RTEMS 4.11Annotated Report
Sat Oct 16 11:28:02 2010
40006968 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
40006968: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
4000696c: 23 10 00 54 sethi %hi(0x40015000), %l1
40006970: e0 04 62 94 ld [ %l1 + 0x294 ], %l0 ! 40015294 <_API_extensions_List>
40006974: a2 14 62 94 or %l1, 0x294, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40006978: a2 04 60 04 add %l1, 4, %l1
4000697c: 80 a4 00 11 cmp %l0, %l1
40006980: 02 80 00 09 be 400069a4 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40006984: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40006988: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000698c: 9f c0 40 00 call %g1
40006990: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40006994: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
40006998: 80 a4 00 11 cmp %l0, %l1
4000699c: 32 bf ff fc bne,a 4000698c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
400069a0: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
400069a4: 81 c7 e0 08 ret
400069a8: 81 e8 00 00 restore
400069ac <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
400069ac: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
400069b0: 23 10 00 54 sethi %hi(0x40015000), %l1
400069b4: e0 04 62 94 ld [ %l1 + 0x294 ], %l0 ! 40015294 <_API_extensions_List>
400069b8: a2 14 62 94 or %l1, 0x294, %l1
400069bc: a2 04 60 04 add %l1, 4, %l1
400069c0: 80 a4 00 11 cmp %l0, %l1
400069c4: 02 80 00 0a be 400069ec <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
400069c8: 25 10 00 54 sethi %hi(0x40015000), %l2
400069cc: a4 14 a2 cc or %l2, 0x2cc, %l2 ! 400152cc <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
400069d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400069d4: 9f c0 40 00 call %g1
400069d8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
400069dc: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
400069e0: 80 a4 00 11 cmp %l0, %l1
400069e4: 32 bf ff fc bne,a 400069d4 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
400069e8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
400069ec: 81 c7 e0 08 ret
400069f0: 81 e8 00 00 restore
40017038 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017038: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
4001703c: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017040: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017044: 80 a0 40 1a cmp %g1, %i2
40017048: 0a 80 00 17 bcs 400170a4 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
4001704c: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
40017050: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017054: 80 a0 60 00 cmp %g1, 0
40017058: 02 80 00 0a be 40017080 <_CORE_message_queue_Broadcast+0x48>
4001705c: a4 10 20 00 clr %l2
*count = 0;
40017060: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017064: 81 c7 e0 08 ret
40017068: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
4001706c: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
40017070: 40 00 23 05 call 4001fc84 <memcpy>
40017074: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017078: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
4001707c: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
40017080: 40 00 0a c1 call 40019b84 <_Thread_queue_Dequeue>
40017084: 90 10 00 10 mov %l0, %o0
40017088: 92 10 00 19 mov %i1, %o1
4001708c: a2 10 00 08 mov %o0, %l1
40017090: 80 a2 20 00 cmp %o0, 0
40017094: 12 bf ff f6 bne 4001706c <_CORE_message_queue_Broadcast+0x34>
40017098: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
4001709c: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
400170a0: b0 10 20 00 clr %i0
}
400170a4: 81 c7 e0 08 ret
400170a8: 81 e8 00 00 restore
400108c4 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108c4: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
400108c8: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400108cc: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
400108d0: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400108d4: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400108d8: 80 8e e0 03 btst 3, %i3
400108dc: 02 80 00 07 be 400108f8 <_CORE_message_queue_Initialize+0x34>
400108e0: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400108e4: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400108e8: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
400108ec: 80 a6 c0 12 cmp %i3, %l2
400108f0: 18 80 00 22 bgu 40010978 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400108f4: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
400108f8: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
400108fc: 92 10 00 1a mov %i2, %o1
40010900: 90 10 00 11 mov %l1, %o0
40010904: 40 00 3f 19 call 40020568 <.umul>
40010908: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
4001090c: 80 a2 00 12 cmp %o0, %l2
40010910: 0a 80 00 1a bcs 40010978 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010914: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40010918: 40 00 0c 49 call 40013a3c <_Workspace_Allocate>
4001091c: 01 00 00 00 nop
if (the_message_queue->message_buffers == 0)
40010920: 80 a2 20 00 cmp %o0, 0
40010924: 02 80 00 15 be 40010978 <_CORE_message_queue_Initialize+0xb4>
40010928: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
4001092c: 92 10 00 08 mov %o0, %o1
40010930: 94 10 00 1a mov %i2, %o2
40010934: 96 10 00 11 mov %l1, %o3
40010938: 40 00 14 dd call 40015cac <_Chain_Initialize>
4001093c: 90 04 20 60 add %l0, 0x60, %o0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010940: c4 06 40 00 ld [ %i1 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40010944: 82 04 20 54 add %l0, 0x54, %g1
40010948: 84 18 a0 01 xor %g2, 1, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4001094c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
40010950: 80 a0 00 02 cmp %g0, %g2
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
40010954: 82 04 20 50 add %l0, 0x50, %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
40010958: b0 10 20 01 mov 1, %i0
the_chain->permanent_null = NULL;
4001095c: c0 24 20 54 clr [ %l0 + 0x54 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010960: 90 10 00 10 mov %l0, %o0
the_chain->last = _Chain_Head(the_chain);
40010964: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
40010968: 92 60 3f ff subx %g0, -1, %o1
4001096c: 94 10 20 80 mov 0x80, %o2
40010970: 40 00 08 e4 call 40012d00 <_Thread_queue_Initialize>
40010974: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40010978: 81 c7 e0 08 ret
4001097c: 81 e8 00 00 restore
40006cf8 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40006cf8: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40006cfc: 21 10 00 54 sethi %hi(0x40015000), %l0
40006d00: c2 04 20 68 ld [ %l0 + 0x68 ], %g1 ! 40015068 <_Thread_Dispatch_disable_level>
40006d04: 80 a0 60 00 cmp %g1, 0
40006d08: 02 80 00 05 be 40006d1c <_CORE_mutex_Seize+0x24>
40006d0c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40006d10: 80 8e a0 ff btst 0xff, %i2
40006d14: 12 80 00 1a bne 40006d7c <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40006d18: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d1c: 90 10 00 18 mov %i0, %o0
40006d20: 40 00 13 fc call 4000bd10 <_CORE_mutex_Seize_interrupt_trylock>
40006d24: 92 07 a0 54 add %fp, 0x54, %o1
40006d28: 80 a2 20 00 cmp %o0, 0
40006d2c: 02 80 00 12 be 40006d74 <_CORE_mutex_Seize+0x7c>
40006d30: 80 8e a0 ff btst 0xff, %i2
40006d34: 02 80 00 1a be 40006d9c <_CORE_mutex_Seize+0xa4>
40006d38: 01 00 00 00 nop
40006d3c: c4 04 20 68 ld [ %l0 + 0x68 ], %g2
40006d40: 03 10 00 54 sethi %hi(0x40015000), %g1
40006d44: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 400152d8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006d48: 86 10 20 01 mov 1, %g3
40006d4c: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40006d50: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006d54: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40006d58: 82 00 a0 01 add %g2, 1, %g1
40006d5c: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
40006d60: 7f ff eb e2 call 40001ce8 <sparc_enable_interrupts>
40006d64: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006d68: 90 10 00 18 mov %i0, %o0
40006d6c: 7f ff ff c0 call 40006c6c <_CORE_mutex_Seize_interrupt_blocking>
40006d70: 92 10 00 1b mov %i3, %o1
40006d74: 81 c7 e0 08 ret
40006d78: 81 e8 00 00 restore
40006d7c: c2 00 61 ec ld [ %g1 + 0x1ec ], %g1
40006d80: 80 a0 60 01 cmp %g1, 1
40006d84: 28 bf ff e7 bleu,a 40006d20 <_CORE_mutex_Seize+0x28>
40006d88: 90 10 00 18 mov %i0, %o0
40006d8c: 90 10 20 00 clr %o0
40006d90: 92 10 20 00 clr %o1
40006d94: 40 00 01 d9 call 400074f8 <_Internal_error_Occurred>
40006d98: 94 10 20 12 mov 0x12, %o2
40006d9c: 7f ff eb d3 call 40001ce8 <sparc_enable_interrupts>
40006da0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006da4: 03 10 00 54 sethi %hi(0x40015000), %g1
40006da8: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 400152d8 <_Per_CPU_Information+0xc>
40006dac: 84 10 20 01 mov 1, %g2
40006db0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40006db4: 81 c7 e0 08 ret
40006db8: 81 e8 00 00 restore
4000bd10 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000bd10: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000bd14: 03 10 00 54 sethi %hi(0x40015000), %g1
4000bd18: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 400152d8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bd1c: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000bd20: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000bd24: 80 a0 a0 00 cmp %g2, 0
4000bd28: 02 80 00 13 be 4000bd74 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000bd2c: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000bd30: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000bd34: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
4000bd38: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000bd3c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
4000bd40: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
4000bd44: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000bd48: 80 a0 a0 02 cmp %g2, 2
4000bd4c: 02 80 00 10 be 4000bd8c <_CORE_mutex_Seize_interrupt_trylock+0x7c>
4000bd50: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
4000bd54: 80 a0 a0 03 cmp %g2, 3
4000bd58: 22 80 00 21 be,a 4000bddc <_CORE_mutex_Seize_interrupt_trylock+0xcc>
4000bd5c: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000bd60: d0 06 40 00 ld [ %i1 ], %o0
4000bd64: 7f ff d7 e1 call 40001ce8 <sparc_enable_interrupts>
4000bd68: b0 10 20 00 clr %i0
4000bd6c: 81 c7 e0 08 ret
4000bd70: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000bd74: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000bd78: 80 a0 40 02 cmp %g1, %g2
4000bd7c: 02 80 00 0c be 4000bdac <_CORE_mutex_Seize_interrupt_trylock+0x9c>
4000bd80: b0 10 20 01 mov 1, %i0
4000bd84: 81 c7 e0 08 ret
4000bd88: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000bd8c: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
4000bd90: 84 00 a0 01 inc %g2
4000bd94: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000bd98: d0 06 40 00 ld [ %i1 ], %o0
4000bd9c: 7f ff d7 d3 call 40001ce8 <sparc_enable_interrupts>
4000bda0: b0 10 20 00 clr %i0
4000bda4: 81 c7 e0 08 ret
4000bda8: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000bdac: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000bdb0: 80 a0 a0 00 cmp %g2, 0
4000bdb4: 12 80 00 2b bne 4000be60 <_CORE_mutex_Seize_interrupt_trylock+0x150>
4000bdb8: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000bdbc: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000bdc0: 82 00 60 01 inc %g1
4000bdc4: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000bdc8: d0 06 40 00 ld [ %i1 ], %o0
4000bdcc: 7f ff d7 c7 call 40001ce8 <sparc_enable_interrupts>
4000bdd0: b0 10 20 00 clr %i0
4000bdd4: 81 c7 e0 08 ret
4000bdd8: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000bddc: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
4000bde0: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000bde4: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
4000bde8: 80 a1 00 02 cmp %g4, %g2
4000bdec: 02 80 00 25 be 4000be80 <_CORE_mutex_Seize_interrupt_trylock+0x170>
4000bdf0: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
4000bdf4: 80 a1 00 02 cmp %g4, %g2
4000bdf8: 1a 80 00 11 bcc 4000be3c <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000bdfc: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000be00: 03 10 00 54 sethi %hi(0x40015000), %g1
4000be04: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 40015068 <_Thread_Dispatch_disable_level>
4000be08: 84 00 a0 01 inc %g2
4000be0c: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000be10: 7f ff d7 b6 call 40001ce8 <sparc_enable_interrupts>
4000be14: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000be18: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
4000be1c: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
4000be20: 94 10 20 00 clr %o2
4000be24: 7f ff f0 39 call 40007f08 <_Thread_Change_priority>
4000be28: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000be2c: 7f ff f1 ae call 400084e4 <_Thread_Enable_dispatch>
4000be30: 01 00 00 00 nop
4000be34: 81 c7 e0 08 ret
4000be38: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000be3c: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000be40: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
4000be44: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
4000be48: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000be4c: d0 06 40 00 ld [ %i1 ], %o0
4000be50: 7f ff d7 a6 call 40001ce8 <sparc_enable_interrupts>
4000be54: b0 10 20 00 clr %i0
4000be58: 81 c7 e0 08 ret
4000be5c: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000be60: 12 bf ff c3 bne 4000bd6c <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
4000be64: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000be68: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
4000be6c: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000be70: 7f ff d7 9e call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
4000be74: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000be78: 81 c7 e0 08 ret <== NOT EXECUTED
4000be7c: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
4000be80: d0 06 40 00 ld [ %i1 ], %o0
4000be84: 7f ff d7 99 call 40001ce8 <sparc_enable_interrupts>
4000be88: b0 10 20 00 clr %i0
4000be8c: 81 c7 e0 08 ret
4000be90: 81 e8 00 00 restore
40006f38 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40006f38: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006f3c: 90 10 00 18 mov %i0, %o0
40006f40: 40 00 06 46 call 40008858 <_Thread_queue_Dequeue>
40006f44: a0 10 00 18 mov %i0, %l0
40006f48: 80 a2 20 00 cmp %o0, 0
40006f4c: 12 80 00 0e bne 40006f84 <_CORE_semaphore_Surrender+0x4c>
40006f50: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40006f54: 7f ff eb 61 call 40001cd8 <sparc_disable_interrupts>
40006f58: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006f5c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40006f60: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40006f64: 80 a0 40 02 cmp %g1, %g2
40006f68: 1a 80 00 05 bcc 40006f7c <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40006f6c: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40006f70: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006f74: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40006f78: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40006f7c: 7f ff eb 5b call 40001ce8 <sparc_enable_interrupts>
40006f80: 01 00 00 00 nop
}
return status;
}
40006f84: 81 c7 e0 08 ret
40006f88: 81 e8 00 00 restore
40007240 <_Chain_Get_with_empty_check>:
bool _Chain_Get_with_empty_check(
Chain_Control *chain,
Chain_Node **node
)
{
40007240: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
bool is_empty_now;
_ISR_Disable( level );
40007244: 7f ff ec 2c call 400022f4 <sparc_disable_interrupts>
40007248: 01 00 00 00 nop
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
4000724c: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40007250: 86 06 20 04 add %i0, 4, %g3
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
if ( first != _Chain_Tail( the_chain ) ) {
40007254: 80 a0 40 03 cmp %g1, %g3
40007258: 22 80 00 0d be,a 4000728c <_Chain_Get_with_empty_check+0x4c><== NEVER TAKEN
4000725c: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED
Chain_Node *new_first = first->next;
40007260: c4 00 40 00 ld [ %g1 ], %g2
the_chain->first = new_first;
40007264: c4 26 00 00 st %g2, [ %i0 ]
new_first->previous = _Chain_Head( the_chain );
40007268: f0 20 a0 04 st %i0, [ %g2 + 4 ]
*the_node = first;
4000726c: c2 26 40 00 st %g1, [ %i1 ]
is_empty_now = new_first == _Chain_Tail( the_chain );
40007270: 84 18 c0 02 xor %g3, %g2, %g2
40007274: 80 a0 00 02 cmp %g0, %g2
40007278: b0 60 3f ff subx %g0, -1, %i0
is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node );
_ISR_Enable( level );
4000727c: 7f ff ec 22 call 40002304 <sparc_enable_interrupts>
40007280: 01 00 00 00 nop
return is_empty_now;
}
40007284: 81 c7 e0 08 ret
40007288: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected(
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
4000728c: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED
ISR_Level level;
bool is_empty_now;
_ISR_Disable( level );
is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node );
_ISR_Enable( level );
40007290: 7f ff ec 1d call 40002304 <sparc_enable_interrupts> <== NOT EXECUTED
40007294: 01 00 00 00 nop <== NOT EXECUTED
return is_empty_now;
}
40007298: 81 c7 e0 08 ret <== NOT EXECUTED
4000729c: 81 e8 00 00 restore <== NOT EXECUTED
4000bcac <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000bcac: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
4000bcb0: c0 26 20 04 clr [ %i0 + 4 ]
next = starting_address;
while ( count-- ) {
4000bcb4: 80 a6 a0 00 cmp %i2, 0
4000bcb8: 02 80 00 11 be 4000bcfc <_Chain_Initialize+0x50> <== NEVER TAKEN
4000bcbc: 84 10 00 18 mov %i0, %g2
4000bcc0: b4 06 bf ff add %i2, -1, %i2
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
4000bcc4: 82 10 00 19 mov %i1, %g1
while ( count-- ) {
4000bcc8: 10 80 00 05 b 4000bcdc <_Chain_Initialize+0x30>
4000bccc: 92 10 00 1a mov %i2, %o1
4000bcd0: 84 10 00 01 mov %g1, %g2
4000bcd4: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000bcd8: 82 10 00 03 mov %g3, %g1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
current->next = next;
4000bcdc: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000bce0: c4 20 60 04 st %g2, [ %g1 + 4 ]
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
4000bce4: 80 a6 a0 00 cmp %i2, 0
4000bce8: 12 bf ff fa bne 4000bcd0 <_Chain_Initialize+0x24>
4000bcec: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000bcf0: 40 00 16 82 call 400116f8 <.umul>
4000bcf4: 90 10 00 1b mov %i3, %o0
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
4000bcf8: 84 06 40 08 add %i1, %o0, %g2
4000bcfc: 82 06 20 04 add %i0, 4, %g1
next->previous = current;
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = _Chain_Tail( the_chain );
4000bd00: c2 20 80 00 st %g1, [ %g2 ]
the_chain->last = current;
4000bd04: c4 26 20 08 st %g2, [ %i0 + 8 ]
}
4000bd08: 81 c7 e0 08 ret
4000bd0c: 81 e8 00 00 restore
40005c08 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40005c08: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40005c0c: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40005c10: 7f ff f0 32 call 40001cd8 <sparc_disable_interrupts>
40005c14: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40005c18: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40005c1c: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005c20: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40005c24: 86 88 40 02 andcc %g1, %g2, %g3
40005c28: 02 80 00 3e be 40005d20 <_Event_Surrender+0x118>
40005c2c: 09 10 00 54 sethi %hi(0x40015000), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005c30: 88 11 22 cc or %g4, 0x2cc, %g4 ! 400152cc <_Per_CPU_Information>
40005c34: da 01 20 08 ld [ %g4 + 8 ], %o5
40005c38: 80 a3 60 00 cmp %o5, 0
40005c3c: 32 80 00 1d bne,a 40005cb0 <_Event_Surrender+0xa8>
40005c40: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40005c44: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40005c48: 80 89 21 00 btst 0x100, %g4
40005c4c: 02 80 00 33 be 40005d18 <_Event_Surrender+0x110>
40005c50: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005c54: 02 80 00 04 be 40005c64 <_Event_Surrender+0x5c>
40005c58: 80 8c a0 02 btst 2, %l2
40005c5c: 02 80 00 2f be 40005d18 <_Event_Surrender+0x110> <== NEVER TAKEN
40005c60: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c64: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40005c68: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40005c6c: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005c70: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005c74: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40005c78: 7f ff f0 1c call 40001ce8 <sparc_enable_interrupts>
40005c7c: 90 10 00 11 mov %l1, %o0
40005c80: 7f ff f0 16 call 40001cd8 <sparc_disable_interrupts>
40005c84: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40005c88: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40005c8c: 80 a0 60 02 cmp %g1, 2
40005c90: 02 80 00 26 be 40005d28 <_Event_Surrender+0x120>
40005c94: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40005c98: 90 10 00 11 mov %l1, %o0
40005c9c: 7f ff f0 13 call 40001ce8 <sparc_enable_interrupts>
40005ca0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005ca4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005ca8: 40 00 09 1b call 40008114 <_Thread_Clear_state>
40005cac: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005cb0: 80 a6 00 04 cmp %i0, %g4
40005cb4: 32 bf ff e5 bne,a 40005c48 <_Event_Surrender+0x40>
40005cb8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005cbc: 09 10 00 54 sethi %hi(0x40015000), %g4
40005cc0: da 01 22 e8 ld [ %g4 + 0x2e8 ], %o5 ! 400152e8 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40005cc4: 80 a3 60 02 cmp %o5, 2
40005cc8: 02 80 00 07 be 40005ce4 <_Event_Surrender+0xdc> <== NEVER TAKEN
40005ccc: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005cd0: da 01 22 e8 ld [ %g4 + 0x2e8 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005cd4: 80 a3 60 01 cmp %o5, 1
40005cd8: 32 bf ff dc bne,a 40005c48 <_Event_Surrender+0x40>
40005cdc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005ce0: 80 a0 40 03 cmp %g1, %g3
40005ce4: 02 80 00 04 be 40005cf4 <_Event_Surrender+0xec>
40005ce8: 80 8c a0 02 btst 2, %l2
40005cec: 02 80 00 09 be 40005d10 <_Event_Surrender+0x108> <== NEVER TAKEN
40005cf0: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005cf4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40005cf8: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40005cfc: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40005d00: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005d04: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40005d08: 82 10 20 03 mov 3, %g1
40005d0c: c2 21 22 e8 st %g1, [ %g4 + 0x2e8 ]
}
_ISR_Enable( level );
40005d10: 7f ff ef f6 call 40001ce8 <sparc_enable_interrupts>
40005d14: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40005d18: 7f ff ef f4 call 40001ce8 <sparc_enable_interrupts>
40005d1c: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40005d20: 7f ff ef f2 call 40001ce8 <sparc_enable_interrupts>
40005d24: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40005d28: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40005d2c: 7f ff ef ef call 40001ce8 <sparc_enable_interrupts>
40005d30: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005d34: 40 00 0e cc call 40009864 <_Watchdog_Remove>
40005d38: 90 06 20 48 add %i0, 0x48, %o0
40005d3c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40005d40: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005d44: 40 00 08 f4 call 40008114 <_Thread_Clear_state>
40005d48: 81 e8 00 00 restore
40005d50 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40005d50: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40005d54: 90 10 00 18 mov %i0, %o0
40005d58: 40 00 09 f1 call 4000851c <_Thread_Get>
40005d5c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40005d60: c2 07 bf fc ld [ %fp + -4 ], %g1
40005d64: 80 a0 60 00 cmp %g1, 0
40005d68: 12 80 00 15 bne 40005dbc <_Event_Timeout+0x6c> <== NEVER TAKEN
40005d6c: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40005d70: 7f ff ef da call 40001cd8 <sparc_disable_interrupts>
40005d74: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40005d78: 03 10 00 54 sethi %hi(0x40015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40005d7c: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 400152d8 <_Per_CPU_Information+0xc>
40005d80: 80 a4 00 01 cmp %l0, %g1
40005d84: 02 80 00 10 be 40005dc4 <_Event_Timeout+0x74>
40005d88: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005d8c: 82 10 20 06 mov 6, %g1
40005d90: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40005d94: 7f ff ef d5 call 40001ce8 <sparc_enable_interrupts>
40005d98: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005d9c: 90 10 00 10 mov %l0, %o0
40005da0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40005da4: 40 00 08 dc call 40008114 <_Thread_Clear_state>
40005da8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005dac: 03 10 00 54 sethi %hi(0x40015000), %g1
40005db0: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 40015068 <_Thread_Dispatch_disable_level>
40005db4: 84 00 bf ff add %g2, -1, %g2
40005db8: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
40005dbc: 81 c7 e0 08 ret
40005dc0: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005dc4: 03 10 00 54 sethi %hi(0x40015000), %g1
40005dc8: c4 00 62 e8 ld [ %g1 + 0x2e8 ], %g2 ! 400152e8 <_Event_Sync_state>
40005dcc: 80 a0 a0 01 cmp %g2, 1
40005dd0: 32 bf ff f0 bne,a 40005d90 <_Event_Timeout+0x40>
40005dd4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40005dd8: 84 10 20 02 mov 2, %g2
40005ddc: c4 20 62 e8 st %g2, [ %g1 + 0x2e8 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005de0: 10 bf ff ec b 40005d90 <_Event_Timeout+0x40>
40005de4: 82 10 20 06 mov 6, %g1
4000bf10 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000bf10: 9d e3 bf 98 save %sp, -104, %sp
4000bf14: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000bf18: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000bf1c: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000bf20: 80 a6 40 12 cmp %i1, %l2
4000bf24: 18 80 00 6e bgu 4000c0dc <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bf28: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000bf2c: 80 a6 e0 00 cmp %i3, 0
4000bf30: 12 80 00 75 bne 4000c104 <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000bf34: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000bf38: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000bf3c: 80 a4 00 14 cmp %l0, %l4
4000bf40: 02 80 00 67 be 4000c0dc <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000bf44: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000bf48: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000bf4c: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000bf50: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000bf54: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000bf58: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000bf5c: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000bf60: 80 a4 80 13 cmp %l2, %l3
4000bf64: 3a 80 00 4b bcc,a 4000c090 <_Heap_Allocate_aligned_with_boundary+0x180>
4000bf68: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000bf6c: 80 a6 a0 00 cmp %i2, 0
4000bf70: 02 80 00 44 be 4000c080 <_Heap_Allocate_aligned_with_boundary+0x170>
4000bf74: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000bf78: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000bf7c: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000bf80: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000bf84: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000bf88: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000bf8c: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000bf90: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000bf94: a6 00 40 13 add %g1, %l3, %l3
4000bf98: 40 00 16 be call 40011a90 <.urem>
4000bf9c: 90 10 00 18 mov %i0, %o0
4000bfa0: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000bfa4: 80 a4 c0 18 cmp %l3, %i0
4000bfa8: 1a 80 00 06 bcc 4000bfc0 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000bfac: ac 05 20 08 add %l4, 8, %l6
4000bfb0: 90 10 00 13 mov %l3, %o0
4000bfb4: 40 00 16 b7 call 40011a90 <.urem>
4000bfb8: 92 10 00 1a mov %i2, %o1
4000bfbc: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000bfc0: 80 a6 e0 00 cmp %i3, 0
4000bfc4: 02 80 00 24 be 4000c054 <_Heap_Allocate_aligned_with_boundary+0x144>
4000bfc8: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000bfcc: a6 06 00 19 add %i0, %i1, %l3
4000bfd0: 92 10 00 1b mov %i3, %o1
4000bfd4: 40 00 16 af call 40011a90 <.urem>
4000bfd8: 90 10 00 13 mov %l3, %o0
4000bfdc: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000bfe0: 80 a2 00 13 cmp %o0, %l3
4000bfe4: 1a 80 00 1b bcc 4000c050 <_Heap_Allocate_aligned_with_boundary+0x140>
4000bfe8: 80 a6 00 08 cmp %i0, %o0
4000bfec: 1a 80 00 1a bcc 4000c054 <_Heap_Allocate_aligned_with_boundary+0x144>
4000bff0: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000bff4: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000bff8: 80 a5 40 08 cmp %l5, %o0
4000bffc: 28 80 00 09 bleu,a 4000c020 <_Heap_Allocate_aligned_with_boundary+0x110>
4000c000: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c004: 10 80 00 23 b 4000c090 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c008: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c00c: 1a 80 00 11 bcc 4000c050 <_Heap_Allocate_aligned_with_boundary+0x140>
4000c010: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000c014: 38 80 00 1f bgu,a 4000c090 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000c018: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000c01c: b0 22 00 19 sub %o0, %i1, %i0
4000c020: 92 10 00 1a mov %i2, %o1
4000c024: 40 00 16 9b call 40011a90 <.urem>
4000c028: 90 10 00 18 mov %i0, %o0
4000c02c: 92 10 00 1b mov %i3, %o1
4000c030: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000c034: a6 06 00 19 add %i0, %i1, %l3
4000c038: 40 00 16 96 call 40011a90 <.urem>
4000c03c: 90 10 00 13 mov %l3, %o0
4000c040: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c044: 80 a2 00 13 cmp %o0, %l3
4000c048: 0a bf ff f1 bcs 4000c00c <_Heap_Allocate_aligned_with_boundary+0xfc>
4000c04c: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000c050: 80 a5 80 18 cmp %l6, %i0
4000c054: 38 80 00 0f bgu,a 4000c090 <_Heap_Allocate_aligned_with_boundary+0x180>
4000c058: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000c05c: 82 10 3f f8 mov -8, %g1
4000c060: 90 10 00 18 mov %i0, %o0
4000c064: a6 20 40 14 sub %g1, %l4, %l3
4000c068: 92 10 00 1d mov %i5, %o1
4000c06c: 40 00 16 89 call 40011a90 <.urem>
4000c070: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c074: 90 a4 c0 08 subcc %l3, %o0, %o0
4000c078: 12 80 00 1b bne 4000c0e4 <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000c07c: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000c080: 80 a6 20 00 cmp %i0, 0
4000c084: 32 80 00 08 bne,a 4000c0a4 <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000c088: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000c08c: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c090: 80 a4 00 14 cmp %l0, %l4
4000c094: 02 80 00 1a be 4000c0fc <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000c098: 82 04 60 01 add %l1, 1, %g1
4000c09c: 10 bf ff b0 b 4000bf5c <_Heap_Allocate_aligned_with_boundary+0x4c>
4000c0a0: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000c0a4: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c0a8: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000c0ac: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000c0b0: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000c0b4: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c0b8: 90 10 00 10 mov %l0, %o0
4000c0bc: 92 10 00 14 mov %l4, %o1
4000c0c0: 94 10 00 18 mov %i0, %o2
4000c0c4: 7f ff ec c1 call 400073c8 <_Heap_Block_allocate>
4000c0c8: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000c0cc: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000c0d0: 80 a0 40 11 cmp %g1, %l1
4000c0d4: 2a 80 00 02 bcs,a 4000c0dc <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c0d8: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c0dc: 81 c7 e0 08 ret
4000c0e0: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000c0e4: 1a bf ff e8 bcc 4000c084 <_Heap_Allocate_aligned_with_boundary+0x174>
4000c0e8: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000c0ec: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000c0f0: 80 a4 00 14 cmp %l0, %l4
4000c0f4: 12 bf ff ea bne 4000c09c <_Heap_Allocate_aligned_with_boundary+0x18c><== NEVER TAKEN
4000c0f8: 82 04 60 01 add %l1, 1, %g1
4000c0fc: 10 bf ff f4 b 4000c0cc <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000c100: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000c104: 18 bf ff f6 bgu 4000c0dc <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000c108: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000c10c: 22 bf ff 8b be,a 4000bf38 <_Heap_Allocate_aligned_with_boundary+0x28>
4000c110: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000c114: 10 bf ff 8a b 4000bf3c <_Heap_Allocate_aligned_with_boundary+0x2c>
4000c118: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000c424 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c424: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c428: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c42c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c430: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c434: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c438: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c43c: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c440: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000c444: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c448: 80 a6 40 11 cmp %i1, %l1
