RTEMS 4.11Annotated Report
Sat Jan 8 17:26:27 2011
40006974 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
40006974: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40006978: 23 10 00 54 sethi %hi(0x40015000), %l1
4000697c: e0 04 63 b4 ld [ %l1 + 0x3b4 ], %l0 ! 400153b4 <_API_extensions_List>
40006980: a2 14 63 b4 or %l1, 0x3b4, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40006984: a2 04 60 04 add %l1, 4, %l1
40006988: 80 a4 00 11 cmp %l0, %l1
4000698c: 02 80 00 09 be 400069b0 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40006990: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40006994: c2 04 20 08 ld [ %l0 + 8 ], %g1
40006998: 9f c0 40 00 call %g1
4000699c: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
400069a0: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069a4: 80 a4 00 11 cmp %l0, %l1
400069a8: 32 bf ff fc bne,a 40006998 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
400069ac: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
400069b0: 81 c7 e0 08 ret
400069b4: 81 e8 00 00 restore
400069b8 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
400069b8: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
400069bc: 23 10 00 54 sethi %hi(0x40015000), %l1
400069c0: e0 04 63 b4 ld [ %l1 + 0x3b4 ], %l0 ! 400153b4 <_API_extensions_List>
400069c4: a2 14 63 b4 or %l1, 0x3b4, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069c8: a2 04 60 04 add %l1, 4, %l1
400069cc: 80 a4 00 11 cmp %l0, %l1
400069d0: 02 80 00 0a be 400069f8 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
400069d4: 25 10 00 54 sethi %hi(0x40015000), %l2
400069d8: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
400069dc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400069e0: 9f c0 40 00 call %g1
400069e4: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
400069e8: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069ec: 80 a4 00 11 cmp %l0, %l1
400069f0: 32 bf ff fc bne,a 400069e0 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
400069f4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
400069f8: 81 c7 e0 08 ret
400069fc: 81 e8 00 00 restore
40017024 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017024: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017028: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
4001702c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017030: 80 a0 40 1a cmp %g1, %i2
40017034: 0a 80 00 17 bcs 40017090 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
40017038: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
4001703c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017040: 80 a0 60 00 cmp %g1, 0
40017044: 02 80 00 0a be 4001706c <_CORE_message_queue_Broadcast+0x48>
40017048: a4 10 20 00 clr %l2
*count = 0;
4001704c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017050: 81 c7 e0 08 ret
40017054: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40017058: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
4001705c: 40 00 22 de call 4001fbd4 <memcpy>
40017060: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017064: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
40017068: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
4001706c: 40 00 0b 6b call 40019e18 <_Thread_queue_Dequeue>
40017070: 90 10 00 10 mov %l0, %o0
40017074: 92 10 00 19 mov %i1, %o1
40017078: a2 10 00 08 mov %o0, %l1
4001707c: 80 a2 20 00 cmp %o0, 0
40017080: 12 bf ff f6 bne 40017058 <_CORE_message_queue_Broadcast+0x34>
40017084: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40017088: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
4001708c: b0 10 20 00 clr %i0
}
40017090: 81 c7 e0 08 ret
40017094: 81 e8 00 00 restore
400108dc <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108dc: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
400108e0: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400108e4: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
400108e8: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108ec: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400108f0: 80 8e e0 03 btst 3, %i3
400108f4: 02 80 00 07 be 40010910 <_CORE_message_queue_Initialize+0x34>
400108f8: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400108fc: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
40010900: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40010904: 80 a6 c0 12 cmp %i3, %l2
40010908: 18 80 00 22 bgu 40010990 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4001090c: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
40010910: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40010914: 92 10 00 1a mov %i2, %o1
40010918: 90 10 00 11 mov %l1, %o0
4001091c: 40 00 3f 5f call 40020698 <.umul>
40010920: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40010924: 80 a2 00 12 cmp %o0, %l2
40010928: 0a 80 00 1a bcs 40010990 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4001092c: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40010930: 40 00 0c 70 call 40013af0 <_Workspace_Allocate>
40010934: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
40010938: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
4001093c: 80 a2 20 00 cmp %o0, 0
40010940: 02 80 00 14 be 40010990 <_CORE_message_queue_Initialize+0xb4>
40010944: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
40010948: 90 04 20 60 add %l0, 0x60, %o0
4001094c: 94 10 00 1a mov %i2, %o2
40010950: 40 00 15 01 call 40015d54 <_Chain_Initialize>
40010954: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40010958: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4001095c: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40010960: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
40010964: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40010968: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
4001096c: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
40010970: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010974: 82 18 60 01 xor %g1, 1, %g1
40010978: 80 a0 00 01 cmp %g0, %g1
4001097c: 90 10 00 10 mov %l0, %o0
40010980: 94 10 20 80 mov 0x80, %o2
40010984: 92 60 3f ff subx %g0, -1, %o1
40010988: 40 00 09 8c call 40012fb8 <_Thread_queue_Initialize>
4001098c: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40010990: 81 c7 e0 08 ret
40010994: 81 e8 00 00 restore
40006d04 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40006d04: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40006d08: 21 10 00 54 sethi %hi(0x40015000), %l0
40006d0c: c2 04 21 a0 ld [ %l0 + 0x1a0 ], %g1 ! 400151a0 <_Thread_Dispatch_disable_level>
40006d10: 80 a0 60 00 cmp %g1, 0
40006d14: 02 80 00 05 be 40006d28 <_CORE_mutex_Seize+0x24>
40006d18: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40006d1c: 80 8e a0 ff btst 0xff, %i2
40006d20: 12 80 00 1a bne 40006d88 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40006d24: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d28: 90 10 00 18 mov %i0, %o0
40006d2c: 40 00 14 21 call 4000bdb0 <_CORE_mutex_Seize_interrupt_trylock>
40006d30: 92 07 a0 54 add %fp, 0x54, %o1
40006d34: 80 a2 20 00 cmp %o0, 0
40006d38: 02 80 00 12 be 40006d80 <_CORE_mutex_Seize+0x7c>
40006d3c: 80 8e a0 ff btst 0xff, %i2
40006d40: 02 80 00 1a be 40006da8 <_CORE_mutex_Seize+0xa4>
40006d44: 01 00 00 00 nop
40006d48: c4 04 21 a0 ld [ %l0 + 0x1a0 ], %g2
40006d4c: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d50: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006d54: 86 10 20 01 mov 1, %g3
40006d58: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40006d5c: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006d60: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40006d64: 82 00 a0 01 add %g2, 1, %g1
40006d68: c2 24 21 a0 st %g1, [ %l0 + 0x1a0 ]
40006d6c: 7f ff eb df call 40001ce8 <sparc_enable_interrupts>
40006d70: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006d74: 90 10 00 18 mov %i0, %o0
40006d78: 7f ff ff c0 call 40006c78 <_CORE_mutex_Seize_interrupt_blocking>
40006d7c: 92 10 00 1b mov %i3, %o1
40006d80: 81 c7 e0 08 ret
40006d84: 81 e8 00 00 restore
40006d88: c2 00 63 18 ld [ %g1 + 0x318 ], %g1
40006d8c: 80 a0 60 01 cmp %g1, 1
40006d90: 28 bf ff e7 bleu,a 40006d2c <_CORE_mutex_Seize+0x28>
40006d94: 90 10 00 18 mov %i0, %o0
40006d98: 90 10 20 00 clr %o0
40006d9c: 92 10 20 00 clr %o1
40006da0: 40 00 01 d8 call 40007500 <_Internal_error_Occurred>
40006da4: 94 10 20 12 mov 0x12, %o2
40006da8: 7f ff eb d0 call 40001ce8 <sparc_enable_interrupts>
40006dac: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006db0: 03 10 00 54 sethi %hi(0x40015000), %g1
40006db4: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
40006db8: 84 10 20 01 mov 1, %g2
40006dbc: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40006dc0: 81 c7 e0 08 ret
40006dc4: 81 e8 00 00 restore
4000bdb0 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000bdb0: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000bdb4: 03 10 00 54 sethi %hi(0x40015000), %g1
4000bdb8: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bdbc: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000bdc0: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bdc4: 80 a0 a0 00 cmp %g2, 0
4000bdc8: 02 80 00 13 be 4000be14 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000bdcc: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000bdd0: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000bdd4: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
4000bdd8: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000bddc: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
4000bde0: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
4000bde4: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000bde8: 80 a0 a0 02 cmp %g2, 2
4000bdec: 02 80 00 10 be 4000be2c <_CORE_mutex_Seize_interrupt_trylock+0x7c>
4000bdf0: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
4000bdf4: 80 a0 a0 03 cmp %g2, 3
4000bdf8: 22 80 00 21 be,a 4000be7c <_CORE_mutex_Seize_interrupt_trylock+0xcc>
4000bdfc: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000be00: d0 06 40 00 ld [ %i1 ], %o0
4000be04: 7f ff d7 b9 call 40001ce8 <sparc_enable_interrupts>
4000be08: b0 10 20 00 clr %i0
4000be0c: 81 c7 e0 08 ret
4000be10: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000be14: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000be18: 80 a0 40 02 cmp %g1, %g2
4000be1c: 02 80 00 0c be 4000be4c <_CORE_mutex_Seize_interrupt_trylock+0x9c>
4000be20: b0 10 20 01 mov 1, %i0
4000be24: 81 c7 e0 08 ret
4000be28: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000be2c: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
4000be30: 84 00 a0 01 inc %g2
4000be34: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000be38: d0 06 40 00 ld [ %i1 ], %o0
4000be3c: 7f ff d7 ab call 40001ce8 <sparc_enable_interrupts>
4000be40: b0 10 20 00 clr %i0
4000be44: 81 c7 e0 08 ret
4000be48: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000be4c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000be50: 80 a0 a0 00 cmp %g2, 0
4000be54: 12 80 00 2b bne 4000bf00 <_CORE_mutex_Seize_interrupt_trylock+0x150>
4000be58: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000be5c: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000be60: 82 00 60 01 inc %g1
4000be64: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000be68: d0 06 40 00 ld [ %i1 ], %o0
4000be6c: 7f ff d7 9f call 40001ce8 <sparc_enable_interrupts>
4000be70: b0 10 20 00 clr %i0
4000be74: 81 c7 e0 08 ret
4000be78: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000be7c: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
4000be80: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000be84: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
4000be88: 80 a1 00 02 cmp %g4, %g2
4000be8c: 02 80 00 25 be 4000bf20 <_CORE_mutex_Seize_interrupt_trylock+0x170>
4000be90: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
4000be94: 80 a1 00 02 cmp %g4, %g2
4000be98: 1a 80 00 11 bcc 4000bedc <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000be9c: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000bea0: 03 10 00 54 sethi %hi(0x40015000), %g1
4000bea4: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
4000bea8: 84 00 a0 01 inc %g2
4000beac: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000beb0: 7f ff d7 8e call 40001ce8 <sparc_enable_interrupts>
4000beb4: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000beb8: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
4000bebc: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
4000bec0: 94 10 20 00 clr %o2
4000bec4: 7f ff f1 00 call 400082c4 <_Thread_Change_priority>
4000bec8: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000becc: 7f ff f2 3c call 400087bc <_Thread_Enable_dispatch>
4000bed0: 01 00 00 00 nop
4000bed4: 81 c7 e0 08 ret
4000bed8: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000bedc: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000bee0: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
4000bee4: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
4000bee8: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000beec: d0 06 40 00 ld [ %i1 ], %o0
4000bef0: 7f ff d7 7e call 40001ce8 <sparc_enable_interrupts>
4000bef4: b0 10 20 00 clr %i0
4000bef8: 81 c7 e0 08 ret
4000befc: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000bf00: 12 bf ff c3 bne 4000be0c <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
4000bf04: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000bf08: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
4000bf0c: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000bf10: 7f ff d7 76 call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
4000bf14: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000bf18: 81 c7 e0 08 ret <== NOT EXECUTED
4000bf1c: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
4000bf20: d0 06 40 00 ld [ %i1 ], %o0
4000bf24: 7f ff d7 71 call 40001ce8 <sparc_enable_interrupts>
4000bf28: b0 10 20 00 clr %i0
4000bf2c: 81 c7 e0 08 ret
4000bf30: 81 e8 00 00 restore
40006f44 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40006f44: 9d e3 bf a0 save %sp, -96, %sp
40006f48: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006f4c: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006f50: 40 00 06 f2 call 40008b18 <_Thread_queue_Dequeue>
40006f54: 90 10 00 10 mov %l0, %o0
40006f58: 80 a2 20 00 cmp %o0, 0
40006f5c: 02 80 00 04 be 40006f6c <_CORE_semaphore_Surrender+0x28>
40006f60: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
40006f64: 81 c7 e0 08 ret
40006f68: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40006f6c: 7f ff eb 5b call 40001cd8 <sparc_disable_interrupts>
40006f70: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006f74: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40006f78: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40006f7c: 80 a0 40 02 cmp %g1, %g2
40006f80: 1a 80 00 05 bcc 40006f94 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
40006f84: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40006f88: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006f8c: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40006f90: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40006f94: 7f ff eb 55 call 40001ce8 <sparc_enable_interrupts>
40006f98: 01 00 00 00 nop
}
return status;
}
40006f9c: 81 c7 e0 08 ret
40006fa0: 81 e8 00 00 restore
4000bd48 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000bd48: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
4000bd4c: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000bd50: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd54: 80 a6 a0 00 cmp %i2, 0
4000bd58: 02 80 00 12 be 4000bda0 <_Chain_Initialize+0x58> <== NEVER TAKEN
4000bd5c: 90 10 00 18 mov %i0, %o0
4000bd60: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
4000bd64: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
4000bd68: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
4000bd6c: 10 80 00 05 b 4000bd80 <_Chain_Initialize+0x38>
4000bd70: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd74: 84 10 00 01 mov %g1, %g2
4000bd78: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000bd7c: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
4000bd80: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000bd84: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd88: 80 a6 a0 00 cmp %i2, 0
4000bd8c: 12 bf ff fa bne 4000bd74 <_Chain_Initialize+0x2c>
4000bd90: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000bd94: 40 00 16 a2 call 4001181c <.umul>
4000bd98: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd9c: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
4000bda0: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
4000bda4: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000bda8: 81 c7 e0 08 ret
4000bdac: 81 e8 00 00 restore
40005c00 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40005c00: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40005c04: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40005c08: 7f ff f0 34 call 40001cd8 <sparc_disable_interrupts>
40005c0c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40005c10: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40005c14: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005c18: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40005c1c: 86 88 40 02 andcc %g1, %g2, %g3
40005c20: 02 80 00 3e be 40005d18 <_Event_Surrender+0x118>
40005c24: 09 10 00 54 sethi %hi(0x40015000), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005c28: 88 11 23 ec or %g4, 0x3ec, %g4 ! 400153ec <_Per_CPU_Information>
40005c2c: da 01 20 08 ld [ %g4 + 8 ], %o5
40005c30: 80 a3 60 00 cmp %o5, 0
40005c34: 32 80 00 1d bne,a 40005ca8 <_Event_Surrender+0xa8>
40005c38: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40005c3c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40005c40: 80 89 21 00 btst 0x100, %g4
40005c44: 02 80 00 33 be 40005d10 <_Event_Surrender+0x110>
40005c48: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005c4c: 02 80 00 04 be 40005c5c <_Event_Surrender+0x5c>
40005c50: 80 8c a0 02 btst 2, %l2
40005c54: 02 80 00 2f be 40005d10 <_Event_Surrender+0x110> <== NEVER TAKEN
40005c58: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c5c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40005c60: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40005c64: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005c68: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c6c: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40005c70: 7f ff f0 1e call 40001ce8 <sparc_enable_interrupts>
40005c74: 90 10 00 11 mov %l1, %o0
40005c78: 7f ff f0 18 call 40001cd8 <sparc_disable_interrupts>
40005c7c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40005c80: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40005c84: 80 a0 60 02 cmp %g1, 2
40005c88: 02 80 00 26 be 40005d20 <_Event_Surrender+0x120>
40005c8c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40005c90: 90 10 00 11 mov %l1, %o0
40005c94: 7f ff f0 15 call 40001ce8 <sparc_enable_interrupts>
40005c98: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005c9c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005ca0: 40 00 09 f0 call 40008460 <_Thread_Clear_state>
40005ca4: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005ca8: 80 a6 00 04 cmp %i0, %g4
40005cac: 32 bf ff e5 bne,a 40005c40 <_Event_Surrender+0x40>
40005cb0: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005cb4: 09 10 00 55 sethi %hi(0x40015400), %g4
40005cb8: da 01 20 40 ld [ %g4 + 0x40 ], %o5 ! 40015440 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40005cbc: 80 a3 60 02 cmp %o5, 2
40005cc0: 02 80 00 07 be 40005cdc <_Event_Surrender+0xdc> <== NEVER TAKEN
40005cc4: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005cc8: da 01 20 40 ld [ %g4 + 0x40 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005ccc: 80 a3 60 01 cmp %o5, 1
40005cd0: 32 bf ff dc bne,a 40005c40 <_Event_Surrender+0x40>
40005cd4: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005cd8: 80 a0 40 03 cmp %g1, %g3
40005cdc: 02 80 00 04 be 40005cec <_Event_Surrender+0xec>
40005ce0: 80 8c a0 02 btst 2, %l2
40005ce4: 02 80 00 09 be 40005d08 <_Event_Surrender+0x108> <== NEVER TAKEN
40005ce8: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cec: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40005cf0: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40005cf4: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005cf8: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cfc: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40005d00: 82 10 20 03 mov 3, %g1
40005d04: c2 21 20 40 st %g1, [ %g4 + 0x40 ]
}
_ISR_Enable( level );
40005d08: 7f ff ef f8 call 40001ce8 <sparc_enable_interrupts>
40005d0c: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40005d10: 7f ff ef f6 call 40001ce8 <sparc_enable_interrupts>
40005d14: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40005d18: 7f ff ef f4 call 40001ce8 <sparc_enable_interrupts>
40005d1c: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40005d20: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40005d24: 7f ff ef f1 call 40001ce8 <sparc_enable_interrupts>
40005d28: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005d2c: 40 00 0e f8 call 4000990c <_Watchdog_Remove>
40005d30: 90 06 20 48 add %i0, 0x48, %o0
40005d34: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40005d38: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005d3c: 40 00 09 c9 call 40008460 <_Thread_Clear_state>
40005d40: 81 e8 00 00 restore
40005d48 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40005d48: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40005d4c: 90 10 00 18 mov %i0, %o0
40005d50: 40 00 0a a9 call 400087f4 <_Thread_Get>
40005d54: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40005d58: c2 07 bf fc ld [ %fp + -4 ], %g1
40005d5c: 80 a0 60 00 cmp %g1, 0
40005d60: 12 80 00 15 bne 40005db4 <_Event_Timeout+0x6c> <== NEVER TAKEN
40005d64: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40005d68: 7f ff ef dc call 40001cd8 <sparc_disable_interrupts>
40005d6c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40005d70: 03 10 00 54 sethi %hi(0x40015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40005d74: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
40005d78: 80 a4 00 01 cmp %l0, %g1
40005d7c: 02 80 00 10 be 40005dbc <_Event_Timeout+0x74>
40005d80: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005d84: 82 10 20 06 mov 6, %g1
40005d88: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40005d8c: 7f ff ef d7 call 40001ce8 <sparc_enable_interrupts>
40005d90: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005d94: 90 10 00 10 mov %l0, %o0
40005d98: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40005d9c: 40 00 09 b1 call 40008460 <_Thread_Clear_state>
40005da0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005da4: 03 10 00 54 sethi %hi(0x40015000), %g1
40005da8: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
40005dac: 84 00 bf ff add %g2, -1, %g2
40005db0: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
40005db4: 81 c7 e0 08 ret
40005db8: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005dbc: 03 10 00 55 sethi %hi(0x40015400), %g1
40005dc0: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 40015440 <_Event_Sync_state>
40005dc4: 80 a0 a0 01 cmp %g2, 1
40005dc8: 32 bf ff f0 bne,a 40005d88 <_Event_Timeout+0x40>
40005dcc: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40005dd0: 84 10 20 02 mov 2, %g2
40005dd4: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005dd8: 10 bf ff ec b 40005d88 <_Event_Timeout+0x40>
40005ddc: 82 10 20 06 mov 6, %g1
4000bfa0 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000bfa0: 9d e3 bf 98 save %sp, -104, %sp
4000bfa4: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000bfa8: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000bfac: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000bfb0: 80 a6 40 12 cmp %i1, %l2
4000bfb4: 18 80 00 6e bgu 4000c16c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bfb8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000bfbc: 80 a6 e0 00 cmp %i3, 0
4000bfc0: 12 80 00 75 bne 4000c194 <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000bfc4: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000bfc8: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000bfcc: 80 a4 00 14 cmp %l0, %l4
4000bfd0: 02 80 00 67 be 4000c16c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bfd4: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000bfd8: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000bfdc: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000bfe0: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000bfe4: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000bfe8: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000bfec: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000bff0: 80 a4 80 13 cmp %l2, %l3
4000bff4: 3a 80 00 4b bcc,a 4000c120 <_Heap_Allocate_aligned_with_boundary+0x180>
4000bff8: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000bffc: 80 a6 a0 00 cmp %i2, 0
4000c000: 02 80 00 44 be 4000c110 <_Heap_Allocate_aligned_with_boundary+0x170>
4000c004: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c008: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c00c: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c010: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c014: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000c018: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c01c: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000c020: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c024: a6 00 40 13 add %g1, %l3, %l3
4000c028: 40 00 16 e3 call 40011bb4 <.urem>
4000c02c: 90 10 00 18 mov %i0, %o0
4000c030: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000c034: 80 a4 c0 18 cmp %l3, %i0
4000c038: 1a 80 00 06 bcc 4000c050 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000c03c: ac 05 20 08 add %l4, 8, %l6
4000c040: 90 10 00 13 mov %l3, %o0
4000c044: 40 00 16 dc call 40011bb4 <.urem>
4000c048: 92 10 00 1a mov %i2, %o1
4000c04c: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000c050: 80 a6 e0 00 cmp %i3, 0
4000c054: 02 80 00 24 be 4000c0e4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000c058: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000c05c: a6 06 00 19 add %i0, %i1, %l3
4000c060: 92 10 00 1b mov %i3, %o1
4000c064: 40 00 16 d4 call 40011bb4 <.urem>
4000c068: 90 10 00 13 mov %l3, %o0
4000c06c: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c070: 80 a2 00 13 cmp %o0, %l3
4000c074: 1a 80 00 1b bcc 4000c0e0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000c078: 80 a6 00 08 cmp %i0, %o0
4000c07c: 1a 80 00 1a bcc 4000c0e4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000c080: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000c084: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000c088: 80 a5 40 08 cmp %l5, %o0
4000c08c: 28 80 00 09 bleu,a 4000c0b0 <_Heap_Allocate_aligned_with_boundary+0x110>
4000c090: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c094: 10 80 00 23 b 4000c120 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c098: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c09c: 1a 80 00 11 bcc 4000c0e0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000c0a0: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000c0a4: 38 80 00 1f bgu,a 4000c120 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000c0a8: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000c0ac: b0 22 00 19 sub %o0, %i1, %i0
4000c0b0: 92 10 00 1a mov %i2, %o1
4000c0b4: 40 00 16 c0 call 40011bb4 <.urem>
4000c0b8: 90 10 00 18 mov %i0, %o0
4000c0bc: 92 10 00 1b mov %i3, %o1
4000c0c0: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000c0c4: a6 06 00 19 add %i0, %i1, %l3
4000c0c8: 40 00 16 bb call 40011bb4 <.urem>
4000c0cc: 90 10 00 13 mov %l3, %o0
4000c0d0: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c0d4: 80 a2 00 13 cmp %o0, %l3
4000c0d8: 0a bf ff f1 bcs 4000c09c <_Heap_Allocate_aligned_with_boundary+0xfc>
4000c0dc: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000c0e0: 80 a5 80 18 cmp %l6, %i0
4000c0e4: 38 80 00 0f bgu,a 4000c120 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c0e8: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000c0ec: 82 10 3f f8 mov -8, %g1
4000c0f0: 90 10 00 18 mov %i0, %o0
4000c0f4: a6 20 40 14 sub %g1, %l4, %l3
4000c0f8: 92 10 00 1d mov %i5, %o1
4000c0fc: 40 00 16 ae call 40011bb4 <.urem>
4000c100: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c104: 90 a4 c0 08 subcc %l3, %o0, %o0
4000c108: 12 80 00 1b bne 4000c174 <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000c10c: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000c110: 80 a6 20 00 cmp %i0, 0
4000c114: 32 80 00 08 bne,a 4000c134 <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000c118: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000c11c: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c120: 80 a4 00 14 cmp %l0, %l4
4000c124: 02 80 00 1a be 4000c18c <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000c128: 82 04 60 01 add %l1, 1, %g1
4000c12c: 10 bf ff b0 b 4000bfec <_Heap_Allocate_aligned_with_boundary+0x4c>
4000c130: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000c134: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c138: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000c13c: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c140: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000c144: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c148: 90 10 00 10 mov %l0, %o0
4000c14c: 92 10 00 14 mov %l4, %o1
4000c150: 94 10 00 18 mov %i0, %o2
4000c154: 7f ff ec 9f call 400073d0 <_Heap_Block_allocate>
4000c158: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000c15c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000c160: 80 a0 40 11 cmp %g1, %l1
4000c164: 2a 80 00 02 bcs,a 4000c16c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c168: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c16c: 81 c7 e0 08 ret
4000c170: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c174: 1a bf ff e8 bcc 4000c114 <_Heap_Allocate_aligned_with_boundary+0x174>
4000c178: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c17c: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c180: 80 a4 00 14 cmp %l0, %l4
4000c184: 12 bf ff ea bne 4000c12c <_Heap_Allocate_aligned_with_boundary+0x18c><== NEVER TAKEN
4000c188: 82 04 60 01 add %l1, 1, %g1
4000c18c: 10 bf ff f4 b 4000c15c <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000c190: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000c194: 18 bf ff f6 bgu 4000c16c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c198: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000c19c: 22 bf ff 8b be,a 4000bfc8 <_Heap_Allocate_aligned_with_boundary+0x28>
4000c1a0: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c1a4: 10 bf ff 8a b 4000bfcc <_Heap_Allocate_aligned_with_boundary+0x2c>
4000c1a8: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000c4b4 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c4b4: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c4b8: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c4bc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c4c0: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c4c4: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c4c8: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c4cc: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c4d0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000c4d4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c4d8: 80 a6 40 11 cmp %i1, %l1
4000c4dc: 18 80 00 86 bgu 4000c6f4 <_Heap_Extend+0x240>
4000c4e0: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c4e4: 90 10 00 19 mov %i1, %o0
4000c4e8: 92 10 00 1a mov %i2, %o1
4000c4ec: 94 10 00 13 mov %l3, %o2
4000c4f0: 98 07 bf fc add %fp, -4, %o4
4000c4f4: 7f ff ec 18 call 40007554 <_Heap_Get_first_and_last_block>
4000c4f8: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c4fc: 80 8a 20 ff btst 0xff, %o0
4000c500: 02 80 00 7d be 4000c6f4 <_Heap_Extend+0x240>
4000c504: ba 10 20 00 clr %i5
4000c508: b0 10 00 12 mov %l2, %i0
4000c50c: b8 10 20 00 clr %i4
4000c510: ac 10 20 00 clr %l6
4000c514: 10 80 00 14 b 4000c564 <_Heap_Extend+0xb0>
4000c518: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c51c: 2a 80 00 02 bcs,a 4000c524 <_Heap_Extend+0x70>
4000c520: b8 10 00 18 mov %i0, %i4
4000c524: 90 10 00 15 mov %l5, %o0
4000c528: 40 00 16 f6 call 40012100 <.urem>
4000c52c: 92 10 00 13 mov %l3, %o1
4000c530: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c534: 80 a5 40 19 cmp %l5, %i1
4000c538: 02 80 00 1c be 4000c5a8 <_Heap_Extend+0xf4>
