RTEMS 4.11Annotated Report
Sat Nov 27 22:31:18 2010
a0014b20 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b20: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
a0014b24: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b28: e1520003 cmp r2, r3
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
a0014b2c: e1a06000 mov r6, r0
a0014b30: e1a0a001 mov sl, r1
a0014b34: e1a07002 mov r7, r2
a0014b38: e59d8020 ldr r8, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b3c: 8a000013 bhi a0014b90 <_CORE_message_queue_Broadcast+0x70>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
a0014b40: e5905048 ldr r5, [r0, #72] ; 0x48
a0014b44: e3550000 cmp r5, #0
a0014b48: 0a000009 beq a0014b74 <_CORE_message_queue_Broadcast+0x54>
*count = 0;
a0014b4c: e3a00000 mov r0, #0
a0014b50: e5880000 str r0, [r8]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
a0014b54: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
a0014b58: e594002c ldr r0, [r4, #44] ; 0x2c
a0014b5c: e1a0100a mov r1, sl
a0014b60: e1a02007 mov r2, r7
a0014b64: eb001e66 bl a001c504 <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
a0014b68: e5943028 ldr r3, [r4, #40] ; 0x28
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
a0014b6c: e2855001 add r5, r5, #1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
a0014b70: e5837000 str r7, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
a0014b74: e1a00006 mov r0, r6
a0014b78: eb000a5c bl a00174f0 <_Thread_queue_Dequeue>
a0014b7c: e2504000 subs r4, r0, #0
a0014b80: 1afffff4 bne a0014b58 <_CORE_message_queue_Broadcast+0x38>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
a0014b84: e5885000 str r5, [r8]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
a0014b88: e1a00004 mov r0, r4
a0014b8c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
a0014b90: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
a0014b94: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
a000dbec <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dbec: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
a000dbf0: e3130003 tst r3, #3
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dbf4: e1a04000 mov r4, r0
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
a000dbf8: e3a00000 mov r0, #0
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dbfc: e1a06002 mov r6, r2
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
a000dc00: e5842044 str r2, [r4, #68] ; 0x44
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dc04: e1a05001 mov r5, r1
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
a000dc08: e5840048 str r0, [r4, #72] ; 0x48
the_message_queue->maximum_message_size = maximum_message_size;
a000dc0c: e584304c str r3, [r4, #76] ; 0x4c
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
a000dc10: 01a02003 moveq r2, r3
a000dc14: 0a000003 beq a000dc28 <_CORE_message_queue_Initialize+0x3c>
allocated_message_size += sizeof(uint32_t);
a000dc18: e2832004 add r2, r3, #4
allocated_message_size &= ~(sizeof(uint32_t) - 1);
a000dc1c: e3c22003 bic r2, r2, #3
}
if (allocated_message_size < maximum_message_size)
a000dc20: e1520003 cmp r2, r3
a000dc24: 3a00001e bcc a000dca4 <_CORE_message_queue_Initialize+0xb8>
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
a000dc28: e2827010 add r7, r2, #16
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
a000dc2c: e0000796 mul r0, r6, r7
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
a000dc30: e1500002 cmp r0, r2
a000dc34: 3a000018 bcc a000dc9c <_CORE_message_queue_Initialize+0xb0>
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
a000dc38: eb000b02 bl a0010848 <_Workspace_Allocate>
if (the_message_queue->message_buffers == 0)
a000dc3c: e3500000 cmp r0, #0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
a000dc40: e1a01000 mov r1, r0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
a000dc44: e584005c str r0, [r4, #92] ; 0x5c
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
a000dc48: 0a000015 beq a000dca4 <_CORE_message_queue_Initialize+0xb8>
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
a000dc4c: e2840060 add r0, r4, #96 ; 0x60
a000dc50: e1a02006 mov r2, r6
a000dc54: e1a03007 mov r3, r7
a000dc58: eb00123f bl a001255c <_Chain_Initialize>
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
a000dc5c: e2843054 add r3, r4, #84 ; 0x54
head->next = tail;
a000dc60: e5843050 str r3, [r4, #80] ; 0x50
head->previous = NULL;
a000dc64: e3a03000 mov r3, #0
a000dc68: e5843054 str r3, [r4, #84] ; 0x54
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
a000dc6c: e2843050 add r3, r4, #80 ; 0x50
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
tail->previous = head;
a000dc70: e5843058 str r3, [r4, #88] ; 0x58
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
a000dc74: e5951000 ldr r1, [r5]
a000dc78: e1a00004 mov r0, r4
a000dc7c: e3a02080 mov r2, #128 ; 0x80
a000dc80: e3510001 cmp r1, #1
a000dc84: 13a01000 movne r1, #0
a000dc88: 03a01001 moveq r1, #1
a000dc8c: e3a03006 mov r3, #6
a000dc90: eb000889 bl a000febc <_Thread_queue_Initialize>
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
a000dc94: e3a00001 mov r0, #1
a000dc98: e8bd80f0 pop {r4, r5, r6, r7, pc}
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
return false;
a000dc9c: e3a00000 mov r0, #0 <== NOT EXECUTED
a000dca0: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
a000dca4: e8bd80f0 pop {r4, r5, r6, r7, pc}
a0009e88 <_CORE_mutex_Seize_interrupt_trylock>:
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
a0009e88: e59f212c ldr r2, [pc, #300] ; a0009fbc <_CORE_mutex_Seize_interrupt_trylock+0x134>
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
a0009e8c: e1a03000 mov r3, r0
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
a0009e90: e593c050 ldr ip, [r3, #80] ; 0x50
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
a0009e94: e5922004 ldr r2, [r2, #4]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
a0009e98: e3a00000 mov r0, #0
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
a0009e9c: e15c0000 cmp ip, r0
a0009ea0: e92d4010 push {r4, lr}
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
a0009ea4: e5820034 str r0, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
a0009ea8: 0a00002c beq a0009f60 <_CORE_mutex_Seize_interrupt_trylock+0xd8>
the_mutex->lock = CORE_MUTEX_LOCKED;
a0009eac: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
a0009eb0: e5920008 ldr r0, [r2, #8]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
a0009eb4: e583205c str r2, [r3, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id;
a0009eb8: e5830060 str r0, [r3, #96] ; 0x60
the_mutex->nest_count = 1;
a0009ebc: e3a00001 mov r0, #1