4000c44c: 18 80 00 86 bgu 4000c664 <_Heap_Extend+0x240>
4000c450: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c454: 90 10 00 19 mov %i1, %o0
4000c458: 92 10 00 1a mov %i2, %o1
4000c45c: 94 10 00 13 mov %l3, %o2
4000c460: 98 07 bf fc add %fp, -4, %o4
4000c464: 7f ff ec 3a call 4000754c <_Heap_Get_first_and_last_block>
4000c468: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c46c: 80 8a 20 ff btst 0xff, %o0
4000c470: 02 80 00 7d be 4000c664 <_Heap_Extend+0x240>
4000c474: ba 10 20 00 clr %i5
4000c478: b0 10 00 12 mov %l2, %i0
4000c47c: b8 10 20 00 clr %i4
4000c480: ac 10 20 00 clr %l6
4000c484: 10 80 00 14 b 4000c4d4 <_Heap_Extend+0xb0>
4000c488: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c48c: 2a 80 00 02 bcs,a 4000c494 <_Heap_Extend+0x70>
4000c490: b8 10 00 18 mov %i0, %i4
4000c494: 90 10 00 15 mov %l5, %o0
4000c498: 40 00 16 d1 call 40011fdc <.urem>
4000c49c: 92 10 00 13 mov %l3, %o1
4000c4a0: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c4a4: 80 a5 40 19 cmp %l5, %i1
4000c4a8: 02 80 00 1c be 4000c518 <_Heap_Extend+0xf4>
4000c4ac: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c4b0: 80 a6 40 15 cmp %i1, %l5
4000c4b4: 38 80 00 02 bgu,a 4000c4bc <_Heap_Extend+0x98>
4000c4b8: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c4bc: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c4c0: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c4c4: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c4c8: 80 a4 80 18 cmp %l2, %i0
4000c4cc: 22 80 00 1b be,a 4000c538 <_Heap_Extend+0x114>
4000c4d0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c4d4: 80 a6 00 12 cmp %i0, %l2
4000c4d8: 02 80 00 65 be 4000c66c <_Heap_Extend+0x248>
4000c4dc: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c4e0: 80 a0 40 11 cmp %g1, %l1
4000c4e4: 0a 80 00 6f bcs 4000c6a0 <_Heap_Extend+0x27c>
4000c4e8: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c4ec: 80 a0 40 11 cmp %g1, %l1
4000c4f0: 12 bf ff e7 bne 4000c48c <_Heap_Extend+0x68>
4000c4f4: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c4f8: 90 10 00 15 mov %l5, %o0
4000c4fc: 40 00 16 b8 call 40011fdc <.urem>
4000c500: 92 10 00 13 mov %l3, %o1
4000c504: 82 05 7f f8 add %l5, -8, %g1
4000c508: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c50c: 80 a5 40 19 cmp %l5, %i1
4000c510: 12 bf ff e8 bne 4000c4b0 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000c514: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000c518: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c51c: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000c520: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c524: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c528: 80 a4 80 18 cmp %l2, %i0
4000c52c: 12 bf ff ea bne 4000c4d4 <_Heap_Extend+0xb0> <== NEVER TAKEN
4000c530: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000c534: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c538: 80 a6 40 01 cmp %i1, %g1
4000c53c: 3a 80 00 54 bcc,a 4000c68c <_Heap_Extend+0x268>
4000c540: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c544: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c548: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c54c: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c550: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c554: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000c558: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c55c: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c560: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c564: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c568: 80 a1 00 01 cmp %g4, %g1
4000c56c: 08 80 00 42 bleu 4000c674 <_Heap_Extend+0x250>
4000c570: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000c574: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c578: 80 a5 e0 00 cmp %l7, 0
4000c57c: 02 80 00 62 be 4000c704 <_Heap_Extend+0x2e0>
4000c580: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c584: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c588: 92 10 00 12 mov %l2, %o1
4000c58c: 40 00 16 94 call 40011fdc <.urem>
4000c590: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c594: 80 a2 20 00 cmp %o0, 0
4000c598: 02 80 00 04 be 4000c5a8 <_Heap_Extend+0x184> <== ALWAYS TAKEN
4000c59c: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000c5a0: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000c5a4: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c5a8: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c5ac: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c5b0: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c5b4: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000c5b8: 90 10 00 10 mov %l0, %o0
4000c5bc: 92 10 00 01 mov %g1, %o1
4000c5c0: 7f ff ff 8e call 4000c3f8 <_Heap_Free_block>
4000c5c4: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c5c8: 80 a5 a0 00 cmp %l6, 0
4000c5cc: 02 80 00 3a be 4000c6b4 <_Heap_Extend+0x290>
4000c5d0: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c5d4: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c5d8: a2 24 40 16 sub %l1, %l6, %l1
4000c5dc: 40 00 16 80 call 40011fdc <.urem>
4000c5e0: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c5e4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000c5e8: a2 24 40 08 sub %l1, %o0, %l1
4000c5ec: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000c5f0: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c5f4: 84 04 40 16 add %l1, %l6, %g2
4000c5f8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c5fc: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c600: 90 10 00 10 mov %l0, %o0
4000c604: 82 08 60 01 and %g1, 1, %g1
4000c608: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000c60c: a2 14 40 01 or %l1, %g1, %l1
4000c610: 7f ff ff 7a call 4000c3f8 <_Heap_Free_block>
4000c614: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c618: 80 a5 a0 00 cmp %l6, 0
4000c61c: 02 80 00 33 be 4000c6e8 <_Heap_Extend+0x2c4>
4000c620: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c624: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c628: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c62c: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c630: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c634: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c638: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c63c: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000c640: 88 13 40 04 or %o5, %g4, %g4
4000c644: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000c648: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c64c: 82 00 80 14 add %g2, %l4, %g1
4000c650: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000c654: 80 a6 e0 00 cmp %i3, 0
4000c658: 02 80 00 03 be 4000c664 <_Heap_Extend+0x240> <== NEVER TAKEN
4000c65c: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000c660: e8 26 c0 00 st %l4, [ %i3 ]
4000c664: 81 c7 e0 08 ret
4000c668: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000c66c: 10 bf ff 9d b 4000c4e0 <_Heap_Extend+0xbc>
4000c670: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c674: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c678: 80 a0 40 02 cmp %g1, %g2
4000c67c: 2a bf ff bf bcs,a 4000c578 <_Heap_Extend+0x154>
4000c680: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c684: 10 bf ff be b 4000c57c <_Heap_Extend+0x158>
4000c688: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000c68c: 80 a4 40 01 cmp %l1, %g1
4000c690: 38 bf ff ae bgu,a 4000c548 <_Heap_Extend+0x124>
4000c694: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c698: 10 bf ff ad b 4000c54c <_Heap_Extend+0x128>
4000c69c: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c6a0: 80 a6 40 15 cmp %i1, %l5
4000c6a4: 1a bf ff 93 bcc 4000c4f0 <_Heap_Extend+0xcc>
4000c6a8: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c6ac: 81 c7 e0 08 ret
4000c6b0: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c6b4: 80 a7 60 00 cmp %i5, 0
4000c6b8: 02 bf ff d8 be 4000c618 <_Heap_Extend+0x1f4>
4000c6bc: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c6c0: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000c6c4: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000c6c8: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c6cc: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000c6d0: 84 10 80 03 or %g2, %g3, %g2
4000c6d4: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c6d8: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c6dc: 84 10 a0 01 or %g2, 1, %g2
4000c6e0: 10 bf ff ce b 4000c618 <_Heap_Extend+0x1f4>
4000c6e4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c6e8: 32 bf ff d0 bne,a 4000c628 <_Heap_Extend+0x204>
4000c6ec: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c6f0: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c6f4: 7f ff ff 41 call 4000c3f8 <_Heap_Free_block>
4000c6f8: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000c6fc: 10 bf ff cb b 4000c628 <_Heap_Extend+0x204>
4000c700: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c704: 80 a7 20 00 cmp %i4, 0
4000c708: 02 bf ff b1 be 4000c5cc <_Heap_Extend+0x1a8>
4000c70c: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c710: b8 27 00 02 sub %i4, %g2, %i4
4000c714: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c718: 10 bf ff ad b 4000c5cc <_Heap_Extend+0x1a8>
4000c71c: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000c11c <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c11c: 9d e3 bf a0 save %sp, -96, %sp
4000c120: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000c124: 40 00 16 5b call 40011a90 <.urem>
4000c128: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c12c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4000c130: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c134: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c138: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c13c: 80 a2 00 01 cmp %o0, %g1
4000c140: 0a 80 00 4d bcs 4000c274 <_Heap_Free+0x158>
4000c144: b0 10 20 00 clr %i0
4000c148: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c14c: 80 a2 00 03 cmp %o0, %g3
4000c150: 18 80 00 49 bgu 4000c274 <_Heap_Free+0x158>
4000c154: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c158: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c15c: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c160: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c164: 80 a0 40 02 cmp %g1, %g2
4000c168: 18 80 00 43 bgu 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c16c: 80 a0 c0 02 cmp %g3, %g2
4000c170: 0a 80 00 41 bcs 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c174: 01 00 00 00 nop
4000c178: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c17c: 80 8b 20 01 btst 1, %o4
4000c180: 02 80 00 3d be 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c184: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c188: 80 a0 c0 02 cmp %g3, %g2
4000c18c: 02 80 00 06 be 4000c1a4 <_Heap_Free+0x88>
4000c190: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c194: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c198: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000c19c: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000c1a0: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000c1a4: 80 8b 60 01 btst 1, %o5
4000c1a8: 12 80 00 1d bne 4000c21c <_Heap_Free+0x100>
4000c1ac: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000c1b0: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c1b4: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c1b8: 80 a0 40 0d cmp %g1, %o5
4000c1bc: 18 80 00 2e bgu 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c1c0: b0 10 20 00 clr %i0
4000c1c4: 80 a0 c0 0d cmp %g3, %o5
4000c1c8: 0a 80 00 2b bcs 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c1cc: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c1d0: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c1d4: 80 88 60 01 btst 1, %g1
4000c1d8: 02 80 00 27 be 4000c274 <_Heap_Free+0x158> <== NEVER TAKEN
4000c1dc: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c1e0: 22 80 00 39 be,a 4000c2c4 <_Heap_Free+0x1a8>
4000c1e4: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c1e8: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000c1ec: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c1f0: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000c1f4: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000c1f8: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000c1fc: 82 00 ff ff add %g3, -1, %g1
4000c200: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000c204: 96 01 00 0b add %g4, %o3, %o3
4000c208: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c20c: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c210: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c214: 10 80 00 0e b 4000c24c <_Heap_Free+0x130>
4000c218: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c21c: 22 80 00 18 be,a 4000c27c <_Heap_Free+0x160>
4000c220: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c224: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000c228: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000c22c: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000c230: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000c234: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000c238: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c23c: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000c240: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000c244: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c248: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c24c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000c250: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000c254: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c258: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000c25c: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000c260: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c264: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000c268: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c26c: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000c270: b0 10 20 01 mov 1, %i0
}
4000c274: 81 c7 e0 08 ret
4000c278: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c27c: 82 11 20 01 or %g4, 1, %g1
4000c280: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c284: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c288: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c28c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c290: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c294: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000c298: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c29c: 86 0b 7f fe and %o5, -2, %g3
4000c2a0: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c2a4: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c2a8: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c2ac: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c2b0: 80 a0 40 02 cmp %g1, %g2
4000c2b4: 08 bf ff e6 bleu 4000c24c <_Heap_Free+0x130>
4000c2b8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c2bc: 10 bf ff e4 b 4000c24c <_Heap_Free+0x130>
4000c2c0: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c2c4: 82 12 a0 01 or %o2, 1, %g1
4000c2c8: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c2cc: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000c2d0: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c2d4: 82 08 7f fe and %g1, -2, %g1
4000c2d8: 10 bf ff dd b 4000c24c <_Heap_Free+0x130>
4000c2dc: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000ce40 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000ce40: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000ce44: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000ce48: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000ce4c: c0 26 40 00 clr [ %i1 ]
4000ce50: c0 26 60 04 clr [ %i1 + 4 ]
4000ce54: c0 26 60 08 clr [ %i1 + 8 ]
4000ce58: c0 26 60 0c clr [ %i1 + 0xc ]
4000ce5c: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000ce60: 80 a0 40 02 cmp %g1, %g2
4000ce64: 02 80 00 17 be 4000cec0 <_Heap_Get_information+0x80> <== NEVER TAKEN
4000ce68: c0 26 60 14 clr [ %i1 + 0x14 ]
4000ce6c: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000ce70: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000ce74: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000ce78: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000ce7c: 80 8b 60 01 btst 1, %o5
4000ce80: 02 80 00 03 be 4000ce8c <_Heap_Get_information+0x4c>
4000ce84: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000ce88: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000ce8c: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000ce90: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000ce94: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000ce98: 94 02 a0 01 inc %o2
info->total += the_size;
4000ce9c: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000cea0: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000cea4: 80 a3 00 04 cmp %o4, %g4
4000cea8: 1a 80 00 03 bcc 4000ceb4 <_Heap_Get_information+0x74>
4000ceac: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000ceb0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000ceb4: 80 a0 80 01 cmp %g2, %g1
4000ceb8: 12 bf ff ef bne 4000ce74 <_Heap_Get_information+0x34>
4000cebc: 88 0b 7f fe and %o5, -2, %g4
4000cec0: 81 c7 e0 08 ret
4000cec4: 81 e8 00 00 restore
40013470 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40013470: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40013474: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40013478: 7f ff f9 86 call 40011a90 <.urem>
4001347c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40013480: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
40013484: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40013488: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4001348c: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40013490: 80 a0 80 01 cmp %g2, %g1
40013494: 0a 80 00 15 bcs 400134e8 <_Heap_Size_of_alloc_area+0x78>
40013498: b0 10 20 00 clr %i0
4001349c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
400134a0: 80 a0 80 03 cmp %g2, %g3
400134a4: 18 80 00 11 bgu 400134e8 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400134a8: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400134ac: c8 00 a0 04 ld [ %g2 + 4 ], %g4
400134b0: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400134b4: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400134b8: 80 a0 40 02 cmp %g1, %g2
400134bc: 18 80 00 0b bgu 400134e8 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400134c0: 80 a0 c0 02 cmp %g3, %g2
400134c4: 0a 80 00 09 bcs 400134e8 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400134c8: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400134cc: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400134d0: 80 88 60 01 btst 1, %g1
400134d4: 02 80 00 05 be 400134e8 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400134d8: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
400134dc: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
400134e0: 84 00 a0 04 add %g2, 4, %g2
400134e4: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
400134e8: 81 c7 e0 08 ret
400134ec: 81 e8 00 00 restore
4000838c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
4000838c: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008390: 23 10 00 20 sethi %hi(0x40008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008394: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40008398: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
4000839c: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
400083a0: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
400083a4: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400083a8: 80 8e a0 ff btst 0xff, %i2
400083ac: 02 80 00 04 be 400083bc <_Heap_Walk+0x30>
400083b0: a2 14 63 20 or %l1, 0x320, %l1
400083b4: 23 10 00 20 sethi %hi(0x40008000), %l1
400083b8: a2 14 63 28 or %l1, 0x328, %l1 ! 40008328 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
400083bc: 03 10 00 5e sethi %hi(0x40017800), %g1
400083c0: c2 00 61 bc ld [ %g1 + 0x1bc ], %g1 ! 400179bc <_System_state_Current>
400083c4: 80 a0 60 03 cmp %g1, 3
400083c8: 12 80 00 33 bne 40008494 <_Heap_Walk+0x108>
400083cc: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
400083d0: da 04 20 18 ld [ %l0 + 0x18 ], %o5
400083d4: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
400083d8: c4 04 20 08 ld [ %l0 + 8 ], %g2
400083dc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400083e0: 90 10 00 19 mov %i1, %o0
400083e4: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400083e8: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
400083ec: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
400083f0: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
400083f4: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
400083f8: 92 10 20 00 clr %o1
400083fc: 96 10 00 14 mov %l4, %o3
40008400: 15 10 00 54 sethi %hi(0x40015000), %o2
40008404: 98 10 00 13 mov %l3, %o4
40008408: 9f c4 40 00 call %l1
4000840c: 94 12 a2 b0 or %o2, 0x2b0, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008410: 80 a5 20 00 cmp %l4, 0
40008414: 02 80 00 2a be 400084bc <_Heap_Walk+0x130>
40008418: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
4000841c: 12 80 00 30 bne 400084dc <_Heap_Walk+0x150>
40008420: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008424: 7f ff e5 a3 call 40001ab0 <.urem>
40008428: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
4000842c: 80 a2 20 00 cmp %o0, 0
40008430: 12 80 00 34 bne 40008500 <_Heap_Walk+0x174>
40008434: 90 04 a0 08 add %l2, 8, %o0
40008438: 7f ff e5 9e call 40001ab0 <.urem>
4000843c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
40008440: 80 a2 20 00 cmp %o0, 0
40008444: 32 80 00 38 bne,a 40008524 <_Heap_Walk+0x198>
40008448: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
4000844c: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008450: 80 8f 20 01 btst 1, %i4
40008454: 22 80 00 4d be,a 40008588 <_Heap_Walk+0x1fc>
40008458: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000845c: c2 05 60 04 ld [ %l5 + 4 ], %g1
40008460: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008464: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008468: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
4000846c: 80 88 a0 01 btst 1, %g2
40008470: 02 80 00 0b be 4000849c <_Heap_Walk+0x110>
40008474: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
40008478: 02 80 00 33 be 40008544 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
4000847c: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008480: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40008484: 15 10 00 55 sethi %hi(0x40015400), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008488: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
4000848c: 9f c4 40 00 call %l1 <== NOT EXECUTED
40008490: 94 12 a0 28 or %o2, 0x28, %o2 <== NOT EXECUTED
40008494: 81 c7 e0 08 ret
40008498: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
4000849c: 90 10 00 19 mov %i1, %o0
400084a0: 92 10 20 01 mov 1, %o1
400084a4: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084a8: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400084ac: 9f c4 40 00 call %l1
400084b0: 94 12 a0 10 or %o2, 0x10, %o2
400084b4: 81 c7 e0 08 ret
400084b8: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084bc: 90 10 00 19 mov %i1, %o0
400084c0: 92 10 20 01 mov 1, %o1
400084c4: 15 10 00 54 sethi %hi(0x40015000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084c8: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400084cc: 9f c4 40 00 call %l1
400084d0: 94 12 a3 48 or %o2, 0x348, %o2
400084d4: 81 c7 e0 08 ret
400084d8: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400084dc: 90 10 00 19 mov %i1, %o0
400084e0: 92 10 20 01 mov 1, %o1
400084e4: 96 10 00 14 mov %l4, %o3
400084e8: 15 10 00 54 sethi %hi(0x40015000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400084ec: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400084f0: 9f c4 40 00 call %l1
400084f4: 94 12 a3 60 or %o2, 0x360, %o2
400084f8: 81 c7 e0 08 ret
400084fc: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40008500: 90 10 00 19 mov %i1, %o0
40008504: 92 10 20 01 mov 1, %o1
40008508: 96 10 00 13 mov %l3, %o3
4000850c: 15 10 00 54 sethi %hi(0x40015000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008510: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40008514: 9f c4 40 00 call %l1
40008518: 94 12 a3 80 or %o2, 0x380, %o2
4000851c: 81 c7 e0 08 ret
40008520: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008524: 92 10 20 01 mov 1, %o1
40008528: 96 10 00 12 mov %l2, %o3
4000852c: 15 10 00 54 sethi %hi(0x40015000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008530: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008534: 9f c4 40 00 call %l1
40008538: 94 12 a3 a8 or %o2, 0x3a8, %o2
4000853c: 81 c7 e0 08 ret
40008540: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40008544: ec 04 20 08 ld [ %l0 + 8 ], %l6
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008548: 80 a4 00 16 cmp %l0, %l6
4000854c: 02 80 01 18 be 400089ac <_Heap_Walk+0x620>
40008550: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008554: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008558: 80 a0 40 16 cmp %g1, %l6
4000855c: 28 80 00 12 bleu,a 400085a4 <_Heap_Walk+0x218> <== ALWAYS TAKEN
40008560: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40008564: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40008568: 92 10 20 01 mov 1, %o1
4000856c: 96 10 00 16 mov %l6, %o3
40008570: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008574: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40008578: 9f c4 40 00 call %l1
4000857c: 94 12 a0 58 or %o2, 0x58, %o2
40008580: 81 c7 e0 08 ret
40008584: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40008588: 92 10 20 01 mov 1, %o1
4000858c: 15 10 00 54 sethi %hi(0x40015000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008590: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40008594: 9f c4 40 00 call %l1
40008598: 94 12 a3 e0 or %o2, 0x3e0, %o2
4000859c: 81 c7 e0 08 ret
400085a0: 81 e8 00 00 restore
400085a4: 80 a7 40 16 cmp %i5, %l6
400085a8: 0a bf ff f0 bcs 40008568 <_Heap_Walk+0x1dc> <== NEVER TAKEN
400085ac: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400085b0: c2 27 bf fc st %g1, [ %fp + -4 ]
400085b4: 90 05 a0 08 add %l6, 8, %o0
400085b8: 7f ff e5 3e call 40001ab0 <.urem>
400085bc: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
400085c0: 80 a2 20 00 cmp %o0, 0
400085c4: 12 80 00 2e bne 4000867c <_Heap_Walk+0x2f0> <== NEVER TAKEN
400085c8: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400085cc: c4 05 a0 04 ld [ %l6 + 4 ], %g2
400085d0: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
400085d4: 84 05 80 02 add %l6, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400085d8: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400085dc: 80 88 a0 01 btst 1, %g2
400085e0: 12 80 00 30 bne 400086a0 <_Heap_Walk+0x314> <== NEVER TAKEN
400085e4: 84 10 00 10 mov %l0, %g2
400085e8: ae 10 00 16 mov %l6, %l7
400085ec: 10 80 00 17 b 40008648 <_Heap_Walk+0x2bc>
400085f0: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400085f4: 80 a4 00 16 cmp %l0, %l6
400085f8: 02 80 00 33 be 400086c4 <_Heap_Walk+0x338>
400085fc: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008600: 18 bf ff da bgu 40008568 <_Heap_Walk+0x1dc>
40008604: 90 10 00 19 mov %i1, %o0
40008608: 80 a5 80 1d cmp %l6, %i5
4000860c: 18 bf ff d8 bgu 4000856c <_Heap_Walk+0x1e0> <== NEVER TAKEN
40008610: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008614: 90 05 a0 08 add %l6, 8, %o0
40008618: 7f ff e5 26 call 40001ab0 <.urem>
4000861c: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40008620: 80 a2 20 00 cmp %o0, 0
40008624: 12 80 00 16 bne 4000867c <_Heap_Walk+0x2f0>
40008628: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000862c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40008630: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008634: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008638: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
4000863c: 80 88 60 01 btst 1, %g1
40008640: 12 80 00 18 bne 400086a0 <_Heap_Walk+0x314>
40008644: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
40008648: d8 05 a0 0c ld [ %l6 + 0xc ], %o4
4000864c: 80 a3 00 02 cmp %o4, %g2
40008650: 22 bf ff e9 be,a 400085f4 <_Heap_Walk+0x268>
40008654: ec 05 a0 08 ld [ %l6 + 8 ], %l6
(*printer)(
40008658: 90 10 00 19 mov %i1, %o0
4000865c: 92 10 20 01 mov 1, %o1
40008660: 96 10 00 16 mov %l6, %o3
40008664: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40008668: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
4000866c: 9f c4 40 00 call %l1
40008670: 94 12 a0 c8 or %o2, 0xc8, %o2
40008674: 81 c7 e0 08 ret
40008678: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
4000867c: 90 10 00 19 mov %i1, %o0
40008680: 92 10 20 01 mov 1, %o1
40008684: 96 10 00 16 mov %l6, %o3
40008688: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000868c: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008690: 9f c4 40 00 call %l1
40008694: 94 12 a0 78 or %o2, 0x78, %o2
40008698: 81 c7 e0 08 ret
4000869c: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086a0: 90 10 00 19 mov %i1, %o0
400086a4: 92 10 20 01 mov 1, %o1
400086a8: 96 10 00 16 mov %l6, %o3
400086ac: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400086b0: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400086b4: 9f c4 40 00 call %l1
400086b8: 94 12 a0 a8 or %o2, 0xa8, %o2
400086bc: 81 c7 e0 08 ret
400086c0: 81 e8 00 00 restore
400086c4: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086c8: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086cc: 31 10 00 55 sethi %hi(0x40015400), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400086d0: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400086d4: b4 16 a2 88 or %i2, 0x288, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400086d8: b0 16 22 70 or %i0, 0x270, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400086dc: 37 10 00 55 sethi %hi(0x40015400), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400086e0: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400086e4: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400086e8: 80 a0 40 16 cmp %g1, %l6
400086ec: 28 80 00 0c bleu,a 4000871c <_Heap_Walk+0x390> <== ALWAYS TAKEN
400086f0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
400086f4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
400086f8: 92 10 20 01 mov 1, %o1
400086fc: 96 10 00 17 mov %l7, %o3
40008700: 15 10 00 55 sethi %hi(0x40015400), %o2
40008704: 98 10 00 16 mov %l6, %o4
40008708: 94 12 a1 00 or %o2, 0x100, %o2
4000870c: 9f c4 40 00 call %l1
40008710: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
40008714: 81 c7 e0 08 ret
40008718: 81 e8 00 00 restore
4000871c: 80 a0 40 16 cmp %g1, %l6
40008720: 0a bf ff f6 bcs 400086f8 <_Heap_Walk+0x36c>
40008724: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008728: 82 1d c0 15 xor %l7, %l5, %g1
4000872c: 80 a0 00 01 cmp %g0, %g1
40008730: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008734: 90 10 00 1d mov %i5, %o0
40008738: c2 27 bf fc st %g1, [ %fp + -4 ]
4000873c: 7f ff e4 dd call 40001ab0 <.urem>
40008740: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008744: 80 a2 20 00 cmp %o0, 0
40008748: 02 80 00 05 be 4000875c <_Heap_Walk+0x3d0>
4000874c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008750: 80 88 60 ff btst 0xff, %g1
40008754: 12 80 00 79 bne 40008938 <_Heap_Walk+0x5ac>
40008758: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
4000875c: 80 a4 c0 1d cmp %l3, %i5
40008760: 08 80 00 05 bleu 40008774 <_Heap_Walk+0x3e8>
40008764: 80 a5 c0 16 cmp %l7, %l6
40008768: 80 88 60 ff btst 0xff, %g1
4000876c: 12 80 00 7c bne 4000895c <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
40008770: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008774: 2a 80 00 06 bcs,a 4000878c <_Heap_Walk+0x400>
40008778: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000877c: 80 88 60 ff btst 0xff, %g1
40008780: 12 80 00 82 bne 40008988 <_Heap_Walk+0x5fc>
40008784: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008788: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000878c: 80 88 60 01 btst 1, %g1
40008790: 02 80 00 19 be 400087f4 <_Heap_Walk+0x468>
40008794: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40008798: 80 a7 20 00 cmp %i4, 0
4000879c: 22 80 00 0e be,a 400087d4 <_Heap_Walk+0x448>
400087a0: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
400087a4: 90 10 00 19 mov %i1, %o0
400087a8: 92 10 20 00 clr %o1
400087ac: 94 10 00 18 mov %i0, %o2
400087b0: 96 10 00 17 mov %l7, %o3
400087b4: 9f c4 40 00 call %l1
400087b8: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400087bc: 80 a4 80 16 cmp %l2, %l6
400087c0: 02 80 00 43 be 400088cc <_Heap_Walk+0x540>
400087c4: ae 10 00 16 mov %l6, %l7
400087c8: f8 05 a0 04 ld [ %l6 + 4 ], %i4
400087cc: 10 bf ff c5 b 400086e0 <_Heap_Walk+0x354>
400087d0: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400087d4: 96 10 00 17 mov %l7, %o3
400087d8: 90 10 00 19 mov %i1, %o0
400087dc: 92 10 20 00 clr %o1
400087e0: 94 10 00 1a mov %i2, %o2
400087e4: 9f c4 40 00 call %l1
400087e8: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400087ec: 10 bf ff f5 b 400087c0 <_Heap_Walk+0x434>
400087f0: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400087f4: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400087f8: c2 04 20 08 ld [ %l0 + 8 ], %g1
400087fc: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40008800: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008804: 80 a0 40 0d cmp %g1, %o5
40008808: 02 80 00 05 be 4000881c <_Heap_Walk+0x490>
4000880c: 86 10 a2 70 or %g2, 0x270, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008810: 80 a4 00 0d cmp %l0, %o5
40008814: 02 80 00 3e be 4000890c <_Heap_Walk+0x580>
40008818: 86 16 e2 38 or %i3, 0x238, %g3
block->next,
block->next == last_free_block ?