4000c53c: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c540: 80 a6 40 15 cmp %i1, %l5
4000c544: 38 80 00 02 bgu,a 4000c54c <_Heap_Extend+0x98>
4000c548: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c54c: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c550: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c554: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c558: 80 a4 80 18 cmp %l2, %i0
4000c55c: 22 80 00 1b be,a 4000c5c8 <_Heap_Extend+0x114>
4000c560: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c564: 80 a6 00 12 cmp %i0, %l2
4000c568: 02 80 00 65 be 4000c6fc <_Heap_Extend+0x248>
4000c56c: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c570: 80 a0 40 11 cmp %g1, %l1
4000c574: 0a 80 00 6f bcs 4000c730 <_Heap_Extend+0x27c>
4000c578: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c57c: 80 a0 40 11 cmp %g1, %l1
4000c580: 12 bf ff e7 bne 4000c51c <_Heap_Extend+0x68>
4000c584: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c588: 90 10 00 15 mov %l5, %o0
4000c58c: 40 00 16 dd call 40012100 <.urem>
4000c590: 92 10 00 13 mov %l3, %o1
4000c594: 82 05 7f f8 add %l5, -8, %g1
4000c598: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c59c: 80 a5 40 19 cmp %l5, %i1
4000c5a0: 12 bf ff e8 bne 4000c540 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000c5a4: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000c5a8: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c5ac: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c5b0: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c5b4: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c5b8: 80 a4 80 18 cmp %l2, %i0
4000c5bc: 12 bf ff ea bne 4000c564 <_Heap_Extend+0xb0> <== NEVER TAKEN
4000c5c0: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000c5c4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c5c8: 80 a6 40 01 cmp %i1, %g1
4000c5cc: 3a 80 00 54 bcc,a 4000c71c <_Heap_Extend+0x268>
4000c5d0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c5d4: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c5d8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c5dc: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c5e0: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c5e4: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000c5e8: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c5ec: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c5f0: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c5f4: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c5f8: 80 a1 00 01 cmp %g4, %g1
4000c5fc: 08 80 00 42 bleu 4000c704 <_Heap_Extend+0x250>
4000c600: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000c604: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c608: 80 a5 e0 00 cmp %l7, 0
4000c60c: 02 80 00 62 be 4000c794 <_Heap_Extend+0x2e0>
4000c610: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c614: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c618: 92 10 00 12 mov %l2, %o1
4000c61c: 40 00 16 b9 call 40012100 <.urem>
4000c620: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c624: 80 a2 20 00 cmp %o0, 0
4000c628: 02 80 00 04 be 4000c638 <_Heap_Extend+0x184> <== ALWAYS TAKEN
4000c62c: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000c630: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000c634: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c638: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c63c: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c640: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c644: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000c648: 90 10 00 10 mov %l0, %o0
4000c64c: 92 10 00 01 mov %g1, %o1
4000c650: 7f ff ff 8e call 4000c488 <_Heap_Free_block>
4000c654: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c658: 80 a5 a0 00 cmp %l6, 0
4000c65c: 02 80 00 3a be 4000c744 <_Heap_Extend+0x290>
4000c660: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c664: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c668: a2 24 40 16 sub %l1, %l6, %l1
4000c66c: 40 00 16 a5 call 40012100 <.urem>
4000c670: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c674: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000c678: a2 24 40 08 sub %l1, %o0, %l1
4000c67c: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000c680: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c684: 84 04 40 16 add %l1, %l6, %g2
4000c688: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c68c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c690: 90 10 00 10 mov %l0, %o0
4000c694: 82 08 60 01 and %g1, 1, %g1
4000c698: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000c69c: a2 14 40 01 or %l1, %g1, %l1
4000c6a0: 7f ff ff 7a call 4000c488 <_Heap_Free_block>
4000c6a4: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c6a8: 80 a5 a0 00 cmp %l6, 0
4000c6ac: 02 80 00 33 be 4000c778 <_Heap_Extend+0x2c4>
4000c6b0: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c6b4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c6b8: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c6bc: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c6c0: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c6c4: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c6c8: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c6cc: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000c6d0: 88 13 40 04 or %o5, %g4, %g4
4000c6d4: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000c6d8: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c6dc: 82 00 80 14 add %g2, %l4, %g1
4000c6e0: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000c6e4: 80 a6 e0 00 cmp %i3, 0
4000c6e8: 02 80 00 03 be 4000c6f4 <_Heap_Extend+0x240> <== NEVER TAKEN
4000c6ec: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000c6f0: e8 26 c0 00 st %l4, [ %i3 ]
4000c6f4: 81 c7 e0 08 ret
4000c6f8: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c6fc: 10 bf ff 9d b 4000c570 <_Heap_Extend+0xbc>
4000c700: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c704: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c708: 80 a0 40 02 cmp %g1, %g2
4000c70c: 2a bf ff bf bcs,a 4000c608 <_Heap_Extend+0x154>
4000c710: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c714: 10 bf ff be b 4000c60c <_Heap_Extend+0x158>
4000c718: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000c71c: 80 a4 40 01 cmp %l1, %g1
4000c720: 38 bf ff ae bgu,a 4000c5d8 <_Heap_Extend+0x124>
4000c724: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c728: 10 bf ff ad b 4000c5dc <_Heap_Extend+0x128>
4000c72c: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c730: 80 a6 40 15 cmp %i1, %l5
4000c734: 1a bf ff 93 bcc 4000c580 <_Heap_Extend+0xcc>
4000c738: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c73c: 81 c7 e0 08 ret
4000c740: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c744: 80 a7 60 00 cmp %i5, 0
4000c748: 02 bf ff d8 be 4000c6a8 <_Heap_Extend+0x1f4>
4000c74c: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c750: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000c754: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000c758: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c75c: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000c760: 84 10 80 03 or %g2, %g3, %g2
4000c764: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c768: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c76c: 84 10 a0 01 or %g2, 1, %g2
4000c770: 10 bf ff ce b 4000c6a8 <_Heap_Extend+0x1f4>
4000c774: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c778: 32 bf ff d0 bne,a 4000c6b8 <_Heap_Extend+0x204>
4000c77c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c780: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c784: 7f ff ff 41 call 4000c488 <_Heap_Free_block>
4000c788: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c78c: 10 bf ff cb b 4000c6b8 <_Heap_Extend+0x204>
4000c790: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c794: 80 a7 20 00 cmp %i4, 0
4000c798: 02 bf ff b1 be 4000c65c <_Heap_Extend+0x1a8>
4000c79c: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c7a0: b8 27 00 02 sub %i4, %g2, %i4
4000c7a4: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c7a8: 10 bf ff ad b 4000c65c <_Heap_Extend+0x1a8>
4000c7ac: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000c1ac <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c1ac: 9d e3 bf a0 save %sp, -96, %sp
4000c1b0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000c1b4: 40 00 16 80 call 40011bb4 <.urem>
4000c1b8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c1bc: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4000c1c0: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c1c4: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c1c8: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c1cc: 80 a2 00 01 cmp %o0, %g1
4000c1d0: 0a 80 00 4d bcs 4000c304 <_Heap_Free+0x158>
4000c1d4: b0 10 20 00 clr %i0
4000c1d8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c1dc: 80 a2 00 03 cmp %o0, %g3
4000c1e0: 18 80 00 49 bgu 4000c304 <_Heap_Free+0x158>
4000c1e4: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c1e8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c1ec: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c1f0: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c1f4: 80 a0 40 02 cmp %g1, %g2
4000c1f8: 18 80 00 43 bgu 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c1fc: 80 a0 c0 02 cmp %g3, %g2
4000c200: 0a 80 00 41 bcs 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c204: 01 00 00 00 nop
4000c208: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c20c: 80 8b 20 01 btst 1, %o4
4000c210: 02 80 00 3d be 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c214: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c218: 80 a0 c0 02 cmp %g3, %g2
4000c21c: 02 80 00 06 be 4000c234 <_Heap_Free+0x88>
4000c220: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c224: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c228: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000c22c: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000c230: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000c234: 80 8b 60 01 btst 1, %o5
4000c238: 12 80 00 1d bne 4000c2ac <_Heap_Free+0x100>
4000c23c: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000c240: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c244: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c248: 80 a0 40 0d cmp %g1, %o5
4000c24c: 18 80 00 2e bgu 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c250: b0 10 20 00 clr %i0
4000c254: 80 a0 c0 0d cmp %g3, %o5
4000c258: 0a 80 00 2b bcs 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c25c: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c260: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c264: 80 88 60 01 btst 1, %g1
4000c268: 02 80 00 27 be 4000c304 <_Heap_Free+0x158> <== NEVER TAKEN
4000c26c: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c270: 22 80 00 39 be,a 4000c354 <_Heap_Free+0x1a8>
4000c274: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c278: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000c27c: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c280: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000c284: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000c288: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000c28c: 82 00 ff ff add %g3, -1, %g1
4000c290: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000c294: 96 01 00 0b add %g4, %o3, %o3
4000c298: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c29c: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c2a0: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c2a4: 10 80 00 0e b 4000c2dc <_Heap_Free+0x130>
4000c2a8: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c2ac: 22 80 00 18 be,a 4000c30c <_Heap_Free+0x160>
4000c2b0: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c2b4: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000c2b8: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000c2bc: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000c2c0: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000c2c4: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000c2c8: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c2cc: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000c2d0: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000c2d4: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c2d8: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c2dc: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000c2e0: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000c2e4: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c2e8: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000c2ec: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000c2f0: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c2f4: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000c2f8: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c2fc: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000c300: b0 10 20 01 mov 1, %i0
}
4000c304: 81 c7 e0 08 ret
4000c308: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c30c: 82 11 20 01 or %g4, 1, %g1
4000c310: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c314: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c318: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c31c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c320: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c324: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000c328: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c32c: 86 0b 7f fe and %o5, -2, %g3
4000c330: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c334: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c338: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c33c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c340: 80 a0 40 02 cmp %g1, %g2
4000c344: 08 bf ff e6 bleu 4000c2dc <_Heap_Free+0x130>
4000c348: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c34c: 10 bf ff e4 b 4000c2dc <_Heap_Free+0x130>
4000c350: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c354: 82 12 a0 01 or %o2, 1, %g1
4000c358: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c35c: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000c360: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c364: 82 08 7f fe and %g1, -2, %g1
4000c368: 10 bf ff dd b 4000c2dc <_Heap_Free+0x130>
4000c36c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000ced0 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000ced0: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000ced4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000ced8: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000cedc: c0 26 40 00 clr [ %i1 ]
4000cee0: c0 26 60 04 clr [ %i1 + 4 ]
4000cee4: c0 26 60 08 clr [ %i1 + 8 ]
4000cee8: c0 26 60 0c clr [ %i1 + 0xc ]
4000ceec: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000cef0: 80 a0 40 02 cmp %g1, %g2
4000cef4: 02 80 00 17 be 4000cf50 <_Heap_Get_information+0x80> <== NEVER TAKEN
4000cef8: c0 26 60 14 clr [ %i1 + 0x14 ]
4000cefc: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000cf00: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000cf04: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000cf08: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000cf0c: 80 8b 60 01 btst 1, %o5
4000cf10: 02 80 00 03 be 4000cf1c <_Heap_Get_information+0x4c>
4000cf14: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000cf18: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000cf1c: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000cf20: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000cf24: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cf28: 94 02 a0 01 inc %o2
info->total += the_size;
4000cf2c: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cf30: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000cf34: 80 a3 00 04 cmp %o4, %g4
4000cf38: 1a 80 00 03 bcc 4000cf44 <_Heap_Get_information+0x74>
4000cf3c: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000cf40: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000cf44: 80 a0 80 01 cmp %g2, %g1
4000cf48: 12 bf ff ef bne 4000cf04 <_Heap_Get_information+0x34>
4000cf4c: 88 0b 7f fe and %o5, -2, %g4
4000cf50: 81 c7 e0 08 ret
4000cf54: 81 e8 00 00 restore
40013594 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40013594: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40013598: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4001359c: 7f ff f9 86 call 40011bb4 <.urem>
400135a0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400135a4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
400135a8: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400135ac: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400135b0: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400135b4: 80 a0 80 01 cmp %g2, %g1
400135b8: 0a 80 00 15 bcs 4001360c <_Heap_Size_of_alloc_area+0x78>
400135bc: b0 10 20 00 clr %i0
400135c0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
400135c4: 80 a0 80 03 cmp %g2, %g3
400135c8: 18 80 00 11 bgu 4001360c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135cc: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400135d0: c8 00 a0 04 ld [ %g2 + 4 ], %g4
400135d4: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400135d8: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400135dc: 80 a0 40 02 cmp %g1, %g2
400135e0: 18 80 00 0b bgu 4001360c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135e4: 80 a0 c0 02 cmp %g3, %g2
400135e8: 0a 80 00 09 bcs 4001360c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135ec: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400135f0: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400135f4: 80 88 60 01 btst 1, %g1
400135f8: 02 80 00 05 be 4001360c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135fc: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40013600: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40013604: 84 00 a0 04 add %g2, 4, %g2
40013608: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
4001360c: 81 c7 e0 08 ret
40013610: 81 e8 00 00 restore
40008394 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008394: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008398: 23 10 00 20 sethi %hi(0x40008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
4000839c: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
400083a0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
400083a4: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
400083a8: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
400083ac: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400083b0: 80 8e a0 ff btst 0xff, %i2
400083b4: 02 80 00 04 be 400083c4 <_Heap_Walk+0x30>
400083b8: a2 14 63 28 or %l1, 0x328, %l1
400083bc: 23 10 00 20 sethi %hi(0x40008000), %l1
400083c0: a2 14 63 30 or %l1, 0x330, %l1 ! 40008330 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
400083c4: 03 10 00 5e sethi %hi(0x40017800), %g1
400083c8: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 40017ae8 <_System_state_Current>
400083cc: 80 a0 60 03 cmp %g1, 3
400083d0: 12 80 00 33 bne 4000849c <_Heap_Walk+0x108>
400083d4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
400083d8: da 04 20 18 ld [ %l0 + 0x18 ], %o5
400083dc: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
400083e0: c4 04 20 08 ld [ %l0 + 8 ], %g2
400083e4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400083e8: 90 10 00 19 mov %i1, %o0
400083ec: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400083f0: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
400083f4: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
400083f8: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
400083fc: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40008400: 92 10 20 00 clr %o1
40008404: 96 10 00 14 mov %l4, %o3
40008408: 15 10 00 54 sethi %hi(0x40015000), %o2
4000840c: 98 10 00 13 mov %l3, %o4
40008410: 9f c4 40 00 call %l1
40008414: 94 12 a3 e8 or %o2, 0x3e8, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008418: 80 a5 20 00 cmp %l4, 0
4000841c: 02 80 00 2a be 400084c4 <_Heap_Walk+0x130>
40008420: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40008424: 12 80 00 30 bne 400084e4 <_Heap_Walk+0x150>
40008428: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000842c: 7f ff e5 a1 call 40001ab0 <.urem>
40008430: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008434: 80 a2 20 00 cmp %o0, 0
40008438: 12 80 00 34 bne 40008508 <_Heap_Walk+0x174>
4000843c: 90 04 a0 08 add %l2, 8, %o0
40008440: 7f ff e5 9c call 40001ab0 <.urem>
40008444: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
40008448: 80 a2 20 00 cmp %o0, 0
4000844c: 32 80 00 38 bne,a 4000852c <_Heap_Walk+0x198>
40008450: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008454: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008458: 80 8f 20 01 btst 1, %i4
4000845c: 22 80 00 4d be,a 40008590 <_Heap_Walk+0x1fc>
40008460: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008464: c2 05 60 04 ld [ %l5 + 4 ], %g1
40008468: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000846c: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008470: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008474: 80 88 a0 01 btst 1, %g2
40008478: 02 80 00 0b be 400084a4 <_Heap_Walk+0x110>
4000847c: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
40008480: 02 80 00 33 be 4000854c <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
40008484: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008488: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
4000848c: 15 10 00 55 sethi %hi(0x40015400), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008490: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008494: 9f c4 40 00 call %l1 <== NOT EXECUTED
40008498: 94 12 a1 60 or %o2, 0x160, %o2 <== NOT EXECUTED
4000849c: 81 c7 e0 08 ret
400084a0: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400084a4: 90 10 00 19 mov %i1, %o0
400084a8: 92 10 20 01 mov 1, %o1
400084ac: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084b0: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400084b4: 9f c4 40 00 call %l1
400084b8: 94 12 a1 48 or %o2, 0x148, %o2
400084bc: 81 c7 e0 08 ret
400084c0: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084c4: 90 10 00 19 mov %i1, %o0
400084c8: 92 10 20 01 mov 1, %o1
400084cc: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084d0: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084d4: 9f c4 40 00 call %l1
400084d8: 94 12 a0 80 or %o2, 0x80, %o2
400084dc: 81 c7 e0 08 ret
400084e0: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400084e4: 90 10 00 19 mov %i1, %o0
400084e8: 92 10 20 01 mov 1, %o1
400084ec: 96 10 00 14 mov %l4, %o3
400084f0: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084f4: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400084f8: 9f c4 40 00 call %l1
400084fc: 94 12 a0 98 or %o2, 0x98, %o2
40008500: 81 c7 e0 08 ret
40008504: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40008508: 90 10 00 19 mov %i1, %o0
4000850c: 92 10 20 01 mov 1, %o1
40008510: 96 10 00 13 mov %l3, %o3
40008514: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008518: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
4000851c: 9f c4 40 00 call %l1
40008520: 94 12 a0 b8 or %o2, 0xb8, %o2
40008524: 81 c7 e0 08 ret
40008528: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
4000852c: 92 10 20 01 mov 1, %o1
40008530: 96 10 00 12 mov %l2, %o3
40008534: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008538: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
4000853c: 9f c4 40 00 call %l1
40008540: 94 12 a0 e0 or %o2, 0xe0, %o2
40008544: 81 c7 e0 08 ret
40008548: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
4000854c: ee 04 20 08 ld [ %l0 + 8 ], %l7
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008550: 80 a4 00 17 cmp %l0, %l7
40008554: 02 80 01 18 be 400089b4 <_Heap_Walk+0x620>
40008558: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
4000855c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008560: 80 a0 40 17 cmp %g1, %l7
40008564: 08 80 00 12 bleu 400085ac <_Heap_Walk+0x218> <== ALWAYS TAKEN
40008568: ac 10 00 17 mov %l7, %l6
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
4000856c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40008570: 92 10 20 01 mov 1, %o1
40008574: 96 10 00 16 mov %l6, %o3
40008578: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000857c: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40008580: 9f c4 40 00 call %l1
40008584: 94 12 a1 90 or %o2, 0x190, %o2
40008588: 81 c7 e0 08 ret
4000858c: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40008590: 92 10 20 01 mov 1, %o1
40008594: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008598: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
4000859c: 9f c4 40 00 call %l1
400085a0: 94 12 a1 18 or %o2, 0x118, %o2
400085a4: 81 c7 e0 08 ret
400085a8: 81 e8 00 00 restore
400085ac: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
400085b0: 80 a7 40 17 cmp %i5, %l7
400085b4: 0a bf ff ef bcs 40008570 <_Heap_Walk+0x1dc> <== NEVER TAKEN
400085b8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400085bc: c2 27 bf fc st %g1, [ %fp + -4 ]
400085c0: 90 05 e0 08 add %l7, 8, %o0
400085c4: 7f ff e5 3b call 40001ab0 <.urem>
400085c8: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
400085cc: 80 a2 20 00 cmp %o0, 0
400085d0: 12 80 00 2d bne 40008684 <_Heap_Walk+0x2f0> <== NEVER TAKEN
400085d4: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400085d8: c4 05 e0 04 ld [ %l7 + 4 ], %g2
400085dc: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
400085e0: 84 05 c0 02 add %l7, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400085e4: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400085e8: 80 88 a0 01 btst 1, %g2
400085ec: 12 80 00 2f bne 400086a8 <_Heap_Walk+0x314> <== NEVER TAKEN
400085f0: 84 10 00 10 mov %l0, %g2
400085f4: 10 80 00 17 b 40008650 <_Heap_Walk+0x2bc>
400085f8: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400085fc: 80 a4 00 16 cmp %l0, %l6
40008600: 02 80 00 33 be 400086cc <_Heap_Walk+0x338>
40008604: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008608: 18 bf ff da bgu 40008570 <_Heap_Walk+0x1dc>
4000860c: 90 10 00 19 mov %i1, %o0
40008610: 80 a5 80 1d cmp %l6, %i5
40008614: 18 bf ff d8 bgu 40008574 <_Heap_Walk+0x1e0> <== NEVER TAKEN
40008618: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000861c: 90 05 a0 08 add %l6, 8, %o0
40008620: 7f ff e5 24 call 40001ab0 <.urem>
40008624: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40008628: 80 a2 20 00 cmp %o0, 0
4000862c: 12 80 00 16 bne 40008684 <_Heap_Walk+0x2f0>
40008630: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008634: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008638: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
4000863c: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008640: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008644: 80 88 60 01 btst 1, %g1
40008648: 12 80 00 18 bne 400086a8 <_Heap_Walk+0x314>
4000864c: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
40008650: d8 05 e0 0c ld [ %l7 + 0xc ], %o4
40008654: 80 a3 00 02 cmp %o4, %g2
40008658: 22 bf ff e9 be,a 400085fc <_Heap_Walk+0x268>
4000865c: ec 05 e0 08 ld [ %l7 + 8 ], %l6
(*printer)(
40008660: 90 10 00 19 mov %i1, %o0
40008664: 92 10 20 01 mov 1, %o1
40008668: 96 10 00 17 mov %l7, %o3
4000866c: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008670: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
40008674: 9f c4 40 00 call %l1
40008678: 94 12 a2 00 or %o2, 0x200, %o2
4000867c: 81 c7 e0 08 ret
40008680: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008684: 90 10 00 19 mov %i1, %o0
40008688: 92 10 20 01 mov 1, %o1
4000868c: 96 10 00 16 mov %l6, %o3
40008690: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008694: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008698: 9f c4 40 00 call %l1
4000869c: 94 12 a1 b0 or %o2, 0x1b0, %o2
400086a0: 81 c7 e0 08 ret
400086a4: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086a8: 90 10 00 19 mov %i1, %o0
400086ac: 92 10 20 01 mov 1, %o1
400086b0: 96 10 00 16 mov %l6, %o3
400086b4: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400086b8: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086bc: 9f c4 40 00 call %l1
400086c0: 94 12 a1 e0 or %o2, 0x1e0, %o2
400086c4: 81 c7 e0 08 ret
400086c8: 81 e8 00 00 restore
400086cc: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086d0: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086d4: 31 10 00 55 sethi %hi(0x40015400), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400086d8: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086dc: b4 16 a3 c0 or %i2, 0x3c0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086e0: b0 16 23 a8 or %i0, 0x3a8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400086e4: 37 10 00 55 sethi %hi(0x40015400), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400086e8: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400086ec: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400086f0: 80 a0 40 16 cmp %g1, %l6
400086f4: 28 80 00 0c bleu,a 40008724 <_Heap_Walk+0x390> <== ALWAYS TAKEN
400086f8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
400086fc: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40008700: 92 10 20 01 mov 1, %o1
40008704: 96 10 00 17 mov %l7, %o3
40008708: 15 10 00 55 sethi %hi(0x40015400), %o2
4000870c: 98 10 00 16 mov %l6, %o4
40008710: 94 12 a2 38 or %o2, 0x238, %o2
40008714: 9f c4 40 00 call %l1
40008718: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
4000871c: 81 c7 e0 08 ret
40008720: 81 e8 00 00 restore
40008724: 80 a0 40 16 cmp %g1, %l6
40008728: 0a bf ff f6 bcs 40008700 <_Heap_Walk+0x36c>
4000872c: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008730: 82 1d c0 15 xor %l7, %l5, %g1
40008734: 80 a0 00 01 cmp %g0, %g1
40008738: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000873c: 90 10 00 1d mov %i5, %o0
40008740: c2 27 bf fc st %g1, [ %fp + -4 ]
40008744: 7f ff e4 db call 40001ab0 <.urem>
40008748: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
4000874c: 80 a2 20 00 cmp %o0, 0
40008750: 02 80 00 05 be 40008764 <_Heap_Walk+0x3d0>
40008754: c2 07 bf fc ld [ %fp + -4 ], %g1
40008758: 80 88 60 ff btst 0xff, %g1
4000875c: 12 80 00 79 bne 40008940 <_Heap_Walk+0x5ac>
40008760: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008764: 80 a4 c0 1d cmp %l3, %i5
40008768: 08 80 00 05 bleu 4000877c <_Heap_Walk+0x3e8>
4000876c: 80 a5 c0 16 cmp %l7, %l6
40008770: 80 88 60 ff btst 0xff, %g1
40008774: 12 80 00 7c bne 40008964 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
40008778: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
4000877c: 2a 80 00 06 bcs,a 40008794 <_Heap_Walk+0x400>
40008780: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008784: 80 88 60 ff btst 0xff, %g1
40008788: 12 80 00 82 bne 40008990 <_Heap_Walk+0x5fc>
4000878c: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008790: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40008794: 80 88 60 01 btst 1, %g1
40008798: 02 80 00 19 be 400087fc <_Heap_Walk+0x468>
4000879c: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
400087a0: 80 a7 20 00 cmp %i4, 0
400087a4: 22 80 00 0e be,a 400087dc <_Heap_Walk+0x448>
400087a8: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
400087ac: 90 10 00 19 mov %i1, %o0
400087b0: 92 10 20 00 clr %o1
400087b4: 94 10 00 18 mov %i0, %o2
400087b8: 96 10 00 17 mov %l7, %o3
400087bc: 9f c4 40 00 call %l1
400087c0: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400087c4: 80 a4 80 16 cmp %l2, %l6
400087c8: 02 80 00 43 be 400088d4 <_Heap_Walk+0x540>
400087cc: ae 10 00 16 mov %l6, %l7
400087d0: f8 05 a0 04 ld [ %l6 + 4 ], %i4
400087d4: 10 bf ff c5 b 400086e8 <_Heap_Walk+0x354>
400087d8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400087dc: 96 10 00 17 mov %l7, %o3
400087e0: 90 10 00 19 mov %i1, %o0
400087e4: 92 10 20 00 clr %o1
400087e8: 94 10 00 1a mov %i2, %o2
400087ec: 9f c4 40 00 call %l1
400087f0: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400087f4: 10 bf ff f5 b 400087c8 <_Heap_Walk+0x434>
400087f8: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400087fc: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008800: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008804: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40008808: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000880c: 80 a0 40 0d cmp %g1, %o5
40008810: 02 80 00 05 be 40008824 <_Heap_Walk+0x490>
40008814: 86 10 a3 a8 or %g2, 0x3a8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008818: 80 a4 00 0d cmp %l0, %o5
4000881c: 02 80 00 3e be 40008914 <_Heap_Walk+0x580>
40008820: 86 16 e3 70 or %i3, 0x370, %g3
block->next,
block->next == last_free_block ?
