RTEMS 4.11Annotated Report
Sat Nov 27 12:11:36 2010
4000697c <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
4000697c: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40006980: 23 10 00 54 sethi %hi(0x40015000), %l1
40006984: e0 04 63 b4 ld [ %l1 + 0x3b4 ], %l0 ! 400153b4 <_API_extensions_List>
40006988: a2 14 63 b4 or %l1, 0x3b4, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
4000698c: a2 04 60 04 add %l1, 4, %l1
40006990: 80 a4 00 11 cmp %l0, %l1
40006994: 02 80 00 09 be 400069b8 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40006998: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
4000699c: c2 04 20 08 ld [ %l0 + 8 ], %g1
400069a0: 9f c0 40 00 call %g1
400069a4: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
400069a8: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069ac: 80 a4 00 11 cmp %l0, %l1
400069b0: 32 bf ff fc bne,a 400069a0 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
400069b4: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
400069b8: 81 c7 e0 08 ret
400069bc: 81 e8 00 00 restore
400069c0 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
400069c0: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
400069c4: 23 10 00 54 sethi %hi(0x40015000), %l1
400069c8: e0 04 63 b4 ld [ %l1 + 0x3b4 ], %l0 ! 400153b4 <_API_extensions_List>
400069cc: a2 14 63 b4 or %l1, 0x3b4, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069d0: a2 04 60 04 add %l1, 4, %l1
400069d4: 80 a4 00 11 cmp %l0, %l1
400069d8: 02 80 00 0a be 40006a00 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
400069dc: 25 10 00 54 sethi %hi(0x40015000), %l2
400069e0: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
400069e4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400069e8: 9f c0 40 00 call %g1
400069ec: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
400069f0: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400069f4: 80 a4 00 11 cmp %l0, %l1
400069f8: 32 bf ff fc bne,a 400069e8 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
400069fc: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
40006a00: 81 c7 e0 08 ret
40006a04: 81 e8 00 00 restore
40017024 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017024: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017028: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
4001702c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017030: 80 a0 40 1a cmp %g1, %i2
40017034: 0a 80 00 17 bcs 40017090 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
40017038: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
4001703c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017040: 80 a0 60 00 cmp %g1, 0
40017044: 02 80 00 0a be 4001706c <_CORE_message_queue_Broadcast+0x48>
40017048: a4 10 20 00 clr %l2
*count = 0;
4001704c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017050: 81 c7 e0 08 ret
40017054: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40017058: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
4001705c: 40 00 22 df call 4001fbd8 <memcpy>
40017060: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017064: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
40017068: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
4001706c: 40 00 0b 70 call 40019e2c <_Thread_queue_Dequeue>
40017070: 90 10 00 10 mov %l0, %o0
40017074: 92 10 00 19 mov %i1, %o1
40017078: a2 10 00 08 mov %o0, %l1
4001707c: 80 a2 20 00 cmp %o0, 0
40017080: 12 bf ff f6 bne 40017058 <_CORE_message_queue_Broadcast+0x34>
40017084: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40017088: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
4001708c: b0 10 20 00 clr %i0
}
40017090: 81 c7 e0 08 ret
40017094: 81 e8 00 00 restore
400108c8 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108c8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
400108cc: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400108d0: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
400108d4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108d8: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400108dc: 80 8e e0 03 btst 3, %i3
400108e0: 02 80 00 07 be 400108fc <_CORE_message_queue_Initialize+0x34>
400108e4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400108e8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400108ec: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
400108f0: 80 a6 c0 12 cmp %i3, %l2
400108f4: 18 80 00 22 bgu 4001097c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400108f8: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
400108fc: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40010900: 92 10 00 1a mov %i2, %o1
40010904: 90 10 00 11 mov %l1, %o0
40010908: 40 00 3f 62 call 40020690 <.umul>
4001090c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40010910: 80 a2 00 12 cmp %o0, %l2
40010914: 0a 80 00 1a bcs 4001097c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010918: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
4001091c: 40 00 0c 75 call 40013af0 <_Workspace_Allocate>
40010920: 01 00 00 00 nop
if (the_message_queue->message_buffers == 0)
40010924: 80 a2 20 00 cmp %o0, 0
40010928: 02 80 00 15 be 4001097c <_CORE_message_queue_Initialize+0xb4>
4001092c: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
40010930: 92 10 00 08 mov %o0, %o1
40010934: 94 10 00 1a mov %i2, %o2
40010938: 96 10 00 11 mov %l1, %o3
4001093c: 40 00 15 09 call 40015d60 <_Chain_Initialize>
40010940: 90 04 20 60 add %l0, 0x60, %o0
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40010944: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
40010948: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4001094c: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
40010950: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40010954: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010958: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
4001095c: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010960: 82 18 60 01 xor %g1, 1, %g1
40010964: 80 a0 00 01 cmp %g0, %g1
40010968: 90 10 00 10 mov %l0, %o0
4001096c: 94 10 20 80 mov 0x80, %o2
40010970: 92 60 3f ff subx %g0, -1, %o1
40010974: 40 00 09 93 call 40012fc0 <_Thread_queue_Initialize>
40010978: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
4001097c: 81 c7 e0 08 ret
40010980: 81 e8 00 00 restore
40006d0c <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40006d0c: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40006d10: 21 10 00 54 sethi %hi(0x40015000), %l0
40006d14: c2 04 21 a0 ld [ %l0 + 0x1a0 ], %g1 ! 400151a0 <_Thread_Dispatch_disable_level>
40006d18: 80 a0 60 00 cmp %g1, 0
40006d1c: 02 80 00 05 be 40006d30 <_CORE_mutex_Seize+0x24>
40006d20: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40006d24: 80 8e a0 ff btst 0xff, %i2
40006d28: 12 80 00 1a bne 40006d90 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40006d2c: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d30: 90 10 00 18 mov %i0, %o0
40006d34: 40 00 14 29 call 4000bdd8 <_CORE_mutex_Seize_interrupt_trylock>
40006d38: 92 07 a0 54 add %fp, 0x54, %o1
40006d3c: 80 a2 20 00 cmp %o0, 0
40006d40: 02 80 00 12 be 40006d88 <_CORE_mutex_Seize+0x7c>
40006d44: 80 8e a0 ff btst 0xff, %i2
40006d48: 02 80 00 1a be 40006db0 <_CORE_mutex_Seize+0xa4>
40006d4c: 01 00 00 00 nop
40006d50: c4 04 21 a0 ld [ %l0 + 0x1a0 ], %g2
40006d54: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d58: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006d5c: 86 10 20 01 mov 1, %g3
40006d60: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40006d64: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006d68: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40006d6c: 82 00 a0 01 add %g2, 1, %g1
40006d70: c2 24 21 a0 st %g1, [ %l0 + 0x1a0 ]
40006d74: 7f ff eb dd call 40001ce8 <sparc_enable_interrupts>
40006d78: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006d7c: 90 10 00 18 mov %i0, %o0
40006d80: 7f ff ff c0 call 40006c80 <_CORE_mutex_Seize_interrupt_blocking>
40006d84: 92 10 00 1b mov %i3, %o1
40006d88: 81 c7 e0 08 ret
40006d8c: 81 e8 00 00 restore
40006d90: c2 00 63 18 ld [ %g1 + 0x318 ], %g1
40006d94: 80 a0 60 01 cmp %g1, 1
40006d98: 28 bf ff e7 bleu,a 40006d34 <_CORE_mutex_Seize+0x28>
40006d9c: 90 10 00 18 mov %i0, %o0
40006da0: 90 10 20 00 clr %o0
40006da4: 92 10 20 00 clr %o1
40006da8: 40 00 01 d9 call 4000750c <_Internal_error_Occurred>
40006dac: 94 10 20 12 mov 0x12, %o2
40006db0: 7f ff eb ce call 40001ce8 <sparc_enable_interrupts>
40006db4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006db8: 03 10 00 54 sethi %hi(0x40015000), %g1
40006dbc: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
40006dc0: 84 10 20 01 mov 1, %g2
40006dc4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40006dc8: 81 c7 e0 08 ret
40006dcc: 81 e8 00 00 restore
4000bdd8 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000bdd8: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000bddc: 03 10 00 54 sethi %hi(0x40015000), %g1
4000bde0: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bde4: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000bde8: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bdec: 80 a0 a0 00 cmp %g2, 0
4000bdf0: 02 80 00 13 be 4000be3c <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000bdf4: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000bdf8: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000bdfc: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
4000be00: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000be04: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
4000be08: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
4000be0c: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000be10: 80 a0 a0 02 cmp %g2, 2
4000be14: 02 80 00 10 be 4000be54 <_CORE_mutex_Seize_interrupt_trylock+0x7c>
4000be18: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
4000be1c: 80 a0 a0 03 cmp %g2, 3
4000be20: 22 80 00 21 be,a 4000bea4 <_CORE_mutex_Seize_interrupt_trylock+0xcc>
4000be24: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000be28: d0 06 40 00 ld [ %i1 ], %o0
4000be2c: 7f ff d7 af call 40001ce8 <sparc_enable_interrupts>
4000be30: b0 10 20 00 clr %i0
4000be34: 81 c7 e0 08 ret
4000be38: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000be3c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000be40: 80 a0 40 02 cmp %g1, %g2
4000be44: 02 80 00 0c be 4000be74 <_CORE_mutex_Seize_interrupt_trylock+0x9c>
4000be48: b0 10 20 01 mov 1, %i0
4000be4c: 81 c7 e0 08 ret
4000be50: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000be54: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
4000be58: 84 00 a0 01 inc %g2
4000be5c: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000be60: d0 06 40 00 ld [ %i1 ], %o0
4000be64: 7f ff d7 a1 call 40001ce8 <sparc_enable_interrupts>
4000be68: b0 10 20 00 clr %i0
4000be6c: 81 c7 e0 08 ret
4000be70: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000be74: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000be78: 80 a0 a0 00 cmp %g2, 0
4000be7c: 12 80 00 2b bne 4000bf28 <_CORE_mutex_Seize_interrupt_trylock+0x150>
4000be80: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000be84: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000be88: 82 00 60 01 inc %g1
4000be8c: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000be90: d0 06 40 00 ld [ %i1 ], %o0
4000be94: 7f ff d7 95 call 40001ce8 <sparc_enable_interrupts>
4000be98: b0 10 20 00 clr %i0
4000be9c: 81 c7 e0 08 ret
4000bea0: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000bea4: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
4000bea8: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000beac: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
4000beb0: 80 a1 00 02 cmp %g4, %g2
4000beb4: 02 80 00 25 be 4000bf48 <_CORE_mutex_Seize_interrupt_trylock+0x170>
4000beb8: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
4000bebc: 80 a1 00 02 cmp %g4, %g2
4000bec0: 1a 80 00 11 bcc 4000bf04 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000bec4: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000bec8: 03 10 00 54 sethi %hi(0x40015000), %g1
4000becc: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
4000bed0: 84 00 a0 01 inc %g2
4000bed4: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000bed8: 7f ff d7 84 call 40001ce8 <sparc_enable_interrupts>
4000bedc: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000bee0: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
4000bee4: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
4000bee8: 94 10 20 00 clr %o2
4000beec: 7f ff f0 f9 call 400082d0 <_Thread_Change_priority>
4000bef0: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000bef4: 7f ff f2 36 call 400087cc <_Thread_Enable_dispatch>
4000bef8: 01 00 00 00 nop
4000befc: 81 c7 e0 08 ret
4000bf00: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000bf04: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000bf08: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
4000bf0c: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
4000bf10: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000bf14: d0 06 40 00 ld [ %i1 ], %o0
4000bf18: 7f ff d7 74 call 40001ce8 <sparc_enable_interrupts>
4000bf1c: b0 10 20 00 clr %i0
4000bf20: 81 c7 e0 08 ret
4000bf24: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000bf28: 12 bf ff c3 bne 4000be34 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
4000bf2c: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000bf30: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
4000bf34: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000bf38: 7f ff d7 6c call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
4000bf3c: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000bf40: 81 c7 e0 08 ret <== NOT EXECUTED
4000bf44: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
4000bf48: d0 06 40 00 ld [ %i1 ], %o0
4000bf4c: 7f ff d7 67 call 40001ce8 <sparc_enable_interrupts>
4000bf50: b0 10 20 00 clr %i0
4000bf54: 81 c7 e0 08 ret
4000bf58: 81 e8 00 00 restore
40006f4c <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40006f4c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006f50: 90 10 00 18 mov %i0, %o0
40006f54: 40 00 06 f5 call 40008b28 <_Thread_queue_Dequeue>
40006f58: a0 10 00 18 mov %i0, %l0
40006f5c: 80 a2 20 00 cmp %o0, 0
40006f60: 12 80 00 0e bne 40006f98 <_CORE_semaphore_Surrender+0x4c>
40006f64: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40006f68: 7f ff eb 5c call 40001cd8 <sparc_disable_interrupts>
40006f6c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006f70: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40006f74: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40006f78: 80 a0 40 02 cmp %g1, %g2
40006f7c: 1a 80 00 05 bcc 40006f90 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40006f80: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40006f84: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006f88: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40006f8c: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40006f90: 7f ff eb 56 call 40001ce8 <sparc_enable_interrupts>
40006f94: 01 00 00 00 nop
}
return status;
}
40006f98: 81 c7 e0 08 ret
40006f9c: 81 e8 00 00 restore
4000bd70 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000bd70: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
4000bd74: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000bd78: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd7c: 80 a6 a0 00 cmp %i2, 0
4000bd80: 02 80 00 12 be 4000bdc8 <_Chain_Initialize+0x58> <== NEVER TAKEN
4000bd84: 90 10 00 18 mov %i0, %o0
4000bd88: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
4000bd8c: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
4000bd90: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
4000bd94: 10 80 00 05 b 4000bda8 <_Chain_Initialize+0x38>
4000bd98: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bd9c: 84 10 00 01 mov %g1, %g2
4000bda0: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000bda4: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
4000bda8: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000bdac: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bdb0: 80 a6 a0 00 cmp %i2, 0
4000bdb4: 12 bf ff fa bne 4000bd9c <_Chain_Initialize+0x2c>
4000bdb8: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000bdbc: 40 00 16 9d call 40011830 <.umul>
4000bdc0: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000bdc4: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
4000bdc8: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
4000bdcc: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000bdd0: 81 c7 e0 08 ret
4000bdd4: 81 e8 00 00 restore
40005c08 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40005c08: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40005c0c: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40005c10: 7f ff f0 32 call 40001cd8 <sparc_disable_interrupts>
40005c14: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40005c18: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40005c1c: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005c20: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40005c24: 86 88 40 02 andcc %g1, %g2, %g3
40005c28: 02 80 00 3e be 40005d20 <_Event_Surrender+0x118>
40005c2c: 09 10 00 54 sethi %hi(0x40015000), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005c30: 88 11 23 ec or %g4, 0x3ec, %g4 ! 400153ec <_Per_CPU_Information>
40005c34: da 01 20 08 ld [ %g4 + 8 ], %o5
40005c38: 80 a3 60 00 cmp %o5, 0
40005c3c: 32 80 00 1d bne,a 40005cb0 <_Event_Surrender+0xa8>
40005c40: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40005c44: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40005c48: 80 89 21 00 btst 0x100, %g4
40005c4c: 02 80 00 33 be 40005d18 <_Event_Surrender+0x110>
40005c50: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005c54: 02 80 00 04 be 40005c64 <_Event_Surrender+0x5c>
40005c58: 80 8c a0 02 btst 2, %l2
40005c5c: 02 80 00 2f be 40005d18 <_Event_Surrender+0x110> <== NEVER TAKEN
40005c60: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c64: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40005c68: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40005c6c: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005c70: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c74: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40005c78: 7f ff f0 1c call 40001ce8 <sparc_enable_interrupts>
40005c7c: 90 10 00 11 mov %l1, %o0
40005c80: 7f ff f0 16 call 40001cd8 <sparc_disable_interrupts>
40005c84: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40005c88: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40005c8c: 80 a0 60 02 cmp %g1, 2
40005c90: 02 80 00 26 be 40005d28 <_Event_Surrender+0x120>
40005c94: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40005c98: 90 10 00 11 mov %l1, %o0
40005c9c: 7f ff f0 13 call 40001ce8 <sparc_enable_interrupts>
40005ca0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005ca4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005ca8: 40 00 09 f1 call 4000846c <_Thread_Clear_state>
40005cac: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005cb0: 80 a6 00 04 cmp %i0, %g4
40005cb4: 32 bf ff e5 bne,a 40005c48 <_Event_Surrender+0x40>
40005cb8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005cbc: 09 10 00 55 sethi %hi(0x40015400), %g4
40005cc0: da 01 20 40 ld [ %g4 + 0x40 ], %o5 ! 40015440 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40005cc4: 80 a3 60 02 cmp %o5, 2
40005cc8: 02 80 00 07 be 40005ce4 <_Event_Surrender+0xdc> <== NEVER TAKEN
40005ccc: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005cd0: da 01 20 40 ld [ %g4 + 0x40 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005cd4: 80 a3 60 01 cmp %o5, 1
40005cd8: 32 bf ff dc bne,a 40005c48 <_Event_Surrender+0x40>
40005cdc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005ce0: 80 a0 40 03 cmp %g1, %g3
40005ce4: 02 80 00 04 be 40005cf4 <_Event_Surrender+0xec>
40005ce8: 80 8c a0 02 btst 2, %l2
40005cec: 02 80 00 09 be 40005d10 <_Event_Surrender+0x108> <== NEVER TAKEN
40005cf0: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cf4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40005cf8: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40005cfc: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005d00: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005d04: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40005d08: 82 10 20 03 mov 3, %g1
40005d0c: c2 21 20 40 st %g1, [ %g4 + 0x40 ]
}
_ISR_Enable( level );
40005d10: 7f ff ef f6 call 40001ce8 <sparc_enable_interrupts>
40005d14: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40005d18: 7f ff ef f4 call 40001ce8 <sparc_enable_interrupts>
40005d1c: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40005d20: 7f ff ef f2 call 40001ce8 <sparc_enable_interrupts>
40005d24: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40005d28: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40005d2c: 7f ff ef ef call 40001ce8 <sparc_enable_interrupts>
40005d30: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005d34: 40 00 0e fd call 40009928 <_Watchdog_Remove>
40005d38: 90 06 20 48 add %i0, 0x48, %o0
40005d3c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40005d40: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005d44: 40 00 09 ca call 4000846c <_Thread_Clear_state>
40005d48: 81 e8 00 00 restore
40005d50 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40005d50: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40005d54: 90 10 00 18 mov %i0, %o0
40005d58: 40 00 0a ab call 40008804 <_Thread_Get>
40005d5c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40005d60: c2 07 bf fc ld [ %fp + -4 ], %g1
40005d64: 80 a0 60 00 cmp %g1, 0
40005d68: 12 80 00 15 bne 40005dbc <_Event_Timeout+0x6c> <== NEVER TAKEN
40005d6c: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40005d70: 7f ff ef da call 40001cd8 <sparc_disable_interrupts>
40005d74: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40005d78: 03 10 00 54 sethi %hi(0x40015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40005d7c: c2 00 63 f8 ld [ %g1 + 0x3f8 ], %g1 ! 400153f8 <_Per_CPU_Information+0xc>
40005d80: 80 a4 00 01 cmp %l0, %g1
40005d84: 02 80 00 10 be 40005dc4 <_Event_Timeout+0x74>
40005d88: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005d8c: 82 10 20 06 mov 6, %g1
40005d90: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40005d94: 7f ff ef d5 call 40001ce8 <sparc_enable_interrupts>
40005d98: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005d9c: 90 10 00 10 mov %l0, %o0
40005da0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40005da4: 40 00 09 b2 call 4000846c <_Thread_Clear_state>
40005da8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005dac: 03 10 00 54 sethi %hi(0x40015000), %g1
40005db0: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
40005db4: 84 00 bf ff add %g2, -1, %g2
40005db8: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
40005dbc: 81 c7 e0 08 ret
40005dc0: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005dc4: 03 10 00 55 sethi %hi(0x40015400), %g1
40005dc8: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 40015440 <_Event_Sync_state>
40005dcc: 80 a0 a0 01 cmp %g2, 1
40005dd0: 32 bf ff f0 bne,a 40005d90 <_Event_Timeout+0x40>
40005dd4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40005dd8: 84 10 20 02 mov 2, %g2
40005ddc: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005de0: 10 bf ff ec b 40005d90 <_Event_Timeout+0x40>
40005de4: 82 10 20 06 mov 6, %g1
4000bfd8 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000bfd8: 9d e3 bf 98 save %sp, -104, %sp
4000bfdc: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000bfe0: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000bfe4: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000bfe8: 80 a6 40 12 cmp %i1, %l2
4000bfec: 18 80 00 6e bgu 4000c1a4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bff0: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000bff4: 80 a6 e0 00 cmp %i3, 0
4000bff8: 12 80 00 75 bne 4000c1cc <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000bffc: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c000: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c004: 80 a4 00 14 cmp %l0, %l4
4000c008: 02 80 00 67 be 4000c1a4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c00c: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c010: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000c014: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c018: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c01c: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000c020: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000c024: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000c028: 80 a4 80 13 cmp %l2, %l3
4000c02c: 3a 80 00 4b bcc,a 4000c158 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c030: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000c034: 80 a6 a0 00 cmp %i2, 0
4000c038: 02 80 00 44 be 4000c148 <_Heap_Allocate_aligned_with_boundary+0x170>
4000c03c: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c040: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c044: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c048: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c04c: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000c050: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c054: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000c058: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c05c: a6 00 40 13 add %g1, %l3, %l3
4000c060: 40 00 16 da call 40011bc8 <.urem>
4000c064: 90 10 00 18 mov %i0, %o0
4000c068: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000c06c: 80 a4 c0 18 cmp %l3, %i0
4000c070: 1a 80 00 06 bcc 4000c088 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000c074: ac 05 20 08 add %l4, 8, %l6
4000c078: 90 10 00 13 mov %l3, %o0
4000c07c: 40 00 16 d3 call 40011bc8 <.urem>
4000c080: 92 10 00 1a mov %i2, %o1
4000c084: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000c088: 80 a6 e0 00 cmp %i3, 0
4000c08c: 02 80 00 24 be 4000c11c <_Heap_Allocate_aligned_with_boundary+0x144>
4000c090: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000c094: a6 06 00 19 add %i0, %i1, %l3
4000c098: 92 10 00 1b mov %i3, %o1
4000c09c: 40 00 16 cb call 40011bc8 <.urem>
4000c0a0: 90 10 00 13 mov %l3, %o0
4000c0a4: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c0a8: 80 a2 00 13 cmp %o0, %l3
4000c0ac: 1a 80 00 1b bcc 4000c118 <_Heap_Allocate_aligned_with_boundary+0x140>
4000c0b0: 80 a6 00 08 cmp %i0, %o0
4000c0b4: 1a 80 00 1a bcc 4000c11c <_Heap_Allocate_aligned_with_boundary+0x144>
4000c0b8: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000c0bc: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000c0c0: 80 a5 40 08 cmp %l5, %o0
4000c0c4: 28 80 00 09 bleu,a 4000c0e8 <_Heap_Allocate_aligned_with_boundary+0x110>
4000c0c8: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c0cc: 10 80 00 23 b 4000c158 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c0d0: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c0d4: 1a 80 00 11 bcc 4000c118 <_Heap_Allocate_aligned_with_boundary+0x140>
4000c0d8: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000c0dc: 38 80 00 1f bgu,a 4000c158 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000c0e0: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000c0e4: b0 22 00 19 sub %o0, %i1, %i0
4000c0e8: 92 10 00 1a mov %i2, %o1
4000c0ec: 40 00 16 b7 call 40011bc8 <.urem>
4000c0f0: 90 10 00 18 mov %i0, %o0
4000c0f4: 92 10 00 1b mov %i3, %o1
4000c0f8: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000c0fc: a6 06 00 19 add %i0, %i1, %l3
4000c100: 40 00 16 b2 call 40011bc8 <.urem>
4000c104: 90 10 00 13 mov %l3, %o0
4000c108: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c10c: 80 a2 00 13 cmp %o0, %l3
4000c110: 0a bf ff f1 bcs 4000c0d4 <_Heap_Allocate_aligned_with_boundary+0xfc>
4000c114: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000c118: 80 a5 80 18 cmp %l6, %i0
4000c11c: 38 80 00 0f bgu,a 4000c158 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c120: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000c124: 82 10 3f f8 mov -8, %g1
4000c128: 90 10 00 18 mov %i0, %o0
4000c12c: a6 20 40 14 sub %g1, %l4, %l3
4000c130: 92 10 00 1d mov %i5, %o1
4000c134: 40 00 16 a5 call 40011bc8 <.urem>
4000c138: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c13c: 90 a4 c0 08 subcc %l3, %o0, %o0
4000c140: 12 80 00 1b bne 4000c1ac <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000c144: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000c148: 80 a6 20 00 cmp %i0, 0
4000c14c: 32 80 00 08 bne,a 4000c16c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000c150: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000c154: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c158: 80 a4 00 14 cmp %l0, %l4
4000c15c: 02 80 00 1a be 4000c1c4 <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000c160: 82 04 60 01 add %l1, 1, %g1
4000c164: 10 bf ff b0 b 4000c024 <_Heap_Allocate_aligned_with_boundary+0x4c>
4000c168: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000c16c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c170: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000c174: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c178: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000c17c: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c180: 90 10 00 10 mov %l0, %o0
4000c184: 92 10 00 14 mov %l4, %o1
4000c188: 94 10 00 18 mov %i0, %o2
4000c18c: 7f ff ec 94 call 400073dc <_Heap_Block_allocate>
4000c190: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000c194: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000c198: 80 a0 40 11 cmp %g1, %l1
4000c19c: 2a 80 00 02 bcs,a 4000c1a4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c1a0: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c1a4: 81 c7 e0 08 ret
4000c1a8: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c1ac: 1a bf ff e8 bcc 4000c14c <_Heap_Allocate_aligned_with_boundary+0x174>
4000c1b0: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c1b4: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c1b8: 80 a4 00 14 cmp %l0, %l4
4000c1bc: 12 bf ff ea bne 4000c164 <_Heap_Allocate_aligned_with_boundary+0x18c><== NEVER TAKEN
4000c1c0: 82 04 60 01 add %l1, 1, %g1
4000c1c4: 10 bf ff f4 b 4000c194 <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000c1c8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000c1cc: 18 bf ff f6 bgu 4000c1a4 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c1d0: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000c1d4: 22 bf ff 8b be,a 4000c000 <_Heap_Allocate_aligned_with_boundary+0x28>
4000c1d8: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c1dc: 10 bf ff 8a b 4000c004 <_Heap_Allocate_aligned_with_boundary+0x2c>
4000c1e0: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000c4ec <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c4ec: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c4f0: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c4f4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c4f8: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c4fc: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c500: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c504: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c508: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000c50c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c510: 80 a6 40 11 cmp %i1, %l1
4000c514: 18 80 00 86 bgu 4000c72c <_Heap_Extend+0x240>
4000c518: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c51c: 90 10 00 19 mov %i1, %o0
4000c520: 92 10 00 1a mov %i2, %o1
4000c524: 94 10 00 13 mov %l3, %o2
4000c528: 98 07 bf fc add %fp, -4, %o4
4000c52c: 7f ff ec 0d call 40007560 <_Heap_Get_first_and_last_block>
4000c530: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c534: 80 8a 20 ff btst 0xff, %o0
4000c538: 02 80 00 7d be 4000c72c <_Heap_Extend+0x240>
4000c53c: ba 10 20 00 clr %i5
4000c540: b0 10 00 12 mov %l2, %i0
4000c544: b8 10 20 00 clr %i4
4000c548: ac 10 20 00 clr %l6
4000c54c: 10 80 00 14 b 4000c59c <_Heap_Extend+0xb0>
4000c550: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c554: 2a 80 00 02 bcs,a 4000c55c <_Heap_Extend+0x70>
4000c558: b8 10 00 18 mov %i0, %i4
4000c55c: 90 10 00 15 mov %l5, %o0
4000c560: 40 00 16 ed call 40012114 <.urem>
4000c564: 92 10 00 13 mov %l3, %o1
4000c568: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c56c: 80 a5 40 19 cmp %l5, %i1
4000c570: 02 80 00 1c be 4000c5e0 <_Heap_Extend+0xf4>
4000c574: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c578: 80 a6 40 15 cmp %i1, %l5