4000881c: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008820: 19 10 00 54 sethi %hi(0x40015000), %o4
40008824: 80 a1 00 01 cmp %g4, %g1
40008828: 02 80 00 05 be 4000883c <_Heap_Walk+0x4b0>
4000882c: 84 13 22 90 or %o4, 0x290, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008830: 80 a4 00 01 cmp %l0, %g1
40008834: 02 80 00 33 be 40008900 <_Heap_Walk+0x574>
40008838: 84 16 e2 38 or %i3, 0x238, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000883c: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008840: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
40008844: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
40008848: 90 10 00 19 mov %i1, %o0
4000884c: 92 10 20 00 clr %o1
40008850: 15 10 00 55 sethi %hi(0x40015400), %o2
40008854: 96 10 00 17 mov %l7, %o3
40008858: 94 12 a1 c8 or %o2, 0x1c8, %o2
4000885c: 9f c4 40 00 call %l1
40008860: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40008864: da 05 80 00 ld [ %l6 ], %o5
40008868: 80 a7 40 0d cmp %i5, %o5
4000886c: 12 80 00 1a bne 400088d4 <_Heap_Walk+0x548>
40008870: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
40008874: 02 80 00 29 be 40008918 <_Heap_Walk+0x58c>
40008878: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
4000887c: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008880: 80 a4 00 01 cmp %l0, %g1
40008884: 02 80 00 0b be 400088b0 <_Heap_Walk+0x524> <== NEVER TAKEN
40008888: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
4000888c: 80 a5 c0 01 cmp %l7, %g1
40008890: 02 bf ff cc be 400087c0 <_Heap_Walk+0x434>
40008894: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
40008898: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
4000889c: 80 a4 00 01 cmp %l0, %g1
400088a0: 12 bf ff fc bne 40008890 <_Heap_Walk+0x504>
400088a4: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088a8: 90 10 00 19 mov %i1, %o0
400088ac: 92 10 20 01 mov 1, %o1
400088b0: 96 10 00 17 mov %l7, %o3
400088b4: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
400088b8: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400088bc: 9f c4 40 00 call %l1
400088c0: 94 12 a2 b0 or %o2, 0x2b0, %o2
400088c4: 81 c7 e0 08 ret
400088c8: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
400088cc: 81 c7 e0 08 ret
400088d0: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
400088d4: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
400088d8: 90 10 00 19 mov %i1, %o0
400088dc: 92 10 20 01 mov 1, %o1
400088e0: 96 10 00 17 mov %l7, %o3
400088e4: 15 10 00 55 sethi %hi(0x40015400), %o2
400088e8: 98 10 00 1d mov %i5, %o4
400088ec: 94 12 a2 00 or %o2, 0x200, %o2
400088f0: 9f c4 40 00 call %l1
400088f4: b0 10 20 00 clr %i0
400088f8: 81 c7 e0 08 ret
400088fc: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008900: 09 10 00 54 sethi %hi(0x40015000), %g4
40008904: 10 bf ff ce b 4000883c <_Heap_Walk+0x4b0>
40008908: 84 11 22 a0 or %g4, 0x2a0, %g2 ! 400152a0 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
4000890c: 19 10 00 54 sethi %hi(0x40015000), %o4
40008910: 10 bf ff c3 b 4000881c <_Heap_Walk+0x490>
40008914: 86 13 22 80 or %o4, 0x280, %g3 ! 40015280 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
40008918: 92 10 20 01 mov 1, %o1
4000891c: 96 10 00 17 mov %l7, %o3
40008920: 15 10 00 55 sethi %hi(0x40015400), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40008924: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
40008928: 9f c4 40 00 call %l1
4000892c: 94 12 a2 40 or %o2, 0x240, %o2
40008930: 81 c7 e0 08 ret
40008934: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
40008938: 92 10 20 01 mov 1, %o1
4000893c: 96 10 00 17 mov %l7, %o3
40008940: 15 10 00 55 sethi %hi(0x40015400), %o2
40008944: 98 10 00 1d mov %i5, %o4
40008948: 94 12 a1 30 or %o2, 0x130, %o2
4000894c: 9f c4 40 00 call %l1
40008950: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
40008954: 81 c7 e0 08 ret
40008958: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
4000895c: 90 10 00 19 mov %i1, %o0
40008960: 92 10 20 01 mov 1, %o1
40008964: 96 10 00 17 mov %l7, %o3
40008968: 15 10 00 55 sethi %hi(0x40015400), %o2
4000896c: 98 10 00 1d mov %i5, %o4
40008970: 94 12 a1 60 or %o2, 0x160, %o2
40008974: 9a 10 00 13 mov %l3, %o5
40008978: 9f c4 40 00 call %l1
4000897c: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40008980: 81 c7 e0 08 ret
40008984: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
40008988: 92 10 20 01 mov 1, %o1
4000898c: 96 10 00 17 mov %l7, %o3
40008990: 15 10 00 55 sethi %hi(0x40015400), %o2
40008994: 98 10 00 16 mov %l6, %o4
40008998: 94 12 a1 90 or %o2, 0x190, %o2
4000899c: 9f c4 40 00 call %l1
400089a0: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
400089a4: 81 c7 e0 08 ret
400089a8: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400089ac: 10 bf ff 47 b 400086c8 <_Heap_Walk+0x33c>
400089b0: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000687c <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
4000687c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40006880: 23 10 00 54 sethi %hi(0x40015000), %l1
40006884: c2 04 63 2c ld [ %l1 + 0x32c ], %g1 ! 4001532c <_IO_Number_of_drivers>
40006888: 80 a0 60 00 cmp %g1, 0
4000688c: 02 80 00 0c be 400068bc <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
40006890: a0 10 20 00 clr %l0
40006894: a2 14 63 2c or %l1, 0x32c, %l1
(void) rtems_io_initialize( major, 0, NULL );
40006898: 90 10 00 10 mov %l0, %o0
4000689c: 92 10 20 00 clr %o1
400068a0: 40 00 14 ec call 4000bc50 <rtems_io_initialize>
400068a4: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
400068a8: c2 04 40 00 ld [ %l1 ], %g1
400068ac: a0 04 20 01 inc %l0
400068b0: 80 a0 40 10 cmp %g1, %l0
400068b4: 18 bf ff fa bgu 4000689c <_IO_Initialize_all_drivers+0x20>
400068b8: 90 10 00 10 mov %l0, %o0
400068bc: 81 c7 e0 08 ret
400068c0: 81 e8 00 00 restore
400067b0 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
400067b0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
400067b4: 03 10 00 51 sethi %hi(0x40014400), %g1
400067b8: 82 10 63 88 or %g1, 0x388, %g1 ! 40014788 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
400067bc: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
400067c0: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
400067c4: 80 a4 40 14 cmp %l1, %l4
400067c8: 0a 80 00 08 bcs 400067e8 <_IO_Manager_initialization+0x38>
400067cc: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
400067d0: 03 10 00 54 sethi %hi(0x40015000), %g1
400067d4: e0 20 63 30 st %l0, [ %g1 + 0x330 ] ! 40015330 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
400067d8: 03 10 00 54 sethi %hi(0x40015000), %g1
400067dc: e2 20 63 2c st %l1, [ %g1 + 0x32c ] ! 4001532c <_IO_Number_of_drivers>
return;
400067e0: 81 c7 e0 08 ret
400067e4: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
400067e8: 83 2d 20 03 sll %l4, 3, %g1
400067ec: a7 2d 20 05 sll %l4, 5, %l3
400067f0: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
400067f4: 40 00 0c a8 call 40009a94 <_Workspace_Allocate_or_fatal_error>
400067f8: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
400067fc: 03 10 00 54 sethi %hi(0x40015000), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006800: 25 10 00 54 sethi %hi(0x40015000), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40006804: e8 20 63 2c st %l4, [ %g1 + 0x32c ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40006808: d0 24 a3 30 st %o0, [ %l2 + 0x330 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
4000680c: 92 10 20 00 clr %o1
40006810: 40 00 20 78 call 4000e9f0 <memset>
40006814: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006818: 80 a4 60 00 cmp %l1, 0
4000681c: 02 bf ff f1 be 400067e0 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
40006820: da 04 a3 30 ld [ %l2 + 0x330 ], %o5
40006824: 82 10 20 00 clr %g1
40006828: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
4000682c: c4 04 00 01 ld [ %l0 + %g1 ], %g2
40006830: 86 04 00 01 add %l0, %g1, %g3
40006834: c4 23 40 01 st %g2, [ %o5 + %g1 ]
40006838: d8 00 e0 04 ld [ %g3 + 4 ], %o4
4000683c: 84 03 40 01 add %o5, %g1, %g2
40006840: d8 20 a0 04 st %o4, [ %g2 + 4 ]
40006844: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006848: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
4000684c: d8 20 a0 08 st %o4, [ %g2 + 8 ]
40006850: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006854: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
40006858: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
4000685c: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40006860: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
40006864: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
40006868: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000686c: 18 bf ff f0 bgu 4000682c <_IO_Manager_initialization+0x7c>
40006870: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
40006874: 81 c7 e0 08 ret
40006878: 81 e8 00 00 restore
400074f8 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400074f8: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
400074fc: 09 10 00 54 sethi %hi(0x40015000), %g4
40007500: 84 11 20 fc or %g4, 0xfc, %g2 ! 400150fc <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007504: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40007508: 90 10 00 18 mov %i0, %o0
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
4000750c: f0 21 20 fc st %i0, [ %g4 + 0xfc ]
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
40007510: f4 20 a0 08 st %i2, [ %g2 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007514: 92 0e 60 ff and %i1, 0xff, %o1
40007518: 40 00 07 fe call 40009510 <_User_extensions_Fatal>
4000751c: f2 28 a0 04 stb %i1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007520: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40007524: 03 10 00 54 sethi %hi(0x40015000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40007528: 7f ff e9 ec call 40001cd8 <sparc_disable_interrupts> <== NOT EXECUTED
4000752c: c4 20 61 ec st %g2, [ %g1 + 0x1ec ] ! 400151ec <_System_state_Current><== NOT EXECUTED
40007530: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40007534: 30 80 00 00 b,a 40007534 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
400075ac <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075ac: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075b0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400075b4: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400075b8: 80 a0 60 00 cmp %g1, 0
400075bc: 02 80 00 19 be 40007620 <_Objects_Allocate+0x74> <== NEVER TAKEN
400075c0: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400075c4: a2 04 20 20 add %l0, 0x20, %l1
400075c8: 7f ff fd 5b call 40006b34 <_Chain_Get>
400075cc: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
400075d0: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
400075d4: 80 a0 60 00 cmp %g1, 0
400075d8: 02 80 00 12 be 40007620 <_Objects_Allocate+0x74>
400075dc: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
400075e0: 80 a2 20 00 cmp %o0, 0
400075e4: 02 80 00 11 be 40007628 <_Objects_Allocate+0x7c>
400075e8: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
400075ec: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
400075f0: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
400075f4: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
400075f8: 40 00 28 7a call 400117e0 <.udiv>
400075fc: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007600: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007604: 91 2a 20 02 sll %o0, 2, %o0
40007608: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
4000760c: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40007610: 86 00 ff ff add %g3, -1, %g3
40007614: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
40007618: 82 00 bf ff add %g2, -1, %g1
4000761c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007620: 81 c7 e0 08 ret
40007624: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
40007628: 40 00 00 11 call 4000766c <_Objects_Extend_information>
4000762c: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007630: 7f ff fd 41 call 40006b34 <_Chain_Get>
40007634: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007638: b0 92 20 00 orcc %o0, 0, %i0
4000763c: 32 bf ff ed bne,a 400075f0 <_Objects_Allocate+0x44>
40007640: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
40007644: 81 c7 e0 08 ret
40007648: 81 e8 00 00 restore
4000766c <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
4000766c: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40007670: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
40007674: 80 a5 20 00 cmp %l4, 0
40007678: 02 80 00 a9 be 4000791c <_Objects_Extend_information+0x2b0>
4000767c: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40007680: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007684: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
40007688: ab 2d 60 10 sll %l5, 0x10, %l5
4000768c: 92 10 00 13 mov %l3, %o1
40007690: 40 00 28 54 call 400117e0 <.udiv>
40007694: 91 35 60 10 srl %l5, 0x10, %o0
40007698: bb 2a 20 10 sll %o0, 0x10, %i5
4000769c: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
400076a0: 80 a7 60 00 cmp %i5, 0
400076a4: 02 80 00 a6 be 4000793c <_Objects_Extend_information+0x2d0><== NEVER TAKEN
400076a8: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
400076ac: c2 05 00 00 ld [ %l4 ], %g1
400076b0: 80 a0 60 00 cmp %g1, 0
400076b4: 02 80 00 a6 be 4000794c <_Objects_Extend_information+0x2e0><== NEVER TAKEN
400076b8: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400076bc: 10 80 00 06 b 400076d4 <_Objects_Extend_information+0x68>
400076c0: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
400076c4: c2 05 00 01 ld [ %l4 + %g1 ], %g1
400076c8: 80 a0 60 00 cmp %g1, 0
400076cc: 22 80 00 08 be,a 400076ec <_Objects_Extend_information+0x80>
400076d0: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076d4: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
400076d8: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400076dc: 80 a7 40 10 cmp %i5, %l0
400076e0: 18 bf ff f9 bgu 400076c4 <_Objects_Extend_information+0x58>
400076e4: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400076e8: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400076ec: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400076f0: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400076f4: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400076f8: 82 10 63 ff or %g1, 0x3ff, %g1
400076fc: 80 a5 40 01 cmp %l5, %g1
40007700: 18 80 00 98 bgu 40007960 <_Objects_Extend_information+0x2f4>
40007704: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
40007708: 40 00 27 fc call 400116f8 <.umul>
4000770c: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
40007710: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40007714: 80 a0 60 00 cmp %g1, 0
40007718: 02 80 00 6d be 400078cc <_Objects_Extend_information+0x260>
4000771c: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
40007720: 40 00 08 cd call 40009a54 <_Workspace_Allocate>
40007724: 01 00 00 00 nop
if ( !new_object_block )
40007728: a6 92 20 00 orcc %o0, 0, %l3
4000772c: 02 80 00 8d be 40007960 <_Objects_Extend_information+0x2f4>
40007730: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
40007734: 80 8d 20 ff btst 0xff, %l4
40007738: 22 80 00 42 be,a 40007840 <_Objects_Extend_information+0x1d4>
4000773c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
40007740: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40007744: 91 2d 20 01 sll %l4, 1, %o0
40007748: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
4000774c: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40007750: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
40007754: 40 00 08 c0 call 40009a54 <_Workspace_Allocate>
40007758: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
4000775c: ac 92 20 00 orcc %o0, 0, %l6
40007760: 02 80 00 7e be 40007958 <_Objects_Extend_information+0x2ec>
40007764: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
40007768: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
4000776c: 80 a4 80 01 cmp %l2, %g1
40007770: ae 05 80 14 add %l6, %l4, %l7
40007774: 0a 80 00 5a bcs 400078dc <_Objects_Extend_information+0x270>
40007778: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
4000777c: 80 a4 a0 00 cmp %l2, 0
40007780: 02 80 00 07 be 4000779c <_Objects_Extend_information+0x130><== NEVER TAKEN
40007784: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
40007788: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
4000778c: 82 00 60 01 inc %g1
40007790: 80 a4 80 01 cmp %l2, %g1
40007794: 18 bf ff fd bgu 40007788 <_Objects_Extend_information+0x11c><== NEVER TAKEN
40007798: c0 20 80 14 clr [ %g2 + %l4 ]
4000779c: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077a0: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
400077a4: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400077a8: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077ac: 80 a4 40 03 cmp %l1, %g3
400077b0: 1a 80 00 0a bcc 400077d8 <_Objects_Extend_information+0x16c><== NEVER TAKEN
400077b4: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400077b8: 83 2c 60 02 sll %l1, 2, %g1
400077bc: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077c0: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
400077c4: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
400077c8: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400077cc: 80 a0 80 03 cmp %g2, %g3
400077d0: 0a bf ff fd bcs 400077c4 <_Objects_Extend_information+0x158>
400077d4: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
400077d8: 7f ff e9 40 call 40001cd8 <sparc_disable_interrupts>
400077dc: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400077e0: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400077e4: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
400077e8: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
400077ec: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
400077f0: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400077f4: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
400077f8: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
400077fc: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
40007800: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40007804: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007808: 03 00 00 40 sethi %hi(0x10000), %g1
4000780c: ab 35 60 10 srl %l5, 0x10, %l5
40007810: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007814: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007818: 82 10 40 15 or %g1, %l5, %g1
4000781c: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
40007820: 7f ff e9 32 call 40001ce8 <sparc_enable_interrupts>
40007824: 01 00 00 00 nop
if ( old_tables )
40007828: 80 a4 a0 00 cmp %l2, 0
4000782c: 22 80 00 05 be,a 40007840 <_Objects_Extend_information+0x1d4>
40007830: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
40007834: 40 00 08 91 call 40009a78 <_Workspace_Free>
40007838: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
4000783c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007840: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
40007844: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
40007848: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
4000784c: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007850: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40007854: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40007858: 90 10 00 12 mov %l2, %o0
4000785c: 40 00 11 14 call 4000bcac <_Chain_Initialize>
40007860: a6 06 20 20 add %i0, 0x20, %l3
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40007864: 10 80 00 0d b 40007898 <_Objects_Extend_information+0x22c>
40007868: 29 00 00 40 sethi %hi(0x10000), %l4
the_object->id = _Objects_Build_id(
4000786c: c6 16 20 04 lduh [ %i0 + 4 ], %g3
40007870: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007874: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007878: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000787c: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007880: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40007884: 90 10 00 13 mov %l3, %o0
40007888: 92 10 00 01 mov %g1, %o1
index++;
4000788c: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40007890: 7f ff fc 93 call 40006adc <_Chain_Append>
40007894: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40007898: 7f ff fc a7 call 40006b34 <_Chain_Get>
4000789c: 90 10 00 12 mov %l2, %o0
400078a0: 82 92 20 00 orcc %o0, 0, %g1
400078a4: 32 bf ff f2 bne,a 4000786c <_Objects_Extend_information+0x200>
400078a8: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078ac: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
400078b0: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078b4: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400078b8: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400078bc: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
400078c0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
400078c4: 81 c7 e0 08 ret
400078c8: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
400078cc: 40 00 08 72 call 40009a94 <_Workspace_Allocate_or_fatal_error>
400078d0: 01 00 00 00 nop
400078d4: 10 bf ff 98 b 40007734 <_Objects_Extend_information+0xc8>
400078d8: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078dc: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
400078e0: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400078e4: 40 00 1c 0a call 4000e90c <memcpy>
400078e8: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
400078ec: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
400078f0: 94 10 00 1d mov %i5, %o2
400078f4: 40 00 1c 06 call 4000e90c <memcpy>
400078f8: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
400078fc: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007900: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40007904: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40007908: 90 10 00 14 mov %l4, %o0
4000790c: 40 00 1c 00 call 4000e90c <memcpy>
40007910: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40007914: 10 bf ff a4 b 400077a4 <_Objects_Extend_information+0x138>
40007918: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
4000791c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40007920: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40007924: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40007928: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
4000792c: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
40007930: ba 10 20 00 clr %i5
40007934: 10 bf ff 6e b 400076ec <_Objects_Extend_information+0x80>
40007938: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
4000793c: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40007940: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007944: 10 bf ff 6a b 400076ec <_Objects_Extend_information+0x80> <== NOT EXECUTED
40007948: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
4000794c: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40007950: 10 bf ff 67 b 400076ec <_Objects_Extend_information+0x80> <== NOT EXECUTED
40007954: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
40007958: 40 00 08 48 call 40009a78 <_Workspace_Free>
4000795c: 90 10 00 13 mov %l3, %o0
return;
40007960: 81 c7 e0 08 ret
40007964: 81 e8 00 00 restore
40007a14 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40007a14: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40007a18: b3 2e 60 10 sll %i1, 0x10, %i1
40007a1c: b3 36 60 10 srl %i1, 0x10, %i1
40007a20: 80 a6 60 00 cmp %i1, 0
40007a24: 12 80 00 04 bne 40007a34 <_Objects_Get_information+0x20>
40007a28: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40007a2c: 81 c7 e0 08 ret
40007a30: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007a34: 40 00 12 2b call 4000c2e0 <_Objects_API_maximum_class>
40007a38: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40007a3c: 80 a2 20 00 cmp %o0, 0
40007a40: 02 bf ff fb be 40007a2c <_Objects_Get_information+0x18>
40007a44: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007a48: 0a bf ff f9 bcs 40007a2c <_Objects_Get_information+0x18>
40007a4c: 03 10 00 53 sethi %hi(0x40014c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007a50: b1 2e 20 02 sll %i0, 2, %i0
40007a54: 82 10 63 cc or %g1, 0x3cc, %g1
40007a58: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40007a5c: 80 a0 60 00 cmp %g1, 0
40007a60: 02 bf ff f3 be 40007a2c <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a64: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007a68: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40007a6c: 80 a4 20 00 cmp %l0, 0
40007a70: 02 bf ff ef be 40007a2c <_Objects_Get_information+0x18> <== NEVER TAKEN
40007a74: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007a78: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40007a7c: 80 a0 00 01 cmp %g0, %g1
40007a80: 82 60 20 00 subx %g0, 0, %g1
40007a84: 10 bf ff ea b 40007a2c <_Objects_Get_information+0x18>
40007a88: a0 0c 00 01 and %l0, %g1, %l0
400097ac <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
400097ac: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
400097b0: 80 a6 60 00 cmp %i1, 0
400097b4: 12 80 00 05 bne 400097c8 <_Objects_Get_name_as_string+0x1c>
400097b8: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
400097bc: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
400097c0: 81 c7 e0 08 ret
400097c4: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
400097c8: 02 bf ff fe be 400097c0 <_Objects_Get_name_as_string+0x14>
400097cc: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400097d0: 12 80 00 04 bne 400097e0 <_Objects_Get_name_as_string+0x34>
400097d4: 03 10 00 9d sethi %hi(0x40027400), %g1
400097d8: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 40027778 <_Per_CPU_Information+0xc>
400097dc: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
400097e0: 7f ff ff b1 call 400096a4 <_Objects_Get_information_id>
400097e4: 90 10 00 18 mov %i0, %o0
if ( !information )
400097e8: 80 a2 20 00 cmp %o0, 0
400097ec: 22 bf ff f5 be,a 400097c0 <_Objects_Get_name_as_string+0x14>
400097f0: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
400097f4: 92 10 00 18 mov %i0, %o1
400097f8: 40 00 00 2d call 400098ac <_Objects_Get>
400097fc: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
40009800: c2 07 bf fc ld [ %fp + -4 ], %g1
40009804: 80 a0 60 00 cmp %g1, 0
40009808: 32 bf ff ee bne,a 400097c0 <_Objects_Get_name_as_string+0x14>
4000980c: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
40009810: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
40009814: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
40009818: 89 30 60 18 srl %g1, 0x18, %g4
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000981c: 87 30 60 10 srl %g1, 0x10, %g3
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009820: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
40009824: c6 2f bf f1 stb %g3, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
40009828: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000982c: c8 2f bf f0 stb %g4, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
40009830: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
40009834: 84 10 00 04 mov %g4, %g2
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
40009838: b2 86 7f ff addcc %i1, -1, %i1
4000983c: 02 80 00 19 be 400098a0 <_Objects_Get_name_as_string+0xf4><== NEVER TAKEN
40009840: 86 10 00 1a mov %i2, %g3
40009844: 80 a1 20 00 cmp %g4, 0
40009848: 02 80 00 16 be 400098a0 <_Objects_Get_name_as_string+0xf4>
4000984c: 19 10 00 7b sethi %hi(0x4001ec00), %o4
40009850: 82 10 20 00 clr %g1
40009854: 10 80 00 06 b 4000986c <_Objects_Get_name_as_string+0xc0>
40009858: 98 13 23 00 or %o4, 0x300, %o4
4000985c: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
40009860: 80 a3 60 00 cmp %o5, 0
40009864: 02 80 00 0f be 400098a0 <_Objects_Get_name_as_string+0xf4>
40009868: c4 09 00 01 ldub [ %g4 + %g1 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
4000986c: da 03 00 00 ld [ %o4 ], %o5
40009870: 88 08 a0 ff and %g2, 0xff, %g4
40009874: 88 03 40 04 add %o5, %g4, %g4
40009878: da 49 20 01 ldsb [ %g4 + 1 ], %o5
4000987c: 80 8b 60 97 btst 0x97, %o5
40009880: 12 80 00 03 bne 4000988c <_Objects_Get_name_as_string+0xe0>
40009884: 88 07 bf f0 add %fp, -16, %g4
40009888: 84 10 20 2a mov 0x2a, %g2
4000988c: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
40009890: 82 00 60 01 inc %g1
40009894: 80 a0 40 19 cmp %g1, %i1
40009898: 0a bf ff f1 bcs 4000985c <_Objects_Get_name_as_string+0xb0>
4000989c: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
400098a0: 40 00 02 50 call 4000a1e0 <_Thread_Enable_dispatch>
400098a4: c0 28 c0 00 clrb [ %g3 ]
return name;
400098a8: 30 bf ff c6 b,a 400097c0 <_Objects_Get_name_as_string+0x14>
40018de4 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018de4: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40018de8: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018dec: 84 22 40 02 sub %o1, %g2, %g2
40018df0: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40018df4: 80 a0 80 01 cmp %g2, %g1
40018df8: 18 80 00 09 bgu 40018e1c <_Objects_Get_no_protection+0x38>
40018dfc: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018e00: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40018e04: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40018e08: 80 a2 20 00 cmp %o0, 0
40018e0c: 02 80 00 05 be 40018e20 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018e10: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018e14: 81 c3 e0 08 retl
40018e18: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018e1c: 82 10 20 01 mov 1, %g1
return NULL;
40018e20: 90 10 20 00 clr %o0
}
40018e24: 81 c3 e0 08 retl
40018e28: c2 22 80 00 st %g1, [ %o2 ]
400092b8 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
400092b8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
400092bc: 80 a6 20 00 cmp %i0, 0
400092c0: 12 80 00 06 bne 400092d8 <_Objects_Id_to_name+0x20>
400092c4: 83 36 20 18 srl %i0, 0x18, %g1
400092c8: 03 10 00 7a sethi %hi(0x4001e800), %g1
400092cc: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 4001ea08 <_Per_CPU_Information+0xc>
400092d0: f0 00 60 08 ld [ %g1 + 8 ], %i0
400092d4: 83 36 20 18 srl %i0, 0x18, %g1
400092d8: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
400092dc: 84 00 7f ff add %g1, -1, %g2
400092e0: 80 a0 a0 02 cmp %g2, 2
400092e4: 18 80 00 17 bgu 40009340 <_Objects_Id_to_name+0x88>
400092e8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
400092ec: 83 28 60 02 sll %g1, 2, %g1
400092f0: 05 10 00 79 sethi %hi(0x4001e400), %g2
400092f4: 84 10 a2 fc or %g2, 0x2fc, %g2 ! 4001e6fc <_Objects_Information_table>
400092f8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
400092fc: 80 a0 60 00 cmp %g1, 0
40009300: 02 80 00 10 be 40009340 <_Objects_Id_to_name+0x88>
40009304: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009308: 85 28 a0 02 sll %g2, 2, %g2
4000930c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009310: 80 a2 20 00 cmp %o0, 0
40009314: 02 80 00 0b be 40009340 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
40009318: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000931c: 7f ff ff ca call 40009244 <_Objects_Get>
40009320: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009324: 80 a2 20 00 cmp %o0, 0
40009328: 02 80 00 06 be 40009340 <_Objects_Id_to_name+0x88>
4000932c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009330: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009334: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009338: 40 00 02 60 call 40009cb8 <_Thread_Enable_dispatch>
4000933c: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009340: 81 c7 e0 08 ret
40009344: 91 e8 00 10 restore %g0, %l0, %o0
40007b74 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007b74: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007b78: 05 10 00 53 sethi %hi(0x40014c00), %g2
40007b7c: 83 2e 60 02 sll %i1, 2, %g1
40007b80: 84 10 a3 cc or %g2, 0x3cc, %g2
40007b84: c2 00 80 01 ld [ %g2 + %g1 ], %g1
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40007b88: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40007b8c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
40007b90: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
40007b94: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007b98: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
40007b9c: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007ba0: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