40008824: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008828: 19 10 00 54 sethi %hi(0x40015000), %o4
4000882c: 80 a1 00 01 cmp %g4, %g1
40008830: 02 80 00 05 be 40008844 <_Heap_Walk+0x4b0>
40008834: 84 13 23 c8 or %o4, 0x3c8, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008838: 80 a4 00 01 cmp %l0, %g1
4000883c: 02 80 00 33 be 40008908 <_Heap_Walk+0x574>
40008840: 84 16 e3 70 or %i3, 0x370, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008844: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008848: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
4000884c: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
40008850: 90 10 00 19 mov %i1, %o0
40008854: 92 10 20 00 clr %o1
40008858: 15 10 00 55 sethi %hi(0x40015400), %o2
4000885c: 96 10 00 17 mov %l7, %o3
40008860: 94 12 a3 00 or %o2, 0x300, %o2
40008864: 9f c4 40 00 call %l1
40008868: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
4000886c: da 05 80 00 ld [ %l6 ], %o5
40008870: 80 a7 40 0d cmp %i5, %o5
40008874: 12 80 00 1a bne 400088dc <_Heap_Walk+0x548>
40008878: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
4000887c: 02 80 00 29 be 40008920 <_Heap_Walk+0x58c>
40008880: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008884: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008888: 80 a4 00 01 cmp %l0, %g1
4000888c: 02 80 00 0b be 400088b8 <_Heap_Walk+0x524> <== NEVER TAKEN
40008890: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
40008894: 80 a5 c0 01 cmp %l7, %g1
40008898: 02 bf ff cc be 400087c8 <_Heap_Walk+0x434>
4000889c: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
400088a0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400088a4: 80 a4 00 01 cmp %l0, %g1
400088a8: 12 bf ff fc bne 40008898 <_Heap_Walk+0x504>
400088ac: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088b0: 90 10 00 19 mov %i1, %o0
400088b4: 92 10 20 01 mov 1, %o1
400088b8: 96 10 00 17 mov %l7, %o3
400088bc: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
400088c0: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088c4: 9f c4 40 00 call %l1
400088c8: 94 12 a3 e8 or %o2, 0x3e8, %o2
400088cc: 81 c7 e0 08 ret
400088d0: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
400088d4: 81 c7 e0 08 ret
400088d8: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
400088dc: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
400088e0: 90 10 00 19 mov %i1, %o0
400088e4: 92 10 20 01 mov 1, %o1
400088e8: 96 10 00 17 mov %l7, %o3
400088ec: 15 10 00 55 sethi %hi(0x40015400), %o2
400088f0: 98 10 00 1d mov %i5, %o4
400088f4: 94 12 a3 38 or %o2, 0x338, %o2
400088f8: 9f c4 40 00 call %l1
400088fc: b0 10 20 00 clr %i0
40008900: 81 c7 e0 08 ret
40008904: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008908: 09 10 00 54 sethi %hi(0x40015000), %g4
4000890c: 10 bf ff ce b 40008844 <_Heap_Walk+0x4b0>
40008910: 84 11 23 d8 or %g4, 0x3d8, %g2 ! 400153d8 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008914: 19 10 00 54 sethi %hi(0x40015000), %o4
40008918: 10 bf ff c3 b 40008824 <_Heap_Walk+0x490>
4000891c: 86 13 23 b8 or %o4, 0x3b8, %g3 ! 400153b8 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
40008920: 92 10 20 01 mov 1, %o1
40008924: 96 10 00 17 mov %l7, %o3
40008928: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
4000892c: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
40008930: 9f c4 40 00 call %l1
40008934: 94 12 a3 78 or %o2, 0x378, %o2
40008938: 81 c7 e0 08 ret
4000893c: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
40008940: 92 10 20 01 mov 1, %o1
40008944: 96 10 00 17 mov %l7, %o3
40008948: 15 10 00 55 sethi %hi(0x40015400), %o2
4000894c: 98 10 00 1d mov %i5, %o4
40008950: 94 12 a2 68 or %o2, 0x268, %o2
40008954: 9f c4 40 00 call %l1
40008958: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
4000895c: 81 c7 e0 08 ret
40008960: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
40008964: 90 10 00 19 mov %i1, %o0
40008968: 92 10 20 01 mov 1, %o1
4000896c: 96 10 00 17 mov %l7, %o3
40008970: 15 10 00 55 sethi %hi(0x40015400), %o2
40008974: 98 10 00 1d mov %i5, %o4
40008978: 94 12 a2 98 or %o2, 0x298, %o2
4000897c: 9a 10 00 13 mov %l3, %o5
40008980: 9f c4 40 00 call %l1
40008984: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40008988: 81 c7 e0 08 ret
4000898c: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
40008990: 92 10 20 01 mov 1, %o1
40008994: 96 10 00 17 mov %l7, %o3
40008998: 15 10 00 55 sethi %hi(0x40015400), %o2
4000899c: 98 10 00 16 mov %l6, %o4
400089a0: 94 12 a2 c8 or %o2, 0x2c8, %o2
400089a4: 9f c4 40 00 call %l1
400089a8: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
400089ac: 81 c7 e0 08 ret
400089b0: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400089b4: 10 bf ff 47 b 400086d0 <_Heap_Walk+0x33c>
400089b8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40006888 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
40006888: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
4000688c: 23 10 00 55 sethi %hi(0x40015400), %l1
40006890: c2 04 60 84 ld [ %l1 + 0x84 ], %g1 ! 40015484 <_IO_Number_of_drivers>
40006894: 80 a0 60 00 cmp %g1, 0
40006898: 02 80 00 0c be 400068c8 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
4000689c: a0 10 20 00 clr %l0
400068a0: a2 14 60 84 or %l1, 0x84, %l1
(void) rtems_io_initialize( major, 0, NULL );
400068a4: 90 10 00 10 mov %l0, %o0
400068a8: 92 10 20 00 clr %o1
400068ac: 40 00 15 10 call 4000bcec <rtems_io_initialize>
400068b0: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
400068b4: c2 04 40 00 ld [ %l1 ], %g1
400068b8: a0 04 20 01 inc %l0
400068bc: 80 a0 40 10 cmp %g1, %l0
400068c0: 18 bf ff fa bgu 400068a8 <_IO_Initialize_all_drivers+0x20>
400068c4: 90 10 00 10 mov %l0, %o0
400068c8: 81 c7 e0 08 ret
400068cc: 81 e8 00 00 restore
400067bc <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
400067bc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
400067c0: 03 10 00 52 sethi %hi(0x40014800), %g1
400067c4: 82 10 60 b8 or %g1, 0xb8, %g1 ! 400148b8 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
400067c8: e2 00 60 34 ld [ %g1 + 0x34 ], %l1
number_of_drivers = Configuration.maximum_drivers;
400067cc: e8 00 60 30 ld [ %g1 + 0x30 ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
400067d0: 80 a4 40 14 cmp %l1, %l4
400067d4: 0a 80 00 08 bcs 400067f4 <_IO_Manager_initialization+0x38>
400067d8: e0 00 60 38 ld [ %g1 + 0x38 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
400067dc: 03 10 00 55 sethi %hi(0x40015400), %g1
400067e0: e0 20 60 88 st %l0, [ %g1 + 0x88 ] ! 40015488 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
400067e4: 03 10 00 55 sethi %hi(0x40015400), %g1
400067e8: e2 20 60 84 st %l1, [ %g1 + 0x84 ] ! 40015484 <_IO_Number_of_drivers>
return;
400067ec: 81 c7 e0 08 ret
400067f0: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
400067f4: 83 2d 20 03 sll %l4, 3, %g1
400067f8: a7 2d 20 05 sll %l4, 5, %l3
400067fc: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
40006800: 40 00 0c cf call 40009b3c <_Workspace_Allocate_or_fatal_error>
40006804: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006808: 03 10 00 55 sethi %hi(0x40015400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
4000680c: 25 10 00 55 sethi %hi(0x40015400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006810: e8 20 60 84 st %l4, [ %g1 + 0x84 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006814: d0 24 a0 88 st %o0, [ %l2 + 0x88 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
40006818: 92 10 20 00 clr %o1
4000681c: 40 00 20 bf call 4000eb18 <memset>
40006820: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006824: 80 a4 60 00 cmp %l1, 0
40006828: 02 bf ff f1 be 400067ec <_IO_Manager_initialization+0x30> <== NEVER TAKEN
4000682c: da 04 a0 88 ld [ %l2 + 0x88 ], %o5
40006830: 82 10 20 00 clr %g1
40006834: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
40006838: c4 04 00 01 ld [ %l0 + %g1 ], %g2
4000683c: 86 04 00 01 add %l0, %g1, %g3
40006840: c4 23 40 01 st %g2, [ %o5 + %g1 ]
40006844: d8 00 e0 04 ld [ %g3 + 4 ], %o4
40006848: 84 03 40 01 add %o5, %g1, %g2
4000684c: d8 20 a0 04 st %o4, [ %g2 + 4 ]
40006850: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006854: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
40006858: d8 20 a0 08 st %o4, [ %g2 + 8 ]
4000685c: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006860: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
40006864: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
40006868: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000686c: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
40006870: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
40006874: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006878: 18 bf ff f0 bgu 40006838 <_IO_Manager_initialization+0x7c>
4000687c: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
40006880: 81 c7 e0 08 ret
40006884: 81 e8 00 00 restore
40007500 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007500: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007504: 1b 10 00 54 sethi %hi(0x40015000), %o5
40007508: 86 13 62 54 or %o5, 0x254, %g3 ! 40015254 <_Internal_errors_What_happened>
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
4000750c: 90 10 00 18 mov %i0, %o0
40007510: 92 0e 60 ff and %i1, 0xff, %o1
40007514: 94 10 00 1a mov %i2, %o2
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
40007518: f0 23 62 54 st %i0, [ %o5 + 0x254 ]
_Internal_errors_What_happened.is_internal = is_internal;
4000751c: f2 28 e0 04 stb %i1, [ %g3 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40007520: 40 00 08 25 call 400095b4 <_User_extensions_Fatal>
40007524: f4 20 e0 08 st %i2, [ %g3 + 8 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007528: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
4000752c: 03 10 00 54 sethi %hi(0x40015000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40007530: 7f ff e9 ea call 40001cd8 <sparc_disable_interrupts> <== NOT EXECUTED
40007534: c4 20 63 18 st %g2, [ %g1 + 0x318 ] ! 40015318 <_System_state_Current><== NOT EXECUTED
40007538: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
4000753c: 30 80 00 00 b,a 4000753c <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
400075b4 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075b4: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075b8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075bc: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075c0: 80 a0 60 00 cmp %g1, 0
400075c4: 02 80 00 19 be 40007628 <_Objects_Allocate+0x74> <== NEVER TAKEN
400075c8: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400075cc: a2 04 20 20 add %l0, 0x20, %l1
400075d0: 7f ff fd 5c call 40006b40 <_Chain_Get>
400075d4: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
400075d8: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
400075dc: 80 a0 60 00 cmp %g1, 0
400075e0: 02 80 00 12 be 40007628 <_Objects_Allocate+0x74>
400075e4: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
400075e8: 80 a2 20 00 cmp %o0, 0
400075ec: 02 80 00 11 be 40007630 <_Objects_Allocate+0x7c>
400075f0: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
400075f4: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
400075f8: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
400075fc: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
40007600: 40 00 28 c1 call 40011904 <.udiv>
40007604: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007608: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000760c: 91 2a 20 02 sll %o0, 2, %o0
40007610: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
40007614: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40007618: 86 00 ff ff add %g3, -1, %g3
4000761c: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
40007620: 82 00 bf ff add %g2, -1, %g1
40007624: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007628: 81 c7 e0 08 ret
4000762c: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
40007630: 40 00 00 11 call 40007674 <_Objects_Extend_information>
40007634: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007638: 7f ff fd 42 call 40006b40 <_Chain_Get>
4000763c: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007640: b0 92 20 00 orcc %o0, 0, %i0
40007644: 32 bf ff ed bne,a 400075f8 <_Objects_Allocate+0x44>
40007648: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
4000764c: 81 c7 e0 08 ret
40007650: 81 e8 00 00 restore
40007674 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40007674: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007678: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
4000767c: 80 a5 20 00 cmp %l4, 0
40007680: 02 80 00 a9 be 40007924 <_Objects_Extend_information+0x2b0>
40007684: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40007688: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
4000768c: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
40007690: ab 2d 60 10 sll %l5, 0x10, %l5
40007694: 92 10 00 13 mov %l3, %o1
40007698: 40 00 28 9b call 40011904 <.udiv>
4000769c: 91 35 60 10 srl %l5, 0x10, %o0
400076a0: bb 2a 20 10 sll %o0, 0x10, %i5
400076a4: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
400076a8: 80 a7 60 00 cmp %i5, 0
400076ac: 02 80 00 a6 be 40007944 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
400076b0: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
400076b4: c2 05 00 00 ld [ %l4 ], %g1
400076b8: 80 a0 60 00 cmp %g1, 0
400076bc: 02 80 00 a6 be 40007954 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
400076c0: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400076c4: 10 80 00 06 b 400076dc <_Objects_Extend_information+0x68>
400076c8: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
400076cc: c2 05 00 01 ld [ %l4 + %g1 ], %g1
400076d0: 80 a0 60 00 cmp %g1, 0
400076d4: 22 80 00 08 be,a 400076f4 <_Objects_Extend_information+0x80>
400076d8: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076dc: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
400076e0: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076e4: 80 a7 40 10 cmp %i5, %l0
400076e8: 18 bf ff f9 bgu 400076cc <_Objects_Extend_information+0x58>
400076ec: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400076f0: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400076f4: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400076f8: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400076fc: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40007700: 82 10 63 ff or %g1, 0x3ff, %g1
40007704: 80 a5 40 01 cmp %l5, %g1
40007708: 18 80 00 98 bgu 40007968 <_Objects_Extend_information+0x2f4>
4000770c: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
40007710: 40 00 28 43 call 4001181c <.umul>
40007714: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
40007718: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
4000771c: 80 a0 60 00 cmp %g1, 0
40007720: 02 80 00 6d be 400078d4 <_Objects_Extend_information+0x260>
40007724: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
40007728: 40 00 08 f5 call 40009afc <_Workspace_Allocate>
4000772c: 01 00 00 00 nop
if ( !new_object_block )
40007730: a6 92 20 00 orcc %o0, 0, %l3
40007734: 02 80 00 8d be 40007968 <_Objects_Extend_information+0x2f4>
40007738: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
4000773c: 80 8d 20 ff btst 0xff, %l4
40007740: 22 80 00 42 be,a 40007848 <_Objects_Extend_information+0x1d4>
40007744: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
40007748: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
4000774c: 91 2d 20 01 sll %l4, 1, %o0
40007750: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
40007754: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40007758: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
4000775c: 40 00 08 e8 call 40009afc <_Workspace_Allocate>
40007760: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
40007764: ac 92 20 00 orcc %o0, 0, %l6
40007768: 02 80 00 7e be 40007960 <_Objects_Extend_information+0x2ec>
4000776c: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
40007770: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
40007774: 80 a4 80 01 cmp %l2, %g1
40007778: ae 05 80 14 add %l6, %l4, %l7
4000777c: 0a 80 00 5a bcs 400078e4 <_Objects_Extend_information+0x270>
40007780: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40007784: 80 a4 a0 00 cmp %l2, 0
40007788: 02 80 00 07 be 400077a4 <_Objects_Extend_information+0x130><== NEVER TAKEN
4000778c: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
40007790: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40007794: 82 00 60 01 inc %g1
40007798: 80 a4 80 01 cmp %l2, %g1
4000779c: 18 bf ff fd bgu 40007790 <_Objects_Extend_information+0x11c><== NEVER TAKEN
400077a0: c0 20 80 14 clr [ %g2 + %l4 ]
400077a4: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077a8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
400077ac: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077b0: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077b4: 80 a4 40 03 cmp %l1, %g3
400077b8: 1a 80 00 0a bcc 400077e0 <_Objects_Extend_information+0x16c><== NEVER TAKEN
400077bc: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400077c0: 83 2c 60 02 sll %l1, 2, %g1
400077c4: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077c8: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
400077cc: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
400077d0: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077d4: 80 a0 80 03 cmp %g2, %g3
400077d8: 0a bf ff fd bcs 400077cc <_Objects_Extend_information+0x158>
400077dc: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
400077e0: 7f ff e9 3e call 40001cd8 <sparc_disable_interrupts>
400077e4: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400077e8: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400077ec: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
400077f0: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
400077f4: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
400077f8: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400077fc: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
40007800: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
40007804: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
40007808: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
4000780c: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007810: 03 00 00 40 sethi %hi(0x10000), %g1
40007814: ab 35 60 10 srl %l5, 0x10, %l5
40007818: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000781c: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007820: 82 10 40 15 or %g1, %l5, %g1
40007824: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
40007828: 7f ff e9 30 call 40001ce8 <sparc_enable_interrupts>
4000782c: 01 00 00 00 nop
if ( old_tables )
40007830: 80 a4 a0 00 cmp %l2, 0
40007834: 22 80 00 05 be,a 40007848 <_Objects_Extend_information+0x1d4>
40007838: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
4000783c: 40 00 08 b9 call 40009b20 <_Workspace_Free>
40007840: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007844: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007848: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
4000784c: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
40007850: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007854: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007858: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
4000785c: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007860: 90 10 00 12 mov %l2, %o0
40007864: 40 00 11 39 call 4000bd48 <_Chain_Initialize>
40007868: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
4000786c: 10 80 00 0d b 400078a0 <_Objects_Extend_information+0x22c>
40007870: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
40007874: c6 16 20 04 lduh [ %i0 + 4 ], %g3
40007878: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000787c: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007880: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007884: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007888: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
4000788c: 90 10 00 13 mov %l3, %o0
40007890: 92 10 00 01 mov %g1, %o1
index++;
40007894: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40007898: 7f ff fc 94 call 40006ae8 <_Chain_Append>
4000789c: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
400078a0: 7f ff fc a8 call 40006b40 <_Chain_Get>
400078a4: 90 10 00 12 mov %l2, %o0
400078a8: 82 92 20 00 orcc %o0, 0, %g1
400078ac: 32 bf ff f2 bne,a 40007874 <_Objects_Extend_information+0x200>
400078b0: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078b4: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
400078b8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078bc: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078c0: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078c4: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
400078c8: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
400078cc: 81 c7 e0 08 ret
400078d0: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
400078d4: 40 00 08 9a call 40009b3c <_Workspace_Allocate_or_fatal_error>
400078d8: 01 00 00 00 nop
400078dc: 10 bf ff 98 b 4000773c <_Objects_Extend_information+0xc8>
400078e0: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078e4: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
400078e8: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078ec: 40 00 1c 52 call 4000ea34 <memcpy>
400078f0: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
400078f4: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
400078f8: 94 10 00 1d mov %i5, %o2
400078fc: 40 00 1c 4e call 4000ea34 <memcpy>
40007900: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40007904: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007908: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
4000790c: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007910: 90 10 00 14 mov %l4, %o0
40007914: 40 00 1c 48 call 4000ea34 <memcpy>
40007918: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000791c: 10 bf ff a4 b 400077ac <_Objects_Extend_information+0x138>
40007920: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007924: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007928: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
4000792c: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40007930: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007934: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
40007938: ba 10 20 00 clr %i5
4000793c: 10 bf ff 6e b 400076f4 <_Objects_Extend_information+0x80>
40007940: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40007944: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40007948: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
4000794c: 10 bf ff 6a b 400076f4 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40007950: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
40007954: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007958: 10 bf ff 67 b 400076f4 <_Objects_Extend_information+0x80> <== NOT EXECUTED
4000795c: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
40007960: 40 00 08 70 call 40009b20 <_Workspace_Free>
40007964: 90 10 00 13 mov %l3, %o0
return;
40007968: 81 c7 e0 08 ret
4000796c: 81 e8 00 00 restore
40007a1c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40007a1c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40007a20: b3 2e 60 10 sll %i1, 0x10, %i1
40007a24: b3 36 60 10 srl %i1, 0x10, %i1
40007a28: 80 a6 60 00 cmp %i1, 0
40007a2c: 12 80 00 04 bne 40007a3c <_Objects_Get_information+0x20>
40007a30: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40007a34: 81 c7 e0 08 ret
40007a38: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007a3c: 40 00 12 4d call 4000c370 <_Objects_API_maximum_class>
40007a40: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40007a44: 80 a2 20 00 cmp %o0, 0
40007a48: 02 bf ff fb be 40007a34 <_Objects_Get_information+0x18>
40007a4c: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007a50: 0a bf ff f9 bcs 40007a34 <_Objects_Get_information+0x18>
40007a54: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007a58: b1 2e 20 02 sll %i0, 2, %i0
40007a5c: 82 10 61 08 or %g1, 0x108, %g1
40007a60: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40007a64: 80 a0 60 00 cmp %g1, 0
40007a68: 02 bf ff f3 be 40007a34 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a6c: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007a70: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40007a74: 80 a4 20 00 cmp %l0, 0
40007a78: 02 bf ff ef be 40007a34 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a7c: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007a80: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40007a84: 80 a0 00 01 cmp %g0, %g1
40007a88: 82 60 20 00 subx %g0, 0, %g1
40007a8c: 10 bf ff ea b 40007a34 <_Objects_Get_information+0x18>
40007a90: a0 0c 00 01 and %l0, %g1, %l0
400097cc <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
400097cc: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
400097d0: 80 a6 60 00 cmp %i1, 0
400097d4: 12 80 00 05 bne 400097e8 <_Objects_Get_name_as_string+0x1c>
400097d8: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
400097dc: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
400097e0: 81 c7 e0 08 ret
400097e4: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
400097e8: 02 bf ff fe be 400097e0 <_Objects_Get_name_as_string+0x14>
400097ec: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400097f0: 12 80 00 04 bne 40009800 <_Objects_Get_name_as_string+0x34>
400097f4: 03 10 00 9d sethi %hi(0x40027400), %g1
400097f8: c2 00 62 f8 ld [ %g1 + 0x2f8 ], %g1 ! 400276f8 <_Per_CPU_Information+0xc>
400097fc: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
40009800: 7f ff ff b1 call 400096c4 <_Objects_Get_information_id>
40009804: 90 10 00 18 mov %i0, %o0
if ( !information )
40009808: 80 a2 20 00 cmp %o0, 0
4000980c: 22 bf ff f5 be,a 400097e0 <_Objects_Get_name_as_string+0x14>
40009810: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
40009814: 92 10 00 18 mov %i0, %o1
40009818: 40 00 00 2c call 400098c8 <_Objects_Get>
4000981c: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
40009820: c2 07 bf fc ld [ %fp + -4 ], %g1
40009824: 80 a0 60 00 cmp %g1, 0
40009828: 32 bf ff ee bne,a 400097e0 <_Objects_Get_name_as_string+0x14>
4000982c: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
40009830: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
40009834: c0 2f bf f4 clrb [ %fp + -12 ]
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009838: 85 30 60 08 srl %g1, 8, %g2
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000983c: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
40009840: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009844: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
40009848: c6 2f bf f0 stb %g3, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000984c: c8 2f bf f1 stb %g4, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
40009850: c2 2f bf f3 stb %g1, [ %fp + -13 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
40009854: b2 86 7f ff addcc %i1, -1, %i1
40009858: 02 80 00 19 be 400098bc <_Objects_Get_name_as_string+0xf0><== NEVER TAKEN
4000985c: 84 10 00 1a mov %i2, %g2
40009860: 80 a0 e0 00 cmp %g3, 0
40009864: 02 80 00 16 be 400098bc <_Objects_Get_name_as_string+0xf0>
40009868: 19 10 00 7b sethi %hi(0x4001ec00), %o4
4000986c: 82 10 20 00 clr %g1
40009870: 10 80 00 06 b 40009888 <_Objects_Get_name_as_string+0xbc>
40009874: 98 13 22 98 or %o4, 0x298, %o4
40009878: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
4000987c: 80 a3 60 00 cmp %o5, 0
40009880: 02 80 00 0f be 400098bc <_Objects_Get_name_as_string+0xf0>
40009884: c6 09 00 01 ldub [ %g4 + %g1 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
40009888: da 03 00 00 ld [ %o4 ], %o5
4000988c: 88 08 e0 ff and %g3, 0xff, %g4
40009890: 88 03 40 04 add %o5, %g4, %g4
40009894: da 49 20 01 ldsb [ %g4 + 1 ], %o5
40009898: 80 8b 60 97 btst 0x97, %o5
4000989c: 12 80 00 03 bne 400098a8 <_Objects_Get_name_as_string+0xdc>
400098a0: 88 07 bf f0 add %fp, -16, %g4
400098a4: 86 10 20 2a mov 0x2a, %g3
400098a8: c6 28 80 00 stb %g3, [ %g2 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
400098ac: 82 00 60 01 inc %g1
400098b0: 80 a0 40 19 cmp %g1, %i1
400098b4: 0a bf ff f1 bcs 40009878 <_Objects_Get_name_as_string+0xac>
400098b8: 84 00 a0 01 inc %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
400098bc: 40 00 03 04 call 4000a4cc <_Thread_Enable_dispatch>
400098c0: c0 28 80 00 clrb [ %g2 ]
return name;
400098c4: 30 bf ff c7 b,a 400097e0 <_Objects_Get_name_as_string+0x14>
40018dc0 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018dc0: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40018dc4: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018dc8: 84 22 40 02 sub %o1, %g2, %g2
40018dcc: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40018dd0: 80 a0 80 01 cmp %g2, %g1
40018dd4: 18 80 00 09 bgu 40018df8 <_Objects_Get_no_protection+0x38>
40018dd8: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018ddc: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40018de0: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40018de4: 80 a2 20 00 cmp %o0, 0
40018de8: 02 80 00 05 be 40018dfc <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018dec: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018df0: 81 c3 e0 08 retl
40018df4: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018df8: 82 10 20 01 mov 1, %g1
return NULL;
40018dfc: 90 10 20 00 clr %o0
}
40018e00: 81 c3 e0 08 retl
40018e04: c2 22 80 00 st %g1, [ %o2 ]
400092c0 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
400092c0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400092c4: 80 a6 20 00 cmp %i0, 0
400092c8: 12 80 00 06 bne 400092e0 <_Objects_Id_to_name+0x20>
400092cc: 83 36 20 18 srl %i0, 0x18, %g1
400092d0: 03 10 00 7a sethi %hi(0x4001e800), %g1
400092d4: c2 00 61 e8 ld [ %g1 + 0x1e8 ], %g1 ! 4001e9e8 <_Per_CPU_Information+0xc>
400092d8: f0 00 60 08 ld [ %g1 + 8 ], %i0
400092dc: 83 36 20 18 srl %i0, 0x18, %g1
400092e0: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
400092e4: 84 00 7f ff add %g1, -1, %g2
400092e8: 80 a0 a0 02 cmp %g2, 2
