 10 00 13 mov %l3, %o5
40008a3c: 9f c4 40 00 call %l1
40008a40: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40008a44: 81 c7 e0 08 ret
40008a48: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
40008a4c: 92 10 20 01 mov 1, %o1
40008a50: 96 10 00 17 mov %l7, %o3
40008a54: 15 10 00 55 sethi %hi(0x40015400), %o2
40008a58: 98 10 00 16 mov %l6, %o4
40008a5c: 94 12 a3 e8 or %o2, 0x3e8, %o2
40008a60: 9f c4 40 00 call %l1
40008a64: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
40008a68: 81 c7 e0 08 ret
40008a6c: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008a70: 10 bf ff 47 b 4000878c <_Heap_Walk+0x33c>
40008a74: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40006904 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
40006904: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40006908: 23 10 00 55 sethi %hi(0x40015400), %l1
4000690c: c2 04 61 64 ld [ %l1 + 0x164 ], %g1 ! 40015564 <_IO_Number_of_drivers>
40006910: 80 a0 60 00 cmp %g1, 0
40006914: 02 80 00 0c be 40006944 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
40006918: a0 10 20 00 clr %l0
4000691c: a2 14 61 64 or %l1, 0x164, %l1
(void) rtems_io_initialize( major, 0, NULL );
40006920: 90 10 00 10 mov %l0, %o0
40006924: 92 10 20 00 clr %o1
40006928: 40 00 14 9b call 4000bb94 <rtems_io_initialize>
4000692c: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40006930: c2 04 40 00 ld [ %l1 ], %g1
40006934: a0 04 20 01 inc %l0
40006938: 80 a0 40 10 cmp %g1, %l0
4000693c: 18 bf ff fa bgu 40006924 <_IO_Initialize_all_drivers+0x20>
40006940: 90 10 00 10 mov %l0, %o0
40006944: 81 c7 e0 08 ret
40006948: 81 e8 00 00 restore
40006838 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
40006838: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
4000683c: 03 10 00 52 sethi %hi(0x40014800), %g1
40006840: 82 10 61 88 or %g1, 0x188, %g1 ! 40014988 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
40006844: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
40006848: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
4000684c: 80 a4 40 14 cmp %l1, %l4
40006850: 0a 80 00 08 bcs 40006870 <_IO_Manager_initialization+0x38>
40006854: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
40006858: 03 10 00 55 sethi %hi(0x40015400), %g1
4000685c: e0 20 61 68 st %l0, [ %g1 + 0x168 ] ! 40015568 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
40006860: 03 10 00 55 sethi %hi(0x40015400), %g1
40006864: e2 20 61 64 st %l1, [ %g1 + 0x164 ] ! 40015564 <_IO_Number_of_drivers>
return;
40006868: 81 c7 e0 08 ret
4000686c: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
40006870: 83 2d 20 03 sll %l4, 3, %g1
40006874: a7 2d 20 05 sll %l4, 5, %l3
40006878: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
4000687c: 40 00 0d 09 call 40009ca0 <_Workspace_Allocate_or_fatal_error>
40006880: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006884: 03 10 00 55 sethi %hi(0x40015400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006888: 25 10 00 55 sethi %hi(0x40015400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
4000688c: e8 20 61 64 st %l4, [ %g1 + 0x164 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006890: d0 24 a1 68 st %o0, [ %l2 + 0x168 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
40006894: 92 10 20 00 clr %o1
40006898: 40 00 1f ea call 4000e840 <memset>
4000689c: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400068a0: 80 a4 60 00 cmp %l1, 0
400068a4: 02 bf ff f1 be 40006868 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
400068a8: da 04 a1 68 ld [ %l2 + 0x168 ], %o5
400068ac: 82 10 20 00 clr %g1
400068b0: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
400068b4: c4 04 00 01 ld [ %l0 + %g1 ], %g2
400068b8: 86 04 00 01 add %l0, %g1, %g3
400068bc: c4 23 40 01 st %g2, [ %o5 + %g1 ]
400068c0: d8 00 e0 04 ld [ %g3 + 4 ], %o4
400068c4: 84 03 40 01 add %o5, %g1, %g2
400068c8: d8 20 a0 04 st %o4, [ %g2 + 4 ]
400068cc: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400068d0: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
400068d4: d8 20 a0 08 st %o4, [ %g2 + 8 ]
400068d8: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400068dc: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
400068e0: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
400068e4: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400068e8: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
400068ec: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
400068f0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400068f4: 18 bf ff f0 bgu 400068b4 <_IO_Manager_initialization+0x7c>
400068f8: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
400068fc: 81 c7 e0 08 ret
40006900: 81 e8 00 00 restore
4000757c <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000757c: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007580: 1b 10 00 54 sethi %hi(0x40015000), %o5
40007584: 86 13 63 34 or %o5, 0x334, %g3 ! 40015334 <_Internal_errors_What_happened>
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40007588: 90 10 00 18 mov %i0, %o0
4000758c: 92 0e 60 ff and %i1, 0xff, %o1
40007590: 94 10 00 1a mov %i2, %o2
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
40007594: f0 23 63 34 st %i0, [ %o5 + 0x334 ]
_Internal_errors_What_happened.is_internal = is_internal;
40007598: f2 28 e0 04 stb %i1, [ %g3 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
4000759c: 40 00 08 5f call 40009718 <_User_extensions_Fatal>
400075a0: f4 20 e0 08 st %i2, [ %g3 + 8 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
400075a4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
400075a8: 03 10 00 54 sethi %hi(0x40015000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
400075ac: 7f ff e9 d9 call 40001d10 <sparc_disable_interrupts> <== NOT EXECUTED
400075b0: c4 20 63 f8 st %g2, [ %g1 + 0x3f8 ] ! 400153f8 <_System_state_Current><== NOT EXECUTED
400075b4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
400075b8: 30 80 00 00 b,a 400075b8 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007630 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007630: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007634: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007638: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
4000763c: 80 a0 60 00 cmp %g1, 0
40007640: 02 80 00 19 be 400076a4 <_Objects_Allocate+0x74> <== NEVER TAKEN
40007644: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007648: a2 04 20 20 add %l0, 0x20, %l1
4000764c: 7f ff fd 5c call 40006bbc <_Chain_Get>
40007650: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007654: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40007658: 80 a0 60 00 cmp %g1, 0
4000765c: 02 80 00 12 be 400076a4 <_Objects_Allocate+0x74>
40007660: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40007664: 80 a2 20 00 cmp %o0, 0
40007668: 02 80 00 11 be 400076ac <_Objects_Allocate+0x7c>
4000766c: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007670: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007674: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007678: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
4000767c: 40 00 28 2a call 40011724 <.udiv>
40007680: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007684: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007688: 91 2a 20 02 sll %o0, 2, %o0
4000768c: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
40007690: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40007694: 86 00 ff ff add %g3, -1, %g3
40007698: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
4000769c: 82 00 bf ff add %g2, -1, %g1
400076a0: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
400076a4: 81 c7 e0 08 ret
400076a8: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
400076ac: 40 00 00 11 call 400076f0 <_Objects_Extend_information>
400076b0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400076b4: 7f ff fd 42 call 40006bbc <_Chain_Get>
400076b8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
400076bc: b0 92 20 00 orcc %o0, 0, %i0
400076c0: 32 bf ff ed bne,a 40007674 <_Objects_Allocate+0x44>
400076c4: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
400076c8: 81 c7 e0 08 ret
400076cc: 81 e8 00 00 restore
400076f0 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
400076f0: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
400076f4: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
400076f8: 80 a5 20 00 cmp %l4, 0
400076fc: 02 80 00 a6 be 40007994 <_Objects_Extend_information+0x2a4>
40007700: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40007704: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007708: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
4000770c: ab 2d 60 10 sll %l5, 0x10, %l5
40007710: 92 10 00 13 mov %l3, %o1
40007714: 40 00 28 04 call 40011724 <.udiv>
40007718: 91 35 60 10 srl %l5, 0x10, %o0
4000771c: bb 2a 20 10 sll %o0, 0x10, %i5
40007720: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
40007724: 80 a7 60 00 cmp %i5, 0
40007728: 02 80 00 a3 be 400079b4 <_Objects_Extend_information+0x2c4><== NEVER TAKEN
4000772c: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
40007730: c2 05 00 00 ld [ %l4 ], %g1
40007734: 80 a0 60 00 cmp %g1, 0
40007738: 02 80 00 a3 be 400079c4 <_Objects_Extend_information+0x2d4><== NEVER TAKEN
4000773c: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007740: 10 80 00 06 b 40007758 <_Objects_Extend_information+0x68>
40007744: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
40007748: c2 05 00 01 ld [ %l4 + %g1 ], %g1
4000774c: 80 a0 60 00 cmp %g1, 0
40007750: 22 80 00 08 be,a 40007770 <_Objects_Extend_information+0x80>
40007754: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
40007758: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
4000775c: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
40007760: 80 a7 40 10 cmp %i5, %l0
40007764: 18 bf ff f9 bgu 40007748 <_Objects_Extend_information+0x58>
40007768: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
4000776c: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40007770: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40007774: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40007778: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
4000777c: 82 10 63 ff or %g1, 0x3ff, %g1
40007780: 80 a5 40 01 cmp %l5, %g1
40007784: 18 80 00 95 bgu 400079d8 <_Objects_Extend_information+0x2e8>
40007788: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
4000778c: 40 00 27 ac call 4001163c <.umul>
40007790: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
40007794: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40007798: 80 a0 60 00 cmp %g1, 0
4000779c: 02 80 00 6a be 40007944 <_Objects_Extend_information+0x254>
400077a0: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
400077a4: 40 00 09 2f call 40009c60 <_Workspace_Allocate>
400077a8: 01 00 00 00 nop
if ( !new_object_block )
400077ac: a6 92 20 00 orcc %o0, 0, %l3
400077b0: 02 80 00 8a be 400079d8 <_Objects_Extend_information+0x2e8>
400077b4: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
400077b8: 80 8d 20 ff btst 0xff, %l4
400077bc: 22 80 00 3f be,a 400078b8 <_Objects_Extend_information+0x1c8>
400077c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
400077c4: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
400077c8: 91 2d 20 01 sll %l4, 1, %o0
400077cc: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
400077d0: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
400077d4: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
400077d8: 40 00 09 22 call 40009c60 <_Workspace_Allocate>
400077dc: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
400077e0: ac 92 20 00 orcc %o0, 0, %l6
400077e4: 02 80 00 7b be 400079d0 <_Objects_Extend_information+0x2e0>
400077e8: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
400077ec: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
400077f0: 80 a4 80 01 cmp %l2, %g1
400077f4: ae 05 80 14 add %l6, %l4, %l7
400077f8: 0a 80 00 57 bcs 40007954 <_Objects_Extend_information+0x264>
400077fc: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40007800: 80 a4 a0 00 cmp %l2, 0
40007804: 02 80 00 07 be 40007820 <_Objects_Extend_information+0x130><== NEVER TAKEN
40007808: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
4000780c: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40007810: 82 00 60 01 inc %g1
40007814: 80 a4 80 01 cmp %l2, %g1
40007818: 18 bf ff fd bgu 4000780c <_Objects_Extend_information+0x11c><== NEVER TAKEN
4000781c: c0 20 80 14 clr [ %g2 + %l4 ]
40007820: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40007824: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
40007828: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000782c: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40007830: 80 a4 40 03 cmp %l1, %g3
40007834: 1a 80 00 0a bcc 4000785c <_Objects_Extend_information+0x16c><== NEVER TAKEN
40007838: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
4000783c: 83 2c 60 02 sll %l1, 2, %g1
40007840: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40007844: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
40007848: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
4000784c: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40007850: 80 a0 80 03 cmp %g2, %g3
40007854: 0a bf ff fd bcs 40007848 <_Objects_Extend_information+0x158>
40007858: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
4000785c: 7f ff e9 2d call 40001d10 <sparc_disable_interrupts>
40007860: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007864: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40007868: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
4000786c: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
40007870: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
40007874: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007878: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
4000787c: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
40007880: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
40007884: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40007888: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000788c: 03 00 00 40 sethi %hi(0x10000), %g1
40007890: ab 35 60 10 srl %l5, 0x10, %l5
40007894: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007898: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000789c: 82 10 40 15 or %g1, %l5, %g1
400078a0: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
400078a4: 7f ff e9 1f call 40001d20 <sparc_enable_interrupts>
400078a8: 01 00 00 00 nop
_Workspace_Free( old_tables );
400078ac: 40 00 08 f6 call 40009c84 <_Workspace_Free>
400078b0: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400078b4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400078b8: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
400078bc: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
400078c0: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400078c4: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400078c8: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400078cc: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400078d0: 90 10 00 12 mov %l2, %o0
400078d4: 40 00 10 c7 call 4000bbf0 <_Chain_Initialize>
400078d8: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
400078dc: 10 80 00 0d b 40007910 <_Objects_Extend_information+0x220>
400078e0: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
400078e4: c6 16 20 04 lduh [ %i0 + 4 ], %g3
400078e8: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400078ec: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400078f0: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400078f4: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400078f8: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
400078fc: 90 10 00 13 mov %l3, %o0
40007900: 92 10 00 01 mov %g1, %o1
index++;
40007904: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40007908: 7f ff fc 97 call 40006b64 <_Chain_Append>
4000790c: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40007910: 7f ff fc ab call 40006bbc <_Chain_Get>
40007914: 90 10 00 12 mov %l2, %o0
40007918: 82 92 20 00 orcc %o0, 0, %g1
4000791c: 32 bf ff f2 bne,a 400078e4 <_Objects_Extend_information+0x1f4>
40007920: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
40007924: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
40007928: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
4000792c: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
40007930: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
40007934: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
40007938: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
4000793c: 81 c7 e0 08 ret
40007940: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
40007944: 40 00 08 d7 call 40009ca0 <_Workspace_Allocate_or_fatal_error>
40007948: 01 00 00 00 nop
4000794c: 10 bf ff 9b b 400077b8 <_Objects_Extend_information+0xc8>
40007950: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
40007954: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
40007958: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
4000795c: 40 00 1b 80 call 4000e75c <memcpy>
40007960: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
40007964: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
40007968: 94 10 00 1d mov %i5, %o2
4000796c: 40 00 1b 7c call 4000e75c <memcpy>
40007970: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40007974: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007978: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
4000797c: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007980: 90 10 00 14 mov %l4, %o0
40007984: 40 00 1b 76 call 4000e75c <memcpy>
40007988: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000798c: 10 bf ff a7 b 40007828 <_Objects_Extend_information+0x138>
40007990: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007994: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007998: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
4000799c: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400079a0: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400079a4: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
400079a8: ba 10 20 00 clr %i5
400079ac: 10 bf ff 71 b 40007770 <_Objects_Extend_information+0x80>
400079b0: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
400079b4: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400079b8: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400079bc: 10 bf ff 6d b 40007770 <_Objects_Extend_information+0x80> <== NOT EXECUTED
400079c0: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
400079c4: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400079c8: 10 bf ff 6a b 40007770 <_Objects_Extend_information+0x80> <== NOT EXECUTED
400079cc: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
400079d0: 40 00 08 ad call 40009c84 <_Workspace_Free>
400079d4: 90 10 00 13 mov %l3, %o0
return;
400079d8: 81 c7 e0 08 ret
400079dc: 81 e8 00 00 restore
40007a8c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40007a8c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40007a90: b3 2e 60 10 sll %i1, 0x10, %i1
40007a94: b3 36 60 10 srl %i1, 0x10, %i1
40007a98: 80 a6 60 00 cmp %i1, 0
40007a9c: 12 80 00 04 bne 40007aac <_Objects_Get_information+0x20>
40007aa0: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40007aa4: 81 c7 e0 08 ret
40007aa8: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007aac: 40 00 11 d6 call 4000c204 <_Objects_API_maximum_class>
40007ab0: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40007ab4: 80 a2 20 00 cmp %o0, 0
40007ab8: 02 bf ff fb be 40007aa4 <_Objects_Get_information+0x18>
40007abc: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007ac0: 0a bf ff f9 bcs 40007aa4 <_Objects_Get_information+0x18>
40007ac4: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007ac8: b1 2e 20 02 sll %i0, 2, %i0
40007acc: 82 10 62 08 or %g1, 0x208, %g1