40007ba4: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40007ba8: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40007bac: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007bb0: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007bb4: b5 2e a0 10 sll %i2, 0x10, %i2
40007bb8: b5 36 a0 10 srl %i2, 0x10, %i2
40007bbc: 85 2e a0 02 sll %i2, 2, %g2
40007bc0: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40007bc4: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
40007bc8: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007bcc: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40007bd0: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007bd4: 02 80 00 05 be 40007be8 <_Objects_Initialize_information+0x74>
40007bd8: b6 2e c0 01 andn %i3, %g1, %i3
40007bdc: 80 a6 e0 00 cmp %i3, 0
40007be0: 02 80 00 27 be 40007c7c <_Objects_Initialize_information+0x108>
40007be4: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007be8: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40007bec: 80 a0 00 1b cmp %g0, %i3
40007bf0: b3 2e 60 18 sll %i1, 0x18, %i1
40007bf4: 82 40 20 00 addx %g0, 0, %g1
40007bf8: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40007bfc: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c00: 05 10 00 53 sethi %hi(0x40014c00), %g2
40007c04: b4 16 40 1a or %i1, %i2, %i2
40007c08: 84 10 a2 20 or %g2, 0x220, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40007c0c: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40007c10: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40007c14: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40007c18: 80 88 e0 03 btst 3, %g3
40007c1c: 12 80 00 0c bne 40007c4c <_Objects_Initialize_information+0xd8><== NEVER TAKEN
40007c20: f4 26 20 08 st %i2, [ %i0 + 8 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40007c24: 84 06 20 24 add %i0, 0x24, %g2
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
40007c28: 82 06 20 20 add %i0, 0x20, %g1
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c2c: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40007c30: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
the_chain->permanent_null = NULL;
40007c34: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c38: 80 a6 e0 00 cmp %i3, 0
40007c3c: 12 80 00 0e bne 40007c74 <_Objects_Initialize_information+0x100>
40007c40: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
40007c44: 81 c7 e0 08 ret
40007c48: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40007c4c: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40007c50: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
40007c54: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
40007c58: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007c5c: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40007c60: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
the_chain->permanent_null = NULL;
40007c64: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007c68: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40007c6c: 02 bf ff f6 be 40007c44 <_Objects_Initialize_information+0xd0><== NOT EXECUTED
40007c70: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40007c74: 7f ff fe 7e call 4000766c <_Objects_Extend_information>
40007c78: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
40007c7c: 92 10 20 01 mov 1, %o1
40007c80: 7f ff fe 1e call 400074f8 <_Internal_error_Occurred>
40007c84: 94 10 20 13 mov 0x13, %o2
40007d44 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40007d44: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40007d48: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40007d4c: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40007d50: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40007d54: 92 10 00 11 mov %l1, %o1
40007d58: 40 00 26 a2 call 400117e0 <.udiv>
40007d5c: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007d60: 80 a2 20 00 cmp %o0, 0
40007d64: 02 80 00 34 be 40007e34 <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40007d68: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40007d6c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40007d70: c2 01 00 00 ld [ %g4 ], %g1
40007d74: 80 a4 40 01 cmp %l1, %g1
40007d78: 02 80 00 0f be 40007db4 <_Objects_Shrink_information+0x70><== NEVER TAKEN
40007d7c: 82 10 20 00 clr %g1
40007d80: 10 80 00 07 b 40007d9c <_Objects_Shrink_information+0x58>
40007d84: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40007d88: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40007d8c: 80 a4 40 02 cmp %l1, %g2
40007d90: 02 80 00 0a be 40007db8 <_Objects_Shrink_information+0x74>
40007d94: a0 04 00 11 add %l0, %l1, %l0
40007d98: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40007d9c: 82 00 60 01 inc %g1
40007da0: 80 a2 00 01 cmp %o0, %g1
40007da4: 38 bf ff f9 bgu,a 40007d88 <_Objects_Shrink_information+0x44>
40007da8: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40007dac: 81 c7 e0 08 ret
40007db0: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40007db4: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
40007db8: 10 80 00 06 b 40007dd0 <_Objects_Shrink_information+0x8c>
40007dbc: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40007dc0: 80 a4 60 00 cmp %l1, 0
40007dc4: 22 80 00 12 be,a 40007e0c <_Objects_Shrink_information+0xc8>
40007dc8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40007dcc: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
do {
index = _Objects_Get_index( the_object->id );
40007dd0: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007dd4: 80 a0 40 10 cmp %g1, %l0
40007dd8: 0a bf ff fa bcs 40007dc0 <_Objects_Shrink_information+0x7c>
40007ddc: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40007de0: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40007de4: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40007de8: 80 a0 40 02 cmp %g1, %g2
40007dec: 1a bf ff f6 bcc 40007dc4 <_Objects_Shrink_information+0x80>
40007df0: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40007df4: 7f ff fb 46 call 40006b0c <_Chain_Extract>
40007df8: 01 00 00 00 nop
}
}
while ( the_object );
40007dfc: 80 a4 60 00 cmp %l1, 0
40007e00: 12 bf ff f4 bne 40007dd0 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40007e04: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40007e08: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40007e0c: 40 00 07 1b call 40009a78 <_Workspace_Free>
40007e10: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40007e14: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40007e18: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40007e1c: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40007e20: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40007e24: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40007e28: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40007e2c: 82 20 80 01 sub %g2, %g1, %g1
40007e30: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40007e34: 81 c7 e0 08 ret
40007e38: 81 e8 00 00 restore
400064b8 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
400064b8: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
400064bc: 03 10 00 51 sethi %hi(0x40014400), %g1
400064c0: 82 10 63 50 or %g1, 0x350, %g1 ! 40014750 <Configuration_RTEMS_API>
400064c4: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
400064c8: 80 a4 20 00 cmp %l0, 0
400064cc: 02 80 00 19 be 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
400064d0: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
400064d4: 80 a4 a0 00 cmp %l2, 0
400064d8: 02 80 00 16 be 40006530 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
400064dc: a2 10 20 00 clr %l1
400064e0: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
400064e4: d4 04 20 04 ld [ %l0 + 4 ], %o2
400064e8: d0 04 00 00 ld [ %l0 ], %o0
400064ec: d2 04 20 08 ld [ %l0 + 8 ], %o1
400064f0: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
400064f4: d8 04 20 0c ld [ %l0 + 0xc ], %o4
400064f8: 7f ff ff 6d call 400062ac <rtems_task_create>
400064fc: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
40006500: 94 92 20 00 orcc %o0, 0, %o2
40006504: 12 80 00 0d bne 40006538 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006508: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
4000650c: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40006510: 40 00 00 0e call 40006548 <rtems_task_start>
40006514: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40006518: 94 92 20 00 orcc %o0, 0, %o2
4000651c: 12 80 00 07 bne 40006538 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40006520: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
40006524: 80 a4 80 11 cmp %l2, %l1
40006528: 18 bf ff ef bgu 400064e4 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
4000652c: a0 04 20 1c add %l0, 0x1c, %l0
40006530: 81 c7 e0 08 ret
40006534: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
40006538: 90 10 20 01 mov 1, %o0
4000653c: 40 00 03 ef call 400074f8 <_Internal_error_Occurred>
40006540: 92 10 20 01 mov 1, %o1
4000ba0c <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000ba0c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ba10: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
if ( !api )
4000ba14: 80 a4 20 00 cmp %l0, 0
4000ba18: 02 80 00 1f be 4000ba94 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000ba1c: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000ba20: 7f ff d8 ae call 40001cd8 <sparc_disable_interrupts>
4000ba24: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000ba28: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000ba2c: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000ba30: 7f ff d8 ae call 40001ce8 <sparc_enable_interrupts>
4000ba34: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000ba38: 80 a4 60 00 cmp %l1, 0
4000ba3c: 32 80 00 04 bne,a 4000ba4c <_RTEMS_tasks_Post_switch_extension+0x40>
4000ba40: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000ba44: 81 c7 e0 08 ret
4000ba48: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ba4c: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000ba50: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ba54: a4 07 bf fc add %fp, -4, %l2
4000ba58: 27 00 00 3f sethi %hi(0xfc00), %l3
4000ba5c: 94 10 00 12 mov %l2, %o2
4000ba60: 92 14 e3 ff or %l3, 0x3ff, %o1
4000ba64: 40 00 08 06 call 4000da7c <rtems_task_mode>
4000ba68: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000ba6c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000ba70: 9f c0 40 00 call %g1
4000ba74: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000ba78: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ba7c: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000ba80: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ba84: 92 14 e3 ff or %l3, 0x3ff, %o1
4000ba88: 94 10 00 12 mov %l2, %o2
4000ba8c: 40 00 07 fc call 4000da7c <rtems_task_mode>
4000ba90: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000ba94: 81 c7 e0 08 ret
4000ba98: 81 e8 00 00 restore
4000b97c <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000b97c: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
4000b980: 80 a0 60 00 cmp %g1, 0
4000b984: 22 80 00 0b be,a 4000b9b0 <_RTEMS_tasks_Switch_extension+0x34>
4000b988: c2 02 61 68 ld [ %o1 + 0x168 ], %g1
tvp->tval = *tvp->ptr;
4000b98c: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000b990: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000b994: c8 00 80 00 ld [ %g2 ], %g4
4000b998: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000b99c: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000b9a0: 80 a0 60 00 cmp %g1, 0
4000b9a4: 12 bf ff fa bne 4000b98c <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000b9a8: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000b9ac: c2 02 61 68 ld [ %o1 + 0x168 ], %g1
while (tvp) {
4000b9b0: 80 a0 60 00 cmp %g1, 0
4000b9b4: 02 80 00 0a be 4000b9dc <_RTEMS_tasks_Switch_extension+0x60>
4000b9b8: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000b9bc: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000b9c0: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000b9c4: c8 00 80 00 ld [ %g2 ], %g4
4000b9c8: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000b9cc: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000b9d0: 80 a0 60 00 cmp %g1, 0
4000b9d4: 12 bf ff fa bne 4000b9bc <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000b9d8: c6 20 80 00 st %g3, [ %g2 ]
4000b9dc: 81 c3 e0 08 retl
400077dc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400077dc: 9d e3 bf 98 save %sp, -104, %sp
400077e0: 11 10 00 7b sethi %hi(0x4001ec00), %o0
400077e4: 92 10 00 18 mov %i0, %o1
400077e8: 90 12 20 fc or %o0, 0xfc, %o0
400077ec: 40 00 08 3f call 400098e8 <_Objects_Get>
400077f0: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400077f4: c2 07 bf fc ld [ %fp + -4 ], %g1
400077f8: 80 a0 60 00 cmp %g1, 0
400077fc: 12 80 00 16 bne 40007854 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
40007800: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40007804: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40007808: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
4000780c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40007810: 80 88 80 01 btst %g2, %g1
40007814: 22 80 00 08 be,a 40007834 <_Rate_monotonic_Timeout+0x58>
40007818: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000781c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40007820: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007824: 80 a0 80 01 cmp %g2, %g1
40007828: 02 80 00 19 be 4000788c <_Rate_monotonic_Timeout+0xb0>
4000782c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40007830: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007834: 80 a0 60 01 cmp %g1, 1
40007838: 02 80 00 09 be 4000785c <_Rate_monotonic_Timeout+0x80>
4000783c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40007840: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40007844: 03 10 00 7b sethi %hi(0x4001ec00), %g1
40007848: c4 00 62 68 ld [ %g1 + 0x268 ], %g2 ! 4001ee68 <_Thread_Dispatch_disable_level>
4000784c: 84 00 bf ff add %g2, -1, %g2
40007850: c4 20 62 68 st %g2, [ %g1 + 0x268 ]
40007854: 81 c7 e0 08 ret
40007858: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
4000785c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
40007860: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007864: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40007868: 7f ff fe 4c call 40007198 <_Rate_monotonic_Initiate_statistics>
4000786c: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007870: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007874: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007878: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000787c: 90 12 23 2c or %o0, 0x32c, %o0
40007880: 40 00 0f d1 call 4000b7c4 <_Watchdog_Insert>
40007884: 92 04 20 10 add %l0, 0x10, %o1
40007888: 30 bf ff ef b,a 40007844 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
4000788c: 40 00 09 9c call 40009efc <_Thread_Clear_state>
40007890: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40007894: 10 bf ff f5 b 40007868 <_Rate_monotonic_Timeout+0x8c>
40007898: 90 10 00 10 mov %l0, %o0
40007044 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
40007044: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007048: 07 10 00 54 sethi %hi(0x40015000), %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
4000704c: 03 10 00 51 sethi %hi(0x40014400), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007050: da 00 e1 a4 ld [ %g3 + 0x1a4 ], %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40007054: c4 00 63 94 ld [ %g1 + 0x394 ], %g2
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007058: 9a 03 60 01 inc %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
4000705c: 83 28 a0 02 sll %g2, 2, %g1
40007060: 89 28 a0 07 sll %g2, 7, %g4
40007064: 82 21 00 01 sub %g4, %g1, %g1
40007068: 82 00 40 02 add %g1, %g2, %g1
4000706c: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007070: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40007074: da 20 e1 a4 st %o5, [ %g3 + 0x1a4 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007078: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
4000707c: c2 27 bf fc st %g1, [ %fp + -4 ]
40007080: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40007084: 11 10 00 54 sethi %hi(0x40015000), %o0
40007088: 40 00 08 9e call 40009300 <_Timespec_Add_to>
4000708c: 90 12 20 e4 or %o0, 0xe4, %o0 ! 400150e4 <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
40007090: 92 10 00 10 mov %l0, %o1
40007094: 11 10 00 54 sethi %hi(0x40015000), %o0
40007098: 40 00 08 9a call 40009300 <_Timespec_Add_to>
4000709c: 90 12 20 f0 or %o0, 0xf0, %o0 ! 400150f0 <_TOD_Now>
while ( seconds ) {
400070a0: a0 92 20 00 orcc %o0, 0, %l0
400070a4: 02 80 00 08 be 400070c4 <_TOD_Tickle_ticks+0x80>
400070a8: 23 10 00 54 sethi %hi(0x40015000), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
400070ac: a2 14 61 20 or %l1, 0x120, %l1 ! 40015120 <_Watchdog_Seconds_chain>
400070b0: 40 00 0a 23 call 4000993c <_Watchdog_Tickle>
400070b4: 90 10 00 11 mov %l1, %o0
400070b8: a0 84 3f ff addcc %l0, -1, %l0
400070bc: 12 bf ff fd bne 400070b0 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
400070c0: 01 00 00 00 nop
400070c4: 81 c7 e0 08 ret
400070c8: 81 e8 00 00 restore
40007140 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007140: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007144: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007148: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
4000714c: d2 00 62 04 ld [ %g1 + 0x204 ], %o1
if ((!the_tod) ||
40007150: 80 a4 20 00 cmp %l0, 0
40007154: 02 80 00 2c be 40007204 <_TOD_Validate+0xc4> <== NEVER TAKEN
40007158: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
4000715c: 11 00 03 d0 sethi %hi(0xf4000), %o0
40007160: 40 00 49 37 call 4001963c <.udiv>
40007164: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007168: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000716c: 80 a2 00 01 cmp %o0, %g1
40007170: 08 80 00 25 bleu 40007204 <_TOD_Validate+0xc4>
40007174: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007178: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4000717c: 80 a0 60 3b cmp %g1, 0x3b
40007180: 18 80 00 21 bgu 40007204 <_TOD_Validate+0xc4>
40007184: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007188: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
4000718c: 80 a0 60 3b cmp %g1, 0x3b
40007190: 18 80 00 1d bgu 40007204 <_TOD_Validate+0xc4>
40007194: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007198: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000719c: 80 a0 60 17 cmp %g1, 0x17
400071a0: 18 80 00 19 bgu 40007204 <_TOD_Validate+0xc4>
400071a4: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
400071a8: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
400071ac: 80 a0 60 00 cmp %g1, 0
400071b0: 02 80 00 15 be 40007204 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071b4: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
400071b8: 18 80 00 13 bgu 40007204 <_TOD_Validate+0xc4>
400071bc: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071c0: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
400071c4: 80 a0 a7 c3 cmp %g2, 0x7c3
400071c8: 08 80 00 0f bleu 40007204 <_TOD_Validate+0xc4>
400071cc: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
400071d0: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400071d4: 80 a0 e0 00 cmp %g3, 0
400071d8: 02 80 00 0b be 40007204 <_TOD_Validate+0xc4> <== NEVER TAKEN
400071dc: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
400071e0: 32 80 00 0b bne,a 4000720c <_TOD_Validate+0xcc>
400071e4: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
400071e8: 82 00 60 0d add %g1, 0xd, %g1
400071ec: 05 10 00 76 sethi %hi(0x4001d800), %g2
400071f0: 83 28 60 02 sll %g1, 2, %g1
400071f4: 84 10 a2 d8 or %g2, 0x2d8, %g2
400071f8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
400071fc: 80 a0 40 03 cmp %g1, %g3
40007200: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007204: 81 c7 e0 08 ret
40007208: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
4000720c: 05 10 00 76 sethi %hi(0x4001d800), %g2
40007210: 84 10 a2 d8 or %g2, 0x2d8, %g2 ! 4001dad8 <_TOD_Days_per_month>
40007214: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007218: 80 a0 40 03 cmp %g1, %g3
4000721c: b0 60 3f ff subx %g0, -1, %i0
40007220: 81 c7 e0 08 ret
40007224: 81 e8 00 00 restore
40007f08 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40007f08: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
40007f0c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40007f10: 40 00 04 49 call 40009034 <_Thread_Set_transient>
40007f14: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40007f18: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40007f1c: 80 a0 40 19 cmp %g1, %i1
40007f20: 02 80 00 05 be 40007f34 <_Thread_Change_priority+0x2c>
40007f24: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40007f28: 90 10 00 18 mov %i0, %o0
40007f2c: 40 00 03 c6 call 40008e44 <_Thread_Set_priority>
40007f30: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40007f34: 7f ff e7 69 call 40001cd8 <sparc_disable_interrupts>
40007f38: 01 00 00 00 nop
40007f3c: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40007f40: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40007f44: 80 a6 60 04 cmp %i1, 4
40007f48: 02 80 00 18 be 40007fa8 <_Thread_Change_priority+0xa0>
40007f4c: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40007f50: 02 80 00 0b be 40007f7c <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
40007f54: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40007f58: 7f ff e7 64 call 40001ce8 <sparc_enable_interrupts> <== NOT EXECUTED
40007f5c: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40007f60: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
40007f64: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40007f68: 80 8e 40 01 btst %i1, %g1 <== NOT EXECUTED
40007f6c: 32 80 00 0d bne,a 40007fa0 <_Thread_Change_priority+0x98><== NOT EXECUTED
40007f70: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
40007f74: 81 c7 e0 08 ret
40007f78: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007f7c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40007f80: 7f ff e7 5a call 40001ce8 <sparc_enable_interrupts>
40007f84: 90 10 00 18 mov %i0, %o0
40007f88: 03 00 00 ef sethi %hi(0x3bc00), %g1
40007f8c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40007f90: 80 8e 40 01 btst %i1, %g1
40007f94: 02 bf ff f8 be 40007f74 <_Thread_Change_priority+0x6c>
40007f98: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40007f9c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40007fa0: 40 00 03 79 call 40008d84 <_Thread_queue_Requeue>
40007fa4: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40007fa8: 12 80 00 14 bne 40007ff8 <_Thread_Change_priority+0xf0> <== NEVER TAKEN
40007fac: 33 10 00 54 sethi %hi(0x40015000), %i1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40007fb0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
40007fb4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
40007fb8: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007fbc: c0 24 20 10 clr [ %l0 + 0x10 ]
40007fc0: 84 10 c0 02 or %g3, %g2, %g2
40007fc4: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40007fc8: c4 16 61 08 lduh [ %i1 + 0x108 ], %g2
40007fcc: c2 14 20 94 lduh [ %l0 + 0x94 ], %g1
_Priority_bit_map_Add( &the_thread->Priority_map );
if ( prepend_it )
40007fd0: 80 8e a0 ff btst 0xff, %i2
40007fd4: 82 10 80 01 or %g2, %g1, %g1
40007fd8: c2 36 61 08 sth %g1, [ %i1 + 0x108 ]
40007fdc: 02 80 00 47 be 400080f8 <_Thread_Change_priority+0x1f0>
40007fe0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40007fe4: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40007fe8: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40007fec: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
40007ff0: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
40007ff4: e0 20 a0 04 st %l0, [ %g2 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
40007ff8: 7f ff e7 3c call 40001ce8 <sparc_enable_interrupts>
40007ffc: 90 10 00 18 mov %i0, %o0
40008000: 7f ff e7 36 call 40001cd8 <sparc_disable_interrupts>
40008004: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008008: c2 16 61 08 lduh [ %i1 + 0x108 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first;
4000800c: 05 10 00 53 sethi %hi(0x40014c00), %g2
40008010: 83 28 60 10 sll %g1, 0x10, %g1
40008014: da 00 a3 c4 ld [ %g2 + 0x3c4 ], %o5
40008018: 85 30 60 10 srl %g1, 0x10, %g2
4000801c: 80 a0 a0 ff cmp %g2, 0xff
40008020: 08 80 00 26 bleu 400080b8 <_Thread_Change_priority+0x1b0>
40008024: 07 10 00 4f sethi %hi(0x40013c00), %g3
40008028: 83 30 60 18 srl %g1, 0x18, %g1
4000802c: 86 10 e2 38 or %g3, 0x238, %g3
40008030: c4 08 c0 01 ldub [ %g3 + %g1 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008034: 09 10 00 54 sethi %hi(0x40015000), %g4
40008038: 85 28 a0 10 sll %g2, 0x10, %g2
4000803c: 88 11 21 80 or %g4, 0x180, %g4
40008040: 83 30 a0 0f srl %g2, 0xf, %g1
40008044: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
40008048: 83 28 60 10 sll %g1, 0x10, %g1
4000804c: 89 30 60 10 srl %g1, 0x10, %g4
40008050: 80 a1 20 ff cmp %g4, 0xff
40008054: 18 80 00 27 bgu 400080f0 <_Thread_Change_priority+0x1e8>
40008058: 83 30 60 18 srl %g1, 0x18, %g1
4000805c: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
40008060: 82 00 60 08 add %g1, 8, %g1
return (_Priority_Bits_index( major ) << 4) +
40008064: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
40008068: 83 28 60 10 sll %g1, 0x10, %g1
4000806c: 83 30 60 10 srl %g1, 0x10, %g1
40008070: 82 00 40 02 add %g1, %g2, %g1
40008074: 85 28 60 02 sll %g1, 2, %g2
40008078: 83 28 60 04 sll %g1, 4, %g1
4000807c: 82 20 40 02 sub %g1, %g2, %g1
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
40008080: c4 03 40 01 ld [ %o5 + %g1 ], %g2
40008084: 03 10 00 54 sethi %hi(0x40015000), %g1
40008088: 82 10 62 cc or %g1, 0x2cc, %g1 ! 400152cc <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
4000808c: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
40008090: 80 a0 80 03 cmp %g2, %g3
40008094: 02 80 00 07 be 400080b0 <_Thread_Change_priority+0x1a8>
40008098: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
4000809c: c4 08 e0 74 ldub [ %g3 + 0x74 ], %g2
400080a0: 80 a0 a0 00 cmp %g2, 0
400080a4: 02 80 00 03 be 400080b0 <_Thread_Change_priority+0x1a8>
400080a8: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
400080ac: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
400080b0: 7f ff e7 0e call 40001ce8 <sparc_enable_interrupts>
400080b4: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400080b8: 86 10 e2 38 or %g3, 0x238, %g3
400080bc: c4 08 c0 02 ldub [ %g3 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400080c0: 09 10 00 54 sethi %hi(0x40015000), %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400080c4: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400080c8: 88 11 21 80 or %g4, 0x180, %g4
400080cc: 85 28 a0 10 sll %g2, 0x10, %g2
400080d0: 83 30 a0 0f srl %g2, 0xf, %g1
400080d4: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
400080d8: 83 28 60 10 sll %g1, 0x10, %g1
400080dc: 89 30 60 10 srl %g1, 0x10, %g4
400080e0: 80 a1 20 ff cmp %g4, 0xff
400080e4: 28 bf ff df bleu,a 40008060 <_Thread_Change_priority+0x158>
400080e8: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
400080ec: 83 30 60 18 srl %g1, 0x18, %g1
400080f0: 10 bf ff dd b 40008064 <_Thread_Change_priority+0x15c>
400080f4: c2 08 c0 01 ldub [ %g3 + %g1 ], %g1
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
400080f8: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
400080fc: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
40008100: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
40008104: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40008108: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000810c: 10 bf ff bb b 40007ff8 <_Thread_Change_priority+0xf0>
40008110: c4 24 20 04 st %g2, [ %l0 + 4 ]
40008114 <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
40008114: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
40008118: 7f ff e6 f0 call 40001cd8 <sparc_disable_interrupts>
4000811c: a0 10 00 18 mov %i0, %l0
40008120: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
40008124: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
40008128: 80 8e 40 01 btst %i1, %g1
4000812c: 02 80 00 06 be 40008144 <_Thread_Clear_state+0x30>
40008130: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear (
States_Control states_to_clear,
States_Control current_state
)
{
return (current_state & ~states_to_clear);
40008134: b2 28 40 19 andn %g1, %i1, %i1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
40008138: 80 a6 60 00 cmp %i1, 0
4000813c: 02 80 00 04 be 4000814c <_Thread_Clear_state+0x38>
40008140: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
}
}
}
_ISR_Enable( level );
40008144: 7f ff e6 e9 call 40001ce8 <sparc_enable_interrupts>
40008148: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000814c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
40008150: c6 14 20 96 lduh [ %l0 + 0x96 ], %g3
40008154: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008158: 05 10 00 54 sethi %hi(0x40015000), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000815c: 86 11 00 03 or %g4, %g3, %g3
40008160: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008164: c8 10 a1 08 lduh [ %g2 + 0x108 ], %g4
40008168: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000816c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40008170: 86 11 00 03 or %g4, %g3, %g3
40008174: c6 30 a1 08 sth %g3, [ %g2 + 0x108 ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
40008178: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000817c: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
40008180: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
40008184: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40008188: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000818c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
40008190: 7f ff e6 d6 call 40001ce8 <sparc_enable_interrupts>
40008194: 01 00 00 00 nop
40008198: 7f ff e6 d0 call 40001cd8 <sparc_disable_interrupts>
4000819c: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
400081a0: 03 10 00 54 sethi %hi(0x40015000), %g1
400081a4: 82 10 62 cc or %g1, 0x2cc, %g1 ! 400152cc <_Per_CPU_Information>
400081a8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
400081ac: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
400081b0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
400081b4: 80 a0 80 03 cmp %g2, %g3
400081b8: 1a bf ff e3 bcc 40008144 <_Thread_Clear_state+0x30>
400081bc: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
400081c0: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
400081c4: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
400081c8: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
400081cc: 80 a0 e0 00 cmp %g3, 0
400081d0: 32 80 00 05 bne,a 400081e4 <_Thread_Clear_state+0xd0>
400081d4: 84 10 20 01 mov 1, %g2
400081d8: 80 a0 a0 00 cmp %g2, 0
400081dc: 12 bf ff da bne 40008144 <_Thread_Clear_state+0x30> <== ALWAYS TAKEN
400081e0: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
400081e4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
400081e8: 7f ff e6 c0 call 40001ce8 <sparc_enable_interrupts>
400081ec: 81 e8 00 00 restore
40008364 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008364: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008368: 90 10 00 18 mov %i0, %o0
4000836c: 40 00 00 6c call 4000851c <_Thread_Get>
40008370: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008374: c2 07 bf fc ld [ %fp + -4 ], %g1
40008378: 80 a0 60 00 cmp %g1, 0
4000837c: 12 80 00 08 bne 4000839c <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008380: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008384: 7f ff ff 64 call 40008114 <_Thread_Clear_state>
40008388: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
4000838c: 03 10 00 54 sethi %hi(0x40015000), %g1
40008390: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 40015068 <_Thread_Dispatch_disable_level>
40008394: 84 00 bf ff add %g2, -1, %g2
40008398: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
4000839c: 81 c7 e0 08 ret
400083a0: 81 e8 00 00 restore
400083a4 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
400083a4: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
400083a8: 25 10 00 54 sethi %hi(0x40015000), %l2