400092ec: 18 80 00 17 bgu 40009348 <_Objects_Id_to_name+0x88>
400092f0: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
400092f4: 83 28 60 02 sll %g1, 2, %g1
400092f8: 05 10 00 79 sethi %hi(0x4001e400), %g2
400092fc: 84 10 a2 f8 or %g2, 0x2f8, %g2 ! 4001e6f8 <_Objects_Information_table>
40009300: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40009304: 80 a0 60 00 cmp %g1, 0
40009308: 02 80 00 10 be 40009348 <_Objects_Id_to_name+0x88>
4000930c: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009310: 85 28 a0 02 sll %g2, 2, %g2
40009314: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009318: 80 a2 20 00 cmp %o0, 0
4000931c: 02 80 00 0b be 40009348 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
40009320: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40009324: 7f ff ff ca call 4000924c <_Objects_Get>
40009328: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000932c: 80 a2 20 00 cmp %o0, 0
40009330: 02 80 00 06 be 40009348 <_Objects_Id_to_name+0x88>
40009334: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009338: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
4000933c: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009340: 40 00 03 14 call 40009f90 <_Thread_Enable_dispatch>
40009344: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009348: 81 c7 e0 08 ret
4000934c: 91 e8 00 10 restore %g0, %l0, %o0
40007b7c <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007b7c: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007b80: 05 10 00 54 sethi %hi(0x40015000), %g2
40007b84: 83 2e 60 02 sll %i1, 2, %g1
40007b88: 84 10 a1 08 or %g2, 0x108, %g2
40007b8c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40007b90: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40007b94: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
40007b98: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
40007b9c: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007ba0: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
40007ba4: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007ba8: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
40007bac: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40007bb0: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40007bb4: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007bb8: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007bbc: b5 2e a0 10 sll %i2, 0x10, %i2
40007bc0: b5 36 a0 10 srl %i2, 0x10, %i2
40007bc4: 85 2e a0 02 sll %i2, 2, %g2
40007bc8: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40007bcc: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
40007bd0: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007bd4: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40007bd8: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007bdc: 02 80 00 05 be 40007bf0 <_Objects_Initialize_information+0x74>
40007be0: b6 2e c0 01 andn %i3, %g1, %i3
40007be4: 80 a6 e0 00 cmp %i3, 0
40007be8: 02 80 00 27 be 40007c84 <_Objects_Initialize_information+0x108>
40007bec: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007bf0: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40007bf4: 80 a0 00 1b cmp %g0, %i3
40007bf8: b3 2e 60 18 sll %i1, 0x18, %i1
40007bfc: 82 40 20 00 addx %g0, 0, %g1
40007c00: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007c04: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c08: 05 10 00 53 sethi %hi(0x40014c00), %g2
40007c0c: b4 16 40 1a or %i1, %i2, %i2
40007c10: 84 10 a3 60 or %g2, 0x360, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007c14: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40007c18: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c1c: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40007c20: 80 88 e0 03 btst 3, %g3
40007c24: 12 80 00 0c bne 40007c54 <_Objects_Initialize_information+0xd8><== NEVER TAKEN
40007c28: f4 26 20 08 st %i2, [ %i0 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40007c2c: 84 06 20 24 add %i0, 0x24, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40007c30: 82 06 20 20 add %i0, 0x20, %g1
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c34: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007c38: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
head->previous = NULL;
40007c3c: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c40: 80 a6 e0 00 cmp %i3, 0
40007c44: 12 80 00 0e bne 40007c7c <_Objects_Initialize_information+0x100>
40007c48: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
40007c4c: 81 c7 e0 08 ret
40007c50: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40007c54: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40007c58: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
40007c5c: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40007c60: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c64: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007c68: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
head->previous = NULL;
40007c6c: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c70: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40007c74: 02 bf ff f6 be 40007c4c <_Objects_Initialize_information+0xd0><== NOT EXECUTED
40007c78: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40007c7c: 7f ff fe 7e call 40007674 <_Objects_Extend_information>
40007c80: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
40007c84: 92 10 20 01 mov 1, %o1
40007c88: 7f ff fe 1e call 40007500 <_Internal_error_Occurred>
40007c8c: 94 10 20 13 mov 0x13, %o2
40007d4c <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40007d4c: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40007d50: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40007d54: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40007d58: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40007d5c: 92 10 00 11 mov %l1, %o1
40007d60: 40 00 26 e9 call 40011904 <.udiv>
40007d64: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007d68: 80 a2 20 00 cmp %o0, 0
40007d6c: 02 80 00 34 be 40007e3c <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40007d70: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40007d74: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40007d78: c2 01 00 00 ld [ %g4 ], %g1
40007d7c: 80 a4 40 01 cmp %l1, %g1
40007d80: 02 80 00 0f be 40007dbc <_Objects_Shrink_information+0x70><== NEVER TAKEN
40007d84: 82 10 20 00 clr %g1
40007d88: 10 80 00 07 b 40007da4 <_Objects_Shrink_information+0x58>
40007d8c: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40007d90: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40007d94: 80 a4 40 02 cmp %l1, %g2
40007d98: 02 80 00 0a be 40007dc0 <_Objects_Shrink_information+0x74>
40007d9c: a0 04 00 11 add %l0, %l1, %l0
40007da0: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007da4: 82 00 60 01 inc %g1
40007da8: 80 a2 00 01 cmp %o0, %g1
40007dac: 38 bf ff f9 bgu,a 40007d90 <_Objects_Shrink_information+0x44>
40007db0: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40007db4: 81 c7 e0 08 ret
40007db8: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40007dbc: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
40007dc0: 10 80 00 06 b 40007dd8 <_Objects_Shrink_information+0x8c>
40007dc4: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40007dc8: 80 a4 60 00 cmp %l1, 0
40007dcc: 22 80 00 12 be,a 40007e14 <_Objects_Shrink_information+0xc8>
40007dd0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40007dd4: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
40007dd8: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007ddc: 80 a0 40 10 cmp %g1, %l0
40007de0: 0a bf ff fa bcs 40007dc8 <_Objects_Shrink_information+0x7c>
40007de4: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40007de8: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40007dec: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007df0: 80 a0 40 02 cmp %g1, %g2
40007df4: 1a bf ff f6 bcc 40007dcc <_Objects_Shrink_information+0x80>
40007df8: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40007dfc: 7f ff fb 47 call 40006b18 <_Chain_Extract>
40007e00: 01 00 00 00 nop
}
}
while ( the_object );
40007e04: 80 a4 60 00 cmp %l1, 0
40007e08: 12 bf ff f4 bne 40007dd8 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40007e0c: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40007e10: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40007e14: 40 00 07 43 call 40009b20 <_Workspace_Free>
40007e18: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40007e1c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40007e20: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40007e24: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40007e28: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40007e2c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40007e30: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40007e34: 82 20 80 01 sub %g2, %g1, %g1
40007e38: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40007e3c: 81 c7 e0 08 ret
40007e40: 81 e8 00 00 restore
400064b0 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
400064b0: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
400064b4: 03 10 00 52 sethi %hi(0x40014800), %g1
400064b8: 82 10 60 80 or %g1, 0x80, %g1 ! 40014880 <Configuration_RTEMS_API>
400064bc: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
400064c0: 80 a4 20 00 cmp %l0, 0
400064c4: 02 80 00 19 be 40006528 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
400064c8: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
400064cc: 80 a4 a0 00 cmp %l2, 0
400064d0: 02 80 00 16 be 40006528 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
400064d4: a2 10 20 00 clr %l1
400064d8: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
400064dc: d4 04 20 04 ld [ %l0 + 4 ], %o2
400064e0: d0 04 00 00 ld [ %l0 ], %o0
400064e4: d2 04 20 08 ld [ %l0 + 8 ], %o1
400064e8: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
400064ec: d8 04 20 0c ld [ %l0 + 0xc ], %o4
400064f0: 7f ff ff 6d call 400062a4 <rtems_task_create>
400064f4: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
400064f8: 94 92 20 00 orcc %o0, 0, %o2
400064fc: 12 80 00 0d bne 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006500: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
40006504: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40006508: 40 00 00 0e call 40006540 <rtems_task_start>
4000650c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40006510: 94 92 20 00 orcc %o0, 0, %o2
40006514: 12 80 00 07 bne 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006518: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
4000651c: 80 a4 80 11 cmp %l2, %l1
40006520: 18 bf ff ef bgu 400064dc <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
40006524: a0 04 20 1c add %l0, 0x1c, %l0
40006528: 81 c7 e0 08 ret
4000652c: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
40006530: 90 10 20 01 mov 1, %o0
40006534: 40 00 03 f3 call 40007500 <_Internal_error_Occurred>
40006538: 92 10 20 01 mov 1, %o1
4000baa8 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000baa8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000baac: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000bab0: 80 a4 20 00 cmp %l0, 0
4000bab4: 02 80 00 1f be 4000bb30 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000bab8: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000babc: 7f ff d8 87 call 40001cd8 <sparc_disable_interrupts>
4000bac0: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000bac4: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000bac8: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000bacc: 7f ff d8 87 call 40001ce8 <sparc_enable_interrupts>
4000bad0: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000bad4: 80 a4 60 00 cmp %l1, 0
4000bad8: 32 80 00 04 bne,a 4000bae8 <_RTEMS_tasks_Post_switch_extension+0x40>
4000badc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000bae0: 81 c7 e0 08 ret
4000bae4: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bae8: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000baec: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000baf0: a4 07 bf fc add %fp, -4, %l2
4000baf4: 27 00 00 3f sethi %hi(0xfc00), %l3
4000baf8: 94 10 00 12 mov %l2, %o2
4000bafc: 92 14 e3 ff or %l3, 0x3ff, %o1
4000bb00: 40 00 08 29 call 4000dba4 <rtems_task_mode>
4000bb04: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000bb08: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000bb0c: 9f c0 40 00 call %g1
4000bb10: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000bb14: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb18: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bb1c: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb20: 92 14 e3 ff or %l3, 0x3ff, %o1
4000bb24: 94 10 00 12 mov %l2, %o2
4000bb28: 40 00 08 1f call 4000dba4 <rtems_task_mode>
4000bb2c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000bb30: 81 c7 e0 08 ret
4000bb34: 81 e8 00 00 restore
4000ba18 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000ba18: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000ba1c: 80 a0 60 00 cmp %g1, 0
4000ba20: 22 80 00 0b be,a 4000ba4c <_RTEMS_tasks_Switch_extension+0x34>
4000ba24: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
tvp->tval = *tvp->ptr;
4000ba28: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000ba2c: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000ba30: c8 00 80 00 ld [ %g2 ], %g4
4000ba34: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000ba38: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000ba3c: 80 a0 60 00 cmp %g1, 0
4000ba40: 12 bf ff fa bne 4000ba28 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000ba44: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000ba48: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
while (tvp) {
4000ba4c: 80 a0 60 00 cmp %g1, 0
4000ba50: 02 80 00 0a be 4000ba78 <_RTEMS_tasks_Switch_extension+0x60>
4000ba54: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000ba58: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000ba5c: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000ba60: c8 00 80 00 ld [ %g2 ], %g4
4000ba64: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000ba68: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000ba6c: 80 a0 60 00 cmp %g1, 0
4000ba70: 12 bf ff fa bne 4000ba58 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000ba74: c6 20 80 00 st %g3, [ %g2 ]
4000ba78: 81 c3 e0 08 retl
400077c8 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400077c8: 9d e3 bf 98 save %sp, -104, %sp
400077cc: 11 10 00 7b sethi %hi(0x4001ec00), %o0
400077d0: 92 10 00 18 mov %i0, %o1
400077d4: 90 12 20 ec or %o0, 0xec, %o0
400077d8: 40 00 08 3d call 400098cc <_Objects_Get>
400077dc: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400077e0: c2 07 bf fc ld [ %fp + -4 ], %g1
400077e4: 80 a0 60 00 cmp %g1, 0
400077e8: 12 80 00 16 bne 40007840 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
400077ec: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
400077f0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
400077f4: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
400077f8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
400077fc: 80 88 80 01 btst %g2, %g1
40007800: 22 80 00 08 be,a 40007820 <_Rate_monotonic_Timeout+0x58>
40007804: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007808: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
4000780c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007810: 80 a0 80 01 cmp %g2, %g1
40007814: 02 80 00 19 be 40007878 <_Rate_monotonic_Timeout+0xb0>
40007818: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
4000781c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007820: 80 a0 60 01 cmp %g1, 1
40007824: 02 80 00 09 be 40007848 <_Rate_monotonic_Timeout+0x80>
40007828: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
4000782c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40007830: 03 10 00 7b sethi %hi(0x4001ec00), %g1
40007834: c4 00 62 50 ld [ %g1 + 0x250 ], %g2 ! 4001ee50 <_Thread_Dispatch_disable_level>
40007838: 84 00 bf ff add %g2, -1, %g2
4000783c: c4 20 62 50 st %g2, [ %g1 + 0x250 ]
40007840: 81 c7 e0 08 ret
40007844: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007848: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
4000784c: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007850: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40007854: 7f ff fe 4c call 40007184 <_Rate_monotonic_Initiate_statistics>
40007858: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000785c: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007860: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007864: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007868: 90 12 23 30 or %o0, 0x330, %o0
4000786c: 40 00 0f a9 call 4000b710 <_Watchdog_Insert>
40007870: 92 04 20 10 add %l0, 0x10, %o1
40007874: 30 bf ff ef b,a 40007830 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40007878: 40 00 0a 6b call 4000a224 <_Thread_Clear_state>
4000787c: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40007880: 10 bf ff f5 b 40007854 <_Rate_monotonic_Timeout+0x8c>
40007884: 90 10 00 10 mov %l0, %o0
4000c398 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
4000c398: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
4000c39c: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
4000c3a0: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
4000c3a4: c6 00 40 00 ld [ %g1 ], %g3
4000c3a8: c4 00 60 08 ld [ %g1 + 8 ], %g2
4000c3ac: 80 a0 c0 02 cmp %g3, %g2
4000c3b0: 22 80 00 39 be,a 4000c494 <_Scheduler_priority_Block+0xfc>
4000c3b4: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000c3b8: c4 06 40 00 ld [ %i1 ], %g2
previous = the_node->previous;
4000c3bc: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
4000c3c0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000c3c4: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000c3c8: 03 10 00 54 sethi %hi(0x40015000), %g1
4000c3cc: 82 10 63 ec or %g1, 0x3ec, %g1 ! 400153ec <_Per_CPU_Information>
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
4000c3d0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000c3d4: 80 a6 40 02 cmp %i1, %g2
4000c3d8: 02 80 00 09 be 4000c3fc <_Scheduler_priority_Block+0x64>
4000c3dc: 05 10 00 55 sethi %hi(0x40015400), %g2
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
4000c3e0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000c3e4: 80 a6 40 02 cmp %i1, %g2
4000c3e8: 12 80 00 03 bne 4000c3f4 <_Scheduler_priority_Block+0x5c>
4000c3ec: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000c3f0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4000c3f4: 81 c7 e0 08 ret
4000c3f8: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000c3fc: c4 10 a0 10 lduh [ %g2 + 0x10 ], %g2
4000c400: 85 28 a0 10 sll %g2, 0x10, %g2
4000c404: 89 30 a0 10 srl %g2, 0x10, %g4
4000c408: 80 a1 20 ff cmp %g4, 0xff
4000c40c: 18 80 00 38 bgu 4000c4ec <_Scheduler_priority_Block+0x154>
4000c410: c6 06 00 00 ld [ %i0 ], %g3
4000c414: 1b 10 00 4f sethi %hi(0x40013c00), %o5
4000c418: 9a 13 63 60 or %o5, 0x360, %o5 ! 40013f60 <__log2table>
4000c41c: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
4000c420: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000c424: 85 28 a0 10 sll %g2, 0x10, %g2
4000c428: 19 10 00 55 sethi %hi(0x40015400), %o4
4000c42c: 89 30 a0 0f srl %g2, 0xf, %g4
4000c430: 98 13 20 20 or %o4, 0x20, %o4
4000c434: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
4000c438: 89 29 20 10 sll %g4, 0x10, %g4
4000c43c: 99 31 20 10 srl %g4, 0x10, %o4
4000c440: 80 a3 20 ff cmp %o4, 0xff
4000c444: 38 80 00 28 bgu,a 4000c4e4 <_Scheduler_priority_Block+0x14c>
4000c448: 89 31 20 18 srl %g4, 0x18, %g4
4000c44c: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
4000c450: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
4000c454: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
4000c458: 89 29 20 10 sll %g4, 0x10, %g4
4000c45c: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000c460: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000c464: 9b 29 20 02 sll %g4, 2, %o5
4000c468: 85 29 20 04 sll %g4, 4, %g2
4000c46c: 84 20 80 0d sub %g2, %o5, %g2
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
4000c470: da 00 c0 02 ld [ %g3 + %g2 ], %o5
4000c474: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c478: 84 00 a0 04 add %g2, 4, %g2
4000c47c: 80 a3 40 02 cmp %o5, %g2
4000c480: 02 80 00 03 be 4000c48c <_Scheduler_priority_Block+0xf4> <== NEVER TAKEN
4000c484: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000c488: 88 10 00 0d mov %o5, %g4
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000c48c: 10 bf ff d5 b 4000c3e0 <_Scheduler_priority_Block+0x48>
4000c490: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000c494: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000c498: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
4000c49c: c4 20 40 00 st %g2, [ %g1 ]
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
if ( _Chain_Has_only_one_node( ready ) ) {
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
4000c4a0: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000c4a4: c6 00 60 04 ld [ %g1 + 4 ], %g3
4000c4a8: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
4000c4ac: c8 10 c0 00 lduh [ %g3 ], %g4
4000c4b0: 84 09 00 02 and %g4, %g2, %g2
4000c4b4: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
4000c4b8: 85 28 a0 10 sll %g2, 0x10, %g2
4000c4bc: 80 a0 a0 00 cmp %g2, 0
4000c4c0: 32 bf ff c3 bne,a 4000c3cc <_Scheduler_priority_Block+0x34>
4000c4c4: 03 10 00 54 sethi %hi(0x40015000), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
4000c4c8: 05 10 00 55 sethi %hi(0x40015400), %g2
4000c4cc: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
4000c4d0: c6 10 a0 10 lduh [ %g2 + 0x10 ], %g3
4000c4d4: 82 08 c0 01 and %g3, %g1, %g1
4000c4d8: c2 30 a0 10 sth %g1, [ %g2 + 0x10 ]
4000c4dc: 10 bf ff bc b 4000c3cc <_Scheduler_priority_Block+0x34>
4000c4e0: 03 10 00 54 sethi %hi(0x40015000), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000c4e4: 10 bf ff dc b 4000c454 <_Scheduler_priority_Block+0xbc>
4000c4e8: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000c4ec: 1b 10 00 4f sethi %hi(0x40013c00), %o5
4000c4f0: 85 30 a0 18 srl %g2, 0x18, %g2
4000c4f4: 9a 13 63 60 or %o5, 0x360, %o5
4000c4f8: 10 bf ff cb b 4000c424 <_Scheduler_priority_Block+0x8c>
4000c4fc: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
40007fb8 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
40007fb8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007fbc: 03 10 00 55 sethi %hi(0x40015400), %g1
40007fc0: c2 10 60 10 lduh [ %g1 + 0x10 ], %g1 ! 40015410 <_Priority_Major_bit_map>
40007fc4: 83 28 60 10 sll %g1, 0x10, %g1
40007fc8: 87 30 60 10 srl %g1, 0x10, %g3
40007fcc: 80 a0 e0 ff cmp %g3, 0xff
40007fd0: 18 80 00 26 bgu 40008068 <_Scheduler_priority_Schedule+0xb0>
40007fd4: c4 06 00 00 ld [ %i0 ], %g2
40007fd8: 09 10 00 4f sethi %hi(0x40013c00), %g4
40007fdc: 88 11 23 60 or %g4, 0x360, %g4 ! 40013f60 <__log2table>
40007fe0: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
40007fe4: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007fe8: 83 28 60 10 sll %g1, 0x10, %g1
40007fec: 1b 10 00 55 sethi %hi(0x40015400), %o5
40007ff0: 87 30 60 0f srl %g1, 0xf, %g3
40007ff4: 9a 13 60 20 or %o5, 0x20, %o5
40007ff8: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
40007ffc: 87 28 e0 10 sll %g3, 0x10, %g3
40008000: 9b 30 e0 10 srl %g3, 0x10, %o5
40008004: 80 a3 60 ff cmp %o5, 0xff
40008008: 38 80 00 16 bgu,a 40008060 <_Scheduler_priority_Schedule+0xa8>
4000800c: 87 30 e0 18 srl %g3, 0x18, %g3
40008010: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
40008014: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
40008018: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
4000801c: 87 28 e0 10 sll %g3, 0x10, %g3
40008020: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40008024: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40008028: 89 28 e0 02 sll %g3, 2, %g4
4000802c: 83 28 e0 04 sll %g3, 4, %g1
40008030: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body( the_scheduler );
}
40008034: c8 00 80 01 ld [ %g2 + %g1 ], %g4
40008038: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000803c: 82 00 60 04 add %g1, 4, %g1
40008040: 80 a1 00 01 cmp %g4, %g1
40008044: 02 80 00 03 be 40008050 <_Scheduler_priority_Schedule+0x98><== NEVER TAKEN
40008048: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000804c: 86 10 00 04 mov %g4, %g3
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40008050: 03 10 00 54 sethi %hi(0x40015000), %g1
40008054: c6 20 63 fc st %g3, [ %g1 + 0x3fc ] ! 400153fc <_Per_CPU_Information+0x10>
40008058: 81 c7 e0 08 ret
4000805c: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008060: 10 bf ff ee b 40008018 <_Scheduler_priority_Schedule+0x60>
40008064: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008068: 09 10 00 4f sethi %hi(0x40013c00), %g4
4000806c: 83 30 60 18 srl %g1, 0x18, %g1
40008070: 88 11 23 60 or %g4, 0x360, %g4
40008074: 10 bf ff dd b 40007fe8 <_Scheduler_priority_Schedule+0x30>
40008078: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
400081b8 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
400081b8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
400081bc: 25 10 00 54 sethi %hi(0x40015000), %l2
400081c0: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
400081c4: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
400081c8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
400081cc: 7f ff e6 c3 call 40001cd8 <sparc_disable_interrupts>
400081d0: e2 00 40 00 ld [ %g1 ], %l1
400081d4: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
400081d8: c4 04 40 00 ld [ %l1 ], %g2
400081dc: c2 04 60 08 ld [ %l1 + 8 ], %g1
400081e0: 80 a0 80 01 cmp %g2, %g1
400081e4: 02 80 00 16 be 4000823c <_Scheduler_priority_Yield+0x84>
400081e8: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400081ec: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
400081f0: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
400081f4: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
400081f8: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
400081fc: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
40008200: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
40008204: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
40008208: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
4000820c: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
40008210: 7f ff e6 b6 call 40001ce8 <sparc_enable_interrupts>
40008214: 01 00 00 00 nop
40008218: 7f ff e6 b0 call 40001cd8 <sparc_disable_interrupts>
4000821c: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40008220: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40008224: 80 a4 00 01 cmp %l0, %g1
40008228: 02 80 00 0b be 40008254 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
4000822c: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
40008230: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40008234: 7f ff e6 ad call 40001ce8 <sparc_enable_interrupts>
40008238: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
4000823c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40008240: 80 a4 00 01 cmp %l0, %g1
40008244: 02 bf ff fc be 40008234 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
40008248: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
4000824c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
40008250: 30 bf ff f9 b,a 40008234 <_Scheduler_priority_Yield+0x7c><== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40008254: c2 04 40 00 ld [ %l1 ], %g1
40008258: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
4000825c: 82 10 20 01 mov 1, %g1
40008260: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
40008264: 30 bf ff f4 b,a 40008234 <_Scheduler_priority_Yield+0x7c>
4000704c <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
4000704c: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007050: 05 10 00 54 sethi %hi(0x40015000), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007054: 03 10 00 52 sethi %hi(0x40014800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007058: c6 00 a2 d0 ld [ %g2 + 0x2d0 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
4000705c: c2 00 60 c4 ld [ %g1 + 0xc4 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007060: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007064: 9b 28 60 07 sll %g1, 7, %o5
40007068: 89 28 60 02 sll %g1, 2, %g4
4000706c: 88 23 40 04 sub %o5, %g4, %g4
40007070: 82 01 00 01 add %g4, %g1, %g1
40007074: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007078: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
4000707c: c6 20 a2 d0 st %g3, [ %g2 + 0x2d0 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007080: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007084: c2 27 bf fc st %g1, [ %fp + -4 ]
40007088: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
4000708c: 11 10 00 54 sethi %hi(0x40015000), %o0
40007090: 40 00 08 c5 call 400093a4 <_Timespec_Add_to>
40007094: 90 12 22 1c or %o0, 0x21c, %o0 ! 4001521c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
40007098: 92 10 00 10 mov %l0, %o1
4000709c: 11 10 00 54 sethi %hi(0x40015000), %o0
400070a0: 40 00 08 c1 call 400093a4 <_Timespec_Add_to>
400070a4: 90 12 22 48 or %o0, 0x248, %o0 ! 40015248 <_TOD_Now>
while ( seconds ) {
400070a8: a0 92 20 00 orcc %o0, 0, %l0
400070ac: 02 80 00 08 be 400070cc <_TOD_Tickle_ticks+0x80>
400070b0: 23 10 00 54 sethi %hi(0x40015000), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
400070b4: a2 14 62 74 or %l1, 0x274, %l1 ! 40015274 <_Watchdog_Seconds_chain>
400070b8: 40 00 0a 4b call 400099e4 <_Watchdog_Tickle>
400070bc: 90 10 00 11 mov %l1, %o0
400070c0: a0 84 3f ff addcc %l0, -1, %l0
400070c4: 12 bf ff fd bne 400070b8 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
400070c8: 01 00 00 00 nop
400070cc: 81 c7 e0 08 ret
400070d0: 81 e8 00 00 restore
4000715c <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
4000715c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007160: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007164: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007168: d2 00 61 94 ld [ %g1 + 0x194 ], %o1
if ((!the_tod) ||
4000716c: 80 a4 20 00 cmp %l0, 0