40007ad0: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40007ad4: 80 a0 60 00 cmp %g1, 0
40007ad8: 02 bf ff f3 be 40007aa4 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007adc: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007ae0: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40007ae4: 80 a4 20 00 cmp %l0, 0
40007ae8: 02 bf ff ef be 40007aa4 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007aec: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007af0: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40007af4: 80 a0 00 01 cmp %g0, %g1
40007af8: 82 60 20 00 subx %g0, 0, %g1
40007afc: 10 bf ff ea b 40007aa4 <_Objects_Get_information+0x18>
40007b00: a0 0c 00 01 and %l0, %g1, %l0
4000987c <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
4000987c: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
40009880: 80 a6 60 00 cmp %i1, 0
40009884: 12 80 00 05 bne 40009898 <_Objects_Get_name_as_string+0x1c>
40009888: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
4000988c: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
40009890: 81 c7 e0 08 ret
40009894: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
40009898: 02 bf ff fe be 40009890 <_Objects_Get_name_as_string+0x14>
4000989c: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400098a0: 12 80 00 04 bne 400098b0 <_Objects_Get_name_as_string+0x34>
400098a4: 03 10 00 80 sethi %hi(0x40020000), %g1
400098a8: c2 00 61 e8 ld [ %g1 + 0x1e8 ], %g1 ! 400201e8 <_Per_CPU_Information+0xc>
400098ac: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
400098b0: 7f ff ff b1 call 40009774 <_Objects_Get_information_id>
400098b4: 90 10 00 18 mov %i0, %o0
if ( !information )
400098b8: 80 a2 20 00 cmp %o0, 0
400098bc: 22 bf ff f5 be,a 40009890 <_Objects_Get_name_as_string+0x14>
400098c0: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
400098c4: 92 10 00 18 mov %i0, %o1
400098c8: 40 00 00 2c call 40009978 <_Objects_Get>
400098cc: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
400098d0: c2 07 bf fc ld [ %fp + -4 ], %g1
400098d4: 80 a0 60 00 cmp %g1, 0
400098d8: 32 bf ff ee bne,a 40009890 <_Objects_Get_name_as_string+0x14>
400098dc: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
400098e0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
400098e4: c0 2f bf f4 clrb [ %fp + -12 ]
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
400098e8: 85 30 60 08 srl %g1, 8, %g2
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
400098ec: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
400098f0: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
400098f4: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
400098f8: c6 2f bf f0 stb %g3, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
400098fc: c8 2f bf f1 stb %g4, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
40009900: c2 2f bf f3 stb %g1, [ %fp + -13 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
40009904: b2 86 7f ff addcc %i1, -1, %i1
40009908: 02 80 00 19 be 4000996c <_Objects_Get_name_as_string+0xf0><== NEVER TAKEN
4000990c: 84 10 00 1a mov %i2, %g2
40009910: 80 a0 e0 00 cmp %g3, 0
40009914: 02 80 00 16 be 4000996c <_Objects_Get_name_as_string+0xf0>
40009918: 19 10 00 7c sethi %hi(0x4001f000), %o4
4000991c: 82 10 20 00 clr %g1
40009920: 10 80 00 06 b 40009938 <_Objects_Get_name_as_string+0xbc>
40009924: 98 13 23 58 or %o4, 0x358, %o4
40009928: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
4000992c: 80 a3 60 00 cmp %o5, 0
40009930: 02 80 00 0f be 4000996c <_Objects_Get_name_as_string+0xf0>
40009934: c6 09 00 01 ldub [ %g4 + %g1 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
40009938: da 03 00 00 ld [ %o4 ], %o5
4000993c: 88 08 e0 ff and %g3, 0xff, %g4
40009940: 88 03 40 04 add %o5, %g4, %g4
40009944: da 49 20 01 ldsb [ %g4 + 1 ], %o5
40009948: 80 8b 60 97 btst 0x97, %o5
4000994c: 12 80 00 03 bne 40009958 <_Objects_Get_name_as_string+0xdc>
40009950: 88 07 bf f0 add %fp, -16, %g4
40009954: 86 10 20 2a mov 0x2a, %g3
40009958: c6 28 80 00 stb %g3, [ %g2 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000995c: 82 00 60 01 inc %g1
40009960: 80 a0 40 19 cmp %g1, %i1
40009964: 0a bf ff f1 bcs 40009928 <_Objects_Get_name_as_string+0xac>
40009968: 84 00 a0 01 inc %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
4000996c: 40 00 03 6d call 4000a720 <_Thread_Enable_dispatch>
40009970: c0 28 80 00 clrb [ %g2 ]
return name;
40009974: 30 bf ff c7 b,a 40009890 <_Objects_Get_name_as_string+0x14>
40018ef0 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018ef0: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40018ef4: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018ef8: 84 22 40 02 sub %o1, %g2, %g2
40018efc: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40018f00: 80 a0 80 01 cmp %g2, %g1
40018f04: 18 80 00 09 bgu 40018f28 <_Objects_Get_no_protection+0x38>
40018f08: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018f0c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40018f10: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40018f14: 80 a2 20 00 cmp %o0, 0
40018f18: 02 80 00 05 be 40018f2c <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018f1c: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018f20: 81 c3 e0 08 retl
40018f24: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018f28: 82 10 20 01 mov 1, %g1
return NULL;
40018f2c: 90 10 20 00 clr %o0
}
40018f30: 81 c3 e0 08 retl
40018f34: c2 22 80 00 st %g1, [ %o2 ]
40009330 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40009330: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40009334: 80 a6 20 00 cmp %i0, 0
40009338: 12 80 00 06 bne 40009350 <_Objects_Id_to_name+0x20>
4000933c: 83 36 20 18 srl %i0, 0x18, %g1
40009340: 03 10 00 7b sethi %hi(0x4001ec00), %g1
40009344: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 4001eed8 <_Per_CPU_Information+0xc>
40009348: f0 00 60 08 ld [ %g1 + 8 ], %i0
4000934c: 83 36 20 18 srl %i0, 0x18, %g1
40009350: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009354: 84 00 7f ff add %g1, -1, %g2
40009358: 80 a0 a0 02 cmp %g2, 2
4000935c: 18 80 00 17 bgu 400093b8 <_Objects_Id_to_name+0x88>
40009360: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009364: 83 28 60 02 sll %g1, 2, %g1
40009368: 05 10 00 7b sethi %hi(0x4001ec00), %g2
4000936c: 84 10 a0 08 or %g2, 8, %g2 ! 4001ec08 <_Objects_Information_table>
40009370: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40009374: 80 a0 60 00 cmp %g1, 0
40009378: 02 80 00 10 be 400093b8 <_Objects_Id_to_name+0x88>
4000937c: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009380: 85 28 a0 02 sll %g2, 2, %g2
40009384: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009388: 80 a2 20 00 cmp %o0, 0
4000938c: 02 80 00 0b be 400093b8 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
40009390: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40009394: 7f ff ff ca call 400092bc <_Objects_Get>
40009398: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000939c: 80 a2 20 00 cmp %o0, 0
400093a0: 02 80 00 06 be 400093b8 <_Objects_Id_to_name+0x88>
400093a4: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
400093a8: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
400093ac: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
400093b0: 40 00 03 7d call 4000a1a4 <_Thread_Enable_dispatch>
400093b4: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
400093b8: 81 c7 e0 08 ret
400093bc: 91 e8 00 10 restore %g0, %l0, %o0
40007d8c <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40007d8c: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40007d90: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40007d94: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40007d98: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40007d9c: 92 10 00 11 mov %l1, %o1
40007da0: 40 00 26 61 call 40011724 <.udiv>
40007da4: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007da8: 80 a2 20 00 cmp %o0, 0
40007dac: 02 80 00 34 be 40007e7c <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40007db0: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40007db4: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40007db8: c2 01 00 00 ld [ %g4 ], %g1
40007dbc: 80 a4 40 01 cmp %l1, %g1
40007dc0: 02 80 00 0f be 40007dfc <_Objects_Shrink_information+0x70><== NEVER TAKEN
40007dc4: 82 10 20 00 clr %g1
40007dc8: 10 80 00 07 b 40007de4 <_Objects_Shrink_information+0x58>
40007dcc: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40007dd0: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40007dd4: 80 a4 40 02 cmp %l1, %g2
40007dd8: 02 80 00 0a be 40007e00 <_Objects_Shrink_information+0x74>
40007ddc: a0 04 00 11 add %l0, %l1, %l0
40007de0: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007de4: 82 00 60 01 inc %g1
40007de8: 80 a2 00 01 cmp %o0, %g1
40007dec: 38 bf ff f9 bgu,a 40007dd0 <_Objects_Shrink_information+0x44>
40007df0: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40007df4: 81 c7 e0 08 ret
40007df8: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40007dfc: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
40007e00: 10 80 00 06 b 40007e18 <_Objects_Shrink_information+0x8c>
40007e04: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40007e08: 80 a4 60 00 cmp %l1, 0
40007e0c: 22 80 00 12 be,a 40007e54 <_Objects_Shrink_information+0xc8>
40007e10: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40007e14: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
40007e18: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007e1c: 80 a0 40 10 cmp %g1, %l0
40007e20: 0a bf ff fa bcs 40007e08 <_Objects_Shrink_information+0x7c>
40007e24: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40007e28: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40007e2c: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007e30: 80 a0 40 02 cmp %g1, %g2
40007e34: 1a bf ff f6 bcc 40007e0c <_Objects_Shrink_information+0x80>
40007e38: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40007e3c: 7f ff fb 56 call 40006b94 <_Chain_Extract>
40007e40: 01 00 00 00 nop
}
}
while ( the_object );
40007e44: 80 a4 60 00 cmp %l1, 0
40007e48: 12 bf ff f4 bne 40007e18 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40007e4c: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40007e50: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40007e54: 40 00 07 8c call 40009c84 <_Workspace_Free>
40007e58: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40007e5c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40007e60: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40007e64: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40007e68: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40007e6c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40007e70: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40007e74: 82 20 80 01 sub %g2, %g1, %g1
40007e78: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40007e7c: 81 c7 e0 08 ret
40007e80: 81 e8 00 00 restore
40006530 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
40006530: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
40006534: 03 10 00 52 sethi %hi(0x40014800), %g1
40006538: 82 10 61 50 or %g1, 0x150, %g1 ! 40014950 <Configuration_RTEMS_API>
4000653c: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
40006540: 80 a4 20 00 cmp %l0, 0
40006544: 02 80 00 19 be 400065a8 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
40006548: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
4000654c: 80 a4 a0 00 cmp %l2, 0
40006550: 02 80 00 16 be 400065a8 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
40006554: a2 10 20 00 clr %l1
40006558: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
4000655c: d4 04 20 04 ld [ %l0 + 4 ], %o2
40006560: d0 04 00 00 ld [ %l0 ], %o0
40006564: d2 04 20 08 ld [ %l0 + 8 ], %o1
40006568: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
4000656c: d8 04 20 0c ld [ %l0 + 0xc ], %o4
40006570: 7f ff ff 6d call 40006324 <rtems_task_create>
40006574: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
40006578: 94 92 20 00 orcc %o0, 0, %o2
4000657c: 12 80 00 0d bne 400065b0 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006580: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
40006584: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40006588: 40 00 00 0e call 400065c0 <rtems_task_start>
4000658c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40006590: 94 92 20 00 orcc %o0, 0, %o2
40006594: 12 80 00 07 bne 400065b0 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006598: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
4000659c: 80 a4 80 11 cmp %l2, %l1
400065a0: 18 bf ff ef bgu 4000655c <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
400065a4: a0 04 20 1c add %l0, 0x1c, %l0
400065a8: 81 c7 e0 08 ret
400065ac: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
400065b0: 90 10 20 01 mov 1, %o0
400065b4: 40 00 03 f2 call 4000757c <_Internal_error_Occurred>
400065b8: 92 10 20 01 mov 1, %o1
4000b950 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000b950: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000b954: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000b958: 80 a4 20 00 cmp %l0, 0
4000b95c: 02 80 00 1f be 4000b9d8 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000b960: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000b964: 7f ff d8 eb call 40001d10 <sparc_disable_interrupts>
4000b968: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000b96c: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000b970: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000b974: 7f ff d8 eb call 40001d20 <sparc_enable_interrupts>
4000b978: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000b97c: 80 a4 60 00 cmp %l1, 0
4000b980: 32 80 00 04 bne,a 4000b990 <_RTEMS_tasks_Post_switch_extension+0x40>
4000b984: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b988: 81 c7 e0 08 ret
4000b98c: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b990: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000b994: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b998: a4 07 bf fc add %fp, -4, %l2
4000b99c: 27 00 00 3f sethi %hi(0xfc00), %l3
4000b9a0: 94 10 00 12 mov %l2, %o2
4000b9a4: 92 14 e3 ff or %l3, 0x3ff, %o1
4000b9a8: 40 00 07 c9 call 4000d8cc <rtems_task_mode>
4000b9ac: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000b9b0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000b9b4: 9f c0 40 00 call %g1
4000b9b8: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000b9bc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b9c0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000b9c4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b9c8: 92 14 e3 ff or %l3, 0x3ff, %o1
4000b9cc: 94 10 00 12 mov %l2, %o2
4000b9d0: 40 00 07 bf call 4000d8cc <rtems_task_mode>
4000b9d4: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000b9d8: 81 c7 e0 08 ret
4000b9dc: 81 e8 00 00 restore
4000b8c0 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000b8c0: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000b8c4: 80 a0 60 00 cmp %g1, 0
4000b8c8: 22 80 00 0b be,a 4000b8f4 <_RTEMS_tasks_Switch_extension+0x34>
4000b8cc: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
tvp->tval = *tvp->ptr;
4000b8d0: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000b8d4: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000b8d8: c8 00 80 00 ld [ %g2 ], %g4
4000b8dc: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000b8e0: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000b8e4: 80 a0 60 00 cmp %g1, 0
4000b8e8: 12 bf ff fa bne 4000b8d0 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000b8ec: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000b8f0: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
while (tvp) {
4000b8f4: 80 a0 60 00 cmp %g1, 0
4000b8f8: 02 80 00 0a be 4000b920 <_RTEMS_tasks_Switch_extension+0x60>
4000b8fc: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000b900: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000b904: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000b908: c8 00 80 00 ld [ %g2 ], %g4
4000b90c: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000b910: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000b914: 80 a0 60 00 cmp %g1, 0
4000b918: 12 bf ff fa bne 4000b900 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000b91c: c6 20 80 00 st %g3, [ %g2 ]
4000b920: 81 c3 e0 08 retl
40007848 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
40007848: 9d e3 bf 98 save %sp, -104, %sp
4000784c: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007850: 92 10 00 18 mov %i0, %o1
40007854: 90 12 21 fc or %o0, 0x1fc, %o0
40007858: 40 00 08 39 call 4000993c <_Objects_Get>
4000785c: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007860: c2 07 bf fc ld [ %fp + -4 ], %g1
40007864: 80 a0 60 00 cmp %g1, 0
40007868: 12 80 00 16 bne 400078c0 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
4000786c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40007870: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40007874: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40007878: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
4000787c: 80 88 80 01 btst %g2, %g1
40007880: 22 80 00 08 be,a 400078a0 <_Rate_monotonic_Timeout+0x58>
40007884: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007888: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
4000788c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007890: 80 a0 80 01 cmp %g2, %g1
40007894: 02 80 00 19 be 400078f8 <_Rate_monotonic_Timeout+0xb0>
40007898: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
4000789c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
400078a0: 80 a0 60 01 cmp %g1, 1
400078a4: 02 80 00 09 be 400078c8 <_Rate_monotonic_Timeout+0x80>
400078a8: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
400078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400078b0: 03 10 00 7c sethi %hi(0x4001f000), %g1
400078b4: c4 00 63 60 ld [ %g1 + 0x360 ], %g2 ! 4001f360 <_Thread_Dispatch_disable_level>
400078b8: 84 00 bf ff add %g2, -1, %g2
400078bc: c4 20 63 60 st %g2, [ %g1 + 0x360 ]
400078c0: 81 c7 e0 08 ret
400078c4: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400078c8: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
400078cc: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400078d0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
400078d4: 7f ff fe 4c call 40007204 <_Rate_monotonic_Initiate_statistics>
400078d8: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400078dc: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400078e0: 11 10 00 7d sethi %hi(0x4001f400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400078e4: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400078e8: 90 12 20 20 or %o0, 0x20, %o0
400078ec: 40 00 0f cd call 4000b820 <_Watchdog_Insert>
400078f0: 92 04 20 10 add %l0, 0x10, %o1
400078f4: 30 bf ff ef b,a 400078b0 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400078f8: 40 00 0a cb call 4000a424 <_Thread_Clear_state>
400078fc: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40007900: 10 bf ff f5 b 400078d4 <_Rate_monotonic_Timeout+0x8c>
40007904: 90 10 00 10 mov %l0, %o0
40007274 <_Rate_monotonic_Update_statistics>:
}
void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
40007274: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
40007278: c4 06 20 54 ld [ %i0 + 0x54 ], %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
4000727c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
40007280: 84 00 a0 01 inc %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
40007284: 80 a0 60 04 cmp %g1, 4
40007288: 02 80 00 33 be 40007354 <_Rate_monotonic_Update_statistics+0xe0>
4000728c: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
/*
* Grab status for time statistics.
*/
valid_status =
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
40007290: a0 07 bf f0 add %fp, -16, %l0
40007294: a2 07 bf f8 add %fp, -8, %l1
stats->missed_count++;
/*
* Grab status for time statistics.