400083ac: a4 14 a2 cc or %l2, 0x2cc, %l2 ! 400152cc <_Per_CPU_Information>
_ISR_Disable( level );
400083b0: 7f ff e6 4a call 40001cd8 <sparc_disable_interrupts>
400083b4: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
400083b8: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
400083bc: 80 a0 60 00 cmp %g1, 0
400083c0: 02 80 00 42 be 400084c8 <_Thread_Dispatch+0x124>
400083c4: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
400083c8: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400083cc: 82 10 20 01 mov 1, %g1
400083d0: c2 25 a0 68 st %g1, [ %l6 + 0x68 ]
_Thread_Dispatch_necessary = false;
400083d4: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400083d8: 80 a4 40 10 cmp %l1, %l0
400083dc: 02 80 00 3b be 400084c8 <_Thread_Dispatch+0x124>
400083e0: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
400083e4: 27 10 00 54 sethi %hi(0x40015000), %l3
400083e8: 3b 10 00 54 sethi %hi(0x40015000), %i5
400083ec: a6 14 e1 18 or %l3, 0x118, %l3
400083f0: aa 07 bf f8 add %fp, -8, %l5
400083f4: a8 07 bf f0 add %fp, -16, %l4
400083f8: ba 17 60 ec or %i5, 0xec, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400083fc: 37 10 00 53 sethi %hi(0x40014c00), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40008400: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008404: 10 80 00 2b b 400084b0 <_Thread_Dispatch+0x10c>
40008408: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
4000840c: 7f ff e6 37 call 40001ce8 <sparc_enable_interrupts>
40008410: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008414: 40 00 0e a0 call 4000be94 <_TOD_Get_uptime>
40008418: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
4000841c: 90 10 00 17 mov %l7, %o0
40008420: 92 10 00 15 mov %l5, %o1
40008424: 40 00 03 d0 call 40009364 <_Timespec_Subtract>
40008428: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
4000842c: 92 10 00 14 mov %l4, %o1
40008430: 40 00 03 b4 call 40009300 <_Timespec_Add_to>
40008434: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
40008438: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
4000843c: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40008440: c4 24 c0 00 st %g2, [ %l3 ]
40008444: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
40008448: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
4000844c: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008450: 80 a0 60 00 cmp %g1, 0
40008454: 02 80 00 06 be 4000846c <_Thread_Dispatch+0xc8> <== NEVER TAKEN
40008458: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
4000845c: c4 00 40 00 ld [ %g1 ], %g2
40008460: c4 24 61 58 st %g2, [ %l1 + 0x158 ]
*_Thread_libc_reent = heir->libc_reent;
40008464: c4 04 21 58 ld [ %l0 + 0x158 ], %g2
40008468: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
4000846c: 40 00 04 82 call 40009674 <_User_extensions_Thread_switch>
40008470: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40008474: 90 04 60 d0 add %l1, 0xd0, %o0
40008478: 40 00 05 96 call 40009ad0 <_CPU_Context_switch>
4000847c: 92 04 20 d0 add %l0, 0xd0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
40008480: 7f ff e6 16 call 40001cd8 <sparc_disable_interrupts>
40008484: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008488: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
4000848c: 80 a0 60 00 cmp %g1, 0
40008490: 02 80 00 0e be 400084c8 <_Thread_Dispatch+0x124>
40008494: 01 00 00 00 nop
heir = _Thread_Heir;
40008498: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
4000849c: f8 25 a0 68 st %i4, [ %l6 + 0x68 ]
_Thread_Dispatch_necessary = false;
400084a0: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400084a4: 80 a4 00 11 cmp %l0, %l1
400084a8: 02 80 00 08 be 400084c8 <_Thread_Dispatch+0x124> <== NEVER TAKEN
400084ac: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
400084b0: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
400084b4: 80 a0 60 01 cmp %g1, 1
400084b8: 12 bf ff d5 bne 4000840c <_Thread_Dispatch+0x68>
400084bc: c2 06 e3 c8 ld [ %i3 + 0x3c8 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400084c0: 10 bf ff d3 b 4000840c <_Thread_Dispatch+0x68>
400084c4: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400084c8: c0 25 a0 68 clr [ %l6 + 0x68 ]
_ISR_Enable( level );
400084cc: 7f ff e6 07 call 40001ce8 <sparc_enable_interrupts>
400084d0: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400084d4: 7f ff f9 36 call 400069ac <_API_extensions_Run_postswitch>
400084d8: 01 00 00 00 nop
}
400084dc: 81 c7 e0 08 ret
400084e0: 81 e8 00 00 restore
4000851c <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
4000851c: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008520: 80 a2 20 00 cmp %o0, 0
40008524: 02 80 00 1d be 40008598 <_Thread_Get+0x7c>
40008528: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
4000852c: 85 32 20 18 srl %o0, 0x18, %g2
40008530: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008534: 86 00 bf ff add %g2, -1, %g3
40008538: 80 a0 e0 02 cmp %g3, 2
4000853c: 38 80 00 14 bgu,a 4000858c <_Thread_Get+0x70>
40008540: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
40008544: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40008548: 80 a1 20 01 cmp %g4, 1
4000854c: 32 80 00 10 bne,a 4000858c <_Thread_Get+0x70>
40008550: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40008554: 85 28 a0 02 sll %g2, 2, %g2
40008558: 07 10 00 53 sethi %hi(0x40014c00), %g3
4000855c: 86 10 e3 cc or %g3, 0x3cc, %g3 ! 40014fcc <_Objects_Information_table>
40008560: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
40008564: 80 a0 a0 00 cmp %g2, 0
40008568: 22 80 00 16 be,a 400085c0 <_Thread_Get+0xa4> <== NEVER TAKEN
4000856c: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
#endif
information = api_information[ the_class ];
40008570: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
40008574: 80 a2 20 00 cmp %o0, 0
40008578: 02 80 00 10 be 400085b8 <_Thread_Get+0x9c>
4000857c: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008580: 82 13 c0 00 mov %o7, %g1
40008584: 7f ff fd 5f call 40007b00 <_Objects_Get>
40008588: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
4000858c: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
40008590: 81 c3 e0 08 retl
40008594: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008598: 03 10 00 54 sethi %hi(0x40015000), %g1
4000859c: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 40015068 <_Thread_Dispatch_disable_level>
400085a0: 84 00 a0 01 inc %g2
400085a4: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
400085a8: 03 10 00 54 sethi %hi(0x40015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
400085ac: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
400085b0: 81 c3 e0 08 retl
400085b4: d0 00 62 d8 ld [ %g1 + 0x2d8 ], %o0
#endif
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
400085b8: 81 c3 e0 08 retl
400085bc: c8 22 80 00 st %g4, [ %o2 ]
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
400085c0: 81 c3 e0 08 retl <== NOT EXECUTED
400085c4: 90 10 20 00 clr %o0 <== NOT EXECUTED
4000de08 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000de08: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000de0c: 03 10 00 54 sethi %hi(0x40015000), %g1
4000de10: e0 00 62 d8 ld [ %g1 + 0x2d8 ], %l0 ! 400152d8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000de14: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000de18: be 17 e2 08 or %i7, 0x208, %i7 ! 4000de08 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000de1c: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
4000de20: 7f ff cf b2 call 40001ce8 <sparc_enable_interrupts>
4000de24: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000de28: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000de2c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000de30: e2 08 62 28 ldub [ %g1 + 0x228 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000de34: 90 10 00 10 mov %l0, %o0
4000de38: 7f ff ed 8f call 40009474 <_User_extensions_Thread_begin>
4000de3c: c4 28 62 28 stb %g2, [ %g1 + 0x228 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000de40: 7f ff e9 a9 call 400084e4 <_Thread_Enable_dispatch>
4000de44: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000de48: 80 a4 60 00 cmp %l1, 0
4000de4c: 02 80 00 0c be 4000de7c <_Thread_Handler+0x74>
4000de50: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000de54: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
4000de58: 80 a0 60 00 cmp %g1, 0
4000de5c: 22 80 00 0f be,a 4000de98 <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000de60: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000de64: 7f ff ed 98 call 400094c4 <_User_extensions_Thread_exitted>
4000de68: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000de6c: 90 10 20 00 clr %o0
4000de70: 92 10 20 01 mov 1, %o1
4000de74: 7f ff e5 a1 call 400074f8 <_Internal_error_Occurred>
4000de78: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000de7c: 40 00 1a 05 call 40014690 <_init>
4000de80: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000de84: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
4000de88: 80 a0 60 00 cmp %g1, 0
4000de8c: 12 bf ff f6 bne 4000de64 <_Thread_Handler+0x5c> <== NEVER TAKEN
4000de90: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000de94: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
4000de98: 9f c0 40 00 call %g1
4000de9c: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000dea0: 10 bf ff f1 b 4000de64 <_Thread_Handler+0x5c>
4000dea4: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
400085c8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400085c8: 9d e3 bf a0 save %sp, -96, %sp
400085cc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400085d0: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400085d4: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400085d8: c0 26 61 5c clr [ %i1 + 0x15c ]
400085dc: c0 26 61 60 clr [ %i1 + 0x160 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400085e0: c0 26 61 58 clr [ %i1 + 0x158 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400085e4: 90 10 00 19 mov %i1, %o0
400085e8: 40 00 02 b7 call 400090c4 <_Thread_Stack_Allocate>
400085ec: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400085f0: 80 a2 00 1b cmp %o0, %i3
400085f4: 0a 80 00 49 bcs 40008718 <_Thread_Initialize+0x150>
400085f8: 80 a2 20 00 cmp %o0, 0
400085fc: 02 80 00 47 be 40008718 <_Thread_Initialize+0x150> <== NEVER TAKEN
40008600: 25 10 00 54 sethi %hi(0x40015000), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40008604: c4 06 60 c8 ld [ %i1 + 0xc8 ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40008608: c2 04 a0 f8 ld [ %l2 + 0xf8 ], %g1
4000860c: c4 26 60 c4 st %g2, [ %i1 + 0xc4 ]
the_stack->size = size;
40008610: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008614: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40008618: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
4000861c: c0 26 60 68 clr [ %i1 + 0x68 ]
40008620: 80 a0 60 00 cmp %g1, 0
40008624: 12 80 00 40 bne 40008724 <_Thread_Initialize+0x15c>
40008628: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
4000862c: c0 26 61 64 clr [ %i1 + 0x164 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40008630: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008634: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40008638: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000863c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
40008640: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40008644: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
40008648: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
4000864c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
40008650: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008654: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
40008658: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
4000865c: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
40008660: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008664: e0 2e 60 ac stb %l0, [ %i1 + 0xac ]
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
40008668: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
4000866c: 40 00 01 f6 call 40008e44 <_Thread_Set_priority>
40008670: c0 26 60 1c clr [ %i1 + 0x1c ]
_Thread_Stack_Free( the_thread );
return false;
}
40008674: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40008678: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
4000867c: c0 26 60 84 clr [ %i1 + 0x84 ]
40008680: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008684: 83 28 60 02 sll %g1, 2, %g1
40008688: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000868c: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40008690: 90 10 00 19 mov %i1, %o0
40008694: 40 00 03 b3 call 40009560 <_User_extensions_Thread_create>
40008698: b0 10 20 01 mov 1, %i0
if ( extension_status )
4000869c: 80 8a 20 ff btst 0xff, %o0
400086a0: 12 80 00 1f bne 4000871c <_Thread_Initialize+0x154>
400086a4: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
400086a8: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
400086ac: 80 a2 20 00 cmp %o0, 0
400086b0: 22 80 00 05 be,a 400086c4 <_Thread_Initialize+0xfc>
400086b4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->libc_reent );
400086b8: 40 00 04 f0 call 40009a78 <_Workspace_Free>
400086bc: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400086c0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
400086c4: 80 a2 20 00 cmp %o0, 0
400086c8: 22 80 00 05 be,a 400086dc <_Thread_Initialize+0x114>
400086cc: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
400086d0: 40 00 04 ea call 40009a78 <_Workspace_Free>
400086d4: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400086d8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
400086dc: 80 a2 20 00 cmp %o0, 0
400086e0: 02 80 00 05 be 400086f4 <_Thread_Initialize+0x12c> <== ALWAYS TAKEN
400086e4: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
400086e8: 40 00 04 e4 call 40009a78 <_Workspace_Free> <== NOT EXECUTED
400086ec: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
400086f0: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
400086f4: 02 80 00 05 be 40008708 <_Thread_Initialize+0x140>
400086f8: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( extensions_area );
400086fc: 40 00 04 df call 40009a78 <_Workspace_Free>
40008700: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
_Thread_Stack_Free( the_thread );
40008704: 90 10 00 19 mov %i1, %o0
40008708: 40 00 02 8a call 40009130 <_Thread_Stack_Free>
4000870c: b0 10 20 00 clr %i0
return false;
40008710: 81 c7 e0 08 ret
40008714: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
40008718: b0 10 20 00 clr %i0
_Thread_Stack_Free( the_thread );
return false;
}
4000871c: 81 c7 e0 08 ret
40008720: 81 e8 00 00 restore
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40008724: 82 00 60 01 inc %g1
40008728: 40 00 04 cb call 40009a54 <_Workspace_Allocate>
4000872c: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008730: b6 92 20 00 orcc %o0, 0, %i3
40008734: 02 bf ff dd be 400086a8 <_Thread_Initialize+0xe0>
40008738: c6 04 a0 f8 ld [ %l2 + 0xf8 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
4000873c: f6 26 61 64 st %i3, [ %i1 + 0x164 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008740: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40008744: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40008748: 85 28 a0 02 sll %g2, 2, %g2
4000874c: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008750: 82 00 60 01 inc %g1
40008754: 80 a0 40 03 cmp %g1, %g3
40008758: 08 bf ff fc bleu 40008748 <_Thread_Initialize+0x180>
4000875c: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008760: 10 bf ff b6 b 40008638 <_Thread_Initialize+0x70>
40008764: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
4000c84c <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000c84c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000c850: 7f ff d5 90 call 40001e90 <sparc_disable_interrupts>
4000c854: a0 10 00 18 mov %i0, %l0
4000c858: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000c85c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000c860: 80 88 60 02 btst 2, %g1
4000c864: 02 80 00 05 be 4000c878 <_Thread_Resume+0x2c> <== NEVER TAKEN
4000c868: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000c86c: 80 a0 60 00 cmp %g1, 0
4000c870: 02 80 00 04 be 4000c880 <_Thread_Resume+0x34>
4000c874: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
}
}
_ISR_Enable( level );
4000c878: 7f ff d5 8a call 40001ea0 <sparc_enable_interrupts>
4000c87c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000c880: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000c884: c6 14 20 96 lduh [ %l0 + 0x96 ], %g3
4000c888: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000c88c: 05 10 00 64 sethi %hi(0x40019000), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000c890: 86 11 00 03 or %g4, %g3, %g3
4000c894: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000c898: c8 10 a2 18 lduh [ %g2 + 0x218 ], %g4
4000c89c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000c8a0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
4000c8a4: 86 11 00 03 or %g4, %g3, %g3
4000c8a8: c6 30 a2 18 sth %g3, [ %g2 + 0x218 ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
4000c8ac: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000c8b0: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000c8b4: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
4000c8b8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
4000c8bc: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000c8c0: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000c8c4: 7f ff d5 77 call 40001ea0 <sparc_enable_interrupts>
4000c8c8: 01 00 00 00 nop
4000c8cc: 7f ff d5 71 call 40001e90 <sparc_disable_interrupts>
4000c8d0: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000c8d4: 03 10 00 64 sethi %hi(0x40019000), %g1
4000c8d8: 82 10 63 dc or %g1, 0x3dc, %g1 ! 400193dc <_Per_CPU_Information>
4000c8dc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000c8e0: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
4000c8e4: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
4000c8e8: 80 a0 80 03 cmp %g2, %g3
4000c8ec: 1a bf ff e3 bcc 4000c878 <_Thread_Resume+0x2c>
4000c8f0: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
4000c8f4: c6 00 60 0c ld [ %g1 + 0xc ], %g3
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
_ISR_Flash( level );
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
4000c8f8: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
4000c8fc: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
4000c900: 80 a0 e0 00 cmp %g3, 0
4000c904: 32 80 00 05 bne,a 4000c918 <_Thread_Resume+0xcc>
4000c908: 84 10 20 01 mov 1, %g2
4000c90c: 80 a0 a0 00 cmp %g2, 0
4000c910: 12 bf ff da bne 4000c878 <_Thread_Resume+0x2c> <== ALWAYS TAKEN
4000c914: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
4000c918: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
4000c91c: 7f ff d5 61 call 40001ea0 <sparc_enable_interrupts>
4000c920: 81 e8 00 00 restore
4000925c <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
4000925c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40009260: 25 10 00 54 sethi %hi(0x40015000), %l2
40009264: a4 14 a2 cc or %l2, 0x2cc, %l2 ! 400152cc <_Per_CPU_Information>
40009268: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
4000926c: 7f ff e2 9b call 40001cd8 <sparc_disable_interrupts>
40009270: e2 04 20 8c ld [ %l0 + 0x8c ], %l1
40009274: b0 10 00 08 mov %o0, %i0
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
_ISR_Enable( level );
}
40009278: c2 04 60 08 ld [ %l1 + 8 ], %g1
Chain_Control *ready;
executing = _Thread_Executing;
ready = executing->ready;
_ISR_Disable( level );
if ( !_Chain_Has_only_one_node( ready ) ) {
4000927c: c4 04 40 00 ld [ %l1 ], %g2
40009280: 80 a0 80 01 cmp %g2, %g1
40009284: 02 80 00 14 be 400092d4 <_Thread_Yield_processor+0x78>
40009288: 88 04 60 04 add %l1, 4, %g4
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000928c: c4 1c 00 00 ldd [ %l0 ], %g2
next->previous = previous;
previous->next = next;
40009290: c4 20 c0 00 st %g2, [ %g3 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
40009294: c6 20 a0 04 st %g3, [ %g2 + 4 ]
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
40009298: c8 24 00 00 st %g4, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
4000929c: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last_node->next = the_node;
400092a0: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
400092a4: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
400092a8: 7f ff e2 90 call 40001ce8 <sparc_enable_interrupts>
400092ac: 01 00 00 00 nop
400092b0: 7f ff e2 8a call 40001cd8 <sparc_disable_interrupts>
400092b4: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
400092b8: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
400092bc: 80 a4 00 01 cmp %l0, %g1
400092c0: 02 80 00 0b be 400092ec <_Thread_Yield_processor+0x90> <== ALWAYS TAKEN
400092c4: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) ready->first;
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
400092c8: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
400092cc: 7f ff e2 87 call 40001ce8 <sparc_enable_interrupts>
400092d0: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
400092d4: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
400092d8: 80 a4 00 01 cmp %l0, %g1
400092dc: 02 bf ff fc be 400092cc <_Thread_Yield_processor+0x70> <== ALWAYS TAKEN
400092e0: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
400092e4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
400092e8: 30 bf ff f9 b,a 400092cc <_Thread_Yield_processor+0x70> <== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
400092ec: c2 04 40 00 ld [ %l1 ], %g1
400092f0: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
400092f4: 82 10 20 01 mov 1, %g1
400092f8: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
400092fc: 30 bf ff f4 b,a 400092cc <_Thread_Yield_processor+0x70>
40008d84 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40008d84: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40008d88: 80 a6 20 00 cmp %i0, 0
40008d8c: 02 80 00 13 be 40008dd8 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
40008d90: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40008d94: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40008d98: 80 a4 60 01 cmp %l1, 1
40008d9c: 02 80 00 04 be 40008dac <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
40008da0: 01 00 00 00 nop
40008da4: 81 c7 e0 08 ret <== NOT EXECUTED
40008da8: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40008dac: 7f ff e3 cb call 40001cd8 <sparc_disable_interrupts>
40008db0: 01 00 00 00 nop
40008db4: a0 10 00 08 mov %o0, %l0
40008db8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
40008dbc: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008dc0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40008dc4: 80 88 80 01 btst %g2, %g1
40008dc8: 12 80 00 06 bne 40008de0 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
40008dcc: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
40008dd0: 7f ff e3 c6 call 40001ce8 <sparc_enable_interrupts>
40008dd4: 90 10 00 10 mov %l0, %o0
40008dd8: 81 c7 e0 08 ret
40008ddc: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40008de0: 92 10 00 19 mov %i1, %o1
40008de4: 94 10 20 01 mov 1, %o2
40008de8: 40 00 0d a0 call 4000c468 <_Thread_queue_Extract_priority_helper>
40008dec: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40008df0: 90 10 00 18 mov %i0, %o0
40008df4: 92 10 00 19 mov %i1, %o1
40008df8: 7f ff ff 2b call 40008aa4 <_Thread_queue_Enqueue_priority>
40008dfc: 94 07 bf fc add %fp, -4, %o2
40008e00: 30 bf ff f4 b,a 40008dd0 <_Thread_queue_Requeue+0x4c>
40008e04 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008e04: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008e08: 90 10 00 18 mov %i0, %o0
40008e0c: 7f ff fd c4 call 4000851c <_Thread_Get>
40008e10: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008e14: c2 07 bf fc ld [ %fp + -4 ], %g1
40008e18: 80 a0 60 00 cmp %g1, 0
40008e1c: 12 80 00 08 bne 40008e3c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40008e20: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
40008e24: 40 00 0d ca call 4000c54c <_Thread_queue_Process_timeout>
40008e28: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008e2c: 03 10 00 54 sethi %hi(0x40015000), %g1
40008e30: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 40015068 <_Thread_Dispatch_disable_level>
40008e34: 84 00 bf ff add %g2, -1, %g2
40008e38: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
40008e3c: 81 c7 e0 08 ret
40008e40: 81 e8 00 00 restore
400162fc <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
400162fc: 9d e3 bf 88 save %sp, -120, %sp
40016300: 2d 10 00 f4 sethi %hi(0x4003d000), %l6
40016304: ba 07 bf f4 add %fp, -12, %i5
40016308: a8 07 bf f8 add %fp, -8, %l4
4001630c: a4 07 bf e8 add %fp, -24, %l2
40016310: ae 07 bf ec add %fp, -20, %l7
40016314: 2b 10 00 f4 sethi %hi(0x4003d000), %l5
40016318: 39 10 00 f4 sethi %hi(0x4003d000), %i4
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4001631c: e8 27 bf f4 st %l4, [ %fp + -12 ]
the_chain->permanent_null = NULL;
40016320: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
40016324: fa 27 bf fc st %i5, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40016328: ee 27 bf e8 st %l7, [ %fp + -24 ]
the_chain->permanent_null = NULL;
4001632c: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
40016330: e4 27 bf f0 st %l2, [ %fp + -16 ]
40016334: ac 15 a2 c4 or %l6, 0x2c4, %l6
40016338: a2 06 20 30 add %i0, 0x30, %l1
4001633c: aa 15 62 10 or %l5, 0x210, %l5
40016340: a6 06 20 68 add %i0, 0x68, %l3
40016344: b8 17 21 88 or %i4, 0x188, %i4
40016348: b2 06 20 08 add %i0, 8, %i1
4001634c: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40016350: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40016354: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016358: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
4001635c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016360: 94 10 00 12 mov %l2, %o2
40016364: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40016368: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001636c: 40 00 12 bb call 4001ae58 <_Watchdog_Adjust_to_chain>
40016370: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40016374: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016378: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
4001637c: 80 a4 00 0a cmp %l0, %o2
40016380: 18 80 00 2e bgu 40016438 <_Timer_server_Body+0x13c>
40016384: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
40016388: 80 a4 00 0a cmp %l0, %o2
4001638c: 0a 80 00 2f bcs 40016448 <_Timer_server_Body+0x14c>
40016390: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
40016394: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40016398: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
4001639c: 40 00 02 fb call 40016f88 <_Chain_Get>
400163a0: 01 00 00 00 nop
if ( timer == NULL ) {
400163a4: 92 92 20 00 orcc %o0, 0, %o1
400163a8: 02 80 00 10 be 400163e8 <_Timer_server_Body+0xec>
400163ac: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400163b0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400163b4: 80 a0 60 01 cmp %g1, 1
400163b8: 02 80 00 28 be 40016458 <_Timer_server_Body+0x15c>
400163bc: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400163c0: 12 bf ff f6 bne 40016398 <_Timer_server_Body+0x9c> <== NEVER TAKEN
400163c4: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400163c8: 40 00 12 d7 call 4001af24 <_Watchdog_Insert>
400163cc: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400163d0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400163d4: 40 00 02 ed call 40016f88 <_Chain_Get>
400163d8: 01 00 00 00 nop
if ( timer == NULL ) {
400163dc: 92 92 20 00 orcc %o0, 0, %o1
400163e0: 32 bf ff f5 bne,a 400163b4 <_Timer_server_Body+0xb8> <== NEVER TAKEN
400163e4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400163e8: 7f ff e2 32 call 4000ecb0 <sparc_disable_interrupts>
400163ec: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
400163f0: c2 07 bf f4 ld [ %fp + -12 ], %g1
400163f4: 80 a5 00 01 cmp %l4, %g1
400163f8: 02 80 00 1c be 40016468 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
400163fc: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
40016400: 7f ff e2 30 call 4000ecc0 <sparc_enable_interrupts> <== NOT EXECUTED
40016404: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016408: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
4001640c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016410: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
40016414: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40016418: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001641c: 40 00 12 8f call 4001ae58 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
40016420: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40016424: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016428: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
4001642c: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
40016430: 08 bf ff d7 bleu 4001638c <_Timer_server_Body+0x90> <== NOT EXECUTED
40016434: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016438: 90 10 00 13 mov %l3, %o0
4001643c: 40 00 12 87 call 4001ae58 <_Watchdog_Adjust_to_chain>
40016440: 94 10 00 12 mov %l2, %o2
40016444: 30 bf ff d4 b,a 40016394 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016448: 92 10 20 01 mov 1, %o1
4001644c: 40 00 12 53 call 4001ad98 <_Watchdog_Adjust>
40016450: 94 22 80 10 sub %o2, %l0, %o2
40016454: 30 bf ff d0 b,a 40016394 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016458: 90 10 00 11 mov %l1, %o0
4001645c: 40 00 12 b2 call 4001af24 <_Watchdog_Insert>
40016460: 92 02 60 10 add %o1, 0x10, %o1
40016464: 30 bf ff cd b,a 40016398 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
40016468: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
4001646c: 7f ff e2 15 call 4000ecc0 <sparc_enable_interrupts>
40016470: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40016474: c2 07 bf e8 ld [ %fp + -24 ], %g1
40016478: 80 a5 c0 01 cmp %l7, %g1
4001647c: 12 80 00 0c bne 400164ac <_Timer_server_Body+0x1b0>
40016480: 01 00 00 00 nop
40016484: 30 80 00 13 b,a 400164d0 <_Timer_server_Body+0x1d4>
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
new_first->previous = _Chain_Head(the_chain);
40016488: e4 20 60 04 st %l2, [ %g1 + 4 ]
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
4001648c: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
40016490: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40016494: 7f ff e2 0b call 4000ecc0 <sparc_enable_interrupts>
40016498: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
4001649c: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
400164a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
400164a4: 9f c0 40 00 call %g1
400164a8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
400164ac: 7f ff e2 01 call 4000ecb0 <sparc_disable_interrupts>
400164b0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
400164b4: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
400164b8: 80 a5 c0 10 cmp %l7, %l0
400164bc: 32 bf ff f3 bne,a 40016488 <_Timer_server_Body+0x18c>
400164c0: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
400164c4: 7f ff e1 ff call 4000ecc0 <sparc_enable_interrupts>
400164c8: 01 00 00 00 nop
400164cc: 30 bf ff a2 b,a 40016354 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400164d0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
400164d4: c2 07 00 00 ld [ %i4 ], %g1
400164d8: 82 00 60 01 inc %g1
400164dc: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
400164e0: d0 06 00 00 ld [ %i0 ], %o0
400164e4: 40 00 0f 91 call 4001a328 <_Thread_Set_state>
400164e8: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400164ec: 7f ff ff 5a call 40016254 <_Timer_server_Reset_interval_system_watchdog>
400164f0: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400164f4: 7f ff ff 6d call 400162a8 <_Timer_server_Reset_tod_system_watchdog>
400164f8: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400164fc: 40 00 0c c5 call 40019810 <_Thread_Enable_dispatch>
40016500: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016504: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40016508: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
4001650c: 40 00 12 f0 call 4001b0cc <_Watchdog_Remove>