40007170: 02 80 00 2c be 40007220 <_TOD_Validate+0xc4> <== NEVER TAKEN
40007174: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007178: 11 00 03 d0 sethi %hi(0xf4000), %o0
4000717c: 40 00 49 0f call 400195b8 <.udiv>
40007180: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007184: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007188: 80 a2 00 01 cmp %o0, %g1
4000718c: 08 80 00 25 bleu 40007220 <_TOD_Validate+0xc4>
40007190: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007194: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007198: 80 a0 60 3b cmp %g1, 0x3b
4000719c: 18 80 00 21 bgu 40007220 <_TOD_Validate+0xc4>
400071a0: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
400071a4: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
400071a8: 80 a0 60 3b cmp %g1, 0x3b
400071ac: 18 80 00 1d bgu 40007220 <_TOD_Validate+0xc4>
400071b0: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
400071b4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400071b8: 80 a0 60 17 cmp %g1, 0x17
400071bc: 18 80 00 19 bgu 40007220 <_TOD_Validate+0xc4>
400071c0: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
400071c4: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
400071c8: 80 a0 60 00 cmp %g1, 0
400071cc: 02 80 00 15 be 40007220 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071d0: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
400071d4: 18 80 00 13 bgu 40007220 <_TOD_Validate+0xc4>
400071d8: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071dc: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
400071e0: 80 a0 a7 c3 cmp %g2, 0x7c3
400071e4: 08 80 00 0f bleu 40007220 <_TOD_Validate+0xc4>
400071e8: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
400071ec: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071f0: 80 a0 e0 00 cmp %g3, 0
400071f4: 02 80 00 0b be 40007220 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071f8: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
400071fc: 32 80 00 0b bne,a 40007228 <_TOD_Validate+0xcc>
40007200: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40007204: 82 00 60 0d add %g1, 0xd, %g1
40007208: 05 10 00 76 sethi %hi(0x4001d800), %g2
4000720c: 83 28 60 02 sll %g1, 2, %g1
40007210: 84 10 a2 60 or %g2, 0x260, %g2
40007214: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007218: 80 a0 40 03 cmp %g1, %g3
4000721c: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007220: 81 c7 e0 08 ret
40007224: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007228: 05 10 00 76 sethi %hi(0x4001d800), %g2
4000722c: 84 10 a2 60 or %g2, 0x260, %g2 ! 4001da60 <_TOD_Days_per_month>
40007230: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007234: 80 a0 40 03 cmp %g1, %g3
40007238: b0 60 3f ff subx %g0, -1, %i0
4000723c: 81 c7 e0 08 ret
40007240: 81 e8 00 00 restore
400082c4 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
400082c4: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
400082c8: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
400082cc: 40 00 03 a6 call 40009164 <_Thread_Set_transient>
400082d0: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
400082d4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
400082d8: 80 a0 40 19 cmp %g1, %i1
400082dc: 02 80 00 05 be 400082f0 <_Thread_Change_priority+0x2c>
400082e0: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
400082e4: 90 10 00 18 mov %i0, %o0
400082e8: 40 00 03 82 call 400090f0 <_Thread_Set_priority>
400082ec: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
400082f0: 7f ff e6 7a call 40001cd8 <sparc_disable_interrupts>
400082f4: 01 00 00 00 nop
400082f8: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
400082fc: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
40008300: 80 a4 a0 04 cmp %l2, 4
40008304: 02 80 00 18 be 40008364 <_Thread_Change_priority+0xa0>
40008308: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
4000830c: 02 80 00 0b be 40008338 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
40008310: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40008314: 7f ff e6 75 call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
40008318: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
4000831c: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
40008320: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008324: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
40008328: 32 80 00 0d bne,a 4000835c <_Thread_Change_priority+0x98><== NOT EXECUTED
4000832c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
40008330: 81 c7 e0 08 ret
40008334: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008338: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
4000833c: 7f ff e6 6b call 40001ce8 <sparc_enable_interrupts>
40008340: 90 10 00 18 mov %i0, %o0
40008344: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008348: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
4000834c: 80 8c 80 01 btst %l2, %g1
40008350: 02 bf ff f8 be 40008330 <_Thread_Change_priority+0x6c>
40008354: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40008358: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
4000835c: 40 00 03 35 call 40009030 <_Thread_queue_Requeue>
40008360: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40008364: 12 80 00 15 bne 400083b8 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
40008368: 80 8e a0 ff btst 0xff, %i2
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
4000836c: 02 80 00 2a be 40008414 <_Thread_Change_priority+0x150>
40008370: c0 24 20 10 clr [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue_first(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
40008374: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40008378: 07 10 00 55 sethi %hi(0x40015400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000837c: c8 00 60 04 ld [ %g1 + 4 ], %g4
40008380: da 10 60 0a lduh [ %g1 + 0xa ], %o5
40008384: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
40008388: c4 00 40 00 ld [ %g1 ], %g2
4000838c: 9a 13 00 0d or %o4, %o5, %o5
40008390: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008394: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40008398: da 10 e0 10 lduh [ %g3 + 0x10 ], %o5
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
4000839c: c2 00 80 00 ld [ %g2 ], %g1
400083a0: 88 13 40 04 or %o5, %g4, %g4
400083a4: c8 30 e0 10 sth %g4, [ %g3 + 0x10 ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
400083a8: c4 24 20 04 st %g2, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
400083ac: e0 20 80 00 st %l0, [ %g2 ]
the_node->next = before_node;
400083b0: c2 24 00 00 st %g1, [ %l0 ]
before_node->previous = the_node;
400083b4: e0 20 60 04 st %l0, [ %g1 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
400083b8: 7f ff e6 4c call 40001ce8 <sparc_enable_interrupts>
400083bc: 90 10 00 18 mov %i0, %o0
400083c0: 7f ff e6 46 call 40001cd8 <sparc_disable_interrupts>
400083c4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
400083c8: 11 10 00 54 sethi %hi(0x40015000), %o0
400083cc: 90 12 22 24 or %o0, 0x224, %o0 ! 40015224 <_Scheduler>
400083d0: c2 02 20 04 ld [ %o0 + 4 ], %g1
400083d4: 9f c0 40 00 call %g1
400083d8: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
400083dc: 03 10 00 54 sethi %hi(0x40015000), %g1
400083e0: 82 10 63 ec or %g1, 0x3ec, %g1 ! 400153ec <_Per_CPU_Information>
400083e4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
400083e8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
400083ec: 80 a0 80 03 cmp %g2, %g3
400083f0: 02 80 00 07 be 4000840c <_Thread_Change_priority+0x148>
400083f4: 01 00 00 00 nop
400083f8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
400083fc: 80 a0 a0 00 cmp %g2, 0
40008400: 02 80 00 03 be 4000840c <_Thread_Change_priority+0x148>
40008404: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008408: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
4000840c: 7f ff e6 37 call 40001ce8 <sparc_enable_interrupts>
40008410: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
40008414: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40008418: 07 10 00 55 sethi %hi(0x40015400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000841c: c8 00 60 04 ld [ %g1 + 4 ], %g4
40008420: da 10 60 0a lduh [ %g1 + 0xa ], %o5
40008424: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
40008428: c4 00 40 00 ld [ %g1 ], %g2
4000842c: 9a 13 00 0d or %o4, %o5, %o5
40008430: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008434: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40008438: da 10 e0 10 lduh [ %g3 + 0x10 ], %o5
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
4000843c: c2 00 a0 08 ld [ %g2 + 8 ], %g1
40008440: 88 13 40 04 or %o5, %g4, %g4
40008444: c8 30 e0 10 sth %g4, [ %g3 + 0x10 ]
the_node->next = tail;
tail->previous = the_node;
40008448: e0 20 a0 08 st %l0, [ %g2 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
4000844c: 86 00 a0 04 add %g2, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40008450: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40008454: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40008458: 10 bf ff d8 b 400083b8 <_Thread_Change_priority+0xf4>
4000845c: c2 24 20 04 st %g1, [ %l0 + 4 ]
4000863c <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000863c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008640: 90 10 00 18 mov %i0, %o0
40008644: 40 00 00 6c call 400087f4 <_Thread_Get>
40008648: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000864c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008650: 80 a0 60 00 cmp %g1, 0
40008654: 12 80 00 08 bne 40008674 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008658: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
4000865c: 7f ff ff 81 call 40008460 <_Thread_Clear_state>
40008660: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008664: 03 10 00 54 sethi %hi(0x40015000), %g1
40008668: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
4000866c: 84 00 bf ff add %g2, -1, %g2
40008670: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
40008674: 81 c7 e0 08 ret
40008678: 81 e8 00 00 restore
4000867c <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
4000867c: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40008680: 25 10 00 54 sethi %hi(0x40015000), %l2
40008684: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
_ISR_Disable( level );
40008688: 7f ff e5 94 call 40001cd8 <sparc_disable_interrupts>
4000868c: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
40008690: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40008694: 80 a0 60 00 cmp %g1, 0
40008698: 02 80 00 42 be 400087a0 <_Thread_Dispatch+0x124>
4000869c: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
400086a0: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400086a4: 82 10 20 01 mov 1, %g1
400086a8: c2 25 a1 a0 st %g1, [ %l6 + 0x1a0 ]
_Thread_Dispatch_necessary = false;
400086ac: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400086b0: 80 a4 40 10 cmp %l1, %l0
400086b4: 02 80 00 3b be 400087a0 <_Thread_Dispatch+0x124>
400086b8: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
400086bc: 27 10 00 54 sethi %hi(0x40015000), %l3
400086c0: 3b 10 00 54 sethi %hi(0x40015000), %i5
400086c4: a6 14 e2 6c or %l3, 0x26c, %l3
400086c8: aa 07 bf f8 add %fp, -8, %l5
400086cc: a8 07 bf f0 add %fp, -16, %l4
400086d0: ba 17 62 44 or %i5, 0x244, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400086d4: 37 10 00 54 sethi %hi(0x40015000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
400086d8: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400086dc: 10 80 00 2b b 40008788 <_Thread_Dispatch+0x10c>
400086e0: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
400086e4: 7f ff e5 81 call 40001ce8 <sparc_enable_interrupts>
400086e8: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
400086ec: 40 00 0e 12 call 4000bf34 <_TOD_Get_uptime>
400086f0: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
400086f4: 90 10 00 17 mov %l7, %o0
400086f8: 92 10 00 15 mov %l5, %o1
400086fc: 40 00 03 43 call 40009408 <_Timespec_Subtract>
40008700: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008704: 92 10 00 14 mov %l4, %o1
40008708: 40 00 03 27 call 400093a4 <_Timespec_Add_to>
4000870c: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
40008710: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008714: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008718: c4 24 c0 00 st %g2, [ %l3 ]
4000871c: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
40008720: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008724: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008728: 80 a0 60 00 cmp %g1, 0
4000872c: 02 80 00 06 be 40008744 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
40008730: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
40008734: c4 00 40 00 ld [ %g1 ], %g2
40008738: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
4000873c: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008740: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008744: 40 00 03 f5 call 40009718 <_User_extensions_Thread_switch>
40008748: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
4000874c: 90 04 60 c0 add %l1, 0xc0, %o0
40008750: 40 00 05 0a call 40009b78 <_CPU_Context_switch>
40008754: 92 04 20 c0 add %l0, 0xc0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
40008758: 7f ff e5 60 call 40001cd8 <sparc_disable_interrupts>
4000875c: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008760: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40008764: 80 a0 60 00 cmp %g1, 0
40008768: 02 80 00 0e be 400087a0 <_Thread_Dispatch+0x124>
4000876c: 01 00 00 00 nop
heir = _Thread_Heir;
40008770: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40008774: f8 25 a1 a0 st %i4, [ %l6 + 0x1a0 ]
_Thread_Dispatch_necessary = false;
40008778: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
4000877c: 80 a4 00 11 cmp %l0, %l1
40008780: 02 80 00 08 be 400087a0 <_Thread_Dispatch+0x124> <== NEVER TAKEN
40008784: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008788: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
4000878c: 80 a0 60 01 cmp %g1, 1
40008790: 12 bf ff d5 bne 400086e4 <_Thread_Dispatch+0x68>
40008794: c2 06 e1 04 ld [ %i3 + 0x104 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008798: 10 bf ff d3 b 400086e4 <_Thread_Dispatch+0x68>
4000879c: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400087a0: c0 25 a1 a0 clr [ %l6 + 0x1a0 ]
_ISR_Enable( level );
400087a4: 7f ff e5 51 call 40001ce8 <sparc_enable_interrupts>
400087a8: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400087ac: 7f ff f8 83 call 400069b8 <_API_extensions_Run_postswitch>
400087b0: 01 00 00 00 nop
}
400087b4: 81 c7 e0 08 ret
400087b8: 81 e8 00 00 restore
400087f4 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
400087f4: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
400087f8: 80 a2 20 00 cmp %o0, 0
400087fc: 02 80 00 1d be 40008870 <_Thread_Get+0x7c>
40008800: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40008804: 85 32 20 18 srl %o0, 0x18, %g2
40008808: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000880c: 86 00 bf ff add %g2, -1, %g3
40008810: 80 a0 e0 02 cmp %g3, 2
40008814: 38 80 00 14 bgu,a 40008864 <_Thread_Get+0x70>
40008818: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
4000881c: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40008820: 80 a1 20 01 cmp %g4, 1
40008824: 32 80 00 10 bne,a 40008864 <_Thread_Get+0x70>
40008828: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
4000882c: 85 28 a0 02 sll %g2, 2, %g2
40008830: 07 10 00 54 sethi %hi(0x40015000), %g3
40008834: 86 10 e1 08 or %g3, 0x108, %g3 ! 40015108 <_Objects_Information_table>
40008838: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
4000883c: 80 a0 a0 00 cmp %g2, 0
40008840: 22 80 00 16 be,a 40008898 <_Thread_Get+0xa4> <== NEVER TAKEN
40008844: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
#endif
information = api_information[ the_class ];
40008848: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
4000884c: 80 a2 20 00 cmp %o0, 0
40008850: 02 80 00 10 be 40008890 <_Thread_Get+0x9c>
40008854: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008858: 82 13 c0 00 mov %o7, %g1
4000885c: 7f ff fc ab call 40007b08 <_Objects_Get>
40008860: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
40008864: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
40008868: 81 c3 e0 08 retl
4000886c: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008870: 03 10 00 54 sethi %hi(0x40015000), %g1
40008874: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
40008878: 84 00 a0 01 inc %g2
4000887c: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
40008880: 03 10 00 54 sethi %hi(0x40015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40008884: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
40008888: 81 c3 e0 08 retl
4000888c: d0 00 63 f8 ld [ %g1 + 0x3f8 ], %o0
#endif
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
40008890: 81 c3 e0 08 retl
40008894: c8 22 80 00 st %g4, [ %o2 ]
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
40008898: 81 c3 e0 08 retl <== NOT EXECUTED
4000889c: 90 10 20 00 clr %o0 <== NOT EXECUTED
4000df30 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000df30: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000df34: 03 10 00 54 sethi %hi(0x40015000), %g1
4000df38: e0 00 63 f8 ld [ %g1 + 0x3f8 ], %l0 ! 400153f8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000df3c: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000df40: be 17 e3 30 or %i7, 0x330, %i7 ! 4000df30 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000df44: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000df48: 7f ff cf 68 call 40001ce8 <sparc_enable_interrupts>
4000df4c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000df50: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000df54: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000df58: e2 08 63 68 ldub [ %g1 + 0x368 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000df5c: 90 10 00 10 mov %l0, %o0
4000df60: 7f ff ed 6e call 40009518 <_User_extensions_Thread_begin>
4000df64: c4 28 63 68 stb %g2, [ %g1 + 0x368 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000df68: 7f ff ea 15 call 400087bc <_Thread_Enable_dispatch>
4000df6c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000df70: 80 a4 60 00 cmp %l1, 0
4000df74: 02 80 00 0c be 4000dfa4 <_Thread_Handler+0x74>
4000df78: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000df7c: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000df80: 80 a0 60 00 cmp %g1, 0
4000df84: 22 80 00 0f be,a 4000dfc0 <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000df88: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000df8c: 7f ff ed 77 call 40009568 <_User_extensions_Thread_exitted>
4000df90: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000df94: 90 10 20 00 clr %o0
4000df98: 92 10 20 01 mov 1, %o1
4000df9c: 7f ff e5 59 call 40007500 <_Internal_error_Occurred>
4000dfa0: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000dfa4: 40 00 1a 05 call 400147b8 <_init>
4000dfa8: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000dfac: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000dfb0: 80 a0 60 00 cmp %g1, 0
4000dfb4: 12 bf ff f6 bne 4000df8c <_Thread_Handler+0x5c> <== NEVER TAKEN
4000dfb8: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000dfbc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000dfc0: 9f c0 40 00 call %g1
4000dfc4: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000dfc8: 10 bf ff f1 b 4000df8c <_Thread_Handler+0x5c>
4000dfcc: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
400088a0 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400088a0: 9d e3 bf a0 save %sp, -96, %sp
400088a4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400088a8: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400088ac: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400088b0: c0 26 61 4c clr [ %i1 + 0x14c ]
400088b4: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400088b8: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400088bc: 90 10 00 19 mov %i1, %o0
400088c0: 40 00 02 50 call 40009200 <_Thread_Stack_Allocate>
400088c4: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400088c8: 80 a2 00 1b cmp %o0, %i3
400088cc: 0a 80 00 55 bcs 40008a20 <_Thread_Initialize+0x180>
400088d0: 80 a2 20 00 cmp %o0, 0
400088d4: 02 80 00 53 be 40008a20 <_Thread_Initialize+0x180> <== NEVER TAKEN
400088d8: 25 10 00 54 sethi %hi(0x40015000), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400088dc: c4 06 60 bc ld [ %i1 + 0xbc ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
400088e0: c2 04 a2 50 ld [ %l2 + 0x250 ], %g1
400088e4: c4 26 60 b8 st %g2, [ %i1 + 0xb8 ]
the_stack->size = size;
400088e8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400088ec: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
400088f0: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
400088f4: c0 26 60 68 clr [ %i1 + 0x68 ]
400088f8: 80 a0 60 00 cmp %g1, 0
400088fc: 12 80 00 4b bne 40008a28 <_Thread_Initialize+0x188>
40008900: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008904: c0 26 61 54 clr [ %i1 + 0x154 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40008908: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000890c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
40008910: 11 10 00 54 sethi %hi(0x40015000), %o0
40008914: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40008918: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
4000891c: 90 12 22 24 or %o0, 0x224, %o0
40008920: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008924: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
40008928: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000892c: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40008930: 84 10 20 01 mov 1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008934: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
40008938: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
4000893c: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
40008940: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008944: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
40008948: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
4000894c: 9f c0 40 00 call %g1
40008950: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
40008954: a0 92 20 00 orcc %o0, 0, %l0
40008958: 02 80 00 11 be 4000899c <_Thread_Initialize+0xfc>
4000895c: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
40008960: 40 00 01 e4 call 400090f0 <_Thread_Set_priority>
40008964: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
40008968: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000896c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40008970: c0 26 60 84 clr [ %i1 + 0x84 ]
40008974: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008978: 83 28 60 02 sll %g1, 2, %g1
4000897c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40008980: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40008984: 90 10 00 19 mov %i1, %o0
40008988: 40 00 03 1f call 40009604 <_User_extensions_Thread_create>
4000898c: b0 10 20 01 mov 1, %i0
if ( extension_status )
40008990: 80 8a 20 ff btst 0xff, %o0
40008994: 12 80 00 36 bne 40008a6c <_Thread_Initialize+0x1cc>
40008998: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
4000899c: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
400089a0: 80 a2 20 00 cmp %o0, 0
400089a4: 22 80 00 05 be,a 400089b8 <_Thread_Initialize+0x118>
400089a8: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
_Workspace_Free( the_thread->libc_reent );
400089ac: 40 00 04 5d call 40009b20 <_Workspace_Free>
400089b0: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400089b4: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
400089b8: 80 a2 20 00 cmp %o0, 0
400089bc: 22 80 00 05 be,a 400089d0 <_Thread_Initialize+0x130>
400089c0: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
400089c4: 40 00 04 57 call 40009b20 <_Workspace_Free>
400089c8: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400089cc: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
400089d0: 80 a2 20 00 cmp %o0, 0
400089d4: 02 80 00 05 be 400089e8 <_Thread_Initialize+0x148> <== ALWAYS TAKEN
400089d8: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
400089dc: 40 00 04 51 call 40009b20 <_Workspace_Free> <== NOT EXECUTED
400089e0: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
400089e4: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
400089e8: 02 80 00 05 be 400089fc <_Thread_Initialize+0x15c>
400089ec: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( extensions_area );
400089f0: 40 00 04 4c call 40009b20 <_Workspace_Free>
400089f4: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
400089f8: 80 a4 20 00 cmp %l0, 0
400089fc: 02 80 00 05 be 40008a10 <_Thread_Initialize+0x170>
40008a00: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
40008a04: 40 00 04 47 call 40009b20 <_Workspace_Free>
40008a08: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40008a0c: 90 10 00 19 mov %i1, %o0
40008a10: 40 00 02 17 call 4000926c <_Thread_Stack_Free>
40008a14: b0 10 20 00 clr %i0
return false;
40008a18: 81 c7 e0 08 ret
40008a1c: 81 e8 00 00 restore
}
40008a20: 81 c7 e0 08 ret
40008a24: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40008a28: 82 00 60 01 inc %g1
40008a2c: 40 00 04 34 call 40009afc <_Workspace_Allocate>
40008a30: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008a34: b6 92 20 00 orcc %o0, 0, %i3
40008a38: 02 80 00 0f be 40008a74 <_Thread_Initialize+0x1d4>
40008a3c: c6 04 a2 50 ld [ %l2 + 0x250 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008a40: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008a44: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008a48: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40008a4c: 85 28 a0 02 sll %g2, 2, %g2
40008a50: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008a54: 82 00 60 01 inc %g1
40008a58: 80 a0 40 03 cmp %g1, %g3
40008a5c: 08 bf ff fc bleu 40008a4c <_Thread_Initialize+0x1ac>
40008a60: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008a64: 10 bf ff ab b 40008910 <_Thread_Initialize+0x70>
40008a68: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
40008a6c: 81 c7 e0 08 ret
40008a70: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
40008a74: 10 bf ff ca b 4000899c <_Thread_Initialize+0xfc>
40008a78: a0 10 20 00 clr %l0
4000caf8 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000caf8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000cafc: 7f ff d4 e5 call 40001e90 <sparc_disable_interrupts>
4000cb00: 01 00 00 00 nop
4000cb04: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
4000cb08: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000cb0c: 80 88 60 02 btst 2, %g1
4000cb10: 02 80 00 05 be 4000cb24 <_Thread_Resume+0x2c> <== NEVER TAKEN
4000cb14: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000cb18: 80 a0 60 00 cmp %g1, 0
4000cb1c: 02 80 00 04 be 4000cb2c <_Thread_Resume+0x34>
4000cb20: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
4000cb24: 7f ff d4 df call 40001ea0 <sparc_enable_interrupts>
4000cb28: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
4000cb2c: 11 10 00 64 sethi %hi(0x40019000), %o0
4000cb30: 90 12 21 64 or %o0, 0x164, %o0 ! 40019164 <_Scheduler>
4000cb34: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
4000cb38: 9f c0 40 00 call %g1
4000cb3c: 92 10 00 18 mov %i0, %o1
4000cb40: 7f ff d4 d8 call 40001ea0 <sparc_enable_interrupts>
4000cb44: 91 e8 00 10 restore %g0, %l0, %o0
40009030 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40009030: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009034: 80 a6 20 00 cmp %i0, 0
40009038: 02 80 00 13 be 40009084 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
4000903c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009040: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40009044: 80 a4 60 01 cmp %l1, 1
40009048: 02 80 00 04 be 40009058 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
4000904c: 01 00 00 00 nop
40009050: 81 c7 e0 08 ret <== NOT EXECUTED
40009054: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009058: 7f ff e3 20 call 40001cd8 <sparc_disable_interrupts>
4000905c: 01 00 00 00 nop
40009060: a0 10 00 08 mov %o0, %l0
40009064: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
40009068: 03 00 00 ef sethi %hi(0x3bc00), %g1
4000906c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009070: 80 88 80 01 btst %g2, %g1
40009074: 12 80 00 06 bne 4000908c <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
40009078: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
4000907c: 7f ff e3 1b call 40001ce8 <sparc_enable_interrupts>
40009080: 90 10 00 10 mov %l0, %o0
40009084: 81 c7 e0 08 ret
40009088: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
4000908c: 92 10 00 19 mov %i1, %o1
40009090: 94 10 20 01 mov 1, %o2
40009094: 40 00 0d 75 call 4000c668 <_Thread_queue_Extract_priority_helper>
40009098: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
4000909c: 90 10 00 18 mov %i0, %o0
400090a0: 92 10 00 19 mov %i1, %o1
400090a4: 7f ff ff 31 call 40008d68 <_Thread_queue_Enqueue_priority>
400090a8: 94 07 bf fc add %fp, -4, %o2
400090ac: 30 bf ff f4 b,a 4000907c <_Thread_queue_Requeue+0x4c>
400090b0 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
400090b0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
400090b4: 90 10 00 18 mov %i0, %o0
400090b8: 7f ff fd cf call 400087f4 <_Thread_Get>
400090bc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400090c0: c2 07 bf fc ld [ %fp + -4 ], %g1
400090c4: 80 a0 60 00 cmp %g1, 0
400090c8: 12 80 00 08 bne 400090e8 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
400090cc: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
400090d0: 40 00 0d a1 call 4000c754 <_Thread_queue_Process_timeout>
400090d4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400090d8: 03 10 00 54 sethi %hi(0x40015000), %g1
400090dc: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
400090e0: 84 00 bf ff add %g2, -1, %g2
400090e4: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
400090e8: 81 c7 e0 08 ret
400090ec: 81 e8 00 00 restore
40016308 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40016308: 9d e3 bf 88 save %sp, -120, %sp