*/
valid_status =
40007298: 90 10 00 18 mov %i0, %o0
4000729c: 92 10 00 10 mov %l0, %o1
400072a0: 7f ff ff ae call 40007158 <_Rate_monotonic_Get_status>
400072a4: 94 10 00 11 mov %l1, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
400072a8: 80 8a 20 ff btst 0xff, %o0
400072ac: 02 80 00 28 be 4000734c <_Rate_monotonic_Update_statistics+0xd8><== NEVER TAKEN
400072b0: 92 10 00 11 mov %l1, %o1
/*
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
400072b4: 40 00 10 06 call 4000b2cc <_Timespec_Add_to>
400072b8: 90 06 20 6c add %i0, 0x6c, %o0
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
400072bc: 90 10 00 11 mov %l1, %o0
400072c0: 40 00 10 70 call 4000b480 <_Timespec_Less_than>
400072c4: 92 06 20 5c add %i0, 0x5c, %o1
400072c8: 80 8a 20 ff btst 0xff, %o0
400072cc: 02 80 00 06 be 400072e4 <_Rate_monotonic_Update_statistics+0x70>
400072d0: 90 10 00 11 mov %l1, %o0
stats->min_cpu_time = executed;
400072d4: c2 07 bf f8 ld [ %fp + -8 ], %g1
400072d8: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
400072dc: c2 07 bf fc ld [ %fp + -4 ], %g1
400072e0: c2 26 20 60 st %g1, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
400072e4: 40 00 10 55 call 4000b438 <_Timespec_Greater_than>
400072e8: 92 06 20 64 add %i0, 0x64, %o1
400072ec: 80 8a 20 ff btst 0xff, %o0
400072f0: 02 80 00 06 be 40007308 <_Rate_monotonic_Update_statistics+0x94>
400072f4: 92 10 00 10 mov %l0, %o1
stats->max_cpu_time = executed;
400072f8: c2 07 bf f8 ld [ %fp + -8 ], %g1
400072fc: c2 26 20 64 st %g1, [ %i0 + 0x64 ]
40007300: c2 07 bf fc ld [ %fp + -4 ], %g1
40007304: c2 26 20 68 st %g1, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
40007308: 40 00 0f f1 call 4000b2cc <_Timespec_Add_to>
4000730c: 90 06 20 84 add %i0, 0x84, %o0
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
40007310: 90 10 00 10 mov %l0, %o0
40007314: 40 00 10 5b call 4000b480 <_Timespec_Less_than>
40007318: 92 06 20 74 add %i0, 0x74, %o1
4000731c: 80 8a 20 ff btst 0xff, %o0
40007320: 12 80 00 11 bne 40007364 <_Rate_monotonic_Update_statistics+0xf0>
40007324: c2 07 bf f0 ld [ %fp + -16 ], %g1
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
40007328: 90 10 00 10 mov %l0, %o0
4000732c: 40 00 10 43 call 4000b438 <_Timespec_Greater_than>
40007330: 92 06 20 7c add %i0, 0x7c, %o1
40007334: 80 8a 20 ff btst 0xff, %o0
40007338: 02 80 00 05 be 4000734c <_Rate_monotonic_Update_statistics+0xd8>
4000733c: c2 07 bf f0 ld [ %fp + -16 ], %g1
stats->max_wall_time = since_last_period;
40007340: c2 26 20 7c st %g1, [ %i0 + 0x7c ]
40007344: c2 07 bf f4 ld [ %fp + -12 ], %g1
40007348: c2 26 20 80 st %g1, [ %i0 + 0x80 ]
4000734c: 81 c7 e0 08 ret
40007350: 81 e8 00 00 restore
*/
stats = &the_period->Statistics;
stats->count++;
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
stats->missed_count++;
40007354: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
40007358: 82 00 60 01 inc %g1
4000735c: 10 bf ff cd b 40007290 <_Rate_monotonic_Update_statistics+0x1c>
40007360: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
stats->min_wall_time = since_last_period;
40007364: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
40007368: c2 07 bf f4 ld [ %fp + -12 ], %g1
4000736c: 10 bf ff ef b 40007328 <_Rate_monotonic_Update_statistics+0xb4>
40007370: c2 26 20 78 st %g1, [ %i0 + 0x78 ]
40007f28 <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
40007f28: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
40007f2c: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
40007f30: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
40007f34: c8 00 40 00 ld [ %g1 ], %g4
40007f38: c6 00 60 08 ld [ %g1 + 8 ], %g3
40007f3c: 80 a1 00 03 cmp %g4, %g3
40007f40: 22 80 00 3a be,a 40008028 <_Scheduler_priority_Block+0x100>
40007f44: c6 00 a0 04 ld [ %g2 + 4 ], %g3
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40007f48: c4 06 00 00 ld [ %i0 ], %g2
previous = the_node->previous;
40007f4c: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
40007f50: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40007f54: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
40007f58: 03 10 00 55 sethi %hi(0x40015400), %g1
40007f5c: 82 10 60 cc or %g1, 0xcc, %g1 ! 400154cc <_Per_CPU_Information>
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
40007f60: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
40007f64: 80 a6 00 02 cmp %i0, %g2
40007f68: 02 80 00 09 be 40007f8c <_Scheduler_priority_Block+0x64>
40007f6c: 05 10 00 55 sethi %hi(0x40015400), %g2
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
40007f70: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40007f74: 80 a6 00 02 cmp %i0, %g2
40007f78: 12 80 00 03 bne 40007f84 <_Scheduler_priority_Block+0x5c>
40007f7c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40007f80: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40007f84: 81 c7 e0 08 ret
40007f88: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007f8c: c4 10 a0 f0 lduh [ %g2 + 0xf0 ], %g2
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40007f90: 07 10 00 52 sethi %hi(0x40014800), %g3
40007f94: 85 28 a0 10 sll %g2, 0x10, %g2
40007f98: 89 30 a0 10 srl %g2, 0x10, %g4
40007f9c: 80 a1 20 ff cmp %g4, 0xff
40007fa0: 18 80 00 37 bgu 4000807c <_Scheduler_priority_Block+0x154>
40007fa4: c6 00 e0 b0 ld [ %g3 + 0xb0 ], %g3
40007fa8: 1b 10 00 50 sethi %hi(0x40014000), %o5
40007fac: 9a 13 60 40 or %o5, 0x40, %o5 ! 40014040 <__log2table>
40007fb0: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
40007fb4: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007fb8: 85 28 a0 10 sll %g2, 0x10, %g2
40007fbc: 19 10 00 55 sethi %hi(0x40015400), %o4
40007fc0: 89 30 a0 0f srl %g2, 0xf, %g4
40007fc4: 98 13 21 00 or %o4, 0x100, %o4
40007fc8: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
40007fcc: 89 29 20 10 sll %g4, 0x10, %g4
40007fd0: 99 31 20 10 srl %g4, 0x10, %o4
40007fd4: 80 a3 20 ff cmp %o4, 0xff
40007fd8: 38 80 00 27 bgu,a 40008074 <_Scheduler_priority_Block+0x14c>
40007fdc: 89 31 20 18 srl %g4, 0x18, %g4
40007fe0: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
40007fe4: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
40007fe8: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
40007fec: 89 29 20 10 sll %g4, 0x10, %g4
40007ff0: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40007ff4: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40007ff8: 9b 29 20 02 sll %g4, 2, %o5
40007ffc: 85 29 20 04 sll %g4, 4, %g2
40008000: 84 20 80 0d sub %g2, %o5, %g2
}
40008004: da 00 c0 02 ld [ %g3 + %g2 ], %o5
40008008: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000800c: 84 00 a0 04 add %g2, 4, %g2
40008010: 80 a3 40 02 cmp %o5, %g2
40008014: 02 80 00 03 be 40008020 <_Scheduler_priority_Block+0xf8> <== NEVER TAKEN
40008018: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000801c: 88 10 00 0d mov %o5, %g4
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40008020: 10 bf ff d4 b 40007f70 <_Scheduler_priority_Block+0x48>
40008024: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
40008028: c8 10 a0 0e lduh [ %g2 + 0xe ], %g4
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4000802c: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40008030: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40008034: 9a 00 60 04 add %g1, 4, %o5
head->next = tail;
40008038: da 20 40 00 st %o5, [ %g1 ]
4000803c: c2 10 c0 00 lduh [ %g3 ], %g1
40008040: 82 08 40 04 and %g1, %g4, %g1
40008044: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
40008048: 83 28 60 10 sll %g1, 0x10, %g1
4000804c: 80 a0 60 00 cmp %g1, 0
40008050: 32 bf ff c3 bne,a 40007f5c <_Scheduler_priority_Block+0x34>
40008054: 03 10 00 55 sethi %hi(0x40015400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
40008058: 03 10 00 55 sethi %hi(0x40015400), %g1
4000805c: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
40008060: c6 10 60 f0 lduh [ %g1 + 0xf0 ], %g3
40008064: 84 08 c0 02 and %g3, %g2, %g2
40008068: c4 30 60 f0 sth %g2, [ %g1 + 0xf0 ]
4000806c: 10 bf ff bc b 40007f5c <_Scheduler_priority_Block+0x34>
40008070: 03 10 00 55 sethi %hi(0x40015400), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008074: 10 bf ff dd b 40007fe8 <_Scheduler_priority_Block+0xc0>
40008078: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000807c: 1b 10 00 50 sethi %hi(0x40014000), %o5
40008080: 85 30 a0 18 srl %g2, 0x18, %g2
40008084: 9a 13 60 40 or %o5, 0x40, %o5
40008088: 10 bf ff cc b 40007fb8 <_Scheduler_priority_Block+0x90>
4000808c: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
40008250 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
40008250: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008254: 03 10 00 55 sethi %hi(0x40015400), %g1
40008258: c2 10 60 f0 lduh [ %g1 + 0xf0 ], %g1 ! 400154f0 <_Priority_Major_bit_map>
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000825c: 05 10 00 52 sethi %hi(0x40014800), %g2
40008260: 83 28 60 10 sll %g1, 0x10, %g1
40008264: 87 30 60 10 srl %g1, 0x10, %g3
40008268: 80 a0 e0 ff cmp %g3, 0xff
4000826c: 18 80 00 26 bgu 40008304 <_Scheduler_priority_Schedule+0xb4>
40008270: c4 00 a0 b0 ld [ %g2 + 0xb0 ], %g2
40008274: 09 10 00 50 sethi %hi(0x40014000), %g4
40008278: 88 11 20 40 or %g4, 0x40, %g4 ! 40014040 <__log2table>
4000827c: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
40008280: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008284: 83 28 60 10 sll %g1, 0x10, %g1
40008288: 1b 10 00 55 sethi %hi(0x40015400), %o5
4000828c: 87 30 60 0f srl %g1, 0xf, %g3
40008290: 9a 13 61 00 or %o5, 0x100, %o5
40008294: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
40008298: 87 28 e0 10 sll %g3, 0x10, %g3
4000829c: 9b 30 e0 10 srl %g3, 0x10, %o5
400082a0: 80 a3 60 ff cmp %o5, 0xff
400082a4: 38 80 00 16 bgu,a 400082fc <_Scheduler_priority_Schedule+0xac>
400082a8: 87 30 e0 18 srl %g3, 0x18, %g3
400082ac: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
400082b0: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
400082b4: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
400082b8: 87 28 e0 10 sll %g3, 0x10, %g3
400082bc: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400082c0: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
400082c4: 89 28 e0 02 sll %g3, 2, %g4
400082c8: 83 28 e0 04 sll %g3, 4, %g1
400082cc: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
400082d0: c8 00 80 01 ld [ %g2 + %g1 ], %g4
400082d4: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400082d8: 82 00 60 04 add %g1, 4, %g1
400082dc: 80 a1 00 01 cmp %g4, %g1
400082e0: 02 80 00 03 be 400082ec <_Scheduler_priority_Schedule+0x9c><== NEVER TAKEN
400082e4: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
400082e8: 86 10 00 04 mov %g4, %g3
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
400082ec: 03 10 00 55 sethi %hi(0x40015400), %g1
400082f0: c6 20 60 dc st %g3, [ %g1 + 0xdc ] ! 400154dc <_Per_CPU_Information+0x10>
400082f4: 81 c7 e0 08 ret
400082f8: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400082fc: 10 bf ff ee b 400082b4 <_Scheduler_priority_Schedule+0x64>
40008300: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008304: 09 10 00 50 sethi %hi(0x40014000), %g4
40008308: 83 30 60 18 srl %g1, 0x18, %g1
4000830c: 88 11 20 40 or %g4, 0x40, %g4
40008310: 10 bf ff dd b 40008284 <_Scheduler_priority_Schedule+0x34>
40008314: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
4000842c <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
4000842c: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40008430: 25 10 00 55 sethi %hi(0x40015400), %l2
40008434: a4 14 a0 cc or %l2, 0xcc, %l2 ! 400154cc <_Per_CPU_Information>
40008438: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
4000843c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
40008440: 7f ff e6 34 call 40001d10 <sparc_disable_interrupts>
40008444: e2 00 40 00 ld [ %g1 ], %l1
40008448: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
4000844c: c4 04 40 00 ld [ %l1 ], %g2
40008450: c2 04 60 08 ld [ %l1 + 8 ], %g1
40008454: 80 a0 80 01 cmp %g2, %g1
40008458: 02 80 00 16 be 400084b0 <_Scheduler_priority_Yield+0x84>
4000845c: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40008460: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40008464: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
40008468: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000846c: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008470: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
40008474: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
40008478: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
4000847c: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40008480: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
40008484: 7f ff e6 27 call 40001d20 <sparc_enable_interrupts>
40008488: 01 00 00 00 nop
4000848c: 7f ff e6 21 call 40001d10 <sparc_disable_interrupts>
40008490: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40008494: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40008498: 80 a4 00 01 cmp %l0, %g1
4000849c: 02 80 00 0b be 400084c8 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
400084a0: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
400084a4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
400084a8: 7f ff e6 1e call 40001d20 <sparc_enable_interrupts>
400084ac: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
400084b0: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
400084b4: 80 a4 00 01 cmp %l0, %g1
400084b8: 02 bf ff fc be 400084a8 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
400084bc: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
400084c0: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
400084c4: 30 bf ff f9 b,a 400084a8 <_Scheduler_priority_Yield+0x7c><== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
400084c8: c2 04 40 00 ld [ %l1 ], %g1
400084cc: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
400084d0: 82 10 20 01 mov 1, %g1
400084d4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
400084d8: 30 bf ff f4 b,a 400084a8 <_Scheduler_priority_Yield+0x7c>
400086e4 <_Scheduler_simple_Ready_queue_Enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
400086e4: 03 10 00 54 sethi %hi(0x40015000), %g1
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
400086e8: c2 00 63 c0 ld [ %g1 + 0x3c0 ], %g1 ! 400153c0 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
400086ec: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
400086f0: c2 00 40 00 ld [ %g1 ], %g1
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
400086f4: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
400086f8: 80 a0 c0 02 cmp %g3, %g2
400086fc: 28 80 00 08 bleu,a 4000871c <_Scheduler_simple_Ready_queue_Enqueue_first+0x38>
40008700: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
40008704: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
40008708: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
4000870c: 80 a0 80 03 cmp %g2, %g3
40008710: 2a bf ff fe bcs,a 40008708 <_Scheduler_simple_Ready_queue_Enqueue_first+0x24><== NEVER TAKEN
40008714: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
40008718: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
4000871c: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40008720: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40008724: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
40008728: c4 22 00 00 st %g2, [ %o0 ]
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
4000872c: 81 c3 e0 08 retl
40008730: d0 20 a0 04 st %o0, [ %g2 + 4 ]
400070c8 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
400070c8: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400070cc: 05 10 00 54 sethi %hi(0x40015000), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400070d0: 03 10 00 52 sethi %hi(0x40014800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400070d4: c6 00 a3 b0 ld [ %g2 + 0x3b0 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400070d8: c2 00 61 94 ld [ %g1 + 0x194 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400070dc: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400070e0: 9b 28 60 07 sll %g1, 7, %o5
400070e4: 89 28 60 02 sll %g1, 2, %g4
400070e8: 88 23 40 04 sub %o5, %g4, %g4
400070ec: 82 01 00 01 add %g4, %g1, %g1
400070f0: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
400070f4: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400070f8: c6 20 a3 b0 st %g3, [ %g2 + 0x3b0 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
400070fc: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007100: c2 27 bf fc st %g1, [ %fp + -4 ]
40007104: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007108: 11 10 00 54 sethi %hi(0x40015000), %o0
4000710c: 40 00 08 ff call 40009508 <_Timespec_Add_to>
40007110: 90 12 23 1c or %o0, 0x31c, %o0 ! 4001531c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
40007114: 92 10 00 10 mov %l0, %o1
40007118: 11 10 00 54 sethi %hi(0x40015000), %o0
4000711c: 40 00 08 fb call 40009508 <_Timespec_Add_to>
40007120: 90 12 23 28 or %o0, 0x328, %o0 ! 40015328 <_TOD_Now>
while ( seconds ) {
40007124: a0 92 20 00 orcc %o0, 0, %l0
40007128: 02 80 00 08 be 40007148 <_TOD_Tickle_ticks+0x80>
4000712c: 23 10 00 54 sethi %hi(0x40015000), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
40007130: a2 14 63 54 or %l1, 0x354, %l1 ! 40015354 <_Watchdog_Seconds_chain>
40007134: 40 00 0a 85 call 40009b48 <_Watchdog_Tickle>
40007138: 90 10 00 11 mov %l1, %o0
4000713c: a0 84 3f ff addcc %l0, -1, %l0
40007140: 12 bf ff fd bne 40007134 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
40007144: 01 00 00 00 nop
40007148: 81 c7 e0 08 ret
4000714c: 81 e8 00 00 restore
4000721c <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
4000721c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007220: 03 10 00 7c sethi %hi(0x4001f000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007224: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007228: d2 00 62 54 ld [ %g1 + 0x254 ], %o1
if ((!the_tod) ||
4000722c: 80 a4 20 00 cmp %l0, 0
40007230: 02 80 00 2c be 400072e0 <_TOD_Validate+0xc4> <== NEVER TAKEN
40007234: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007238: 11 00 03 d0 sethi %hi(0xf4000), %o0
4000723c: 40 00 49 65 call 400197d0 <.udiv>
40007240: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007244: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007248: 80 a2 00 01 cmp %o0, %g1
4000724c: 08 80 00 25 bleu 400072e0 <_TOD_Validate+0xc4>
40007250: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007254: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007258: 80 a0 60 3b cmp %g1, 0x3b
4000725c: 18 80 00 21 bgu 400072e0 <_TOD_Validate+0xc4>
40007260: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007264: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40007268: 80 a0 60 3b cmp %g1, 0x3b
4000726c: 18 80 00 1d bgu 400072e0 <_TOD_Validate+0xc4>
40007270: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007274: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007278: 80 a0 60 17 cmp %g1, 0x17
4000727c: 18 80 00 19 bgu 400072e0 <_TOD_Validate+0xc4>
40007280: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40007284: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40007288: 80 a0 60 00 cmp %g1, 0
4000728c: 02 80 00 15 be 400072e0 <_TOD_Validate+0xc4> <== NEVER TAKEN
40007290: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40007294: 18 80 00 13 bgu 400072e0 <_TOD_Validate+0xc4>
40007298: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
4000729c: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
400072a0: 80 a0 a7 c3 cmp %g2, 0x7c3
400072a4: 08 80 00 0f bleu 400072e0 <_TOD_Validate+0xc4>
400072a8: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
400072ac: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400072b0: 80 a0 e0 00 cmp %g3, 0
400072b4: 02 80 00 0b be 400072e0 <_TOD_Validate+0xc4> <== NEVER TAKEN
400072b8: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
400072bc: 32 80 00 0b bne,a 400072e8 <_TOD_Validate+0xcc>
400072c0: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
400072c4: 82 00 60 0d add %g1, 0xd, %g1
400072c8: 05 10 00 77 sethi %hi(0x4001dc00), %g2
400072cc: 83 28 60 02 sll %g1, 2, %g1
400072d0: 84 10 a3 28 or %g2, 0x328, %g2
400072d4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
400072d8: 80 a0 40 03 cmp %g1, %g3
400072dc: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
400072e0: 81 c7 e0 08 ret
400072e4: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
400072e8: 05 10 00 77 sethi %hi(0x4001dc00), %g2
400072ec: 84 10 a3 28 or %g2, 0x328, %g2 ! 4001df28 <_TOD_Days_per_month>
400072f0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
400072f4: 80 a0 40 03 cmp %g1, %g3
400072f8: b0 60 3f ff subx %g0, -1, %i0
400072fc: 81 c7 e0 08 ret
40007300: 81 e8 00 00 restore
40008538 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40008538: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
4000853c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40008540: 40 00 03 7a call 40009328 <_Thread_Set_transient>
40008544: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40008548: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
4000854c: 80 a0 40 19 cmp %g1, %i1
40008550: 02 80 00 05 be 40008564 <_Thread_Change_priority+0x2c>
40008554: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40008558: 90 10 00 18 mov %i0, %o0
4000855c: 40 00 03 58 call 400092bc <_Thread_Set_priority>
40008560: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40008564: 7f ff e5 eb call 40001d10 <sparc_disable_interrupts>
40008568: 01 00 00 00 nop
4000856c: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40008570: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
40008574: 80 a4 a0 04 cmp %l2, 4
40008578: 02 80 00 18 be 400085d8 <_Thread_Change_priority+0xa0>