a0009ec0: e5830054 str r0, [r3, #84] ; 0x54
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
a0009ec4: e5930048 ldr r0, [r3, #72] ; 0x48
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
a0009ec8: e3500002 cmp r0, #2
a0009ecc: 0a000001 beq a0009ed8 <_CORE_mutex_Seize_interrupt_trylock+0x50>
a0009ed0: e3500003 cmp r0, #3
a0009ed4: 1a000004 bne a0009eec <_CORE_mutex_Seize_interrupt_trylock+0x64>
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
a0009ed8: e592c01c ldr ip, [r2, #28]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
a0009edc: e3500003 cmp r0, #3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
a0009ee0: e28c4001 add r4, ip, #1
a0009ee4: e582401c str r4, [r2, #28]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
a0009ee8: 0a000000 beq a0009ef0 <_CORE_mutex_Seize_interrupt_trylock+0x68>
_ISR_Enable( *level_p );
a0009eec: ea00002a b a0009f9c <_CORE_mutex_Seize_interrupt_trylock+0x114>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
a0009ef0: e593004c ldr r0, [r3, #76] ; 0x4c
current = executing->current_priority;
a0009ef4: e5924014 ldr r4, [r2, #20]
if ( current == ceiling ) {
a0009ef8: e1540000 cmp r4, r0
a0009efc: 1a000000 bne a0009f04 <_CORE_mutex_Seize_interrupt_trylock+0x7c>
_ISR_Enable( *level_p );
a0009f00: ea000025 b a0009f9c <_CORE_mutex_Seize_interrupt_trylock+0x114>
return 0;
}
if ( current > ceiling ) {
a0009f04: 9a00000b bls a0009f38 <_CORE_mutex_Seize_interrupt_trylock+0xb0>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
a0009f08: e59f20b0 ldr r2, [pc, #176] ; a0009fc0 <_CORE_mutex_Seize_interrupt_trylock+0x138>
a0009f0c: e5920000 ldr r0, [r2]
a0009f10: e2800001 add r0, r0, #1
a0009f14: e5820000 str r0, [r2]
a0009f18: e5912000 ldr r2, [r1]
a0009f1c: e129f002 msr CPSR_fc, r2
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
_Thread_Change_priority(
a0009f20: e3a02000 mov r2, #0
a0009f24: e593005c ldr r0, [r3, #92] ; 0x5c
a0009f28: e593104c ldr r1, [r3, #76] ; 0x4c
a0009f2c: ebfff32f bl a0006bf0 <_Thread_Change_priority>
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
a0009f30: ebfff454 bl a0007088 <_Thread_Enable_dispatch>
a0009f34: ea00001a b a0009fa4 <_CORE_mutex_Seize_interrupt_trylock+0x11c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
a0009f38: e3a00006 mov r0, #6
a0009f3c: e5820034 str r0, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED;
a0009f40: e3a00001 mov r0, #1
a0009f44: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */
a0009f48: e3a00000 mov r0, #0
a0009f4c: e5830054 str r0, [r3, #84] ; 0x54
executing->resource_count--; /* undo locking above */
a0009f50: e582c01c str ip, [r2, #28]
a0009f54: e5913000 ldr r3, [r1]
a0009f58: e129f003 msr CPSR_fc, r3
a0009f5c: e8bd8010 pop {r4, pc}
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
a0009f60: e593005c ldr r0, [r3, #92] ; 0x5c
a0009f64: e1500002 cmp r0, r2
a0009f68: 1a00000f bne a0009fac <_CORE_mutex_Seize_interrupt_trylock+0x124>
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
a0009f6c: e5932040 ldr r2, [r3, #64] ; 0x40
a0009f70: e3520000 cmp r2, #0
a0009f74: 0a000002 beq a0009f84 <_CORE_mutex_Seize_interrupt_trylock+0xfc>
a0009f78: e3520001 cmp r2, #1
a0009f7c: 1a00000c bne a0009fb4 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
a0009f80: ea000003 b a0009f94 <_CORE_mutex_Seize_interrupt_trylock+0x10c><== NOT EXECUTED
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
a0009f84: e5932054 ldr r2, [r3, #84] ; 0x54
a0009f88: e2822001 add r2, r2, #1
a0009f8c: e5832054 str r2, [r3, #84] ; 0x54
_ISR_Enable( *level_p );
a0009f90: ea000001 b a0009f9c <_CORE_mutex_Seize_interrupt_trylock+0x114>
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
a0009f94: e3a03002 mov r3, #2 <== NOT EXECUTED
a0009f98: e5803034 str r3, [r0, #52] ; 0x34 <== NOT EXECUTED
a0009f9c: e5913000 ldr r3, [r1]
a0009fa0: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
a0009fa4: e3a00000 mov r0, #0
a0009fa8: e8bd8010 pop {r4, pc}
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
a0009fac: e3a00001 mov r0, #1
a0009fb0: e8bd8010 pop {r4, pc}
a0009fb4: e3a00001 mov r0, #1
a0009fb8: e8bd8010 pop {r4, pc}
a000a544 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
a000a544: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
a000a548: e1a05001 mov r5, r1
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
a000a54c: e5901020 ldr r1, [r0, #32]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
a000a550: e24dd028 sub sp, sp, #40 ; 0x28
a000a554: e58d3018 str r3, [sp, #24]
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
a000a558: e58d1010 str r1, [sp, #16]
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
a000a55c: e5903010 ldr r3, [r0, #16]
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
a000a560: e5901030 ldr r1, [r0, #48] ; 0x30
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
a000a564: e3a08000 mov r8, #0
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
a000a568: e0956002 adds r6, r5, r2
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
a000a56c: e1a04000 mov r4, r0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
a000a570: e58d3014 str r3, [sp, #20]
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
a000a574: e58d8024 str r8, [sp, #36] ; 0x24
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
a000a578: e5903014 ldr r3, [r0, #20]
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
a000a57c: e58d8020 str r8, [sp, #32]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
a000a580: e58d101c str r1, [sp, #28]
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
return false;
a000a584: 21a00008 movcs r0, r8
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
a000a588: 2a00009e bcs a000a808 <_Heap_Extend+0x2c4>
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
a000a58c: e28d1024 add r1, sp, #36 ; 0x24
a000a590: e58d1000 str r1, [sp]
a000a594: e28d1020 add r1, sp, #32
a000a598: e58d1004 str r1, [sp, #4]
a000a59c: e1a00005 mov r0, r5
a000a5a0: e1a01002 mov r1, r2
a000a5a4: e59d2014 ldr r2, [sp, #20]
a000a5a8: ebffeecc bl a00060e0 <_Heap_Get_first_and_last_block>
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
a000a5ac: e3500000 cmp r0, #0
a000a5b0: 0a000094 beq a000a808 <_Heap_Extend+0x2c4>
a000a5b4: e59da010 ldr sl, [sp, #16]
a000a5b8: e1a07008 mov r7, r8
a000a5bc: e1a09008 mov r9, r8
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
a000a5c0: e5941018 ldr r1, [r4, #24]
a000a5c4: e1a03008 mov r3, r8
a000a5c8: e1a0c004 mov ip, r4
a000a5cc: ea000000 b a000a5d4 <_Heap_Extend+0x90>
a000a5d0: e1a0100a mov r1, sl
uintptr_t const sub_area_end = start_block->prev_size;
a000a5d4: e59a4000 ldr r4, [sl]