4001630c: 2f 10 00 f4 sethi %hi(0x4003d000), %l7
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016310: ba 07 bf f4 add %fp, -12, %i5
40016314: aa 07 bf f8 add %fp, -8, %l5
40016318: a4 07 bf e8 add %fp, -24, %l2
4001631c: a8 07 bf ec add %fp, -20, %l4
40016320: 2d 10 00 f4 sethi %hi(0x4003d000), %l6
40016324: 39 10 00 f4 sethi %hi(0x4003d000), %i4
40016328: ea 27 bf f4 st %l5, [ %fp + -12 ]
head->previous = NULL;
4001632c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40016330: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016334: e8 27 bf e8 st %l4, [ %fp + -24 ]
head->previous = NULL;
40016338: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
4001633c: e4 27 bf f0 st %l2, [ %fp + -16 ]
40016340: ae 15 e2 10 or %l7, 0x210, %l7
40016344: a2 06 20 30 add %i0, 0x30, %l1
40016348: ac 15 a1 88 or %l6, 0x188, %l6
4001634c: a6 06 20 68 add %i0, 0x68, %l3
40016350: b8 17 20 e0 or %i4, 0xe0, %i4
40016354: b4 06 20 08 add %i0, 8, %i2
40016358: b6 06 20 40 add %i0, 0x40, %i3
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
4001635c: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016360: c2 05 c0 00 ld [ %l7 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016364: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016368: 94 10 00 12 mov %l2, %o2
4001636c: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40016370: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016374: 40 00 12 69 call 4001ad18 <_Watchdog_Adjust_to_chain>
40016378: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
4001637c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016380: e0 05 80 00 ld [ %l6 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40016384: 80 a4 00 0a cmp %l0, %o2
40016388: 18 80 00 43 bgu 40016494 <_Timer_server_Body+0x18c>
4001638c: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
40016390: 0a 80 00 39 bcs 40016474 <_Timer_server_Body+0x16c>
40016394: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
40016398: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
4001639c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400163a0: 40 00 02 f4 call 40016f70 <_Chain_Get>
400163a4: 01 00 00 00 nop
if ( timer == NULL ) {
400163a8: 92 92 20 00 orcc %o0, 0, %o1
400163ac: 02 80 00 10 be 400163ec <_Timer_server_Body+0xe4>
400163b0: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400163b4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400163b8: 80 a0 60 01 cmp %g1, 1
400163bc: 02 80 00 32 be 40016484 <_Timer_server_Body+0x17c>
400163c0: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400163c4: 12 bf ff f6 bne 4001639c <_Timer_server_Body+0x94> <== NEVER TAKEN
400163c8: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400163cc: 40 00 12 86 call 4001ade4 <_Watchdog_Insert>
400163d0: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400163d4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400163d8: 40 00 02 e6 call 40016f70 <_Chain_Get>
400163dc: 01 00 00 00 nop
if ( timer == NULL ) {
400163e0: 92 92 20 00 orcc %o0, 0, %o1
400163e4: 32 bf ff f5 bne,a 400163b8 <_Timer_server_Body+0xb0> <== NEVER TAKEN
400163e8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400163ec: 7f ff e2 31 call 4000ecb0 <sparc_disable_interrupts>
400163f0: 01 00 00 00 nop
tmp = ts->insert_chain;
400163f4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
400163f8: c2 07 bf f4 ld [ %fp + -12 ], %g1
400163fc: 80 a0 40 15 cmp %g1, %l5
40016400: 02 80 00 29 be 400164a4 <_Timer_server_Body+0x19c> <== ALWAYS TAKEN
40016404: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
do_loop = false;
}
_ISR_Enable( level );
40016408: 7f ff e2 2e call 4000ecc0 <sparc_enable_interrupts>
4001640c: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
40016410: 80 8c 20 ff btst 0xff, %l0
40016414: 12 bf ff d3 bne 40016360 <_Timer_server_Body+0x58> <== NEVER TAKEN
40016418: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
4001641c: 80 a0 40 14 cmp %g1, %l4
40016420: 12 80 00 0c bne 40016450 <_Timer_server_Body+0x148>
40016424: 01 00 00 00 nop
40016428: 30 80 00 22 b,a 400164b0 <_Timer_server_Body+0x1a8>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
4001642c: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
40016430: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
40016434: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40016438: 7f ff e2 22 call 4000ecc0 <sparc_enable_interrupts>
4001643c: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40016440: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40016444: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40016448: 9f c0 40 00 call %g1
4001644c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40016450: 7f ff e2 18 call 4000ecb0 <sparc_disable_interrupts>
40016454: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40016458: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4001645c: 80 a4 00 14 cmp %l0, %l4
40016460: 32 bf ff f3 bne,a 4001642c <_Timer_server_Body+0x124>
40016464: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40016468: 7f ff e2 16 call 4000ecc0 <sparc_enable_interrupts>
4001646c: 01 00 00 00 nop
40016470: 30 bf ff bb b,a 4001635c <_Timer_server_Body+0x54>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016474: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
40016478: 40 00 11 f8 call 4001ac58 <_Watchdog_Adjust>
4001647c: 94 22 80 10 sub %o2, %l0, %o2
40016480: 30 bf ff c6 b,a 40016398 <_Timer_server_Body+0x90>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016484: 90 10 00 11 mov %l1, %o0
40016488: 40 00 12 57 call 4001ade4 <_Watchdog_Insert>
4001648c: 92 02 60 10 add %o1, 0x10, %o1
40016490: 30 bf ff c3 b,a 4001639c <_Timer_server_Body+0x94>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016494: 90 10 00 13 mov %l3, %o0
40016498: 40 00 12 20 call 4001ad18 <_Watchdog_Adjust_to_chain>
4001649c: 94 10 00 12 mov %l2, %o2
400164a0: 30 bf ff be b,a 40016398 <_Timer_server_Body+0x90>
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
tmp = ts->insert_chain;
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
400164a4: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
400164a8: 10 bf ff d8 b 40016408 <_Timer_server_Body+0x100>
400164ac: a0 10 20 00 clr %l0
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400164b0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
400164b4: c2 07 00 00 ld [ %i4 ], %g1
400164b8: 82 00 60 01 inc %g1
400164bc: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
400164c0: d0 06 00 00 ld [ %i0 ], %o0
400164c4: 40 00 10 04 call 4001a4d4 <_Thread_Set_state>
400164c8: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400164cc: 7f ff ff 65 call 40016260 <_Timer_server_Reset_interval_system_watchdog>
400164d0: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400164d4: 7f ff ff 78 call 400162b4 <_Timer_server_Reset_tod_system_watchdog>
400164d8: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400164dc: 40 00 0d 78 call 40019abc <_Thread_Enable_dispatch>
400164e0: 01 00 00 00 nop
ts->active = true;
400164e4: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400164e8: 90 10 00 1a mov %i2, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400164ec: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400164f0: 40 00 12 a8 call 4001af90 <_Watchdog_Remove>
400164f4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400164f8: 40 00 12 a6 call 4001af90 <_Watchdog_Remove>
400164fc: 90 10 00 1b mov %i3, %o0
40016500: 30 bf ff 97 b,a 4001635c <_Timer_server_Body+0x54>
40016504 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40016504: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016508: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
4001650c: 80 a0 60 00 cmp %g1, 0
40016510: 02 80 00 05 be 40016524 <_Timer_server_Schedule_operation_method+0x20>
40016514: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40016518: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
4001651c: 40 00 02 7f call 40016f18 <_Chain_Append>
40016520: 81 e8 00 00 restore
40016524: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40016528: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 4003d0e0 <_Thread_Dispatch_disable_level>
4001652c: 84 00 a0 01 inc %g2
40016530: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40016534: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40016538: 80 a0 60 01 cmp %g1, 1
4001653c: 02 80 00 28 be 400165dc <_Timer_server_Schedule_operation_method+0xd8>
40016540: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40016544: 02 80 00 04 be 40016554 <_Timer_server_Schedule_operation_method+0x50>
40016548: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001654c: 40 00 0d 5c call 40019abc <_Thread_Enable_dispatch>
40016550: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40016554: 7f ff e1 d7 call 4000ecb0 <sparc_disable_interrupts>
40016558: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
4001655c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40016560: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40016564: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016568: 03 10 00 f4 sethi %hi(0x4003d000), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
4001656c: 80 a0 80 04 cmp %g2, %g4
40016570: 02 80 00 0d be 400165a4 <_Timer_server_Schedule_operation_method+0xa0>
40016574: c2 00 61 88 ld [ %g1 + 0x188 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40016578: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
4001657c: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
40016580: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
40016584: 08 80 00 07 bleu 400165a0 <_Timer_server_Schedule_operation_method+0x9c>
40016588: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
4001658c: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
40016590: 80 a3 40 03 cmp %o5, %g3
40016594: 08 80 00 03 bleu 400165a0 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
40016598: 88 10 20 00 clr %g4
delta_interval -= delta;
4001659c: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400165a0: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400165a4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400165a8: 7f ff e1 c6 call 4000ecc0 <sparc_enable_interrupts>
400165ac: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400165b0: 90 06 20 68 add %i0, 0x68, %o0
400165b4: 40 00 12 0c call 4001ade4 <_Watchdog_Insert>
400165b8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400165bc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400165c0: 80 a0 60 00 cmp %g1, 0
400165c4: 12 bf ff e2 bne 4001654c <_Timer_server_Schedule_operation_method+0x48>
400165c8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400165cc: 7f ff ff 3a call 400162b4 <_Timer_server_Reset_tod_system_watchdog>
400165d0: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
400165d4: 40 00 0d 3a call 40019abc <_Thread_Enable_dispatch>
400165d8: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400165dc: 7f ff e1 b5 call 4000ecb0 <sparc_disable_interrupts>
400165e0: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
400165e4: 05 10 00 f4 sethi %hi(0x4003d000), %g2
initialized = false;
}
#endif
return status;
}
400165e8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
400165ec: c4 00 a2 10 ld [ %g2 + 0x210 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
400165f0: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
400165f4: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
400165f8: 80 a0 40 03 cmp %g1, %g3
400165fc: 02 80 00 08 be 4001661c <_Timer_server_Schedule_operation_method+0x118>
40016600: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016604: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016608: 80 a1 00 0d cmp %g4, %o5
4001660c: 1a 80 00 03 bcc 40016618 <_Timer_server_Schedule_operation_method+0x114>
40016610: 86 10 20 00 clr %g3
delta_interval -= delta;
40016614: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40016618: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
4001661c: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40016620: 7f ff e1 a8 call 4000ecc0 <sparc_enable_interrupts>
40016624: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016628: 90 06 20 30 add %i0, 0x30, %o0
4001662c: 40 00 11 ee call 4001ade4 <_Watchdog_Insert>
40016630: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016634: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016638: 80 a0 60 00 cmp %g1, 0
4001663c: 12 bf ff c4 bne 4001654c <_Timer_server_Schedule_operation_method+0x48>
40016640: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016644: 7f ff ff 07 call 40016260 <_Timer_server_Reset_interval_system_watchdog>
40016648: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001664c: 40 00 0d 1c call 40019abc <_Thread_Enable_dispatch>
40016650: 81 e8 00 00 restore
400093a4 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
400093a4: 9d e3 bf a0 save %sp, -96, %sp
400093a8: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093ac: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
400093b0: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
400093b4: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
400093b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093bc: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
400093c0: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093c4: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
400093c8: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
400093cc: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
400093d0: 80 a0 80 04 cmp %g2, %g4
400093d4: 08 80 00 0b bleu 40009400 <_Timespec_Add_to+0x5c>
400093d8: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
400093dc: 1b 31 19 4d sethi %hi(0xc4653400), %o5
400093e0: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
400093e4: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
400093e8: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
400093ec: 80 a0 80 04 cmp %g2, %g4
400093f0: 18 bf ff fd bgu 400093e4 <_Timespec_Add_to+0x40> <== NEVER TAKEN
400093f4: b0 06 20 01 inc %i0
400093f8: c4 20 60 04 st %g2, [ %g1 + 4 ]
400093fc: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
40009400: 81 c7 e0 08 ret
40009404: 81 e8 00 00 restore
4000b328 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000b328: c6 02 00 00 ld [ %o0 ], %g3
4000b32c: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000b330: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000b334: 80 a0 c0 02 cmp %g3, %g2
4000b338: 14 80 00 0a bg 4000b360 <_Timespec_Greater_than+0x38>
4000b33c: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000b340: 80 a0 c0 02 cmp %g3, %g2
4000b344: 06 80 00 07 bl 4000b360 <_Timespec_Greater_than+0x38> <== NEVER TAKEN
4000b348: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000b34c: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000b350: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000b354: 80 a0 80 01 cmp %g2, %g1
4000b358: 04 80 00 04 ble 4000b368 <_Timespec_Greater_than+0x40>
4000b35c: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000b360: 81 c3 e0 08 retl
4000b364: 01 00 00 00 nop
4000b368: 81 c3 e0 08 retl
4000b36c: 90 10 20 00 clr %o0 ! 0 <PROM_START>
400095b4 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400095b4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
400095b8: 23 10 00 54 sethi %hi(0x40015000), %l1
400095bc: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
400095c0: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400095c4: 80 a4 00 11 cmp %l0, %l1
400095c8: 02 80 00 0d be 400095fc <_User_extensions_Fatal+0x48> <== NEVER TAKEN
400095cc: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
400095d0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
400095d4: 80 a0 60 00 cmp %g1, 0
400095d8: 02 80 00 05 be 400095ec <_User_extensions_Fatal+0x38>
400095dc: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
400095e0: 92 10 00 19 mov %i1, %o1
400095e4: 9f c0 40 00 call %g1
400095e8: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
400095ec: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400095f0: 80 a4 00 11 cmp %l0, %l1
400095f4: 32 bf ff f8 bne,a 400095d4 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
400095f8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
400095fc: 81 c7 e0 08 ret <== NOT EXECUTED
40009600: 81 e8 00 00 restore <== NOT EXECUTED
40009460 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40009460: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009464: 07 10 00 52 sethi %hi(0x40014800), %g3
40009468: 86 10 e0 b8 or %g3, 0xb8, %g3 ! 400148b8 <Configuration>
initial_extensions = Configuration.User_extension_table;
4000946c: e6 00 e0 40 ld [ %g3 + 0x40 ], %l3
40009470: 1b 10 00 54 sethi %hi(0x40015000), %o5
40009474: 09 10 00 54 sethi %hi(0x40015000), %g4
40009478: 84 13 63 a8 or %o5, 0x3a8, %g2
4000947c: 82 11 21 a4 or %g4, 0x1a4, %g1
40009480: 96 00 a0 04 add %g2, 4, %o3
40009484: 98 00 60 04 add %g1, 4, %o4
40009488: d6 23 63 a8 st %o3, [ %o5 + 0x3a8 ]
head->previous = NULL;
4000948c: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
40009490: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009494: d8 21 21 a4 st %o4, [ %g4 + 0x1a4 ]
head->previous = NULL;
40009498: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
4000949c: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
400094a0: 80 a4 e0 00 cmp %l3, 0
400094a4: 02 80 00 1b be 40009510 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
400094a8: e4 00 e0 3c ld [ %g3 + 0x3c ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
400094ac: 83 2c a0 02 sll %l2, 2, %g1
400094b0: a3 2c a0 04 sll %l2, 4, %l1
400094b4: a2 24 40 01 sub %l1, %g1, %l1
400094b8: a2 04 40 12 add %l1, %l2, %l1
400094bc: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
400094c0: 40 00 01 9f call 40009b3c <_Workspace_Allocate_or_fatal_error>
400094c4: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
400094c8: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
400094cc: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
400094d0: 40 00 15 92 call 4000eb18 <memset>
400094d4: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
400094d8: 80 a4 a0 00 cmp %l2, 0
400094dc: 02 80 00 0d be 40009510 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
400094e0: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
400094e4: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
400094e8: 94 10 20 20 mov 0x20, %o2
400094ec: 92 04 c0 09 add %l3, %o1, %o1
400094f0: 40 00 15 51 call 4000ea34 <memcpy>
400094f4: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
400094f8: 40 00 0c bc call 4000c7e8 <_User_extensions_Add_set>
400094fc: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009500: a2 04 60 01 inc %l1
40009504: 80 a4 80 11 cmp %l2, %l1
40009508: 18 bf ff f7 bgu 400094e4 <_User_extensions_Handler_initialization+0x84>
4000950c: a0 04 20 34 add %l0, 0x34, %l0
40009510: 81 c7 e0 08 ret
40009514: 81 e8 00 00 restore
40009518 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
40009518: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000951c: 23 10 00 54 sethi %hi(0x40015000), %l1
40009520: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
40009524: a2 14 63 a8 or %l1, 0x3a8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009528: a2 04 60 04 add %l1, 4, %l1
4000952c: 80 a4 00 11 cmp %l0, %l1
40009530: 02 80 00 0c be 40009560 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
40009534: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
40009538: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000953c: 80 a0 60 00 cmp %g1, 0
40009540: 02 80 00 04 be 40009550 <_User_extensions_Thread_begin+0x38>
40009544: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
40009548: 9f c0 40 00 call %g1
4000954c: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009550: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009554: 80 a4 00 11 cmp %l0, %l1
40009558: 32 bf ff f9 bne,a 4000953c <_User_extensions_Thread_begin+0x24>
4000955c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
40009560: 81 c7 e0 08 ret
40009564: 81 e8 00 00 restore
40009604 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009604: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
40009608: 23 10 00 54 sethi %hi(0x40015000), %l1
4000960c: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009610: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
40009614: a2 14 63 a8 or %l1, 0x3a8, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
40009618: a2 04 60 04 add %l1, 4, %l1
4000961c: 80 a4 00 11 cmp %l0, %l1
40009620: 02 80 00 13 be 4000966c <_User_extensions_Thread_create+0x68><== NEVER TAKEN
40009624: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
40009628: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
4000962c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40009630: 80 a0 60 00 cmp %g1, 0
40009634: 02 80 00 08 be 40009654 <_User_extensions_Thread_create+0x50>
40009638: 84 14 a3 ec or %l2, 0x3ec, %g2
status = (*the_extension->Callouts.thread_create)(
4000963c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
40009640: 9f c0 40 00 call %g1
40009644: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
40009648: 80 8a 20 ff btst 0xff, %o0
4000964c: 22 80 00 08 be,a 4000966c <_User_extensions_Thread_create+0x68>
40009650: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009654: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
40009658: 80 a4 00 11 cmp %l0, %l1
4000965c: 32 bf ff f5 bne,a 40009630 <_User_extensions_Thread_create+0x2c>
40009660: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
40009664: 81 c7 e0 08 ret
40009668: 91 e8 20 01 restore %g0, 1, %o0
}
4000966c: 81 c7 e0 08 ret
40009670: 81 e8 00 00 restore
40009674 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
40009674: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
40009678: 23 10 00 54 sethi %hi(0x40015000), %l1
4000967c: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
40009680: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009684: 80 a4 00 11 cmp %l0, %l1
40009688: 02 80 00 0d be 400096bc <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
4000968c: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
40009690: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40009694: 80 a0 60 00 cmp %g1, 0
40009698: 02 80 00 05 be 400096ac <_User_extensions_Thread_delete+0x38>
4000969c: 84 14 a3 ec or %l2, 0x3ec, %g2
(*the_extension->Callouts.thread_delete)(
400096a0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
400096a4: 9f c0 40 00 call %g1
400096a8: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
400096ac: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400096b0: 80 a4 00 11 cmp %l0, %l1
400096b4: 32 bf ff f8 bne,a 40009694 <_User_extensions_Thread_delete+0x20>
400096b8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400096bc: 81 c7 e0 08 ret
400096c0: 81 e8 00 00 restore
40009568 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
40009568: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000956c: 23 10 00 54 sethi %hi(0x40015000), %l1
40009570: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
40009574: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009578: 80 a4 00 11 cmp %l0, %l1
4000957c: 02 80 00 0c be 400095ac <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
40009580: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
40009584: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
40009588: 80 a0 60 00 cmp %g1, 0
4000958c: 02 80 00 04 be 4000959c <_User_extensions_Thread_exitted+0x34>
40009590: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
40009594: 9f c0 40 00 call %g1
40009598: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000959c: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400095a0: 80 a4 00 11 cmp %l0, %l1
400095a4: 32 bf ff f9 bne,a 40009588 <_User_extensions_Thread_exitted+0x20>
400095a8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
400095ac: 81 c7 e0 08 ret
400095b0: 81 e8 00 00 restore
4000a3ec <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000a3ec: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
4000a3f0: 23 10 00 76 sethi %hi(0x4001d800), %l1
4000a3f4: e0 04 63 f8 ld [ %l1 + 0x3f8 ], %l0 ! 4001dbf8 <_User_extensions_List>
4000a3f8: a2 14 63 f8 or %l1, 0x3f8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a3fc: a2 04 60 04 add %l1, 4, %l1
4000a400: 80 a4 00 11 cmp %l0, %l1
4000a404: 02 80 00 0d be 4000a438 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000a408: 25 10 00 77 sethi %hi(0x4001dc00), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000a40c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a410: 80 a0 60 00 cmp %g1, 0
4000a414: 02 80 00 05 be 4000a428 <_User_extensions_Thread_restart+0x3c>
4000a418: 84 14 a0 3c or %l2, 0x3c, %g2
(*the_extension->Callouts.thread_restart)(
4000a41c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a420: 9f c0 40 00 call %g1
4000a424: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a428: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a42c: 80 a4 00 11 cmp %l0, %l1
4000a430: 32 bf ff f8 bne,a 4000a410 <_User_extensions_Thread_restart+0x24>
4000a434: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a438: 81 c7 e0 08 ret
4000a43c: 81 e8 00 00 restore
400096c4 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
400096c4: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
400096c8: 23 10 00 54 sethi %hi(0x40015000), %l1
400096cc: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
400096d0: a2 14 63 a8 or %l1, 0x3a8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
400096d4: a2 04 60 04 add %l1, 4, %l1
400096d8: 80 a4 00 11 cmp %l0, %l1
400096dc: 02 80 00 0d be 40009710 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
400096e0: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
400096e4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400096e8: 80 a0 60 00 cmp %g1, 0
400096ec: 02 80 00 05 be 40009700 <_User_extensions_Thread_start+0x3c>
400096f0: 84 14 a3 ec or %l2, 0x3ec, %g2
(*the_extension->Callouts.thread_start)(
400096f4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
400096f8: 9f c0 40 00 call %g1
400096fc: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009700: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009704: 80 a4 00 11 cmp %l0, %l1
40009708: 32 bf ff f8 bne,a 400096e8 <_User_extensions_Thread_start+0x24>
4000970c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40009710: 81 c7 e0 08 ret
40009714: 81 e8 00 00 restore
40009718 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
40009718: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
4000971c: 23 10 00 54 sethi %hi(0x40015000), %l1
40009720: e0 04 61 a4 ld [ %l1 + 0x1a4 ], %l0 ! 400151a4 <_User_extensions_Switches_list>
40009724: a2 14 61 a4 or %l1, 0x1a4, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
40009728: a2 04 60 04 add %l1, 4, %l1
4000972c: 80 a4 00 11 cmp %l0, %l1
40009730: 02 80 00 0a be 40009758 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
40009734: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
40009738: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000973c: 90 10 00 18 mov %i0, %o0
40009740: 9f c0 40 00 call %g1
40009744: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
40009748: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000974c: 80 a4 00 11 cmp %l0, %l1
40009750: 32 bf ff fb bne,a 4000973c <_User_extensions_Thread_switch+0x24>
40009754: c2 04 20 08 ld [ %l0 + 8 ], %g1
40009758: 81 c7 e0 08 ret
4000975c: 81 e8 00 00 restore
4000b7b8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000b7b8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000b7bc: 7f ff dd 26 call 40002c54 <sparc_disable_interrupts>
4000b7c0: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000b7c4: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b7c8: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000b7cc: 80 a0 40 12 cmp %g1, %l2
4000b7d0: 02 80 00 1f be 4000b84c <_Watchdog_Adjust+0x94>
4000b7d4: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000b7d8: 12 80 00 1f bne 4000b854 <_Watchdog_Adjust+0x9c>
4000b7dc: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b7e0: 80 a6 a0 00 cmp %i2, 0
4000b7e4: 02 80 00 1a be 4000b84c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b7e8: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b7ec: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000b7f0: 80 a6 80 11 cmp %i2, %l1
4000b7f4: 1a 80 00 0b bcc 4000b820 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000b7f8: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
4000b7fc: 10 80 00 1d b 4000b870 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000b800: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b804: b4 a6 80 11 subcc %i2, %l1, %i2
4000b808: 02 80 00 11 be 4000b84c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b80c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b810: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000b814: 80 a4 40 1a cmp %l1, %i2
4000b818: 38 80 00 16 bgu,a 4000b870 <_Watchdog_Adjust+0xb8>
4000b81c: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000b820: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000b824: 7f ff dd 10 call 40002c64 <sparc_enable_interrupts>
4000b828: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b82c: 40 00 00 b4 call 4000bafc <_Watchdog_Tickle>
4000b830: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b834: 7f ff dd 08 call 40002c54 <sparc_disable_interrupts>
4000b838: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
4000b83c: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
4000b840: 80 a4 80 02 cmp %l2, %g2
4000b844: 12 bf ff f0 bne 4000b804 <_Watchdog_Adjust+0x4c>
4000b848: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000b84c: 7f ff dd 06 call 40002c64 <sparc_enable_interrupts>
4000b850: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000b854: 12 bf ff fe bne 4000b84c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b858: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000b85c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000b860: b4 00 80 1a add %g2, %i2, %i2
4000b864: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000b868: 7f ff dc ff call 40002c64 <sparc_enable_interrupts>