40016510: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016514: 40 00 12 ee call 4001b0cc <_Watchdog_Remove>
40016518: 90 10 00 1a mov %i2, %o0
4001651c: 30 bf ff 8e b,a 40016354 <_Timer_server_Body+0x58>
40016520 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40016520: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016524: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40016528: 80 a0 60 00 cmp %g1, 0
4001652c: 02 80 00 05 be 40016540 <_Timer_server_Schedule_operation_method+0x20>
40016530: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40016534: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40016538: 40 00 02 7e call 40016f30 <_Chain_Append>
4001653c: 81 e8 00 00 restore
40016540: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40016544: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 4003d188 <_Thread_Dispatch_disable_level>
40016548: 84 00 a0 01 inc %g2
4001654c: c4 20 61 88 st %g2, [ %g1 + 0x188 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40016550: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40016554: 80 a0 60 01 cmp %g1, 1
40016558: 02 80 00 28 be 400165f8 <_Timer_server_Schedule_operation_method+0xd8>
4001655c: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40016560: 02 80 00 04 be 40016570 <_Timer_server_Schedule_operation_method+0x50>
40016564: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
40016568: 40 00 0c aa call 40019810 <_Thread_Enable_dispatch>
4001656c: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40016570: 7f ff e1 d0 call 4000ecb0 <sparc_disable_interrupts>
40016574: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
40016578: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
4001657c: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40016580: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016584: 03 10 00 f4 sethi %hi(0x4003d000), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40016588: 80 a0 80 04 cmp %g2, %g4
4001658c: 02 80 00 0d be 400165c0 <_Timer_server_Schedule_operation_method+0xa0>
40016590: c2 00 62 10 ld [ %g1 + 0x210 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40016594: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
40016598: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
4001659c: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400165a0: 08 80 00 07 bleu 400165bc <_Timer_server_Schedule_operation_method+0x9c>
400165a4: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400165a8: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
400165ac: 80 a3 40 03 cmp %o5, %g3
400165b0: 08 80 00 03 bleu 400165bc <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
400165b4: 88 10 20 00 clr %g4
delta_interval -= delta;
400165b8: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400165bc: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400165c0: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400165c4: 7f ff e1 bf call 4000ecc0 <sparc_enable_interrupts>
400165c8: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400165cc: 90 06 20 68 add %i0, 0x68, %o0
400165d0: 40 00 12 55 call 4001af24 <_Watchdog_Insert>
400165d4: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400165d8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400165dc: 80 a0 60 00 cmp %g1, 0
400165e0: 12 bf ff e2 bne 40016568 <_Timer_server_Schedule_operation_method+0x48>
400165e4: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400165e8: 7f ff ff 30 call 400162a8 <_Timer_server_Reset_tod_system_watchdog>
400165ec: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
400165f0: 40 00 0c 88 call 40019810 <_Thread_Enable_dispatch>
400165f4: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400165f8: 7f ff e1 ae call 4000ecb0 <sparc_disable_interrupts>
400165fc: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40016600: 05 10 00 f4 sethi %hi(0x4003d000), %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
40016604: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
40016608: c4 00 a2 c4 ld [ %g2 + 0x2c4 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
4001660c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40016610: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40016614: 80 a0 40 03 cmp %g1, %g3
40016618: 02 80 00 08 be 40016638 <_Timer_server_Schedule_operation_method+0x118>
4001661c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016620: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016624: 80 a1 00 0d cmp %g4, %o5
40016628: 1a 80 00 03 bcc 40016634 <_Timer_server_Schedule_operation_method+0x114>
4001662c: 86 10 20 00 clr %g3
delta_interval -= delta;
40016630: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40016634: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40016638: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
4001663c: 7f ff e1 a1 call 4000ecc0 <sparc_enable_interrupts>
40016640: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016644: 90 06 20 30 add %i0, 0x30, %o0
40016648: 40 00 12 37 call 4001af24 <_Watchdog_Insert>
4001664c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016650: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016654: 80 a0 60 00 cmp %g1, 0
40016658: 12 bf ff c4 bne 40016568 <_Timer_server_Schedule_operation_method+0x48>
4001665c: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016660: 7f ff fe fd call 40016254 <_Timer_server_Reset_interval_system_watchdog>
40016664: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
40016668: 40 00 0c 6a call 40019810 <_Thread_Enable_dispatch>
4001666c: 81 e8 00 00 restore
40009300 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
40009300: 9d e3 bf a0 save %sp, -96, %sp
40009304: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009308: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
4000930c: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
40009310: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
40009314: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009318: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
4000931c: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
40009320: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
40009324: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
40009328: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
4000932c: 80 a0 80 04 cmp %g2, %g4
40009330: 08 80 00 0b bleu 4000935c <_Timespec_Add_to+0x5c>
40009334: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
40009338: 1b 31 19 4d sethi %hi(0xc4653400), %o5
4000933c: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
40009340: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
40009344: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
40009348: 80 a0 80 04 cmp %g2, %g4
4000934c: 18 bf ff fd bgu 40009340 <_Timespec_Add_to+0x40> <== NEVER TAKEN
40009350: b0 06 20 01 inc %i0
40009354: c4 20 60 04 st %g2, [ %g1 + 4 ]
40009358: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
4000935c: 81 c7 e0 08 ret
40009360: 81 e8 00 00 restore
4000b3dc <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000b3dc: c6 02 00 00 ld [ %o0 ], %g3
4000b3e0: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000b3e4: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000b3e8: 80 a0 c0 02 cmp %g3, %g2
4000b3ec: 14 80 00 0a bg 4000b414 <_Timespec_Greater_than+0x38>
4000b3f0: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000b3f4: 80 a0 c0 02 cmp %g3, %g2
4000b3f8: 06 80 00 07 bl 4000b414 <_Timespec_Greater_than+0x38> <== NEVER TAKEN
4000b3fc: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000b400: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000b404: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000b408: 80 a0 80 01 cmp %g2, %g1
4000b40c: 04 80 00 04 ble 4000b41c <_Timespec_Greater_than+0x40>
4000b410: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000b414: 81 c3 e0 08 retl
4000b418: 01 00 00 00 nop
4000b41c: 81 c3 e0 08 retl
4000b420: 90 10 20 00 clr %o0 ! 0 <PROM_START>
40009510 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40009510: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009514: 23 10 00 54 sethi %hi(0x40015000), %l1
40009518: a2 14 62 88 or %l1, 0x288, %l1 ! 40015288 <_User_extensions_List>
4000951c: e0 04 60 08 ld [ %l1 + 8 ], %l0
40009520: 80 a4 00 11 cmp %l0, %l1
40009524: 02 80 00 0d be 40009558 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
40009528: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
4000952c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40009530: 80 a0 60 00 cmp %g1, 0
40009534: 02 80 00 05 be 40009548 <_User_extensions_Fatal+0x38>
40009538: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
4000953c: 92 10 00 19 mov %i1, %o1
40009540: 9f c0 40 00 call %g1
40009544: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009548: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000954c: 80 a4 00 11 cmp %l0, %l1
40009550: 32 bf ff f8 bne,a 40009530 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
40009554: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40009558: 81 c7 e0 08 ret <== NOT EXECUTED
4000955c: 81 e8 00 00 restore <== NOT EXECUTED
400093bc <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
400093bc: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
400093c0: 07 10 00 51 sethi %hi(0x40014400), %g3
400093c4: 86 10 e3 88 or %g3, 0x388, %g3 ! 40014788 <Configuration>
initial_extensions = Configuration.User_extension_table;
400093c8: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
400093cc: 1b 10 00 54 sethi %hi(0x40015000), %o5
400093d0: 09 10 00 54 sethi %hi(0x40015000), %g4
400093d4: 84 13 62 88 or %o5, 0x288, %g2
400093d8: 82 11 20 6c or %g4, 0x6c, %g1
400093dc: 96 00 a0 04 add %g2, 4, %o3
400093e0: 98 00 60 04 add %g1, 4, %o4
400093e4: d6 23 62 88 st %o3, [ %o5 + 0x288 ]
the_chain->permanent_null = NULL;
400093e8: c0 20 a0 04 clr [ %g2 + 4 ]
the_chain->last = _Chain_Head(the_chain);
400093ec: c4 20 a0 08 st %g2, [ %g2 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
400093f0: d8 21 20 6c st %o4, [ %g4 + 0x6c ]
the_chain->permanent_null = NULL;
400093f4: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
400093f8: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
400093fc: 80 a4 e0 00 cmp %l3, 0
40009400: 02 80 00 1b be 4000946c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009404: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40009408: 83 2c a0 02 sll %l2, 2, %g1
4000940c: a3 2c a0 04 sll %l2, 4, %l1
40009410: a2 24 40 01 sub %l1, %g1, %l1
40009414: a2 04 40 12 add %l1, %l2, %l1
40009418: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000941c: 40 00 01 9e call 40009a94 <_Workspace_Allocate_or_fatal_error>
40009420: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009424: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009428: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000942c: 40 00 15 71 call 4000e9f0 <memset>
40009430: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009434: 80 a4 a0 00 cmp %l2, 0
40009438: 02 80 00 0d be 4000946c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000943c: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
40009440: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40009444: 94 10 20 20 mov 0x20, %o2
40009448: 92 04 c0 09 add %l3, %o1, %o1
4000944c: 40 00 15 30 call 4000e90c <memcpy>
40009450: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
40009454: 40 00 0c a3 call 4000c6e0 <_User_extensions_Add_set>
40009458: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000945c: a2 04 60 01 inc %l1
40009460: 80 a4 80 11 cmp %l2, %l1
40009464: 18 bf ff f7 bgu 40009440 <_User_extensions_Handler_initialization+0x84>
40009468: a0 04 20 34 add %l0, 0x34, %l0
4000946c: 81 c7 e0 08 ret
40009470: 81 e8 00 00 restore
40009474 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
40009474: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
40009478: 23 10 00 54 sethi %hi(0x40015000), %l1
4000947c: e0 04 62 88 ld [ %l1 + 0x288 ], %l0 ! 40015288 <_User_extensions_List>
40009480: a2 14 62 88 or %l1, 0x288, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40009484: a2 04 60 04 add %l1, 4, %l1
40009488: 80 a4 00 11 cmp %l0, %l1
4000948c: 02 80 00 0c be 400094bc <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
40009490: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
40009494: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
40009498: 80 a0 60 00 cmp %g1, 0
4000949c: 02 80 00 04 be 400094ac <_User_extensions_Thread_begin+0x38>
400094a0: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
400094a4: 9f c0 40 00 call %g1
400094a8: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
400094ac: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
400094b0: 80 a4 00 11 cmp %l0, %l1
400094b4: 32 bf ff f9 bne,a 40009498 <_User_extensions_Thread_begin+0x24>
400094b8: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
400094bc: 81 c7 e0 08 ret
400094c0: 81 e8 00 00 restore
40009560 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
40009560: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
40009564: 23 10 00 54 sethi %hi(0x40015000), %l1
40009568: e0 04 62 88 ld [ %l1 + 0x288 ], %l0 ! 40015288 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000956c: a6 10 00 18 mov %i0, %l3
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
40009570: a2 14 62 88 or %l1, 0x288, %l1
40009574: a2 04 60 04 add %l1, 4, %l1
40009578: 80 a4 00 11 cmp %l0, %l1
4000957c: 02 80 00 13 be 400095c8 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
40009580: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
40009584: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
40009588: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4000958c: 80 a0 60 00 cmp %g1, 0
40009590: 02 80 00 08 be 400095b0 <_User_extensions_Thread_create+0x50>
40009594: 84 14 a2 cc or %l2, 0x2cc, %g2
status = (*the_extension->Callouts.thread_create)(
40009598: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000959c: 9f c0 40 00 call %g1
400095a0: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
400095a4: 80 8a 20 ff btst 0xff, %o0
400095a8: 22 80 00 08 be,a 400095c8 <_User_extensions_Thread_create+0x68>
400095ac: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
400095b0: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
400095b4: 80 a4 00 11 cmp %l0, %l1
400095b8: 32 bf ff f5 bne,a 4000958c <_User_extensions_Thread_create+0x2c>
400095bc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
400095c0: 81 c7 e0 08 ret
400095c4: 91 e8 20 01 restore %g0, 1, %o0
}
400095c8: 81 c7 e0 08 ret
400095cc: 81 e8 00 00 restore
400095d0 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
400095d0: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
400095d4: 23 10 00 54 sethi %hi(0x40015000), %l1
400095d8: a2 14 62 88 or %l1, 0x288, %l1 ! 40015288 <_User_extensions_List>
400095dc: e0 04 60 08 ld [ %l1 + 8 ], %l0
400095e0: 80 a4 00 11 cmp %l0, %l1
400095e4: 02 80 00 0d be 40009618 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
400095e8: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
400095ec: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400095f0: 80 a0 60 00 cmp %g1, 0
400095f4: 02 80 00 05 be 40009608 <_User_extensions_Thread_delete+0x38>
400095f8: 84 14 a2 cc or %l2, 0x2cc, %g2
(*the_extension->Callouts.thread_delete)(
400095fc: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
40009600: 9f c0 40 00 call %g1
40009604: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009608: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000960c: 80 a4 00 11 cmp %l0, %l1
40009610: 32 bf ff f8 bne,a 400095f0 <_User_extensions_Thread_delete+0x20>
40009614: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40009618: 81 c7 e0 08 ret
4000961c: 81 e8 00 00 restore
400094c4 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
400094c4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
400094c8: 23 10 00 54 sethi %hi(0x40015000), %l1
400094cc: a2 14 62 88 or %l1, 0x288, %l1 ! 40015288 <_User_extensions_List>
400094d0: e0 04 60 08 ld [ %l1 + 8 ], %l0
400094d4: 80 a4 00 11 cmp %l0, %l1
400094d8: 02 80 00 0c be 40009508 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
400094dc: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
400094e0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
400094e4: 80 a0 60 00 cmp %g1, 0
400094e8: 02 80 00 04 be 400094f8 <_User_extensions_Thread_exitted+0x34>
400094ec: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
400094f0: 9f c0 40 00 call %g1
400094f4: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
400094f8: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
400094fc: 80 a4 00 11 cmp %l0, %l1
40009500: 32 bf ff f9 bne,a 400094e4 <_User_extensions_Thread_exitted+0x20>
40009504: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
40009508: 81 c7 e0 08 ret
4000950c: 81 e8 00 00 restore
4000a348 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000a348: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a34c: 23 10 00 76 sethi %hi(0x4001d800), %l1
4000a350: e0 04 63 08 ld [ %l1 + 0x308 ], %l0 ! 4001db08 <_User_extensions_List>
4000a354: a2 14 63 08 or %l1, 0x308, %l1
4000a358: a2 04 60 04 add %l1, 4, %l1
4000a35c: 80 a4 00 11 cmp %l0, %l1
4000a360: 02 80 00 0d be 4000a394 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000a364: 25 10 00 76 sethi %hi(0x4001d800), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000a368: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a36c: 80 a0 60 00 cmp %g1, 0
4000a370: 02 80 00 05 be 4000a384 <_User_extensions_Thread_restart+0x3c>
4000a374: 84 14 a3 4c or %l2, 0x34c, %g2
(*the_extension->Callouts.thread_restart)(
4000a378: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a37c: 9f c0 40 00 call %g1
4000a380: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a384: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a388: 80 a4 00 11 cmp %l0, %l1
4000a38c: 32 bf ff f8 bne,a 4000a36c <_User_extensions_Thread_restart+0x24>
4000a390: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000a394: 81 c7 e0 08 ret
4000a398: 81 e8 00 00 restore
40009620 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
40009620: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
40009624: 23 10 00 54 sethi %hi(0x40015000), %l1
40009628: e0 04 62 88 ld [ %l1 + 0x288 ], %l0 ! 40015288 <_User_extensions_List>
4000962c: a2 14 62 88 or %l1, 0x288, %l1
40009630: a2 04 60 04 add %l1, 4, %l1
40009634: 80 a4 00 11 cmp %l0, %l1
40009638: 02 80 00 0d be 4000966c <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
4000963c: 25 10 00 54 sethi %hi(0x40015000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
40009640: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40009644: 80 a0 60 00 cmp %g1, 0
40009648: 02 80 00 05 be 4000965c <_User_extensions_Thread_start+0x3c>
4000964c: 84 14 a2 cc or %l2, 0x2cc, %g2
(*the_extension->Callouts.thread_start)(
40009650: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
40009654: 9f c0 40 00 call %g1
40009658: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000965c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
40009660: 80 a4 00 11 cmp %l0, %l1
40009664: 32 bf ff f8 bne,a 40009644 <_User_extensions_Thread_start+0x24>
40009668: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000966c: 81 c7 e0 08 ret
40009670: 81 e8 00 00 restore
40009674 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
40009674: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
40009678: 23 10 00 54 sethi %hi(0x40015000), %l1
4000967c: e0 04 60 6c ld [ %l1 + 0x6c ], %l0 ! 4001506c <_User_extensions_Switches_list>
40009680: a2 14 60 6c or %l1, 0x6c, %l1
40009684: a2 04 60 04 add %l1, 4, %l1
40009688: 80 a4 00 11 cmp %l0, %l1
4000968c: 02 80 00 0a be 400096b4 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
40009690: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
40009694: c2 04 20 08 ld [ %l0 + 8 ], %g1
40009698: 90 10 00 18 mov %i0, %o0
4000969c: 9f c0 40 00 call %g1
400096a0: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
400096a4: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
400096a8: 80 a4 00 11 cmp %l0, %l1
400096ac: 32 bf ff fb bne,a 40009698 <_User_extensions_Thread_switch+0x24>
400096b0: c2 04 20 08 ld [ %l0 + 8 ], %g1
400096b4: 81 c7 e0 08 ret
400096b8: 81 e8 00 00 restore
4000b8cc <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000b8cc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000b8d0: 7f ff dc e1 call 40002c54 <sparc_disable_interrupts>
4000b8d4: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000b8d8: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000b8dc: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000b8e0: 80 a0 40 11 cmp %g1, %l1
4000b8e4: 02 80 00 1f be 4000b960 <_Watchdog_Adjust+0x94>
4000b8e8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000b8ec: 12 80 00 1f bne 4000b968 <_Watchdog_Adjust+0x9c>
4000b8f0: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b8f4: 80 a6 a0 00 cmp %i2, 0
4000b8f8: 02 80 00 1a be 4000b960 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b8fc: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b900: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000b904: 80 a6 80 19 cmp %i2, %i1
4000b908: 1a 80 00 0b bcc 4000b934 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000b90c: a4 10 20 01 mov 1, %l2
_Watchdog_First( header )->delta_interval -= units;
4000b910: 10 80 00 1d b 4000b984 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000b914: b4 26 40 1a sub %i1, %i2, %i2 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b918: b4 a6 80 19 subcc %i2, %i1, %i2
4000b91c: 02 80 00 11 be 4000b960 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b920: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b924: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000b928: 80 a6 40 1a cmp %i1, %i2
4000b92c: 38 80 00 16 bgu,a 4000b984 <_Watchdog_Adjust+0xb8>
4000b930: b4 26 40 1a sub %i1, %i2, %i2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000b934: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000b938: 7f ff dc cb call 40002c64 <sparc_enable_interrupts>
4000b93c: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b940: 40 00 00 b3 call 4000bc0c <_Watchdog_Tickle>
4000b944: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b948: 7f ff dc c3 call 40002c54 <sparc_disable_interrupts>
4000b94c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000b950: c4 04 00 00 ld [ %l0 ], %g2
if ( _Chain_Is_empty( header ) )
4000b954: 80 a4 40 02 cmp %l1, %g2
4000b958: 12 bf ff f0 bne 4000b918 <_Watchdog_Adjust+0x4c>
4000b95c: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000b960: 7f ff dc c1 call 40002c64 <sparc_enable_interrupts>
4000b964: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000b968: 12 bf ff fe bne 4000b960 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b96c: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000b970: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000b974: b4 00 80 1a add %g2, %i2, %i2
4000b978: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000b97c: 7f ff dc ba call 40002c64 <sparc_enable_interrupts>
4000b980: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000b984: 10 bf ff f7 b 4000b960 <_Watchdog_Adjust+0x94>
4000b988: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
40009864 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009864: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
40009868: 7f ff e1 1c call 40001cd8 <sparc_disable_interrupts>
4000986c: 01 00 00 00 nop
previous_state = the_watchdog->state;
40009870: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
40009874: 80 a4 20 01 cmp %l0, 1
40009878: 02 80 00 2a be 40009920 <_Watchdog_Remove+0xbc>
4000987c: 03 10 00 54 sethi %hi(0x40015000), %g1
40009880: 1a 80 00 09 bcc 400098a4 <_Watchdog_Remove+0x40>
40009884: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009888: 03 10 00 54 sethi %hi(0x40015000), %g1
4000988c: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 400151a4 <_Watchdog_Ticks_since_boot>
40009890: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009894: 7f ff e1 15 call 40001ce8 <sparc_enable_interrupts>
40009898: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000989c: 81 c7 e0 08 ret
400098a0: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
400098a4: 18 bf ff fa bgu 4000988c <_Watchdog_Remove+0x28> <== NEVER TAKEN
400098a8: 03 10 00 54 sethi %hi(0x40015000), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
400098ac: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
400098b0: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
400098b4: c4 00 40 00 ld [ %g1 ], %g2
400098b8: 80 a0 a0 00 cmp %g2, 0
400098bc: 02 80 00 07 be 400098d8 <_Watchdog_Remove+0x74>
400098c0: 05 10 00 54 sethi %hi(0x40015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
400098c4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
400098c8: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
400098cc: 84 00 c0 02 add %g3, %g2, %g2
400098d0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
400098d4: 05 10 00 54 sethi %hi(0x40015000), %g2
400098d8: c4 00 a1 a0 ld [ %g2 + 0x1a0 ], %g2 ! 400151a0 <_Watchdog_Sync_count>
400098dc: 80 a0 a0 00 cmp %g2, 0
400098e0: 22 80 00 07 be,a 400098fc <_Watchdog_Remove+0x98>
400098e4: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
400098e8: 05 10 00 54 sethi %hi(0x40015000), %g2
400098ec: c6 00 a2 d4 ld [ %g2 + 0x2d4 ], %g3 ! 400152d4 <_Per_CPU_Information+0x8>
400098f0: 05 10 00 54 sethi %hi(0x40015000), %g2
400098f4: c6 20 a1 10 st %g3, [ %g2 + 0x110 ] ! 40015110 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400098f8: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
400098fc: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009900: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009904: 03 10 00 54 sethi %hi(0x40015000), %g1
40009908: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 400151a4 <_Watchdog_Ticks_since_boot>
4000990c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
40009910: 7f ff e0 f6 call 40001ce8 <sparc_enable_interrupts>
40009914: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009918: 81 c7 e0 08 ret
4000991c: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009920: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
40009924: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009928: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000992c: 7f ff e0 ef call 40001ce8 <sparc_enable_interrupts>
40009930: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
40009934: 81 c7 e0 08 ret
40009938: 81 e8 00 00 restore
4000b10c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b10c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b110: 7f ff dd a2 call 40002798 <sparc_disable_interrupts>
4000b114: a0 10 00 18 mov %i0, %l0
4000b118: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b11c: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b120: 94 10 00 19 mov %i1, %o2
4000b124: 92 10 00 10 mov %l0, %o1
4000b128: 7f ff e4 7c call 40004318 <printk>
4000b12c: 90 12 23 c8 or %o0, 0x3c8, %o0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000b130: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000b134: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
4000b138: 80 a4 40 19 cmp %l1, %i1
4000b13c: 02 80 00 0f be 4000b178 <_Watchdog_Report_chain+0x6c>
4000b140: 11 10 00 74 sethi %hi(0x4001d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b144: 92 10 00 11 mov %l1, %o1
4000b148: 40 00 00 11 call 4000b18c <_Watchdog_Report>
4000b14c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
4000b150: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
4000b154: 80 a4 40 19 cmp %l1, %i1
4000b158: 12 bf ff fc bne 4000b148 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b15c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b160: 92 10 00 10 mov %l0, %o1
4000b164: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b168: 7f ff e4 6c call 40004318 <printk>
4000b16c: 90 12 23 e0 or %o0, 0x3e0, %o0 ! 4001d3e0 <_Status_Object_name_errors_to_status+0x30>
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000b170: 7f ff dd 8e call 400027a8 <sparc_enable_interrupts>
4000b174: 81 e8 00 00 restore
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000b178: 7f ff e4 68 call 40004318 <printk>
4000b17c: 90 12 23 f0 or %o0, 0x3f0, %o0
}
_ISR_Enable( level );
4000b180: 7f ff dd 8a call 400027a8 <sparc_enable_interrupts>
4000b184: 81 e8 00 00 restore
4000e650 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000e650: 9d e3 bf 98 save %sp, -104, %sp
4000e654: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000e658: 80 a4 20 00 cmp %l0, 0
4000e65c: 02 80 00 23 be 4000e6e8 <rtems_barrier_create+0x98>
4000e660: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000e664: 80 a6 e0 00 cmp %i3, 0
4000e668: 02 80 00 20 be 4000e6e8 <rtems_barrier_create+0x98>
4000e66c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000e670: 80 8e 60 10 btst 0x10, %i1
4000e674: 02 80 00 1f be 4000e6f0 <rtems_barrier_create+0xa0>
4000e678: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000e67c: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000e680: 02 80 00 1a be 4000e6e8 <rtems_barrier_create+0x98>
4000e684: b0 10 20 0a mov 0xa, %i0
4000e688: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e68c: c4 00 60 28 ld [ %g1 + 0x28 ], %g2 ! 40021828 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000e690: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e694: 84 00 a0 01 inc %g2
4000e698: c4 20 60 28 st %g2, [ %g1 + 0x28 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000e69c: 25 10 00 86 sethi %hi(0x40021800), %l2
4000e6a0: 7f ff ec 7a call 40009888 <_Objects_Allocate>
4000e6a4: 90 14 a2 a8 or %l2, 0x2a8, %o0 ! 40021aa8 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e6a8: a2 92 20 00 orcc %o0, 0, %l1
4000e6ac: 02 80 00 1e be 4000e724 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000e6b0: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000e6b4: 92 07 bf f8 add %fp, -8, %o1
4000e6b8: 40 00 02 42 call 4000efc0 <_CORE_barrier_Initialize>
4000e6bc: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000e6c0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000e6c4: a4 14 a2 a8 or %l2, 0x2a8, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e6c8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000e6cc: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000e6d0: 85 28 a0 02 sll %g2, 2, %g2
4000e6d4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000e6d8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000e6dc: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000e6e0: 7f ff f0 18 call 4000a740 <_Thread_Enable_dispatch>
4000e6e4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000e6e8: 81 c7 e0 08 ret
4000e6ec: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000e6f0: 82 10 20 01 mov 1, %g1
4000e6f4: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000e6f8: 03 10 00 86 sethi %hi(0x40021800), %g1
4000e6fc: c4 00 60 28 ld [ %g1 + 0x28 ], %g2 ! 40021828 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000e700: f4 27 bf fc st %i2, [ %fp + -4 ]
4000e704: 84 00 a0 01 inc %g2
4000e708: c4 20 60 28 st %g2, [ %g1 + 0x28 ]
4000e70c: 25 10 00 86 sethi %hi(0x40021800), %l2
4000e710: 7f ff ec 5e call 40009888 <_Objects_Allocate>
4000e714: 90 14 a2 a8 or %l2, 0x2a8, %o0 ! 40021aa8 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000e718: a2 92 20 00 orcc %o0, 0, %l1
4000e71c: 12 bf ff e6 bne 4000e6b4 <rtems_barrier_create+0x64>
4000e720: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000e724: 7f ff f0 07 call 4000a740 <_Thread_Enable_dispatch>
4000e728: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000e72c: 81 c7 e0 08 ret
4000e730: 81 e8 00 00 restore
40006c10 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006c10: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40006c14: 90 10 00 18 mov %i0, %o0
40006c18: 40 00 01 63 call 400071a4 <_Chain_Append_with_empty_check>
40006c1c: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
40006c20: 80 8a 20 ff btst 0xff, %o0
40006c24: 12 80 00 04 bne 40006c34 <rtems_chain_append_with_notification+0x24><== ALWAYS TAKEN
40006c28: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006c2c: 81 c7 e0 08 ret <== NOT EXECUTED
40006c30: 81 e8 00 00 restore <== NOT EXECUTED
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
40006c34: b0 10 00 1a mov %i2, %i0
40006c38: 7f ff fd 64 call 400061c8 <rtems_event_send>
40006c3c: 93 e8 00 1b restore %g0, %i3, %o1
40006c44 <rtems_chain_get_with_notification>:
rtems_chain_control *chain,
rtems_id task,
rtems_event_set events,
rtems_chain_node **node
)
{
40006c44: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node **node
)
{
return _Chain_Get_with_empty_check( chain, node );
40006c48: 90 10 00 18 mov %i0, %o0
40006c4c: 40 00 01 7d call 40007240 <_Chain_Get_with_empty_check>
40006c50: 92 10 00 1b mov %i3, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
40006c54: 80 8a 20 ff btst 0xff, %o0
40006c58: 12 80 00 04 bne 40006c68 <rtems_chain_get_with_notification+0x24><== ALWAYS TAKEN
40006c5c: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006c60: 81 c7 e0 08 ret <== NOT EXECUTED
40006c64: 81 e8 00 00 restore <== NOT EXECUTED
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
sc = rtems_event_send( task, events );
40006c68: b0 10 00 19 mov %i1, %i0
40006c6c: 7f ff fd 57 call 400061c8 <rtems_event_send>
40006c70: 93 e8 00 1a restore %g0, %i2, %o1
40006c78 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006c78: 9d e3 bf 98 save %sp, -104, %sp
40006c7c: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006c80: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006c84: 40 00 01 87 call 400072a0 <_Chain_Get>
40006c88: 90 10 00 10 mov %l0, %o0
40006c8c: 92 10 20 00 clr %o1
40006c90: a2 10 00 08 mov %o0, %l1
40006c94: 94 10 00 1a mov %i2, %o2
40006c98: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006c9c: 80 a4 60 00 cmp %l1, 0
40006ca0: 12 80 00 0a bne 40006cc8 <rtems_chain_get_with_wait+0x50>
40006ca4: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40006ca8: 7f ff fc e4 call 40006038 <rtems_event_receive>
40006cac: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006cb0: 80 a2 20 00 cmp %o0, 0
40006cb4: 02 bf ff f4 be 40006c84 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40006cb8: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40006cbc: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006cc0: 81 c7 e0 08 ret
40006cc4: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006cc8: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40006ccc: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006cd0: 81 c7 e0 08 ret
40006cd4: 91 e8 00 08 restore %g0, %o0, %o0
40006cd8 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006cd8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
40006cdc: 90 10 00 18 mov %i0, %o0
40006ce0: 40 00 01 8e call 40007318 <_Chain_Prepend_with_empty_check>
40006ce4: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40006ce8: 80 8a 20 ff btst 0xff, %o0
40006cec: 12 80 00 04 bne 40006cfc <rtems_chain_prepend_with_notification+0x24><== ALWAYS TAKEN
40006cf0: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40006cf4: 81 c7 e0 08 ret <== NOT EXECUTED
40006cf8: 81 e8 00 00 restore <== NOT EXECUTED
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
40006cfc: b0 10 00 1a mov %i2, %i0
40006d00: 7f ff fd 32 call 400061c8 <rtems_event_send>
40006d04: 93 e8 00 1b restore %g0, %i3, %o1
40007b70 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b70: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40007b74: 03 10 00 65 sethi %hi(0x40019400), %g1
40007b78: c4 00 61 d4 ld [ %g1 + 0x1d4 ], %g2 ! 400195d4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40007b7c: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40007b80: 03 10 00 65 sethi %hi(0x40019400), %g1
if ( rtems_interrupt_is_in_progress() )
40007b84: 80 a0 a0 00 cmp %g2, 0
40007b88: 12 80 00 42 bne 40007c90 <rtems_io_register_driver+0x120>
40007b8c: c8 00 62 2c ld [ %g1 + 0x22c ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40007b90: 80 a6 a0 00 cmp %i2, 0
40007b94: 02 80 00 50 be 40007cd4 <rtems_io_register_driver+0x164>
40007b98: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40007b9c: 80 a6 60 00 cmp %i1, 0
40007ba0: 02 80 00 4d be 40007cd4 <rtems_io_register_driver+0x164>
40007ba4: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007ba8: c4 06 40 00 ld [ %i1 ], %g2
40007bac: 80 a0 a0 00 cmp %g2, 0
40007bb0: 22 80 00 46 be,a 40007cc8 <rtems_io_register_driver+0x158>
40007bb4: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40007bb8: 80 a1 00 18 cmp %g4, %i0
40007bbc: 08 80 00 33 bleu 40007c88 <rtems_io_register_driver+0x118>
40007bc0: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007bc4: 05 10 00 64 sethi %hi(0x40019000), %g2
40007bc8: c8 00 a3 68 ld [ %g2 + 0x368 ], %g4 ! 40019368 <_Thread_Dispatch_disable_level>
40007bcc: 88 01 20 01 inc %g4
40007bd0: c8 20 a3 68 st %g4, [ %g2 + 0x368 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40007bd4: 80 a6 20 00 cmp %i0, 0
40007bd8: 12 80 00 30 bne 40007c98 <rtems_io_register_driver+0x128>
40007bdc: 1b 10 00 65 sethi %hi(0x40019400), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40007be0: c8 00 62 2c ld [ %g1 + 0x22c ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40007be4: 80 a1 20 00 cmp %g4, 0
40007be8: 22 80 00 3d be,a 40007cdc <rtems_io_register_driver+0x16c><== NEVER TAKEN
40007bec: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40007bf0: 10 80 00 05 b 40007c04 <rtems_io_register_driver+0x94>
40007bf4: c2 03 62 30 ld [ %o5 + 0x230 ], %g1
40007bf8: 80 a1 00 18 cmp %g4, %i0
40007bfc: 08 80 00 0a bleu 40007c24 <rtems_io_register_driver+0xb4>
40007c00: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007c04: c4 00 40 00 ld [ %g1 ], %g2
40007c08: 80 a0 a0 00 cmp %g2, 0
40007c0c: 32 bf ff fb bne,a 40007bf8 <rtems_io_register_driver+0x88>
40007c10: b0 06 20 01 inc %i0
40007c14: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007c18: 80 a0 a0 00 cmp %g2, 0
40007c1c: 32 bf ff f7 bne,a 40007bf8 <rtems_io_register_driver+0x88>
40007c20: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40007c24: 80 a1 00 18 cmp %g4, %i0
40007c28: 02 80 00 2d be 40007cdc <rtems_io_register_driver+0x16c>
40007c2c: f0 26 80 00 st %i0, [ %i2 ]
40007c30: 83 2e 20 03 sll %i0, 3, %g1
40007c34: 85 2e 20 05 sll %i0, 5, %g2
40007c38: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c3c: c8 03 62 30 ld [ %o5 + 0x230 ], %g4
40007c40: da 00 c0 00 ld [ %g3 ], %o5
40007c44: 82 01 00 02 add %g4, %g2, %g1
40007c48: da 21 00 02 st %o5, [ %g4 + %g2 ]
40007c4c: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c50: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c54: c4 20 60 04 st %g2, [ %g1 + 4 ]
40007c58: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40007c5c: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40007c60: c4 20 60 08 st %g2, [ %g1 + 8 ]
40007c64: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40007c68: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40007c6c: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40007c70: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40007c74: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40007c78: 40 00 07 1a call 400098e0 <_Thread_Enable_dispatch>
40007c7c: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40007c80: 40 00 21 40 call 40010180 <rtems_io_initialize>
40007c84: 81 e8 00 00 restore
}
40007c88: 81 c7 e0 08 ret
40007c8c: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40007c90: 81 c7 e0 08 ret
40007c94: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40007c98: c2 03 62 30 ld [ %o5 + 0x230 ], %g1
40007c9c: 89 2e 20 05 sll %i0, 5, %g4
40007ca0: 85 2e 20 03 sll %i0, 3, %g2
40007ca4: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007ca8: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40007cac: 80 a1 20 00 cmp %g4, 0
40007cb0: 02 80 00 0f be 40007cec <rtems_io_register_driver+0x17c>
40007cb4: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40007cb8: 40 00 07 0a call 400098e0 <_Thread_Enable_dispatch>
40007cbc: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40007cc0: 81 c7 e0 08 ret
40007cc4: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cc8: 80 a0 a0 00 cmp %g2, 0
40007ccc: 32 bf ff bc bne,a 40007bbc <rtems_io_register_driver+0x4c>
40007cd0: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40007cd4: 81 c7 e0 08 ret
40007cd8: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40007cdc: 40 00 07 01 call 400098e0 <_Thread_Enable_dispatch>
40007ce0: b0 10 20 05 mov 5, %i0
return sc;
40007ce4: 81 c7 e0 08 ret
40007ce8: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40007cec: c2 00 60 04 ld [ %g1 + 4 ], %g1
40007cf0: 80 a0 60 00 cmp %g1, 0
40007cf4: 12 bf ff f1 bne 40007cb8 <rtems_io_register_driver+0x148>
40007cf8: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40007cfc: 10 bf ff d0 b 40007c3c <rtems_io_register_driver+0xcc>
40007d00: f0 26 80 00 st %i0, [ %i2 ]
400091c8 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
400091c8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
400091cc: 80 a6 20 00 cmp %i0, 0
400091d0: 02 80 00 20 be 40009250 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
400091d4: 25 10 00 9d sethi %hi(0x40027400), %l2
400091d8: a4 14 a0 30 or %l2, 0x30, %l2 ! 40027430 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
400091dc: a6 04 a0 0c add %l2, 0xc, %l3
#if defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
400091e0: c2 04 80 00 ld [ %l2 ], %g1
400091e4: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
400091e8: 80 a4 60 00 cmp %l1, 0
400091ec: 22 80 00 16 be,a 40009244 <rtems_iterate_over_all_threads+0x7c>
400091f0: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
400091f4: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
400091f8: 84 90 60 00 orcc %g1, 0, %g2
400091fc: 22 80 00 12 be,a 40009244 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40009200: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
40009204: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009208: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000920c: 83 2c 20 02 sll %l0, 2, %g1
40009210: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
40009214: 90 90 60 00 orcc %g1, 0, %o0
40009218: 02 80 00 05 be 4000922c <rtems_iterate_over_all_threads+0x64><== NEVER TAKEN
4000921c: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
40009220: 9f c6 00 00 call %i0
40009224: 01 00 00 00 nop
40009228: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000922c: 83 28 a0 10 sll %g2, 0x10, %g1
40009230: 83 30 60 10 srl %g1, 0x10, %g1
40009234: 80 a0 40 10 cmp %g1, %l0
40009238: 3a bf ff f5 bcc,a 4000920c <rtems_iterate_over_all_threads+0x44>
4000923c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
40009240: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009244: 80 a4 80 13 cmp %l2, %l3
40009248: 32 bf ff e7 bne,a 400091e4 <rtems_iterate_over_all_threads+0x1c>
4000924c: c2 04 80 00 ld [ %l2 ], %g1
40009250: 81 c7 e0 08 ret
40009254: 81 e8 00 00 restore
40007d4c <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40007d4c: 9d e3 bf a0 save %sp, -96, %sp
40007d50: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40007d54: 80 a6 a0 00 cmp %i2, 0
40007d58: 02 80 00 21 be 40007ddc <rtems_object_get_class_information+0x90>
40007d5c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d60: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40007d64: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40007d68: 40 00 07 76 call 40009b40 <_Objects_Get_information>
40007d6c: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40007d70: 80 a2 20 00 cmp %o0, 0
40007d74: 02 80 00 1a be 40007ddc <rtems_object_get_class_information+0x90>
40007d78: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d7c: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40007d80: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d84: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d88: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40007d8c: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40007d90: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40007d94: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40007d98: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007d9c: 80 a1 20 00 cmp %g4, 0
40007da0: 02 80 00 0d be 40007dd4 <rtems_object_get_class_information+0x88><== NEVER TAKEN
40007da4: 84 10 20 00 clr %g2
40007da8: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40007dac: 86 10 20 01 mov 1, %g3
40007db0: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40007db4: 87 28 e0 02 sll %g3, 2, %g3
40007db8: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007dbc: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40007dc0: 80 a0 00 03 cmp %g0, %g3
40007dc4: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40007dc8: 80 a1 00 01 cmp %g4, %g1
40007dcc: 1a bf ff fa bcc 40007db4 <rtems_object_get_class_information+0x68>
40007dd0: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40007dd4: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40007dd8: b0 10 20 00 clr %i0
}
40007ddc: 81 c7 e0 08 ret
40007de0: 81 e8 00 00 restore
40013bd8 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013bd8: 9d e3 bf a0 save %sp, -96, %sp
40013bdc: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013be0: 80 a4 20 00 cmp %l0, 0
40013be4: 02 80 00 34 be 40013cb4 <rtems_partition_create+0xdc>
40013be8: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013bec: 80 a6 60 00 cmp %i1, 0
40013bf0: 02 80 00 31 be 40013cb4 <rtems_partition_create+0xdc>
40013bf4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013bf8: 80 a7 60 00 cmp %i5, 0
40013bfc: 02 80 00 2e be 40013cb4 <rtems_partition_create+0xdc> <== NEVER TAKEN
40013c00: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013c04: 02 80 00 2e be 40013cbc <rtems_partition_create+0xe4>
40013c08: 80 a6 a0 00 cmp %i2, 0
40013c0c: 02 80 00 2c be 40013cbc <rtems_partition_create+0xe4>
40013c10: 80 a6 80 1b cmp %i2, %i3
40013c14: 0a 80 00 28 bcs 40013cb4 <rtems_partition_create+0xdc>
40013c18: b0 10 20 08 mov 8, %i0
40013c1c: 80 8e e0 07 btst 7, %i3
40013c20: 12 80 00 25 bne 40013cb4 <rtems_partition_create+0xdc>
40013c24: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013c28: 12 80 00 23 bne 40013cb4 <rtems_partition_create+0xdc>
40013c2c: b0 10 20 09 mov 9, %i0
40013c30: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40013c34: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 4003d188 <_Thread_Dispatch_disable_level>
40013c38: 84 00 a0 01 inc %g2
40013c3c: c4 20 61 88 st %g2, [ %g1 + 0x188 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013c40: 25 10 00 f3 sethi %hi(0x4003cc00), %l2
40013c44: 40 00 13 13 call 40018890 <_Objects_Allocate>
40013c48: 90 14 a3 94 or %l2, 0x394, %o0 ! 4003cf94 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013c4c: a2 92 20 00 orcc %o0, 0, %l1
40013c50: 02 80 00 1d be 40013cc4 <rtems_partition_create+0xec>
40013c54: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40013c58: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013c5c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013c60: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013c64: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013c68: 90 10 00 1a mov %i2, %o0
40013c6c: 40 00 61 68 call 4002c20c <.udiv>
40013c70: c0 24 60 20 clr [ %l1 + 0x20 ]
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c74: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013c78: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013c7c: 96 10 00 1b mov %i3, %o3
40013c80: b8 04 60 24 add %l1, 0x24, %i4
40013c84: 40 00 0c d4 call 40016fd4 <_Chain_Initialize>
40013c88: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c8c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013c90: a4 14 a3 94 or %l2, 0x394, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c94: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013c98: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013c9c: 85 28 a0 02 sll %g2, 2, %g2
40013ca0: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013ca4: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013ca8: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013cac: 40 00 16 d9 call 40019810 <_Thread_Enable_dispatch>
40013cb0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013cb4: 81 c7 e0 08 ret
40013cb8: 81 e8 00 00 restore
}
40013cbc: 81 c7 e0 08 ret
40013cc0: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40013cc4: 40 00 16 d3 call 40019810 <_Thread_Enable_dispatch>
40013cc8: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013ccc: 81 c7 e0 08 ret
40013cd0: 81 e8 00 00 restore
40007308 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007308: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
4000730c: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40007310: 92 10 00 18 mov %i0, %o1
40007314: 90 12 20 fc or %o0, 0xfc, %o0
40007318: 40 00 09 74 call 400098e8 <_Objects_Get>
4000731c: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007320: c2 07 bf fc ld [ %fp + -4 ], %g1
40007324: 80 a0 60 00 cmp %g1, 0
40007328: 02 80 00 04 be 40007338 <rtems_rate_monotonic_period+0x30>
4000732c: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40007330: 81 c7 e0 08 ret
40007334: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007338: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
4000733c: 23 10 00 7c sethi %hi(0x4001f000), %l1
40007340: a2 14 60 cc or %l1, 0xcc, %l1 ! 4001f0cc <_Per_CPU_Information>
40007344: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007348: 80 a0 80 01 cmp %g2, %g1
4000734c: 02 80 00 06 be 40007364 <rtems_rate_monotonic_period+0x5c>
40007350: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007354: 40 00 0b de call 4000a2cc <_Thread_Enable_dispatch>
40007358: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
4000735c: 81 c7 e0 08 ret
40007360: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007364: 12 80 00 0f bne 400073a0 <rtems_rate_monotonic_period+0x98>
40007368: 01 00 00 00 nop
switch ( the_period->state ) {
4000736c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40007370: 80 a0 60 04 cmp %g1, 4
40007374: 08 80 00 06 bleu 4000738c <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
40007378: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
4000737c: 40 00 0b d4 call 4000a2cc <_Thread_Enable_dispatch>
40007380: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007384: 81 c7 e0 08 ret
40007388: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
4000738c: 83 28 60 02 sll %g1, 2, %g1
40007390: 05 10 00 74 sethi %hi(0x4001d000), %g2
40007394: 84 10 a0 b4 or %g2, 0xb4, %g2 ! 4001d0b4 <CSWTCH.2>
40007398: 10 bf ff f9 b 4000737c <rtems_rate_monotonic_period+0x74>
4000739c: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
400073a0: 7f ff ed fa call 40002b88 <sparc_disable_interrupts>
400073a4: 01 00 00 00 nop
400073a8: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
400073ac: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
400073b0: 80 a4 a0 00 cmp %l2, 0
400073b4: 02 80 00 14 be 40007404 <rtems_rate_monotonic_period+0xfc>
400073b8: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
400073bc: 02 80 00 29 be 40007460 <rtems_rate_monotonic_period+0x158>
400073c0: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
400073c4: 12 bf ff e6 bne 4000735c <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
400073c8: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
400073cc: 7f ff ff 8f call 40007208 <_Rate_monotonic_Update_statistics>
400073d0: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
400073d4: 7f ff ed f1 call 40002b98 <sparc_enable_interrupts>
400073d8: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400073dc: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073e0: 92 04 20 10 add %l0, 0x10, %o1
400073e4: 11 10 00 7b sethi %hi(0x4001ec00), %o0
the_period->next_length = length;
400073e8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
400073ec: 90 12 23 2c or %o0, 0x32c, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
400073f0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400073f4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073f8: 40 00 10 f3 call 4000b7c4 <_Watchdog_Insert>
400073fc: b0 10 20 06 mov 6, %i0
40007400: 30 bf ff df b,a 4000737c <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
40007404: 7f ff ed e5 call 40002b98 <sparc_enable_interrupts>
40007408: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
4000740c: 7f ff ff 63 call 40007198 <_Rate_monotonic_Initiate_statistics>
40007410: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007414: 82 10 20 02 mov 2, %g1
40007418: 92 04 20 10 add %l0, 0x10, %o1
4000741c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
40007420: 11 10 00 7b sethi %hi(0x4001ec00), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007424: 03 10 00 1d sethi %hi(0x40007400), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007428: 90 12 23 2c or %o0, 0x32c, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
4000742c: 82 10 63 dc or %g1, 0x3dc, %g1
the_watchdog->id = id;
40007430: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007434: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007438: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
4000743c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40007440: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007444: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007448: 40 00 10 df call 4000b7c4 <_Watchdog_Insert>
4000744c: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007450: 40 00 0b 9f call 4000a2cc <_Thread_Enable_dispatch>
40007454: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40007458: 81 c7 e0 08 ret
4000745c: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40007460: 7f ff ff 6a call 40007208 <_Rate_monotonic_Update_statistics>
40007464: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007468: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
4000746c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007470: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007474: 7f ff ed c9 call 40002b98 <sparc_enable_interrupts>
40007478: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
4000747c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007480: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007484: 90 10 00 01 mov %g1, %o0
40007488: 13 00 00 10 sethi %hi(0x4000), %o1
4000748c: 40 00 0e 04 call 4000ac9c <_Thread_Set_state>
40007490: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007494: 7f ff ed bd call 40002b88 <sparc_disable_interrupts>
40007498: 01 00 00 00 nop
local_state = the_period->state;
4000749c: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
400074a0: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
400074a4: 7f ff ed bd call 40002b98 <sparc_enable_interrupts>
400074a8: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
400074ac: 80 a4 e0 03 cmp %l3, 3
400074b0: 22 80 00 06 be,a 400074c8 <rtems_rate_monotonic_period+0x1c0>
400074b4: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
400074b8: 40 00 0b 85 call 4000a2cc <_Thread_Enable_dispatch>
400074bc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
400074c0: 81 c7 e0 08 ret
400074c4: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400074c8: 40 00 0a 8d call 40009efc <_Thread_Clear_state>
400074cc: 13 00 00 10 sethi %hi(0x4000), %o1
400074d0: 30 bf ff fa b,a 400074b8 <rtems_rate_monotonic_period+0x1b0>
400074d4 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400074d4: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400074d8: 80 a6 60 00 cmp %i1, 0
400074dc: 02 80 00 4c be 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400074e0: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400074e4: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074e8: 9f c6 40 00 call %i1
400074ec: 92 12 60 c8 or %o1, 0xc8, %o1 ! 4001d0c8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400074f0: 90 10 00 18 mov %i0, %o0
400074f4: 13 10 00 74 sethi %hi(0x4001d000), %o1
400074f8: 9f c6 40 00 call %i1
400074fc: 92 12 60 e8 or %o1, 0xe8, %o1 ! 4001d0e8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007500: 90 10 00 18 mov %i0, %o0
40007504: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007508: 9f c6 40 00 call %i1
4000750c: 92 12 61 10 or %o1, 0x110, %o1 ! 4001d110 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007510: 90 10 00 18 mov %i0, %o0
40007514: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007518: 9f c6 40 00 call %i1
4000751c: 92 12 61 38 or %o1, 0x138, %o1 ! 4001d138 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007520: 90 10 00 18 mov %i0, %o0
40007524: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007528: 9f c6 40 00 call %i1
4000752c: 92 12 61 88 or %o1, 0x188, %o1 ! 4001d188 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007530: 23 10 00 7b sethi %hi(0x4001ec00), %l1
40007534: a2 14 60 fc or %l1, 0xfc, %l1 ! 4001ecfc <_Rate_monotonic_Information>
40007538: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000753c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007540: 80 a4 00 01 cmp %l0, %g1
40007544: 18 80 00 32 bgu 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
40007548: 2f 10 00 74 sethi %hi(0x4001d000), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
4000754c: 39 10 00 74 sethi %hi(0x4001d000), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40007550: 2b 10 00 70 sethi %hi(0x4001c000), %l5
40007554: a4 07 bf a0 add %fp, -96, %l2
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
40007558: ba 07 bf d8 add %fp, -40, %i5
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
4000755c: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007560: ae 15 e1 d8 or %l7, 0x1d8, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007564: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007568: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
4000756c: b8 17 21 f0 or %i4, 0x1f0, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007570: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40007574: 10 80 00 06 b 4000758c <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
40007578: aa 15 63 68 or %l5, 0x368, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
4000757c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007580: 80 a0 40 10 cmp %g1, %l0
40007584: 0a 80 00 22 bcs 4000760c <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
40007588: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
4000758c: 90 10 00 10 mov %l0, %o0
40007590: 40 00 19 3b call 4000da7c <rtems_rate_monotonic_get_statistics>
40007594: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
40007598: 80 a2 20 00 cmp %o0, 0
4000759c: 32 bf ff f8 bne,a 4000757c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400075a0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
400075a4: 92 10 00 1d mov %i5, %o1
400075a8: 40 00 19 64 call 4000db38 <rtems_rate_monotonic_get_status>
400075ac: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400075b0: d0 07 bf d8 ld [ %fp + -40 ], %o0
400075b4: 94 10 00 13 mov %l3, %o2
400075b8: 40 00 00 b9 call 4000789c <rtems_object_get_name>
400075bc: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400075c0: d8 1f bf a0 ldd [ %fp + -96 ], %o4
400075c4: 92 10 00 17 mov %l7, %o1
400075c8: 94 10 00 10 mov %l0, %o2
400075cc: 90 10 00 18 mov %i0, %o0
400075d0: 9f c6 40 00 call %i1
400075d4: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075d8: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400075dc: 90 10 00 16 mov %l6, %o0
400075e0: 94 10 00 14 mov %l4, %o2
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400075e4: 80 a0 60 00 cmp %g1, 0
400075e8: 12 80 00 0b bne 40007614 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
400075ec: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
400075f0: 9f c6 40 00 call %i1
400075f4: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400075f8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400075fc: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007600: 80 a0 40 10 cmp %g1, %l0
40007604: 1a bf ff e3 bcc 40007590 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
40007608: 90 10 00 10 mov %l0, %o0
4000760c: 81 c7 e0 08 ret
40007610: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007614: 40 00 0f 2f call 4000b2d0 <_Timespec_Divide_by_integer>
40007618: 92 10 00 01 mov %g1, %o1
(*print)( context,
4000761c: d0 07 bf ac ld [ %fp + -84 ], %o0
40007620: 40 00 46 43 call 40018f2c <.div>
40007624: 92 10 23 e8 mov 0x3e8, %o1
40007628: 96 10 00 08 mov %o0, %o3
4000762c: d0 07 bf b4 ld [ %fp + -76 ], %o0
40007630: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007634: 40 00 46 3e call 40018f2c <.div>
40007638: 92 10 23 e8 mov 0x3e8, %o1
4000763c: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007640: b6 10 00 08 mov %o0, %i3
40007644: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007648: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
4000764c: 40 00 46 38 call 40018f2c <.div>
40007650: 92 10 23 e8 mov 0x3e8, %o1
40007654: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007658: d6 07 bf 9c ld [ %fp + -100 ], %o3
4000765c: d4 07 bf a8 ld [ %fp + -88 ], %o2
40007660: 9a 10 00 1b mov %i3, %o5
40007664: 92 10 00 1c mov %i4, %o1
40007668: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000766c: 9f c6 40 00 call %i1
40007670: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007674: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007678: 94 10 00 14 mov %l4, %o2
4000767c: 40 00 0f 15 call 4000b2d0 <_Timespec_Divide_by_integer>
40007680: 90 10 00 1a mov %i2, %o0
(*print)( context,
40007684: d0 07 bf c4 ld [ %fp + -60 ], %o0
40007688: 40 00 46 29 call 40018f2c <.div>
4000768c: 92 10 23 e8 mov 0x3e8, %o1
40007690: 96 10 00 08 mov %o0, %o3
40007694: d0 07 bf cc ld [ %fp + -52 ], %o0
40007698: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000769c: 40 00 46 24 call 40018f2c <.div>
400076a0: 92 10 23 e8 mov 0x3e8, %o1
400076a4: c2 07 bf f0 ld [ %fp + -16 ], %g1
400076a8: b6 10 00 08 mov %o0, %i3
400076ac: d0 07 bf f4 ld [ %fp + -12 ], %o0
400076b0: 92 10 23 e8 mov 0x3e8, %o1
400076b4: 40 00 46 1e call 40018f2c <.div>
400076b8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400076bc: d4 07 bf c0 ld [ %fp + -64 ], %o2
400076c0: d6 07 bf 9c ld [ %fp + -100 ], %o3
400076c4: d8 07 bf c8 ld [ %fp + -56 ], %o4
400076c8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400076cc: 13 10 00 74 sethi %hi(0x4001d000), %o1
400076d0: 90 10 00 18 mov %i0, %o0
400076d4: 92 12 62 10 or %o1, 0x210, %o1
400076d8: 9f c6 40 00 call %i1
400076dc: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400076e0: 10 bf ff a7 b 4000757c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400076e4: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007704 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
40007704: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40007708: 03 10 00 7b sethi %hi(0x4001ec00), %g1
4000770c: c4 00 62 68 ld [ %g1 + 0x268 ], %g2 ! 4001ee68 <_Thread_Dispatch_disable_level>
40007710: 84 00 a0 01 inc %g2
40007714: c4 20 62 68 st %g2, [ %g1 + 0x268 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007718: 23 10 00 7b sethi %hi(0x4001ec00), %l1
4000771c: a2 14 60 fc or %l1, 0xfc, %l1 ! 4001ecfc <_Rate_monotonic_Information>
40007720: e0 04 60 08 ld [ %l1 + 8 ], %l0
40007724: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40007728: 80 a4 00 01 cmp %l0, %g1
4000772c: 18 80 00 09 bgu 40007750 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
40007730: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_reset_statistics( id );
40007734: 40 00 00 0a call 4000775c <rtems_rate_monotonic_reset_statistics>
40007738: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000773c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40007740: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007744: 80 a0 40 10 cmp %g1, %l0
40007748: 1a bf ff fb bcc 40007734 <rtems_rate_monotonic_reset_all_statistics+0x30>
4000774c: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
40007750: 40 00 0a df call 4000a2cc <_Thread_Enable_dispatch>
40007754: 81 e8 00 00 restore
400130a0 <rtems_shutdown_executive>:
*/
void rtems_shutdown_executive(
uint32_t result
)
{
400130a0: 9d e3 bf a0 save %sp, -96, %sp
if ( _System_state_Is_up( _System_state_Get() ) ) {
400130a4: 03 10 00 54 sethi %hi(0x40015000), %g1
400130a8: c4 00 61 ec ld [ %g1 + 0x1ec ], %g2 ! 400151ec <_System_state_Current>
400130ac: 80 a0 a0 03 cmp %g2, 3
400130b0: 02 80 00 06 be 400130c8 <rtems_shutdown_executive+0x28>
400130b4: 84 10 20 04 mov 4, %g2
_System_state_Set( SYSTEM_STATE_SHUTDOWN );
_Thread_Stop_multitasking();
}
_Internal_error_Occurred(
400130b8: 90 10 20 00 clr %o0
400130bc: 92 10 20 01 mov 1, %o1
400130c0: 7f ff d1 0e call 400074f8 <_Internal_error_Occurred>
400130c4: 94 10 20 14 mov 0x14, %o2
* if we were running within the same context, it would work.