4000c57c: 38 80 00 02 bgu,a 4000c584 <_Heap_Extend+0x98>
4000c580: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c584: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c588: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c58c: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c590: 80 a4 80 18 cmp %l2, %i0
4000c594: 22 80 00 1b be,a 4000c600 <_Heap_Extend+0x114>
4000c598: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c59c: 80 a6 00 12 cmp %i0, %l2
4000c5a0: 02 80 00 65 be 4000c734 <_Heap_Extend+0x248>
4000c5a4: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c5a8: 80 a0 40 11 cmp %g1, %l1
4000c5ac: 0a 80 00 6f bcs 4000c768 <_Heap_Extend+0x27c>
4000c5b0: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c5b4: 80 a0 40 11 cmp %g1, %l1
4000c5b8: 12 bf ff e7 bne 4000c554 <_Heap_Extend+0x68>
4000c5bc: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c5c0: 90 10 00 15 mov %l5, %o0
4000c5c4: 40 00 16 d4 call 40012114 <.urem>
4000c5c8: 92 10 00 13 mov %l3, %o1
4000c5cc: 82 05 7f f8 add %l5, -8, %g1
4000c5d0: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c5d4: 80 a5 40 19 cmp %l5, %i1
4000c5d8: 12 bf ff e8 bne 4000c578 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000c5dc: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000c5e0: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c5e4: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c5e8: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c5ec: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c5f0: 80 a4 80 18 cmp %l2, %i0
4000c5f4: 12 bf ff ea bne 4000c59c <_Heap_Extend+0xb0> <== NEVER TAKEN
4000c5f8: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000c5fc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c600: 80 a6 40 01 cmp %i1, %g1
4000c604: 3a 80 00 54 bcc,a 4000c754 <_Heap_Extend+0x268>
4000c608: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c60c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c610: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c614: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c618: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c61c: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000c620: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c624: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c628: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c62c: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c630: 80 a1 00 01 cmp %g4, %g1
4000c634: 08 80 00 42 bleu 4000c73c <_Heap_Extend+0x250>
4000c638: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000c63c: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c640: 80 a5 e0 00 cmp %l7, 0
4000c644: 02 80 00 62 be 4000c7cc <_Heap_Extend+0x2e0>
4000c648: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c64c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c650: 92 10 00 12 mov %l2, %o1
4000c654: 40 00 16 b0 call 40012114 <.urem>
4000c658: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c65c: 80 a2 20 00 cmp %o0, 0
4000c660: 02 80 00 04 be 4000c670 <_Heap_Extend+0x184> <== ALWAYS TAKEN
4000c664: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000c668: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000c66c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c670: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c674: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c678: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c67c: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000c680: 90 10 00 10 mov %l0, %o0
4000c684: 92 10 00 01 mov %g1, %o1
4000c688: 7f ff ff 8e call 4000c4c0 <_Heap_Free_block>
4000c68c: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c690: 80 a5 a0 00 cmp %l6, 0
4000c694: 02 80 00 3a be 4000c77c <_Heap_Extend+0x290>
4000c698: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c69c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c6a0: a2 24 40 16 sub %l1, %l6, %l1
4000c6a4: 40 00 16 9c call 40012114 <.urem>
4000c6a8: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c6ac: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000c6b0: a2 24 40 08 sub %l1, %o0, %l1
4000c6b4: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000c6b8: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c6bc: 84 04 40 16 add %l1, %l6, %g2
4000c6c0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c6c4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c6c8: 90 10 00 10 mov %l0, %o0
4000c6cc: 82 08 60 01 and %g1, 1, %g1
4000c6d0: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000c6d4: a2 14 40 01 or %l1, %g1, %l1
4000c6d8: 7f ff ff 7a call 4000c4c0 <_Heap_Free_block>
4000c6dc: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c6e0: 80 a5 a0 00 cmp %l6, 0
4000c6e4: 02 80 00 33 be 4000c7b0 <_Heap_Extend+0x2c4>
4000c6e8: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c6ec: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c6f0: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c6f4: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c6f8: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c6fc: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c700: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c704: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000c708: 88 13 40 04 or %o5, %g4, %g4
4000c70c: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000c710: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c714: 82 00 80 14 add %g2, %l4, %g1
4000c718: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000c71c: 80 a6 e0 00 cmp %i3, 0
4000c720: 02 80 00 03 be 4000c72c <_Heap_Extend+0x240> <== NEVER TAKEN
4000c724: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000c728: e8 26 c0 00 st %l4, [ %i3 ]
4000c72c: 81 c7 e0 08 ret
4000c730: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c734: 10 bf ff 9d b 4000c5a8 <_Heap_Extend+0xbc>
4000c738: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c73c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c740: 80 a0 40 02 cmp %g1, %g2
4000c744: 2a bf ff bf bcs,a 4000c640 <_Heap_Extend+0x154>
4000c748: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c74c: 10 bf ff be b 4000c644 <_Heap_Extend+0x158>
4000c750: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000c754: 80 a4 40 01 cmp %l1, %g1
4000c758: 38 bf ff ae bgu,a 4000c610 <_Heap_Extend+0x124>
4000c75c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c760: 10 bf ff ad b 4000c614 <_Heap_Extend+0x128>
4000c764: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c768: 80 a6 40 15 cmp %i1, %l5
4000c76c: 1a bf ff 93 bcc 4000c5b8 <_Heap_Extend+0xcc>
4000c770: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c774: 81 c7 e0 08 ret
4000c778: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c77c: 80 a7 60 00 cmp %i5, 0
4000c780: 02 bf ff d8 be 4000c6e0 <_Heap_Extend+0x1f4>
4000c784: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c788: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000c78c: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000c790: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c794: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000c798: 84 10 80 03 or %g2, %g3, %g2
4000c79c: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c7a0: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c7a4: 84 10 a0 01 or %g2, 1, %g2
4000c7a8: 10 bf ff ce b 4000c6e0 <_Heap_Extend+0x1f4>
4000c7ac: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c7b0: 32 bf ff d0 bne,a 4000c6f0 <_Heap_Extend+0x204>
4000c7b4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c7b8: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c7bc: 7f ff ff 41 call 4000c4c0 <_Heap_Free_block>
4000c7c0: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c7c4: 10 bf ff cb b 4000c6f0 <_Heap_Extend+0x204>
4000c7c8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c7cc: 80 a7 20 00 cmp %i4, 0
4000c7d0: 02 bf ff b1 be 4000c694 <_Heap_Extend+0x1a8>
4000c7d4: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c7d8: b8 27 00 02 sub %i4, %g2, %i4
4000c7dc: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c7e0: 10 bf ff ad b 4000c694 <_Heap_Extend+0x1a8>
4000c7e4: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000c1e4 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c1e4: 9d e3 bf a0 save %sp, -96, %sp
4000c1e8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000c1ec: 40 00 16 77 call 40011bc8 <.urem>
4000c1f0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c1f4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4000c1f8: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c1fc: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c200: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c204: 80 a2 00 01 cmp %o0, %g1
4000c208: 0a 80 00 4d bcs 4000c33c <_Heap_Free+0x158>
4000c20c: b0 10 20 00 clr %i0
4000c210: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c214: 80 a2 00 03 cmp %o0, %g3
4000c218: 18 80 00 49 bgu 4000c33c <_Heap_Free+0x158>
4000c21c: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c220: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c224: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c228: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c22c: 80 a0 40 02 cmp %g1, %g2
4000c230: 18 80 00 43 bgu 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c234: 80 a0 c0 02 cmp %g3, %g2
4000c238: 0a 80 00 41 bcs 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c23c: 01 00 00 00 nop
4000c240: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c244: 80 8b 20 01 btst 1, %o4
4000c248: 02 80 00 3d be 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c24c: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c250: 80 a0 c0 02 cmp %g3, %g2
4000c254: 02 80 00 06 be 4000c26c <_Heap_Free+0x88>
4000c258: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c25c: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c260: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000c264: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000c268: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000c26c: 80 8b 60 01 btst 1, %o5
4000c270: 12 80 00 1d bne 4000c2e4 <_Heap_Free+0x100>
4000c274: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000c278: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c27c: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c280: 80 a0 40 0d cmp %g1, %o5
4000c284: 18 80 00 2e bgu 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c288: b0 10 20 00 clr %i0
4000c28c: 80 a0 c0 0d cmp %g3, %o5
4000c290: 0a 80 00 2b bcs 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c294: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c298: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c29c: 80 88 60 01 btst 1, %g1
4000c2a0: 02 80 00 27 be 4000c33c <_Heap_Free+0x158> <== NEVER TAKEN
4000c2a4: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c2a8: 22 80 00 39 be,a 4000c38c <_Heap_Free+0x1a8>
4000c2ac: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c2b0: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000c2b4: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c2b8: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000c2bc: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000c2c0: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000c2c4: 82 00 ff ff add %g3, -1, %g1
4000c2c8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000c2cc: 96 01 00 0b add %g4, %o3, %o3
4000c2d0: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c2d4: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c2d8: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c2dc: 10 80 00 0e b 4000c314 <_Heap_Free+0x130>
4000c2e0: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c2e4: 22 80 00 18 be,a 4000c344 <_Heap_Free+0x160>
4000c2e8: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c2ec: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000c2f0: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000c2f4: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000c2f8: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000c2fc: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000c300: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c304: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000c308: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000c30c: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c310: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c314: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000c318: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000c31c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c320: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000c324: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000c328: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c32c: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000c330: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c334: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000c338: b0 10 20 01 mov 1, %i0
}
4000c33c: 81 c7 e0 08 ret
4000c340: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c344: 82 11 20 01 or %g4, 1, %g1
4000c348: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c34c: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c350: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c354: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c358: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c35c: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000c360: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c364: 86 0b 7f fe and %o5, -2, %g3
4000c368: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c36c: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c370: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c374: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c378: 80 a0 40 02 cmp %g1, %g2
4000c37c: 08 bf ff e6 bleu 4000c314 <_Heap_Free+0x130>
4000c380: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c384: 10 bf ff e4 b 4000c314 <_Heap_Free+0x130>
4000c388: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c38c: 82 12 a0 01 or %o2, 1, %g1
4000c390: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c394: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000c398: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c39c: 82 08 7f fe and %g1, -2, %g1
4000c3a0: 10 bf ff dd b 4000c314 <_Heap_Free+0x130>
4000c3a4: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000cf08 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000cf08: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000cf0c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000cf10: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000cf14: c0 26 40 00 clr [ %i1 ]
4000cf18: c0 26 60 04 clr [ %i1 + 4 ]
4000cf1c: c0 26 60 08 clr [ %i1 + 8 ]
4000cf20: c0 26 60 0c clr [ %i1 + 0xc ]
4000cf24: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000cf28: 80 a0 40 02 cmp %g1, %g2
4000cf2c: 02 80 00 17 be 4000cf88 <_Heap_Get_information+0x80> <== NEVER TAKEN
4000cf30: c0 26 60 14 clr [ %i1 + 0x14 ]
4000cf34: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000cf38: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000cf3c: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000cf40: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000cf44: 80 8b 60 01 btst 1, %o5
4000cf48: 02 80 00 03 be 4000cf54 <_Heap_Get_information+0x4c>
4000cf4c: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000cf50: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000cf54: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000cf58: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000cf5c: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cf60: 94 02 a0 01 inc %o2
info->total += the_size;
4000cf64: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cf68: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000cf6c: 80 a3 00 04 cmp %o4, %g4
4000cf70: 1a 80 00 03 bcc 4000cf7c <_Heap_Get_information+0x74>
4000cf74: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000cf78: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000cf7c: 80 a0 80 01 cmp %g2, %g1
4000cf80: 12 bf ff ef bne 4000cf3c <_Heap_Get_information+0x34>
4000cf84: 88 0b 7f fe and %o5, -2, %g4
4000cf88: 81 c7 e0 08 ret
4000cf8c: 81 e8 00 00 restore
400135a4 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
400135a4: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400135a8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
400135ac: 7f ff f9 87 call 40011bc8 <.urem>
400135b0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400135b4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
400135b8: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400135bc: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400135c0: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400135c4: 80 a0 80 01 cmp %g2, %g1
400135c8: 0a 80 00 15 bcs 4001361c <_Heap_Size_of_alloc_area+0x78>
400135cc: b0 10 20 00 clr %i0
400135d0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
400135d4: 80 a0 80 03 cmp %g2, %g3
400135d8: 18 80 00 11 bgu 4001361c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135dc: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400135e0: c8 00 a0 04 ld [ %g2 + 4 ], %g4
400135e4: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400135e8: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400135ec: 80 a0 40 02 cmp %g1, %g2
400135f0: 18 80 00 0b bgu 4001361c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135f4: 80 a0 c0 02 cmp %g3, %g2
400135f8: 0a 80 00 09 bcs 4001361c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400135fc: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40013600: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40013604: 80 88 60 01 btst 1, %g1
40013608: 02 80 00 05 be 4001361c <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
4001360c: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40013610: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40013614: 84 00 a0 04 add %g2, 4, %g2
40013618: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
4001361c: 81 c7 e0 08 ret
40013620: 81 e8 00 00 restore
400083a0 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
400083a0: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400083a4: 23 10 00 20 sethi %hi(0x40008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
400083a8: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
400083ac: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
400083b0: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
400083b4: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
400083b8: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400083bc: 80 8e a0 ff btst 0xff, %i2
400083c0: 02 80 00 04 be 400083d0 <_Heap_Walk+0x30>
400083c4: a2 14 63 34 or %l1, 0x334, %l1
400083c8: 23 10 00 20 sethi %hi(0x40008000), %l1
400083cc: a2 14 63 3c or %l1, 0x33c, %l1 ! 4000833c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
400083d0: 03 10 00 5e sethi %hi(0x40017800), %g1
400083d4: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 40017ae8 <_System_state_Current>
400083d8: 80 a0 60 03 cmp %g1, 3
400083dc: 12 80 00 33 bne 400084a8 <_Heap_Walk+0x108>
400083e0: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
400083e4: da 04 20 18 ld [ %l0 + 0x18 ], %o5
400083e8: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
400083ec: c4 04 20 08 ld [ %l0 + 8 ], %g2
400083f0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400083f4: 90 10 00 19 mov %i1, %o0
400083f8: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400083fc: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
40008400: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40008404: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
40008408: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
4000840c: 92 10 20 00 clr %o1
40008410: 96 10 00 14 mov %l4, %o3
40008414: 15 10 00 54 sethi %hi(0x40015000), %o2
40008418: 98 10 00 13 mov %l3, %o4
4000841c: 9f c4 40 00 call %l1
40008420: 94 12 a3 f8 or %o2, 0x3f8, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008424: 80 a5 20 00 cmp %l4, 0
40008428: 02 80 00 2a be 400084d0 <_Heap_Walk+0x130>
4000842c: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40008430: 12 80 00 30 bne 400084f0 <_Heap_Walk+0x150>
40008434: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008438: 7f ff e5 9e call 40001ab0 <.urem>
4000843c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008440: 80 a2 20 00 cmp %o0, 0
40008444: 12 80 00 34 bne 40008514 <_Heap_Walk+0x174>
40008448: 90 04 a0 08 add %l2, 8, %o0
4000844c: 7f ff e5 99 call 40001ab0 <.urem>
40008450: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
40008454: 80 a2 20 00 cmp %o0, 0
40008458: 32 80 00 38 bne,a 40008538 <_Heap_Walk+0x198>
4000845c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008460: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008464: 80 8f 20 01 btst 1, %i4
40008468: 22 80 00 4d be,a 4000859c <_Heap_Walk+0x1fc>
4000846c: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008470: c2 05 60 04 ld [ %l5 + 4 ], %g1
40008474: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008478: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000847c: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008480: 80 88 a0 01 btst 1, %g2
40008484: 02 80 00 0b be 400084b0 <_Heap_Walk+0x110>
40008488: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
4000848c: 02 80 00 33 be 40008558 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
40008490: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008494: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40008498: 15 10 00 55 sethi %hi(0x40015400), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000849c: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
400084a0: 9f c4 40 00 call %l1 <== NOT EXECUTED
400084a4: 94 12 a1 70 or %o2, 0x170, %o2 <== NOT EXECUTED
400084a8: 81 c7 e0 08 ret
400084ac: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400084b0: 90 10 00 19 mov %i1, %o0
400084b4: 92 10 20 01 mov 1, %o1
400084b8: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084bc: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400084c0: 9f c4 40 00 call %l1
400084c4: 94 12 a1 58 or %o2, 0x158, %o2
400084c8: 81 c7 e0 08 ret
400084cc: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084d0: 90 10 00 19 mov %i1, %o0
400084d4: 92 10 20 01 mov 1, %o1
400084d8: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084dc: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084e0: 9f c4 40 00 call %l1
400084e4: 94 12 a0 90 or %o2, 0x90, %o2
400084e8: 81 c7 e0 08 ret
400084ec: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400084f0: 90 10 00 19 mov %i1, %o0
400084f4: 92 10 20 01 mov 1, %o1
400084f8: 96 10 00 14 mov %l4, %o3
400084fc: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008500: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
40008504: 9f c4 40 00 call %l1
40008508: 94 12 a0 a8 or %o2, 0xa8, %o2
4000850c: 81 c7 e0 08 ret
40008510: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40008514: 90 10 00 19 mov %i1, %o0
40008518: 92 10 20 01 mov 1, %o1
4000851c: 96 10 00 13 mov %l3, %o3
40008520: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008524: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40008528: 9f c4 40 00 call %l1
4000852c: 94 12 a0 c8 or %o2, 0xc8, %o2
40008530: 81 c7 e0 08 ret
40008534: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008538: 92 10 20 01 mov 1, %o1
4000853c: 96 10 00 12 mov %l2, %o3
40008540: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008544: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008548: 9f c4 40 00 call %l1
4000854c: 94 12 a0 f0 or %o2, 0xf0, %o2
40008550: 81 c7 e0 08 ret
40008554: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40008558: ec 04 20 08 ld [ %l0 + 8 ], %l6
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
4000855c: 80 a4 00 16 cmp %l0, %l6
40008560: 02 80 01 18 be 400089c0 <_Heap_Walk+0x620>
40008564: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008568: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000856c: 80 a0 40 16 cmp %g1, %l6
40008570: 28 80 00 12 bleu,a 400085b8 <_Heap_Walk+0x218> <== ALWAYS TAKEN
40008574: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40008578: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
4000857c: 92 10 20 01 mov 1, %o1
40008580: 96 10 00 16 mov %l6, %o3
40008584: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008588: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
4000858c: 9f c4 40 00 call %l1
40008590: 94 12 a1 a0 or %o2, 0x1a0, %o2
40008594: 81 c7 e0 08 ret
40008598: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
4000859c: 92 10 20 01 mov 1, %o1
400085a0: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400085a4: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
400085a8: 9f c4 40 00 call %l1
400085ac: 94 12 a1 28 or %o2, 0x128, %o2
400085b0: 81 c7 e0 08 ret
400085b4: 81 e8 00 00 restore
400085b8: 80 a7 40 16 cmp %i5, %l6
400085bc: 0a bf ff f0 bcs 4000857c <_Heap_Walk+0x1dc> <== NEVER TAKEN
400085c0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400085c4: c2 27 bf fc st %g1, [ %fp + -4 ]
400085c8: 90 05 a0 08 add %l6, 8, %o0
400085cc: 7f ff e5 39 call 40001ab0 <.urem>
400085d0: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
400085d4: 80 a2 20 00 cmp %o0, 0
400085d8: 12 80 00 2e bne 40008690 <_Heap_Walk+0x2f0> <== NEVER TAKEN
400085dc: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400085e0: c4 05 a0 04 ld [ %l6 + 4 ], %g2
400085e4: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
400085e8: 84 05 80 02 add %l6, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400085ec: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400085f0: 80 88 a0 01 btst 1, %g2
400085f4: 12 80 00 30 bne 400086b4 <_Heap_Walk+0x314> <== NEVER TAKEN
400085f8: 84 10 00 10 mov %l0, %g2
400085fc: ae 10 00 16 mov %l6, %l7
40008600: 10 80 00 17 b 4000865c <_Heap_Walk+0x2bc>
40008604: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008608: 80 a4 00 16 cmp %l0, %l6
4000860c: 02 80 00 33 be 400086d8 <_Heap_Walk+0x338>
40008610: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008614: 18 bf ff da bgu 4000857c <_Heap_Walk+0x1dc>
40008618: 90 10 00 19 mov %i1, %o0
4000861c: 80 a5 80 1d cmp %l6, %i5
40008620: 18 bf ff d8 bgu 40008580 <_Heap_Walk+0x1e0> <== NEVER TAKEN
40008624: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008628: 90 05 a0 08 add %l6, 8, %o0
4000862c: 7f ff e5 21 call 40001ab0 <.urem>
40008630: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40008634: 80 a2 20 00 cmp %o0, 0
40008638: 12 80 00 16 bne 40008690 <_Heap_Walk+0x2f0>
4000863c: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008640: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008644: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008648: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000864c: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008650: 80 88 60 01 btst 1, %g1
40008654: 12 80 00 18 bne 400086b4 <_Heap_Walk+0x314>
40008658: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
4000865c: d8 05 a0 0c ld [ %l6 + 0xc ], %o4
40008660: 80 a3 00 02 cmp %o4, %g2
40008664: 22 bf ff e9 be,a 40008608 <_Heap_Walk+0x268>
40008668: ec 05 a0 08 ld [ %l6 + 8 ], %l6
(*printer)(
4000866c: 90 10 00 19 mov %i1, %o0
40008670: 92 10 20 01 mov 1, %o1
40008674: 96 10 00 16 mov %l6, %o3
40008678: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000867c: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
40008680: 9f c4 40 00 call %l1
40008684: 94 12 a2 10 or %o2, 0x210, %o2
40008688: 81 c7 e0 08 ret
4000868c: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008690: 90 10 00 19 mov %i1, %o0
40008694: 92 10 20 01 mov 1, %o1
40008698: 96 10 00 16 mov %l6, %o3
4000869c: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400086a0: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
400086a4: 9f c4 40 00 call %l1
400086a8: 94 12 a1 c0 or %o2, 0x1c0, %o2
400086ac: 81 c7 e0 08 ret
400086b0: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086b4: 90 10 00 19 mov %i1, %o0
400086b8: 92 10 20 01 mov 1, %o1
400086bc: 96 10 00 16 mov %l6, %o3
400086c0: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400086c4: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086c8: 9f c4 40 00 call %l1
400086cc: 94 12 a1 f0 or %o2, 0x1f0, %o2
400086d0: 81 c7 e0 08 ret
400086d4: 81 e8 00 00 restore
400086d8: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086dc: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086e0: 31 10 00 55 sethi %hi(0x40015400), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400086e4: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086e8: b4 16 a3 d0 or %i2, 0x3d0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086ec: b0 16 23 b8 or %i0, 0x3b8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400086f0: 37 10 00 55 sethi %hi(0x40015400), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400086f4: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400086f8: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400086fc: 80 a0 40 16 cmp %g1, %l6
40008700: 28 80 00 0c bleu,a 40008730 <_Heap_Walk+0x390> <== ALWAYS TAKEN
40008704: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
40008708: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
4000870c: 92 10 20 01 mov 1, %o1
40008710: 96 10 00 17 mov %l7, %o3
40008714: 15 10 00 55 sethi %hi(0x40015400), %o2
40008718: 98 10 00 16 mov %l6, %o4
4000871c: 94 12 a2 48 or %o2, 0x248, %o2
40008720: 9f c4 40 00 call %l1
40008724: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
40008728: 81 c7 e0 08 ret
4000872c: 81 e8 00 00 restore
40008730: 80 a0 40 16 cmp %g1, %l6
40008734: 0a bf ff f6 bcs 4000870c <_Heap_Walk+0x36c>
40008738: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
4000873c: 82 1d c0 15 xor %l7, %l5, %g1
40008740: 80 a0 00 01 cmp %g0, %g1
40008744: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008748: 90 10 00 1d mov %i5, %o0
4000874c: c2 27 bf fc st %g1, [ %fp + -4 ]
40008750: 7f ff e4 d8 call 40001ab0 <.urem>
40008754: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008758: 80 a2 20 00 cmp %o0, 0
4000875c: 02 80 00 05 be 40008770 <_Heap_Walk+0x3d0>
40008760: c2 07 bf fc ld [ %fp + -4 ], %g1
40008764: 80 88 60 ff btst 0xff, %g1
40008768: 12 80 00 79 bne 4000894c <_Heap_Walk+0x5ac>
4000876c: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008770: 80 a4 c0 1d cmp %l3, %i5
40008774: 08 80 00 05 bleu 40008788 <_Heap_Walk+0x3e8>
40008778: 80 a5 c0 16 cmp %l7, %l6
4000877c: 80 88 60 ff btst 0xff, %g1
40008780: 12 80 00 7c bne 40008970 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
40008784: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008788: 2a 80 00 06 bcs,a 400087a0 <_Heap_Walk+0x400>
4000878c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008790: 80 88 60 ff btst 0xff, %g1
40008794: 12 80 00 82 bne 4000899c <_Heap_Walk+0x5fc>
40008798: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000879c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
400087a0: 80 88 60 01 btst 1, %g1
400087a4: 02 80 00 19 be 40008808 <_Heap_Walk+0x468>
400087a8: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
400087ac: 80 a7 20 00 cmp %i4, 0
400087b0: 22 80 00 0e be,a 400087e8 <_Heap_Walk+0x448>
400087b4: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
400087b8: 90 10 00 19 mov %i1, %o0
400087bc: 92 10 20 00 clr %o1
400087c0: 94 10 00 18 mov %i0, %o2
400087c4: 96 10 00 17 mov %l7, %o3
400087c8: 9f c4 40 00 call %l1
400087cc: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400087d0: 80 a4 80 16 cmp %l2, %l6
400087d4: 02 80 00 43 be 400088e0 <_Heap_Walk+0x540>
400087d8: ae 10 00 16 mov %l6, %l7
400087dc: f8 05 a0 04 ld [ %l6 + 4 ], %i4
400087e0: 10 bf ff c5 b 400086f4 <_Heap_Walk+0x354>
400087e4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400087e8: 96 10 00 17 mov %l7, %o3
400087ec: 90 10 00 19 mov %i1, %o0
400087f0: 92 10 20 00 clr %o1
400087f4: 94 10 00 1a mov %i2, %o2
400087f8: 9f c4 40 00 call %l1
400087fc: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40008800: 10 bf ff f5 b 400087d4 <_Heap_Walk+0x434>
40008804: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40008808: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000880c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008810: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40008814: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008818: 80 a0 40 0d cmp %g1, %o5
4000881c: 02 80 00 05 be 40008830 <_Heap_Walk+0x490>
40008820: 86 10 a3 b8 or %g2, 0x3b8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008824: 80 a4 00 0d cmp %l0, %o5
40008828: 02 80 00 3e be 40008920 <_Heap_Walk+0x580>
4000882c: 86 16 e3 80 or %i3, 0x380, %g3
block->next,
block->next == last_free_block ?