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
a000a5d8: e1560001 cmp r6, r1
a000a5dc: 93a00000 movls r0, #0
a000a5e0: 83a00001 movhi r0, #1
a000a5e4: e1550004 cmp r5, r4
a000a5e8: 23a00000 movcs r0, #0
a000a5ec: e3500000 cmp r0, #0
a000a5f0: 1a000083 bne a000a804 <_Heap_Extend+0x2c0>
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
a000a5f4: e1560001 cmp r6, r1
a000a5f8: 01a0300a moveq r3, sl
a000a5fc: 0a000001 beq a000a608 <_Heap_Extend+0xc4>
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
a000a600: e1560004 cmp r6, r4
a000a604: 31a0900a movcc r9, sl
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
a000a608: e1a00004 mov r0, r4
a000a60c: e59d1014 ldr r1, [sp, #20]
a000a610: e58d300c str r3, [sp, #12]
a000a614: e58dc008 str ip, [sp, #8]
a000a618: eb00153e bl a000fb18 <__umodsi3>
a000a61c: e244b008 sub fp, r4, #8
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
a000a620: e1540005 cmp r4, r5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
a000a624: e060000b rsb r0, r0, fp
a000a628: e59d300c ldr r3, [sp, #12]
a000a62c: e59dc008 ldr ip, [sp, #8]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
a000a630: 01a07000 moveq r7, r0
start_block->prev_size = extend_area_end;
a000a634: 058a6000 streq r6, [sl]
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
a000a638: 0a000000 beq a000a640 <_Heap_Extend+0xfc>
a000a63c: 31a08000 movcc r8, r0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a000a640: e590a004 ldr sl, [r0, #4]
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
a000a644: e59d2010 ldr r2, [sp, #16]
a000a648: e3caa001 bic sl, sl, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
a000a64c: e080a00a add sl, r0, sl
a000a650: e15a0002 cmp sl, r2
a000a654: 1affffdd bne a000a5d0 <_Heap_Extend+0x8c>
a000a658: e1a02009 mov r2, r9
a000a65c: e1a09003 mov r9, r3
if ( extend_area_begin < heap->area_begin ) {
a000a660: e59c3018 ldr r3, [ip, #24]
a000a664: e1a0400c mov r4, ip
a000a668: e1550003 cmp r5, r3
heap->area_begin = extend_area_begin;
a000a66c: 358c5018 strcc r5, [ip, #24]
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
a000a670: 3a000002 bcc a000a680 <_Heap_Extend+0x13c>
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
a000a674: e59c301c ldr r3, [ip, #28]
a000a678: e1530006 cmp r3, r6
heap->area_end = extend_area_end;
a000a67c: 358c601c strcc r6, [ip, #28]
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
a000a680: e59d1024 ldr r1, [sp, #36] ; 0x24
a000a684: e59d3020 ldr r3, [sp, #32]
extend_first_block->prev_size = extend_area_end;
a000a688: e5816000 str r6, [r1]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
a000a68c: e0610003 rsb r0, r1, r3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
a000a690: e380c001 orr ip, r0, #1
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
a000a694: e5830000 str r0, [r3]
extend_last_block->size_and_flag = 0;
a000a698: e3a00000 mov r0, #0
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
a000a69c: e581c004 str ip, [r1, #4]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
a000a6a0: e5830004 str r0, [r3, #4]
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
a000a6a4: e5940020 ldr r0, [r4, #32]
a000a6a8: e1500001 cmp r0, r1
heap->first_block = extend_first_block;
a000a6ac: 85841020 strhi r1, [r4, #32]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
a000a6b0: 8a000002 bhi a000a6c0 <_Heap_Extend+0x17c>
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
a000a6b4: e5941024 ldr r1, [r4, #36] ; 0x24
a000a6b8: e1510003 cmp r1, r3
heap->last_block = extend_last_block;
a000a6bc: 35843024 strcc r3, [r4, #36] ; 0x24
}
if ( merge_below_block != NULL ) {
a000a6c0: e3590000 cmp r9, #0
a000a6c4: 0a000010 beq a000a70c <_Heap_Extend+0x1c8>
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
a000a6c8: e594a010 ldr sl, [r4, #16] <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
a000a6cc: e2855008 add r5, r5, #8 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
a000a6d0: e1a00005 mov r0, r5 <== NOT EXECUTED
a000a6d4: e1a0100a mov r1, sl <== NOT EXECUTED
a000a6d8: eb00150e bl a000fb18 <__umodsi3> <== NOT EXECUTED
if ( remainder != 0 ) {
a000a6dc: e3500000 cmp r0, #0 <== NOT EXECUTED
return value - remainder + alignment;
a000a6e0: 1085500a addne r5, r5, sl <== NOT EXECUTED
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
a000a6e4: e5993000 ldr r3, [r9] <== NOT EXECUTED
a000a6e8: 10605005 rsbne r5, r0, r5 <== NOT EXECUTED
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
a000a6ec: e2451008 sub r1, r5, #8 <== NOT EXECUTED
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
a000a6f0: e5053008 str r3, [r5, #-8] <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
a000a6f4: e0613009 rsb r3, r1, r9 <== NOT EXECUTED
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
a000a6f8: e3833001 orr r3, r3, #1 <== NOT EXECUTED
a000a6fc: e5053004 str r3, [r5, #-4] <== NOT EXECUTED
_Heap_Free_block( heap, new_first_block );
a000a700: e1a00004 mov r0, r4 <== NOT EXECUTED
a000a704: ebffff86 bl a000a524 <_Heap_Free_block> <== NOT EXECUTED
a000a708: ea000004 b a000a720 <_Heap_Extend+0x1dc> <== NOT EXECUTED
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
a000a70c: e3520000 cmp r2, #0
_Heap_Link_below(
a000a710: 159d3020 ldrne r3, [sp, #32]
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
a000a714: 10632002 rsbne r2, r3, r2
a000a718: 13822001 orrne r2, r2, #1
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
a000a71c: 15832004 strne r2, [r3, #4]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
a000a720: e3570000 cmp r7, #0
a000a724: 0a000012 beq a000a774 <_Heap_Extend+0x230>
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
extend_area_end - last_block_begin - HEAP_BLOCK_HEADER_SIZE,
a000a728: e2466008 sub r6, r6, #8
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
a000a72c: e0676006 rsb r6, r7, r6
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
a000a730: e5941010 ldr r1, [r4, #16]
a000a734: e1a00006 mov r0, r6
a000a738: eb0014f6 bl a000fb18 <__umodsi3>
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
a000a73c: e5972004 ldr r2, [r7, #4]
a000a740: e0606006 rsb r6, r0, r6
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
a000a744: e0863007 add r3, r6, r7
(last_block->size_and_flag - last_block_new_size)
a000a748: e0662002 rsb r2, r6, r2
| HEAP_PREV_BLOCK_USED;
a000a74c: e3822001 orr r2, r2, #1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
a000a750: e5832004 str r2, [r3, #4]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
a000a754: e5973004 ldr r3, [r7, #4]
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
a000a758: e1a00004 mov r0, r4
a000a75c: e1a01007 mov r1, r7