4000857c: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40008580: 02 80 00 0b be 400085ac <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
40008584: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40008588: 7f ff e5 e6 call 40001d20 <sparc_enable_interrupts> <== NOT EXECUTED
4000858c: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40008590: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
40008594: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008598: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
4000859c: 32 80 00 0d bne,a 400085d0 <_Thread_Change_priority+0x98><== NOT EXECUTED
400085a0: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
400085a4: 81 c7 e0 08 ret
400085a8: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
400085ac: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
400085b0: 7f ff e5 dc call 40001d20 <sparc_enable_interrupts>
400085b4: 90 10 00 18 mov %i0, %o0
400085b8: 03 00 00 ef sethi %hi(0x3bc00), %g1
400085bc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
400085c0: 80 8c 80 01 btst %l2, %g1
400085c4: 02 bf ff f8 be 400085a4 <_Thread_Change_priority+0x6c>
400085c8: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
400085cc: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
400085d0: 40 00 03 0b call 400091fc <_Thread_queue_Requeue>
400085d4: 93 e8 00 10 restore %g0, %l0, %o1
400085d8: 23 10 00 52 sethi %hi(0x40014800), %l1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
400085dc: 12 80 00 08 bne 400085fc <_Thread_Change_priority+0xc4> <== NEVER TAKEN
400085e0: a2 14 60 b0 or %l1, 0xb0, %l1 ! 400148b0 <_Scheduler>
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
400085e4: 80 8e a0 ff btst 0xff, %i2
400085e8: 02 80 00 1a be 40008650 <_Thread_Change_priority+0x118>
400085ec: c0 24 20 10 clr [ %l0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
400085f0: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
400085f4: 9f c0 40 00 call %g1
400085f8: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
400085fc: 7f ff e5 c9 call 40001d20 <sparc_enable_interrupts>
40008600: 90 10 00 18 mov %i0, %o0
40008604: 7f ff e5 c3 call 40001d10 <sparc_disable_interrupts>
40008608: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
4000860c: c2 04 60 08 ld [ %l1 + 8 ], %g1
40008610: 9f c0 40 00 call %g1
40008614: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40008618: 03 10 00 55 sethi %hi(0x40015400), %g1
4000861c: 82 10 60 cc or %g1, 0xcc, %g1 ! 400154cc <_Per_CPU_Information>
40008620: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
40008624: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40008628: 80 a0 80 03 cmp %g2, %g3
4000862c: 02 80 00 07 be 40008648 <_Thread_Change_priority+0x110>
40008630: 01 00 00 00 nop
40008634: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40008638: 80 a0 a0 00 cmp %g2, 0
4000863c: 02 80 00 03 be 40008648 <_Thread_Change_priority+0x110>
40008640: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008644: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40008648: 7f ff e5 b6 call 40001d20 <sparc_enable_interrupts>
4000864c: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
40008650: c2 04 60 24 ld [ %l1 + 0x24 ], %g1
40008654: 9f c0 40 00 call %g1
40008658: 90 10 00 10 mov %l0, %o0
4000865c: 30 bf ff e8 b,a 400085fc <_Thread_Change_priority+0xc4>
40008850 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008850: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008854: 90 10 00 18 mov %i0, %o0
40008858: 40 00 00 6c call 40008a08 <_Thread_Get>
4000885c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008860: c2 07 bf fc ld [ %fp + -4 ], %g1
40008864: 80 a0 60 00 cmp %g1, 0
40008868: 12 80 00 08 bne 40008888 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
4000886c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008870: 7f ff ff 7c call 40008660 <_Thread_Clear_state>
40008874: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008878: 03 10 00 54 sethi %hi(0x40015000), %g1
4000887c: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 400152a0 <_Thread_Dispatch_disable_level>
40008880: 84 00 bf ff add %g2, -1, %g2
40008884: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ]
40008888: 81 c7 e0 08 ret
4000888c: 81 e8 00 00 restore
40008890 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40008890: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40008894: 25 10 00 55 sethi %hi(0x40015400), %l2
40008898: a4 14 a0 cc or %l2, 0xcc, %l2 ! 400154cc <_Per_CPU_Information>
_ISR_Disable( level );
4000889c: 7f ff e5 1d call 40001d10 <sparc_disable_interrupts>
400088a0: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
400088a4: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
400088a8: 80 a0 60 00 cmp %g1, 0
400088ac: 02 80 00 42 be 400089b4 <_Thread_Dispatch+0x124>
400088b0: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
400088b4: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400088b8: 82 10 20 01 mov 1, %g1
400088bc: c2 25 a2 a0 st %g1, [ %l6 + 0x2a0 ]
_Thread_Dispatch_necessary = false;
400088c0: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400088c4: 80 a4 40 10 cmp %l1, %l0
400088c8: 02 80 00 3b be 400089b4 <_Thread_Dispatch+0x124>
400088cc: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
400088d0: 27 10 00 54 sethi %hi(0x40015000), %l3
400088d4: 3b 10 00 54 sethi %hi(0x40015000), %i5
400088d8: a6 14 e3 4c or %l3, 0x34c, %l3
400088dc: aa 07 bf f8 add %fp, -8, %l5
400088e0: a8 07 bf f0 add %fp, -16, %l4
400088e4: ba 17 63 24 or %i5, 0x324, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400088e8: 37 10 00 54 sethi %hi(0x40015000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
400088ec: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400088f0: 10 80 00 2b b 4000899c <_Thread_Dispatch+0x10c>
400088f4: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
400088f8: 7f ff e5 0a call 40001d20 <sparc_enable_interrupts>
400088fc: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008900: 40 00 0d 2f call 4000bdbc <_TOD_Get_uptime>
40008904: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
40008908: 90 10 00 17 mov %l7, %o0
4000890c: 92 10 00 15 mov %l5, %o1
40008910: 40 00 03 17 call 4000956c <_Timespec_Subtract>
40008914: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008918: 92 10 00 14 mov %l4, %o1
4000891c: 40 00 02 fb call 40009508 <_Timespec_Add_to>
40008920: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
40008924: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008928: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
4000892c: c4 24 c0 00 st %g2, [ %l3 ]
40008930: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
40008934: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008938: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
4000893c: 80 a0 60 00 cmp %g1, 0
40008940: 02 80 00 06 be 40008958 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
40008944: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
40008948: c4 00 40 00 ld [ %g1 ], %g2
4000894c: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
40008950: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008954: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008958: 40 00 03 c9 call 4000987c <_User_extensions_Thread_switch>
4000895c: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40008960: 90 04 60 c0 add %l1, 0xc0, %o0
40008964: 40 00 04 de call 40009cdc <_CPU_Context_switch>
40008968: 92 04 20 c0 add %l0, 0xc0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
4000896c: 7f ff e4 e9 call 40001d10 <sparc_disable_interrupts>
40008970: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008974: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40008978: 80 a0 60 00 cmp %g1, 0
4000897c: 02 80 00 0e be 400089b4 <_Thread_Dispatch+0x124>
40008980: 01 00 00 00 nop
heir = _Thread_Heir;
40008984: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40008988: f8 25 a2 a0 st %i4, [ %l6 + 0x2a0 ]
_Thread_Dispatch_necessary = false;
4000898c: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40008990: 80 a4 00 11 cmp %l0, %l1
40008994: 02 80 00 08 be 400089b4 <_Thread_Dispatch+0x124> <== NEVER TAKEN
40008998: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
4000899c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
400089a0: 80 a0 60 01 cmp %g1, 1
400089a4: 12 bf ff d5 bne 400088f8 <_Thread_Dispatch+0x68>
400089a8: c2 06 e2 04 ld [ %i3 + 0x204 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400089ac: 10 bf ff d3 b 400088f8 <_Thread_Dispatch+0x68>
400089b0: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400089b4: c0 25 a2 a0 clr [ %l6 + 0x2a0 ]
_ISR_Enable( level );
400089b8: 7f ff e4 da call 40001d20 <sparc_enable_interrupts>
400089bc: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400089c0: 7f ff f8 1d call 40006a34 <_API_extensions_Run_postswitch>
400089c4: 01 00 00 00 nop
}
400089c8: 81 c7 e0 08 ret
400089cc: 81 e8 00 00 restore
4000dc58 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000dc58: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000dc5c: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dc60: e0 00 60 d8 ld [ %g1 + 0xd8 ], %l0 ! 400154d8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000dc64: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000dc68: be 17 e0 58 or %i7, 0x58, %i7 ! 4000dc58 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000dc6c: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000dc70: 7f ff d0 2c call 40001d20 <sparc_enable_interrupts>
4000dc74: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000dc78: 03 10 00 54 sethi %hi(0x40015000), %g1
doneConstructors = 1;
4000dc7c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000dc80: e2 08 60 68 ldub [ %g1 + 0x68 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000dc84: 90 10 00 10 mov %l0, %o0
4000dc88: 7f ff ee 7d call 4000967c <_User_extensions_Thread_begin>
4000dc8c: c4 28 60 68 stb %g2, [ %g1 + 0x68 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000dc90: 7f ff eb 50 call 400089d0 <_Thread_Enable_dispatch>
4000dc94: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000dc98: 80 a4 60 00 cmp %l1, 0
4000dc9c: 02 80 00 0c be 4000dccc <_Thread_Handler+0x74>
4000dca0: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000dca4: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000dca8: 80 a0 60 00 cmp %g1, 0
4000dcac: 22 80 00 0f be,a 4000dce8 <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000dcb0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000dcb4: 7f ff ee 86 call 400096cc <_User_extensions_Thread_exitted>
4000dcb8: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000dcbc: 90 10 20 00 clr %o0
4000dcc0: 92 10 20 01 mov 1, %o1
4000dcc4: 7f ff e6 2e call 4000757c <_Internal_error_Occurred>
4000dcc8: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000dccc: 40 00 1a e5 call 40014860 <_init>
4000dcd0: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000dcd4: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000dcd8: 80 a0 60 00 cmp %g1, 0
4000dcdc: 12 bf ff f6 bne 4000dcb4 <_Thread_Handler+0x5c> <== NEVER TAKEN
4000dce0: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000dce4: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000dce8: 9f c0 40 00 call %g1
4000dcec: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000dcf0: 10 bf ff f1 b 4000dcb4 <_Thread_Handler+0x5c>
4000dcf4: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
40008ab4 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
40008ab4: 9d e3 bf a0 save %sp, -96, %sp
40008ab8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40008abc: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
40008ac0: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
40008ac4: c0 26 61 4c clr [ %i1 + 0x14c ]
40008ac8: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40008acc: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40008ad0: 90 10 00 19 mov %i1, %o0
40008ad4: 40 00 02 25 call 40009368 <_Thread_Stack_Allocate>
40008ad8: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40008adc: 80 a2 00 1b cmp %o0, %i3
40008ae0: 0a 80 00 43 bcs 40008bec <_Thread_Initialize+0x138>
40008ae4: 80 a2 20 00 cmp %o0, 0
40008ae8: 02 80 00 41 be 40008bec <_Thread_Initialize+0x138> <== NEVER TAKEN
40008aec: 25 10 00 54 sethi %hi(0x40015000), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40008af0: c4 06 60 bc ld [ %i1 + 0xbc ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40008af4: c2 04 a3 30 ld [ %l2 + 0x330 ], %g1
40008af8: c4 26 60 b8 st %g2, [ %i1 + 0xb8 ]
the_stack->size = size;
40008afc: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008b00: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40008b04: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008b08: c0 26 60 68 clr [ %i1 + 0x68 ]
40008b0c: 80 a0 60 00 cmp %g1, 0
40008b10: 12 80 00 39 bne 40008bf4 <_Thread_Initialize+0x140>
40008b14: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008b18: c0 26 61 54 clr [ %i1 + 0x154 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40008b1c: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008b20: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
40008b24: 03 10 00 52 sethi %hi(0x40014800), %g1
40008b28: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40008b2c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
40008b30: c2 00 60 c8 ld [ %g1 + 0xc8 ], %g1
40008b34: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008b38: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008b3c: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008b40: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40008b44: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
40008b48: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
40008b4c: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
40008b50: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008b54: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
40008b58: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
40008b5c: 9f c0 40 00 call %g1
40008b60: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
40008b64: a0 92 20 00 orcc %o0, 0, %l0
40008b68: 22 80 00 13 be,a 40008bb4 <_Thread_Initialize+0x100>
40008b6c: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
40008b70: 90 10 00 19 mov %i1, %o0
40008b74: 40 00 01 d2 call 400092bc <_Thread_Set_priority>
40008b78: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
40008b7c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40008b80: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40008b84: c0 26 60 84 clr [ %i1 + 0x84 ]
40008b88: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008b8c: 83 28 60 02 sll %g1, 2, %g1
40008b90: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40008b94: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40008b98: 90 10 00 19 mov %i1, %o0
40008b9c: 40 00 02 f3 call 40009768 <_User_extensions_Thread_create>
40008ba0: b0 10 20 01 mov 1, %i0
if ( extension_status )
40008ba4: 80 8a 20 ff btst 0xff, %o0
40008ba8: 12 80 00 24 bne 40008c38 <_Thread_Initialize+0x184>
40008bac: 01 00 00 00 nop
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
40008bb0: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40008bb4: 40 00 04 34 call 40009c84 <_Workspace_Free>
40008bb8: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
40008bbc: 40 00 04 32 call 40009c84 <_Workspace_Free>
40008bc0: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40008bc4: 40 00 04 30 call 40009c84 <_Workspace_Free>
40008bc8: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( extensions_area );
40008bcc: 40 00 04 2e call 40009c84 <_Workspace_Free>
40008bd0: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
#endif
_Workspace_Free( sched );
40008bd4: 40 00 04 2c call 40009c84 <_Workspace_Free>
40008bd8: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40008bdc: 40 00 01 fe call 400093d4 <_Thread_Stack_Free>
40008be0: 90 10 00 19 mov %i1, %o0
return false;
40008be4: 81 c7 e0 08 ret
40008be8: 81 e8 00 00 restore
}
40008bec: 81 c7 e0 08 ret
40008bf0: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40008bf4: 82 00 60 01 inc %g1
40008bf8: 40 00 04 1a call 40009c60 <_Workspace_Allocate>
40008bfc: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008c00: b6 92 20 00 orcc %o0, 0, %i3
40008c04: 02 80 00 0f be 40008c40 <_Thread_Initialize+0x18c>
40008c08: c6 04 a3 30 ld [ %l2 + 0x330 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008c0c: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008c10: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008c14: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40008c18: 85 28 a0 02 sll %g2, 2, %g2
40008c1c: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008c20: 82 00 60 01 inc %g1
40008c24: 80 a0 40 03 cmp %g1, %g3
40008c28: 08 bf ff fc bleu 40008c18 <_Thread_Initialize+0x164>
40008c2c: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008c30: 10 bf ff bd b 40008b24 <_Thread_Initialize+0x70>
40008c34: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
40008c38: 81 c7 e0 08 ret
40008c3c: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
40008c40: 10 bf ff dc b 40008bb0 <_Thread_Initialize+0xfc>
40008c44: a0 10 20 00 clr %l0
400091fc <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
400091fc: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009200: 80 a6 20 00 cmp %i0, 0
40009204: 02 80 00 13 be 40009250 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
40009208: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
4000920c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40009210: 80 a4 60 01 cmp %l1, 1
40009214: 02 80 00 04 be 40009224 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
40009218: 01 00 00 00 nop
4000921c: 81 c7 e0 08 ret <== NOT EXECUTED
40009220: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009224: 7f ff e2 bb call 40001d10 <sparc_disable_interrupts>
40009228: 01 00 00 00 nop
4000922c: a0 10 00 08 mov %o0, %l0
40009230: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
40009234: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009238: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000923c: 80 88 80 01 btst %g2, %g1
40009240: 12 80 00 06 bne 40009258 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
40009244: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
40009248: 7f ff e2 b6 call 40001d20 <sparc_enable_interrupts>
4000924c: 90 10 00 10 mov %l0, %o0
40009250: 81 c7 e0 08 ret
40009254: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40009258: 92 10 00 19 mov %i1, %o1
4000925c: 94 10 20 01 mov 1, %o2
40009260: 40 00 0c 4d call 4000c394 <_Thread_queue_Extract_priority_helper>
40009264: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009268: 90 10 00 18 mov %i0, %o0
4000926c: 92 10 00 19 mov %i1, %o1
40009270: 7f ff ff 31 call 40008f34 <_Thread_queue_Enqueue_priority>
40009274: 94 07 bf fc add %fp, -4, %o2
40009278: 30 bf ff f4 b,a 40009248 <_Thread_queue_Requeue+0x4c>
4000927c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000927c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009280: 90 10 00 18 mov %i0, %o0
40009284: 7f ff fd e1 call 40008a08 <_Thread_Get>
40009288: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000928c: c2 07 bf fc ld [ %fp + -4 ], %g1
40009290: 80 a0 60 00 cmp %g1, 0
40009294: 12 80 00 08 bne 400092b4 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40009298: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000929c: 40 00 0c 79 call 4000c480 <_Thread_queue_Process_timeout>
400092a0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400092a4: 03 10 00 54 sethi %hi(0x40015000), %g1
400092a8: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 400152a0 <_Thread_Dispatch_disable_level>
400092ac: 84 00 bf ff add %g2, -1, %g2
400092b0: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ]
400092b4: 81 c7 e0 08 ret
400092b8: 81 e8 00 00 restore
40016410 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40016410: 9d e3 bf 88 save %sp, -120, %sp
40016414: 2d 10 00 f7 sethi %hi(0x4003dc00), %l6
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016418: ba 07 bf f4 add %fp, -12, %i5
4001641c: a8 07 bf f8 add %fp, -8, %l4
40016420: a4 07 bf e8 add %fp, -24, %l2
40016424: ae 07 bf ec add %fp, -20, %l7
40016428: 2b 10 00 f7 sethi %hi(0x4003dc00), %l5
4001642c: 39 10 00 f7 sethi %hi(0x4003dc00), %i4
40016430: e8 27 bf f4 st %l4, [ %fp + -12 ]
head->previous = NULL;
40016434: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40016438: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4001643c: ee 27 bf e8 st %l7, [ %fp + -24 ]
head->previous = NULL;
40016440: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
40016444: e4 27 bf f0 st %l2, [ %fp + -16 ]
40016448: ac 15 a1 c0 or %l6, 0x1c0, %l6
4001644c: a2 06 20 30 add %i0, 0x30, %l1
40016450: aa 15 61 38 or %l5, 0x138, %l5
40016454: a6 06 20 68 add %i0, 0x68, %l3
40016458: b8 17 20 b0 or %i4, 0xb0, %i4
4001645c: b2 06 20 08 add %i0, 8, %i1
40016460: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40016464: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40016468: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
4001646c: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016470: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016474: 94 10 00 12 mov %l2, %o2
40016478: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
4001647c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016480: 40 00 12 85 call 4001ae94 <_Watchdog_Adjust_to_chain>
40016484: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40016488: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001648c: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40016490: 80 a4 00 0a cmp %l0, %o2
40016494: 18 80 00 2e bgu 4001654c <_Timer_server_Body+0x13c>
40016498: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
4001649c: 80 a4 00 0a cmp %l0, %o2