40008830: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008834: 19 10 00 54 sethi %hi(0x40015000), %o4
40008838: 80 a1 00 01 cmp %g4, %g1
4000883c: 02 80 00 05 be 40008850 <_Heap_Walk+0x4b0>
40008840: 84 13 23 d8 or %o4, 0x3d8, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008844: 80 a4 00 01 cmp %l0, %g1
40008848: 02 80 00 33 be 40008914 <_Heap_Walk+0x574>
4000884c: 84 16 e3 80 or %i3, 0x380, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008850: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008854: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
40008858: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
4000885c: 90 10 00 19 mov %i1, %o0
40008860: 92 10 20 00 clr %o1
40008864: 15 10 00 55 sethi %hi(0x40015400), %o2
40008868: 96 10 00 17 mov %l7, %o3
4000886c: 94 12 a3 10 or %o2, 0x310, %o2
40008870: 9f c4 40 00 call %l1
40008874: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40008878: da 05 80 00 ld [ %l6 ], %o5
4000887c: 80 a7 40 0d cmp %i5, %o5
40008880: 12 80 00 1a bne 400088e8 <_Heap_Walk+0x548>
40008884: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
40008888: 02 80 00 29 be 4000892c <_Heap_Walk+0x58c>
4000888c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40008890: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008894: 80 a4 00 01 cmp %l0, %g1
40008898: 02 80 00 0b be 400088c4 <_Heap_Walk+0x524> <== NEVER TAKEN
4000889c: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
400088a0: 80 a5 c0 01 cmp %l7, %g1
400088a4: 02 bf ff cc be 400087d4 <_Heap_Walk+0x434>
400088a8: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
400088ac: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400088b0: 80 a4 00 01 cmp %l0, %g1
400088b4: 12 bf ff fc bne 400088a4 <_Heap_Walk+0x504>
400088b8: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088bc: 90 10 00 19 mov %i1, %o0
400088c0: 92 10 20 01 mov 1, %o1
400088c4: 96 10 00 17 mov %l7, %o3
400088c8: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
400088cc: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088d0: 9f c4 40 00 call %l1
400088d4: 94 12 a3 f8 or %o2, 0x3f8, %o2
400088d8: 81 c7 e0 08 ret
400088dc: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
400088e0: 81 c7 e0 08 ret
400088e4: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
400088e8: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
400088ec: 90 10 00 19 mov %i1, %o0
400088f0: 92 10 20 01 mov 1, %o1
400088f4: 96 10 00 17 mov %l7, %o3
400088f8: 15 10 00 55 sethi %hi(0x40015400), %o2
400088fc: 98 10 00 1d mov %i5, %o4
40008900: 94 12 a3 48 or %o2, 0x348, %o2
40008904: 9f c4 40 00 call %l1
40008908: b0 10 20 00 clr %i0
4000890c: 81 c7 e0 08 ret
40008910: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008914: 09 10 00 54 sethi %hi(0x40015000), %g4
40008918: 10 bf ff ce b 40008850 <_Heap_Walk+0x4b0>
4000891c: 84 11 23 e8 or %g4, 0x3e8, %g2 ! 400153e8 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008920: 19 10 00 54 sethi %hi(0x40015000), %o4
40008924: 10 bf ff c3 b 40008830 <_Heap_Walk+0x490>
40008928: 86 13 23 c8 or %o4, 0x3c8, %g3 ! 400153c8 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
4000892c: 92 10 20 01 mov 1, %o1
40008930: 96 10 00 17 mov %l7, %o3
40008934: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40008938: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
4000893c: 9f c4 40 00 call %l1
40008940: 94 12 a3 88 or %o2, 0x388, %o2
40008944: 81 c7 e0 08 ret
40008948: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
4000894c: 92 10 20 01 mov 1, %o1
40008950: 96 10 00 17 mov %l7, %o3
40008954: 15 10 00 55 sethi %hi(0x40015400), %o2
40008958: 98 10 00 1d mov %i5, %o4
4000895c: 94 12 a2 78 or %o2, 0x278, %o2
40008960: 9f c4 40 00 call %l1
40008964: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
40008968: 81 c7 e0 08 ret
4000896c: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
40008970: 90 10 00 19 mov %i1, %o0
40008974: 92 10 20 01 mov 1, %o1
40008978: 96 10 00 17 mov %l7, %o3
4000897c: 15 10 00 55 sethi %hi(0x40015400), %o2
40008980: 98 10 00 1d mov %i5, %o4
40008984: 94 12 a2 a8 or %o2, 0x2a8, %o2
40008988: 9a 10 00 13 mov %l3, %o5
4000898c: 9f c4 40 00 call %l1
40008990: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40008994: 81 c7 e0 08 ret
40008998: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
4000899c: 92 10 20 01 mov 1, %o1
400089a0: 96 10 00 17 mov %l7, %o3
400089a4: 15 10 00 55 sethi %hi(0x40015400), %o2
400089a8: 98 10 00 16 mov %l6, %o4
400089ac: 94 12 a2 d8 or %o2, 0x2d8, %o2
400089b0: 9f c4 40 00 call %l1
400089b4: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
400089b8: 81 c7 e0 08 ret
400089bc: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400089c0: 10 bf ff 47 b 400086dc <_Heap_Walk+0x33c>
400089c4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40006890 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
40006890: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40006894: 23 10 00 55 sethi %hi(0x40015400), %l1
40006898: c2 04 60 84 ld [ %l1 + 0x84 ], %g1 ! 40015484 <_IO_Number_of_drivers>
4000689c: 80 a0 60 00 cmp %g1, 0
400068a0: 02 80 00 0c be 400068d0 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
400068a4: a0 10 20 00 clr %l0
400068a8: a2 14 60 84 or %l1, 0x84, %l1
(void) rtems_io_initialize( major, 0, NULL );
400068ac: 90 10 00 10 mov %l0, %o0
400068b0: 92 10 20 00 clr %o1
400068b4: 40 00 15 18 call 4000bd14 <rtems_io_initialize>
400068b8: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
400068bc: c2 04 40 00 ld [ %l1 ], %g1
400068c0: a0 04 20 01 inc %l0
400068c4: 80 a0 40 10 cmp %g1, %l0
400068c8: 18 bf ff fa bgu 400068b0 <_IO_Initialize_all_drivers+0x20>
400068cc: 90 10 00 10 mov %l0, %o0
400068d0: 81 c7 e0 08 ret
400068d4: 81 e8 00 00 restore
400067c4 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
400067c4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
400067c8: 03 10 00 52 sethi %hi(0x40014800), %g1
400067cc: 82 10 60 c8 or %g1, 0xc8, %g1 ! 400148c8 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
400067d0: e2 00 60 34 ld [ %g1 + 0x34 ], %l1
number_of_drivers = Configuration.maximum_drivers;
400067d4: e8 00 60 30 ld [ %g1 + 0x30 ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
400067d8: 80 a4 40 14 cmp %l1, %l4
400067dc: 0a 80 00 08 bcs 400067fc <_IO_Manager_initialization+0x38>
400067e0: e0 00 60 38 ld [ %g1 + 0x38 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
400067e4: 03 10 00 55 sethi %hi(0x40015400), %g1
400067e8: e0 20 60 88 st %l0, [ %g1 + 0x88 ] ! 40015488 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
400067ec: 03 10 00 55 sethi %hi(0x40015400), %g1
400067f0: e2 20 60 84 st %l1, [ %g1 + 0x84 ] ! 40015484 <_IO_Number_of_drivers>
return;
400067f4: 81 c7 e0 08 ret
400067f8: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
400067fc: 83 2d 20 03 sll %l4, 3, %g1
40006800: a7 2d 20 05 sll %l4, 5, %l3
40006804: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
40006808: 40 00 0c d4 call 40009b58 <_Workspace_Allocate_or_fatal_error>
4000680c: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006810: 03 10 00 55 sethi %hi(0x40015400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006814: 25 10 00 55 sethi %hi(0x40015400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006818: e8 20 60 84 st %l4, [ %g1 + 0x84 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
4000681c: d0 24 a0 88 st %o0, [ %l2 + 0x88 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
40006820: 92 10 20 00 clr %o1
40006824: 40 00 20 c1 call 4000eb28 <memset>
40006828: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000682c: 80 a4 60 00 cmp %l1, 0
40006830: 02 bf ff f1 be 400067f4 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
40006834: da 04 a0 88 ld [ %l2 + 0x88 ], %o5
40006838: 82 10 20 00 clr %g1
4000683c: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
40006840: c4 04 00 01 ld [ %l0 + %g1 ], %g2
40006844: 86 04 00 01 add %l0, %g1, %g3
40006848: c4 23 40 01 st %g2, [ %o5 + %g1 ]
4000684c: d8 00 e0 04 ld [ %g3 + 4 ], %o4
40006850: 84 03 40 01 add %o5, %g1, %g2
40006854: d8 20 a0 04 st %o4, [ %g2 + 4 ]
40006858: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000685c: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
40006860: d8 20 a0 08 st %o4, [ %g2 + 8 ]
40006864: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006868: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
4000686c: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
40006870: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006874: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
40006878: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
4000687c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006880: 18 bf ff f0 bgu 40006840 <_IO_Manager_initialization+0x7c>
40006884: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
40006888: 81 c7 e0 08 ret
4000688c: 81 e8 00 00 restore
4000750c <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000750c: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007510: 09 10 00 54 sethi %hi(0x40015000), %g4
40007514: 84 11 22 54 or %g4, 0x254, %g2 ! 40015254 <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007518: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
4000751c: 90 10 00 18 mov %i0, %o0
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
40007520: f0 21 22 54 st %i0, [ %g4 + 0x254 ]
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
40007524: f4 20 a0 08 st %i2, [ %g2 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007528: 92 0e 60 ff and %i1, 0xff, %o1
4000752c: 40 00 08 2b call 400095d8 <_User_extensions_Fatal>
40007530: f2 28 a0 04 stb %i1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007534: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40007538: 03 10 00 54 sethi %hi(0x40015000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
4000753c: 7f ff e9 e7 call 40001cd8 <sparc_disable_interrupts> <== NOT EXECUTED
40007540: c4 20 63 18 st %g2, [ %g1 + 0x318 ] ! 40015318 <_System_state_Current><== NOT EXECUTED
40007544: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40007548: 30 80 00 00 b,a 40007548 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
400075c0 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075c0: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075c4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075c8: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075cc: 80 a0 60 00 cmp %g1, 0
400075d0: 02 80 00 19 be 40007634 <_Objects_Allocate+0x74> <== NEVER TAKEN
400075d4: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400075d8: a2 04 20 20 add %l0, 0x20, %l1
400075dc: 7f ff fd 5b call 40006b48 <_Chain_Get>
400075e0: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
400075e4: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
400075e8: 80 a0 60 00 cmp %g1, 0
400075ec: 02 80 00 12 be 40007634 <_Objects_Allocate+0x74>
400075f0: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
400075f4: 80 a2 20 00 cmp %o0, 0
400075f8: 02 80 00 11 be 4000763c <_Objects_Allocate+0x7c>
400075fc: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007600: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007604: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007608: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
4000760c: 40 00 28 c3 call 40011918 <.udiv>
40007610: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007614: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007618: 91 2a 20 02 sll %o0, 2, %o0
4000761c: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
40007620: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40007624: 86 00 ff ff add %g3, -1, %g3
40007628: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
4000762c: 82 00 bf ff add %g2, -1, %g1
40007630: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007634: 81 c7 e0 08 ret
40007638: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
4000763c: 40 00 00 11 call 40007680 <_Objects_Extend_information>
40007640: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007644: 7f ff fd 41 call 40006b48 <_Chain_Get>
40007648: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
4000764c: b0 92 20 00 orcc %o0, 0, %i0
40007650: 32 bf ff ed bne,a 40007604 <_Objects_Allocate+0x44>
40007654: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
40007658: 81 c7 e0 08 ret
4000765c: 81 e8 00 00 restore
40007680 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40007680: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007684: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
40007688: 80 a5 20 00 cmp %l4, 0
4000768c: 02 80 00 a9 be 40007930 <_Objects_Extend_information+0x2b0>
40007690: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40007694: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007698: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
4000769c: ab 2d 60 10 sll %l5, 0x10, %l5
400076a0: 92 10 00 13 mov %l3, %o1
400076a4: 40 00 28 9d call 40011918 <.udiv>
400076a8: 91 35 60 10 srl %l5, 0x10, %o0
400076ac: bb 2a 20 10 sll %o0, 0x10, %i5
400076b0: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
400076b4: 80 a7 60 00 cmp %i5, 0
400076b8: 02 80 00 a6 be 40007950 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
400076bc: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
400076c0: c2 05 00 00 ld [ %l4 ], %g1
400076c4: 80 a0 60 00 cmp %g1, 0
400076c8: 02 80 00 a6 be 40007960 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
400076cc: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400076d0: 10 80 00 06 b 400076e8 <_Objects_Extend_information+0x68>
400076d4: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
400076d8: c2 05 00 01 ld [ %l4 + %g1 ], %g1
400076dc: 80 a0 60 00 cmp %g1, 0
400076e0: 22 80 00 08 be,a 40007700 <_Objects_Extend_information+0x80>
400076e4: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076e8: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
400076ec: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076f0: 80 a7 40 10 cmp %i5, %l0
400076f4: 18 bf ff f9 bgu 400076d8 <_Objects_Extend_information+0x58>
400076f8: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400076fc: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40007700: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40007704: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40007708: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
4000770c: 82 10 63 ff or %g1, 0x3ff, %g1
40007710: 80 a5 40 01 cmp %l5, %g1
40007714: 18 80 00 98 bgu 40007974 <_Objects_Extend_information+0x2f4>
40007718: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
4000771c: 40 00 28 45 call 40011830 <.umul>
40007720: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
40007724: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40007728: 80 a0 60 00 cmp %g1, 0
4000772c: 02 80 00 6d be 400078e0 <_Objects_Extend_information+0x260>
40007730: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
40007734: 40 00 08 f9 call 40009b18 <_Workspace_Allocate>
40007738: 01 00 00 00 nop
if ( !new_object_block )
4000773c: a6 92 20 00 orcc %o0, 0, %l3
40007740: 02 80 00 8d be 40007974 <_Objects_Extend_information+0x2f4>
40007744: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
40007748: 80 8d 20 ff btst 0xff, %l4
4000774c: 22 80 00 42 be,a 40007854 <_Objects_Extend_information+0x1d4>
40007750: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
40007754: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40007758: 91 2d 20 01 sll %l4, 1, %o0
4000775c: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
40007760: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40007764: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
40007768: 40 00 08 ec call 40009b18 <_Workspace_Allocate>
4000776c: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
40007770: ac 92 20 00 orcc %o0, 0, %l6
40007774: 02 80 00 7e be 4000796c <_Objects_Extend_information+0x2ec>
40007778: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
4000777c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
40007780: 80 a4 80 01 cmp %l2, %g1
40007784: ae 05 80 14 add %l6, %l4, %l7
40007788: 0a 80 00 5a bcs 400078f0 <_Objects_Extend_information+0x270>
4000778c: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40007790: 80 a4 a0 00 cmp %l2, 0
40007794: 02 80 00 07 be 400077b0 <_Objects_Extend_information+0x130><== NEVER TAKEN
40007798: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
4000779c: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
400077a0: 82 00 60 01 inc %g1
400077a4: 80 a4 80 01 cmp %l2, %g1
400077a8: 18 bf ff fd bgu 4000779c <_Objects_Extend_information+0x11c><== NEVER TAKEN
400077ac: c0 20 80 14 clr [ %g2 + %l4 ]
400077b0: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077b4: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
400077b8: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077bc: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077c0: 80 a4 40 03 cmp %l1, %g3
400077c4: 1a 80 00 0a bcc 400077ec <_Objects_Extend_information+0x16c><== NEVER TAKEN
400077c8: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400077cc: 83 2c 60 02 sll %l1, 2, %g1
400077d0: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077d4: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
400077d8: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
400077dc: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077e0: 80 a0 80 03 cmp %g2, %g3
400077e4: 0a bf ff fd bcs 400077d8 <_Objects_Extend_information+0x158>
400077e8: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
400077ec: 7f ff e9 3b call 40001cd8 <sparc_disable_interrupts>
400077f0: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400077f4: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400077f8: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
400077fc: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
40007800: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
40007804: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007808: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
4000780c: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
40007810: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
40007814: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40007818: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000781c: 03 00 00 40 sethi %hi(0x10000), %g1
40007820: ab 35 60 10 srl %l5, 0x10, %l5
40007824: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007828: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000782c: 82 10 40 15 or %g1, %l5, %g1
40007830: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
40007834: 7f ff e9 2d call 40001ce8 <sparc_enable_interrupts>
40007838: 01 00 00 00 nop
if ( old_tables )
4000783c: 80 a4 a0 00 cmp %l2, 0
40007840: 22 80 00 05 be,a 40007854 <_Objects_Extend_information+0x1d4>
40007844: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
40007848: 40 00 08 bd call 40009b3c <_Workspace_Free>
4000784c: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007850: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007854: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
40007858: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
4000785c: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007860: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007864: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007868: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
4000786c: 90 10 00 12 mov %l2, %o0
40007870: 40 00 11 40 call 4000bd70 <_Chain_Initialize>
40007874: a6 06 20 20 add %i0, 0x20, %l3
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40007878: 10 80 00 0d b 400078ac <_Objects_Extend_information+0x22c>
4000787c: 29 00 00 40 sethi %hi(0x10000), %l4
the_object->id = _Objects_Build_id(
40007880: c6 16 20 04 lduh [ %i0 + 4 ], %g3
40007884: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007888: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000788c: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007890: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007894: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40007898: 90 10 00 13 mov %l3, %o0
4000789c: 92 10 00 01 mov %g1, %o1
index++;
400078a0: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
400078a4: 7f ff fc 93 call 40006af0 <_Chain_Append>
400078a8: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
400078ac: 7f ff fc a7 call 40006b48 <_Chain_Get>
400078b0: 90 10 00 12 mov %l2, %o0
400078b4: 82 92 20 00 orcc %o0, 0, %g1
400078b8: 32 bf ff f2 bne,a 40007880 <_Objects_Extend_information+0x200>
400078bc: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078c0: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
400078c4: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078c8: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078cc: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078d0: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
400078d4: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
400078d8: 81 c7 e0 08 ret
400078dc: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
400078e0: 40 00 08 9e call 40009b58 <_Workspace_Allocate_or_fatal_error>
400078e4: 01 00 00 00 nop
400078e8: 10 bf ff 98 b 40007748 <_Objects_Extend_information+0xc8>
400078ec: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078f0: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
400078f4: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078f8: 40 00 1c 53 call 4000ea44 <memcpy>
400078fc: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
40007900: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
40007904: 94 10 00 1d mov %i5, %o2
40007908: 40 00 1c 4f call 4000ea44 <memcpy>
4000790c: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40007910: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007914: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40007918: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
4000791c: 90 10 00 14 mov %l4, %o0
40007920: 40 00 1c 49 call 4000ea44 <memcpy>
40007924: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40007928: 10 bf ff a4 b 400077b8 <_Objects_Extend_information+0x138>
4000792c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007930: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007934: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40007938: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
4000793c: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007940: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
40007944: ba 10 20 00 clr %i5
40007948: 10 bf ff 6e b 40007700 <_Objects_Extend_information+0x80>
4000794c: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40007950: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40007954: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007958: 10 bf ff 6a b 40007700 <_Objects_Extend_information+0x80> <== NOT EXECUTED
4000795c: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
40007960: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007964: 10 bf ff 67 b 40007700 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40007968: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
4000796c: 40 00 08 74 call 40009b3c <_Workspace_Free>
40007970: 90 10 00 13 mov %l3, %o0
return;
40007974: 81 c7 e0 08 ret
40007978: 81 e8 00 00 restore
40007a28 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40007a28: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40007a2c: b3 2e 60 10 sll %i1, 0x10, %i1
40007a30: b3 36 60 10 srl %i1, 0x10, %i1
40007a34: 80 a6 60 00 cmp %i1, 0
40007a38: 12 80 00 04 bne 40007a48 <_Objects_Get_information+0x20>
40007a3c: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40007a40: 81 c7 e0 08 ret
40007a44: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007a48: 40 00 12 58 call 4000c3a8 <_Objects_API_maximum_class>
40007a4c: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40007a50: 80 a2 20 00 cmp %o0, 0
40007a54: 02 bf ff fb be 40007a40 <_Objects_Get_information+0x18>
40007a58: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007a5c: 0a bf ff f9 bcs 40007a40 <_Objects_Get_information+0x18>
40007a60: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007a64: b1 2e 20 02 sll %i0, 2, %i0
40007a68: 82 10 61 08 or %g1, 0x108, %g1
40007a6c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40007a70: 80 a0 60 00 cmp %g1, 0
40007a74: 02 bf ff f3 be 40007a40 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a78: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007a7c: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40007a80: 80 a4 20 00 cmp %l0, 0
40007a84: 02 bf ff ef be 40007a40 <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a88: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007a8c: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40007a90: 80 a0 00 01 cmp %g0, %g1
40007a94: 82 60 20 00 subx %g0, 0, %g1
40007a98: 10 bf ff ea b 40007a40 <_Objects_Get_information+0x18>
40007a9c: a0 0c 00 01 and %l0, %g1, %l0
400097d4 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
400097d4: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
400097d8: 80 a6 60 00 cmp %i1, 0
400097dc: 12 80 00 05 bne 400097f0 <_Objects_Get_name_as_string+0x1c>
400097e0: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
400097e4: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
400097e8: 81 c7 e0 08 ret
400097ec: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
400097f0: 02 bf ff fe be 400097e8 <_Objects_Get_name_as_string+0x14>
400097f4: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400097f8: 12 80 00 04 bne 40009808 <_Objects_Get_name_as_string+0x34>
400097fc: 03 10 00 9d sethi %hi(0x40027400), %g1
40009800: c2 00 63 18 ld [ %g1 + 0x318 ], %g1 ! 40027718 <_Per_CPU_Information+0xc>
40009804: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
40009808: 7f ff ff b1 call 400096cc <_Objects_Get_information_id>
4000980c: 90 10 00 18 mov %i0, %o0
if ( !information )
40009810: 80 a2 20 00 cmp %o0, 0
40009814: 22 bf ff f5 be,a 400097e8 <_Objects_Get_name_as_string+0x14>
40009818: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
4000981c: 92 10 00 18 mov %i0, %o1
40009820: 40 00 00 2d call 400098d4 <_Objects_Get>
40009824: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
40009828: c2 07 bf fc ld [ %fp + -4 ], %g1
4000982c: 80 a0 60 00 cmp %g1, 0
40009830: 32 bf ff ee bne,a 400097e8 <_Objects_Get_name_as_string+0x14>
40009834: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
40009838: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
4000983c: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
40009840: 89 30 60 18 srl %g1, 0x18, %g4
lname[ 1 ] = (u32_name >> 16) & 0xff;
40009844: 87 30 60 10 srl %g1, 0x10, %g3
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009848: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000984c: c6 2f bf f1 stb %g3, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009850: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
40009854: c8 2f bf f0 stb %g4, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
40009858: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000985c: 84 10 00 04 mov %g4, %g2
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
40009860: b2 86 7f ff addcc %i1, -1, %i1
40009864: 02 80 00 19 be 400098c8 <_Objects_Get_name_as_string+0xf4><== NEVER TAKEN
40009868: 86 10 00 1a mov %i2, %g3
4000986c: 80 a1 20 00 cmp %g4, 0
40009870: 02 80 00 16 be 400098c8 <_Objects_Get_name_as_string+0xf4>
40009874: 19 10 00 7b sethi %hi(0x4001ec00), %o4
40009878: 82 10 20 00 clr %g1
4000987c: 10 80 00 06 b 40009894 <_Objects_Get_name_as_string+0xc0>
40009880: 98 13 22 b8 or %o4, 0x2b8, %o4
40009884: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
40009888: 80 a3 60 00 cmp %o5, 0
4000988c: 02 80 00 0f be 400098c8 <_Objects_Get_name_as_string+0xf4>
40009890: c4 09 00 01 ldub [ %g4 + %g1 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
40009894: da 03 00 00 ld [ %o4 ], %o5
40009898: 88 08 a0 ff and %g2, 0xff, %g4
4000989c: 88 03 40 04 add %o5, %g4, %g4
400098a0: da 49 20 01 ldsb [ %g4 + 1 ], %o5
400098a4: 80 8b 60 97 btst 0x97, %o5
400098a8: 12 80 00 03 bne 400098b4 <_Objects_Get_name_as_string+0xe0>
400098ac: 88 07 bf f0 add %fp, -16, %g4
400098b0: 84 10 20 2a mov 0x2a, %g2
400098b4: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
400098b8: 82 00 60 01 inc %g1
400098bc: 80 a0 40 19 cmp %g1, %i1
400098c0: 0a bf ff f1 bcs 40009884 <_Objects_Get_name_as_string+0xb0>
400098c4: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
400098c8: 40 00 03 05 call 4000a4dc <_Thread_Enable_dispatch>
400098cc: c0 28 c0 00 clrb [ %g3 ]
return name;
400098d0: 30 bf ff c6 b,a 400097e8 <_Objects_Get_name_as_string+0x14>
40018dd0 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018dd0: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40018dd4: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018dd8: 84 22 40 02 sub %o1, %g2, %g2
40018ddc: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40018de0: 80 a0 80 01 cmp %g2, %g1
40018de4: 18 80 00 09 bgu 40018e08 <_Objects_Get_no_protection+0x38>
40018de8: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018dec: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40018df0: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40018df4: 80 a2 20 00 cmp %o0, 0
40018df8: 02 80 00 05 be 40018e0c <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018dfc: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018e00: 81 c3 e0 08 retl
40018e04: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018e08: 82 10 20 01 mov 1, %g1
return NULL;
40018e0c: 90 10 20 00 clr %o0
}
40018e10: 81 c3 e0 08 retl
40018e14: c2 22 80 00 st %g1, [ %o2 ]
400092c8 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
400092c8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400092cc: 80 a6 20 00 cmp %i0, 0
400092d0: 12 80 00 06 bne 400092e8 <_Objects_Id_to_name+0x20>
400092d4: 83 36 20 18 srl %i0, 0x18, %g1
400092d8: 03 10 00 7a sethi %hi(0x4001e800), %g1
400092dc: c2 00 61 f8 ld [ %g1 + 0x1f8 ], %g1 ! 4001e9f8 <_Per_CPU_Information+0xc>
400092e0: f0 00 60 08 ld [ %g1 + 8 ], %i0
400092e4: 83 36 20 18 srl %i0, 0x18, %g1
400092e8: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
400092ec: 84 00 7f ff add %g1, -1, %g2
400092f0: 80 a0 a0 02 cmp %g2, 2
400092f4: 18 80 00 17 bgu 40009350 <_Objects_Id_to_name+0x88>