a000a760: e2033001 and r3, r3, #1
block->size_and_flag = size | flag;
a000a764: e1866003 orr r6, r6, r3
a000a768: e5876004 str r6, [r7, #4]
a000a76c: ebffff6c bl a000a524 <_Heap_Free_block>
a000a770: ea00000b b a000a7a4 <_Heap_Extend+0x260>
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
a000a774: e3580000 cmp r8, #0
a000a778: 0a000009 beq a000a7a4 <_Heap_Extend+0x260>
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
a000a77c: e5982004 ldr r2, [r8, #4]
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
a000a780: e59d1024 ldr r1, [sp, #36] ; 0x24
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
_Heap_Link_above(
a000a784: e59d3020 ldr r3, [sp, #32]
a000a788: e2022001 and r2, r2, #1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
a000a78c: e0681001 rsb r1, r8, r1
block->size_and_flag = size | flag;
a000a790: e1812002 orr r2, r1, r2
a000a794: e5882004 str r2, [r8, #4]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
a000a798: e5932004 ldr r2, [r3, #4]
a000a79c: e3822001 orr r2, r2, #1
a000a7a0: e5832004 str r2, [r3, #4]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
a000a7a4: e3570000 cmp r7, #0
a000a7a8: 03590000 cmpeq r9, #0
a000a7ac: 1a000002 bne a000a7bc <_Heap_Extend+0x278>
_Heap_Free_block( heap, extend_first_block );
a000a7b0: e1a00004 mov r0, r4
a000a7b4: e59d1024 ldr r1, [sp, #36] ; 0x24
a000a7b8: ebffff59 bl a000a524 <_Heap_Free_block>
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
a000a7bc: e5943024 ldr r3, [r4, #36] ; 0x24
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
a000a7c0: e5941020 ldr r1, [r4, #32]
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
a000a7c4: e3a00001 mov r0, #1
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
a000a7c8: e5932004 ldr r2, [r3, #4]
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
a000a7cc: e0631001 rsb r1, r3, r1
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
a000a7d0: e2022001 and r2, r2, #1
block->size_and_flag = size | flag;
a000a7d4: e1812002 orr r2, r1, r2
a000a7d8: e5832004 str r2, [r3, #4]
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
a000a7dc: e59d101c ldr r1, [sp, #28]
a000a7e0: e5943030 ldr r3, [r4, #48] ; 0x30
/* Statistics */
stats->size += extended_size;
a000a7e4: e594202c ldr r2, [r4, #44] ; 0x2c
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
a000a7e8: e0613003 rsb r3, r1, r3
/* Statistics */
stats->size += extended_size;
a000a7ec: e0822003 add r2, r2, r3
a000a7f0: e584202c str r2, [r4, #44] ; 0x2c
if ( extended_size_ptr != NULL )
a000a7f4: e59d2018 ldr r2, [sp, #24]
a000a7f8: e3520000 cmp r2, #0
*extended_size_ptr = extended_size;
a000a7fc: 15823000 strne r3, [r2]
a000a800: ea000000 b a000a808 <_Heap_Extend+0x2c4>
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
a000a804: e3a00000 mov r0, #0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
a000a808: e28dd028 add sp, sp, #40 ; 0x28
a000a80c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
a0006c44 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006c44: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
a0006c48: e5903014 ldr r3, [r0, #20]
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006c4c: e24dd030 sub sp, sp, #48 ; 0x30
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c50: e59f44c8 ldr r4, [pc, #1224] ; a0007120 <_Heap_Walk+0x4dc>
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
a0006c54: e58d3024 str r3, [sp, #36] ; 0x24
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
a0006c58: e5903024 ldr r3, [r0, #36] ; 0x24
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c5c: e31200ff tst r2, #255 ; 0xff
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
a0006c60: e590c020 ldr ip, [r0, #32]
Heap_Block *const last_block = heap->last_block;
a0006c64: e58d3028 str r3, [sp, #40] ; 0x28
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c68: e59f34b4 ldr r3, [pc, #1204] ; a0007124 <_Heap_Walk+0x4e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006c6c: e1a06000 mov r6, r0
a0006c70: e1a05001 mov r5, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c74: 11a04003 movne r4, r3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006c78: e59f34a8 ldr r3, [pc, #1192] ; a0007128 <_Heap_Walk+0x4e4>
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
a0006c7c: e5909010 ldr r9, [r0, #16]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
a0006c80: e58dc020 str ip, [sp, #32]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006c84: e5933000 ldr r3, [r3]
a0006c88: e3530003 cmp r3, #3
a0006c8c: 1a000118 bne a00070f4 <_Heap_Walk+0x4b0>
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
a0006c90: e59dc024 ldr ip, [sp, #36] ; 0x24
a0006c94: e59d2020 ldr r2, [sp, #32]
a0006c98: e58dc000 str ip, [sp]
a0006c9c: e5903018 ldr r3, [r0, #24]
a0006ca0: e58d3004 str r3, [sp, #4]
a0006ca4: e590301c ldr r3, [r0, #28]
a0006ca8: e58d200c str r2, [sp, #12]
a0006cac: e59f2478 ldr r2, [pc, #1144] ; a000712c <_Heap_Walk+0x4e8>
a0006cb0: e58d3008 str r3, [sp, #8]
a0006cb4: e59d3028 ldr r3, [sp, #40] ; 0x28
a0006cb8: e58d3010 str r3, [sp, #16]
a0006cbc: e5903008 ldr r3, [r0, #8]
a0006cc0: e58d3014 str r3, [sp, #20]
a0006cc4: e590300c ldr r3, [r0, #12]
a0006cc8: e1a00001 mov r0, r1
a0006ccc: e3a01000 mov r1, #0
a0006cd0: e58d3018 str r3, [sp, #24]
a0006cd4: e1a03009 mov r3, r9
a0006cd8: e12fff34 blx r4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
a0006cdc: e3590000 cmp r9, #0
a0006ce0: 1a000005 bne a0006cfc <_Heap_Walk+0xb8>
(*printer)( source, true, "page size is zero\n" );
a0006ce4: e1a00005 mov r0, r5
a0006ce8: e3a01001 mov r1, #1
a0006cec: e59f243c ldr r2, [pc, #1084] ; a0007130 <_Heap_Walk+0x4ec>
a0006cf0: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006cf4: e1a08009 mov r8, r9
a0006cf8: ea0000fe b a00070f8 <_Heap_Walk+0x4b4>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
a0006cfc: e2198007 ands r8, r9, #7
(*printer)(
a0006d00: 11a00005 movne r0, r5
a0006d04: 13a01001 movne r1, #1
a0006d08: 159f2424 ldrne r2, [pc, #1060] ; a0007134 <_Heap_Walk+0x4f0>
a0006d0c: 11a03009 movne r3, r9
a0006d10: 1a0000ff bne a0007114 <_Heap_Walk+0x4d0>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006d14: e59d0024 ldr r0, [sp, #36] ; 0x24
a0006d18: e1a01009 mov r1, r9
a0006d1c: ebffe754 bl a0000a74 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
a0006d20: e250b000 subs fp, r0, #0
a0006d24: 0a000005 beq a0006d40 <_Heap_Walk+0xfc>
(*printer)(
a0006d28: e1a00005 mov r0, r5
a0006d2c: e3a01001 mov r1, #1
a0006d30: e59f2400 ldr r2, [pc, #1024] ; a0007138 <_Heap_Walk+0x4f4>
a0006d34: e59d3024 ldr r3, [sp, #36] ; 0x24
a0006d38: e12fff34 blx r4