400164a0: 0a 80 00 2f bcs 4001655c <_Timer_server_Body+0x14c>
400164a4: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
400164a8: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400164ac: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400164b0: 40 00 02 fc call 400170a0 <_Chain_Get>
400164b4: 01 00 00 00 nop
if ( timer == NULL ) {
400164b8: 92 92 20 00 orcc %o0, 0, %o1
400164bc: 02 80 00 10 be 400164fc <_Timer_server_Body+0xec>
400164c0: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400164c4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400164c8: 80 a0 60 01 cmp %g1, 1
400164cc: 02 80 00 28 be 4001656c <_Timer_server_Body+0x15c>
400164d0: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400164d4: 12 bf ff f6 bne 400164ac <_Timer_server_Body+0x9c> <== NEVER TAKEN
400164d8: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400164dc: 40 00 12 a1 call 4001af60 <_Watchdog_Insert>
400164e0: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400164e4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400164e8: 40 00 02 ee call 400170a0 <_Chain_Get>
400164ec: 01 00 00 00 nop
if ( timer == NULL ) {
400164f0: 92 92 20 00 orcc %o0, 0, %o1
400164f4: 32 bf ff f5 bne,a 400164c8 <_Timer_server_Body+0xb8> <== NEVER TAKEN
400164f8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400164fc: 7f ff e2 1e call 4000ed74 <sparc_disable_interrupts>
40016500: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
40016504: c2 07 bf f4 ld [ %fp + -12 ], %g1
40016508: 80 a0 40 14 cmp %g1, %l4
4001650c: 02 80 00 1c be 4001657c <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
40016510: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
40016514: 7f ff e2 1c call 4000ed84 <sparc_enable_interrupts> <== NOT EXECUTED
40016518: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
4001651c: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016520: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016524: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
40016528: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
4001652c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016530: 40 00 12 59 call 4001ae94 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
40016534: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40016538: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001653c: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40016540: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
40016544: 08 bf ff d7 bleu 400164a0 <_Timer_server_Body+0x90> <== NOT EXECUTED
40016548: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001654c: 90 10 00 13 mov %l3, %o0
40016550: 40 00 12 51 call 4001ae94 <_Watchdog_Adjust_to_chain>
40016554: 94 10 00 12 mov %l2, %o2
40016558: 30 bf ff d4 b,a 400164a8 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
4001655c: 92 10 20 01 mov 1, %o1
40016560: 40 00 12 1d call 4001add4 <_Watchdog_Adjust>
40016564: 94 22 80 10 sub %o2, %l0, %o2
40016568: 30 bf ff d0 b,a 400164a8 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
4001656c: 90 10 00 11 mov %l1, %o0
40016570: 40 00 12 7c call 4001af60 <_Watchdog_Insert>
40016574: 92 02 60 10 add %o1, 0x10, %o1
40016578: 30 bf ff cd b,a 400164ac <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
4001657c: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40016580: 7f ff e2 01 call 4000ed84 <sparc_enable_interrupts>
40016584: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40016588: c2 07 bf e8 ld [ %fp + -24 ], %g1
4001658c: 80 a0 40 17 cmp %g1, %l7
40016590: 12 80 00 0c bne 400165c0 <_Timer_server_Body+0x1b0>
40016594: 01 00 00 00 nop
40016598: 30 80 00 13 b,a 400165e4 <_Timer_server_Body+0x1d4>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
4001659c: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
400165a0: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
400165a4: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
400165a8: 7f ff e1 f7 call 4000ed84 <sparc_enable_interrupts>
400165ac: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
400165b0: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
400165b4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
400165b8: 9f c0 40 00 call %g1
400165bc: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
400165c0: 7f ff e1 ed call 4000ed74 <sparc_disable_interrupts>
400165c4: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
400165c8: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
400165cc: 80 a4 00 17 cmp %l0, %l7
400165d0: 32 bf ff f3 bne,a 4001659c <_Timer_server_Body+0x18c>
400165d4: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
400165d8: 7f ff e1 eb call 4000ed84 <sparc_enable_interrupts>
400165dc: 01 00 00 00 nop
400165e0: 30 bf ff a2 b,a 40016468 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400165e4: c0 2e 20 7c clrb [ %i0 + 0x7c ]
400165e8: c2 07 00 00 ld [ %i4 ], %g1
400165ec: 82 00 60 01 inc %g1
400165f0: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
400165f4: d0 06 00 00 ld [ %i0 ], %o0
400165f8: 40 00 10 44 call 4001a708 <_Thread_Set_state>
400165fc: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40016600: 7f ff ff 5a call 40016368 <_Timer_server_Reset_interval_system_watchdog>
40016604: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40016608: 7f ff ff 6d call 400163bc <_Timer_server_Reset_tod_system_watchdog>
4001660c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
40016610: 40 00 0d e0 call 40019d90 <_Thread_Enable_dispatch>
40016614: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016618: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
4001661c: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016620: 40 00 12 bb call 4001b10c <_Watchdog_Remove>
40016624: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016628: 40 00 12 b9 call 4001b10c <_Watchdog_Remove>
4001662c: 90 10 00 1a mov %i2, %o0
40016630: 30 bf ff 8e b,a 40016468 <_Timer_server_Body+0x58>
40016634 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40016634: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016638: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
4001663c: 80 a0 60 00 cmp %g1, 0
40016640: 02 80 00 05 be 40016654 <_Timer_server_Schedule_operation_method+0x20>
40016644: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40016648: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
4001664c: 40 00 02 7f call 40017048 <_Chain_Append>
40016650: 81 e8 00 00 restore
40016654: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
40016658: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 4003dcb0 <_Thread_Dispatch_disable_level>
4001665c: 84 00 a0 01 inc %g2
40016660: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40016664: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40016668: 80 a0 60 01 cmp %g1, 1
4001666c: 02 80 00 28 be 4001670c <_Timer_server_Schedule_operation_method+0xd8>
40016670: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40016674: 02 80 00 04 be 40016684 <_Timer_server_Schedule_operation_method+0x50>
40016678: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001667c: 40 00 0d c5 call 40019d90 <_Thread_Enable_dispatch>
40016680: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40016684: 7f ff e1 bc call 4000ed74 <sparc_disable_interrupts>
40016688: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
4001668c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40016690: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40016694: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016698: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
4001669c: 80 a0 80 04 cmp %g2, %g4
400166a0: 02 80 00 0d be 400166d4 <_Timer_server_Schedule_operation_method+0xa0>
400166a4: c2 00 61 38 ld [ %g1 + 0x138 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
400166a8: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
400166ac: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
400166b0: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400166b4: 08 80 00 07 bleu 400166d0 <_Timer_server_Schedule_operation_method+0x9c>
400166b8: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400166bc: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
400166c0: 80 a3 40 03 cmp %o5, %g3
400166c4: 08 80 00 03 bleu 400166d0 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
400166c8: 88 10 20 00 clr %g4
delta_interval -= delta;
400166cc: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400166d0: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400166d4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400166d8: 7f ff e1 ab call 4000ed84 <sparc_enable_interrupts>
400166dc: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400166e0: 90 06 20 68 add %i0, 0x68, %o0
400166e4: 40 00 12 1f call 4001af60 <_Watchdog_Insert>
400166e8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400166ec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400166f0: 80 a0 60 00 cmp %g1, 0
400166f4: 12 bf ff e2 bne 4001667c <_Timer_server_Schedule_operation_method+0x48>
400166f8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400166fc: 7f ff ff 30 call 400163bc <_Timer_server_Reset_tod_system_watchdog>
40016700: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40016704: 40 00 0d a3 call 40019d90 <_Thread_Enable_dispatch>
40016708: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
4001670c: 7f ff e1 9a call 4000ed74 <sparc_disable_interrupts>
40016710: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40016714: 05 10 00 f7 sethi %hi(0x4003dc00), %g2
initialized = false;
}
#endif
return status;
}
40016718: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
4001671c: c4 00 a1 c0 ld [ %g2 + 0x1c0 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40016720: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
40016724: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40016728: 80 a0 40 03 cmp %g1, %g3
4001672c: 02 80 00 08 be 4001674c <_Timer_server_Schedule_operation_method+0x118>
40016730: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016734: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016738: 80 a1 00 0d cmp %g4, %o5
4001673c: 1a 80 00 03 bcc 40016748 <_Timer_server_Schedule_operation_method+0x114>
40016740: 86 10 20 00 clr %g3
delta_interval -= delta;
40016744: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40016748: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
4001674c: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40016750: 7f ff e1 8d call 4000ed84 <sparc_enable_interrupts>
40016754: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016758: 90 06 20 30 add %i0, 0x30, %o0
4001675c: 40 00 12 01 call 4001af60 <_Watchdog_Insert>
40016760: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016764: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016768: 80 a0 60 00 cmp %g1, 0
4001676c: 12 bf ff c4 bne 4001667c <_Timer_server_Schedule_operation_method+0x48>
40016770: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016774: 7f ff fe fd call 40016368 <_Timer_server_Reset_interval_system_watchdog>
40016778: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001677c: 40 00 0d 85 call 40019d90 <_Thread_Enable_dispatch>
40016780: 81 e8 00 00 restore
40009508 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
40009508: 9d e3 bf a0 save %sp, -96, %sp
4000950c: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009510: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
40009514: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
40009518: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
4000951c: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009520: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
40009524: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009528: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000952c: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
40009530: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
40009534: 80 a0 80 04 cmp %g2, %g4
40009538: 08 80 00 0b bleu 40009564 <_Timespec_Add_to+0x5c>
4000953c: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
40009540: 1b 31 19 4d sethi %hi(0xc4653400), %o5
40009544: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
40009548: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
4000954c: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
40009550: 80 a0 80 04 cmp %g2, %g4
40009554: 18 bf ff fd bgu 40009548 <_Timespec_Add_to+0x40> <== NEVER TAKEN
40009558: b0 06 20 01 inc %i0
4000955c: c4 20 60 04 st %g2, [ %g1 + 4 ]
40009560: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
40009564: 81 c7 e0 08 ret
40009568: 81 e8 00 00 restore
40009718 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40009718: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000971c: 23 10 00 55 sethi %hi(0x40015400), %l1
40009720: a2 14 60 88 or %l1, 0x88, %l1 ! 40015488 <_User_extensions_List>
40009724: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009728: 80 a4 00 11 cmp %l0, %l1
4000972c: 02 80 00 0d be 40009760 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
40009730: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40009734: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40009738: 80 a0 60 00 cmp %g1, 0
4000973c: 02 80 00 05 be 40009750 <_User_extensions_Fatal+0x38>
40009740: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009744: 92 10 00 19 mov %i1, %o1
40009748: 9f c0 40 00 call %g1
4000974c: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009750: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009754: 80 a4 00 11 cmp %l0, %l1
40009758: 32 bf ff f8 bne,a 40009738 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
4000975c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40009760: 81 c7 e0 08 ret <== NOT EXECUTED
40009764: 81 e8 00 00 restore <== NOT EXECUTED
400095c4 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
400095c4: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
400095c8: 07 10 00 52 sethi %hi(0x40014800), %g3
400095cc: 86 10 e1 88 or %g3, 0x188, %g3 ! 40014988 <Configuration>
initial_extensions = Configuration.User_extension_table;
400095d0: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
400095d4: 1b 10 00 55 sethi %hi(0x40015400), %o5
400095d8: 09 10 00 54 sethi %hi(0x40015000), %g4
400095dc: 84 13 60 88 or %o5, 0x88, %g2
400095e0: 82 11 22 a4 or %g4, 0x2a4, %g1
400095e4: 96 00 a0 04 add %g2, 4, %o3
400095e8: 98 00 60 04 add %g1, 4, %o4
400095ec: d6 23 60 88 st %o3, [ %o5 + 0x88 ]
head->previous = NULL;
400095f0: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
400095f4: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400095f8: d8 21 22 a4 st %o4, [ %g4 + 0x2a4 ]
head->previous = NULL;
400095fc: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40009600: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40009604: 80 a4 e0 00 cmp %l3, 0
40009608: 02 80 00 1b be 40009674 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000960c: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40009610: 83 2c a0 02 sll %l2, 2, %g1
40009614: a3 2c a0 04 sll %l2, 4, %l1
40009618: a2 24 40 01 sub %l1, %g1, %l1
4000961c: a2 04 40 12 add %l1, %l2, %l1
40009620: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009624: 40 00 01 9f call 40009ca0 <_Workspace_Allocate_or_fatal_error>
40009628: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000962c: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009630: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009634: 40 00 14 83 call 4000e840 <memset>
40009638: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000963c: 80 a4 a0 00 cmp %l2, 0
40009640: 02 80 00 0d be 40009674 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009644: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
40009648: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
4000964c: 94 10 20 20 mov 0x20, %o2
40009650: 92 04 c0 09 add %l3, %o1, %o1
40009654: 40 00 14 42 call 4000e75c <memcpy>
40009658: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
4000965c: 40 00 0b ad call 4000c510 <_User_extensions_Add_set>
40009660: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009664: a2 04 60 01 inc %l1
40009668: 80 a4 80 11 cmp %l2, %l1
4000966c: 18 bf ff f7 bgu 40009648 <_User_extensions_Handler_initialization+0x84>
40009670: a0 04 20 34 add %l0, 0x34, %l0
40009674: 81 c7 e0 08 ret
40009678: 81 e8 00 00 restore
4000967c <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
4000967c: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009680: 23 10 00 55 sethi %hi(0x40015400), %l1
40009684: e0 04 60 88 ld [ %l1 + 0x88 ], %l0 ! 40015488 <_User_extensions_List>
40009688: a2 14 60 88 or %l1, 0x88, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000968c: a2 04 60 04 add %l1, 4, %l1
40009690: 80 a4 00 11 cmp %l0, %l1
40009694: 02 80 00 0c be 400096c4 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
40009698: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
4000969c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
400096a0: 80 a0 60 00 cmp %g1, 0
400096a4: 02 80 00 04 be 400096b4 <_User_extensions_Thread_begin+0x38>
400096a8: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
400096ac: 9f c0 40 00 call %g1
400096b0: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
400096b4: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
400096b8: 80 a4 00 11 cmp %l0, %l1
400096bc: 32 bf ff f9 bne,a 400096a0 <_User_extensions_Thread_begin+0x24>
400096c0: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
400096c4: 81 c7 e0 08 ret
400096c8: 81 e8 00 00 restore
40009768 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009768: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
4000976c: 23 10 00 55 sethi %hi(0x40015400), %l1
40009770: e0 04 60 88 ld [ %l1 + 0x88 ], %l0 ! 40015488 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009774: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
40009778: a2 14 60 88 or %l1, 0x88, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000977c: a2 04 60 04 add %l1, 4, %l1
40009780: 80 a4 00 11 cmp %l0, %l1
40009784: 02 80 00 13 be 400097d0 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
40009788: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
4000978c: 25 10 00 55 sethi %hi(0x40015400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
40009790: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40009794: 80 a0 60 00 cmp %g1, 0
40009798: 02 80 00 08 be 400097b8 <_User_extensions_Thread_create+0x50>
4000979c: 84 14 a0 cc or %l2, 0xcc, %g2
status = (*the_extension->Callouts.thread_create)(
400097a0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
400097a4: 9f c0 40 00 call %g1
400097a8: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
400097ac: 80 8a 20 ff btst 0xff, %o0
400097b0: 22 80 00 08 be,a 400097d0 <_User_extensions_Thread_create+0x68>
400097b4: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
400097b8: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
400097bc: 80 a4 00 11 cmp %l0, %l1
400097c0: 32 bf ff f5 bne,a 40009794 <_User_extensions_Thread_create+0x2c>
400097c4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
400097c8: 81 c7 e0 08 ret
400097cc: 91 e8 20 01 restore %g0, 1, %o0
}
400097d0: 81 c7 e0 08 ret
400097d4: 81 e8 00 00 restore
400097d8 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
400097d8: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
400097dc: 23 10 00 55 sethi %hi(0x40015400), %l1
400097e0: a2 14 60 88 or %l1, 0x88, %l1 ! 40015488 <_User_extensions_List>
400097e4: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400097e8: 80 a4 00 11 cmp %l0, %l1
400097ec: 02 80 00 0d be 40009820 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
400097f0: 25 10 00 55 sethi %hi(0x40015400), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
400097f4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400097f8: 80 a0 60 00 cmp %g1, 0
400097fc: 02 80 00 05 be 40009810 <_User_extensions_Thread_delete+0x38>
40009800: 84 14 a0 cc or %l2, 0xcc, %g2
(*the_extension->Callouts.thread_delete)(
40009804: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
40009808: 9f c0 40 00 call %g1
4000980c: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009810: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009814: 80 a4 00 11 cmp %l0, %l1
40009818: 32 bf ff f8 bne,a 400097f8 <_User_extensions_Thread_delete+0x20>
4000981c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40009820: 81 c7 e0 08 ret
40009824: 81 e8 00 00 restore
400096cc <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
400096cc: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
400096d0: 23 10 00 55 sethi %hi(0x40015400), %l1
400096d4: a2 14 60 88 or %l1, 0x88, %l1 ! 40015488 <_User_extensions_List>
400096d8: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400096dc: 80 a4 00 11 cmp %l0, %l1
400096e0: 02 80 00 0c be 40009710 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
400096e4: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
400096e8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
400096ec: 80 a0 60 00 cmp %g1, 0
400096f0: 02 80 00 04 be 40009700 <_User_extensions_Thread_exitted+0x34>
400096f4: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
400096f8: 9f c0 40 00 call %g1
400096fc: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009700: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009704: 80 a4 00 11 cmp %l0, %l1
40009708: 32 bf ff f9 bne,a 400096ec <_User_extensions_Thread_exitted+0x20>
4000970c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
40009710: 81 c7 e0 08 ret
40009714: 81 e8 00 00 restore
4000a550 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000a550: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
4000a554: 23 10 00 78 sethi %hi(0x4001e000), %l1
4000a558: e0 04 61 58 ld [ %l1 + 0x158 ], %l0 ! 4001e158 <_User_extensions_List>