400092f8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
400092fc: 83 28 60 02 sll %g1, 2, %g1
40009300: 05 10 00 79 sethi %hi(0x4001e400), %g2
40009304: 84 10 a3 08 or %g2, 0x308, %g2 ! 4001e708 <_Objects_Information_table>
40009308: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000930c: 80 a0 60 00 cmp %g1, 0
40009310: 02 80 00 10 be 40009350 <_Objects_Id_to_name+0x88>
40009314: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009318: 85 28 a0 02 sll %g2, 2, %g2
4000931c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009320: 80 a2 20 00 cmp %o0, 0
40009324: 02 80 00 0b be 40009350 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
40009328: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000932c: 7f ff ff ca call 40009254 <_Objects_Get>
40009330: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009334: 80 a2 20 00 cmp %o0, 0
40009338: 02 80 00 06 be 40009350 <_Objects_Id_to_name+0x88>
4000933c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009340: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009344: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009348: 40 00 03 15 call 40009f9c <_Thread_Enable_dispatch>
4000934c: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009350: 81 c7 e0 08 ret
40009354: 91 e8 00 10 restore %g0, %l0, %o0
40007b88 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007b88: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007b8c: 05 10 00 54 sethi %hi(0x40015000), %g2
40007b90: 83 2e 60 02 sll %i1, 2, %g1
40007b94: 84 10 a1 08 or %g2, 0x108, %g2
40007b98: c2 00 80 01 ld [ %g2 + %g1 ], %g1
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40007b9c: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40007ba0: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
40007ba4: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
40007ba8: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007bac: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
40007bb0: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007bb4: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
40007bb8: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40007bbc: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40007bc0: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007bc4: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007bc8: b5 2e a0 10 sll %i2, 0x10, %i2
40007bcc: b5 36 a0 10 srl %i2, 0x10, %i2
40007bd0: 85 2e a0 02 sll %i2, 2, %g2
40007bd4: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40007bd8: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
40007bdc: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007be0: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40007be4: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007be8: 02 80 00 05 be 40007bfc <_Objects_Initialize_information+0x74>
40007bec: b6 2e c0 01 andn %i3, %g1, %i3
40007bf0: 80 a6 e0 00 cmp %i3, 0
40007bf4: 02 80 00 27 be 40007c90 <_Objects_Initialize_information+0x108>
40007bf8: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007bfc: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40007c00: 80 a0 00 1b cmp %g0, %i3
40007c04: b3 2e 60 18 sll %i1, 0x18, %i1
40007c08: 82 40 20 00 addx %g0, 0, %g1
40007c0c: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007c10: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c14: 05 10 00 53 sethi %hi(0x40014c00), %g2
40007c18: b4 16 40 1a or %i1, %i2, %i2
40007c1c: 84 10 a3 60 or %g2, 0x360, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007c20: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40007c24: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c28: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40007c2c: 80 88 e0 03 btst 3, %g3
40007c30: 12 80 00 0c bne 40007c60 <_Objects_Initialize_information+0xd8><== NEVER TAKEN
40007c34: f4 26 20 08 st %i2, [ %i0 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40007c38: 84 06 20 24 add %i0, 0x24, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40007c3c: 82 06 20 20 add %i0, 0x20, %g1
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c40: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007c44: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
head->previous = NULL;
40007c48: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c4c: 80 a6 e0 00 cmp %i3, 0
40007c50: 12 80 00 0e bne 40007c88 <_Objects_Initialize_information+0x100>
40007c54: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
40007c58: 81 c7 e0 08 ret
40007c5c: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40007c60: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40007c64: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
40007c68: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40007c6c: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c70: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007c74: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
head->previous = NULL;
40007c78: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c7c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40007c80: 02 bf ff f6 be 40007c58 <_Objects_Initialize_information+0xd0><== NOT EXECUTED
40007c84: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40007c88: 7f ff fe 7e call 40007680 <_Objects_Extend_information>
40007c8c: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
40007c90: 92 10 20 01 mov 1, %o1
40007c94: 7f ff fe 1e call 4000750c <_Internal_error_Occurred>
40007c98: 94 10 20 13 mov 0x13, %o2
40007d58 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40007d58: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40007d5c: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40007d60: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40007d64: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40007d68: 92 10 00 11 mov %l1, %o1
40007d6c: 40 00 26 eb call 40011918 <.udiv>
40007d70: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007d74: 80 a2 20 00 cmp %o0, 0
40007d78: 02 80 00 34 be 40007e48 <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40007d7c: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40007d80: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40007d84: c2 01 00 00 ld [ %g4 ], %g1
40007d88: 80 a4 40 01 cmp %l1, %g1
40007d8c: 02 80 00 0f be 40007dc8 <_Objects_Shrink_information+0x70><== NEVER TAKEN
40007d90: 82 10 20 00 clr %g1
40007d94: 10 80 00 07 b 40007db0 <_Objects_Shrink_information+0x58>
40007d98: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40007d9c: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40007da0: 80 a4 40 02 cmp %l1, %g2
40007da4: 02 80 00 0a be 40007dcc <_Objects_Shrink_information+0x74>
40007da8: a0 04 00 11 add %l0, %l1, %l0
40007dac: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007db0: 82 00 60 01 inc %g1
40007db4: 80 a2 00 01 cmp %o0, %g1
40007db8: 38 bf ff f9 bgu,a 40007d9c <_Objects_Shrink_information+0x44>
40007dbc: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40007dc0: 81 c7 e0 08 ret
40007dc4: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40007dc8: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
40007dcc: 10 80 00 06 b 40007de4 <_Objects_Shrink_information+0x8c>
40007dd0: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40007dd4: 80 a4 60 00 cmp %l1, 0
40007dd8: 22 80 00 12 be,a 40007e20 <_Objects_Shrink_information+0xc8>
40007ddc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40007de0: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
40007de4: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007de8: 80 a0 40 10 cmp %g1, %l0
40007dec: 0a bf ff fa bcs 40007dd4 <_Objects_Shrink_information+0x7c>
40007df0: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40007df4: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40007df8: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007dfc: 80 a0 40 02 cmp %g1, %g2
40007e00: 1a bf ff f6 bcc 40007dd8 <_Objects_Shrink_information+0x80>
40007e04: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40007e08: 7f ff fb 46 call 40006b20 <_Chain_Extract>
40007e0c: 01 00 00 00 nop
}
}
while ( the_object );
40007e10: 80 a4 60 00 cmp %l1, 0
40007e14: 12 bf ff f4 bne 40007de4 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40007e18: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40007e1c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40007e20: 40 00 07 47 call 40009b3c <_Workspace_Free>
40007e24: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40007e28: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40007e2c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40007e30: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40007e34: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40007e38: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40007e3c: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40007e40: 82 20 80 01 sub %g2, %g1, %g1
40007e44: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40007e48: 81 c7 e0 08 ret
40007e4c: 81 e8 00 00 restore
400064b8 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
400064b8: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
400064bc: 03 10 00 52 sethi %hi(0x40014800), %g1
400064c0: 82 10 60 90 or %g1, 0x90, %g1 ! 40014890 <Configuration_RTEMS_API>
400064c4: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
400064c8: 80 a4 20 00 cmp %l0, 0
400064cc: 02 80 00 19 be 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
400064d0: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
400064d4: 80 a4 a0 00 cmp %l2, 0
400064d8: 02 80 00 16 be 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
400064dc: a2 10 20 00 clr %l1
400064e0: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
400064e4: d4 04 20 04 ld [ %l0 + 4 ], %o2
400064e8: d0 04 00 00 ld [ %l0 ], %o0
400064ec: d2 04 20 08 ld [ %l0 + 8 ], %o1
400064f0: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
400064f4: d8 04 20 0c ld [ %l0 + 0xc ], %o4
400064f8: 7f ff ff 6d call 400062ac <rtems_task_create>
400064fc: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
40006500: 94 92 20 00 orcc %o0, 0, %o2
40006504: 12 80 00 0d bne 40006538 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006508: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
4000650c: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40006510: 40 00 00 0e call 40006548 <rtems_task_start>
40006514: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40006518: 94 92 20 00 orcc %o0, 0, %o2
4000651c: 12 80 00 07 bne 40006538 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006520: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
40006524: 80 a4 80 11 cmp %l2, %l1
40006528: 18 bf ff ef bgu 400064e4 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
4000652c: a0 04 20 1c add %l0, 0x1c, %l0
40006530: 81 c7 e0 08 ret
40006534: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
40006538: 90 10 20 01 mov 1, %o0
4000653c: 40 00 03 f4 call 4000750c <_Internal_error_Occurred>
40006540: 92 10 20 01 mov 1, %o1
4000bad0 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000bad0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000bad4: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000bad8: 80 a4 20 00 cmp %l0, 0
4000badc: 02 80 00 1f be 4000bb58 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000bae0: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000bae4: 7f ff d8 7d call 40001cd8 <sparc_disable_interrupts>
4000bae8: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000baec: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000baf0: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000baf4: 7f ff d8 7d call 40001ce8 <sparc_enable_interrupts>
4000baf8: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000bafc: 80 a4 60 00 cmp %l1, 0
4000bb00: 32 80 00 04 bne,a 4000bb10 <_RTEMS_tasks_Post_switch_extension+0x40>
4000bb04: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000bb08: 81 c7 e0 08 ret
4000bb0c: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb10: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000bb14: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb18: a4 07 bf fc add %fp, -4, %l2
4000bb1c: 27 00 00 3f sethi %hi(0xfc00), %l3
4000bb20: 94 10 00 12 mov %l2, %o2
4000bb24: 92 14 e3 ff or %l3, 0x3ff, %o1
4000bb28: 40 00 08 23 call 4000dbb4 <rtems_task_mode>
4000bb2c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000bb30: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000bb34: 9f c0 40 00 call %g1
4000bb38: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000bb3c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb40: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bb44: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bb48: 92 14 e3 ff or %l3, 0x3ff, %o1
4000bb4c: 94 10 00 12 mov %l2, %o2
4000bb50: 40 00 08 19 call 4000dbb4 <rtems_task_mode>
4000bb54: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000bb58: 81 c7 e0 08 ret
4000bb5c: 81 e8 00 00 restore
4000ba40 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000ba40: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000ba44: 80 a0 60 00 cmp %g1, 0
4000ba48: 22 80 00 0b be,a 4000ba74 <_RTEMS_tasks_Switch_extension+0x34>
4000ba4c: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
tvp->tval = *tvp->ptr;
4000ba50: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000ba54: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000ba58: c8 00 80 00 ld [ %g2 ], %g4
4000ba5c: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000ba60: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000ba64: 80 a0 60 00 cmp %g1, 0
4000ba68: 12 bf ff fa bne 4000ba50 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000ba6c: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000ba70: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
while (tvp) {
4000ba74: 80 a0 60 00 cmp %g1, 0
4000ba78: 02 80 00 0a be 4000baa0 <_RTEMS_tasks_Switch_extension+0x60>
4000ba7c: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000ba80: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000ba84: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000ba88: c8 00 80 00 ld [ %g2 ], %g4
4000ba8c: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000ba90: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000ba94: 80 a0 60 00 cmp %g1, 0
4000ba98: 12 bf ff fa bne 4000ba80 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000ba9c: c6 20 80 00 st %g3, [ %g2 ]
4000baa0: 81 c3 e0 08 retl
400077dc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400077dc: 9d e3 bf 98 save %sp, -104, %sp
400077e0: 11 10 00 7b sethi %hi(0x4001ec00), %o0
400077e4: 92 10 00 18 mov %i0, %o1
400077e8: 90 12 21 1c or %o0, 0x11c, %o0
400077ec: 40 00 08 43 call 400098f8 <_Objects_Get>
400077f0: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400077f4: c2 07 bf fc ld [ %fp + -4 ], %g1
400077f8: 80 a0 60 00 cmp %g1, 0
400077fc: 12 80 00 16 bne 40007854 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
40007800: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40007804: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40007808: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
4000780c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40007810: 80 88 80 01 btst %g2, %g1
40007814: 22 80 00 08 be,a 40007834 <_Rate_monotonic_Timeout+0x58>
40007818: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000781c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40007820: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007824: 80 a0 80 01 cmp %g2, %g1
40007828: 02 80 00 19 be 4000788c <_Rate_monotonic_Timeout+0xb0>
4000782c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40007830: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007834: 80 a0 60 01 cmp %g1, 1
40007838: 02 80 00 09 be 4000785c <_Rate_monotonic_Timeout+0x80>
4000783c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40007840: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40007844: 03 10 00 7b sethi %hi(0x4001ec00), %g1
40007848: c4 00 62 80 ld [ %g1 + 0x280 ], %g2 ! 4001ee80 <_Thread_Dispatch_disable_level>
4000784c: 84 00 bf ff add %g2, -1, %g2
40007850: c4 20 62 80 st %g2, [ %g1 + 0x280 ]
40007854: 81 c7 e0 08 ret
40007858: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
4000785c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
40007860: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007864: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40007868: 7f ff fe 4c call 40007198 <_Rate_monotonic_Initiate_statistics>
4000786c: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007870: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007874: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007878: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000787c: 90 12 23 60 or %o0, 0x360, %o0
40007880: 40 00 0f b6 call 4000b758 <_Watchdog_Insert>
40007884: 92 04 20 10 add %l0, 0x10, %o1
40007888: 30 bf ff ef b,a 40007844 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
4000788c: 40 00 0a 71 call 4000a250 <_Thread_Clear_state>
40007890: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40007894: 10 bf ff f5 b 40007868 <_Rate_monotonic_Timeout+0x8c>
40007898: 90 10 00 10 mov %l0, %o0
4000c3d0 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
4000c3d0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
4000c3d4: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
4000c3d8: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
4000c3dc: c6 00 40 00 ld [ %g1 ], %g3
4000c3e0: c4 00 60 08 ld [ %g1 + 8 ], %g2
4000c3e4: 80 a0 c0 02 cmp %g3, %g2
4000c3e8: 22 80 00 39 be,a 4000c4cc <_Scheduler_priority_Block+0xfc>
4000c3ec: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000c3f0: c4 06 40 00 ld [ %i1 ], %g2
previous = the_node->previous;
4000c3f4: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
4000c3f8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000c3fc: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000c400: 03 10 00 54 sethi %hi(0x40015000), %g1
4000c404: 82 10 63 ec or %g1, 0x3ec, %g1 ! 400153ec <_Per_CPU_Information>
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
4000c408: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000c40c: 80 a6 40 02 cmp %i1, %g2
4000c410: 02 80 00 09 be 4000c434 <_Scheduler_priority_Block+0x64>
4000c414: 05 10 00 55 sethi %hi(0x40015400), %g2
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
4000c418: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000c41c: 80 a6 40 02 cmp %i1, %g2
4000c420: 12 80 00 03 bne 4000c42c <_Scheduler_priority_Block+0x5c>
4000c424: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000c428: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4000c42c: 81 c7 e0 08 ret
4000c430: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000c434: c4 10 a0 10 lduh [ %g2 + 0x10 ], %g2
4000c438: 85 28 a0 10 sll %g2, 0x10, %g2
4000c43c: 89 30 a0 10 srl %g2, 0x10, %g4
4000c440: 80 a1 20 ff cmp %g4, 0xff
4000c444: 18 80 00 38 bgu 4000c524 <_Scheduler_priority_Block+0x154>
4000c448: c6 06 00 00 ld [ %i0 ], %g3
4000c44c: 1b 10 00 4f sethi %hi(0x40013c00), %o5
4000c450: 9a 13 63 70 or %o5, 0x370, %o5 ! 40013f70 <__log2table>
4000c454: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
4000c458: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000c45c: 85 28 a0 10 sll %g2, 0x10, %g2
4000c460: 19 10 00 55 sethi %hi(0x40015400), %o4
4000c464: 89 30 a0 0f srl %g2, 0xf, %g4
4000c468: 98 13 20 20 or %o4, 0x20, %o4
4000c46c: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
4000c470: 89 29 20 10 sll %g4, 0x10, %g4
4000c474: 99 31 20 10 srl %g4, 0x10, %o4
4000c478: 80 a3 20 ff cmp %o4, 0xff
4000c47c: 38 80 00 28 bgu,a 4000c51c <_Scheduler_priority_Block+0x14c>
4000c480: 89 31 20 18 srl %g4, 0x18, %g4
4000c484: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
4000c488: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
4000c48c: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
4000c490: 89 29 20 10 sll %g4, 0x10, %g4
4000c494: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000c498: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000c49c: 9b 29 20 02 sll %g4, 2, %o5
4000c4a0: 85 29 20 04 sll %g4, 4, %g2
4000c4a4: 84 20 80 0d sub %g2, %o5, %g2
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
4000c4a8: da 00 c0 02 ld [ %g3 + %g2 ], %o5
4000c4ac: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c4b0: 84 00 a0 04 add %g2, 4, %g2
4000c4b4: 80 a3 40 02 cmp %o5, %g2
4000c4b8: 02 80 00 03 be 4000c4c4 <_Scheduler_priority_Block+0xf4> <== NEVER TAKEN
4000c4bc: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000c4c0: 88 10 00 0d mov %o5, %g4
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000c4c4: 10 bf ff d5 b 4000c418 <_Scheduler_priority_Block+0x48>
4000c4c8: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000c4cc: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000c4d0: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
4000c4d4: c4 20 40 00 st %g2, [ %g1 ]
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
if ( _Chain_Has_only_one_node( ready ) ) {
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
4000c4d8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000c4dc: c6 00 60 04 ld [ %g1 + 4 ], %g3
4000c4e0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
4000c4e4: c8 10 c0 00 lduh [ %g3 ], %g4
4000c4e8: 84 09 00 02 and %g4, %g2, %g2
4000c4ec: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
4000c4f0: 85 28 a0 10 sll %g2, 0x10, %g2
4000c4f4: 80 a0 a0 00 cmp %g2, 0
4000c4f8: 32 bf ff c3 bne,a 4000c404 <_Scheduler_priority_Block+0x34>
4000c4fc: 03 10 00 54 sethi %hi(0x40015000), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
4000c500: 05 10 00 55 sethi %hi(0x40015400), %g2
4000c504: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
4000c508: c6 10 a0 10 lduh [ %g2 + 0x10 ], %g3
4000c50c: 82 08 c0 01 and %g3, %g1, %g1
4000c510: c2 30 a0 10 sth %g1, [ %g2 + 0x10 ]
4000c514: 10 bf ff bc b 4000c404 <_Scheduler_priority_Block+0x34>
4000c518: 03 10 00 54 sethi %hi(0x40015000), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000c51c: 10 bf ff dc b 4000c48c <_Scheduler_priority_Block+0xbc>
4000c520: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000c524: 1b 10 00 4f sethi %hi(0x40013c00), %o5
4000c528: 85 30 a0 18 srl %g2, 0x18, %g2
4000c52c: 9a 13 63 70 or %o5, 0x370, %o5
4000c530: 10 bf ff cb b 4000c45c <_Scheduler_priority_Block+0x8c>
4000c534: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
40007fc4 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
40007fc4: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007fc8: 03 10 00 55 sethi %hi(0x40015400), %g1
40007fcc: c2 10 60 10 lduh [ %g1 + 0x10 ], %g1 ! 40015410 <_Priority_Major_bit_map>
40007fd0: 83 28 60 10 sll %g1, 0x10, %g1
40007fd4: 87 30 60 10 srl %g1, 0x10, %g3
40007fd8: 80 a0 e0 ff cmp %g3, 0xff
40007fdc: 18 80 00 26 bgu 40008074 <_Scheduler_priority_Schedule+0xb0>
40007fe0: c4 06 00 00 ld [ %i0 ], %g2
40007fe4: 09 10 00 4f sethi %hi(0x40013c00), %g4
40007fe8: 88 11 23 70 or %g4, 0x370, %g4 ! 40013f70 <__log2table>
40007fec: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
40007ff0: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007ff4: 83 28 60 10 sll %g1, 0x10, %g1
40007ff8: 1b 10 00 55 sethi %hi(0x40015400), %o5
40007ffc: 87 30 60 0f srl %g1, 0xf, %g3
40008000: 9a 13 60 20 or %o5, 0x20, %o5
40008004: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
40008008: 87 28 e0 10 sll %g3, 0x10, %g3
4000800c: 9b 30 e0 10 srl %g3, 0x10, %o5
40008010: 80 a3 60 ff cmp %o5, 0xff
40008014: 38 80 00 16 bgu,a 4000806c <_Scheduler_priority_Schedule+0xa8>
40008018: 87 30 e0 18 srl %g3, 0x18, %g3
4000801c: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
40008020: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
40008024: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
40008028: 87 28 e0 10 sll %g3, 0x10, %g3
4000802c: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40008030: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40008034: 89 28 e0 02 sll %g3, 2, %g4
40008038: 83 28 e0 04 sll %g3, 4, %g1
4000803c: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body( the_scheduler );
}
40008040: c8 00 80 01 ld [ %g2 + %g1 ], %g4
40008044: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008048: 82 00 60 04 add %g1, 4, %g1
4000804c: 80 a1 00 01 cmp %g4, %g1
40008050: 02 80 00 03 be 4000805c <_Scheduler_priority_Schedule+0x98><== NEVER TAKEN
40008054: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40008058: 86 10 00 04 mov %g4, %g3
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000805c: 03 10 00 54 sethi %hi(0x40015000), %g1
40008060: c6 20 63 fc st %g3, [ %g1 + 0x3fc ] ! 400153fc <_Per_CPU_Information+0x10>
40008064: 81 c7 e0 08 ret
40008068: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000806c: 10 bf ff ee b 40008024 <_Scheduler_priority_Schedule+0x60>
40008070: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008074: 09 10 00 4f sethi %hi(0x40013c00), %g4
40008078: 83 30 60 18 srl %g1, 0x18, %g1
4000807c: 88 11 23 70 or %g4, 0x370, %g4
40008080: 10 bf ff dd b 40007ff4 <_Scheduler_priority_Schedule+0x30>
40008084: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
400081c4 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
400081c4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
400081c8: 25 10 00 54 sethi %hi(0x40015000), %l2
400081cc: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
400081d0: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
400081d4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
400081d8: 7f ff e6 c0 call 40001cd8 <sparc_disable_interrupts>
400081dc: e2 00 40 00 ld [ %g1 ], %l1
400081e0: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
400081e4: c4 04 40 00 ld [ %l1 ], %g2
400081e8: c2 04 60 08 ld [ %l1 + 8 ], %g1
400081ec: 80 a0 80 01 cmp %g2, %g1
400081f0: 02 80 00 16 be 40008248 <_Scheduler_priority_Yield+0x84>
400081f4: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400081f8: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
400081fc: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
40008200: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40008204: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008208: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
4000820c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
40008210: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
40008214: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40008218: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
4000821c: 7f ff e6 b3 call 40001ce8 <sparc_enable_interrupts>
40008220: 01 00 00 00 nop
40008224: 7f ff e6 ad call 40001cd8 <sparc_disable_interrupts>
40008228: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
4000822c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40008230: 80 a4 00 01 cmp %l0, %g1
40008234: 02 80 00 0b be 40008260 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
40008238: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
4000823c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40008240: 7f ff e6 aa call 40001ce8 <sparc_enable_interrupts>
40008244: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
40008248: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
4000824c: 80 a4 00 01 cmp %l0, %g1
40008250: 02 bf ff fc be 40008240 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
40008254: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40008258: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
4000825c: 30 bf ff f9 b,a 40008240 <_Scheduler_priority_Yield+0x7c><== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40008260: c2 04 40 00 ld [ %l1 ], %g1
40008264: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
40008268: 82 10 20 01 mov 1, %g1
4000826c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
40008270: 30 bf ff f4 b,a 40008240 <_Scheduler_priority_Yield+0x7c>
40007058 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
40007058: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
4000705c: 07 10 00 54 sethi %hi(0x40015000), %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007060: 03 10 00 52 sethi %hi(0x40014800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007064: da 00 e2 d0 ld [ %g3 + 0x2d0 ], %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007068: c4 00 60 d4 ld [ %g1 + 0xd4 ], %g2
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
4000706c: 9a 03 60 01 inc %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007070: 83 28 a0 02 sll %g2, 2, %g1
40007074: 89 28 a0 07 sll %g2, 7, %g4
40007078: 82 21 00 01 sub %g4, %g1, %g1
4000707c: 82 00 40 02 add %g1, %g2, %g1
40007080: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007084: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007088: da 20 e2 d0 st %o5, [ %g3 + 0x2d0 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
4000708c: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007090: c2 27 bf fc st %g1, [ %fp + -4 ]
40007094: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007098: 11 10 00 54 sethi %hi(0x40015000), %o0
4000709c: 40 00 08 cb call 400093c8 <_Timespec_Add_to>
400070a0: 90 12 22 1c or %o0, 0x21c, %o0 ! 4001521c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
400070a4: 92 10 00 10 mov %l0, %o1
400070a8: 11 10 00 54 sethi %hi(0x40015000), %o0
400070ac: 40 00 08 c7 call 400093c8 <_Timespec_Add_to>
400070b0: 90 12 22 48 or %o0, 0x248, %o0 ! 40015248 <_TOD_Now>
while ( seconds ) {
400070b4: a0 92 20 00 orcc %o0, 0, %l0
400070b8: 02 80 00 08 be 400070d8 <_TOD_Tickle_ticks+0x80>
400070bc: 23 10 00 54 sethi %hi(0x40015000), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
400070c0: a2 14 62 74 or %l1, 0x274, %l1 ! 40015274 <_Watchdog_Seconds_chain>
400070c4: 40 00 0a 4f call 40009a00 <_Watchdog_Tickle>
400070c8: 90 10 00 11 mov %l1, %o0
400070cc: a0 84 3f ff addcc %l0, -1, %l0
400070d0: 12 bf ff fd bne 400070c4 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
400070d4: 01 00 00 00 nop
400070d8: 81 c7 e0 08 ret
400070dc: 81 e8 00 00 restore
4000714c <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
4000714c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007150: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007154: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007158: d2 00 61 b4 ld [ %g1 + 0x1b4 ], %o1
if ((!the_tod) ||
4000715c: 80 a4 20 00 cmp %l0, 0
40007160: 02 80 00 2c be 40007210 <_TOD_Validate+0xc4> <== NEVER TAKEN