*
* And we will not return to this thread, so there is no point of
* saving the context.
*/
_Context_Restart_self( &_Thread_BSP_context );
400130c8: 11 10 00 53 sethi %hi(0x40014c00), %o0
400130cc: c4 20 61 ec st %g2, [ %g1 + 0x1ec ]
400130d0: 7f ff da cd call 40009c04 <_CPU_Context_restore>
400130d4: 90 12 23 e0 or %o0, 0x3e0, %o0
400130d8: 10 bf ff f9 b 400130bc <rtems_shutdown_executive+0x1c> <== NOT EXECUTED
400130dc: 90 10 20 00 clr %o0 <== NOT EXECUTED
400151f8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
400151f8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
400151fc: 80 a6 60 00 cmp %i1, 0
40015200: 12 80 00 04 bne 40015210 <rtems_signal_send+0x18>
40015204: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015208: 81 c7 e0 08 ret
4001520c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40015210: 90 10 00 18 mov %i0, %o0
40015214: 40 00 11 8d call 40019848 <_Thread_Get>
40015218: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4001521c: c2 07 bf fc ld [ %fp + -4 ], %g1
40015220: 80 a0 60 00 cmp %g1, 0
40015224: 02 80 00 05 be 40015238 <rtems_signal_send+0x40>
40015228: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
4001522c: 82 10 20 04 mov 4, %g1
}
40015230: 81 c7 e0 08 ret
40015234: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40015238: e0 02 21 5c ld [ %o0 + 0x15c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
4001523c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40015240: 80 a0 60 00 cmp %g1, 0
40015244: 02 80 00 25 be 400152d8 <rtems_signal_send+0xe0>
40015248: 01 00 00 00 nop
if ( asr->is_enabled ) {
4001524c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
40015250: 80 a0 60 00 cmp %g1, 0
40015254: 02 80 00 15 be 400152a8 <rtems_signal_send+0xb0>
40015258: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
4001525c: 7f ff e6 95 call 4000ecb0 <sparc_disable_interrupts>
40015260: 01 00 00 00 nop
*signal_set |= signals;
40015264: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40015268: b2 10 40 19 or %g1, %i1, %i1
4001526c: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40015270: 7f ff e6 94 call 4000ecc0 <sparc_enable_interrupts>
40015274: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40015278: 03 10 00 f4 sethi %hi(0x4003d000), %g1
4001527c: 82 10 63 f4 or %g1, 0x3f4, %g1 ! 4003d3f4 <_Per_CPU_Information>
40015280: c4 00 60 08 ld [ %g1 + 8 ], %g2
40015284: 80 a0 a0 00 cmp %g2, 0
40015288: 02 80 00 0f be 400152c4 <rtems_signal_send+0xcc>
4001528c: 01 00 00 00 nop
40015290: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40015294: 80 a4 40 02 cmp %l1, %g2
40015298: 12 80 00 0b bne 400152c4 <rtems_signal_send+0xcc> <== NEVER TAKEN
4001529c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
400152a0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400152a4: 30 80 00 08 b,a 400152c4 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400152a8: 7f ff e6 82 call 4000ecb0 <sparc_disable_interrupts>
400152ac: 01 00 00 00 nop
*signal_set |= signals;
400152b0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400152b4: b2 10 40 19 or %g1, %i1, %i1
400152b8: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
400152bc: 7f ff e6 81 call 4000ecc0 <sparc_enable_interrupts>
400152c0: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
400152c4: 40 00 11 53 call 40019810 <_Thread_Enable_dispatch>
400152c8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400152cc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400152d0: 81 c7 e0 08 ret
400152d4: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
400152d8: 40 00 11 4e call 40019810 <_Thread_Enable_dispatch>
400152dc: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
400152e0: 10 bf ff ca b 40015208 <rtems_signal_send+0x10>
400152e4: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000da7c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000da7c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000da80: 80 a6 a0 00 cmp %i2, 0
4000da84: 02 80 00 43 be 4000db90 <rtems_task_mode+0x114>
4000da88: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000da8c: 27 10 00 54 sethi %hi(0x40015000), %l3
4000da90: a6 14 e2 cc or %l3, 0x2cc, %l3 ! 400152cc <_Per_CPU_Information>
4000da94: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000da98: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000da9c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000daa0: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000daa4: e2 04 21 5c ld [ %l0 + 0x15c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000daa8: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000daac: 80 a0 60 00 cmp %g1, 0
4000dab0: 12 80 00 3a bne 4000db98 <rtems_task_mode+0x11c>
4000dab4: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dab8: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000dabc: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dac0: 7f ff f1 08 call 40009ee0 <_CPU_ISR_Get_level>
4000dac4: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dac8: a9 2d 20 0a sll %l4, 0xa, %l4
4000dacc: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dad0: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dad4: 80 8e 61 00 btst 0x100, %i1
4000dad8: 02 80 00 06 be 4000daf0 <rtems_task_mode+0x74>
4000dadc: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dae0: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dae4: 80 a0 00 01 cmp %g0, %g1
4000dae8: 82 60 3f ff subx %g0, -1, %g1
4000daec: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000daf0: 80 8e 62 00 btst 0x200, %i1
4000daf4: 02 80 00 0b be 4000db20 <rtems_task_mode+0xa4>
4000daf8: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dafc: 80 8e 22 00 btst 0x200, %i0
4000db00: 22 80 00 07 be,a 4000db1c <rtems_task_mode+0xa0>
4000db04: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000db08: 03 10 00 53 sethi %hi(0x40014c00), %g1
4000db0c: c2 00 63 c8 ld [ %g1 + 0x3c8 ], %g1 ! 40014fc8 <_Thread_Ticks_per_timeslice>
4000db10: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000db14: 82 10 20 01 mov 1, %g1
4000db18: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000db1c: 80 8e 60 0f btst 0xf, %i1
4000db20: 12 80 00 3d bne 4000dc14 <rtems_task_mode+0x198>
4000db24: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000db28: 80 8e 64 00 btst 0x400, %i1
4000db2c: 02 80 00 14 be 4000db7c <rtems_task_mode+0x100>
4000db30: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000db34: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000db38: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000db3c: 80 a0 00 18 cmp %g0, %i0
4000db40: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000db44: 80 a0 80 01 cmp %g2, %g1
4000db48: 22 80 00 0e be,a 4000db80 <rtems_task_mode+0x104>
4000db4c: 03 10 00 54 sethi %hi(0x40015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000db50: 7f ff d0 62 call 40001cd8 <sparc_disable_interrupts>
4000db54: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000db58: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000db5c: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000db60: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000db64: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000db68: 7f ff d0 60 call 40001ce8 <sparc_enable_interrupts>
4000db6c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000db70: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000db74: 80 a0 00 01 cmp %g0, %g1
4000db78: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000db7c: 03 10 00 54 sethi %hi(0x40015000), %g1
4000db80: c4 00 61 ec ld [ %g1 + 0x1ec ], %g2 ! 400151ec <_System_state_Current>
4000db84: 80 a0 a0 03 cmp %g2, 3
4000db88: 02 80 00 11 be 4000dbcc <rtems_task_mode+0x150> <== ALWAYS TAKEN
4000db8c: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000db90: 81 c7 e0 08 ret
4000db94: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000db98: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000db9c: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dba0: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dba4: 7f ff f0 cf call 40009ee0 <_CPU_ISR_Get_level>
4000dba8: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbac: a9 2d 20 0a sll %l4, 0xa, %l4
4000dbb0: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000dbb4: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dbb8: 80 8e 61 00 btst 0x100, %i1
4000dbbc: 02 bf ff cd be 4000daf0 <rtems_task_mode+0x74>
4000dbc0: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dbc4: 10 bf ff c8 b 4000dae4 <rtems_task_mode+0x68>
4000dbc8: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000dbcc: 80 88 e0 ff btst 0xff, %g3
4000dbd0: 12 80 00 0a bne 4000dbf8 <rtems_task_mode+0x17c>
4000dbd4: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000dbd8: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000dbdc: 80 a0 80 03 cmp %g2, %g3
4000dbe0: 02 bf ff ec be 4000db90 <rtems_task_mode+0x114>
4000dbe4: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000dbe8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000dbec: 80 a0 a0 00 cmp %g2, 0
4000dbf0: 02 bf ff e8 be 4000db90 <rtems_task_mode+0x114> <== NEVER TAKEN
4000dbf4: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000dbf8: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000dbfc: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000dc00: 7f ff e9 e9 call 400083a4 <_Thread_Dispatch>
4000dc04: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000dc08: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000dc0c: 81 c7 e0 08 ret
4000dc10: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dc14: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dc18: 7f ff d0 34 call 40001ce8 <sparc_enable_interrupts>
4000dc1c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dc20: 10 bf ff c3 b 4000db2c <rtems_task_mode+0xb0>
4000dc24: 80 8e 64 00 btst 0x400, %i1
4000af8c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000af8c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000af90: 80 a6 60 00 cmp %i1, 0
4000af94: 02 80 00 07 be 4000afb0 <rtems_task_set_priority+0x24>
4000af98: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000af9c: 03 10 00 65 sethi %hi(0x40019400), %g1
4000afa0: c2 08 60 d4 ldub [ %g1 + 0xd4 ], %g1 ! 400194d4 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000afa4: 80 a6 40 01 cmp %i1, %g1
4000afa8: 18 80 00 1c bgu 4000b018 <rtems_task_set_priority+0x8c>
4000afac: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000afb0: 80 a6 a0 00 cmp %i2, 0
4000afb4: 02 80 00 19 be 4000b018 <rtems_task_set_priority+0x8c>
4000afb8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000afbc: 40 00 08 87 call 4000d1d8 <_Thread_Get>
4000afc0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000afc4: c2 07 bf fc ld [ %fp + -4 ], %g1
4000afc8: 80 a0 60 00 cmp %g1, 0
4000afcc: 12 80 00 13 bne 4000b018 <rtems_task_set_priority+0x8c>
4000afd0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000afd4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000afd8: 80 a6 60 00 cmp %i1, 0
4000afdc: 02 80 00 0d be 4000b010 <rtems_task_set_priority+0x84>
4000afe0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000afe4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000afe8: 80 a0 60 00 cmp %g1, 0
4000afec: 02 80 00 06 be 4000b004 <rtems_task_set_priority+0x78>
4000aff0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000aff4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000aff8: 80 a6 40 01 cmp %i1, %g1
4000affc: 1a 80 00 05 bcc 4000b010 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b000: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000b004: 92 10 00 19 mov %i1, %o1
4000b008: 40 00 06 ef call 4000cbc4 <_Thread_Change_priority>
4000b00c: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b010: 40 00 08 64 call 4000d1a0 <_Thread_Enable_dispatch>
4000b014: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b018: 81 c7 e0 08 ret
4000b01c: 81 e8 00 00 restore
4000732c <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
4000732c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
40007330: 80 a6 60 00 cmp %i1, 0
40007334: 02 80 00 1e be 400073ac <rtems_task_variable_delete+0x80>
40007338: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
4000733c: 90 10 00 18 mov %i0, %o0
40007340: 40 00 08 0f call 4000937c <_Thread_Get>
40007344: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40007348: c2 07 bf fc ld [ %fp + -4 ], %g1
4000734c: 80 a0 60 00 cmp %g1, 0
40007350: 12 80 00 19 bne 400073b4 <rtems_task_variable_delete+0x88>
40007354: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
40007358: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
4000735c: 80 a0 60 00 cmp %g1, 0
40007360: 02 80 00 10 be 400073a0 <rtems_task_variable_delete+0x74>
40007364: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40007368: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000736c: 80 a0 80 19 cmp %g2, %i1
40007370: 32 80 00 09 bne,a 40007394 <rtems_task_variable_delete+0x68>
40007374: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
40007378: 10 80 00 19 b 400073dc <rtems_task_variable_delete+0xb0>
4000737c: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
40007380: 80 a0 80 19 cmp %g2, %i1
40007384: 22 80 00 0e be,a 400073bc <rtems_task_variable_delete+0x90>
40007388: c4 02 40 00 ld [ %o1 ], %g2
4000738c: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
40007390: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
40007394: 80 a2 60 00 cmp %o1, 0
40007398: 32 bf ff fa bne,a 40007380 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
4000739c: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400073a0: 40 00 07 e9 call 40009344 <_Thread_Enable_dispatch>
400073a4: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
400073a8: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073ac: 81 c7 e0 08 ret
400073b0: 91 e8 00 01 restore %g0, %g1, %o0
400073b4: 81 c7 e0 08 ret
400073b8: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
400073bc: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
400073c0: 40 00 00 2e call 40007478 <_RTEMS_Tasks_Invoke_task_variable_dtor>
400073c4: 01 00 00 00 nop
_Thread_Enable_dispatch();
400073c8: 40 00 07 df call 40009344 <_Thread_Enable_dispatch>
400073cc: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400073d0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400073d4: 81 c7 e0 08 ret
400073d8: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400073dc: 92 10 00 01 mov %g1, %o1
400073e0: 10 bf ff f8 b 400073c0 <rtems_task_variable_delete+0x94>
400073e4: c4 22 21 68 st %g2, [ %o0 + 0x168 ]
400073e8 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
400073e8: 9d e3 bf 98 save %sp, -104, %sp
400073ec: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
400073f0: 80 a6 60 00 cmp %i1, 0
400073f4: 02 80 00 1b be 40007460 <rtems_task_variable_get+0x78>
400073f8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
400073fc: 80 a6 a0 00 cmp %i2, 0
40007400: 02 80 00 1c be 40007470 <rtems_task_variable_get+0x88>
40007404: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40007408: 40 00 07 dd call 4000937c <_Thread_Get>
4000740c: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40007410: c2 07 bf fc ld [ %fp + -4 ], %g1
40007414: 80 a0 60 00 cmp %g1, 0
40007418: 12 80 00 12 bne 40007460 <rtems_task_variable_get+0x78>
4000741c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
40007420: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
40007424: 80 a0 60 00 cmp %g1, 0
40007428: 32 80 00 07 bne,a 40007444 <rtems_task_variable_get+0x5c>
4000742c: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007430: 30 80 00 0e b,a 40007468 <rtems_task_variable_get+0x80>
40007434: 80 a0 60 00 cmp %g1, 0
40007438: 02 80 00 0c be 40007468 <rtems_task_variable_get+0x80> <== NEVER TAKEN
4000743c: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40007440: c4 00 60 04 ld [ %g1 + 4 ], %g2
40007444: 80 a0 80 19 cmp %g2, %i1
40007448: 32 bf ff fb bne,a 40007434 <rtems_task_variable_get+0x4c>
4000744c: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
40007450: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
40007454: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
40007458: 40 00 07 bb call 40009344 <_Thread_Enable_dispatch>
4000745c: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
40007460: 81 c7 e0 08 ret
40007464: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
40007468: 40 00 07 b7 call 40009344 <_Thread_Enable_dispatch>
4000746c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
40007470: 81 c7 e0 08 ret
40007474: 81 e8 00 00 restore
40015c4c <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015c4c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015c50: 11 10 00 f5 sethi %hi(0x4003d400), %o0
40015c54: 92 10 00 18 mov %i0, %o1
40015c58: 90 12 20 54 or %o0, 0x54, %o0
40015c5c: 40 00 0c 74 call 40018e2c <_Objects_Get>
40015c60: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015c64: c2 07 bf fc ld [ %fp + -4 ], %g1
40015c68: 80 a0 60 00 cmp %g1, 0
40015c6c: 22 80 00 04 be,a 40015c7c <rtems_timer_cancel+0x30>
40015c70: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015c74: 81 c7 e0 08 ret
40015c78: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015c7c: 80 a0 60 04 cmp %g1, 4
40015c80: 02 80 00 04 be 40015c90 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40015c84: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015c88: 40 00 15 11 call 4001b0cc <_Watchdog_Remove>
40015c8c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015c90: 40 00 0e e0 call 40019810 <_Thread_Enable_dispatch>
40015c94: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015c98: 81 c7 e0 08 ret
40015c9c: 81 e8 00 00 restore
40016164 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016164: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40016168: 03 10 00 f5 sethi %hi(0x4003d400), %g1
4001616c: e0 00 60 94 ld [ %g1 + 0x94 ], %l0 ! 4003d494 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016170: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40016174: 80 a4 20 00 cmp %l0, 0
40016178: 02 80 00 10 be 400161b8 <rtems_timer_server_fire_when+0x54>
4001617c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40016180: 03 10 00 f4 sethi %hi(0x4003d000), %g1
40016184: c2 08 61 98 ldub [ %g1 + 0x198 ], %g1 ! 4003d198 <_TOD_Is_set>
40016188: 80 a0 60 00 cmp %g1, 0
4001618c: 02 80 00 0b be 400161b8 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
40016190: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
40016194: 80 a6 a0 00 cmp %i2, 0
40016198: 02 80 00 08 be 400161b8 <rtems_timer_server_fire_when+0x54>
4001619c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400161a0: 90 10 00 19 mov %i1, %o0
400161a4: 7f ff f3 b4 call 40013074 <_TOD_Validate>
400161a8: b0 10 20 14 mov 0x14, %i0
400161ac: 80 8a 20 ff btst 0xff, %o0
400161b0: 12 80 00 04 bne 400161c0 <rtems_timer_server_fire_when+0x5c>
400161b4: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400161b8: 81 c7 e0 08 ret
400161bc: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400161c0: 7f ff f3 77 call 40012f9c <_TOD_To_seconds>
400161c4: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400161c8: 25 10 00 f4 sethi %hi(0x4003d000), %l2
400161cc: c2 04 a2 10 ld [ %l2 + 0x210 ], %g1 ! 4003d210 <_TOD_Now>
400161d0: 80 a2 00 01 cmp %o0, %g1
400161d4: 08 bf ff f9 bleu 400161b8 <rtems_timer_server_fire_when+0x54>
400161d8: b2 10 00 08 mov %o0, %i1
400161dc: 92 10 00 11 mov %l1, %o1
400161e0: 11 10 00 f5 sethi %hi(0x4003d400), %o0
400161e4: 94 07 bf fc add %fp, -4, %o2
400161e8: 40 00 0b 11 call 40018e2c <_Objects_Get>
400161ec: 90 12 20 54 or %o0, 0x54, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400161f0: c2 07 bf fc ld [ %fp + -4 ], %g1
400161f4: a6 10 00 08 mov %o0, %l3
400161f8: 80 a0 60 00 cmp %g1, 0
400161fc: 12 bf ff ef bne 400161b8 <rtems_timer_server_fire_when+0x54>
40016200: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40016204: 40 00 13 b2 call 4001b0cc <_Watchdog_Remove>
40016208: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
4001620c: c2 04 20 04 ld [ %l0 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016210: c4 04 a2 10 ld [ %l2 + 0x210 ], %g2
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016214: 86 10 20 03 mov 3, %g3
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
40016218: 90 10 00 10 mov %l0, %o0
4001621c: 92 10 00 13 mov %l3, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016220: b2 26 40 02 sub %i1, %g2, %i1
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016224: c6 24 e0 38 st %g3, [ %l3 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40016228: f4 24 e0 2c st %i2, [ %l3 + 0x2c ]
the_watchdog->id = id;
4001622c: e2 24 e0 30 st %l1, [ %l3 + 0x30 ]
the_watchdog->user_data = user_data;
40016230: f6 24 e0 34 st %i3, [ %l3 + 0x34 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40016234: c0 24 e0 18 clr [ %l3 + 0x18 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016238: f2 24 e0 1c st %i1, [ %l3 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
4001623c: 9f c0 40 00 call %g1
40016240: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016244: 40 00 0d 73 call 40019810 <_Thread_Enable_dispatch>
40016248: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4001624c: 81 c7 e0 08 ret
40016250: 81 e8 00 00 restore