a0006d3c: ea0000ed b a00070f8 <_Heap_Walk+0x4b4>
a0006d40: e59dc020 ldr ip, [sp, #32]
a0006d44: e1a01009 mov r1, r9
a0006d48: e28c0008 add r0, ip, #8
a0006d4c: ebffe748 bl a0000a74 <__umodsi3>
);
return false;
}
if (
a0006d50: e250a000 subs sl, r0, #0
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
a0006d54: 11a00005 movne r0, r5
a0006d58: 13a01001 movne r1, #1
a0006d5c: 159f23d8 ldrne r2, [pc, #984] ; a000713c <_Heap_Walk+0x4f8>
a0006d60: 159d3020 ldrne r3, [sp, #32]
a0006d64: 1a0000c3 bne a0007078 <_Heap_Walk+0x434>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006d68: e59d2020 ldr r2, [sp, #32]
a0006d6c: e5928004 ldr r8, [r2, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
a0006d70: e2188001 ands r8, r8, #1
(*printer)(
a0006d74: 01a00005 moveq r0, r5
a0006d78: 03a01001 moveq r1, #1
a0006d7c: 059f23bc ldreq r2, [pc, #956] ; a0007140 <_Heap_Walk+0x4fc>
a0006d80: 0a000009 beq a0006dac <_Heap_Walk+0x168>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006d84: e59d3028 ldr r3, [sp, #40] ; 0x28
a0006d88: e5937004 ldr r7, [r3, #4]
a0006d8c: e3c77001 bic r7, r7, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
a0006d90: e0837007 add r7, r3, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006d94: e5978004 ldr r8, [r7, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
a0006d98: e2188001 ands r8, r8, #1
a0006d9c: 1a000004 bne a0006db4 <_Heap_Walk+0x170>
(*printer)(
a0006da0: e59f239c ldr r2, [pc, #924] ; a0007144 <_Heap_Walk+0x500>
a0006da4: e1a00005 mov r0, r5
a0006da8: e3a01001 mov r1, #1
a0006dac: e12fff34 blx r4
a0006db0: ea0000d0 b a00070f8 <_Heap_Walk+0x4b4>
);
return false;
}
if (
a0006db4: e59dc020 ldr ip, [sp, #32]
a0006db8: e157000c cmp r7, ip
a0006dbc: 0a000005 beq a0006dd8 <_Heap_Walk+0x194>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
a0006dc0: e1a00005 mov r0, r5 <== NOT EXECUTED
a0006dc4: e3a01001 mov r1, #1 <== NOT EXECUTED
a0006dc8: e59f2378 ldr r2, [pc, #888] ; a0007148 <_Heap_Walk+0x504> <== NOT EXECUTED
a0006dcc: e12fff34 blx r4 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006dd0: e1a0800a mov r8, sl <== NOT EXECUTED
a0006dd4: ea0000c7 b a00070f8 <_Heap_Walk+0x4b4> <== NOT EXECUTED
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
a0006dd8: e596b010 ldr fp, [r6, #16]
block = next_block;
} while ( block != first_block );
return true;
}
a0006ddc: e5968008 ldr r8, [r6, #8]
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
a0006de0: e1a0a006 mov sl, r6
a0006de4: ea000032 b a0006eb4 <_Heap_Walk+0x270>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006de8: e5963020 ldr r3, [r6, #32]
a0006dec: e1530008 cmp r3, r8
a0006df0: 83a0c000 movhi ip, #0
a0006df4: 8a000003 bhi a0006e08 <_Heap_Walk+0x1c4>
a0006df8: e596c024 ldr ip, [r6, #36] ; 0x24
a0006dfc: e15c0008 cmp ip, r8
a0006e00: 33a0c000 movcc ip, #0
a0006e04: 23a0c001 movcs ip, #1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
a0006e08: e21cc0ff ands ip, ip, #255 ; 0xff
(*printer)(
a0006e0c: 01a00005 moveq r0, r5
a0006e10: 03a01001 moveq r1, #1
a0006e14: 059f2330 ldreq r2, [pc, #816] ; a000714c <_Heap_Walk+0x508>
a0006e18: 0a000012 beq a0006e68 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006e1c: e2880008 add r0, r8, #8
a0006e20: e1a0100b mov r1, fp
a0006e24: ebffe712 bl a0000a74 <__umodsi3>
);
return false;
}
if (
a0006e28: e250c000 subs ip, r0, #0
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
a0006e2c: 11a00005 movne r0, r5
a0006e30: 13a01001 movne r1, #1
a0006e34: 159f2314 ldrne r2, [pc, #788] ; a0007150 <_Heap_Walk+0x50c>
a0006e38: 11a03008 movne r3, r8
a0006e3c: 1a0000b4 bne a0007114 <_Heap_Walk+0x4d0>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006e40: e5983004 ldr r3, [r8, #4]
a0006e44: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
a0006e48: e0883003 add r3, r8, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006e4c: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
a0006e50: e2133001 ands r3, r3, #1
a0006e54: e58d302c str r3, [sp, #44] ; 0x2c
a0006e58: 0a000008 beq a0006e80 <_Heap_Walk+0x23c>
(*printer)(
a0006e5c: e59f22f0 ldr r2, [pc, #752] ; a0007154 <_Heap_Walk+0x510>
a0006e60: e1a00005 mov r0, r5
a0006e64: e3a01001 mov r1, #1
a0006e68: e1a03008 mov r3, r8
a0006e6c: e58dc01c str ip, [sp, #28]
a0006e70: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006e74: e59dc01c ldr ip, [sp, #28]
a0006e78: e1a0800c mov r8, ip
a0006e7c: ea00009d b a00070f8 <_Heap_Walk+0x4b4>
);
return false;
}
if ( free_block->prev != prev_block ) {
a0006e80: e598300c ldr r3, [r8, #12]
a0006e84: e153000a cmp r3, sl
a0006e88: 0a000007 beq a0006eac <_Heap_Walk+0x268>
(*printer)(
a0006e8c: e58d3000 str r3, [sp]
a0006e90: e1a00005 mov r0, r5
a0006e94: e1a03008 mov r3, r8
a0006e98: e3a01001 mov r1, #1
a0006e9c: e59f22b4 ldr r2, [pc, #692] ; a0007158 <_Heap_Walk+0x514>
a0006ea0: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006ea4: e59d802c ldr r8, [sp, #44] ; 0x2c
a0006ea8: ea000092 b a00070f8 <_Heap_Walk+0x4b4>
return false;
}
prev_block = free_block;
free_block = free_block->next;
a0006eac: e1a0a008 mov sl, r8
a0006eb0: e5988008 ldr r8, [r8, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
a0006eb4: e1580006 cmp r8, r6
a0006eb8: 1affffca bne a0006de8 <_Heap_Walk+0x1a4>
a0006ebc: ea000000 b a0006ec4 <_Heap_Walk+0x280>
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
a0006ec0: e1a07008 mov r7, r8
return true;
}
a0006ec4: e5973004 ldr r3, [r7, #4]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006ec8: e5962020 ldr r2, [r6, #32]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006ecc: e3c3a001 bic sl, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
a0006ed0: e087800a add r8, r7, sl
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006ed4: e1520008 cmp r2, r8
a0006ed8: 83a0b000 movhi fp, #0
a0006edc: 8a000003 bhi a0006ef0 <_Heap_Walk+0x2ac>
a0006ee0: e596b024 ldr fp, [r6, #36] ; 0x24
a0006ee4: e15b0008 cmp fp, r8
a0006ee8: 33a0b000 movcc fp, #0
a0006eec: 23a0b001 movcs fp, #1
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
a0006ef0: e21bb0ff ands fp, fp, #255 ; 0xff
a0006ef4: 1a000006 bne a0006f14 <_Heap_Walk+0x2d0>
(*printer)(
a0006ef8: e58d8000 str r8, [sp]
a0006efc: e1a00005 mov r0, r5
a0006f00: e3a01001 mov r1, #1
a0006f04: e59f2250 ldr r2, [pc, #592] ; a000715c <_Heap_Walk+0x518>
a0006f08: e1a03007 mov r3, r7
a0006f0c: e12fff34 blx r4
a0006f10: ea000059 b a000707c <_Heap_Walk+0x438>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
a0006f14: e59d2028 ldr r2, [sp, #40] ; 0x28
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006f18: e1a0000a mov r0, sl
a0006f1c: e1a01009 mov r1, r9
a0006f20: e057b002 subs fp, r7, r2
a0006f24: 13a0b001 movne fp, #1