40007164: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007168: 11 00 03 d0 sethi %hi(0xf4000), %o0
4000716c: 40 00 49 19 call 400195d0 <.udiv>
40007170: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007174: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007178: 80 a2 00 01 cmp %o0, %g1
4000717c: 08 80 00 25 bleu 40007210 <_TOD_Validate+0xc4>
40007180: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007184: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007188: 80 a0 60 3b cmp %g1, 0x3b
4000718c: 18 80 00 21 bgu 40007210 <_TOD_Validate+0xc4>
40007190: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007194: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40007198: 80 a0 60 3b cmp %g1, 0x3b
4000719c: 18 80 00 1d bgu 40007210 <_TOD_Validate+0xc4>
400071a0: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
400071a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400071a8: 80 a0 60 17 cmp %g1, 0x17
400071ac: 18 80 00 19 bgu 40007210 <_TOD_Validate+0xc4>
400071b0: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
400071b4: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
400071b8: 80 a0 60 00 cmp %g1, 0
400071bc: 02 80 00 15 be 40007210 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071c0: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
400071c4: 18 80 00 13 bgu 40007210 <_TOD_Validate+0xc4>
400071c8: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071cc: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
400071d0: 80 a0 a7 c3 cmp %g2, 0x7c3
400071d4: 08 80 00 0f bleu 40007210 <_TOD_Validate+0xc4>
400071d8: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
400071dc: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071e0: 80 a0 e0 00 cmp %g3, 0
400071e4: 02 80 00 0b be 40007210 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071e8: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
400071ec: 32 80 00 0b bne,a 40007218 <_TOD_Validate+0xcc>
400071f0: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
400071f4: 82 00 60 0d add %g1, 0xd, %g1
400071f8: 05 10 00 76 sethi %hi(0x4001d800), %g2
400071fc: 83 28 60 02 sll %g1, 2, %g1
40007200: 84 10 a2 80 or %g2, 0x280, %g2
40007204: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007208: 80 a0 40 03 cmp %g1, %g3
4000720c: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007210: 81 c7 e0 08 ret
40007214: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007218: 05 10 00 76 sethi %hi(0x4001d800), %g2
4000721c: 84 10 a2 80 or %g2, 0x280, %g2 ! 4001da80 <_TOD_Days_per_month>
40007220: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007224: 80 a0 40 03 cmp %g1, %g3
40007228: b0 60 3f ff subx %g0, -1, %i0
4000722c: 81 c7 e0 08 ret
40007230: 81 e8 00 00 restore
400082d0 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
400082d0: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
400082d4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
400082d8: 40 00 03 ac call 40009188 <_Thread_Set_transient>
400082dc: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
400082e0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
400082e4: 80 a0 40 19 cmp %g1, %i1
400082e8: 02 80 00 05 be 400082fc <_Thread_Change_priority+0x2c>
400082ec: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
400082f0: 90 10 00 18 mov %i0, %o0
400082f4: 40 00 03 88 call 40009114 <_Thread_Set_priority>
400082f8: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
400082fc: 7f ff e6 77 call 40001cd8 <sparc_disable_interrupts>
40008300: 01 00 00 00 nop
40008304: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40008308: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
4000830c: 80 a6 60 04 cmp %i1, 4
40008310: 02 80 00 18 be 40008370 <_Thread_Change_priority+0xa0>
40008314: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40008318: 02 80 00 0b be 40008344 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
4000831c: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40008320: 7f ff e6 72 call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
40008324: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40008328: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
4000832c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008330: 80 8e 40 01 btst %i1, %g1 <== NOT EXECUTED
40008334: 32 80 00 0d bne,a 40008368 <_Thread_Change_priority+0x98><== NOT EXECUTED
40008338: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
4000833c: 81 c7 e0 08 ret
40008340: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008344: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40008348: 7f ff e6 68 call 40001ce8 <sparc_enable_interrupts>
4000834c: 90 10 00 18 mov %i0, %o0
40008350: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008354: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008358: 80 8e 40 01 btst %i1, %g1
4000835c: 02 bf ff f8 be 4000833c <_Thread_Change_priority+0x6c>
40008360: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40008364: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40008368: 40 00 03 3b call 40009054 <_Thread_queue_Requeue>
4000836c: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40008370: 12 80 00 15 bne 400083c4 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
40008374: 80 8e a0 ff btst 0xff, %i2
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
40008378: 02 80 00 2a be 40008420 <_Thread_Change_priority+0x150>
4000837c: c0 24 20 10 clr [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue_first(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
40008380: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40008384: 07 10 00 55 sethi %hi(0x40015400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40008388: c8 00 60 04 ld [ %g1 + 4 ], %g4
4000838c: da 10 60 0a lduh [ %g1 + 0xa ], %o5
40008390: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
40008394: c4 00 40 00 ld [ %g1 ], %g2
40008398: 9a 13 00 0d or %o4, %o5, %o5
4000839c: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
400083a0: c8 10 60 08 lduh [ %g1 + 8 ], %g4
400083a4: da 10 e0 10 lduh [ %g3 + 0x10 ], %o5
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
400083a8: c2 00 80 00 ld [ %g2 ], %g1
400083ac: 88 13 40 04 or %o5, %g4, %g4
400083b0: c8 30 e0 10 sth %g4, [ %g3 + 0x10 ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
400083b4: c4 24 20 04 st %g2, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
400083b8: e0 20 80 00 st %l0, [ %g2 ]
the_node->next = before_node;
400083bc: c2 24 00 00 st %g1, [ %l0 ]
before_node->previous = the_node;
400083c0: e0 20 60 04 st %l0, [ %g1 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
400083c4: 7f ff e6 49 call 40001ce8 <sparc_enable_interrupts>
400083c8: 90 10 00 18 mov %i0, %o0
400083cc: 7f ff e6 43 call 40001cd8 <sparc_disable_interrupts>
400083d0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
400083d4: 11 10 00 54 sethi %hi(0x40015000), %o0
400083d8: 90 12 22 24 or %o0, 0x224, %o0 ! 40015224 <_Scheduler>
400083dc: c2 02 20 04 ld [ %o0 + 4 ], %g1
400083e0: 9f c0 40 00 call %g1
400083e4: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
400083e8: 03 10 00 54 sethi %hi(0x40015000), %g1
400083ec: 82 10 63 ec or %g1, 0x3ec, %g1 ! 400153ec <_Per_CPU_Information>
400083f0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
400083f4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
400083f8: 80 a0 80 03 cmp %g2, %g3
400083fc: 02 80 00 07 be 40008418 <_Thread_Change_priority+0x148>
40008400: 01 00 00 00 nop
40008404: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40008408: 80 a0 a0 00 cmp %g2, 0
4000840c: 02 80 00 03 be 40008418 <_Thread_Change_priority+0x148>
40008410: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008414: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40008418: 7f ff e6 34 call 40001ce8 <sparc_enable_interrupts>
4000841c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
40008420: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40008424: 07 10 00 55 sethi %hi(0x40015400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40008428: c8 00 60 04 ld [ %g1 + 4 ], %g4
4000842c: da 10 60 0a lduh [ %g1 + 0xa ], %o5
40008430: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
40008434: c4 00 40 00 ld [ %g1 ], %g2
40008438: 9a 13 00 0d or %o4, %o5, %o5
4000843c: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008440: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40008444: da 10 e0 10 lduh [ %g3 + 0x10 ], %o5
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008448: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000844c: 88 13 40 04 or %o5, %g4, %g4
40008450: c8 30 e0 10 sth %g4, [ %g3 + 0x10 ]
the_node->next = tail;
tail->previous = the_node;
40008454: e0 20 a0 08 st %l0, [ %g2 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40008458: 86 00 a0 04 add %g2, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
4000845c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40008460: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40008464: 10 bf ff d8 b 400083c4 <_Thread_Change_priority+0xf4>
40008468: c2 24 20 04 st %g1, [ %l0 + 4 ]
4000864c <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000864c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008650: 90 10 00 18 mov %i0, %o0
40008654: 40 00 00 6c call 40008804 <_Thread_Get>
40008658: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000865c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008660: 80 a0 60 00 cmp %g1, 0
40008664: 12 80 00 08 bne 40008684 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008668: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
4000866c: 7f ff ff 80 call 4000846c <_Thread_Clear_state>
40008670: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008674: 03 10 00 54 sethi %hi(0x40015000), %g1
40008678: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
4000867c: 84 00 bf ff add %g2, -1, %g2
40008680: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
40008684: 81 c7 e0 08 ret
40008688: 81 e8 00 00 restore
4000868c <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
4000868c: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40008690: 25 10 00 54 sethi %hi(0x40015000), %l2
40008694: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400153ec <_Per_CPU_Information>
_ISR_Disable( level );
40008698: 7f ff e5 90 call 40001cd8 <sparc_disable_interrupts>
4000869c: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
400086a0: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
400086a4: 80 a0 60 00 cmp %g1, 0
400086a8: 02 80 00 42 be 400087b0 <_Thread_Dispatch+0x124>
400086ac: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
400086b0: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400086b4: 82 10 20 01 mov 1, %g1
400086b8: c2 25 a1 a0 st %g1, [ %l6 + 0x1a0 ]
_Thread_Dispatch_necessary = false;
400086bc: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400086c0: 80 a4 40 10 cmp %l1, %l0
400086c4: 02 80 00 3b be 400087b0 <_Thread_Dispatch+0x124>
400086c8: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
400086cc: 27 10 00 54 sethi %hi(0x40015000), %l3
400086d0: 3b 10 00 54 sethi %hi(0x40015000), %i5
400086d4: a6 14 e2 6c or %l3, 0x26c, %l3
400086d8: aa 07 bf f8 add %fp, -8, %l5
400086dc: a8 07 bf f0 add %fp, -16, %l4
400086e0: ba 17 62 44 or %i5, 0x244, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400086e4: 37 10 00 54 sethi %hi(0x40015000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
400086e8: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400086ec: 10 80 00 2b b 40008798 <_Thread_Dispatch+0x10c>
400086f0: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
400086f4: 7f ff e5 7d call 40001ce8 <sparc_enable_interrupts>
400086f8: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
400086fc: 40 00 0e 18 call 4000bf5c <_TOD_Get_uptime>
40008700: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
40008704: 90 10 00 17 mov %l7, %o0
40008708: 92 10 00 15 mov %l5, %o1
4000870c: 40 00 03 48 call 4000942c <_Timespec_Subtract>
40008710: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008714: 92 10 00 14 mov %l4, %o1
40008718: 40 00 03 2c call 400093c8 <_Timespec_Add_to>
4000871c: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
40008720: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008724: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008728: c4 24 c0 00 st %g2, [ %l3 ]
4000872c: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
40008730: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008734: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008738: 80 a0 60 00 cmp %g1, 0
4000873c: 02 80 00 06 be 40008754 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
40008740: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
40008744: c4 00 40 00 ld [ %g1 ], %g2
40008748: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
4000874c: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008750: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008754: 40 00 03 fa call 4000973c <_User_extensions_Thread_switch>
40008758: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
4000875c: 90 04 60 c0 add %l1, 0xc0, %o0
40008760: 40 00 05 0d call 40009b94 <_CPU_Context_switch>
40008764: 92 04 20 c0 add %l0, 0xc0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
40008768: 7f ff e5 5c call 40001cd8 <sparc_disable_interrupts>
4000876c: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008770: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40008774: 80 a0 60 00 cmp %g1, 0
40008778: 02 80 00 0e be 400087b0 <_Thread_Dispatch+0x124>
4000877c: 01 00 00 00 nop
heir = _Thread_Heir;
40008780: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40008784: f8 25 a1 a0 st %i4, [ %l6 + 0x1a0 ]
_Thread_Dispatch_necessary = false;
40008788: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
4000878c: 80 a4 00 11 cmp %l0, %l1
40008790: 02 80 00 08 be 400087b0 <_Thread_Dispatch+0x124> <== NEVER TAKEN
40008794: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008798: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
4000879c: 80 a0 60 01 cmp %g1, 1
400087a0: 12 bf ff d5 bne 400086f4 <_Thread_Dispatch+0x68>
400087a4: c2 06 e1 04 ld [ %i3 + 0x104 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400087a8: 10 bf ff d3 b 400086f4 <_Thread_Dispatch+0x68>
400087ac: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400087b0: c0 25 a1 a0 clr [ %l6 + 0x1a0 ]
_ISR_Enable( level );
400087b4: 7f ff e5 4d call 40001ce8 <sparc_enable_interrupts>
400087b8: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400087bc: 7f ff f8 81 call 400069c0 <_API_extensions_Run_postswitch>
400087c0: 01 00 00 00 nop
}
400087c4: 81 c7 e0 08 ret
400087c8: 81 e8 00 00 restore
40008804 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
40008804: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008808: 80 a2 20 00 cmp %o0, 0
4000880c: 02 80 00 1d be 40008880 <_Thread_Get+0x7c>
40008810: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40008814: 85 32 20 18 srl %o0, 0x18, %g2
40008818: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000881c: 86 00 bf ff add %g2, -1, %g3
40008820: 80 a0 e0 02 cmp %g3, 2
40008824: 38 80 00 14 bgu,a 40008874 <_Thread_Get+0x70>
40008828: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
4000882c: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40008830: 80 a1 20 01 cmp %g4, 1
40008834: 32 80 00 10 bne,a 40008874 <_Thread_Get+0x70>
40008838: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
4000883c: 85 28 a0 02 sll %g2, 2, %g2
40008840: 07 10 00 54 sethi %hi(0x40015000), %g3
40008844: 86 10 e1 08 or %g3, 0x108, %g3 ! 40015108 <_Objects_Information_table>
40008848: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
4000884c: 80 a0 a0 00 cmp %g2, 0
40008850: 22 80 00 16 be,a 400088a8 <_Thread_Get+0xa4> <== NEVER TAKEN
40008854: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
#endif
information = api_information[ the_class ];
40008858: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
4000885c: 80 a2 20 00 cmp %o0, 0
40008860: 02 80 00 10 be 400088a0 <_Thread_Get+0x9c>
40008864: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008868: 82 13 c0 00 mov %o7, %g1
4000886c: 7f ff fc aa call 40007b14 <_Objects_Get>
40008870: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
40008874: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
40008878: 81 c3 e0 08 retl
4000887c: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008880: 03 10 00 54 sethi %hi(0x40015000), %g1
40008884: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
40008888: 84 00 a0 01 inc %g2
4000888c: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
40008890: 03 10 00 54 sethi %hi(0x40015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40008894: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
40008898: 81 c3 e0 08 retl
4000889c: d0 00 63 f8 ld [ %g1 + 0x3f8 ], %o0
#endif
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
400088a0: 81 c3 e0 08 retl
400088a4: c8 22 80 00 st %g4, [ %o2 ]
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
400088a8: 81 c3 e0 08 retl <== NOT EXECUTED
400088ac: 90 10 20 00 clr %o0 <== NOT EXECUTED
4000df40 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000df40: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000df44: 03 10 00 54 sethi %hi(0x40015000), %g1
4000df48: e0 00 63 f8 ld [ %g1 + 0x3f8 ], %l0 ! 400153f8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000df4c: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000df50: be 17 e3 40 or %i7, 0x340, %i7 ! 4000df40 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000df54: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000df58: 7f ff cf 64 call 40001ce8 <sparc_enable_interrupts>
4000df5c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000df60: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000df64: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000df68: e2 08 63 68 ldub [ %g1 + 0x368 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000df6c: 90 10 00 10 mov %l0, %o0
4000df70: 7f ff ed 73 call 4000953c <_User_extensions_Thread_begin>
4000df74: c4 28 63 68 stb %g2, [ %g1 + 0x368 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000df78: 7f ff ea 15 call 400087cc <_Thread_Enable_dispatch>
4000df7c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000df80: 80 a4 60 00 cmp %l1, 0
4000df84: 02 80 00 0c be 4000dfb4 <_Thread_Handler+0x74>
4000df88: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000df8c: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000df90: 80 a0 60 00 cmp %g1, 0
4000df94: 22 80 00 0f be,a 4000dfd0 <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000df98: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000df9c: 7f ff ed 7c call 4000958c <_User_extensions_Thread_exitted>
4000dfa0: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000dfa4: 90 10 20 00 clr %o0
4000dfa8: 92 10 20 01 mov 1, %o1
4000dfac: 7f ff e5 58 call 4000750c <_Internal_error_Occurred>
4000dfb0: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000dfb4: 40 00 1a 05 call 400147c8 <_init>
4000dfb8: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000dfbc: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000dfc0: 80 a0 60 00 cmp %g1, 0
4000dfc4: 12 bf ff f6 bne 4000df9c <_Thread_Handler+0x5c> <== NEVER TAKEN
4000dfc8: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000dfcc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000dfd0: 9f c0 40 00 call %g1
4000dfd4: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000dfd8: 10 bf ff f1 b 4000df9c <_Thread_Handler+0x5c>
4000dfdc: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
400088b0 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400088b0: 9d e3 bf a0 save %sp, -96, %sp
400088b4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400088b8: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400088bc: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400088c0: c0 26 61 4c clr [ %i1 + 0x14c ]
400088c4: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400088c8: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400088cc: 90 10 00 19 mov %i1, %o0
400088d0: 40 00 02 55 call 40009224 <_Thread_Stack_Allocate>
400088d4: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400088d8: 80 a2 00 1b cmp %o0, %i3
400088dc: 0a 80 00 55 bcs 40008a30 <_Thread_Initialize+0x180>
400088e0: 80 a2 20 00 cmp %o0, 0
400088e4: 02 80 00 53 be 40008a30 <_Thread_Initialize+0x180> <== NEVER TAKEN
400088e8: 25 10 00 54 sethi %hi(0x40015000), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400088ec: c4 06 60 bc ld [ %i1 + 0xbc ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
400088f0: c2 04 a2 50 ld [ %l2 + 0x250 ], %g1
400088f4: c4 26 60 b8 st %g2, [ %i1 + 0xb8 ]
the_stack->size = size;
400088f8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400088fc: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40008900: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008904: c0 26 60 68 clr [ %i1 + 0x68 ]
40008908: 80 a0 60 00 cmp %g1, 0
4000890c: 12 80 00 4b bne 40008a38 <_Thread_Initialize+0x188>
40008910: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008914: c0 26 61 54 clr [ %i1 + 0x154 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40008918: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000891c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
40008920: 11 10 00 54 sethi %hi(0x40015000), %o0
40008924: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40008928: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
4000892c: 90 12 22 24 or %o0, 0x224, %o0
40008930: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008934: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
40008938: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000893c: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40008940: 84 10 20 01 mov 1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008944: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
40008948: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
4000894c: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
40008950: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008954: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
40008958: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
4000895c: 9f c0 40 00 call %g1
40008960: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
40008964: a0 92 20 00 orcc %o0, 0, %l0
40008968: 02 80 00 11 be 400089ac <_Thread_Initialize+0xfc>
4000896c: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
40008970: 40 00 01 e9 call 40009114 <_Thread_Set_priority>
40008974: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
40008978: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000897c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40008980: c0 26 60 84 clr [ %i1 + 0x84 ]
40008984: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008988: 83 28 60 02 sll %g1, 2, %g1
4000898c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40008990: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40008994: 90 10 00 19 mov %i1, %o0
40008998: 40 00 03 24 call 40009628 <_User_extensions_Thread_create>
4000899c: b0 10 20 01 mov 1, %i0
if ( extension_status )
400089a0: 80 8a 20 ff btst 0xff, %o0
400089a4: 12 80 00 36 bne 40008a7c <_Thread_Initialize+0x1cc>
400089a8: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
400089ac: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
400089b0: 80 a2 20 00 cmp %o0, 0
400089b4: 22 80 00 05 be,a 400089c8 <_Thread_Initialize+0x118>
400089b8: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
_Workspace_Free( the_thread->libc_reent );
400089bc: 40 00 04 60 call 40009b3c <_Workspace_Free>
400089c0: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400089c4: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
400089c8: 80 a2 20 00 cmp %o0, 0
400089cc: 22 80 00 05 be,a 400089e0 <_Thread_Initialize+0x130>
400089d0: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
400089d4: 40 00 04 5a call 40009b3c <_Workspace_Free>
400089d8: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400089dc: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
400089e0: 80 a2 20 00 cmp %o0, 0
400089e4: 02 80 00 05 be 400089f8 <_Thread_Initialize+0x148> <== ALWAYS TAKEN
400089e8: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
400089ec: 40 00 04 54 call 40009b3c <_Workspace_Free> <== NOT EXECUTED
400089f0: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
400089f4: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
400089f8: 02 80 00 05 be 40008a0c <_Thread_Initialize+0x15c>
400089fc: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( extensions_area );
40008a00: 40 00 04 4f call 40009b3c <_Workspace_Free>
40008a04: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
40008a08: 80 a4 20 00 cmp %l0, 0
40008a0c: 02 80 00 05 be 40008a20 <_Thread_Initialize+0x170>
40008a10: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
40008a14: 40 00 04 4a call 40009b3c <_Workspace_Free>
40008a18: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40008a1c: 90 10 00 19 mov %i1, %o0
40008a20: 40 00 02 1c call 40009290 <_Thread_Stack_Free>
40008a24: b0 10 20 00 clr %i0
return false;
40008a28: 81 c7 e0 08 ret
40008a2c: 81 e8 00 00 restore
}
40008a30: 81 c7 e0 08 ret
40008a34: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40008a38: 82 00 60 01 inc %g1
40008a3c: 40 00 04 37 call 40009b18 <_Workspace_Allocate>
40008a40: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008a44: b6 92 20 00 orcc %o0, 0, %i3
40008a48: 02 80 00 0f be 40008a84 <_Thread_Initialize+0x1d4>
40008a4c: c6 04 a2 50 ld [ %l2 + 0x250 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008a50: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008a54: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008a58: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40008a5c: 85 28 a0 02 sll %g2, 2, %g2
40008a60: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008a64: 82 00 60 01 inc %g1
40008a68: 80 a0 40 03 cmp %g1, %g3
40008a6c: 08 bf ff fc bleu 40008a5c <_Thread_Initialize+0x1ac>
40008a70: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008a74: 10 bf ff ab b 40008920 <_Thread_Initialize+0x70>
40008a78: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
40008a7c: 81 c7 e0 08 ret
40008a80: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
40008a84: 10 bf ff ca b 400089ac <_Thread_Initialize+0xfc>
40008a88: a0 10 20 00 clr %l0
4000cb0c <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000cb0c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000cb10: 7f ff d4 e0 call 40001e90 <sparc_disable_interrupts>
4000cb14: 01 00 00 00 nop
4000cb18: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
4000cb1c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000cb20: 80 88 60 02 btst 2, %g1
4000cb24: 02 80 00 05 be 4000cb38 <_Thread_Resume+0x2c> <== NEVER TAKEN
4000cb28: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000cb2c: 80 a0 60 00 cmp %g1, 0
4000cb30: 02 80 00 04 be 4000cb40 <_Thread_Resume+0x34>
4000cb34: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
4000cb38: 7f ff d4 da call 40001ea0 <sparc_enable_interrupts>
4000cb3c: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
4000cb40: 11 10 00 64 sethi %hi(0x40019000), %o0
4000cb44: 90 12 21 54 or %o0, 0x154, %o0 ! 40019154 <_Scheduler>
4000cb48: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
4000cb4c: 9f c0 40 00 call %g1
4000cb50: 92 10 00 18 mov %i0, %o1
4000cb54: 7f ff d4 d3 call 40001ea0 <sparc_enable_interrupts>
4000cb58: 91 e8 00 10 restore %g0, %l0, %o0
40009054 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40009054: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009058: 80 a6 20 00 cmp %i0, 0
4000905c: 02 80 00 13 be 400090a8 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
40009060: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009064: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40009068: 80 a4 60 01 cmp %l1, 1
4000906c: 02 80 00 04 be 4000907c <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
40009070: 01 00 00 00 nop
40009074: 81 c7 e0 08 ret
40009078: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
4000907c: 7f ff e3 17 call 40001cd8 <sparc_disable_interrupts>
40009080: 01 00 00 00 nop
40009084: a0 10 00 08 mov %o0, %l0
40009088: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
4000908c: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009090: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009094: 80 88 80 01 btst %g2, %g1
40009098: 12 80 00 06 bne 400090b0 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
4000909c: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
400090a0: 7f ff e3 12 call 40001ce8 <sparc_enable_interrupts>
400090a4: 90 10 00 10 mov %l0, %o0
400090a8: 81 c7 e0 08 ret
400090ac: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
400090b0: 92 10 00 19 mov %i1, %o1
400090b4: 94 10 20 01 mov 1, %o2
400090b8: 40 00 0d 78 call 4000c698 <_Thread_queue_Extract_priority_helper>
400090bc: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
400090c0: 90 10 00 18 mov %i0, %o0
400090c4: 92 10 00 19 mov %i1, %o1
400090c8: 7f ff ff 2c call 40008d78 <_Thread_queue_Enqueue_priority>
400090cc: 94 07 bf fc add %fp, -4, %o2
400090d0: 30 bf ff f4 b,a 400090a0 <_Thread_queue_Requeue+0x4c>
400090d4 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
400090d4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
400090d8: 90 10 00 18 mov %i0, %o0
400090dc: 7f ff fd ca call 40008804 <_Thread_Get>
400090e0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400090e4: c2 07 bf fc ld [ %fp + -4 ], %g1
400090e8: 80 a0 60 00 cmp %g1, 0
400090ec: 12 80 00 08 bne 4000910c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
400090f0: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
400090f4: 40 00 0d a4 call 4000c784 <_Thread_queue_Process_timeout>
400090f8: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400090fc: 03 10 00 54 sethi %hi(0x40015000), %g1
40009100: c4 00 61 a0 ld [ %g1 + 0x1a0 ], %g2 ! 400151a0 <_Thread_Dispatch_disable_level>
40009104: 84 00 bf ff add %g2, -1, %g2
40009108: c4 20 61 a0 st %g2, [ %g1 + 0x1a0 ]
4000910c: 81 c7 e0 08 ret
40009110: 81 e8 00 00 restore
40016308 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40016308: 9d e3 bf 88 save %sp, -120, %sp
4001630c: 2f 10 00 f4 sethi %hi(0x4003d000), %l7
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016310: ba 07 bf f4 add %fp, -12, %i5
40016314: aa 07 bf f8 add %fp, -8, %l5