4000a55c: a2 14 61 58 or %l1, 0x158, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a560: a2 04 60 04 add %l1, 4, %l1
4000a564: 80 a4 00 11 cmp %l0, %l1
4000a568: 02 80 00 0d be 4000a59c <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000a56c: 25 10 00 78 sethi %hi(0x4001e000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000a570: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a574: 80 a0 60 00 cmp %g1, 0
4000a578: 02 80 00 05 be 4000a58c <_User_extensions_Thread_restart+0x3c>
4000a57c: 84 14 a1 9c or %l2, 0x19c, %g2
(*the_extension->Callouts.thread_restart)(
4000a580: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a584: 9f c0 40 00 call %g1
4000a588: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a58c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a590: 80 a4 00 11 cmp %l0, %l1
4000a594: 32 bf ff f8 bne,a 4000a574 <_User_extensions_Thread_restart+0x24>
4000a598: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a59c: 81 c7 e0 08 ret
4000a5a0: 81 e8 00 00 restore
40009828 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
40009828: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
4000982c: 23 10 00 55 sethi %hi(0x40015400), %l1
40009830: e0 04 60 88 ld [ %l1 + 0x88 ], %l0 ! 40015488 <_User_extensions_List>
40009834: a2 14 60 88 or %l1, 0x88, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009838: a2 04 60 04 add %l1, 4, %l1
4000983c: 80 a4 00 11 cmp %l0, %l1
40009840: 02 80 00 0d be 40009874 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
40009844: 25 10 00 55 sethi %hi(0x40015400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
40009848: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000984c: 80 a0 60 00 cmp %g1, 0
40009850: 02 80 00 05 be 40009864 <_User_extensions_Thread_start+0x3c>
40009854: 84 14 a0 cc or %l2, 0xcc, %g2
(*the_extension->Callouts.thread_start)(
40009858: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000985c: 9f c0 40 00 call %g1
40009860: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009864: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009868: 80 a4 00 11 cmp %l0, %l1
4000986c: 32 bf ff f8 bne,a 4000984c <_User_extensions_Thread_start+0x24>
40009870: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40009874: 81 c7 e0 08 ret
40009878: 81 e8 00 00 restore
4000987c <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
4000987c: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
40009880: 23 10 00 54 sethi %hi(0x40015000), %l1
40009884: e0 04 62 a4 ld [ %l1 + 0x2a4 ], %l0 ! 400152a4 <_User_extensions_Switches_list>
40009888: a2 14 62 a4 or %l1, 0x2a4, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000988c: a2 04 60 04 add %l1, 4, %l1
40009890: 80 a4 00 11 cmp %l0, %l1
40009894: 02 80 00 0a be 400098bc <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
40009898: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
4000989c: c2 04 20 08 ld [ %l0 + 8 ], %g1
400098a0: 90 10 00 18 mov %i0, %o0
400098a4: 9f c0 40 00 call %g1
400098a8: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
400098ac: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
400098b0: 80 a4 00 11 cmp %l0, %l1
400098b4: 32 bf ff fb bne,a 400098a0 <_User_extensions_Thread_switch+0x24>
400098b8: c2 04 20 08 ld [ %l0 + 8 ], %g1
400098bc: 81 c7 e0 08 ret
400098c0: 81 e8 00 00 restore
4000b8b4 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000b8b4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000b8b8: 7f ff dc f5 call 40002c8c <sparc_disable_interrupts>
4000b8bc: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000b8c0: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b8c4: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000b8c8: 80 a0 40 12 cmp %g1, %l2
4000b8cc: 02 80 00 1f be 4000b948 <_Watchdog_Adjust+0x94>
4000b8d0: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000b8d4: 12 80 00 1f bne 4000b950 <_Watchdog_Adjust+0x9c>
4000b8d8: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b8dc: 80 a6 a0 00 cmp %i2, 0
4000b8e0: 02 80 00 1a be 4000b948 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b8e4: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b8e8: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000b8ec: 80 a6 80 11 cmp %i2, %l1
4000b8f0: 1a 80 00 0b bcc 4000b91c <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000b8f4: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
4000b8f8: 10 80 00 1d b 4000b96c <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000b8fc: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b900: b4 a6 80 11 subcc %i2, %l1, %i2
4000b904: 02 80 00 11 be 4000b948 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b908: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b90c: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000b910: 80 a4 40 1a cmp %l1, %i2
4000b914: 38 80 00 16 bgu,a 4000b96c <_Watchdog_Adjust+0xb8>
4000b918: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000b91c: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000b920: 7f ff dc df call 40002c9c <sparc_enable_interrupts>
4000b924: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b928: 40 00 00 b4 call 4000bbf8 <_Watchdog_Tickle>
4000b92c: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b930: 7f ff dc d7 call 40002c8c <sparc_disable_interrupts>
4000b934: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
4000b938: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
4000b93c: 80 a4 80 02 cmp %l2, %g2
4000b940: 12 bf ff f0 bne 4000b900 <_Watchdog_Adjust+0x4c>
4000b944: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000b948: 7f ff dc d5 call 40002c9c <sparc_enable_interrupts>
4000b94c: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000b950: 12 bf ff fe bne 4000b948 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b954: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000b958: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000b95c: b4 00 80 1a add %g2, %i2, %i2
4000b960: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000b964: 7f ff dc ce call 40002c9c <sparc_enable_interrupts>
4000b968: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000b96c: 10 bf ff f7 b 4000b948 <_Watchdog_Adjust+0x94>
4000b970: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
40009a70 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009a70: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
40009a74: 7f ff e0 a7 call 40001d10 <sparc_disable_interrupts>
40009a78: 01 00 00 00 nop
previous_state = the_watchdog->state;
40009a7c: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
40009a80: 80 a4 20 01 cmp %l0, 1
40009a84: 02 80 00 2a be 40009b2c <_Watchdog_Remove+0xbc>
40009a88: 03 10 00 54 sethi %hi(0x40015000), %g1
40009a8c: 1a 80 00 09 bcc 40009ab0 <_Watchdog_Remove+0x40>
40009a90: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009a94: 03 10 00 54 sethi %hi(0x40015000), %g1
40009a98: c2 00 63 b0 ld [ %g1 + 0x3b0 ], %g1 ! 400153b0 <_Watchdog_Ticks_since_boot>
40009a9c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009aa0: 7f ff e0 a0 call 40001d20 <sparc_enable_interrupts>
40009aa4: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009aa8: 81 c7 e0 08 ret
40009aac: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
40009ab0: 18 bf ff fa bgu 40009a98 <_Watchdog_Remove+0x28> <== NEVER TAKEN
40009ab4: 03 10 00 54 sethi %hi(0x40015000), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
40009ab8: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009abc: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009ac0: c4 00 40 00 ld [ %g1 ], %g2
40009ac4: 80 a0 a0 00 cmp %g2, 0
40009ac8: 02 80 00 07 be 40009ae4 <_Watchdog_Remove+0x74>
40009acc: 05 10 00 54 sethi %hi(0x40015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009ad0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009ad4: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
40009ad8: 84 00 c0 02 add %g3, %g2, %g2
40009adc: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009ae0: 05 10 00 54 sethi %hi(0x40015000), %g2
40009ae4: c4 00 a3 ac ld [ %g2 + 0x3ac ], %g2 ! 400153ac <_Watchdog_Sync_count>
40009ae8: 80 a0 a0 00 cmp %g2, 0
40009aec: 22 80 00 07 be,a 40009b08 <_Watchdog_Remove+0x98>
40009af0: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009af4: 05 10 00 55 sethi %hi(0x40015400), %g2
40009af8: c6 00 a0 d4 ld [ %g2 + 0xd4 ], %g3 ! 400154d4 <_Per_CPU_Information+0x8>
40009afc: 05 10 00 54 sethi %hi(0x40015000), %g2
40009b00: c6 20 a3 44 st %g3, [ %g2 + 0x344 ] ! 40015344 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40009b04: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
40009b08: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009b0c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009b10: 03 10 00 54 sethi %hi(0x40015000), %g1
40009b14: c2 00 63 b0 ld [ %g1 + 0x3b0 ], %g1 ! 400153b0 <_Watchdog_Ticks_since_boot>
40009b18: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009b1c: 7f ff e0 81 call 40001d20 <sparc_enable_interrupts>
40009b20: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009b24: 81 c7 e0 08 ret
40009b28: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009b2c: c2 00 63 b0 ld [ %g1 + 0x3b0 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
40009b30: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009b34: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009b38: 7f ff e0 7a call 40001d20 <sparc_enable_interrupts>
40009b3c: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009b40: 81 c7 e0 08 ret
40009b44: 81 e8 00 00 restore
4000b0bc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b0bc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b0c0: 7f ff dd c5 call 400027d4 <sparc_disable_interrupts>
4000b0c4: 01 00 00 00 nop
4000b0c8: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b0cc: 11 10 00 75 sethi %hi(0x4001d400), %o0
4000b0d0: 94 10 00 19 mov %i1, %o2
4000b0d4: 92 10 00 18 mov %i0, %o1
4000b0d8: 7f ff e4 b0 call 40004398 <printk>
4000b0dc: 90 12 23 c8 or %o0, 0x3c8, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000b0e0: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b0e4: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000b0e8: 80 a4 40 19 cmp %l1, %i1
4000b0ec: 02 80 00 0f be 4000b128 <_Watchdog_Report_chain+0x6c>
4000b0f0: 11 10 00 75 sethi %hi(0x4001d400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b0f4: 92 10 00 11 mov %l1, %o1
4000b0f8: 40 00 00 0f call 4000b134 <_Watchdog_Report>
4000b0fc: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000b100: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000b104: 80 a4 40 19 cmp %l1, %i1
4000b108: 12 bf ff fc bne 4000b0f8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b10c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b110: 11 10 00 75 sethi %hi(0x4001d400), %o0
4000b114: 92 10 00 18 mov %i0, %o1
4000b118: 7f ff e4 a0 call 40004398 <printk>
4000b11c: 90 12 23 e0 or %o0, 0x3e0, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000b120: 7f ff dd b1 call 400027e4 <sparc_enable_interrupts>
4000b124: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000b128: 7f ff e4 9c call 40004398 <printk>
4000b12c: 90 12 23 f0 or %o0, 0x3f0, %o0
4000b130: 30 bf ff fc b,a 4000b120 <_Watchdog_Report_chain+0x64>
4000e4e8 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000e4e8: 9d e3 bf 98 save %sp, -104, %sp
4000e4ec: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000e4f0: 80 a4 20 00 cmp %l0, 0
4000e4f4: 02 80 00 23 be 4000e580 <rtems_barrier_create+0x98>
4000e4f8: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000e4fc: 80 a6 e0 00 cmp %i3, 0
4000e500: 02 80 00 20 be 4000e580 <rtems_barrier_create+0x98>
4000e504: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000e508: 80 8e 60 10 btst 0x10, %i1
4000e50c: 02 80 00 1f be 4000e588 <rtems_barrier_create+0xa0>
4000e510: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000e514: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000e518: 02 80 00 1a be 4000e580 <rtems_barrier_create+0x98>
4000e51c: b0 10 20 0a mov 0xa, %i0
4000e520: 03 10 00 88 sethi %hi(0x40022000), %g1
4000e524: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400223d0 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000e528: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e52c: 84 00 a0 01 inc %g2
4000e530: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000e534: 25 10 00 89 sethi %hi(0x40022400), %l2
4000e538: 7f ff ec c1 call 4000983c <_Objects_Allocate>
4000e53c: 90 14 a2 50 or %l2, 0x250, %o0 ! 40022650 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e540: a2 92 20 00 orcc %o0, 0, %l1
4000e544: 02 80 00 1e be 4000e5bc <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000e548: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000e54c: 92 07 bf f8 add %fp, -8, %o1
4000e550: 40 00 02 43 call 4000ee5c <_CORE_barrier_Initialize>
4000e554: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000e558: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000e55c: a4 14 a2 50 or %l2, 0x250, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e560: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000e564: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e568: 85 28 a0 02 sll %g2, 2, %g2
4000e56c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000e570: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000e574: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000e578: 7f ff f1 79 call 4000ab5c <_Thread_Enable_dispatch>
4000e57c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000e580: 81 c7 e0 08 ret
4000e584: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000e588: 82 10 20 01 mov 1, %g1
4000e58c: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000e590: 03 10 00 88 sethi %hi(0x40022000), %g1
4000e594: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400223d0 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000e598: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e59c: 84 00 a0 01 inc %g2
4000e5a0: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
4000e5a4: 25 10 00 89 sethi %hi(0x40022400), %l2
4000e5a8: 7f ff ec a5 call 4000983c <_Objects_Allocate>
4000e5ac: 90 14 a2 50 or %l2, 0x250, %o0 ! 40022650 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e5b0: a2 92 20 00 orcc %o0, 0, %l1
4000e5b4: 12 bf ff e6 bne 4000e54c <rtems_barrier_create+0x64>
4000e5b8: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000e5bc: 7f ff f1 68 call 4000ab5c <_Thread_Enable_dispatch>
4000e5c0: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000e5c4: 81 c7 e0 08 ret
4000e5c8: 81 e8 00 00 restore
40006f2c <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006f2c: 9d e3 bf 98 save %sp, -104, %sp
40006f30: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006f34: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006f38: 40 00 01 89 call 4000755c <_Chain_Get>
40006f3c: 90 10 00 10 mov %l0, %o0
40006f40: 92 10 20 00 clr %o1
40006f44: a2 10 00 08 mov %o0, %l1
40006f48: 94 10 00 1a mov %i2, %o2
40006f4c: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006f50: 80 a4 60 00 cmp %l1, 0
40006f54: 12 80 00 0a bne 40006f7c <rtems_chain_get_with_wait+0x50>
40006f58: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40006f5c: 7f ff fc e3 call 400062e8 <rtems_event_receive>
40006f60: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006f64: 80 a2 20 00 cmp %o0, 0
40006f68: 02 bf ff f4 be 40006f38 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40006f6c: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40006f70: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006f74: 81 c7 e0 08 ret
40006f78: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006f7c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40006f80: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006f84: 81 c7 e0 08 ret
40006f88: 91 e8 00 08 restore %g0, %o0, %o0
40007bc0 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007bc0: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40007bc4: 03 10 00 65 sethi %hi(0x40019400), %g1
40007bc8: c4 00 63 94 ld [ %g1 + 0x394 ], %g2 ! 40019794 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007bcc: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40007bd0: 03 10 00 66 sethi %hi(0x40019800), %g1
if ( rtems_interrupt_is_in_progress() )
40007bd4: 80 a0 a0 00 cmp %g2, 0
40007bd8: 12 80 00 42 bne 40007ce0 <rtems_io_register_driver+0x120>
40007bdc: c8 00 60 24 ld [ %g1 + 0x24 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40007be0: 80 a6 a0 00 cmp %i2, 0
40007be4: 02 80 00 50 be 40007d24 <rtems_io_register_driver+0x164>
40007be8: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40007bec: 80 a6 60 00 cmp %i1, 0
40007bf0: 02 80 00 4d be 40007d24 <rtems_io_register_driver+0x164>
40007bf4: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007bf8: c4 06 40 00 ld [ %i1 ], %g2
40007bfc: 80 a0 a0 00 cmp %g2, 0
40007c00: 22 80 00 46 be,a 40007d18 <rtems_io_register_driver+0x158>
40007c04: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40007c08: 80 a1 00 18 cmp %g4, %i0
40007c0c: 08 80 00 33 bleu 40007cd8 <rtems_io_register_driver+0x118>
40007c10: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007c14: 05 10 00 65 sethi %hi(0x40019400), %g2
40007c18: c8 00 a1 60 ld [ %g2 + 0x160 ], %g4 ! 40019560 <_Thread_Dispatch_disable_level>
40007c1c: 88 01 20 01 inc %g4
40007c20: c8 20 a1 60 st %g4, [ %g2 + 0x160 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40007c24: 80 a6 20 00 cmp %i0, 0
40007c28: 12 80 00 30 bne 40007ce8 <rtems_io_register_driver+0x128>
40007c2c: 1b 10 00 66 sethi %hi(0x40019800), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40007c30: c8 00 60 24 ld [ %g1 + 0x24 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40007c34: 80 a1 20 00 cmp %g4, 0
40007c38: 22 80 00 3d be,a 40007d2c <rtems_io_register_driver+0x16c><== NEVER TAKEN
40007c3c: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40007c40: 10 80 00 05 b 40007c54 <rtems_io_register_driver+0x94>
40007c44: c2 03 60 28 ld [ %o5 + 0x28 ], %g1
40007c48: 80 a1 00 18 cmp %g4, %i0
40007c4c: 08 80 00 0a bleu 40007c74 <rtems_io_register_driver+0xb4>
40007c50: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007c54: c4 00 40 00 ld [ %g1 ], %g2
40007c58: 80 a0 a0 00 cmp %g2, 0
40007c5c: 32 bf ff fb bne,a 40007c48 <rtems_io_register_driver+0x88>
40007c60: b0 06 20 01 inc %i0
40007c64: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007c68: 80 a0 a0 00 cmp %g2, 0
40007c6c: 32 bf ff f7 bne,a 40007c48 <rtems_io_register_driver+0x88>
40007c70: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40007c74: 80 a1 00 18 cmp %g4, %i0
40007c78: 02 80 00 2d be 40007d2c <rtems_io_register_driver+0x16c>
40007c7c: f0 26 80 00 st %i0, [ %i2 ]
40007c80: 83 2e 20 03 sll %i0, 3, %g1
40007c84: 85 2e 20 05 sll %i0, 5, %g2
40007c88: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c8c: c8 03 60 28 ld [ %o5 + 0x28 ], %g4
40007c90: da 00 c0 00 ld [ %g3 ], %o5
40007c94: 82 01 00 02 add %g4, %g2, %g1
40007c98: da 21 00 02 st %o5, [ %g4 + %g2 ]
40007c9c: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007ca0: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007ca4: c4 20 60 04 st %g2, [ %g1 + 4 ]
40007ca8: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007cac: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007cb0: c4 20 60 08 st %g2, [ %g1 + 8 ]
40007cb4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40007cb8: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40007cbc: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40007cc0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40007cc4: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40007cc8: 40 00 08 33 call 40009d94 <_Thread_Enable_dispatch>
40007ccc: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40007cd0: 40 00 20 ed call 40010084 <rtems_io_initialize>
40007cd4: 81 e8 00 00 restore
}
40007cd8: 81 c7 e0 08 ret
40007cdc: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40007ce0: 81 c7 e0 08 ret
40007ce4: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40007ce8: c2 03 60 28 ld [ %o5 + 0x28 ], %g1
40007cec: 89 2e 20 05 sll %i0, 5, %g4
40007cf0: 85 2e 20 03 sll %i0, 3, %g2
40007cf4: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cf8: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40007cfc: 80 a1 20 00 cmp %g4, 0
40007d00: 02 80 00 0f be 40007d3c <rtems_io_register_driver+0x17c>
40007d04: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40007d08: 40 00 08 23 call 40009d94 <_Thread_Enable_dispatch>
40007d0c: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40007d10: 81 c7 e0 08 ret
40007d14: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007d18: 80 a0 a0 00 cmp %g2, 0
40007d1c: 32 bf ff bc bne,a 40007c0c <rtems_io_register_driver+0x4c>
40007d20: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40007d24: 81 c7 e0 08 ret
40007d28: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40007d2c: 40 00 08 1a call 40009d94 <_Thread_Enable_dispatch>
40007d30: b0 10 20 05 mov 5, %i0
return sc;
40007d34: 81 c7 e0 08 ret
40007d38: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007d3c: c2 00 60 04 ld [ %g1 + 4 ], %g1
40007d40: 80 a0 60 00 cmp %g1, 0
40007d44: 12 bf ff f1 bne 40007d08 <rtems_io_register_driver+0x148>
40007d48: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40007d4c: 10 bf ff d0 b 40007c8c <rtems_io_register_driver+0xcc>
40007d50: f0 26 80 00 st %i0, [ %i2 ]
40009298 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40009298: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
4000929c: 80 a6 20 00 cmp %i0, 0
400092a0: 02 80 00 23 be 4000932c <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
400092a4: 25 10 00 7f sethi %hi(0x4001fc00), %l2
400092a8: a4 14 a2 dc or %l2, 0x2dc, %l2 ! 4001fedc <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