4000b86c: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000b870: 10 bf ff f7 b 4000b84c <_Watchdog_Adjust+0x94>
4000b874: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
4000990c <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000990c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
40009910: 7f ff e0 f2 call 40001cd8 <sparc_disable_interrupts>
40009914: 01 00 00 00 nop
previous_state = the_watchdog->state;
40009918: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
4000991c: 80 a4 20 01 cmp %l0, 1
40009920: 02 80 00 2a be 400099c8 <_Watchdog_Remove+0xbc>
40009924: 03 10 00 54 sethi %hi(0x40015000), %g1
40009928: 1a 80 00 09 bcc 4000994c <_Watchdog_Remove+0x40>
4000992c: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009930: 03 10 00 54 sethi %hi(0x40015000), %g1
40009934: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 400152d0 <_Watchdog_Ticks_since_boot>
40009938: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000993c: 7f ff e0 eb call 40001ce8 <sparc_enable_interrupts>
40009940: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009944: 81 c7 e0 08 ret
40009948: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
4000994c: 18 bf ff fa bgu 40009934 <_Watchdog_Remove+0x28> <== NEVER TAKEN
40009950: 03 10 00 54 sethi %hi(0x40015000), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
40009954: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009958: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000995c: c4 00 40 00 ld [ %g1 ], %g2
40009960: 80 a0 a0 00 cmp %g2, 0
40009964: 02 80 00 07 be 40009980 <_Watchdog_Remove+0x74>
40009968: 05 10 00 54 sethi %hi(0x40015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000996c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009970: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
40009974: 84 00 c0 02 add %g3, %g2, %g2
40009978: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000997c: 05 10 00 54 sethi %hi(0x40015000), %g2
40009980: c4 00 a2 cc ld [ %g2 + 0x2cc ], %g2 ! 400152cc <_Watchdog_Sync_count>
40009984: 80 a0 a0 00 cmp %g2, 0
40009988: 22 80 00 07 be,a 400099a4 <_Watchdog_Remove+0x98>
4000998c: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009990: 05 10 00 54 sethi %hi(0x40015000), %g2
40009994: c6 00 a3 f4 ld [ %g2 + 0x3f4 ], %g3 ! 400153f4 <_Per_CPU_Information+0x8>
40009998: 05 10 00 54 sethi %hi(0x40015000), %g2
4000999c: c6 20 a2 64 st %g3, [ %g2 + 0x264 ] ! 40015264 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400099a0: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
400099a4: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
400099a8: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099ac: 03 10 00 54 sethi %hi(0x40015000), %g1
400099b0: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 400152d0 <_Watchdog_Ticks_since_boot>
400099b4: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
400099b8: 7f ff e0 cc call 40001ce8 <sparc_enable_interrupts>
400099bc: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
400099c0: 81 c7 e0 08 ret
400099c4: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099c8: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
400099cc: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099d0: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
400099d4: 7f ff e0 c5 call 40001ce8 <sparc_enable_interrupts>
400099d8: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
400099dc: 81 c7 e0 08 ret
400099e0: 81 e8 00 00 restore
4000b000 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b000: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b004: 7f ff dd e6 call 4000279c <sparc_disable_interrupts>
4000b008: 01 00 00 00 nop
4000b00c: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b010: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b014: 94 10 00 19 mov %i1, %o2
4000b018: 92 10 00 18 mov %i0, %o1
4000b01c: 7f ff e4 bf call 40004318 <printk>
4000b020: 90 12 23 30 or %o0, 0x330, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000b024: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b028: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000b02c: 80 a4 40 19 cmp %l1, %i1
4000b030: 02 80 00 0f be 4000b06c <_Watchdog_Report_chain+0x6c>
4000b034: 11 10 00 74 sethi %hi(0x4001d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b038: 92 10 00 11 mov %l1, %o1
4000b03c: 40 00 00 0f call 4000b078 <_Watchdog_Report>
4000b040: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000b044: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000b048: 80 a4 40 19 cmp %l1, %i1
4000b04c: 12 bf ff fc bne 4000b03c <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b050: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b054: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b058: 92 10 00 18 mov %i0, %o1
4000b05c: 7f ff e4 af call 40004318 <printk>
4000b060: 90 12 23 48 or %o0, 0x348, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000b064: 7f ff dd d2 call 400027ac <sparc_enable_interrupts>
4000b068: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000b06c: 7f ff e4 ab call 40004318 <printk>
4000b070: 90 12 23 58 or %o0, 0x358, %o0
4000b074: 30 bf ff fc b,a 4000b064 <_Watchdog_Report_chain+0x64>
4000e704 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000e704: 9d e3 bf 98 save %sp, -104, %sp
4000e708: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000e70c: 80 a4 20 00 cmp %l0, 0
4000e710: 02 80 00 23 be 4000e79c <rtems_barrier_create+0x98>
4000e714: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000e718: 80 a6 e0 00 cmp %i3, 0
4000e71c: 02 80 00 20 be 4000e79c <rtems_barrier_create+0x98>
4000e720: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000e724: 80 8e 60 10 btst 0x10, %i1
4000e728: 02 80 00 1f be 4000e7a4 <rtems_barrier_create+0xa0>
4000e72c: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000e730: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000e734: 02 80 00 1a be 4000e79c <rtems_barrier_create+0x98>
4000e738: b0 10 20 0a mov 0xa, %i0
4000e73c: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e740: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 40021940 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000e744: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e748: 84 00 a0 01 inc %g2
4000e74c: c4 20 61 40 st %g2, [ %g1 + 0x140 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000e750: 25 10 00 86 sethi %hi(0x40021800), %l2
4000e754: 7f ff ec 4c call 40009884 <_Objects_Allocate>
4000e758: 90 14 a3 e0 or %l2, 0x3e0, %o0 ! 40021be0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e75c: a2 92 20 00 orcc %o0, 0, %l1
4000e760: 02 80 00 1e be 4000e7d8 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000e764: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000e768: 92 07 bf f8 add %fp, -8, %o1
4000e76c: 40 00 02 43 call 4000f078 <_CORE_barrier_Initialize>
4000e770: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000e774: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000e778: a4 14 a3 e0 or %l2, 0x3e0, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e77c: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000e780: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e784: 85 28 a0 02 sll %g2, 2, %g2
4000e788: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000e78c: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000e790: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000e794: 7f ff f0 9e call 4000aa0c <_Thread_Enable_dispatch>
4000e798: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000e79c: 81 c7 e0 08 ret
4000e7a0: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000e7a4: 82 10 20 01 mov 1, %g1
4000e7a8: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000e7ac: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e7b0: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 40021940 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000e7b4: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e7b8: 84 00 a0 01 inc %g2
4000e7bc: c4 20 61 40 st %g2, [ %g1 + 0x140 ]
4000e7c0: 25 10 00 86 sethi %hi(0x40021800), %l2
4000e7c4: 7f ff ec 30 call 40009884 <_Objects_Allocate>
4000e7c8: 90 14 a3 e0 or %l2, 0x3e0, %o0 ! 40021be0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e7cc: a2 92 20 00 orcc %o0, 0, %l1
4000e7d0: 12 bf ff e6 bne 4000e768 <rtems_barrier_create+0x64>
4000e7d4: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000e7d8: 7f ff f0 8d call 4000aa0c <_Thread_Enable_dispatch>
4000e7dc: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000e7e0: 81 c7 e0 08 ret
4000e7e4: 81 e8 00 00 restore
40006d54 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006d54: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40006d58: 90 10 00 18 mov %i0, %o0
40006d5c: 40 00 01 65 call 400072f0 <_Chain_Append_with_empty_check>
40006d60: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
40006d64: 80 8a 20 ff btst 0xff, %o0
40006d68: 12 80 00 04 bne 40006d78 <rtems_chain_append_with_notification+0x24><== ALWAYS TAKEN
40006d6c: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006d70: 81 c7 e0 08 ret
40006d74: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
40006d78: b0 10 00 1a mov %i2, %i0
40006d7c: 7f ff fd 61 call 40006300 <rtems_event_send>
40006d80: 93 e8 00 1b restore %g0, %i3, %o1
40006dbc <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006dbc: 9d e3 bf 98 save %sp, -104, %sp
40006dc0: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006dc4: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006dc8: 40 00 01 89 call 400073ec <_Chain_Get>
40006dcc: 90 10 00 10 mov %l0, %o0
40006dd0: 92 10 20 00 clr %o1
40006dd4: a2 10 00 08 mov %o0, %l1
40006dd8: 94 10 00 1a mov %i2, %o2
40006ddc: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006de0: 80 a4 60 00 cmp %l1, 0
40006de4: 12 80 00 0a bne 40006e0c <rtems_chain_get_with_wait+0x50>
40006de8: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40006dec: 7f ff fc e2 call 40006174 <rtems_event_receive>
40006df0: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006df4: 80 a2 20 00 cmp %o0, 0
40006df8: 02 bf ff f4 be 40006dc8 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40006dfc: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40006e00: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006e04: 81 c7 e0 08 ret
40006e08: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006e0c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40006e10: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006e14: 81 c7 e0 08 ret
40006e18: 91 e8 00 08 restore %g0, %o0, %o0
40006e1c <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006e1c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
40006e20: 90 10 00 18 mov %i0, %o0
40006e24: 40 00 01 90 call 40007464 <_Chain_Prepend_with_empty_check>
40006e28: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40006e2c: 80 8a 20 ff btst 0xff, %o0
40006e30: 12 80 00 04 bne 40006e40 <rtems_chain_prepend_with_notification+0x24><== ALWAYS TAKEN
40006e34: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006e38: 81 c7 e0 08 ret <== NOT EXECUTED
40006e3c: 81 e8 00 00 restore <== NOT EXECUTED
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
40006e40: b0 10 00 1a mov %i2, %i0
40006e44: 7f ff fd 2f call 40006300 <rtems_event_send>
40006e48: 93 e8 00 1b restore %g0, %i3, %o1
40007b7c <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b7c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40007b80: 03 10 00 65 sethi %hi(0x40019400), %g1
40007b84: c4 00 62 e4 ld [ %g1 + 0x2e4 ], %g2 ! 400196e4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b88: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40007b8c: 03 10 00 65 sethi %hi(0x40019400), %g1
if ( rtems_interrupt_is_in_progress() )
40007b90: 80 a0 a0 00 cmp %g2, 0
40007b94: 12 80 00 42 bne 40007c9c <rtems_io_register_driver+0x120>
40007b98: c8 00 63 74 ld [ %g1 + 0x374 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40007b9c: 80 a6 a0 00 cmp %i2, 0
40007ba0: 02 80 00 50 be 40007ce0 <rtems_io_register_driver+0x164>
40007ba4: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40007ba8: 80 a6 60 00 cmp %i1, 0
40007bac: 02 80 00 4d be 40007ce0 <rtems_io_register_driver+0x164>
40007bb0: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007bb4: c4 06 40 00 ld [ %i1 ], %g2
40007bb8: 80 a0 a0 00 cmp %g2, 0
40007bbc: 22 80 00 46 be,a 40007cd4 <rtems_io_register_driver+0x158>
40007bc0: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40007bc4: 80 a1 00 18 cmp %g4, %i0
40007bc8: 08 80 00 33 bleu 40007c94 <rtems_io_register_driver+0x118>
40007bcc: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007bd0: 05 10 00 65 sethi %hi(0x40019400), %g2
40007bd4: c8 00 a0 90 ld [ %g2 + 0x90 ], %g4 ! 40019490 <_Thread_Dispatch_disable_level>
40007bd8: 88 01 20 01 inc %g4
40007bdc: c8 20 a0 90 st %g4, [ %g2 + 0x90 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40007be0: 80 a6 20 00 cmp %i0, 0
40007be4: 12 80 00 30 bne 40007ca4 <rtems_io_register_driver+0x128>
40007be8: 1b 10 00 65 sethi %hi(0x40019400), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40007bec: c8 00 63 74 ld [ %g1 + 0x374 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40007bf0: 80 a1 20 00 cmp %g4, 0
40007bf4: 22 80 00 3d be,a 40007ce8 <rtems_io_register_driver+0x16c><== NEVER TAKEN
40007bf8: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40007bfc: 10 80 00 05 b 40007c10 <rtems_io_register_driver+0x94>
40007c00: c2 03 63 78 ld [ %o5 + 0x378 ], %g1
40007c04: 80 a1 00 18 cmp %g4, %i0
40007c08: 08 80 00 0a bleu 40007c30 <rtems_io_register_driver+0xb4>
40007c0c: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007c10: c4 00 40 00 ld [ %g1 ], %g2
40007c14: 80 a0 a0 00 cmp %g2, 0
40007c18: 32 bf ff fb bne,a 40007c04 <rtems_io_register_driver+0x88>
40007c1c: b0 06 20 01 inc %i0
40007c20: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007c24: 80 a0 a0 00 cmp %g2, 0
40007c28: 32 bf ff f7 bne,a 40007c04 <rtems_io_register_driver+0x88>
40007c2c: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40007c30: 80 a1 00 18 cmp %g4, %i0
40007c34: 02 80 00 2d be 40007ce8 <rtems_io_register_driver+0x16c>
40007c38: f0 26 80 00 st %i0, [ %i2 ]
40007c3c: 83 2e 20 03 sll %i0, 3, %g1
40007c40: 85 2e 20 05 sll %i0, 5, %g2
40007c44: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c48: c8 03 63 78 ld [ %o5 + 0x378 ], %g4
40007c4c: da 00 c0 00 ld [ %g3 ], %o5
40007c50: 82 01 00 02 add %g4, %g2, %g1
40007c54: da 21 00 02 st %o5, [ %g4 + %g2 ]
40007c58: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c5c: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c60: c4 20 60 04 st %g2, [ %g1 + 4 ]
40007c64: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c68: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c6c: c4 20 60 08 st %g2, [ %g1 + 8 ]
40007c70: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40007c74: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40007c78: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40007c7c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40007c80: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40007c84: 40 00 07 cd call 40009bb8 <_Thread_Enable_dispatch>
40007c88: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40007c8c: 40 00 21 61 call 40010210 <rtems_io_initialize>
40007c90: 81 e8 00 00 restore
}
40007c94: 81 c7 e0 08 ret
40007c98: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40007c9c: 81 c7 e0 08 ret
40007ca0: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40007ca4: c2 03 63 78 ld [ %o5 + 0x378 ], %g1
40007ca8: 89 2e 20 05 sll %i0, 5, %g4
40007cac: 85 2e 20 03 sll %i0, 3, %g2
40007cb0: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cb4: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40007cb8: 80 a1 20 00 cmp %g4, 0
40007cbc: 02 80 00 0f be 40007cf8 <rtems_io_register_driver+0x17c>
40007cc0: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40007cc4: 40 00 07 bd call 40009bb8 <_Thread_Enable_dispatch>
40007cc8: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40007ccc: 81 c7 e0 08 ret
40007cd0: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cd4: 80 a0 a0 00 cmp %g2, 0
40007cd8: 32 bf ff bc bne,a 40007bc8 <rtems_io_register_driver+0x4c>
40007cdc: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40007ce0: 81 c7 e0 08 ret
40007ce4: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40007ce8: 40 00 07 b4 call 40009bb8 <_Thread_Enable_dispatch>
40007cec: b0 10 20 05 mov 5, %i0
return sc;
40007cf0: 81 c7 e0 08 ret
40007cf4: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cf8: c2 00 60 04 ld [ %g1 + 4 ], %g1
40007cfc: 80 a0 60 00 cmp %g1, 0
40007d00: 12 bf ff f1 bne 40007cc4 <rtems_io_register_driver+0x148>
40007d04: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40007d08: 10 bf ff d0 b 40007c48 <rtems_io_register_driver+0xcc>
40007d0c: f0 26 80 00 st %i0, [ %i2 ]
400091dc <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
400091dc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
400091e0: 80 a6 20 00 cmp %i0, 0
400091e4: 02 80 00 23 be 40009270 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
400091e8: 25 10 00 9c sethi %hi(0x40027000), %l2
400091ec: a4 14 a3 cc or %l2, 0x3cc, %l2 ! 400273cc <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
400091f0: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
400091f4: c2 04 80 00 ld [ %l2 ], %g1
400091f8: 80 a0 60 00 cmp %g1, 0
400091fc: 22 80 00 1a be,a 40009264 <rtems_iterate_over_all_threads+0x88>
40009200: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40009204: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
40009208: 80 a4 60 00 cmp %l1, 0
4000920c: 22 80 00 16 be,a 40009264 <rtems_iterate_over_all_threads+0x88>
40009210: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009214: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
40009218: 84 90 60 00 orcc %g1, 0, %g2
4000921c: 22 80 00 12 be,a 40009264 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
40009220: a4 04 a0 04 add %l2, 4, %l2
40009224: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009228: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000922c: 83 2c 20 02 sll %l0, 2, %g1
40009230: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
40009234: 90 90 60 00 orcc %g1, 0, %o0
40009238: 02 80 00 05 be 4000924c <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
4000923c: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
40009240: 9f c6 00 00 call %i0
40009244: 01 00 00 00 nop
40009248: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000924c: 83 28 a0 10 sll %g2, 0x10, %g1
40009250: 83 30 60 10 srl %g1, 0x10, %g1
40009254: 80 a0 40 10 cmp %g1, %l0
40009258: 3a bf ff f5 bcc,a 4000922c <rtems_iterate_over_all_threads+0x50>
4000925c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
40009260: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009264: 80 a4 80 13 cmp %l2, %l3
40009268: 32 bf ff e4 bne,a 400091f8 <rtems_iterate_over_all_threads+0x1c>
4000926c: c2 04 80 00 ld [ %l2 ], %g1
40009270: 81 c7 e0 08 ret
40009274: 81 e8 00 00 restore
40007d48 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40007d48: 9d e3 bf a0 save %sp, -96, %sp
40007d4c: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40007d50: 80 a6 a0 00 cmp %i2, 0
40007d54: 02 80 00 21 be 40007dd8 <rtems_object_get_class_information+0x90>
40007d58: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d5c: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40007d60: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d64: 40 00 07 79 call 40009b48 <_Objects_Get_information>
40007d68: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40007d6c: 80 a2 20 00 cmp %o0, 0
40007d70: 02 80 00 1a be 40007dd8 <rtems_object_get_class_information+0x90>
40007d74: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d78: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40007d7c: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d80: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d84: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d88: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d8c: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d90: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40007d94: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007d98: 80 a1 20 00 cmp %g4, 0
40007d9c: 02 80 00 0d be 40007dd0 <rtems_object_get_class_information+0x88><== NEVER TAKEN
40007da0: 84 10 20 00 clr %g2
40007da4: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40007da8: 86 10 20 01 mov 1, %g3
40007dac: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40007db0: 87 28 e0 02 sll %g3, 2, %g3
40007db4: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007db8: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40007dbc: 80 a0 00 03 cmp %g0, %g3
40007dc0: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007dc4: 80 a1 00 01 cmp %g4, %g1
40007dc8: 1a bf ff fa bcc 40007db0 <rtems_object_get_class_information+0x68>
40007dcc: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40007dd0: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40007dd4: b0 10 20 00 clr %i0
}
40007dd8: 81 c7 e0 08 ret
40007ddc: 81 e8 00 00 restore
40013bd4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013bd4: 9d e3 bf a0 save %sp, -96, %sp
40013bd8: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013bdc: 80 a4 20 00 cmp %l0, 0
40013be0: 02 80 00 34 be 40013cb0 <rtems_partition_create+0xdc>
40013be4: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013be8: 80 a6 60 00 cmp %i1, 0
40013bec: 02 80 00 31 be 40013cb0 <rtems_partition_create+0xdc>
40013bf0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013bf4: 80 a7 60 00 cmp %i5, 0
40013bf8: 02 80 00 2e be 40013cb0 <rtems_partition_create+0xdc> <== NEVER TAKEN
40013bfc: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013c00: 02 80 00 2e be 40013cb8 <rtems_partition_create+0xe4>
40013c04: 80 a6 a0 00 cmp %i2, 0
40013c08: 02 80 00 2c be 40013cb8 <rtems_partition_create+0xe4>
40013c0c: 80 a6 80 1b cmp %i2, %i3
40013c10: 0a 80 00 28 bcs 40013cb0 <rtems_partition_create+0xdc>
40013c14: b0 10 20 08 mov 8, %i0
40013c18: 80 8e e0 07 btst 7, %i3
40013c1c: 12 80 00 25 bne 40013cb0 <rtems_partition_create+0xdc>
40013c20: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013c24: 12 80 00 23 bne 40013cb0 <rtems_partition_create+0xdc>
40013c28: b0 10 20 09 mov 9, %i0
40013c2c: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40013c30: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 4003d0e0 <_Thread_Dispatch_disable_level>
40013c34: 84 00 a0 01 inc %g2
40013c38: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013c3c: 25 10 00 f3 sethi %hi(0x4003cc00), %l2
40013c40: 40 00 13 0b call 4001886c <_Objects_Allocate>
40013c44: 90 14 a2 f4 or %l2, 0x2f4, %o0 ! 4003cef4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013c48: a2 92 20 00 orcc %o0, 0, %l1
40013c4c: 02 80 00 1d be 40013cc0 <rtems_partition_create+0xec>
40013c50: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40013c54: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013c58: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013c5c: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013c60: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
40013c64: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013c68: 40 00 61 39 call 4002c14c <.udiv>
40013c6c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c70: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013c74: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c78: 96 10 00 1b mov %i3, %o3
40013c7c: b8 04 60 24 add %l1, 0x24, %i4
40013c80: 40 00 0c cf call 40016fbc <_Chain_Initialize>
40013c84: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c88: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013c8c: a4 14 a2 f4 or %l2, 0x2f4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c90: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c94: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c98: 85 28 a0 02 sll %g2, 2, %g2
40013c9c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013ca0: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013ca4: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013ca8: 40 00 17 85 call 40019abc <_Thread_Enable_dispatch>
40013cac: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013cb0: 81 c7 e0 08 ret
40013cb4: 81 e8 00 00 restore
}
40013cb8: 81 c7 e0 08 ret
40013cbc: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40013cc0: 40 00 17 7f call 40019abc <_Thread_Enable_dispatch>
40013cc4: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013cc8: 81 c7 e0 08 ret
40013ccc: 81 e8 00 00 restore
400072f4 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
400072f4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
400072f8: 11 10 00 7b sethi %hi(0x4001ec00), %o0
400072fc: 92 10 00 18 mov %i0, %o1
40007300: 90 12 20 ec or %o0, 0xec, %o0
40007304: 40 00 09 72 call 400098cc <_Objects_Get>
40007308: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
4000730c: c2 07 bf fc ld [ %fp + -4 ], %g1
40007310: 80 a0 60 00 cmp %g1, 0
40007314: 02 80 00 04 be 40007324 <rtems_rate_monotonic_period+0x30>
40007318: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000731c: 81 c7 e0 08 ret
40007320: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007324: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40007328: 23 10 00 7c sethi %hi(0x4001f000), %l1
4000732c: a2 14 60 9c or %l1, 0x9c, %l1 ! 4001f09c <_Per_CPU_Information>
40007330: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007334: 80 a0 80 01 cmp %g2, %g1
40007338: 02 80 00 06 be 40007350 <rtems_rate_monotonic_period+0x5c>
4000733c: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007340: 40 00 0c 90 call 4000a580 <_Thread_Enable_dispatch>
40007344: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40007348: 81 c7 e0 08 ret
4000734c: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007350: 12 80 00 0f bne 4000738c <rtems_rate_monotonic_period+0x98>
40007354: 01 00 00 00 nop
switch ( the_period->state ) {
40007358: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
4000735c: 80 a0 60 04 cmp %g1, 4
40007360: 08 80 00 06 bleu 40007378 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
40007364: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007368: 40 00 0c 86 call 4000a580 <_Thread_Enable_dispatch>
4000736c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007370: 81 c7 e0 08 ret
40007374: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
40007378: 83 28 60 02 sll %g1, 2, %g1
4000737c: 05 10 00 74 sethi %hi(0x4001d000), %g2
40007380: 84 10 a0 8c or %g2, 0x8c, %g2 ! 4001d08c <CSWTCH.2>
40007384: 10 bf ff f9 b 40007368 <rtems_rate_monotonic_period+0x74>
40007388: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
4000738c: 7f ff ed fb call 40002b78 <sparc_disable_interrupts>
40007390: 01 00 00 00 nop
40007394: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40007398: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
4000739c: 80 a4 a0 00 cmp %l2, 0
400073a0: 02 80 00 14 be 400073f0 <rtems_rate_monotonic_period+0xfc>
400073a4: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
400073a8: 02 80 00 29 be 4000744c <rtems_rate_monotonic_period+0x158>
400073ac: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
400073b0: 12 bf ff e6 bne 40007348 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
400073b4: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
400073b8: 7f ff ff 8f call 400071f4 <_Rate_monotonic_Update_statistics>
400073bc: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
400073c0: 7f ff ed f2 call 40002b88 <sparc_enable_interrupts>
400073c4: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400073c8: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073cc: 92 04 20 10 add %l0, 0x10, %o1
400073d0: 11 10 00 7b sethi %hi(0x4001ec00), %o0
the_period->next_length = length;
400073d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
400073d8: 90 12 23 30 or %o0, 0x330, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
400073dc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400073e0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073e4: 40 00 10 cb call 4000b710 <_Watchdog_Insert>
400073e8: b0 10 20 06 mov 6, %i0
400073ec: 30 bf ff df b,a 40007368 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
400073f0: 7f ff ed e6 call 40002b88 <sparc_enable_interrupts>
400073f4: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
400073f8: 7f ff ff 63 call 40007184 <_Rate_monotonic_Initiate_statistics>
400073fc: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007400: 82 10 20 02 mov 2, %g1
40007404: 92 04 20 10 add %l0, 0x10, %o1
40007408: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
4000740c: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007410: 03 10 00 1d sethi %hi(0x40007400), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007414: 90 12 23 30 or %o0, 0x330, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007418: 82 10 63 c8 or %g1, 0x3c8, %g1
the_watchdog->id = id;
4000741c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007420: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007424: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
40007428: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
4000742c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007430: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007434: 40 00 10 b7 call 4000b710 <_Watchdog_Insert>
40007438: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
4000743c: 40 00 0c 51 call 4000a580 <_Thread_Enable_dispatch>
40007440: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40007444: 81 c7 e0 08 ret
40007448: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
4000744c: 7f ff ff 6a call 400071f4 <_Rate_monotonic_Update_statistics>
40007450: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007454: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007458: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
4000745c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007460: 7f ff ed ca call 40002b88 <sparc_enable_interrupts>
40007464: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007468: c2 04 60 0c ld [ %l1 + 0xc ], %g1
4000746c: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007470: 90 10 00 01 mov %g1, %o0
40007474: 13 00 00 10 sethi %hi(0x4000), %o1