40016318: a4 07 bf e8 add %fp, -24, %l2
4001631c: a8 07 bf ec add %fp, -20, %l4
40016320: 2d 10 00 f4 sethi %hi(0x4003d000), %l6
40016324: 39 10 00 f4 sethi %hi(0x4003d000), %i4
40016328: ea 27 bf f4 st %l5, [ %fp + -12 ]
head->previous = NULL;
4001632c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40016330: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016334: e8 27 bf e8 st %l4, [ %fp + -24 ]
head->previous = NULL;
40016338: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
4001633c: e4 27 bf f0 st %l2, [ %fp + -16 ]
40016340: ae 15 e2 20 or %l7, 0x220, %l7
40016344: a2 06 20 30 add %i0, 0x30, %l1
40016348: ac 15 a1 98 or %l6, 0x198, %l6
4001634c: a6 06 20 68 add %i0, 0x68, %l3
40016350: b8 17 20 f0 or %i4, 0xf0, %i4
40016354: b4 06 20 08 add %i0, 8, %i2
40016358: b6 06 20 40 add %i0, 0x40, %i3
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
4001635c: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016360: c2 05 c0 00 ld [ %l7 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016364: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016368: 94 10 00 12 mov %l2, %o2
4001636c: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40016370: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016374: 40 00 12 73 call 4001ad40 <_Watchdog_Adjust_to_chain>
40016378: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
4001637c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016380: e0 05 80 00 ld [ %l6 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40016384: 80 a4 00 0a cmp %l0, %o2
40016388: 18 80 00 43 bgu 40016494 <_Timer_server_Body+0x18c>
4001638c: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
40016390: 0a 80 00 39 bcs 40016474 <_Timer_server_Body+0x16c>
40016394: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
40016398: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
4001639c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400163a0: 40 00 02 f4 call 40016f70 <_Chain_Get>
400163a4: 01 00 00 00 nop
if ( timer == NULL ) {
400163a8: 92 92 20 00 orcc %o0, 0, %o1
400163ac: 02 80 00 10 be 400163ec <_Timer_server_Body+0xe4>
400163b0: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400163b4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400163b8: 80 a0 60 01 cmp %g1, 1
400163bc: 02 80 00 32 be 40016484 <_Timer_server_Body+0x17c>
400163c0: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400163c4: 12 bf ff f6 bne 4001639c <_Timer_server_Body+0x94> <== NEVER TAKEN
400163c8: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400163cc: 40 00 12 90 call 4001ae0c <_Watchdog_Insert>
400163d0: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400163d4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400163d8: 40 00 02 e6 call 40016f70 <_Chain_Get>
400163dc: 01 00 00 00 nop
if ( timer == NULL ) {
400163e0: 92 92 20 00 orcc %o0, 0, %o1
400163e4: 32 bf ff f5 bne,a 400163b8 <_Timer_server_Body+0xb0> <== NEVER TAKEN
400163e8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400163ec: 7f ff e2 31 call 4000ecb0 <sparc_disable_interrupts>
400163f0: 01 00 00 00 nop
tmp = ts->insert_chain;
400163f4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
400163f8: c2 07 bf f4 ld [ %fp + -12 ], %g1
400163fc: 80 a0 40 15 cmp %g1, %l5
40016400: 02 80 00 29 be 400164a4 <_Timer_server_Body+0x19c> <== ALWAYS TAKEN
40016404: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
do_loop = false;
}
_ISR_Enable( level );
40016408: 7f ff e2 2e call 4000ecc0 <sparc_enable_interrupts>
4001640c: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
40016410: 80 8c 20 ff btst 0xff, %l0
40016414: 12 bf ff d3 bne 40016360 <_Timer_server_Body+0x58> <== NEVER TAKEN
40016418: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
4001641c: 80 a0 40 14 cmp %g1, %l4
40016420: 12 80 00 0c bne 40016450 <_Timer_server_Body+0x148>
40016424: 01 00 00 00 nop
40016428: 30 80 00 22 b,a 400164b0 <_Timer_server_Body+0x1a8>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
4001642c: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
40016430: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
40016434: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40016438: 7f ff e2 22 call 4000ecc0 <sparc_enable_interrupts>
4001643c: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40016440: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40016444: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40016448: 9f c0 40 00 call %g1
4001644c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40016450: 7f ff e2 18 call 4000ecb0 <sparc_disable_interrupts>
40016454: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40016458: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4001645c: 80 a4 00 14 cmp %l0, %l4
40016460: 32 bf ff f3 bne,a 4001642c <_Timer_server_Body+0x124>
40016464: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40016468: 7f ff e2 16 call 4000ecc0 <sparc_enable_interrupts>
4001646c: 01 00 00 00 nop
40016470: 30 bf ff bb b,a 4001635c <_Timer_server_Body+0x54>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016474: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
40016478: 40 00 12 02 call 4001ac80 <_Watchdog_Adjust>
4001647c: 94 22 80 10 sub %o2, %l0, %o2
40016480: 30 bf ff c6 b,a 40016398 <_Timer_server_Body+0x90>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016484: 90 10 00 11 mov %l1, %o0
40016488: 40 00 12 61 call 4001ae0c <_Watchdog_Insert>
4001648c: 92 02 60 10 add %o1, 0x10, %o1
40016490: 30 bf ff c3 b,a 4001639c <_Timer_server_Body+0x94>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016494: 90 10 00 13 mov %l3, %o0
40016498: 40 00 12 2a call 4001ad40 <_Watchdog_Adjust_to_chain>
4001649c: 94 10 00 12 mov %l2, %o2
400164a0: 30 bf ff be b,a 40016398 <_Timer_server_Body+0x90>
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
tmp = ts->insert_chain;
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
400164a4: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
400164a8: 10 bf ff d8 b 40016408 <_Timer_server_Body+0x100>
400164ac: a0 10 20 00 clr %l0
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400164b0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
400164b4: c2 07 00 00 ld [ %i4 ], %g1
400164b8: 82 00 60 01 inc %g1
400164bc: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
400164c0: d0 06 00 00 ld [ %i0 ], %o0
400164c4: 40 00 10 0e call 4001a4fc <_Thread_Set_state>
400164c8: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400164cc: 7f ff ff 65 call 40016260 <_Timer_server_Reset_interval_system_watchdog>
400164d0: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400164d4: 7f ff ff 78 call 400162b4 <_Timer_server_Reset_tod_system_watchdog>
400164d8: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400164dc: 40 00 0d 7d call 40019ad0 <_Thread_Enable_dispatch>
400164e0: 01 00 00 00 nop
ts->active = true;
400164e4: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400164e8: 90 10 00 1a mov %i2, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400164ec: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400164f0: 40 00 12 b0 call 4001afb0 <_Watchdog_Remove>
400164f4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400164f8: 40 00 12 ae call 4001afb0 <_Watchdog_Remove>
400164fc: 90 10 00 1b mov %i3, %o0
40016500: 30 bf ff 97 b,a 4001635c <_Timer_server_Body+0x54>
40016504 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40016504: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016508: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
4001650c: 80 a0 60 00 cmp %g1, 0
40016510: 02 80 00 05 be 40016524 <_Timer_server_Schedule_operation_method+0x20>
40016514: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40016518: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
4001651c: 40 00 02 7f call 40016f18 <_Chain_Append>
40016520: 81 e8 00 00 restore
40016524: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40016528: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 4003d0f0 <_Thread_Dispatch_disable_level>
4001652c: 84 00 a0 01 inc %g2
40016530: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40016534: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40016538: 80 a0 60 01 cmp %g1, 1
4001653c: 02 80 00 28 be 400165dc <_Timer_server_Schedule_operation_method+0xd8>
40016540: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40016544: 02 80 00 04 be 40016554 <_Timer_server_Schedule_operation_method+0x50>
40016548: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001654c: 40 00 0d 61 call 40019ad0 <_Thread_Enable_dispatch>
40016550: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40016554: 7f ff e1 d7 call 4000ecb0 <sparc_disable_interrupts>
40016558: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
4001655c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40016560: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40016564: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016568: 03 10 00 f4 sethi %hi(0x4003d000), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
4001656c: 80 a0 80 04 cmp %g2, %g4
40016570: 02 80 00 0d be 400165a4 <_Timer_server_Schedule_operation_method+0xa0>
40016574: c2 00 61 98 ld [ %g1 + 0x198 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40016578: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
4001657c: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
40016580: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
40016584: 08 80 00 07 bleu 400165a0 <_Timer_server_Schedule_operation_method+0x9c>
40016588: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
4001658c: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
40016590: 80 a3 40 03 cmp %o5, %g3
40016594: 08 80 00 03 bleu 400165a0 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
40016598: 88 10 20 00 clr %g4
delta_interval -= delta;
4001659c: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400165a0: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400165a4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400165a8: 7f ff e1 c6 call 4000ecc0 <sparc_enable_interrupts>
400165ac: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400165b0: 90 06 20 68 add %i0, 0x68, %o0
400165b4: 40 00 12 16 call 4001ae0c <_Watchdog_Insert>
400165b8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400165bc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400165c0: 80 a0 60 00 cmp %g1, 0
400165c4: 12 bf ff e2 bne 4001654c <_Timer_server_Schedule_operation_method+0x48>
400165c8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400165cc: 7f ff ff 3a call 400162b4 <_Timer_server_Reset_tod_system_watchdog>
400165d0: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
400165d4: 40 00 0d 3f call 40019ad0 <_Thread_Enable_dispatch>
400165d8: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400165dc: 7f ff e1 b5 call 4000ecb0 <sparc_disable_interrupts>
400165e0: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
400165e4: 05 10 00 f4 sethi %hi(0x4003d000), %g2
initialized = false;
}
#endif
return status;
}
400165e8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
400165ec: c4 00 a2 20 ld [ %g2 + 0x220 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
400165f0: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
400165f4: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
400165f8: 80 a0 40 03 cmp %g1, %g3
400165fc: 02 80 00 08 be 4001661c <_Timer_server_Schedule_operation_method+0x118>
40016600: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016604: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016608: 80 a1 00 0d cmp %g4, %o5
4001660c: 1a 80 00 03 bcc 40016618 <_Timer_server_Schedule_operation_method+0x114>
40016610: 86 10 20 00 clr %g3
delta_interval -= delta;
40016614: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40016618: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
4001661c: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40016620: 7f ff e1 a8 call 4000ecc0 <sparc_enable_interrupts>
40016624: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016628: 90 06 20 30 add %i0, 0x30, %o0
4001662c: 40 00 11 f8 call 4001ae0c <_Watchdog_Insert>
40016630: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016634: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016638: 80 a0 60 00 cmp %g1, 0
4001663c: 12 bf ff c4 bne 4001654c <_Timer_server_Schedule_operation_method+0x48>
40016640: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016644: 7f ff ff 07 call 40016260 <_Timer_server_Reset_interval_system_watchdog>
40016648: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
4001664c: 40 00 0d 21 call 40019ad0 <_Thread_Enable_dispatch>
40016650: 81 e8 00 00 restore
400093c8 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
400093c8: 9d e3 bf a0 save %sp, -96, %sp
400093cc: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093d0: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
400093d4: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
400093d8: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
400093dc: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093e0: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
400093e4: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
400093e8: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
400093ec: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
400093f0: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
400093f4: 80 a0 80 04 cmp %g2, %g4
400093f8: 08 80 00 0b bleu 40009424 <_Timespec_Add_to+0x5c>
400093fc: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
40009400: 1b 31 19 4d sethi %hi(0xc4653400), %o5
40009404: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
40009408: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
4000940c: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
40009410: 80 a0 80 04 cmp %g2, %g4
40009414: 18 bf ff fd bgu 40009408 <_Timespec_Add_to+0x40> <== NEVER TAKEN
40009418: b0 06 20 01 inc %i0
4000941c: c4 20 60 04 st %g2, [ %g1 + 4 ]
40009420: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
40009424: 81 c7 e0 08 ret
40009428: 81 e8 00 00 restore
4000b370 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000b370: c6 02 00 00 ld [ %o0 ], %g3
4000b374: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000b378: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000b37c: 80 a0 c0 02 cmp %g3, %g2
4000b380: 14 80 00 0a bg 4000b3a8 <_Timespec_Greater_than+0x38>
4000b384: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000b388: 80 a0 c0 02 cmp %g3, %g2
4000b38c: 06 80 00 07 bl 4000b3a8 <_Timespec_Greater_than+0x38> <== NEVER TAKEN
4000b390: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000b394: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000b398: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000b39c: 80 a0 80 01 cmp %g2, %g1
4000b3a0: 04 80 00 04 ble 4000b3b0 <_Timespec_Greater_than+0x40>
4000b3a4: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000b3a8: 81 c3 e0 08 retl
4000b3ac: 01 00 00 00 nop
4000b3b0: 81 c3 e0 08 retl
4000b3b4: 90 10 20 00 clr %o0 ! 0 <PROM_START>
400095d8 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400095d8: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
400095dc: 23 10 00 54 sethi %hi(0x40015000), %l1
400095e0: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
400095e4: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400095e8: 80 a4 00 11 cmp %l0, %l1
400095ec: 02 80 00 0d be 40009620 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
400095f0: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
400095f4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
400095f8: 80 a0 60 00 cmp %g1, 0
400095fc: 02 80 00 05 be 40009610 <_User_extensions_Fatal+0x38>
40009600: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009604: 92 10 00 19 mov %i1, %o1
40009608: 9f c0 40 00 call %g1
4000960c: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009610: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009614: 80 a4 00 11 cmp %l0, %l1
40009618: 32 bf ff f8 bne,a 400095f8 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
4000961c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40009620: 81 c7 e0 08 ret <== NOT EXECUTED
40009624: 81 e8 00 00 restore <== NOT EXECUTED
40009484 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40009484: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009488: 07 10 00 52 sethi %hi(0x40014800), %g3
4000948c: 86 10 e0 c8 or %g3, 0xc8, %g3 ! 400148c8 <Configuration>
initial_extensions = Configuration.User_extension_table;
40009490: e6 00 e0 40 ld [ %g3 + 0x40 ], %l3
40009494: 1b 10 00 54 sethi %hi(0x40015000), %o5
40009498: 09 10 00 54 sethi %hi(0x40015000), %g4
4000949c: 84 13 63 a8 or %o5, 0x3a8, %g2
400094a0: 82 11 21 a4 or %g4, 0x1a4, %g1
400094a4: 96 00 a0 04 add %g2, 4, %o3
400094a8: 98 00 60 04 add %g1, 4, %o4
400094ac: d6 23 63 a8 st %o3, [ %o5 + 0x3a8 ]
head->previous = NULL;
400094b0: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
400094b4: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400094b8: d8 21 21 a4 st %o4, [ %g4 + 0x1a4 ]
head->previous = NULL;
400094bc: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
400094c0: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
400094c4: 80 a4 e0 00 cmp %l3, 0
400094c8: 02 80 00 1b be 40009534 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
400094cc: e4 00 e0 3c ld [ %g3 + 0x3c ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
400094d0: 83 2c a0 02 sll %l2, 2, %g1
400094d4: a3 2c a0 04 sll %l2, 4, %l1
400094d8: a2 24 40 01 sub %l1, %g1, %l1
400094dc: a2 04 40 12 add %l1, %l2, %l1
400094e0: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
400094e4: 40 00 01 9d call 40009b58 <_Workspace_Allocate_or_fatal_error>
400094e8: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
400094ec: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
400094f0: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
400094f4: 40 00 15 8d call 4000eb28 <memset>
400094f8: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
400094fc: 80 a4 a0 00 cmp %l2, 0
40009500: 02 80 00 0d be 40009534 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009504: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
40009508: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
4000950c: 94 10 20 20 mov 0x20, %o2
40009510: 92 04 c0 09 add %l3, %o1, %o1
40009514: 40 00 15 4c call 4000ea44 <memcpy>
40009518: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
4000951c: 40 00 0c bf call 4000c818 <_User_extensions_Add_set>
40009520: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009524: a2 04 60 01 inc %l1
40009528: 80 a4 80 11 cmp %l2, %l1
4000952c: 18 bf ff f7 bgu 40009508 <_User_extensions_Handler_initialization+0x84>
40009530: a0 04 20 34 add %l0, 0x34, %l0
40009534: 81 c7 e0 08 ret
40009538: 81 e8 00 00 restore
4000953c <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
4000953c: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009540: 23 10 00 54 sethi %hi(0x40015000), %l1
40009544: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
40009548: a2 14 63 a8 or %l1, 0x3a8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000954c: a2 04 60 04 add %l1, 4, %l1
40009550: 80 a4 00 11 cmp %l0, %l1
40009554: 02 80 00 0c be 40009584 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
40009558: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
4000955c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
40009560: 80 a0 60 00 cmp %g1, 0
40009564: 02 80 00 04 be 40009574 <_User_extensions_Thread_begin+0x38>
40009568: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
4000956c: 9f c0 40 00 call %g1
40009570: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009574: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009578: 80 a4 00 11 cmp %l0, %l1
4000957c: 32 bf ff f9 bne,a 40009560 <_User_extensions_Thread_begin+0x24>
40009580: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
40009584: 81 c7 e0 08 ret
40009588: 81 e8 00 00 restore
40009628 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009628: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
4000962c: 23 10 00 54 sethi %hi(0x40015000), %l1
40009630: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009634: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
40009638: a2 14 63 a8 or %l1, 0x3a8, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000963c: a2 04 60 04 add %l1, 4, %l1
40009640: 80 a4 00 11 cmp %l0, %l1
40009644: 02 80 00 13 be 40009690 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
40009648: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
4000964c: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
40009650: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40009654: 80 a0 60 00 cmp %g1, 0
40009658: 02 80 00 08 be 40009678 <_User_extensions_Thread_create+0x50>
4000965c: 84 14 a3 ec or %l2, 0x3ec, %g2
status = (*the_extension->Callouts.thread_create)(
40009660: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
40009664: 9f c0 40 00 call %g1
40009668: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
4000966c: 80 8a 20 ff btst 0xff, %o0
40009670: 22 80 00 08 be,a 40009690 <_User_extensions_Thread_create+0x68>
40009674: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009678: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000967c: 80 a4 00 11 cmp %l0, %l1
40009680: 32 bf ff f5 bne,a 40009654 <_User_extensions_Thread_create+0x2c>
40009684: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
40009688: 81 c7 e0 08 ret
4000968c: 91 e8 20 01 restore %g0, 1, %o0
}
40009690: 81 c7 e0 08 ret
40009694: 81 e8 00 00 restore
40009698 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
40009698: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
4000969c: 23 10 00 54 sethi %hi(0x40015000), %l1
400096a0: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
400096a4: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400096a8: 80 a4 00 11 cmp %l0, %l1
400096ac: 02 80 00 0d be 400096e0 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
400096b0: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
400096b4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400096b8: 80 a0 60 00 cmp %g1, 0
400096bc: 02 80 00 05 be 400096d0 <_User_extensions_Thread_delete+0x38>
400096c0: 84 14 a3 ec or %l2, 0x3ec, %g2
(*the_extension->Callouts.thread_delete)(
400096c4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
400096c8: 9f c0 40 00 call %g1
400096cc: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
400096d0: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400096d4: 80 a4 00 11 cmp %l0, %l1
400096d8: 32 bf ff f8 bne,a 400096b8 <_User_extensions_Thread_delete+0x20>
400096dc: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400096e0: 81 c7 e0 08 ret
400096e4: 81 e8 00 00 restore
4000958c <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
4000958c: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009590: 23 10 00 54 sethi %hi(0x40015000), %l1
40009594: a2 14 63 a8 or %l1, 0x3a8, %l1 ! 400153a8 <_User_extensions_List>
40009598: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000959c: 80 a4 00 11 cmp %l0, %l1
400095a0: 02 80 00 0c be 400095d0 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
400095a4: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
400095a8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
400095ac: 80 a0 60 00 cmp %g1, 0
400095b0: 02 80 00 04 be 400095c0 <_User_extensions_Thread_exitted+0x34>
400095b4: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
400095b8: 9f c0 40 00 call %g1
400095bc: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
400095c0: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
400095c4: 80 a4 00 11 cmp %l0, %l1
400095c8: 32 bf ff f9 bne,a 400095ac <_User_extensions_Thread_exitted+0x20>
400095cc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
400095d0: 81 c7 e0 08 ret
400095d4: 81 e8 00 00 restore
4000a40c <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000a40c: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
4000a410: 23 10 00 77 sethi %hi(0x4001dc00), %l1
4000a414: e0 04 60 18 ld [ %l1 + 0x18 ], %l0 ! 4001dc18 <_User_extensions_List>
4000a418: a2 14 60 18 or %l1, 0x18, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a41c: a2 04 60 04 add %l1, 4, %l1
4000a420: 80 a4 00 11 cmp %l0, %l1
4000a424: 02 80 00 0d be 4000a458 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000a428: 25 10 00 77 sethi %hi(0x4001dc00), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000a42c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a430: 80 a0 60 00 cmp %g1, 0
4000a434: 02 80 00 05 be 4000a448 <_User_extensions_Thread_restart+0x3c>
4000a438: 84 14 a0 5c or %l2, 0x5c, %g2
(*the_extension->Callouts.thread_restart)(
4000a43c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a440: 9f c0 40 00 call %g1
4000a444: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a448: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a44c: 80 a4 00 11 cmp %l0, %l1
4000a450: 32 bf ff f8 bne,a 4000a430 <_User_extensions_Thread_restart+0x24>
4000a454: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a458: 81 c7 e0 08 ret
4000a45c: 81 e8 00 00 restore
400096e8 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
400096e8: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
400096ec: 23 10 00 54 sethi %hi(0x40015000), %l1
400096f0: e0 04 63 a8 ld [ %l1 + 0x3a8 ], %l0 ! 400153a8 <_User_extensions_List>
400096f4: a2 14 63 a8 or %l1, 0x3a8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
400096f8: a2 04 60 04 add %l1, 4, %l1
400096fc: 80 a4 00 11 cmp %l0, %l1
40009700: 02 80 00 0d be 40009734 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
40009704: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
40009708: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000970c: 80 a0 60 00 cmp %g1, 0
40009710: 02 80 00 05 be 40009724 <_User_extensions_Thread_start+0x3c>
40009714: 84 14 a3 ec or %l2, 0x3ec, %g2
(*the_extension->Callouts.thread_start)(
40009718: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000971c: 9f c0 40 00 call %g1
40009720: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
40009724: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
40009728: 80 a4 00 11 cmp %l0, %l1
4000972c: 32 bf ff f8 bne,a 4000970c <_User_extensions_Thread_start+0x24>
40009730: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40009734: 81 c7 e0 08 ret
40009738: 81 e8 00 00 restore
4000973c <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
4000973c: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
40009740: 23 10 00 54 sethi %hi(0x40015000), %l1
40009744: e0 04 61 a4 ld [ %l1 + 0x1a4 ], %l0 ! 400151a4 <_User_extensions_Switches_list>
40009748: a2 14 61 a4 or %l1, 0x1a4, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000974c: a2 04 60 04 add %l1, 4, %l1
40009750: 80 a4 00 11 cmp %l0, %l1
40009754: 02 80 00 0a be 4000977c <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
40009758: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
4000975c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40009760: 90 10 00 18 mov %i0, %o0
40009764: 9f c0 40 00 call %g1
40009768: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
4000976c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
40009770: 80 a4 00 11 cmp %l0, %l1
40009774: 32 bf ff fb bne,a 40009760 <_User_extensions_Thread_switch+0x24>
40009778: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000977c: 81 c7 e0 08 ret
40009780: 81 e8 00 00 restore
4000b7f0 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000b7f0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000b7f4: 7f ff dd 18 call 40002c54 <sparc_disable_interrupts>
4000b7f8: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000b7fc: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b800: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000b804: 80 a0 40 11 cmp %g1, %l1
4000b808: 02 80 00 1f be 4000b884 <_Watchdog_Adjust+0x94>
4000b80c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000b810: 12 80 00 1f bne 4000b88c <_Watchdog_Adjust+0x9c>
4000b814: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b818: 80 a6 a0 00 cmp %i2, 0
4000b81c: 02 80 00 1a be 4000b884 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b820: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b824: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000b828: 80 a6 80 19 cmp %i2, %i1
4000b82c: 1a 80 00 0b bcc 4000b858 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000b830: a4 10 20 01 mov 1, %l2
_Watchdog_First( header )->delta_interval -= units;
4000b834: 10 80 00 1d b 4000b8a8 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000b838: b4 26 40 1a sub %i1, %i2, %i2 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b83c: b4 a6 80 19 subcc %i2, %i1, %i2
4000b840: 02 80 00 11 be 4000b884 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b844: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b848: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000b84c: 80 a6 40 1a cmp %i1, %i2
4000b850: 38 80 00 16 bgu,a 4000b8a8 <_Watchdog_Adjust+0xb8>
4000b854: b4 26 40 1a sub %i1, %i2, %i2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000b858: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000b85c: 7f ff dd 02 call 40002c64 <sparc_enable_interrupts>
4000b860: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b864: 40 00 00 b2 call 4000bb2c <_Watchdog_Tickle>
4000b868: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b86c: 7f ff dc fa call 40002c54 <sparc_disable_interrupts>
4000b870: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
4000b874: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
4000b878: 80 a4 40 02 cmp %l1, %g2
4000b87c: 12 bf ff f0 bne 4000b83c <_Watchdog_Adjust+0x4c>
4000b880: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000b884: 7f ff dc f8 call 40002c64 <sparc_enable_interrupts>
4000b888: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000b88c: 12 bf ff fe bne 4000b884 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b890: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000b894: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000b898: b4 00 80 1a add %g2, %i2, %i2
4000b89c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000b8a0: 7f ff dc f1 call 40002c64 <sparc_enable_interrupts>
4000b8a4: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000b8a8: 10 bf ff f7 b 4000b884 <_Watchdog_Adjust+0x94>