400092ac: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
400092b0: c2 04 80 00 ld [ %l2 ], %g1
400092b4: 80 a0 60 00 cmp %g1, 0
400092b8: 22 80 00 1a be,a 40009320 <rtems_iterate_over_all_threads+0x88>
400092bc: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
400092c0: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
400092c4: 80 a4 60 00 cmp %l1, 0
400092c8: 22 80 00 16 be,a 40009320 <rtems_iterate_over_all_threads+0x88>
400092cc: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
400092d0: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
400092d4: 84 90 60 00 orcc %g1, 0, %g2
400092d8: 22 80 00 12 be,a 40009320 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
400092dc: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
400092e0: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
400092e4: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
400092e8: 83 2c 20 02 sll %l0, 2, %g1
400092ec: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
400092f0: 90 90 60 00 orcc %g1, 0, %o0
400092f4: 02 80 00 05 be 40009308 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
400092f8: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
400092fc: 9f c6 00 00 call %i0
40009300: 01 00 00 00 nop
40009304: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009308: 83 28 a0 10 sll %g2, 0x10, %g1
4000930c: 83 30 60 10 srl %g1, 0x10, %g1
40009310: 80 a0 40 10 cmp %g1, %l0
40009314: 3a bf ff f5 bcc,a 400092e8 <rtems_iterate_over_all_threads+0x50>
40009318: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000931c: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009320: 80 a4 80 13 cmp %l2, %l3
40009324: 32 bf ff e4 bne,a 400092b4 <rtems_iterate_over_all_threads+0x1c>
40009328: c2 04 80 00 ld [ %l2 ], %g1
4000932c: 81 c7 e0 08 ret
40009330: 81 e8 00 00 restore
40007f04 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40007f04: 9d e3 bf a0 save %sp, -96, %sp
40007f08: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40007f0c: 80 a6 a0 00 cmp %i2, 0
40007f10: 02 80 00 21 be 40007f94 <rtems_object_get_class_information+0x90>
40007f14: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007f18: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40007f1c: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007f20: 40 00 07 75 call 40009cf4 <_Objects_Get_information>
40007f24: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40007f28: 80 a2 20 00 cmp %o0, 0
40007f2c: 02 80 00 1a be 40007f94 <rtems_object_get_class_information+0x90>
40007f30: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007f34: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40007f38: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007f3c: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007f40: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007f44: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007f48: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007f4c: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40007f50: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007f54: 80 a1 20 00 cmp %g4, 0
40007f58: 02 80 00 0d be 40007f8c <rtems_object_get_class_information+0x88><== NEVER TAKEN
40007f5c: 84 10 20 00 clr %g2
40007f60: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40007f64: 86 10 20 01 mov 1, %g3
40007f68: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40007f6c: 87 28 e0 02 sll %g3, 2, %g3
40007f70: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007f74: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40007f78: 80 a0 00 03 cmp %g0, %g3
40007f7c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007f80: 80 a1 00 01 cmp %g4, %g1
40007f84: 1a bf ff fa bcc 40007f6c <rtems_object_get_class_information+0x68>
40007f88: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40007f8c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40007f90: b0 10 20 00 clr %i0
}
40007f94: 81 c7 e0 08 ret
40007f98: 81 e8 00 00 restore
40013ce0 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013ce0: 9d e3 bf a0 save %sp, -96, %sp
40013ce4: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013ce8: 80 a4 20 00 cmp %l0, 0
40013cec: 02 80 00 34 be 40013dbc <rtems_partition_create+0xdc>
40013cf0: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013cf4: 80 a6 60 00 cmp %i1, 0
40013cf8: 02 80 00 31 be 40013dbc <rtems_partition_create+0xdc>
40013cfc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013d00: 80 a7 60 00 cmp %i5, 0
40013d04: 02 80 00 2e be 40013dbc <rtems_partition_create+0xdc> <== NEVER TAKEN
40013d08: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013d0c: 02 80 00 2e be 40013dc4 <rtems_partition_create+0xe4>
40013d10: 80 a6 a0 00 cmp %i2, 0
40013d14: 02 80 00 2c be 40013dc4 <rtems_partition_create+0xe4>
40013d18: 80 a6 80 1b cmp %i2, %i3
40013d1c: 0a 80 00 28 bcs 40013dbc <rtems_partition_create+0xdc>
40013d20: b0 10 20 08 mov 8, %i0
40013d24: 80 8e e0 07 btst 7, %i3
40013d28: 12 80 00 25 bne 40013dbc <rtems_partition_create+0xdc>
40013d2c: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013d30: 12 80 00 23 bne 40013dbc <rtems_partition_create+0xdc>
40013d34: b0 10 20 09 mov 9, %i0
40013d38: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
40013d3c: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 4003dcb0 <_Thread_Dispatch_disable_level>
40013d40: 84 00 a0 01 inc %g2
40013d44: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013d48: 25 10 00 f6 sethi %hi(0x4003d800), %l2
40013d4c: 40 00 13 17 call 400189a8 <_Objects_Allocate>
40013d50: 90 14 a2 c4 or %l2, 0x2c4, %o0 ! 4003dac4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013d54: a2 92 20 00 orcc %o0, 0, %l1
40013d58: 02 80 00 1d be 40013dcc <rtems_partition_create+0xec>
40013d5c: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40013d60: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013d64: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013d68: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013d6c: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
40013d70: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013d74: 40 00 63 14 call 4002c9c4 <.udiv>
40013d78: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013d7c: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013d80: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013d84: 96 10 00 1b mov %i3, %o3
40013d88: b8 04 60 24 add %l1, 0x24, %i4
40013d8c: 40 00 0c d8 call 400170ec <_Chain_Initialize>
40013d90: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013d94: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013d98: a4 14 a2 c4 or %l2, 0x2c4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013d9c: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013da0: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013da4: 85 28 a0 02 sll %g2, 2, %g2
40013da8: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013dac: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013db0: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013db4: 40 00 17 f7 call 40019d90 <_Thread_Enable_dispatch>
40013db8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013dbc: 81 c7 e0 08 ret
40013dc0: 81 e8 00 00 restore
}
40013dc4: 81 c7 e0 08 ret
40013dc8: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40013dcc: 40 00 17 f1 call 40019d90 <_Thread_Enable_dispatch>
40013dd0: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013dd4: 81 c7 e0 08 ret
40013dd8: 81 e8 00 00 restore
40007374 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007374: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40007378: 11 10 00 7c sethi %hi(0x4001f000), %o0
4000737c: 92 10 00 18 mov %i0, %o1
40007380: 90 12 21 fc or %o0, 0x1fc, %o0
40007384: 40 00 09 6e call 4000993c <_Objects_Get>
40007388: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
4000738c: c2 07 bf fc ld [ %fp + -4 ], %g1
40007390: 80 a0 60 00 cmp %g1, 0
40007394: 02 80 00 04 be 400073a4 <rtems_rate_monotonic_period+0x30>
40007398: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000739c: 81 c7 e0 08 ret
400073a0: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
400073a4: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
400073a8: 23 10 00 7d sethi %hi(0x4001f400), %l1
400073ac: a2 14 61 8c or %l1, 0x18c, %l1 ! 4001f58c <_Per_CPU_Information>
400073b0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400073b4: 80 a0 80 01 cmp %g2, %g1
400073b8: 02 80 00 06 be 400073d0 <rtems_rate_monotonic_period+0x5c>
400073bc: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
400073c0: 40 00 0c f5 call 4000a794 <_Thread_Enable_dispatch>
400073c4: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
400073c8: 81 c7 e0 08 ret
400073cc: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
400073d0: 12 80 00 0f bne 4000740c <rtems_rate_monotonic_period+0x98>
400073d4: 01 00 00 00 nop
switch ( the_period->state ) {
400073d8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
400073dc: 80 a0 60 04 cmp %g1, 4
400073e0: 08 80 00 06 bleu 400073f8 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
400073e4: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
400073e8: 40 00 0c eb call 4000a794 <_Thread_Enable_dispatch>
400073ec: 01 00 00 00 nop
return RTEMS_TIMEOUT;
400073f0: 81 c7 e0 08 ret
400073f4: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
400073f8: 83 28 60 02 sll %g1, 2, %g1
400073fc: 05 10 00 75 sethi %hi(0x4001d400), %g2
40007400: 84 10 a1 74 or %g2, 0x174, %g2 ! 4001d574 <CSWTCH.2>
40007404: 10 bf ff f9 b 400073e8 <rtems_rate_monotonic_period+0x74>
40007408: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
4000740c: 7f ff ed e9 call 40002bb0 <sparc_disable_interrupts>
40007410: 01 00 00 00 nop
40007414: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40007418: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
4000741c: 80 a4 a0 00 cmp %l2, 0
40007420: 02 80 00 14 be 40007470 <rtems_rate_monotonic_period+0xfc>
40007424: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40007428: 02 80 00 29 be 400074cc <rtems_rate_monotonic_period+0x158>
4000742c: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40007430: 12 bf ff e6 bne 400073c8 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
40007434: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007438: 7f ff ff 8f call 40007274 <_Rate_monotonic_Update_statistics>
4000743c: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007440: 7f ff ed e0 call 40002bc0 <sparc_enable_interrupts>
40007444: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007448: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000744c: 92 04 20 10 add %l0, 0x10, %o1
40007450: 11 10 00 7d sethi %hi(0x4001f400), %o0
the_period->next_length = length;
40007454: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
40007458: 90 12 20 20 or %o0, 0x20, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
4000745c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007460: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007464: 40 00 10 ef call 4000b820 <_Watchdog_Insert>
40007468: b0 10 20 06 mov 6, %i0
4000746c: 30 bf ff df b,a 400073e8 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
40007470: 7f ff ed d4 call 40002bc0 <sparc_enable_interrupts>
40007474: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40007478: 7f ff ff 63 call 40007204 <_Rate_monotonic_Initiate_statistics>
4000747c: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007480: 82 10 20 02 mov 2, %g1
40007484: 92 04 20 10 add %l0, 0x10, %o1
40007488: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
4000748c: 11 10 00 7d sethi %hi(0x4001f400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007490: 03 10 00 1e sethi %hi(0x40007800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007494: 90 12 20 20 or %o0, 0x20, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007498: 82 10 60 48 or %g1, 0x48, %g1
the_watchdog->id = id;
4000749c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400074a0: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400074a4: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
400074a8: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
400074ac: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400074b0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400074b4: 40 00 10 db call 4000b820 <_Watchdog_Insert>
400074b8: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
400074bc: 40 00 0c b6 call 4000a794 <_Thread_Enable_dispatch>
400074c0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400074c4: 81 c7 e0 08 ret
400074c8: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
400074cc: 7f ff ff 6a call 40007274 <_Rate_monotonic_Update_statistics>
400074d0: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
400074d4: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
400074d8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
400074dc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
400074e0: 7f ff ed b8 call 40002bc0 <sparc_enable_interrupts>
400074e4: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
400074e8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400074ec: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400074f0: 90 10 00 01 mov %g1, %o0
400074f4: 13 00 00 10 sethi %hi(0x4000), %o1
400074f8: 40 00 0e ea call 4000b0a0 <_Thread_Set_state>
400074fc: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007500: 7f ff ed ac call 40002bb0 <sparc_disable_interrupts>
40007504: 01 00 00 00 nop
local_state = the_period->state;
40007508: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
4000750c: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007510: 7f ff ed ac call 40002bc0 <sparc_enable_interrupts>
40007514: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007518: 80 a4 e0 03 cmp %l3, 3
4000751c: 22 80 00 06 be,a 40007534 <rtems_rate_monotonic_period+0x1c0>
40007520: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
40007524: 40 00 0c 9c call 4000a794 <_Thread_Enable_dispatch>
40007528: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000752c: 81 c7 e0 08 ret
40007530: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007534: 40 00 0b bc call 4000a424 <_Thread_Clear_state>
40007538: 13 00 00 10 sethi %hi(0x4000), %o1
4000753c: 30 bf ff fa b,a 40007524 <rtems_rate_monotonic_period+0x1b0>
40007540 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
40007540: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40007544: 80 a6 60 00 cmp %i1, 0
40007548: 02 80 00 4c be 40007678 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
4000754c: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
40007550: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007554: 9f c6 40 00 call %i1
40007558: 92 12 61 88 or %o1, 0x188, %o1 ! 4001d588 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
4000755c: 90 10 00 18 mov %i0, %o0
40007560: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007564: 9f c6 40 00 call %i1
40007568: 92 12 61 a8 or %o1, 0x1a8, %o1 ! 4001d5a8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
4000756c: 90 10 00 18 mov %i0, %o0
40007570: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007574: 9f c6 40 00 call %i1
40007578: 92 12 61 d0 or %o1, 0x1d0, %o1 ! 4001d5d0 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
4000757c: 90 10 00 18 mov %i0, %o0
40007580: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007584: 9f c6 40 00 call %i1
40007588: 92 12 61 f8 or %o1, 0x1f8, %o1 ! 4001d5f8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
4000758c: 90 10 00 18 mov %i0, %o0
40007590: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007594: 9f c6 40 00 call %i1
40007598: 92 12 62 48 or %o1, 0x248, %o1 ! 4001d648 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000759c: 23 10 00 7c sethi %hi(0x4001f000), %l1
400075a0: a2 14 61 fc or %l1, 0x1fc, %l1 ! 4001f1fc <_Rate_monotonic_Information>
400075a4: e0 04 60 08 ld [ %l1 + 8 ], %l0
400075a8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400075ac: 80 a4 00 01 cmp %l0, %g1
400075b0: 18 80 00 32 bgu 40007678 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400075b4: 2f 10 00 75 sethi %hi(0x4001d400), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
400075b8: 39 10 00 75 sethi %hi(0x4001d400), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400075bc: 2b 10 00 72 sethi %hi(0x4001c800), %l5
400075c0: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400075c4: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400075c8: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400075cc: ae 15 e2 98 or %l7, 0x298, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
400075d0: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400075d4: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
400075d8: b8 17 22 b0 or %i4, 0x2b0, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
400075dc: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400075e0: 10 80 00 06 b 400075f8 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
400075e4: aa 15 60 28 or %l5, 0x28, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400075e8: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400075ec: 80 a0 40 10 cmp %g1, %l0
400075f0: 0a 80 00 22 bcs 40007678 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
400075f4: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
400075f8: 90 10 00 10 mov %l0, %o0
400075fc: 40 00 18 86 call 4000d814 <rtems_rate_monotonic_get_statistics>
40007600: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
40007604: 80 a2 20 00 cmp %o0, 0
40007608: 32 bf ff f8 bne,a 400075e8 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
4000760c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007610: 92 10 00 1d mov %i5, %o1
40007614: 40 00 18 af call 4000d8d0 <rtems_rate_monotonic_get_status>
40007618: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
4000761c: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007620: 94 10 00 13 mov %l3, %o2
40007624: 40 00 00 b9 call 40007908 <rtems_object_get_name>
40007628: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
4000762c: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007630: 92 10 00 17 mov %l7, %o1
40007634: 94 10 00 10 mov %l0, %o2
40007638: 90 10 00 18 mov %i0, %o0
4000763c: 9f c6 40 00 call %i1
40007640: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007644: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007648: 94 10 00 14 mov %l4, %o2
4000764c: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007650: 80 a0 60 00 cmp %g1, 0
40007654: 12 80 00 0b bne 40007680 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
40007658: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
4000765c: 9f c6 40 00 call %i1
40007660: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007664: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40007668: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000766c: 80 a0 40 10 cmp %g1, %l0
40007670: 1a bf ff e3 bcc 400075fc <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
40007674: 90 10 00 10 mov %l0, %o0
40007678: 81 c7 e0 08 ret
4000767c: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007680: 40 00 0f 2c call 4000b330 <_Timespec_Divide_by_integer>
40007684: 92 10 00 01 mov %g1, %o1
(*print)( context,
40007688: d0 07 bf ac ld [ %fp + -84 ], %o0
4000768c: 40 00 46 aa call 40019134 <.div>
40007690: 92 10 23 e8 mov 0x3e8, %o1
40007694: 96 10 00 08 mov %o0, %o3
40007698: d0 07 bf b4 ld [ %fp + -76 ], %o0
4000769c: d6 27 bf 9c st %o3, [ %fp + -100 ]
400076a0: 40 00 46 a5 call 40019134 <.div>
400076a4: 92 10 23 e8 mov 0x3e8, %o1
400076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1
400076ac: b6 10 00 08 mov %o0, %i3
400076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0
400076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400076b8: 40 00 46 9f call 40019134 <.div>
400076bc: 92 10 23 e8 mov 0x3e8, %o1
400076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4
400076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3
400076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2
400076cc: 9a 10 00 1b mov %i3, %o5
400076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400076d4: 92 10 00 1c mov %i4, %o1
400076d8: 9f c6 40 00 call %i1
400076dc: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
400076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1
400076e4: 94 10 00 14 mov %l4, %o2
400076e8: 40 00 0f 12 call 4000b330 <_Timespec_Divide_by_integer>
400076ec: 90 10 00 1a mov %i2, %o0
(*print)( context,
400076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0
400076f4: 40 00 46 90 call 40019134 <.div>
400076f8: 92 10 23 e8 mov 0x3e8, %o1
400076fc: 96 10 00 08 mov %o0, %o3
40007700: d0 07 bf cc ld [ %fp + -52 ], %o0
40007704: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007708: 40 00 46 8b call 40019134 <.div>
4000770c: 92 10 23 e8 mov 0x3e8, %o1
40007710: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007714: b6 10 00 08 mov %o0, %i3
40007718: d0 07 bf f4 ld [ %fp + -12 ], %o0
4000771c: 92 10 23 e8 mov 0x3e8, %o1
40007720: 40 00 46 85 call 40019134 <.div>
40007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007728: d4 07 bf c0 ld [ %fp + -64 ], %o2
4000772c: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007730: d8 07 bf c8 ld [ %fp + -56 ], %o4
40007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007738: 13 10 00 75 sethi %hi(0x4001d400), %o1
4000773c: 90 10 00 18 mov %i0, %o0
40007740: 92 12 62 d0 or %o1, 0x2d0, %o1
40007744: 9f c6 40 00 call %i1
40007748: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000774c: 10 bf ff a7 b 400075e8 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
40007750: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007770 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
40007770: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007774: 03 10 00 7c sethi %hi(0x4001f000), %g1