a0006f28: e58d301c str r3, [sp, #28]
a0006f2c: ebffe6d0 bl a0000a74 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
a0006f30: e3500000 cmp r0, #0
a0006f34: e59d301c ldr r3, [sp, #28]
a0006f38: 0a000005 beq a0006f54 <_Heap_Walk+0x310>
a0006f3c: e35b0000 cmp fp, #0
(*printer)(
a0006f40: 158da000 strne sl, [sp]
a0006f44: 11a00005 movne r0, r5
a0006f48: 13a01001 movne r1, #1
a0006f4c: 159f220c ldrne r2, [pc, #524] ; a0007160 <_Heap_Walk+0x51c>
a0006f50: 1a000013 bne a0006fa4 <_Heap_Walk+0x360>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
a0006f54: e59dc024 ldr ip, [sp, #36] ; 0x24
a0006f58: e15a000c cmp sl, ip
a0006f5c: 2a000008 bcs a0006f84 <_Heap_Walk+0x340>
a0006f60: e35b0000 cmp fp, #0
a0006f64: 0a000006 beq a0006f84 <_Heap_Walk+0x340>
(*printer)(
a0006f68: e88d1400 stm sp, {sl, ip}
a0006f6c: e1a00005 mov r0, r5
a0006f70: e3a01001 mov r1, #1
a0006f74: e59f21e8 ldr r2, [pc, #488] ; a0007164 <_Heap_Walk+0x520>
a0006f78: e1a03007 mov r3, r7
a0006f7c: e12fff34 blx r4
a0006f80: ea000064 b a0007118 <_Heap_Walk+0x4d4>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
a0006f84: e1580007 cmp r8, r7
a0006f88: 8a000008 bhi a0006fb0 <_Heap_Walk+0x36c>
a0006f8c: e35b0000 cmp fp, #0
a0006f90: 0a000006 beq a0006fb0 <_Heap_Walk+0x36c>
(*printer)(
a0006f94: e59f21cc ldr r2, [pc, #460] ; a0007168 <_Heap_Walk+0x524>
a0006f98: e58d8000 str r8, [sp]
a0006f9c: e1a00005 mov r0, r5
a0006fa0: e3a01001 mov r1, #1
a0006fa4: e1a03007 mov r3, r7
a0006fa8: e12fff34 blx r4
a0006fac: ea000059 b a0007118 <_Heap_Walk+0x4d4>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006fb0: e203b001 and fp, r3, #1
a0006fb4: e5983004 ldr r3, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
a0006fb8: e3130001 tst r3, #1
a0006fbc: 1a000038 bne a00070a4 <_Heap_Walk+0x460>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
a0006fc0: e597200c ldr r2, [r7, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0006fc4: e5963008 ldr r3, [r6, #8]
block = next_block;
} while ( block != first_block );
return true;
}
a0006fc8: e596100c ldr r1, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0006fcc: e1520003 cmp r2, r3
a0006fd0: 059f0194 ldreq r0, [pc, #404] ; a000716c <_Heap_Walk+0x528>
a0006fd4: 0a000003 beq a0006fe8 <_Heap_Walk+0x3a4>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
a0006fd8: e59f3190 ldr r3, [pc, #400] ; a0007170 <_Heap_Walk+0x52c>
a0006fdc: e1520006 cmp r2, r6
a0006fe0: e59f018c ldr r0, [pc, #396] ; a0007174 <_Heap_Walk+0x530>
a0006fe4: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
a0006fe8: e5973008 ldr r3, [r7, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0006fec: e1530001 cmp r3, r1
a0006ff0: 059f1180 ldreq r1, [pc, #384] ; a0007178 <_Heap_Walk+0x534>
a0006ff4: 0a000003 beq a0007008 <_Heap_Walk+0x3c4>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
a0006ff8: e59fc17c ldr ip, [pc, #380] ; a000717c <_Heap_Walk+0x538>
a0006ffc: e1530006 cmp r3, r6
a0007000: e59f116c ldr r1, [pc, #364] ; a0007174 <_Heap_Walk+0x530>
a0007004: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0007008: e58d2004 str r2, [sp, #4]
a000700c: e58d0008 str r0, [sp, #8]
a0007010: e58d300c str r3, [sp, #12]
a0007014: e58d1010 str r1, [sp, #16]
a0007018: e1a03007 mov r3, r7
a000701c: e58da000 str sl, [sp]
a0007020: e1a00005 mov r0, r5
a0007024: e3a01000 mov r1, #0
a0007028: e59f2150 ldr r2, [pc, #336] ; a0007180 <_Heap_Walk+0x53c>
a000702c: e12fff34 blx r4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
a0007030: e5983000 ldr r3, [r8]
a0007034: e15a0003 cmp sl, r3
a0007038: 0a000008 beq a0007060 <_Heap_Walk+0x41c>
(*printer)(
a000703c: e58d3004 str r3, [sp, #4]
a0007040: e58da000 str sl, [sp]
a0007044: e58d8008 str r8, [sp, #8]
a0007048: e1a00005 mov r0, r5
a000704c: e3a01001 mov r1, #1
a0007050: e59f212c ldr r2, [pc, #300] ; a0007184 <_Heap_Walk+0x540>
a0007054: e1a03007 mov r3, r7
a0007058: e12fff34 blx r4
a000705c: ea00002d b a0007118 <_Heap_Walk+0x4d4>
);
return false;
}
if ( !prev_used ) {
a0007060: e35b0000 cmp fp, #0
a0007064: 1a000006 bne a0007084 <_Heap_Walk+0x440>
(*printer)(
a0007068: e59f2118 ldr r2, [pc, #280] ; a0007188 <_Heap_Walk+0x544>
a000706c: e1a00005 mov r0, r5
a0007070: e3a01001 mov r1, #1
a0007074: e1a03007 mov r3, r7
a0007078: e12fff34 blx r4
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
a000707c: e1a0800b mov r8, fp
a0007080: ea00001c b a00070f8 <_Heap_Walk+0x4b4>
block = next_block;
} while ( block != first_block );
return true;
}
a0007084: e5963008 ldr r3, [r6, #8]
a0007088: ea000002 b a0007098 <_Heap_Walk+0x454>
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
a000708c: e1530007 cmp r3, r7
a0007090: 0a000014 beq a00070e8 <_Heap_Walk+0x4a4>
return true;
}
free_block = free_block->next;
a0007094: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
a0007098: e1530006 cmp r3, r6
a000709c: 1afffffa bne a000708c <_Heap_Walk+0x448>
a00070a0: ea000017 b a0007104 <_Heap_Walk+0x4c0>
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
a00070a4: e35b0000 cmp fp, #0
a00070a8: 0a000006 beq a00070c8 <_Heap_Walk+0x484>
(*printer)(
a00070ac: e58da000 str sl, [sp]
a00070b0: e1a00005 mov r0, r5
a00070b4: e3a01000 mov r1, #0
a00070b8: e59f20cc ldr r2, [pc, #204] ; a000718c <_Heap_Walk+0x548>
a00070bc: e1a03007 mov r3, r7
a00070c0: e12fff34 blx r4
a00070c4: ea000007 b a00070e8 <_Heap_Walk+0x4a4>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
a00070c8: e58da000 str sl, [sp]
a00070cc: e5973000 ldr r3, [r7]
a00070d0: e1a00005 mov r0, r5
a00070d4: e1a0100b mov r1, fp
a00070d8: e58d3004 str r3, [sp, #4]
a00070dc: e59f20ac ldr r2, [pc, #172] ; a0007190 <_Heap_Walk+0x54c>
a00070e0: e1a03007 mov r3, r7
a00070e4: e12fff34 blx r4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
a00070e8: e59d2020 ldr r2, [sp, #32]
a00070ec: e1580002 cmp r8, r2
a00070f0: 1affff72 bne a0006ec0 <_Heap_Walk+0x27c>
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
a00070f4: e3a08001 mov r8, #1
block = next_block;
} while ( block != first_block );
return true;
}
a00070f8: e1a00008 mov r0, r8
a00070fc: e28dd030 add sp, sp, #48 ; 0x30
a0007100: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
a0007104: e59f2088 ldr r2, [pc, #136] ; a0007194 <_Heap_Walk+0x550>
a0007108: e1a00005 mov r0, r5
a000710c: e3a01001 mov r1, #1
a0007110: e1a03007 mov r3, r7
a0007114: e12fff34 blx r4
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
a0007118: e3a08000 mov r8, #0
a000711c: eafffff5 b a00070f8 <_Heap_Walk+0x4b4>
a0005e20 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
a0005e20: e59f30b4 ldr r3, [pc, #180] ; a0005edc <_TOD_Validate+0xbc>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