4000b8ac: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
40009928 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009928: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000992c: 7f ff e0 eb call 40001cd8 <sparc_disable_interrupts>
40009930: 01 00 00 00 nop
previous_state = the_watchdog->state;
40009934: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
40009938: 80 a4 20 01 cmp %l0, 1
4000993c: 02 80 00 2a be 400099e4 <_Watchdog_Remove+0xbc>
40009940: 03 10 00 54 sethi %hi(0x40015000), %g1
40009944: 1a 80 00 09 bcc 40009968 <_Watchdog_Remove+0x40>
40009948: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000994c: 03 10 00 54 sethi %hi(0x40015000), %g1
40009950: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 400152d0 <_Watchdog_Ticks_since_boot>
40009954: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009958: 7f ff e0 e4 call 40001ce8 <sparc_enable_interrupts>
4000995c: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009960: 81 c7 e0 08 ret
40009964: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
40009968: 18 bf ff fa bgu 40009950 <_Watchdog_Remove+0x28> <== NEVER TAKEN
4000996c: 03 10 00 54 sethi %hi(0x40015000), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
40009970: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009974: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009978: c4 00 40 00 ld [ %g1 ], %g2
4000997c: 80 a0 a0 00 cmp %g2, 0
40009980: 02 80 00 07 be 4000999c <_Watchdog_Remove+0x74>
40009984: 05 10 00 54 sethi %hi(0x40015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009988: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000998c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
40009990: 84 00 c0 02 add %g3, %g2, %g2
40009994: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009998: 05 10 00 54 sethi %hi(0x40015000), %g2
4000999c: c4 00 a2 cc ld [ %g2 + 0x2cc ], %g2 ! 400152cc <_Watchdog_Sync_count>
400099a0: 80 a0 a0 00 cmp %g2, 0
400099a4: 22 80 00 07 be,a 400099c0 <_Watchdog_Remove+0x98>
400099a8: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
400099ac: 05 10 00 54 sethi %hi(0x40015000), %g2
400099b0: c6 00 a3 f4 ld [ %g2 + 0x3f4 ], %g3 ! 400153f4 <_Per_CPU_Information+0x8>
400099b4: 05 10 00 54 sethi %hi(0x40015000), %g2
400099b8: c6 20 a2 64 st %g3, [ %g2 + 0x264 ] ! 40015264 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400099bc: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
400099c0: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
400099c4: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099c8: 03 10 00 54 sethi %hi(0x40015000), %g1
400099cc: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 400152d0 <_Watchdog_Ticks_since_boot>
400099d0: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
400099d4: 7f ff e0 c5 call 40001ce8 <sparc_enable_interrupts>
400099d8: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
400099dc: 81 c7 e0 08 ret
400099e0: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099e4: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
400099e8: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400099ec: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
400099f0: 7f ff e0 be call 40001ce8 <sparc_enable_interrupts>
400099f4: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
400099f8: 81 c7 e0 08 ret
400099fc: 81 e8 00 00 restore
4000b014 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b014: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b018: 7f ff dd e0 call 40002798 <sparc_disable_interrupts>
4000b01c: a0 10 00 18 mov %i0, %l0
4000b020: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b024: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b028: 94 10 00 19 mov %i1, %o2
4000b02c: 92 10 00 10 mov %l0, %o1
4000b030: 7f ff e4 ba call 40004318 <printk>
4000b034: 90 12 23 50 or %o0, 0x350, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000b038: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b03c: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000b040: 80 a4 40 19 cmp %l1, %i1
4000b044: 02 80 00 0f be 4000b080 <_Watchdog_Report_chain+0x6c>
4000b048: 11 10 00 74 sethi %hi(0x4001d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b04c: 92 10 00 11 mov %l1, %o1
4000b050: 40 00 00 11 call 4000b094 <_Watchdog_Report>
4000b054: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000b058: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000b05c: 80 a4 40 19 cmp %l1, %i1
4000b060: 12 bf ff fc bne 4000b050 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b064: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b068: 92 10 00 10 mov %l0, %o1
4000b06c: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b070: 7f ff e4 aa call 40004318 <printk>
4000b074: 90 12 23 68 or %o0, 0x368, %o0 ! 4001d368 <_Status_Object_name_errors_to_status+0x30>
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000b078: 7f ff dd cc call 400027a8 <sparc_enable_interrupts>
4000b07c: 81 e8 00 00 restore
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000b080: 7f ff e4 a6 call 40004318 <printk>
4000b084: 90 12 23 78 or %o0, 0x378, %o0
}
_ISR_Enable( level );
4000b088: 7f ff dd c8 call 400027a8 <sparc_enable_interrupts>
4000b08c: 81 e8 00 00 restore
4000e714 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000e714: 9d e3 bf 98 save %sp, -104, %sp
4000e718: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000e71c: 80 a4 20 00 cmp %l0, 0
4000e720: 02 80 00 23 be 4000e7ac <rtems_barrier_create+0x98>
4000e724: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000e728: 80 a6 e0 00 cmp %i3, 0
4000e72c: 02 80 00 20 be 4000e7ac <rtems_barrier_create+0x98>
4000e730: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000e734: 80 8e 60 10 btst 0x10, %i1
4000e738: 02 80 00 1f be 4000e7b4 <rtems_barrier_create+0xa0>
4000e73c: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000e740: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000e744: 02 80 00 1a be 4000e7ac <rtems_barrier_create+0x98>
4000e748: b0 10 20 0a mov 0xa, %i0
4000e74c: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e750: c4 00 61 60 ld [ %g1 + 0x160 ], %g2 ! 40021960 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000e754: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e758: 84 00 a0 01 inc %g2
4000e75c: c4 20 61 60 st %g2, [ %g1 + 0x160 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000e760: 25 10 00 87 sethi %hi(0x40021c00), %l2
4000e764: 7f ff ec 4e call 4000989c <_Objects_Allocate>
4000e768: 90 14 a0 00 mov %l2, %o0 ! 40021c00 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e76c: a2 92 20 00 orcc %o0, 0, %l1
4000e770: 02 80 00 1e be 4000e7e8 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000e774: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000e778: 92 07 bf f8 add %fp, -8, %o1
4000e77c: 40 00 02 43 call 4000f088 <_CORE_barrier_Initialize>
4000e780: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000e784: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000e788: a4 14 a0 00 mov %l2, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e78c: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000e790: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e794: 85 28 a0 02 sll %g2, 2, %g2
4000e798: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000e79c: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000e7a0: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000e7a4: 7f ff f0 a1 call 4000aa28 <_Thread_Enable_dispatch>
4000e7a8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000e7ac: 81 c7 e0 08 ret
4000e7b0: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000e7b4: 82 10 20 01 mov 1, %g1
4000e7b8: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000e7bc: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e7c0: c4 00 61 60 ld [ %g1 + 0x160 ], %g2 ! 40021960 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000e7c4: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e7c8: 84 00 a0 01 inc %g2
4000e7cc: c4 20 61 60 st %g2, [ %g1 + 0x160 ]
4000e7d0: 25 10 00 87 sethi %hi(0x40021c00), %l2
4000e7d4: 7f ff ec 32 call 4000989c <_Objects_Allocate>
4000e7d8: 90 14 a0 00 mov %l2, %o0 ! 40021c00 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e7dc: a2 92 20 00 orcc %o0, 0, %l1
4000e7e0: 12 bf ff e6 bne 4000e778 <rtems_barrier_create+0x64>
4000e7e4: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000e7e8: 7f ff f0 90 call 4000aa28 <_Thread_Enable_dispatch>
4000e7ec: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000e7f0: 81 c7 e0 08 ret
4000e7f4: 81 e8 00 00 restore
40006d5c <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006d5c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40006d60: 90 10 00 18 mov %i0, %o0
40006d64: 40 00 01 65 call 400072f8 <_Chain_Append_with_empty_check>
40006d68: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
40006d6c: 80 8a 20 ff btst 0xff, %o0
40006d70: 12 80 00 04 bne 40006d80 <rtems_chain_append_with_notification+0x24><== ALWAYS TAKEN
40006d74: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006d78: 81 c7 e0 08 ret
40006d7c: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
40006d80: b0 10 00 1a mov %i2, %i0
40006d84: 7f ff fd 61 call 40006308 <rtems_event_send>
40006d88: 93 e8 00 1b restore %g0, %i3, %o1
40006dc4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006dc4: 9d e3 bf 98 save %sp, -104, %sp
40006dc8: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006dcc: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006dd0: 40 00 01 89 call 400073f4 <_Chain_Get>
40006dd4: 90 10 00 10 mov %l0, %o0
40006dd8: 92 10 20 00 clr %o1
40006ddc: a2 10 00 08 mov %o0, %l1
40006de0: 94 10 00 1a mov %i2, %o2
40006de4: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006de8: 80 a4 60 00 cmp %l1, 0
40006dec: 12 80 00 0a bne 40006e14 <rtems_chain_get_with_wait+0x50>
40006df0: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40006df4: 7f ff fc e1 call 40006178 <rtems_event_receive>
40006df8: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006dfc: 80 a2 20 00 cmp %o0, 0
40006e00: 02 bf ff f4 be 40006dd0 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40006e04: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40006e08: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006e0c: 81 c7 e0 08 ret
40006e10: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006e14: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40006e18: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006e1c: 81 c7 e0 08 ret
40006e20: 91 e8 00 08 restore %g0, %o0, %o0
40006e24 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006e24: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
40006e28: 90 10 00 18 mov %i0, %o0
40006e2c: 40 00 01 90 call 4000746c <_Chain_Prepend_with_empty_check>
40006e30: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40006e34: 80 8a 20 ff btst 0xff, %o0
40006e38: 12 80 00 04 bne 40006e48 <rtems_chain_prepend_with_notification+0x24><== ALWAYS TAKEN
40006e3c: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006e40: 81 c7 e0 08 ret <== NOT EXECUTED
40006e44: 81 e8 00 00 restore <== NOT EXECUTED
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
40006e48: b0 10 00 1a mov %i2, %i0
40006e4c: 7f ff fd 2f call 40006308 <rtems_event_send>
40006e50: 93 e8 00 1b restore %g0, %i3, %o1
40007b84 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b84: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40007b88: 03 10 00 65 sethi %hi(0x40019400), %g1
40007b8c: c4 00 62 e4 ld [ %g1 + 0x2e4 ], %g2 ! 400196e4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b90: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40007b94: 03 10 00 65 sethi %hi(0x40019400), %g1
if ( rtems_interrupt_is_in_progress() )
40007b98: 80 a0 a0 00 cmp %g2, 0
40007b9c: 12 80 00 42 bne 40007ca4 <rtems_io_register_driver+0x120>
40007ba0: c8 00 63 74 ld [ %g1 + 0x374 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40007ba4: 80 a6 a0 00 cmp %i2, 0
40007ba8: 02 80 00 50 be 40007ce8 <rtems_io_register_driver+0x164>
40007bac: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40007bb0: 80 a6 60 00 cmp %i1, 0
40007bb4: 02 80 00 4d be 40007ce8 <rtems_io_register_driver+0x164>
40007bb8: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007bbc: c4 06 40 00 ld [ %i1 ], %g2
40007bc0: 80 a0 a0 00 cmp %g2, 0
40007bc4: 22 80 00 46 be,a 40007cdc <rtems_io_register_driver+0x158>
40007bc8: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40007bcc: 80 a1 00 18 cmp %g4, %i0
40007bd0: 08 80 00 33 bleu 40007c9c <rtems_io_register_driver+0x118>
40007bd4: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007bd8: 05 10 00 65 sethi %hi(0x40019400), %g2
40007bdc: c8 00 a0 90 ld [ %g2 + 0x90 ], %g4 ! 40019490 <_Thread_Dispatch_disable_level>
40007be0: 88 01 20 01 inc %g4
40007be4: c8 20 a0 90 st %g4, [ %g2 + 0x90 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40007be8: 80 a6 20 00 cmp %i0, 0
40007bec: 12 80 00 30 bne 40007cac <rtems_io_register_driver+0x128>
40007bf0: 1b 10 00 65 sethi %hi(0x40019400), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40007bf4: c8 00 63 74 ld [ %g1 + 0x374 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40007bf8: 80 a1 20 00 cmp %g4, 0
40007bfc: 22 80 00 3d be,a 40007cf0 <rtems_io_register_driver+0x16c><== NEVER TAKEN
40007c00: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40007c04: 10 80 00 05 b 40007c18 <rtems_io_register_driver+0x94>
40007c08: c2 03 63 78 ld [ %o5 + 0x378 ], %g1
40007c0c: 80 a1 00 18 cmp %g4, %i0
40007c10: 08 80 00 0a bleu 40007c38 <rtems_io_register_driver+0xb4>
40007c14: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007c18: c4 00 40 00 ld [ %g1 ], %g2
40007c1c: 80 a0 a0 00 cmp %g2, 0
40007c20: 32 bf ff fb bne,a 40007c0c <rtems_io_register_driver+0x88>
40007c24: b0 06 20 01 inc %i0
40007c28: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007c2c: 80 a0 a0 00 cmp %g2, 0
40007c30: 32 bf ff f7 bne,a 40007c0c <rtems_io_register_driver+0x88>
40007c34: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40007c38: 80 a1 00 18 cmp %g4, %i0
40007c3c: 02 80 00 2d be 40007cf0 <rtems_io_register_driver+0x16c>
40007c40: f0 26 80 00 st %i0, [ %i2 ]
40007c44: 83 2e 20 03 sll %i0, 3, %g1
40007c48: 85 2e 20 05 sll %i0, 5, %g2
40007c4c: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c50: c8 03 63 78 ld [ %o5 + 0x378 ], %g4
40007c54: da 00 c0 00 ld [ %g3 ], %o5
40007c58: 82 01 00 02 add %g4, %g2, %g1
40007c5c: da 21 00 02 st %o5, [ %g4 + %g2 ]
40007c60: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c64: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c68: c4 20 60 04 st %g2, [ %g1 + 4 ]
40007c6c: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c70: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c74: c4 20 60 08 st %g2, [ %g1 + 8 ]
40007c78: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40007c7c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40007c80: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40007c84: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40007c88: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40007c8c: 40 00 07 cf call 40009bc8 <_Thread_Enable_dispatch>
40007c90: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40007c94: 40 00 21 65 call 40010228 <rtems_io_initialize>
40007c98: 81 e8 00 00 restore
}
40007c9c: 81 c7 e0 08 ret
40007ca0: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40007ca4: 81 c7 e0 08 ret
40007ca8: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40007cac: c2 03 63 78 ld [ %o5 + 0x378 ], %g1
40007cb0: 89 2e 20 05 sll %i0, 5, %g4
40007cb4: 85 2e 20 03 sll %i0, 3, %g2
40007cb8: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cbc: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40007cc0: 80 a1 20 00 cmp %g4, 0
40007cc4: 02 80 00 0f be 40007d00 <rtems_io_register_driver+0x17c>
40007cc8: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40007ccc: 40 00 07 bf call 40009bc8 <_Thread_Enable_dispatch>
40007cd0: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40007cd4: 81 c7 e0 08 ret
40007cd8: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cdc: 80 a0 a0 00 cmp %g2, 0
40007ce0: 32 bf ff bc bne,a 40007bd0 <rtems_io_register_driver+0x4c>
40007ce4: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40007ce8: 81 c7 e0 08 ret
40007cec: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40007cf0: 40 00 07 b6 call 40009bc8 <_Thread_Enable_dispatch>
40007cf4: b0 10 20 05 mov 5, %i0
return sc;
40007cf8: 81 c7 e0 08 ret
40007cfc: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007d00: c2 00 60 04 ld [ %g1 + 4 ], %g1
40007d04: 80 a0 60 00 cmp %g1, 0
40007d08: 12 bf ff f1 bne 40007ccc <rtems_io_register_driver+0x148>
40007d0c: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40007d10: 10 bf ff d0 b 40007c50 <rtems_io_register_driver+0xcc>
40007d14: f0 26 80 00 st %i0, [ %i2 ]
400091e4 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
400091e4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
400091e8: 80 a6 20 00 cmp %i0, 0
400091ec: 02 80 00 23 be 40009278 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
400091f0: 25 10 00 9c sethi %hi(0x40027000), %l2
400091f4: a4 14 a3 ec or %l2, 0x3ec, %l2 ! 400273ec <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
400091f8: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
400091fc: c2 04 80 00 ld [ %l2 ], %g1
40009200: 80 a0 60 00 cmp %g1, 0
40009204: 22 80 00 1a be,a 4000926c <rtems_iterate_over_all_threads+0x88>
40009208: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
4000920c: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
40009210: 80 a4 60 00 cmp %l1, 0
40009214: 22 80 00 16 be,a 4000926c <rtems_iterate_over_all_threads+0x88>
40009218: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000921c: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
40009220: 84 90 60 00 orcc %g1, 0, %g2
40009224: 22 80 00 12 be,a 4000926c <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
40009228: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
4000922c: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009230: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
40009234: 83 2c 20 02 sll %l0, 2, %g1
40009238: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
4000923c: 90 90 60 00 orcc %g1, 0, %o0
40009240: 02 80 00 05 be 40009254 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
40009244: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
40009248: 9f c6 00 00 call %i0
4000924c: 01 00 00 00 nop
40009250: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009254: 83 28 a0 10 sll %g2, 0x10, %g1
40009258: 83 30 60 10 srl %g1, 0x10, %g1
4000925c: 80 a0 40 10 cmp %g1, %l0
40009260: 3a bf ff f5 bcc,a 40009234 <rtems_iterate_over_all_threads+0x50>
40009264: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
40009268: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
4000926c: 80 a4 80 13 cmp %l2, %l3
40009270: 32 bf ff e4 bne,a 40009200 <rtems_iterate_over_all_threads+0x1c>
40009274: c2 04 80 00 ld [ %l2 ], %g1
40009278: 81 c7 e0 08 ret
4000927c: 81 e8 00 00 restore
40007d4c <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40007d4c: 9d e3 bf a0 save %sp, -96, %sp
40007d50: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40007d54: 80 a6 a0 00 cmp %i2, 0
40007d58: 02 80 00 21 be 40007ddc <rtems_object_get_class_information+0x90>
40007d5c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d60: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40007d64: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d68: 40 00 07 7a call 40009b50 <_Objects_Get_information>
40007d6c: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40007d70: 80 a2 20 00 cmp %o0, 0
40007d74: 02 80 00 1a be 40007ddc <rtems_object_get_class_information+0x90>
40007d78: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d7c: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40007d80: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d84: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d88: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d8c: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d90: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d94: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40007d98: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007d9c: 80 a1 20 00 cmp %g4, 0
40007da0: 02 80 00 0d be 40007dd4 <rtems_object_get_class_information+0x88><== NEVER TAKEN
40007da4: 84 10 20 00 clr %g2
40007da8: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40007dac: 86 10 20 01 mov 1, %g3
40007db0: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40007db4: 87 28 e0 02 sll %g3, 2, %g3
40007db8: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007dbc: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40007dc0: 80 a0 00 03 cmp %g0, %g3
40007dc4: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007dc8: 80 a1 00 01 cmp %g4, %g1
40007dcc: 1a bf ff fa bcc 40007db4 <rtems_object_get_class_information+0x68>
40007dd0: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40007dd4: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40007dd8: b0 10 20 00 clr %i0
}
40007ddc: 81 c7 e0 08 ret
40007de0: 81 e8 00 00 restore
40013bd8 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013bd8: 9d e3 bf a0 save %sp, -96, %sp
40013bdc: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013be0: 80 a4 20 00 cmp %l0, 0
40013be4: 02 80 00 34 be 40013cb4 <rtems_partition_create+0xdc>
40013be8: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013bec: 80 a6 60 00 cmp %i1, 0
40013bf0: 02 80 00 31 be 40013cb4 <rtems_partition_create+0xdc>
40013bf4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013bf8: 80 a7 60 00 cmp %i5, 0
40013bfc: 02 80 00 2e be 40013cb4 <rtems_partition_create+0xdc> <== NEVER TAKEN
40013c00: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013c04: 02 80 00 2e be 40013cbc <rtems_partition_create+0xe4>
40013c08: 80 a6 a0 00 cmp %i2, 0
40013c0c: 02 80 00 2c be 40013cbc <rtems_partition_create+0xe4>
40013c10: 80 a6 80 1b cmp %i2, %i3
40013c14: 0a 80 00 28 bcs 40013cb4 <rtems_partition_create+0xdc>
40013c18: b0 10 20 08 mov 8, %i0
40013c1c: 80 8e e0 07 btst 7, %i3
40013c20: 12 80 00 25 bne 40013cb4 <rtems_partition_create+0xdc>
40013c24: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013c28: 12 80 00 23 bne 40013cb4 <rtems_partition_create+0xdc>
40013c2c: b0 10 20 09 mov 9, %i0
40013c30: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40013c34: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 4003d0f0 <_Thread_Dispatch_disable_level>
40013c38: 84 00 a0 01 inc %g2
40013c3c: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013c40: 25 10 00 f3 sethi %hi(0x4003cc00), %l2
40013c44: 40 00 13 0e call 4001887c <_Objects_Allocate>
40013c48: 90 14 a3 04 or %l2, 0x304, %o0 ! 4003cf04 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013c4c: a2 92 20 00 orcc %o0, 0, %l1
40013c50: 02 80 00 1d be 40013cc4 <rtems_partition_create+0xec>
40013c54: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40013c58: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013c5c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013c60: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013c64: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013c68: 90 10 00 1a mov %i2, %o0
40013c6c: 40 00 61 3d call 4002c160 <.udiv>
40013c70: c0 24 60 20 clr [ %l1 + 0x20 ]
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c74: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013c78: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c7c: 96 10 00 1b mov %i3, %o3
40013c80: b8 04 60 24 add %l1, 0x24, %i4
40013c84: 40 00 0c ce call 40016fbc <_Chain_Initialize>
40013c88: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c8c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013c90: a4 14 a3 04 or %l2, 0x304, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c94: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c98: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c9c: 85 28 a0 02 sll %g2, 2, %g2
40013ca0: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013ca4: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013ca8: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013cac: 40 00 17 89 call 40019ad0 <_Thread_Enable_dispatch>
40013cb0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013cb4: 81 c7 e0 08 ret
40013cb8: 81 e8 00 00 restore
}
40013cbc: 81 c7 e0 08 ret
40013cc0: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40013cc4: 40 00 17 83 call 40019ad0 <_Thread_Enable_dispatch>
40013cc8: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013ccc: 81 c7 e0 08 ret
40013cd0: 81 e8 00 00 restore
40007308 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007308: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
4000730c: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40007310: 92 10 00 18 mov %i0, %o1
40007314: 90 12 21 1c or %o0, 0x11c, %o0
40007318: 40 00 09 78 call 400098f8 <_Objects_Get>
4000731c: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007320: c2 07 bf fc ld [ %fp + -4 ], %g1
40007324: 80 a0 60 00 cmp %g1, 0
40007328: 02 80 00 04 be 40007338 <rtems_rate_monotonic_period+0x30>
4000732c: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40007330: 81 c7 e0 08 ret
40007334: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007338: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
4000733c: 23 10 00 7c sethi %hi(0x4001f000), %l1
40007340: a2 14 60 cc or %l1, 0xcc, %l1 ! 4001f0cc <_Per_CPU_Information>
40007344: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007348: 80 a0 80 01 cmp %g2, %g1
4000734c: 02 80 00 06 be 40007364 <rtems_rate_monotonic_period+0x5c>
40007350: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007354: 40 00 0c 97 call 4000a5b0 <_Thread_Enable_dispatch>
40007358: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
4000735c: 81 c7 e0 08 ret
40007360: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007364: 12 80 00 0f bne 400073a0 <rtems_rate_monotonic_period+0x98>
40007368: 01 00 00 00 nop
switch ( the_period->state ) {
4000736c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40007370: 80 a0 60 04 cmp %g1, 4
40007374: 08 80 00 06 bleu 4000738c <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
40007378: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
4000737c: 40 00 0c 8d call 4000a5b0 <_Thread_Enable_dispatch>
40007380: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007384: 81 c7 e0 08 ret
40007388: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
4000738c: 83 28 60 02 sll %g1, 2, %g1
40007390: 05 10 00 74 sethi %hi(0x4001d000), %g2
40007394: 84 10 a0 bc or %g2, 0xbc, %g2 ! 4001d0bc <CSWTCH.2>
40007398: 10 bf ff f9 b 4000737c <rtems_rate_monotonic_period+0x74>
4000739c: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
400073a0: 7f ff ed fa call 40002b88 <sparc_disable_interrupts>
400073a4: 01 00 00 00 nop
400073a8: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
400073ac: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
400073b0: 80 a4 a0 00 cmp %l2, 0
400073b4: 02 80 00 14 be 40007404 <rtems_rate_monotonic_period+0xfc>
400073b8: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
400073bc: 02 80 00 29 be 40007460 <rtems_rate_monotonic_period+0x158>
400073c0: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
400073c4: 12 bf ff e6 bne 4000735c <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
400073c8: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
400073cc: 7f ff ff 8f call 40007208 <_Rate_monotonic_Update_statistics>
400073d0: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
400073d4: 7f ff ed f1 call 40002b98 <sparc_enable_interrupts>
400073d8: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400073dc: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073e0: 92 04 20 10 add %l0, 0x10, %o1
400073e4: 11 10 00 7b sethi %hi(0x4001ec00), %o0
the_period->next_length = length;
400073e8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
400073ec: 90 12 23 60 or %o0, 0x360, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
400073f0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400073f4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073f8: 40 00 10 d8 call 4000b758 <_Watchdog_Insert>
400073fc: b0 10 20 06 mov 6, %i0
40007400: 30 bf ff df b,a 4000737c <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
40007404: 7f ff ed e5 call 40002b98 <sparc_enable_interrupts>
40007408: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
4000740c: 7f ff ff 63 call 40007198 <_Rate_monotonic_Initiate_statistics>
40007410: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007414: 82 10 20 02 mov 2, %g1
40007418: 92 04 20 10 add %l0, 0x10, %o1
4000741c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
40007420: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007424: 03 10 00 1d sethi %hi(0x40007400), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007428: 90 12 23 60 or %o0, 0x360, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
4000742c: 82 10 63 dc or %g1, 0x3dc, %g1
the_watchdog->id = id;
40007430: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007434: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007438: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
4000743c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40007440: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007444: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007448: 40 00 10 c4 call 4000b758 <_Watchdog_Insert>
4000744c: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007450: 40 00 0c 58 call 4000a5b0 <_Thread_Enable_dispatch>
40007454: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40007458: 81 c7 e0 08 ret
4000745c: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40007460: 7f ff ff 6a call 40007208 <_Rate_monotonic_Update_statistics>
40007464: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007468: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
4000746c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007470: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007474: 7f ff ed c9 call 40002b98 <sparc_enable_interrupts>
40007478: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
4000747c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007480: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007484: 90 10 00 01 mov %g1, %o0
40007488: 13 00 00 10 sethi %hi(0x4000), %o1
4000748c: 40 00 0e a4 call 4000af1c <_Thread_Set_state>