40007778: c4 00 63 60 ld [ %g1 + 0x360 ], %g2 ! 4001f360 <_Thread_Dispatch_disable_level>
4000777c: 84 00 a0 01 inc %g2
40007780: c4 20 63 60 st %g2, [ %g1 + 0x360 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007784: 23 10 00 7c sethi %hi(0x4001f000), %l1
40007788: a2 14 61 fc or %l1, 0x1fc, %l1 ! 4001f1fc <_Rate_monotonic_Information>
4000778c: e0 04 60 08 ld [ %l1 + 8 ], %l0
40007790: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007794: 80 a4 00 01 cmp %l0, %g1
40007798: 18 80 00 09 bgu 400077bc <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
4000779c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
400077a0: 40 00 00 0a call 400077c8 <rtems_rate_monotonic_reset_statistics>
400077a4: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400077a8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400077ac: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400077b0: 80 a0 40 10 cmp %g1, %l0
400077b4: 1a bf ff fb bcc 400077a0 <rtems_rate_monotonic_reset_all_statistics+0x30>
400077b8: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
400077bc: 40 00 0b f6 call 4000a794 <_Thread_Enable_dispatch>
400077c0: 81 e8 00 00 restore
40015300 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40015300: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40015304: 80 a6 60 00 cmp %i1, 0
40015308: 12 80 00 04 bne 40015318 <rtems_signal_send+0x18>
4001530c: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015310: 81 c7 e0 08 ret
40015314: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40015318: 90 10 00 18 mov %i0, %o0
4001531c: 40 00 12 ab call 40019dc8 <_Thread_Get>
40015320: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40015324: c2 07 bf fc ld [ %fp + -4 ], %g1
40015328: 80 a0 60 00 cmp %g1, 0
4001532c: 02 80 00 05 be 40015340 <rtems_signal_send+0x40>
40015330: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40015334: 82 10 20 04 mov 4, %g1
}
40015338: 81 c7 e0 08 ret
4001533c: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40015340: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
40015344: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40015348: 80 a0 60 00 cmp %g1, 0
4001534c: 02 80 00 25 be 400153e0 <rtems_signal_send+0xe0>
40015350: 01 00 00 00 nop
if ( asr->is_enabled ) {
40015354: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
40015358: 80 a0 60 00 cmp %g1, 0
4001535c: 02 80 00 15 be 400153b0 <rtems_signal_send+0xb0>
40015360: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40015364: 7f ff e6 84 call 4000ed74 <sparc_disable_interrupts>
40015368: 01 00 00 00 nop
*signal_set |= signals;
4001536c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40015370: b2 10 40 19 or %g1, %i1, %i1
40015374: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40015378: 7f ff e6 83 call 4000ed84 <sparc_enable_interrupts>
4001537c: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40015380: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
40015384: 82 10 62 e4 or %g1, 0x2e4, %g1 ! 4003dee4 <_Per_CPU_Information>
40015388: c4 00 60 08 ld [ %g1 + 8 ], %g2
4001538c: 80 a0 a0 00 cmp %g2, 0
40015390: 02 80 00 0f be 400153cc <rtems_signal_send+0xcc>
40015394: 01 00 00 00 nop
40015398: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4001539c: 80 a4 40 02 cmp %l1, %g2
400153a0: 12 80 00 0b bne 400153cc <rtems_signal_send+0xcc> <== NEVER TAKEN
400153a4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
400153a8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400153ac: 30 80 00 08 b,a 400153cc <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400153b0: 7f ff e6 71 call 4000ed74 <sparc_disable_interrupts>
400153b4: 01 00 00 00 nop
*signal_set |= signals;
400153b8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400153bc: b2 10 40 19 or %g1, %i1, %i1
400153c0: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
400153c4: 7f ff e6 70 call 4000ed84 <sparc_enable_interrupts>
400153c8: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
400153cc: 40 00 12 71 call 40019d90 <_Thread_Enable_dispatch>
400153d0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400153d4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400153d8: 81 c7 e0 08 ret
400153dc: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
400153e0: 40 00 12 6c call 40019d90 <_Thread_Enable_dispatch>
400153e4: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
400153e8: 10 bf ff ca b 40015310 <rtems_signal_send+0x10>
400153ec: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000d8cc <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000d8cc: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000d8d0: 80 a6 a0 00 cmp %i2, 0
4000d8d4: 02 80 00 43 be 4000d9e0 <rtems_task_mode+0x114>
4000d8d8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000d8dc: 27 10 00 55 sethi %hi(0x40015400), %l3
4000d8e0: a6 14 e0 cc or %l3, 0xcc, %l3 ! 400154cc <_Per_CPU_Information>
4000d8e4: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000d8e8: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000d8ec: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000d8f0: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000d8f4: e2 04 21 4c ld [ %l0 + 0x14c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000d8f8: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000d8fc: 80 a0 60 00 cmp %g1, 0
4000d900: 12 80 00 3a bne 4000d9e8 <rtems_task_mode+0x11c>
4000d904: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000d908: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000d90c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000d910: 7f ff f1 48 call 40009e30 <_CPU_ISR_Get_level>
4000d914: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000d918: a9 2d 20 0a sll %l4, 0xa, %l4
4000d91c: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000d920: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000d924: 80 8e 61 00 btst 0x100, %i1
4000d928: 02 80 00 06 be 4000d940 <rtems_task_mode+0x74>
4000d92c: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000d930: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000d934: 80 a0 00 01 cmp %g0, %g1
4000d938: 82 60 3f ff subx %g0, -1, %g1
4000d93c: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000d940: 80 8e 62 00 btst 0x200, %i1
4000d944: 02 80 00 0b be 4000d970 <rtems_task_mode+0xa4>
4000d948: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000d94c: 80 8e 22 00 btst 0x200, %i0
4000d950: 22 80 00 07 be,a 4000d96c <rtems_task_mode+0xa0>
4000d954: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000d958: 03 10 00 54 sethi %hi(0x40015000), %g1
4000d95c: c2 00 62 04 ld [ %g1 + 0x204 ], %g1 ! 40015204 <_Thread_Ticks_per_timeslice>
4000d960: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000d964: 82 10 20 01 mov 1, %g1
4000d968: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000d96c: 80 8e 60 0f btst 0xf, %i1
4000d970: 12 80 00 3d bne 4000da64 <rtems_task_mode+0x198>
4000d974: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000d978: 80 8e 64 00 btst 0x400, %i1
4000d97c: 02 80 00 14 be 4000d9cc <rtems_task_mode+0x100>
4000d980: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000d984: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000d988: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000d98c: 80 a0 00 18 cmp %g0, %i0
4000d990: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000d994: 80 a0 80 01 cmp %g2, %g1
4000d998: 22 80 00 0e be,a 4000d9d0 <rtems_task_mode+0x104>
4000d99c: 03 10 00 54 sethi %hi(0x40015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000d9a0: 7f ff d0 dc call 40001d10 <sparc_disable_interrupts>
4000d9a4: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000d9a8: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000d9ac: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000d9b0: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000d9b4: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000d9b8: 7f ff d0 da call 40001d20 <sparc_enable_interrupts>
4000d9bc: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000d9c0: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000d9c4: 80 a0 00 01 cmp %g0, %g1
4000d9c8: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000d9cc: 03 10 00 54 sethi %hi(0x40015000), %g1
4000d9d0: c4 00 63 f8 ld [ %g1 + 0x3f8 ], %g2 ! 400153f8 <_System_state_Current>
4000d9d4: 80 a0 a0 03 cmp %g2, 3
4000d9d8: 02 80 00 11 be 4000da1c <rtems_task_mode+0x150>
4000d9dc: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000d9e0: 81 c7 e0 08 ret
4000d9e4: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000d9e8: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000d9ec: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000d9f0: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000d9f4: 7f ff f1 0f call 40009e30 <_CPU_ISR_Get_level>
4000d9f8: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000d9fc: a9 2d 20 0a sll %l4, 0xa, %l4
4000da00: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000da04: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000da08: 80 8e 61 00 btst 0x100, %i1
4000da0c: 02 bf ff cd be 4000d940 <rtems_task_mode+0x74>
4000da10: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000da14: 10 bf ff c8 b 4000d934 <rtems_task_mode+0x68>
4000da18: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000da1c: 80 88 e0 ff btst 0xff, %g3
4000da20: 12 80 00 0a bne 4000da48 <rtems_task_mode+0x17c>
4000da24: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000da28: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000da2c: 80 a0 80 03 cmp %g2, %g3
4000da30: 02 bf ff ec be 4000d9e0 <rtems_task_mode+0x114>
4000da34: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000da38: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000da3c: 80 a0 a0 00 cmp %g2, 0
4000da40: 02 bf ff e8 be 4000d9e0 <rtems_task_mode+0x114> <== NEVER TAKEN
4000da44: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000da48: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000da4c: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000da50: 7f ff eb 90 call 40008890 <_Thread_Dispatch>
4000da54: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000da58: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000da5c: 81 c7 e0 08 ret
4000da60: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000da64: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000da68: 7f ff d0 ae call 40001d20 <sparc_enable_interrupts>
4000da6c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000da70: 10 bf ff c3 b 4000d97c <rtems_task_mode+0xb0>
4000da74: 80 8e 64 00 btst 0x400, %i1
4000b004 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000b004: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000b008: 80 a6 60 00 cmp %i1, 0
4000b00c: 02 80 00 07 be 4000b028 <rtems_task_set_priority+0x24>
4000b010: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000b014: 03 10 00 65 sethi %hi(0x40019400), %g1
4000b018: c2 08 60 64 ldub [ %g1 + 0x64 ], %g1 ! 40019464 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000b01c: 80 a6 40 01 cmp %i1, %g1
4000b020: 18 80 00 1c bgu 4000b090 <rtems_task_set_priority+0x8c>
4000b024: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000b028: 80 a6 a0 00 cmp %i2, 0
4000b02c: 02 80 00 19 be 4000b090 <rtems_task_set_priority+0x8c>
4000b030: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000b034: 40 00 09 a4 call 4000d6c4 <_Thread_Get>
4000b038: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000b03c: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b040: 80 a0 60 00 cmp %g1, 0
4000b044: 12 80 00 13 bne 4000b090 <rtems_task_set_priority+0x8c>
4000b048: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000b04c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000b050: 80 a6 60 00 cmp %i1, 0
4000b054: 02 80 00 0d be 4000b088 <rtems_task_set_priority+0x84>
4000b058: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000b05c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000b060: 80 a0 60 00 cmp %g1, 0
4000b064: 02 80 00 06 be 4000b07c <rtems_task_set_priority+0x78>
4000b068: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000b06c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000b070: 80 a6 40 01 cmp %i1, %g1
4000b074: 1a 80 00 05 bcc 4000b088 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b078: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000b07c: 92 10 00 19 mov %i1, %o1
4000b080: 40 00 08 5d call 4000d1f4 <_Thread_Change_priority>
4000b084: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b088: 40 00 09 81 call 4000d68c <_Thread_Enable_dispatch>
4000b08c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b090: 81 c7 e0 08 ret
4000b094: 81 e8 00 00 restore
400073b8 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
400073b8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
400073bc: 80 a6 60 00 cmp %i1, 0
400073c0: 02 80 00 1e be 40007438 <rtems_task_variable_delete+0x80>
400073c4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
400073c8: 90 10 00 18 mov %i0, %o0
400073cc: 40 00 09 2c call 4000987c <_Thread_Get>
400073d0: 92 07 bf fc add %fp, -4, %o1
switch (location) {
400073d4: c2 07 bf fc ld [ %fp + -4 ], %g1
400073d8: 80 a0 60 00 cmp %g1, 0
400073dc: 12 80 00 19 bne 40007440 <rtems_task_variable_delete+0x88>
400073e0: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
400073e4: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
400073e8: 80 a0 60 00 cmp %g1, 0
400073ec: 02 80 00 10 be 4000742c <rtems_task_variable_delete+0x74>
400073f0: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400073f4: c4 00 60 04 ld [ %g1 + 4 ], %g2
400073f8: 80 a0 80 19 cmp %g2, %i1
400073fc: 32 80 00 09 bne,a 40007420 <rtems_task_variable_delete+0x68>
40007400: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
40007404: 10 80 00 19 b 40007468 <rtems_task_variable_delete+0xb0>
40007408: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
4000740c: 80 a0 80 19 cmp %g2, %i1
40007410: 22 80 00 0e be,a 40007448 <rtems_task_variable_delete+0x90>
40007414: c4 02 40 00 ld [ %o1 ], %g2
40007418: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
4000741c: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
40007420: 80 a2 60 00 cmp %o1, 0
40007424: 32 bf ff fa bne,a 4000740c <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
40007428: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
4000742c: 40 00 09 06 call 40009844 <_Thread_Enable_dispatch>
40007430: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
40007434: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40007438: 81 c7 e0 08 ret
4000743c: 91 e8 00 01 restore %g0, %g1, %o0
40007440: 81 c7 e0 08 ret
40007444: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
40007448: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
4000744c: 40 00 00 2e call 40007504 <_RTEMS_Tasks_Invoke_task_variable_dtor>
40007450: 01 00 00 00 nop
_Thread_Enable_dispatch();
40007454: 40 00 08 fc call 40009844 <_Thread_Enable_dispatch>
40007458: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4000745c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40007460: 81 c7 e0 08 ret
40007464: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
40007468: 92 10 00 01 mov %g1, %o1
4000746c: 10 bf ff f8 b 4000744c <rtems_task_variable_delete+0x94>
40007470: c4 22 21 58 st %g2, [ %o0 + 0x158 ]
40007474 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
40007474: 9d e3 bf 98 save %sp, -104, %sp
40007478: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
4000747c: 80 a6 60 00 cmp %i1, 0
40007480: 02 80 00 1b be 400074ec <rtems_task_variable_get+0x78>
40007484: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
40007488: 80 a6 a0 00 cmp %i2, 0
4000748c: 02 80 00 1c be 400074fc <rtems_task_variable_get+0x88>
40007490: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40007494: 40 00 08 fa call 4000987c <_Thread_Get>
40007498: 92 07 bf fc add %fp, -4, %o1
switch (location) {
4000749c: c2 07 bf fc ld [ %fp + -4 ], %g1
400074a0: 80 a0 60 00 cmp %g1, 0
400074a4: 12 80 00 12 bne 400074ec <rtems_task_variable_get+0x78>
400074a8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
400074ac: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
400074b0: 80 a0 60 00 cmp %g1, 0
400074b4: 32 80 00 07 bne,a 400074d0 <rtems_task_variable_get+0x5c>
400074b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
400074bc: 30 80 00 0e b,a 400074f4 <rtems_task_variable_get+0x80>
400074c0: 80 a0 60 00 cmp %g1, 0
400074c4: 02 80 00 0c be 400074f4 <rtems_task_variable_get+0x80> <== NEVER TAKEN
400074c8: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400074cc: c4 00 60 04 ld [ %g1 + 4 ], %g2
400074d0: 80 a0 80 19 cmp %g2, %i1
400074d4: 32 bf ff fb bne,a 400074c0 <rtems_task_variable_get+0x4c>
400074d8: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
400074dc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
400074e0: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
400074e4: 40 00 08 d8 call 40009844 <_Thread_Enable_dispatch>
400074e8: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
400074ec: 81 c7 e0 08 ret
400074f0: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400074f4: 40 00 08 d4 call 40009844 <_Thread_Enable_dispatch>
400074f8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
400074fc: 81 c7 e0 08 ret
40007500: 81 e8 00 00 restore
40015d5c <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015d5c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015d60: 11 10 00 f7 sethi %hi(0x4003dc00), %o0
40015d64: 92 10 00 18 mov %i0, %o1
40015d68: 90 12 23 74 or %o0, 0x374, %o0
40015d6c: 40 00 0c 73 call 40018f38 <_Objects_Get>
40015d70: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015d74: c2 07 bf fc ld [ %fp + -4 ], %g1
40015d78: 80 a0 60 00 cmp %g1, 0
40015d7c: 22 80 00 04 be,a 40015d8c <rtems_timer_cancel+0x30>
40015d80: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015d84: 81 c7 e0 08 ret
40015d88: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015d8c: 80 a0 60 04 cmp %g1, 4
40015d90: 02 80 00 04 be 40015da0 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40015d94: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015d98: 40 00 14 dd call 4001b10c <_Watchdog_Remove>
40015d9c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015da0: 40 00 0f fc call 40019d90 <_Thread_Enable_dispatch>
40015da4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015da8: 81 c7 e0 08 ret
40015dac: 81 e8 00 00 restore
40016274 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016274: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40016278: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
4001627c: e0 00 63 b4 ld [ %g1 + 0x3b4 ], %l0 ! 4003dfb4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016280: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40016284: 80 a4 20 00 cmp %l0, 0
40016288: 02 80 00 10 be 400162c8 <rtems_timer_server_fire_when+0x54>
4001628c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40016290: 03 10 00 f7 sethi %hi(0x4003dc00), %g1
40016294: c2 08 60 c0 ldub [ %g1 + 0xc0 ], %g1 ! 4003dcc0 <_TOD_Is_set>
40016298: 80 a0 60 00 cmp %g1, 0
4001629c: 02 80 00 0b be 400162c8 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
400162a0: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
400162a4: 80 a6 a0 00 cmp %i2, 0
400162a8: 02 80 00 08 be 400162c8 <rtems_timer_server_fire_when+0x54>
400162ac: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400162b0: 90 10 00 19 mov %i1, %o0
400162b4: 7f ff f3 b3 call 40013180 <_TOD_Validate>
400162b8: b0 10 20 14 mov 0x14, %i0
400162bc: 80 8a 20 ff btst 0xff, %o0
400162c0: 12 80 00 04 bne 400162d0 <rtems_timer_server_fire_when+0x5c>
400162c4: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400162c8: 81 c7 e0 08 ret
400162cc: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400162d0: 7f ff f3 76 call 400130a8 <_TOD_To_seconds>
400162d4: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400162d8: 25 10 00 f7 sethi %hi(0x4003dc00), %l2
400162dc: c2 04 a1 38 ld [ %l2 + 0x138 ], %g1 ! 4003dd38 <_TOD_Now>
400162e0: 80 a2 00 01 cmp %o0, %g1
400162e4: 08 bf ff f9 bleu 400162c8 <rtems_timer_server_fire_when+0x54>
400162e8: b2 10 00 08 mov %o0, %i1
400162ec: 92 10 00 11 mov %l1, %o1
400162f0: 11 10 00 f7 sethi %hi(0x4003dc00), %o0
400162f4: 94 07 bf fc add %fp, -4, %o2
400162f8: 40 00 0b 10 call 40018f38 <_Objects_Get>
400162fc: 90 12 23 74 or %o0, 0x374, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016300: c2 07 bf fc ld [ %fp + -4 ], %g1
40016304: 80 a0 60 00 cmp %g1, 0
40016308: 12 80 00 16 bne 40016360 <rtems_timer_server_fire_when+0xec>
4001630c: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40016310: 40 00 13 7f call 4001b10c <_Watchdog_Remove>
40016314: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016318: c4 04 a1 38 ld [ %l2 + 0x138 ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
4001631c: c2 04 20 04 ld [ %l0 + 4 ], %g1
40016320: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016324: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
40016328: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
4001632c: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40016330: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
40016334: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
40016338: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
4001633c: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016340: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40016344: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40016348: 9f c0 40 00 call %g1
4001634c: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016350: 40 00 0e 90 call 40019d90 <_Thread_Enable_dispatch>
40016354: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016358: 81 c7 e0 08 ret
4001635c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016360: 81 c7 e0 08 ret
40016364: 91 e8 20 04 restore %g0, 4, %o0