a0005e24: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
a0005e28: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
a0005e2c: e593100c ldr r1, [r3, #12]
if ((!the_tod) ||
a0005e30: 0a000021 beq a0005ebc <_TOD_Validate+0x9c>
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
a0005e34: e59f00a4 ldr r0, [pc, #164] ; a0005ee0 <_TOD_Validate+0xc0>
a0005e38: eb0042d5 bl a0016994 <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
a0005e3c: e5943018 ldr r3, [r4, #24]
a0005e40: e1530000 cmp r3, r0
a0005e44: 2a000020 bcs a0005ecc <_TOD_Validate+0xac>
(the_tod->ticks >= ticks_per_second) ||
a0005e48: e5943014 ldr r3, [r4, #20]
a0005e4c: e353003b cmp r3, #59 ; 0x3b
a0005e50: 8a00001d bhi a0005ecc <_TOD_Validate+0xac>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
a0005e54: e5943010 ldr r3, [r4, #16]
a0005e58: e353003b cmp r3, #59 ; 0x3b
a0005e5c: 8a00001a bhi a0005ecc <_TOD_Validate+0xac>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
a0005e60: e594300c ldr r3, [r4, #12]
a0005e64: e3530017 cmp r3, #23
a0005e68: 8a000017 bhi a0005ecc <_TOD_Validate+0xac>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
a0005e6c: e5943004 ldr r3, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
a0005e70: e3530000 cmp r3, #0
a0005e74: 0a000012 beq a0005ec4 <_TOD_Validate+0xa4>
(the_tod->month == 0) ||
a0005e78: e353000c cmp r3, #12
a0005e7c: 8a000012 bhi a0005ecc <_TOD_Validate+0xac>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
a0005e80: e5942000 ldr r2, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
a0005e84: e59f1058 ldr r1, [pc, #88] ; a0005ee4 <_TOD_Validate+0xc4>
a0005e88: e1520001 cmp r2, r1
a0005e8c: 9a000010 bls a0005ed4 <_TOD_Validate+0xb4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
a0005e90: e5940008 ldr r0, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
a0005e94: e3500000 cmp r0, #0
a0005e98: 0a00000e beq a0005ed8 <_TOD_Validate+0xb8>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
a0005e9c: e3120003 tst r2, #3
a0005ea0: e59f2040 ldr r2, [pc, #64] ; a0005ee8 <_TOD_Validate+0xc8>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
a0005ea4: 0283300d addeq r3, r3, #13
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
a0005ea8: e7924103 ldr r4, [r2, r3, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
a0005eac: e1500004 cmp r0, r4
a0005eb0: 83a00000 movhi r0, #0
a0005eb4: 93a00001 movls r0, #1
a0005eb8: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
a0005ebc: e1a00004 mov r0, r4 <== NOT EXECUTED
a0005ec0: e8bd8010 pop {r4, pc} <== NOT EXECUTED
a0005ec4: e1a00003 mov r0, r3 <== NOT EXECUTED
a0005ec8: e8bd8010 pop {r4, pc} <== NOT EXECUTED
a0005ecc: e3a00000 mov r0, #0
a0005ed0: e8bd8010 pop {r4, pc}
a0005ed4: e3a00000 mov r0, #0
if ( the_tod->day > days_in_month )
return false;
return true;
}
a0005ed8: e8bd8010 pop {r4, pc}
a0007140 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
a0007140: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr}
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
a0007144: e3a06000 mov r6, #0
a0007148: e58160f4 str r6, [r1, #244] ; 0xf4
a000714c: e58160f8 str r6, [r1, #248] ; 0xf8
extensions_area = NULL;
the_thread->libc_reent = NULL;
a0007150: e58160f0 str r6, [r1, #240] ; 0xf0
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
a0007154: e1a05000 mov r5, r0
a0007158: e1a04001 mov r4, r1
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
a000715c: e1a00001 mov r0, r1
a0007160: e1a01003 mov r1, r3
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
a0007164: e1a07003 mov r7, r3
a0007168: e59da024 ldr sl, [sp, #36] ; 0x24
a000716c: e5dd8028 ldrb r8, [sp, #40] ; 0x28
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
a0007170: eb00020e bl a00079b0 <_Thread_Stack_Allocate>
if ( !actual_stack_size || actual_stack_size < stack_size )
a0007174: e1500006 cmp r0, r6
a0007178: 13a03000 movne r3, #0
a000717c: 03a03001 moveq r3, #1
a0007180: e1500007 cmp r0, r7
a0007184: 21a07003 movcs r7, r3
a0007188: 33837001 orrcc r7, r3, #1
a000718c: e1570006 cmp r7, r6
a0007190: 1a000058 bne a00072f8 <_Thread_Initialize+0x1b8>
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
a0007194: e59430bc ldr r3, [r4, #188] ; 0xbc
the_stack->size = size;
a0007198: e58400b4 str r0, [r4, #180] ; 0xb4
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
a000719c: e5847050 str r7, [r4, #80] ; 0x50
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
a00071a0: e58430b8 str r3, [r4, #184] ; 0xb8
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
a00071a4: e59f315c ldr r3, [pc, #348] ; a0007308 <_Thread_Initialize+0x1c8>
the_watchdog->routine = routine;
a00071a8: e5847064 str r7, [r4, #100] ; 0x64
the_watchdog->id = id;
a00071ac: e5847068 str r7, [r4, #104] ; 0x68
a00071b0: e5936000 ldr r6, [r3]
the_watchdog->user_data = user_data;
a00071b4: e584706c str r7, [r4, #108] ; 0x6c
a00071b8: e3560000 cmp r6, #0
a00071bc: 0a000004 beq a00071d4 <_Thread_Initialize+0x94>
extensions_area = _Workspace_Allocate(
a00071c0: e2866001 add r6, r6, #1
a00071c4: e1a00106 lsl r0, r6, #2
a00071c8: eb0003dc bl a0008140 <_Workspace_Allocate>
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
a00071cc: e2506000 subs r6, r0, #0
a00071d0: 0a00002f beq a0007294 <_Thread_Initialize+0x154>
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
a00071d4: e3560000 cmp r6, #0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
a00071d8: e58460fc str r6, [r4, #252] ; 0xfc
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
a00071dc: 0a000009 beq a0007208 <_Thread_Initialize+0xc8>
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
a00071e0: e59f3120 ldr r3, [pc, #288] ; a0007308 <_Thread_Initialize+0x1c8>
a00071e4: e1a02006 mov r2, r6
a00071e8: e5930000 ldr r0, [r3]
a00071ec: e3a03000 mov r3, #0
the_thread->extensions[i] = NULL;
a00071f0: e1a01003 mov r1, r3
a00071f4: ea000001 b a0007200 <_Thread_Initialize+0xc0>
a00071f8: e4821004 str r1, [r2], #4
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
a00071fc: e2833001 add r3, r3, #1
a0007200: e1530000 cmp r3, r0
a0007204: 9afffffb bls a00071f8 <_Thread_Initialize+0xb8>
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
a0007208: e59d302c ldr r3, [sp, #44] ; 0x2c
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
a000720c: e59f00f8 ldr r0, [pc, #248] ; a000730c <_Thread_Initialize+0x1cc>
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
a0007210: e3a07000 mov r7, #0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
a0007214: e58430a4 str r3, [r4, #164] ; 0xa4
the_thread->Start.budget_callout = budget_callout;
a0007218: e59d3030 ldr r3, [sp, #48] ; 0x30