40007490: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007494: 7f ff ed bd call 40002b88 <sparc_disable_interrupts>
40007498: 01 00 00 00 nop
local_state = the_period->state;
4000749c: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
400074a0: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
400074a4: 7f ff ed bd call 40002b98 <sparc_enable_interrupts>
400074a8: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
400074ac: 80 a4 e0 03 cmp %l3, 3
400074b0: 22 80 00 06 be,a 400074c8 <rtems_rate_monotonic_period+0x1c0>
400074b4: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
400074b8: 40 00 0c 3e call 4000a5b0 <_Thread_Enable_dispatch>
400074bc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
400074c0: 81 c7 e0 08 ret
400074c4: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400074c8: 40 00 0b 62 call 4000a250 <_Thread_Clear_state>
400074cc: 13 00 00 10 sethi %hi(0x4000), %o1
400074d0: 30 bf ff fa b,a 400074b8 <rtems_rate_monotonic_period+0x1b0>
400074d4 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400074d4: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400074d8: 80 a6 60 00 cmp %i1, 0
400074dc: 02 80 00 4c be 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400074e0: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400074e4: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074e8: 9f c6 40 00 call %i1
400074ec: 92 12 60 d0 or %o1, 0xd0, %o1 ! 4001d0d0 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400074f0: 90 10 00 18 mov %i0, %o0
400074f4: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074f8: 9f c6 40 00 call %i1
400074fc: 92 12 60 f0 or %o1, 0xf0, %o1 ! 4001d0f0 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007500: 90 10 00 18 mov %i0, %o0
40007504: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007508: 9f c6 40 00 call %i1
4000750c: 92 12 61 18 or %o1, 0x118, %o1 ! 4001d118 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007510: 90 10 00 18 mov %i0, %o0
40007514: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007518: 9f c6 40 00 call %i1
4000751c: 92 12 61 40 or %o1, 0x140, %o1 ! 4001d140 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007520: 90 10 00 18 mov %i0, %o0
40007524: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007528: 9f c6 40 00 call %i1
4000752c: 92 12 61 90 or %o1, 0x190, %o1 ! 4001d190 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007530: 23 10 00 7b sethi %hi(0x4001ec00), %l1
40007534: a2 14 61 1c or %l1, 0x11c, %l1 ! 4001ed1c <_Rate_monotonic_Information>
40007538: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000753c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007540: 80 a4 00 01 cmp %l0, %g1
40007544: 18 80 00 32 bgu 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
40007548: 2f 10 00 74 sethi %hi(0x4001d000), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
4000754c: 39 10 00 74 sethi %hi(0x4001d000), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40007550: 2b 10 00 70 sethi %hi(0x4001c000), %l5
40007554: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007558: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
4000755c: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007560: ae 15 e1 e0 or %l7, 0x1e0, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007564: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007568: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
4000756c: b8 17 21 f8 or %i4, 0x1f8, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007570: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40007574: 10 80 00 06 b 4000758c <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
40007578: aa 15 63 68 or %l5, 0x368, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
4000757c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007580: 80 a0 40 10 cmp %g1, %l0
40007584: 0a 80 00 22 bcs 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
40007588: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
4000758c: 90 10 00 10 mov %l0, %o0
40007590: 40 00 19 1f call 4000da0c <rtems_rate_monotonic_get_statistics>
40007594: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
40007598: 80 a2 20 00 cmp %o0, 0
4000759c: 32 bf ff f8 bne,a 4000757c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400075a0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400075a4: 92 10 00 1d mov %i5, %o1
400075a8: 40 00 19 48 call 4000dac8 <rtems_rate_monotonic_get_status>
400075ac: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400075b0: d0 07 bf d8 ld [ %fp + -40 ], %o0
400075b4: 94 10 00 13 mov %l3, %o2
400075b8: 40 00 00 b9 call 4000789c <rtems_object_get_name>
400075bc: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400075c0: d8 1f bf a0 ldd [ %fp + -96 ], %o4
400075c4: 92 10 00 17 mov %l7, %o1
400075c8: 94 10 00 10 mov %l0, %o2
400075cc: 90 10 00 18 mov %i0, %o0
400075d0: 9f c6 40 00 call %i1
400075d4: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075d8: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400075dc: 90 10 00 16 mov %l6, %o0
400075e0: 94 10 00 14 mov %l4, %o2
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075e4: 80 a0 60 00 cmp %g1, 0
400075e8: 12 80 00 0b bne 40007614 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
400075ec: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
400075f0: 9f c6 40 00 call %i1
400075f4: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400075f8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400075fc: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007600: 80 a0 40 10 cmp %g1, %l0
40007604: 1a bf ff e3 bcc 40007590 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
40007608: 90 10 00 10 mov %l0, %o0
4000760c: 81 c7 e0 08 ret
40007610: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007614: 40 00 0f 14 call 4000b264 <_Timespec_Divide_by_integer>
40007618: 92 10 00 01 mov %g1, %o1
(*print)( context,
4000761c: d0 07 bf ac ld [ %fp + -84 ], %o0
40007620: 40 00 46 44 call 40018f30 <.div>
40007624: 92 10 23 e8 mov 0x3e8, %o1
40007628: 96 10 00 08 mov %o0, %o3
4000762c: d0 07 bf b4 ld [ %fp + -76 ], %o0
40007630: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007634: 40 00 46 3f call 40018f30 <.div>
40007638: 92 10 23 e8 mov 0x3e8, %o1
4000763c: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007640: b6 10 00 08 mov %o0, %i3
40007644: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007648: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
4000764c: 40 00 46 39 call 40018f30 <.div>
40007650: 92 10 23 e8 mov 0x3e8, %o1
40007654: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007658: d6 07 bf 9c ld [ %fp + -100 ], %o3
4000765c: d4 07 bf a8 ld [ %fp + -88 ], %o2
40007660: 9a 10 00 1b mov %i3, %o5
40007664: 92 10 00 1c mov %i4, %o1
40007668: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000766c: 9f c6 40 00 call %i1
40007670: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007674: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007678: 94 10 00 14 mov %l4, %o2
4000767c: 40 00 0e fa call 4000b264 <_Timespec_Divide_by_integer>
40007680: 90 10 00 1a mov %i2, %o0
(*print)( context,
40007684: d0 07 bf c4 ld [ %fp + -60 ], %o0
40007688: 40 00 46 2a call 40018f30 <.div>
4000768c: 92 10 23 e8 mov 0x3e8, %o1
40007690: 96 10 00 08 mov %o0, %o3
40007694: d0 07 bf cc ld [ %fp + -52 ], %o0
40007698: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000769c: 40 00 46 25 call 40018f30 <.div>
400076a0: 92 10 23 e8 mov 0x3e8, %o1
400076a4: c2 07 bf f0 ld [ %fp + -16 ], %g1
400076a8: b6 10 00 08 mov %o0, %i3
400076ac: d0 07 bf f4 ld [ %fp + -12 ], %o0
400076b0: 92 10 23 e8 mov 0x3e8, %o1
400076b4: 40 00 46 1f call 40018f30 <.div>
400076b8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400076bc: d4 07 bf c0 ld [ %fp + -64 ], %o2
400076c0: d6 07 bf 9c ld [ %fp + -100 ], %o3
400076c4: d8 07 bf c8 ld [ %fp + -56 ], %o4
400076c8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400076cc: 13 10 00 74 sethi %hi(0x4001d000), %o1
400076d0: 90 10 00 18 mov %i0, %o0
400076d4: 92 12 62 18 or %o1, 0x218, %o1
400076d8: 9f c6 40 00 call %i1
400076dc: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400076e0: 10 bf ff a7 b 4000757c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400076e4: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007704 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
40007704: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007708: 03 10 00 7b sethi %hi(0x4001ec00), %g1
4000770c: c4 00 62 80 ld [ %g1 + 0x280 ], %g2 ! 4001ee80 <_Thread_Dispatch_disable_level>
40007710: 84 00 a0 01 inc %g2
40007714: c4 20 62 80 st %g2, [ %g1 + 0x280 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007718: 23 10 00 7b sethi %hi(0x4001ec00), %l1
4000771c: a2 14 61 1c or %l1, 0x11c, %l1 ! 4001ed1c <_Rate_monotonic_Information>
40007720: e0 04 60 08 ld [ %l1 + 8 ], %l0
40007724: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007728: 80 a4 00 01 cmp %l0, %g1
4000772c: 18 80 00 09 bgu 40007750 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
40007730: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
40007734: 40 00 00 0a call 4000775c <rtems_rate_monotonic_reset_statistics>
40007738: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000773c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40007740: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007744: 80 a0 40 10 cmp %g1, %l0
40007748: 1a bf ff fb bcc 40007734 <rtems_rate_monotonic_reset_all_statistics+0x30>
4000774c: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
40007750: 40 00 0b 98 call 4000a5b0 <_Thread_Enable_dispatch>
40007754: 81 e8 00 00 restore
400151f8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
400151f8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
400151fc: 80 a6 60 00 cmp %i1, 0
40015200: 12 80 00 04 bne 40015210 <rtems_signal_send+0x18>
40015204: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015208: 81 c7 e0 08 ret
4001520c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40015210: 90 10 00 18 mov %i0, %o0
40015214: 40 00 12 3d call 40019b08 <_Thread_Get>
40015218: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4001521c: c2 07 bf fc ld [ %fp + -4 ], %g1
40015220: 80 a0 60 00 cmp %g1, 0
40015224: 02 80 00 05 be 40015238 <rtems_signal_send+0x40>
40015228: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
4001522c: 82 10 20 04 mov 4, %g1
}
40015230: 81 c7 e0 08 ret
40015234: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40015238: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
4001523c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40015240: 80 a0 60 00 cmp %g1, 0
40015244: 02 80 00 25 be 400152d8 <rtems_signal_send+0xe0>
40015248: 01 00 00 00 nop
if ( asr->is_enabled ) {
4001524c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
40015250: 80 a0 60 00 cmp %g1, 0
40015254: 02 80 00 15 be 400152a8 <rtems_signal_send+0xb0>
40015258: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
4001525c: 7f ff e6 95 call 4000ecb0 <sparc_disable_interrupts>
40015260: 01 00 00 00 nop
*signal_set |= signals;
40015264: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40015268: b2 10 40 19 or %g1, %i1, %i1
4001526c: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40015270: 7f ff e6 94 call 4000ecc0 <sparc_enable_interrupts>
40015274: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40015278: 03 10 00 f4 sethi %hi(0x4003d000), %g1
4001527c: 82 10 63 44 or %g1, 0x344, %g1 ! 4003d344 <_Per_CPU_Information>
40015280: c4 00 60 08 ld [ %g1 + 8 ], %g2
40015284: 80 a0 a0 00 cmp %g2, 0
40015288: 02 80 00 0f be 400152c4 <rtems_signal_send+0xcc>
4001528c: 01 00 00 00 nop
40015290: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40015294: 80 a4 40 02 cmp %l1, %g2
40015298: 12 80 00 0b bne 400152c4 <rtems_signal_send+0xcc> <== NEVER TAKEN
4001529c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
400152a0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400152a4: 30 80 00 08 b,a 400152c4 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400152a8: 7f ff e6 82 call 4000ecb0 <sparc_disable_interrupts>
400152ac: 01 00 00 00 nop
*signal_set |= signals;
400152b0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400152b4: b2 10 40 19 or %g1, %i1, %i1
400152b8: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
400152bc: 7f ff e6 81 call 4000ecc0 <sparc_enable_interrupts>
400152c0: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
400152c4: 40 00 12 03 call 40019ad0 <_Thread_Enable_dispatch>
400152c8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400152cc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400152d0: 81 c7 e0 08 ret
400152d4: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
400152d8: 40 00 11 fe call 40019ad0 <_Thread_Enable_dispatch>
400152dc: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
400152e0: 10 bf ff ca b 40015208 <rtems_signal_send+0x10>
400152e4: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000dbb4 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000dbb4: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000dbb8: 80 a6 a0 00 cmp %i2, 0
4000dbbc: 02 80 00 43 be 4000dcc8 <rtems_task_mode+0x114>
4000dbc0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000dbc4: 27 10 00 54 sethi %hi(0x40015000), %l3
4000dbc8: a6 14 e3 ec or %l3, 0x3ec, %l3 ! 400153ec <_Per_CPU_Information>
4000dbcc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbd0: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbd4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbd8: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000dbdc: e2 04 21 4c ld [ %l0 + 0x14c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbe0: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbe4: 80 a0 60 00 cmp %g1, 0
4000dbe8: 12 80 00 3a bne 4000dcd0 <rtems_task_mode+0x11c>
4000dbec: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbf0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000dbf4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dbf8: 7f ff f0 eb call 40009fa4 <_CPU_ISR_Get_level>
4000dbfc: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dc00: a9 2d 20 0a sll %l4, 0xa, %l4
4000dc04: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dc08: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dc0c: 80 8e 61 00 btst 0x100, %i1
4000dc10: 02 80 00 06 be 4000dc28 <rtems_task_mode+0x74>
4000dc14: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dc18: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dc1c: 80 a0 00 01 cmp %g0, %g1
4000dc20: 82 60 3f ff subx %g0, -1, %g1
4000dc24: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000dc28: 80 8e 62 00 btst 0x200, %i1
4000dc2c: 02 80 00 0b be 4000dc58 <rtems_task_mode+0xa4>
4000dc30: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dc34: 80 8e 22 00 btst 0x200, %i0
4000dc38: 22 80 00 07 be,a 4000dc54 <rtems_task_mode+0xa0>
4000dc3c: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000dc40: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dc44: c2 00 61 04 ld [ %g1 + 0x104 ], %g1 ! 40015104 <_Thread_Ticks_per_timeslice>
4000dc48: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000dc4c: 82 10 20 01 mov 1, %g1
4000dc50: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000dc54: 80 8e 60 0f btst 0xf, %i1
4000dc58: 12 80 00 3d bne 4000dd4c <rtems_task_mode+0x198>
4000dc5c: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dc60: 80 8e 64 00 btst 0x400, %i1
4000dc64: 02 80 00 14 be 4000dcb4 <rtems_task_mode+0x100>
4000dc68: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc6c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000dc70: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000dc74: 80 a0 00 18 cmp %g0, %i0
4000dc78: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc7c: 80 a0 80 01 cmp %g2, %g1
4000dc80: 22 80 00 0e be,a 4000dcb8 <rtems_task_mode+0x104>
4000dc84: 03 10 00 54 sethi %hi(0x40015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000dc88: 7f ff d0 14 call 40001cd8 <sparc_disable_interrupts>
4000dc8c: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000dc90: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000dc94: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000dc98: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000dc9c: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000dca0: 7f ff d0 12 call 40001ce8 <sparc_enable_interrupts>
4000dca4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000dca8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000dcac: 80 a0 00 01 cmp %g0, %g1
4000dcb0: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000dcb4: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dcb8: c4 00 63 18 ld [ %g1 + 0x318 ], %g2 ! 40015318 <_System_state_Current>
4000dcbc: 80 a0 a0 03 cmp %g2, 3
4000dcc0: 02 80 00 11 be 4000dd04 <rtems_task_mode+0x150> <== ALWAYS TAKEN
4000dcc4: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000dcc8: 81 c7 e0 08 ret
4000dccc: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dcd0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000dcd4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dcd8: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dcdc: 7f ff f0 b2 call 40009fa4 <_CPU_ISR_Get_level>
4000dce0: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dce4: a9 2d 20 0a sll %l4, 0xa, %l4
4000dce8: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dcec: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dcf0: 80 8e 61 00 btst 0x100, %i1
4000dcf4: 02 bf ff cd be 4000dc28 <rtems_task_mode+0x74>
4000dcf8: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dcfc: 10 bf ff c8 b 4000dc1c <rtems_task_mode+0x68>
4000dd00: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000dd04: 80 88 e0 ff btst 0xff, %g3
4000dd08: 12 80 00 0a bne 4000dd30 <rtems_task_mode+0x17c>
4000dd0c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000dd10: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000dd14: 80 a0 80 03 cmp %g2, %g3
4000dd18: 02 bf ff ec be 4000dcc8 <rtems_task_mode+0x114>
4000dd1c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000dd20: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000dd24: 80 a0 a0 00 cmp %g2, 0
4000dd28: 02 bf ff e8 be 4000dcc8 <rtems_task_mode+0x114> <== NEVER TAKEN
4000dd2c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000dd30: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000dd34: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000dd38: 7f ff ea 55 call 4000868c <_Thread_Dispatch>
4000dd3c: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000dd40: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000dd44: 81 c7 e0 08 ret
4000dd48: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dd4c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dd50: 7f ff cf e6 call 40001ce8 <sparc_enable_interrupts>
4000dd54: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dd58: 10 bf ff c3 b 4000dc64 <rtems_task_mode+0xb0>
4000dd5c: 80 8e 64 00 btst 0x400, %i1
4000af7c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000af7c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000af80: 80 a6 60 00 cmp %i1, 0
4000af84: 02 80 00 07 be 4000afa0 <rtems_task_set_priority+0x24>
4000af88: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000af8c: 03 10 00 65 sethi %hi(0x40019400), %g1
4000af90: c2 08 60 44 ldub [ %g1 + 0x44 ], %g1 ! 40019444 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000af94: 80 a6 40 01 cmp %i1, %g1
4000af98: 18 80 00 1c bgu 4000b008 <rtems_task_set_priority+0x8c>
4000af9c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000afa0: 80 a6 a0 00 cmp %i2, 0
4000afa4: 02 80 00 19 be 4000b008 <rtems_task_set_priority+0x8c>
4000afa8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000afac: 40 00 09 41 call 4000d4b0 <_Thread_Get>
4000afb0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000afb4: c2 07 bf fc ld [ %fp + -4 ], %g1
4000afb8: 80 a0 60 00 cmp %g1, 0
4000afbc: 12 80 00 13 bne 4000b008 <rtems_task_set_priority+0x8c>
4000afc0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000afc4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000afc8: 80 a6 60 00 cmp %i1, 0
4000afcc: 02 80 00 0d be 4000b000 <rtems_task_set_priority+0x84>
4000afd0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000afd4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000afd8: 80 a0 60 00 cmp %g1, 0
4000afdc: 02 80 00 06 be 4000aff4 <rtems_task_set_priority+0x78>
4000afe0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000afe4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000afe8: 80 a6 40 01 cmp %i1, %g1
4000afec: 1a 80 00 05 bcc 4000b000 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000aff0: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000aff4: 92 10 00 19 mov %i1, %o1
4000aff8: 40 00 07 e1 call 4000cf7c <_Thread_Change_priority>
4000affc: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b000: 40 00 09 1e call 4000d478 <_Thread_Enable_dispatch>
4000b004: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b008: 81 c7 e0 08 ret
4000b00c: 81 e8 00 00 restore
40007340 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
40007340: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
40007344: 80 a6 60 00 cmp %i1, 0
40007348: 02 80 00 1e be 400073c0 <rtems_task_variable_delete+0x80>
4000734c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
40007350: 90 10 00 18 mov %i0, %o0
40007354: 40 00 08 c9 call 40009678 <_Thread_Get>
40007358: 92 07 bf fc add %fp, -4, %o1
switch (location) {
4000735c: c2 07 bf fc ld [ %fp + -4 ], %g1
40007360: 80 a0 60 00 cmp %g1, 0
40007364: 12 80 00 19 bne 400073c8 <rtems_task_variable_delete+0x88>
40007368: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
4000736c: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40007370: 80 a0 60 00 cmp %g1, 0
40007374: 02 80 00 10 be 400073b4 <rtems_task_variable_delete+0x74>
40007378: 01 00 00 00 nop
if (tvp->ptr == ptr) {
4000737c: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007380: 80 a0 80 19 cmp %g2, %i1
40007384: 32 80 00 09 bne,a 400073a8 <rtems_task_variable_delete+0x68>
40007388: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
4000738c: 10 80 00 19 b 400073f0 <rtems_task_variable_delete+0xb0>
40007390: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
40007394: 80 a0 80 19 cmp %g2, %i1
40007398: 22 80 00 0e be,a 400073d0 <rtems_task_variable_delete+0x90>
4000739c: c4 02 40 00 ld [ %o1 ], %g2
400073a0: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
400073a4: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
400073a8: 80 a2 60 00 cmp %o1, 0
400073ac: 32 bf ff fa bne,a 40007394 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
400073b0: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400073b4: 40 00 08 a3 call 40009640 <_Thread_Enable_dispatch>
400073b8: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
400073bc: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073c0: 81 c7 e0 08 ret
400073c4: 91 e8 00 01 restore %g0, %g1, %o0
400073c8: 81 c7 e0 08 ret
400073cc: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
400073d0: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
400073d4: 40 00 00 2e call 4000748c <_RTEMS_Tasks_Invoke_task_variable_dtor>
400073d8: 01 00 00 00 nop
_Thread_Enable_dispatch();
400073dc: 40 00 08 99 call 40009640 <_Thread_Enable_dispatch>
400073e0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400073e4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073e8: 81 c7 e0 08 ret
400073ec: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400073f0: 92 10 00 01 mov %g1, %o1
400073f4: 10 bf ff f8 b 400073d4 <rtems_task_variable_delete+0x94>
400073f8: c4 22 21 58 st %g2, [ %o0 + 0x158 ]
400073fc <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
400073fc: 9d e3 bf 98 save %sp, -104, %sp
40007400: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
40007404: 80 a6 60 00 cmp %i1, 0
40007408: 02 80 00 1b be 40007474 <rtems_task_variable_get+0x78>
4000740c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
40007410: 80 a6 a0 00 cmp %i2, 0
40007414: 02 80 00 1c be 40007484 <rtems_task_variable_get+0x88>
40007418: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
4000741c: 40 00 08 97 call 40009678 <_Thread_Get>
40007420: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40007424: c2 07 bf fc ld [ %fp + -4 ], %g1
40007428: 80 a0 60 00 cmp %g1, 0
4000742c: 12 80 00 12 bne 40007474 <rtems_task_variable_get+0x78>
40007430: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
40007434: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40007438: 80 a0 60 00 cmp %g1, 0
4000743c: 32 80 00 07 bne,a 40007458 <rtems_task_variable_get+0x5c>
40007440: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007444: 30 80 00 0e b,a 4000747c <rtems_task_variable_get+0x80>
40007448: 80 a0 60 00 cmp %g1, 0
4000744c: 02 80 00 0c be 4000747c <rtems_task_variable_get+0x80> <== NEVER TAKEN
40007450: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40007454: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007458: 80 a0 80 19 cmp %g2, %i1
4000745c: 32 bf ff fb bne,a 40007448 <rtems_task_variable_get+0x4c>
40007460: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
40007464: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
40007468: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
4000746c: 40 00 08 75 call 40009640 <_Thread_Enable_dispatch>
40007470: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
40007474: 81 c7 e0 08 ret
40007478: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
4000747c: 40 00 08 71 call 40009640 <_Thread_Enable_dispatch>
40007480: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
40007484: 81 c7 e0 08 ret
40007488: 81 e8 00 00 restore
40015c58 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015c58: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015c5c: 11 10 00 f4 sethi %hi(0x4003d000), %o0
40015c60: 92 10 00 18 mov %i0, %o1
40015c64: 90 12 23 d4 or %o0, 0x3d4, %o0
40015c68: 40 00 0c 6c call 40018e18 <_Objects_Get>
40015c6c: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015c70: c2 07 bf fc ld [ %fp + -4 ], %g1
40015c74: 80 a0 60 00 cmp %g1, 0
40015c78: 22 80 00 04 be,a 40015c88 <rtems_timer_cancel+0x30>
40015c7c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015c80: 81 c7 e0 08 ret
40015c84: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015c88: 80 a0 60 04 cmp %g1, 4
40015c8c: 02 80 00 04 be 40015c9c <rtems_timer_cancel+0x44> <== NEVER TAKEN
40015c90: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015c94: 40 00 14 c7 call 4001afb0 <_Watchdog_Remove>
40015c98: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015c9c: 40 00 0f 8d call 40019ad0 <_Thread_Enable_dispatch>
40015ca0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015ca4: 81 c7 e0 08 ret
40015ca8: 81 e8 00 00 restore
40016170 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016170: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40016174: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40016178: e0 00 60 14 ld [ %g1 + 0x14 ], %l0 ! 4003d414 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
4001617c: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40016180: 80 a4 20 00 cmp %l0, 0
40016184: 02 80 00 10 be 400161c4 <rtems_timer_server_fire_when+0x54>
40016188: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
4001618c: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40016190: c2 08 61 00 ldub [ %g1 + 0x100 ], %g1 ! 4003d100 <_TOD_Is_set>
40016194: 80 a0 60 00 cmp %g1, 0
40016198: 02 80 00 0b be 400161c4 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
4001619c: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
400161a0: 80 a6 a0 00 cmp %i2, 0
400161a4: 02 80 00 08 be 400161c4 <rtems_timer_server_fire_when+0x54>
400161a8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400161ac: 90 10 00 19 mov %i1, %o0
400161b0: 7f ff f3 b1 call 40013074 <_TOD_Validate>
400161b4: b0 10 20 14 mov 0x14, %i0
400161b8: 80 8a 20 ff btst 0xff, %o0
400161bc: 12 80 00 04 bne 400161cc <rtems_timer_server_fire_when+0x5c>
400161c0: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400161c4: 81 c7 e0 08 ret
400161c8: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400161cc: 7f ff f3 74 call 40012f9c <_TOD_To_seconds>
400161d0: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400161d4: 25 10 00 f4 sethi %hi(0x4003d000), %l2
400161d8: c2 04 a1 98 ld [ %l2 + 0x198 ], %g1 ! 4003d198 <_TOD_Now>
400161dc: 80 a2 00 01 cmp %o0, %g1
400161e0: 08 bf ff f9 bleu 400161c4 <rtems_timer_server_fire_when+0x54>
400161e4: b2 10 00 08 mov %o0, %i1
400161e8: 92 10 00 11 mov %l1, %o1
400161ec: 11 10 00 f4 sethi %hi(0x4003d000), %o0
400161f0: 94 07 bf fc add %fp, -4, %o2
400161f4: 40 00 0b 09 call 40018e18 <_Objects_Get>
400161f8: 90 12 23 d4 or %o0, 0x3d4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400161fc: c2 07 bf fc ld [ %fp + -4 ], %g1
40016200: a6 10 00 08 mov %o0, %l3
40016204: 80 a0 60 00 cmp %g1, 0
40016208: 12 bf ff ef bne 400161c4 <rtems_timer_server_fire_when+0x54>
4001620c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40016210: 40 00 13 68 call 4001afb0 <_Watchdog_Remove>
40016214: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
40016218: c2 04 20 04 ld [ %l0 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001621c: c4 04 a1 98 ld [ %l2 + 0x198 ], %g2
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016220: 86 10 20 03 mov 3, %g3
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
40016224: 90 10 00 10 mov %l0, %o0
40016228: 92 10 00 13 mov %l3, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001622c: b2 26 40 02 sub %i1, %g2, %i1
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016230: c6 24 e0 38 st %g3, [ %l3 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40016234: f4 24 e0 2c st %i2, [ %l3 + 0x2c ]
the_watchdog->id = id;
40016238: e2 24 e0 30 st %l1, [ %l3 + 0x30 ]
the_watchdog->user_data = user_data;
4001623c: f6 24 e0 34 st %i3, [ %l3 + 0x34 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40016240: c0 24 e0 18 clr [ %l3 + 0x18 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016244: f2 24 e0 1c st %i1, [ %l3 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40016248: 9f c0 40 00 call %g1
4001624c: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016250: 40 00 0e 20 call 40019ad0 <_Thread_Enable_dispatch>
40016254: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016258: 81 c7 e0 08 ret
4001625c: 81 e8 00 00 restore