40007478: 40 00 0e 98 call 4000aed8 <_Thread_Set_state>
4000747c: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007480: 7f ff ed be call 40002b78 <sparc_disable_interrupts>
40007484: 01 00 00 00 nop
local_state = the_period->state;
40007488: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
4000748c: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007490: 7f ff ed be call 40002b88 <sparc_enable_interrupts>
40007494: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007498: 80 a4 e0 03 cmp %l3, 3
4000749c: 22 80 00 06 be,a 400074b4 <rtems_rate_monotonic_period+0x1c0>
400074a0: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
400074a4: 40 00 0c 37 call 4000a580 <_Thread_Enable_dispatch>
400074a8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
400074ac: 81 c7 e0 08 ret
400074b0: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400074b4: 40 00 0b 5c call 4000a224 <_Thread_Clear_state>
400074b8: 13 00 00 10 sethi %hi(0x4000), %o1
400074bc: 30 bf ff fa b,a 400074a4 <rtems_rate_monotonic_period+0x1b0>
400074c0 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400074c0: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400074c4: 80 a6 60 00 cmp %i1, 0
400074c8: 02 80 00 4c be 400075f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400074cc: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400074d0: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074d4: 9f c6 40 00 call %i1
400074d8: 92 12 60 a0 or %o1, 0xa0, %o1 ! 4001d0a0 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400074dc: 90 10 00 18 mov %i0, %o0
400074e0: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074e4: 9f c6 40 00 call %i1
400074e8: 92 12 60 c0 or %o1, 0xc0, %o1 ! 4001d0c0 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
400074ec: 90 10 00 18 mov %i0, %o0
400074f0: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074f4: 9f c6 40 00 call %i1
400074f8: 92 12 60 e8 or %o1, 0xe8, %o1 ! 4001d0e8 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
400074fc: 90 10 00 18 mov %i0, %o0
40007500: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007504: 9f c6 40 00 call %i1
40007508: 92 12 61 10 or %o1, 0x110, %o1 ! 4001d110 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
4000750c: 90 10 00 18 mov %i0, %o0
40007510: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007514: 9f c6 40 00 call %i1
40007518: 92 12 61 60 or %o1, 0x160, %o1 ! 4001d160 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000751c: 23 10 00 7b sethi %hi(0x4001ec00), %l1
40007520: a2 14 60 ec or %l1, 0xec, %l1 ! 4001ecec <_Rate_monotonic_Information>
40007524: e0 04 60 08 ld [ %l1 + 8 ], %l0
40007528: c2 04 60 0c ld [ %l1 + 0xc ], %g1
4000752c: 80 a4 00 01 cmp %l0, %g1
40007530: 18 80 00 32 bgu 400075f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
40007534: 2f 10 00 74 sethi %hi(0x4001d000), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40007538: 39 10 00 74 sethi %hi(0x4001d000), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
4000753c: 2b 10 00 70 sethi %hi(0x4001c000), %l5
40007540: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007544: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007548: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
4000754c: ae 15 e1 b0 or %l7, 0x1b0, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007550: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007554: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
40007558: b8 17 21 c8 or %i4, 0x1c8, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
4000755c: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40007560: 10 80 00 06 b 40007578 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
40007564: aa 15 63 38 or %l5, 0x338, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40007568: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000756c: 80 a0 40 10 cmp %g1, %l0
40007570: 0a 80 00 22 bcs 400075f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
40007574: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007578: 90 10 00 10 mov %l0, %o0
4000757c: 40 00 19 11 call 4000d9c0 <rtems_rate_monotonic_get_statistics>
40007580: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
40007584: 80 a2 20 00 cmp %o0, 0
40007588: 32 bf ff f8 bne,a 40007568 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
4000758c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007590: 92 10 00 1d mov %i5, %o1
40007594: 40 00 19 3a call 4000da7c <rtems_rate_monotonic_get_status>
40007598: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
4000759c: d0 07 bf d8 ld [ %fp + -40 ], %o0
400075a0: 94 10 00 13 mov %l3, %o2
400075a4: 40 00 00 b9 call 40007888 <rtems_object_get_name>
400075a8: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400075ac: d8 1f bf a0 ldd [ %fp + -96 ], %o4
400075b0: 92 10 00 17 mov %l7, %o1
400075b4: 94 10 00 10 mov %l0, %o2
400075b8: 90 10 00 18 mov %i0, %o0
400075bc: 9f c6 40 00 call %i1
400075c0: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075c4: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400075c8: 94 10 00 14 mov %l4, %o2
400075cc: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075d0: 80 a0 60 00 cmp %g1, 0
400075d4: 12 80 00 0b bne 40007600 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
400075d8: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
400075dc: 9f c6 40 00 call %i1
400075e0: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400075e4: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400075e8: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400075ec: 80 a0 40 10 cmp %g1, %l0
400075f0: 1a bf ff e3 bcc 4000757c <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
400075f4: 90 10 00 10 mov %l0, %o0
400075f8: 81 c7 e0 08 ret
400075fc: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007600: 40 00 0f 08 call 4000b220 <_Timespec_Divide_by_integer>
40007604: 92 10 00 01 mov %g1, %o1
(*print)( context,
40007608: d0 07 bf ac ld [ %fp + -84 ], %o0
4000760c: 40 00 46 3f call 40018f08 <.div>
40007610: 92 10 23 e8 mov 0x3e8, %o1
40007614: 96 10 00 08 mov %o0, %o3
40007618: d0 07 bf b4 ld [ %fp + -76 ], %o0
4000761c: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007620: 40 00 46 3a call 40018f08 <.div>
40007624: 92 10 23 e8 mov 0x3e8, %o1
40007628: c2 07 bf f0 ld [ %fp + -16 ], %g1
4000762c: b6 10 00 08 mov %o0, %i3
40007630: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007634: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007638: 40 00 46 34 call 40018f08 <.div>
4000763c: 92 10 23 e8 mov 0x3e8, %o1
40007640: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007644: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007648: d4 07 bf a8 ld [ %fp + -88 ], %o2
4000764c: 9a 10 00 1b mov %i3, %o5
40007650: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007654: 92 10 00 1c mov %i4, %o1
40007658: 9f c6 40 00 call %i1
4000765c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007660: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007664: 94 10 00 14 mov %l4, %o2
40007668: 40 00 0e ee call 4000b220 <_Timespec_Divide_by_integer>
4000766c: 90 10 00 1a mov %i2, %o0
(*print)( context,
40007670: d0 07 bf c4 ld [ %fp + -60 ], %o0
40007674: 40 00 46 25 call 40018f08 <.div>
40007678: 92 10 23 e8 mov 0x3e8, %o1
4000767c: 96 10 00 08 mov %o0, %o3
40007680: d0 07 bf cc ld [ %fp + -52 ], %o0
40007684: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007688: 40 00 46 20 call 40018f08 <.div>
4000768c: 92 10 23 e8 mov 0x3e8, %o1
40007690: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007694: b6 10 00 08 mov %o0, %i3
40007698: d0 07 bf f4 ld [ %fp + -12 ], %o0
4000769c: 92 10 23 e8 mov 0x3e8, %o1
400076a0: 40 00 46 1a call 40018f08 <.div>
400076a4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400076a8: d4 07 bf c0 ld [ %fp + -64 ], %o2
400076ac: d6 07 bf 9c ld [ %fp + -100 ], %o3
400076b0: d8 07 bf c8 ld [ %fp + -56 ], %o4
400076b4: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400076b8: 13 10 00 74 sethi %hi(0x4001d000), %o1
400076bc: 90 10 00 18 mov %i0, %o0
400076c0: 92 12 61 e8 or %o1, 0x1e8, %o1
400076c4: 9f c6 40 00 call %i1
400076c8: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400076cc: 10 bf ff a7 b 40007568 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400076d0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400076f0 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
400076f0: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
400076f4: 03 10 00 7b sethi %hi(0x4001ec00), %g1
400076f8: c4 00 62 50 ld [ %g1 + 0x250 ], %g2 ! 4001ee50 <_Thread_Dispatch_disable_level>
400076fc: 84 00 a0 01 inc %g2
40007700: c4 20 62 50 st %g2, [ %g1 + 0x250 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007704: 23 10 00 7b sethi %hi(0x4001ec00), %l1
40007708: a2 14 60 ec or %l1, 0xec, %l1 ! 4001ecec <_Rate_monotonic_Information>
4000770c: e0 04 60 08 ld [ %l1 + 8 ], %l0
40007710: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007714: 80 a4 00 01 cmp %l0, %g1
40007718: 18 80 00 09 bgu 4000773c <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
4000771c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
40007720: 40 00 00 0a call 40007748 <rtems_rate_monotonic_reset_statistics>
40007724: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007728: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
4000772c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007730: 80 a0 40 10 cmp %g1, %l0
40007734: 1a bf ff fb bcc 40007720 <rtems_rate_monotonic_reset_all_statistics+0x30>
40007738: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
4000773c: 40 00 0b 91 call 4000a580 <_Thread_Enable_dispatch>
40007740: 81 e8 00 00 restore
400151f4 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
400151f4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
400151f8: 80 a6 60 00 cmp %i1, 0
400151fc: 12 80 00 04 bne 4001520c <rtems_signal_send+0x18>
40015200: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015204: 81 c7 e0 08 ret
40015208: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
4001520c: 90 10 00 18 mov %i0, %o0
40015210: 40 00 12 39 call 40019af4 <_Thread_Get>
40015214: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40015218: c2 07 bf fc ld [ %fp + -4 ], %g1
4001521c: 80 a0 60 00 cmp %g1, 0
40015220: 02 80 00 05 be 40015234 <rtems_signal_send+0x40>
40015224: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40015228: 82 10 20 04 mov 4, %g1
}
4001522c: 81 c7 e0 08 ret
40015230: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40015234: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
40015238: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4001523c: 80 a0 60 00 cmp %g1, 0
40015240: 02 80 00 25 be 400152d4 <rtems_signal_send+0xe0>
40015244: 01 00 00 00 nop
if ( asr->is_enabled ) {
40015248: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4001524c: 80 a0 60 00 cmp %g1, 0
40015250: 02 80 00 15 be 400152a4 <rtems_signal_send+0xb0>
40015254: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40015258: 7f ff e6 96 call 4000ecb0 <sparc_disable_interrupts>
4001525c: 01 00 00 00 nop
*signal_set |= signals;
40015260: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40015264: b2 10 40 19 or %g1, %i1, %i1
40015268: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
4001526c: 7f ff e6 95 call 4000ecc0 <sparc_enable_interrupts>
40015270: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40015274: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40015278: 82 10 63 34 or %g1, 0x334, %g1 ! 4003d334 <_Per_CPU_Information>
4001527c: c4 00 60 08 ld [ %g1 + 8 ], %g2
40015280: 80 a0 a0 00 cmp %g2, 0
40015284: 02 80 00 0f be 400152c0 <rtems_signal_send+0xcc>
40015288: 01 00 00 00 nop
4001528c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40015290: 80 a4 40 02 cmp %l1, %g2
40015294: 12 80 00 0b bne 400152c0 <rtems_signal_send+0xcc> <== NEVER TAKEN
40015298: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4001529c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400152a0: 30 80 00 08 b,a 400152c0 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400152a4: 7f ff e6 83 call 4000ecb0 <sparc_disable_interrupts>
400152a8: 01 00 00 00 nop
*signal_set |= signals;
400152ac: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400152b0: b2 10 40 19 or %g1, %i1, %i1
400152b4: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
400152b8: 7f ff e6 82 call 4000ecc0 <sparc_enable_interrupts>
400152bc: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
400152c0: 40 00 11 ff call 40019abc <_Thread_Enable_dispatch>
400152c4: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400152c8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400152cc: 81 c7 e0 08 ret
400152d0: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
400152d4: 40 00 11 fa call 40019abc <_Thread_Enable_dispatch>
400152d8: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
400152dc: 10 bf ff ca b 40015204 <rtems_signal_send+0x10>
400152e0: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000dba4 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000dba4: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000dba8: 80 a6 a0 00 cmp %i2, 0
4000dbac: 02 80 00 43 be 4000dcb8 <rtems_task_mode+0x114>
4000dbb0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000dbb4: 27 10 00 54 sethi %hi(0x40015000), %l3
4000dbb8: a6 14 e3 ec or %l3, 0x3ec, %l3 ! 400153ec <_Per_CPU_Information>
4000dbbc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbc0: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbc4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbc8: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000dbcc: e2 04 21 4c ld [ %l0 + 0x14c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbd0: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbd4: 80 a0 60 00 cmp %g1, 0
4000dbd8: 12 80 00 3a bne 4000dcc0 <rtems_task_mode+0x11c>
4000dbdc: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbe0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000dbe4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dbe8: 7f ff f0 e8 call 40009f88 <_CPU_ISR_Get_level>
4000dbec: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbf0: a9 2d 20 0a sll %l4, 0xa, %l4
4000dbf4: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dbf8: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dbfc: 80 8e 61 00 btst 0x100, %i1
4000dc00: 02 80 00 06 be 4000dc18 <rtems_task_mode+0x74>
4000dc04: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dc08: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dc0c: 80 a0 00 01 cmp %g0, %g1
4000dc10: 82 60 3f ff subx %g0, -1, %g1
4000dc14: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000dc18: 80 8e 62 00 btst 0x200, %i1
4000dc1c: 02 80 00 0b be 4000dc48 <rtems_task_mode+0xa4>
4000dc20: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dc24: 80 8e 22 00 btst 0x200, %i0
4000dc28: 22 80 00 07 be,a 4000dc44 <rtems_task_mode+0xa0>
4000dc2c: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000dc30: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dc34: c2 00 61 04 ld [ %g1 + 0x104 ], %g1 ! 40015104 <_Thread_Ticks_per_timeslice>
4000dc38: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000dc3c: 82 10 20 01 mov 1, %g1
4000dc40: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000dc44: 80 8e 60 0f btst 0xf, %i1
4000dc48: 12 80 00 3d bne 4000dd3c <rtems_task_mode+0x198>
4000dc4c: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dc50: 80 8e 64 00 btst 0x400, %i1
4000dc54: 02 80 00 14 be 4000dca4 <rtems_task_mode+0x100>
4000dc58: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc5c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000dc60: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000dc64: 80 a0 00 18 cmp %g0, %i0
4000dc68: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc6c: 80 a0 80 01 cmp %g2, %g1
4000dc70: 22 80 00 0e be,a 4000dca8 <rtems_task_mode+0x104>
4000dc74: 03 10 00 54 sethi %hi(0x40015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000dc78: 7f ff d0 18 call 40001cd8 <sparc_disable_interrupts>
4000dc7c: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000dc80: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000dc84: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000dc88: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000dc8c: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000dc90: 7f ff d0 16 call 40001ce8 <sparc_enable_interrupts>
4000dc94: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000dc98: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000dc9c: 80 a0 00 01 cmp %g0, %g1
4000dca0: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000dca4: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dca8: c4 00 63 18 ld [ %g1 + 0x318 ], %g2 ! 40015318 <_System_state_Current>
4000dcac: 80 a0 a0 03 cmp %g2, 3
4000dcb0: 02 80 00 11 be 4000dcf4 <rtems_task_mode+0x150> <== ALWAYS TAKEN
4000dcb4: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000dcb8: 81 c7 e0 08 ret
4000dcbc: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dcc0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000dcc4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dcc8: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dccc: 7f ff f0 af call 40009f88 <_CPU_ISR_Get_level>
4000dcd0: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dcd4: a9 2d 20 0a sll %l4, 0xa, %l4
4000dcd8: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dcdc: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dce0: 80 8e 61 00 btst 0x100, %i1
4000dce4: 02 bf ff cd be 4000dc18 <rtems_task_mode+0x74>
4000dce8: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dcec: 10 bf ff c8 b 4000dc0c <rtems_task_mode+0x68>
4000dcf0: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000dcf4: 80 88 e0 ff btst 0xff, %g3
4000dcf8: 12 80 00 0a bne 4000dd20 <rtems_task_mode+0x17c>
4000dcfc: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000dd00: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000dd04: 80 a0 80 03 cmp %g2, %g3
4000dd08: 02 bf ff ec be 4000dcb8 <rtems_task_mode+0x114>
4000dd0c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000dd10: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000dd14: 80 a0 a0 00 cmp %g2, 0
4000dd18: 02 bf ff e8 be 4000dcb8 <rtems_task_mode+0x114> <== NEVER TAKEN
4000dd1c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000dd20: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000dd24: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000dd28: 7f ff ea 55 call 4000867c <_Thread_Dispatch>
4000dd2c: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000dd30: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000dd34: 81 c7 e0 08 ret
4000dd38: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dd3c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dd40: 7f ff cf ea call 40001ce8 <sparc_enable_interrupts>
4000dd44: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dd48: 10 bf ff c3 b 4000dc54 <rtems_task_mode+0xb0>
4000dd4c: 80 8e 64 00 btst 0x400, %i1
4000af84 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000af84: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000af88: 80 a6 60 00 cmp %i1, 0
4000af8c: 02 80 00 07 be 4000afa8 <rtems_task_set_priority+0x24>
4000af90: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000af94: 03 10 00 65 sethi %hi(0x40019400), %g1
4000af98: c2 08 60 44 ldub [ %g1 + 0x44 ], %g1 ! 40019444 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000af9c: 80 a6 40 01 cmp %i1, %g1
4000afa0: 18 80 00 1c bgu 4000b010 <rtems_task_set_priority+0x8c>
4000afa4: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000afa8: 80 a6 a0 00 cmp %i2, 0
4000afac: 02 80 00 19 be 4000b010 <rtems_task_set_priority+0x8c>
4000afb0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000afb4: 40 00 09 3f call 4000d4b0 <_Thread_Get>
4000afb8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000afbc: c2 07 bf fc ld [ %fp + -4 ], %g1
4000afc0: 80 a0 60 00 cmp %g1, 0
4000afc4: 12 80 00 13 bne 4000b010 <rtems_task_set_priority+0x8c>
4000afc8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000afcc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000afd0: 80 a6 60 00 cmp %i1, 0
4000afd4: 02 80 00 0d be 4000b008 <rtems_task_set_priority+0x84>
4000afd8: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000afdc: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000afe0: 80 a0 60 00 cmp %g1, 0
4000afe4: 02 80 00 06 be 4000affc <rtems_task_set_priority+0x78>
4000afe8: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000afec: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000aff0: 80 a6 40 01 cmp %i1, %g1
4000aff4: 1a 80 00 05 bcc 4000b008 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000aff8: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000affc: 92 10 00 19 mov %i1, %o1
4000b000: 40 00 07 e0 call 4000cf80 <_Thread_Change_priority>
4000b004: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b008: 40 00 09 1c call 4000d478 <_Thread_Enable_dispatch>
4000b00c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b010: 81 c7 e0 08 ret
4000b014: 81 e8 00 00 restore
40007338 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
40007338: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
4000733c: 80 a6 60 00 cmp %i1, 0
40007340: 02 80 00 1e be 400073b8 <rtems_task_variable_delete+0x80>
40007344: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
40007348: 90 10 00 18 mov %i0, %o0
4000734c: 40 00 08 c7 call 40009668 <_Thread_Get>
40007350: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40007354: c2 07 bf fc ld [ %fp + -4 ], %g1
40007358: 80 a0 60 00 cmp %g1, 0
4000735c: 12 80 00 19 bne 400073c0 <rtems_task_variable_delete+0x88>
40007360: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
40007364: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40007368: 80 a0 60 00 cmp %g1, 0
4000736c: 02 80 00 10 be 400073ac <rtems_task_variable_delete+0x74>
40007370: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40007374: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007378: 80 a0 80 19 cmp %g2, %i1
4000737c: 32 80 00 09 bne,a 400073a0 <rtems_task_variable_delete+0x68>
40007380: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
40007384: 10 80 00 19 b 400073e8 <rtems_task_variable_delete+0xb0>
40007388: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
4000738c: 80 a0 80 19 cmp %g2, %i1
40007390: 22 80 00 0e be,a 400073c8 <rtems_task_variable_delete+0x90>
40007394: c4 02 40 00 ld [ %o1 ], %g2
40007398: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
4000739c: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
400073a0: 80 a2 60 00 cmp %o1, 0
400073a4: 32 bf ff fa bne,a 4000738c <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
400073a8: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400073ac: 40 00 08 a1 call 40009630 <_Thread_Enable_dispatch>
400073b0: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
400073b4: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073b8: 81 c7 e0 08 ret
400073bc: 91 e8 00 01 restore %g0, %g1, %o0
400073c0: 81 c7 e0 08 ret
400073c4: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
400073c8: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
400073cc: 40 00 00 2e call 40007484 <_RTEMS_Tasks_Invoke_task_variable_dtor>
400073d0: 01 00 00 00 nop
_Thread_Enable_dispatch();
400073d4: 40 00 08 97 call 40009630 <_Thread_Enable_dispatch>
400073d8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400073dc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073e0: 81 c7 e0 08 ret
400073e4: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400073e8: 92 10 00 01 mov %g1, %o1
400073ec: 10 bf ff f8 b 400073cc <rtems_task_variable_delete+0x94>
400073f0: c4 22 21 58 st %g2, [ %o0 + 0x158 ]
400073f4 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
400073f4: 9d e3 bf 98 save %sp, -104, %sp
400073f8: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
400073fc: 80 a6 60 00 cmp %i1, 0
40007400: 02 80 00 1b be 4000746c <rtems_task_variable_get+0x78>
40007404: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
40007408: 80 a6 a0 00 cmp %i2, 0
4000740c: 02 80 00 1c be 4000747c <rtems_task_variable_get+0x88>
40007410: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40007414: 40 00 08 95 call 40009668 <_Thread_Get>
40007418: 92 07 bf fc add %fp, -4, %o1
switch (location) {
4000741c: c2 07 bf fc ld [ %fp + -4 ], %g1
40007420: 80 a0 60 00 cmp %g1, 0
40007424: 12 80 00 12 bne 4000746c <rtems_task_variable_get+0x78>
40007428: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
4000742c: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40007430: 80 a0 60 00 cmp %g1, 0
40007434: 32 80 00 07 bne,a 40007450 <rtems_task_variable_get+0x5c>
40007438: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000743c: 30 80 00 0e b,a 40007474 <rtems_task_variable_get+0x80>
40007440: 80 a0 60 00 cmp %g1, 0
40007444: 02 80 00 0c be 40007474 <rtems_task_variable_get+0x80> <== NEVER TAKEN
40007448: 01 00 00 00 nop
if (tvp->ptr == ptr) {
4000744c: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007450: 80 a0 80 19 cmp %g2, %i1
40007454: 32 bf ff fb bne,a 40007440 <rtems_task_variable_get+0x4c>
40007458: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
4000745c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
40007460: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
40007464: 40 00 08 73 call 40009630 <_Thread_Enable_dispatch>
40007468: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
4000746c: 81 c7 e0 08 ret
40007470: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
40007474: 40 00 08 6f call 40009630 <_Thread_Enable_dispatch>
40007478: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
4000747c: 81 c7 e0 08 ret
40007480: 81 e8 00 00 restore
40015c54 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015c54: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015c58: 11 10 00 f4 sethi %hi(0x4003d000), %o0
40015c5c: 92 10 00 18 mov %i0, %o1
40015c60: 90 12 23 c4 or %o0, 0x3c4, %o0
40015c64: 40 00 0c 69 call 40018e08 <_Objects_Get>
40015c68: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015c6c: c2 07 bf fc ld [ %fp + -4 ], %g1
40015c70: 80 a0 60 00 cmp %g1, 0
40015c74: 22 80 00 04 be,a 40015c84 <rtems_timer_cancel+0x30>
40015c78: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015c7c: 81 c7 e0 08 ret
40015c80: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015c84: 80 a0 60 04 cmp %g1, 4
40015c88: 02 80 00 04 be 40015c98 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40015c8c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015c90: 40 00 14 c0 call 4001af90 <_Watchdog_Remove>
40015c94: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015c98: 40 00 0f 89 call 40019abc <_Thread_Enable_dispatch>
40015c9c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015ca0: 81 c7 e0 08 ret
40015ca4: 81 e8 00 00 restore
4001616c <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
4001616c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40016170: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40016174: e0 00 60 04 ld [ %g1 + 4 ], %l0 ! 4003d404 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016178: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
4001617c: 80 a4 20 00 cmp %l0, 0
40016180: 02 80 00 10 be 400161c0 <rtems_timer_server_fire_when+0x54>
40016184: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40016188: 03 10 00 f4 sethi %hi(0x4003d000), %g1
4001618c: c2 08 60 f0 ldub [ %g1 + 0xf0 ], %g1 ! 4003d0f0 <_TOD_Is_set>
40016190: 80 a0 60 00 cmp %g1, 0
40016194: 02 80 00 0b be 400161c0 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
40016198: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
4001619c: 80 a6 a0 00 cmp %i2, 0
400161a0: 02 80 00 08 be 400161c0 <rtems_timer_server_fire_when+0x54>
400161a4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400161a8: 90 10 00 19 mov %i1, %o0
400161ac: 7f ff f3 b2 call 40013074 <_TOD_Validate>
400161b0: b0 10 20 14 mov 0x14, %i0
400161b4: 80 8a 20 ff btst 0xff, %o0
400161b8: 12 80 00 04 bne 400161c8 <rtems_timer_server_fire_when+0x5c>
400161bc: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400161c0: 81 c7 e0 08 ret
400161c4: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400161c8: 7f ff f3 75 call 40012f9c <_TOD_To_seconds>
400161cc: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400161d0: 25 10 00 f4 sethi %hi(0x4003d000), %l2
400161d4: c2 04 a1 88 ld [ %l2 + 0x188 ], %g1 ! 4003d188 <_TOD_Now>
400161d8: 80 a2 00 01 cmp %o0, %g1
400161dc: 08 bf ff f9 bleu 400161c0 <rtems_timer_server_fire_when+0x54>
400161e0: b2 10 00 08 mov %o0, %i1
400161e4: 92 10 00 11 mov %l1, %o1
400161e8: 11 10 00 f4 sethi %hi(0x4003d000), %o0
400161ec: 94 07 bf fc add %fp, -4, %o2
400161f0: 40 00 0b 06 call 40018e08 <_Objects_Get>
400161f4: 90 12 23 c4 or %o0, 0x3c4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400161f8: c2 07 bf fc ld [ %fp + -4 ], %g1
400161fc: 80 a0 60 00 cmp %g1, 0
40016200: 12 80 00 16 bne 40016258 <rtems_timer_server_fire_when+0xec>
40016204: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40016208: 40 00 13 62 call 4001af90 <_Watchdog_Remove>
4001620c: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016210: c4 04 a1 88 ld [ %l2 + 0x188 ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
40016214: c2 04 20 04 ld [ %l0 + 4 ], %g1
40016218: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001621c: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
40016220: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016224: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40016228: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
4001622c: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
40016230: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
40016234: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016238: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
4001623c: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40016240: 9f c0 40 00 call %g1
40016244: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016248: 40 00 0e 1d call 40019abc <_Thread_Enable_dispatch>
4001624c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016250: 81 c7 e0 08 ret
40016254: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016258: 81 c7 e0 08 ret
4001625c: 91 e8 20 04 restore %g0, 4, %o0