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
a000721c: e3a09001 mov r9, #1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
a0007220: e5c480a0 strb r8, [r4, #160] ; 0xa0
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
a0007224: e58430a8 str r3, [r4, #168] ; 0xa8
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
a0007228: e59d3034 ldr r3, [sp, #52] ; 0x34
the_thread->current_state = STATES_DORMANT;
a000722c: e5849010 str r9, [r4, #16]
the_thread->Wait.queue = NULL;
a0007230: e5847044 str r7, [r4, #68] ; 0x44
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
a0007234: e58430ac str r3, [r4, #172] ; 0xac
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
a0007238: e584701c str r7, [r4, #28]
the_thread->real_priority = priority;
a000723c: e584a018 str sl, [r4, #24]
the_thread->Start.initial_priority = priority;
a0007240: e584a0b0 str sl, [r4, #176] ; 0xb0
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
a0007244: e5903014 ldr r3, [r0, #20]
a0007248: e1a01004 mov r1, r4
a000724c: e12fff33 blx r3
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
a0007250: e2508000 subs r8, r0, #0
a0007254: 0a00000f beq a0007298 <_Thread_Initialize+0x158>
goto failed;
_Thread_Set_priority( the_thread, priority );
a0007258: e1a00004 mov r0, r4
a000725c: e1a0100a mov r1, sl
a0007260: eb000192 bl a00078b0 <_Thread_Set_priority>
_Thread_Stack_Free( the_thread );
return false;
}
a0007264: e595301c ldr r3, [r5, #28]
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
a0007268: e1d420b8 ldrh r2, [r4, #8]
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
a000726c: e5847084 str r7, [r4, #132] ; 0x84
a0007270: e5847088 str r7, [r4, #136] ; 0x88
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
a0007274: e7834102 str r4, [r3, r2, lsl #2]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
a0007278: e59d3038 ldr r3, [sp, #56] ; 0x38
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
a000727c: e1a00004 mov r0, r4
a0007280: e584300c str r3, [r4, #12]
a0007284: eb0002ac bl a0007d3c <_User_extensions_Thread_create>
if ( extension_status )
a0007288: e1500007 cmp r0, r7
a000728c: 0a000001 beq a0007298 <_Thread_Initialize+0x158>
a0007290: ea00001a b a0007300 <_Thread_Initialize+0x1c0>
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
a0007294: e1a08006 mov r8, r6
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
if ( the_thread->libc_reent )
a0007298: e59400f0 ldr r0, [r4, #240] ; 0xf0
a000729c: e3500000 cmp r0, #0
a00072a0: 0a000000 beq a00072a8 <_Thread_Initialize+0x168>
_Workspace_Free( the_thread->libc_reent );
a00072a4: eb0003ab bl a0008158 <_Workspace_Free>
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
a00072a8: e59400f4 ldr r0, [r4, #244] ; 0xf4
a00072ac: e3500000 cmp r0, #0
a00072b0: 0a000000 beq a00072b8 <_Thread_Initialize+0x178>
_Workspace_Free( the_thread->API_Extensions[i] );
a00072b4: eb0003a7 bl a0008158 <_Workspace_Free>
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
a00072b8: e59400f8 ldr r0, [r4, #248] ; 0xf8
a00072bc: e3500000 cmp r0, #0
a00072c0: 0a000000 beq a00072c8 <_Thread_Initialize+0x188>
_Workspace_Free( the_thread->API_Extensions[i] );
a00072c4: eb0003a3 bl a0008158 <_Workspace_Free> <== NOT EXECUTED
if ( extensions_area )
a00072c8: e3560000 cmp r6, #0
a00072cc: 0a000001 beq a00072d8 <_Thread_Initialize+0x198>
(void) _Workspace_Free( extensions_area );
a00072d0: e1a00006 mov r0, r6
a00072d4: eb00039f bl a0008158 <_Workspace_Free>
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
a00072d8: e3580000 cmp r8, #0
a00072dc: 0a000001 beq a00072e8 <_Thread_Initialize+0x1a8>
(void) _Workspace_Free( sched );
a00072e0: e1a00008 mov r0, r8
a00072e4: eb00039b bl a0008158 <_Workspace_Free>
_Thread_Stack_Free( the_thread );
a00072e8: e1a00004 mov r0, r4
a00072ec: eb0001c6 bl a0007a0c <_Thread_Stack_Free>
return false;
a00072f0: e3a00000 mov r0, #0
a00072f4: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc}
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
a00072f8: e1a00006 mov r0, r6
a00072fc: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc}
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
a0007300: e1a00009 mov r0, r9
_Thread_Stack_Free( the_thread );
return false;
}
a0007304: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc}
a00096f8 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a00096f8: e5902000 ldr r2, [r0]
a00096fc: e5913000 ldr r3, [r1]
a0009700: e1520003 cmp r2, r3
return true;
a0009704: c3a00001 movgt r0, #1
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a0009708: c12fff1e bxgt lr
return true;
if ( lhs->tv_sec < rhs->tv_sec )
a000970c: ba000005 blt a0009728 <_Timespec_Greater_than+0x30>
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
a0009710: e5900004 ldr r0, [r0, #4]
a0009714: e5913004 ldr r3, [r1, #4]
a0009718: e1500003 cmp r0, r3
a000971c: d3a00000 movle r0, #0
a0009720: c3a00001 movgt r0, #1
a0009724: e12fff1e bx lr
{
if ( lhs->tv_sec > rhs->tv_sec )
return true;
if ( lhs->tv_sec < rhs->tv_sec )
return false;
a0009728: e3a00000 mov r0, #0 <== NOT EXECUTED
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
a000972c: e12fff1e bx lr <== NOT EXECUTED
a0005b10 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
a0005b10: e92d4030 push {r4, r5, lr}
a0005b14: e1a04002 mov r4, r2
a0005b18: e1a05003 mov r5, r3
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
a0005b1c: eb000127 bl a0005fc0 <_Chain_Append_with_empty_check>
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
a0005b20: e3500000 cmp r0, #0
a0005b24: 0a000003 beq a0005b38 <rtems_chain_append_with_notification+0x28>
sc = rtems_event_send( task, events );
a0005b28: e1a00004 mov r0, r4
a0005b2c: e1a01005 mov r1, r5
}
return sc;
}
a0005b30: e8bd4030 pop {r4, r5, lr}
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
a0005b34: eafffda5 b a00051d0 <rtems_event_send>
}
return sc;
}
a0005b38: e8bd8030 pop {r4, r5, pc}
a0005bc0 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
a0005bc0: e92d4030 push {r4, r5, lr}
a0005bc4: e1a04002 mov r4, r2
a0005bc8: e1a05003 mov r5, r3
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
a0005bcc: eb00014a bl a00060fc <_Chain_Prepend_with_empty_check>
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
a0005bd0: e3500000 cmp r0, #0
a0005bd4: 0a000003 beq a0005be8 <rtems_chain_prepend_with_notification+0x28>
sc = rtems_event_send( task, events );
a0005bd8: e1a00004 mov r0, r4
a0005bdc: e1a01005 mov r1, r5
}
return sc;
}
a0005be0: e8bd4030 pop {r4, r5, lr}
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
a0005be4: eafffd79 b a00051d0 <rtems_event_send>
}
return sc;
}
a0005be8: e8bd8030 pop {r4, r5, pc}