=============================================================================== a0014b08 <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014b08: e590304c ldr r3, [r0, #76] ; 0x4c Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0014b0c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014b10: e1520003 cmp r2, r3 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0014b14: e1a06000 mov r6, r0 a0014b18: e1a0a001 mov sl, r1 a0014b1c: e1a07002 mov r7, r2 a0014b20: e59d8020 ldr r8, [sp, #32] Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014b24: 8a000013 bhi a0014b78 <_CORE_message_queue_Broadcast+0x70> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { a0014b28: e5905048 ldr r5, [r0, #72] ; 0x48 a0014b2c: e3550000 cmp r5, #0 a0014b30: 0a000009 beq a0014b5c <_CORE_message_queue_Broadcast+0x54> *count = 0; a0014b34: e3a00000 mov r0, #0 a0014b38: e5880000 str r0, [r8] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0014b3c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} const void *source, void *destination, size_t size ) { memcpy(destination, source, size); a0014b40: e594002c ldr r0, [r4, #44] ; 0x2c a0014b44: e1a0100a mov r1, sl a0014b48: e1a02007 mov r2, r7 a0014b4c: eb001e78 bl a001c534 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0014b50: e5943028 ldr r3, [r4, #40] ; 0x28 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; a0014b54: e2855001 add r5, r5, #1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0014b58: e5837000 str r7, [r3] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = a0014b5c: e1a00006 mov r0, r6 a0014b60: eb0009b9 bl a001724c <_Thread_queue_Dequeue> a0014b64: e2504000 subs r4, r0, #0 a0014b68: 1afffff4 bne a0014b40 <_CORE_message_queue_Broadcast+0x38> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; a0014b6c: e5885000 str r5, [r8] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0014b70: e1a00004 mov r0, r4 a0014b74: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE; a0014b78: e3a00001 mov r0, #1 <== NOT EXECUTED #endif } *count = number_broadcasted; return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; } a0014b7c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED =============================================================================== a000dbe4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dbe4: e92d40f0 push {r4, r5, r6, r7, lr} /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { a000dbe8: e3130003 tst r3, #3 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dbec: e1a04000 mov r4, r0 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; a000dbf0: e3a00000 mov r0, #0 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dbf4: e1a06002 mov r6, r2 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; a000dbf8: e5842044 str r2, [r4, #68] ; 0x44 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dbfc: e1a05001 mov r5, r1 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; a000dc00: e5840048 str r0, [r4, #72] ; 0x48 the_message_queue->maximum_message_size = maximum_message_size; a000dc04: e584304c str r3, [r4, #76] ; 0x4c /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { a000dc08: 01a02003 moveq r2, r3 a000dc0c: 0a000003 beq a000dc20 <_CORE_message_queue_Initialize+0x3c> allocated_message_size += sizeof(uint32_t); a000dc10: e2832004 add r2, r3, #4 allocated_message_size &= ~(sizeof(uint32_t) - 1); a000dc14: e3c22003 bic r2, r2, #3 } if (allocated_message_size < maximum_message_size) a000dc18: e1520003 cmp r2, r3 a000dc1c: 3a00001e bcc a000dc9c <_CORE_message_queue_Initialize+0xb8> /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); a000dc20: e2827010 add r7, r2, #16 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * a000dc24: e0000796 mul r0, r6, r7 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) a000dc28: e1500002 cmp r0, r2 a000dc2c: 3a000018 bcc a000dc94 <_CORE_message_queue_Initialize+0xb0> /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); a000dc30: eb000acd bl a001076c <_Workspace_Allocate> if (the_message_queue->message_buffers == 0) a000dc34: e3500000 cmp r0, #0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); a000dc38: e1a01000 mov r1, r0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) a000dc3c: e584005c str r0, [r4, #92] ; 0x5c _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) a000dc40: 0a000015 beq a000dc9c <_CORE_message_queue_Initialize+0xb8> /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( a000dc44: e2840060 add r0, r4, #96 ; 0x60 a000dc48: e1a02006 mov r2, r6 a000dc4c: e1a03007 mov r3, r7 a000dc50: eb00120a bl a0012480 <_Chain_Initialize> */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000dc54: e2843054 add r3, r4, #84 ; 0x54 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( a000dc58: e5951000 ldr r1, [r5] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a000dc5c: e5843050 str r3, [r4, #80] ; 0x50 the_chain->permanent_null = NULL; a000dc60: e3a03000 mov r3, #0 a000dc64: e5843054 str r3, [r4, #84] ; 0x54 the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); a000dc68: e2843050 add r3, r4, #80 ; 0x50 the_chain->last = _Chain_Head(the_chain); a000dc6c: e5843058 str r3, [r4, #88] ; 0x58 _Thread_queue_Initialize( a000dc70: e1a00004 mov r0, r4 a000dc74: e3510001 cmp r1, #1 a000dc78: 13a01000 movne r1, #0 a000dc7c: 03a01001 moveq r1, #1 a000dc80: e3a02080 mov r2, #128 ; 0x80 a000dc84: e3a03006 mov r3, #6 a000dc88: eb0007e3 bl a000fc1c <_Thread_queue_Initialize> THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO, STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; a000dc8c: e3a00001 mov r0, #1 a000dc90: e8bd80f0 pop {r4, r5, r6, r7, pc} */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) return false; a000dc94: e3a00000 mov r0, #0 <== NOT EXECUTED a000dc98: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } a000dc9c: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a0009da4 <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a0009da4: e59f212c ldr r2, [pc, #300] ; a0009ed8 <_CORE_mutex_Seize_interrupt_trylock+0x134> #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { a0009da8: e1a03000 mov r3, r0 executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009dac: e593c050 ldr ip, [r3, #80] ; 0x50 { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a0009db0: e5922004 ldr r2, [r2, #4] executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a0009db4: e3a00000 mov r0, #0 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009db8: e15c0000 cmp ip, r0 a0009dbc: e92d4010 push {r4, lr} Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a0009dc0: e5820034 str r0, [r2, #52] ; 0x34 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009dc4: 0a00002c beq a0009e7c <_CORE_mutex_Seize_interrupt_trylock+0xd8> the_mutex->lock = CORE_MUTEX_LOCKED; a0009dc8: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; a0009dcc: e5920008 ldr r0, [r2, #8] executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; a0009dd0: e583205c str r2, [r3, #92] ; 0x5c the_mutex->holder_id = executing->Object.id; a0009dd4: e5830060 str r0, [r3, #96] ; 0x60 the_mutex->nest_count = 1; a0009dd8: e3a00001 mov r0, #1 a0009ddc: e5830054 str r0, [r3, #84] ; 0x54 return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } a0009de0: e5930048 ldr r0, [r3, #72] ; 0x48 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a0009de4: e3500002 cmp r0, #2 a0009de8: 0a000001 beq a0009df4 <_CORE_mutex_Seize_interrupt_trylock+0x50> a0009dec: e3500003 cmp r0, #3 a0009df0: 1a000004 bne a0009e08 <_CORE_mutex_Seize_interrupt_trylock+0x64> _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a0009df4: e592c01c ldr ip, [r2, #28] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { a0009df8: e3500003 cmp r0, #3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a0009dfc: e28c4001 add r4, ip, #1 a0009e00: e582401c str r4, [r2, #28] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { a0009e04: 0a000000 beq a0009e0c <_CORE_mutex_Seize_interrupt_trylock+0x68> _ISR_Enable( *level_p ); a0009e08: ea00002a b a0009eb8 <_CORE_mutex_Seize_interrupt_trylock+0x114> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; a0009e0c: e593004c ldr r0, [r3, #76] ; 0x4c current = executing->current_priority; a0009e10: e5924014 ldr r4, [r2, #20] if ( current == ceiling ) { a0009e14: e1540000 cmp r4, r0 a0009e18: 1a000000 bne a0009e20 <_CORE_mutex_Seize_interrupt_trylock+0x7c> _ISR_Enable( *level_p ); a0009e1c: ea000025 b a0009eb8 <_CORE_mutex_Seize_interrupt_trylock+0x114> return 0; } if ( current > ceiling ) { a0009e20: 9a00000b bls a0009e54 <_CORE_mutex_Seize_interrupt_trylock+0xb0> rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a0009e24: e59f20b0 ldr r2, [pc, #176] ; a0009edc <_CORE_mutex_Seize_interrupt_trylock+0x138> a0009e28: e5920000 ldr r0, [r2] a0009e2c: e2800001 add r0, r0, #1 a0009e30: e5820000 str r0, [r2] a0009e34: e5912000 ldr r2, [r1] a0009e38: e129f002 msr CPSR_fc, r2 _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority( a0009e3c: e3a02000 mov r2, #0 a0009e40: e593005c ldr r0, [r3, #92] ; 0x5c a0009e44: e593104c ldr r1, [r3, #76] ; 0x4c a0009e48: ebfff295 bl a00068a4 <_Thread_Change_priority> the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); a0009e4c: ebfff3de bl a0006dcc <_Thread_Enable_dispatch> a0009e50: ea00001a b a0009ec0 <_CORE_mutex_Seize_interrupt_trylock+0x11c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; a0009e54: e3a00006 mov r0, #6 a0009e58: e5820034 str r0, [r2, #52] ; 0x34 the_mutex->lock = CORE_MUTEX_UNLOCKED; a0009e5c: e3a00001 mov r0, #1 a0009e60: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->nest_count = 0; /* undo locking above */ a0009e64: e3a00000 mov r0, #0 a0009e68: e5830054 str r0, [r3, #84] ; 0x54 executing->resource_count--; /* undo locking above */ a0009e6c: e582c01c str ip, [r2, #28] a0009e70: e5913000 ldr r3, [r1] a0009e74: e129f003 msr CPSR_fc, r3 a0009e78: e8bd8010 pop {r4, pc} /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { a0009e7c: e593005c ldr r0, [r3, #92] ; 0x5c a0009e80: e1500002 cmp r0, r2 a0009e84: 1a00000f bne a0009ec8 <_CORE_mutex_Seize_interrupt_trylock+0x124> switch ( the_mutex->Attributes.lock_nesting_behavior ) { a0009e88: e5932040 ldr r2, [r3, #64] ; 0x40 a0009e8c: e3520000 cmp r2, #0 a0009e90: 0a000002 beq a0009ea0 <_CORE_mutex_Seize_interrupt_trylock+0xfc> a0009e94: e3520001 cmp r2, #1 a0009e98: 1a00000c bne a0009ed0 <_CORE_mutex_Seize_interrupt_trylock+0x12c> a0009e9c: ea000003 b a0009eb0 <_CORE_mutex_Seize_interrupt_trylock+0x10c><== NOT EXECUTED case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; a0009ea0: e5932054 ldr r2, [r3, #84] ; 0x54 a0009ea4: e2822001 add r2, r2, #1 a0009ea8: e5832054 str r2, [r3, #84] ; 0x54 _ISR_Enable( *level_p ); a0009eac: ea000001 b a0009eb8 <_CORE_mutex_Seize_interrupt_trylock+0x114> return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; a0009eb0: e3a03002 mov r3, #2 <== NOT EXECUTED a0009eb4: e5803034 str r3, [r0, #52] ; 0x34 <== NOT EXECUTED a0009eb8: e5913000 ldr r3, [r1] a0009ebc: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a0009ec0: e3a00000 mov r0, #0 a0009ec4: e8bd8010 pop {r4, pc} /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a0009ec8: e3a00001 mov r0, #1 a0009ecc: e8bd8010 pop {r4, pc} a0009ed0: e3a00001 mov r0, #1 a0009ed4: e8bd8010 pop {r4, pc} =============================================================================== a0006c34 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006c34: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0006c38: e5903014 ldr r3, [r0, #20] bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006c3c: e24dd030 sub sp, sp, #48 ; 0x30 uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006c40: e59f44c8 ldr r4, [pc, #1224] ; a0007110 <_Heap_Walk+0x4dc> int source, bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0006c44: e58d3024 str r3, [sp, #36] ; 0x24 Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; a0006c48: e5903024 ldr r3, [r0, #36] ; 0x24 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006c4c: e31200ff tst r2, #255 ; 0xff bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; a0006c50: e590c020 ldr ip, [r0, #32] Heap_Block *const last_block = heap->last_block; a0006c54: e58d3028 str r3, [sp, #40] ; 0x28 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006c58: e59f34b4 ldr r3, [pc, #1204] ; a0007114 <_Heap_Walk+0x4e0> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006c5c: e1a06000 mov r6, r0 a0006c60: e1a05001 mov r5, r1 uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006c64: 11a04003 movne r4, r3 if ( !_System_state_Is_up( _System_state_Get() ) ) { a0006c68: e59f34a8 ldr r3, [pc, #1192] ; a0007118 <_Heap_Walk+0x4e4> Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; a0006c6c: e5909010 ldr r9, [r0, #16] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; a0006c70: e58dc020 str ip, [sp, #32] Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a0006c74: e5933000 ldr r3, [r3] a0006c78: e3530003 cmp r3, #3 a0006c7c: 1a000118 bne a00070e4 <_Heap_Walk+0x4b0> Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( a0006c80: e59dc024 ldr ip, [sp, #36] ; 0x24 a0006c84: e59d2020 ldr r2, [sp, #32] a0006c88: e58dc000 str ip, [sp] a0006c8c: e5903018 ldr r3, [r0, #24] a0006c90: e58d3004 str r3, [sp, #4] a0006c94: e590301c ldr r3, [r0, #28] a0006c98: e58d200c str r2, [sp, #12] a0006c9c: e59f2478 ldr r2, [pc, #1144] ; a000711c <_Heap_Walk+0x4e8> a0006ca0: e58d3008 str r3, [sp, #8] a0006ca4: e59d3028 ldr r3, [sp, #40] ; 0x28 a0006ca8: e58d3010 str r3, [sp, #16] a0006cac: e5903008 ldr r3, [r0, #8] a0006cb0: e58d3014 str r3, [sp, #20] a0006cb4: e590300c ldr r3, [r0, #12] a0006cb8: e1a00001 mov r0, r1 a0006cbc: e3a01000 mov r1, #0 a0006cc0: e58d3018 str r3, [sp, #24] a0006cc4: e1a03009 mov r3, r9 a0006cc8: e12fff34 blx r4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { a0006ccc: e3590000 cmp r9, #0 a0006cd0: 1a000005 bne a0006cec <_Heap_Walk+0xb8> (*printer)( source, true, "page size is zero\n" ); a0006cd4: e1a00005 mov r0, r5 a0006cd8: e3a01001 mov r1, #1 a0006cdc: e59f243c ldr r2, [pc, #1084] ; a0007120 <_Heap_Walk+0x4ec> a0006ce0: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006ce4: e1a08009 mov r8, r9 a0006ce8: ea0000fe b a00070e8 <_Heap_Walk+0x4b4> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { a0006cec: e2198003 ands r8, r9, #3 (*printer)( a0006cf0: 11a00005 movne r0, r5 a0006cf4: 13a01001 movne r1, #1 a0006cf8: 159f2424 ldrne r2, [pc, #1060] ; a0007124 <_Heap_Walk+0x4f0> a0006cfc: 11a03009 movne r3, r9 a0006d00: 1a0000ff bne a0007104 <_Heap_Walk+0x4d0> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006d04: e59d0024 ldr r0, [sp, #36] ; 0x24 a0006d08: e1a01009 mov r1, r9 a0006d0c: ebffe758 bl a0000a74 <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { a0006d10: e250b000 subs fp, r0, #0 a0006d14: 0a000005 beq a0006d30 <_Heap_Walk+0xfc> (*printer)( a0006d18: e1a00005 mov r0, r5 a0006d1c: e3a01001 mov r1, #1 a0006d20: e59f2400 ldr r2, [pc, #1024] ; a0007128 <_Heap_Walk+0x4f4> a0006d24: e59d3024 ldr r3, [sp, #36] ; 0x24 a0006d28: e12fff34 blx r4 a0006d2c: ea0000ed b a00070e8 <_Heap_Walk+0x4b4> a0006d30: e59dc020 ldr ip, [sp, #32] a0006d34: e1a01009 mov r1, r9 a0006d38: e28c0008 add r0, ip, #8 a0006d3c: ebffe74c bl a0000a74 <__umodsi3> ); return false; } if ( a0006d40: e250a000 subs sl, r0, #0 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( a0006d44: 11a00005 movne r0, r5 a0006d48: 13a01001 movne r1, #1 a0006d4c: 159f23d8 ldrne r2, [pc, #984] ; a000712c <_Heap_Walk+0x4f8> a0006d50: 159d3020 ldrne r3, [sp, #32] a0006d54: 1a0000c3 bne a0007068 <_Heap_Walk+0x434> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006d58: e59d2020 ldr r2, [sp, #32] a0006d5c: e5928004 ldr r8, [r2, #4] ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { a0006d60: e2188001 ands r8, r8, #1 (*printer)( a0006d64: 01a00005 moveq r0, r5 a0006d68: 03a01001 moveq r1, #1 a0006d6c: 059f23bc ldreq r2, [pc, #956] ; a0007130 <_Heap_Walk+0x4fc> a0006d70: 0a000009 beq a0006d9c <_Heap_Walk+0x168> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006d74: e59d3028 ldr r3, [sp, #40] ; 0x28 a0006d78: e5937004 ldr r7, [r3, #4] a0006d7c: e3c77001 bic r7, r7, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0006d80: e0837007 add r7, r3, r7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006d84: e5978004 ldr r8, [r7, #4] ); return false; } if ( _Heap_Is_free( last_block ) ) { a0006d88: e2188001 ands r8, r8, #1 a0006d8c: 1a000004 bne a0006da4 <_Heap_Walk+0x170> (*printer)( a0006d90: e59f239c ldr r2, [pc, #924] ; a0007134 <_Heap_Walk+0x500> a0006d94: e1a00005 mov r0, r5 a0006d98: e3a01001 mov r1, #1 a0006d9c: e12fff34 blx r4 a0006da0: ea0000d0 b a00070e8 <_Heap_Walk+0x4b4> ); return false; } if ( a0006da4: e59dc020 ldr ip, [sp, #32] a0006da8: e157000c cmp r7, ip a0006dac: 0a000005 beq a0006dc8 <_Heap_Walk+0x194> _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( a0006db0: e1a00005 mov r0, r5 <== NOT EXECUTED a0006db4: e3a01001 mov r1, #1 <== NOT EXECUTED a0006db8: e59f2378 ldr r2, [pc, #888] ; a0007138 <_Heap_Walk+0x504> <== NOT EXECUTED a0006dbc: e12fff34 blx r4 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006dc0: e1a0800a mov r8, sl <== NOT EXECUTED a0006dc4: ea0000c7 b a00070e8 <_Heap_Walk+0x4b4> <== NOT EXECUTED int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; a0006dc8: e596b010 ldr fp, [r6, #16] block = next_block; } while ( block != first_block ); return true; } a0006dcc: e5968008 ldr r8, [r6, #8] Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); a0006dd0: e1a0a006 mov sl, r6 a0006dd4: ea000032 b a0006ea4 <_Heap_Walk+0x270> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006dd8: e5963020 ldr r3, [r6, #32] a0006ddc: e1530008 cmp r3, r8 a0006de0: 83a0c000 movhi ip, #0 a0006de4: 8a000003 bhi a0006df8 <_Heap_Walk+0x1c4> a0006de8: e596c024 ldr ip, [r6, #36] ; 0x24 a0006dec: e15c0008 cmp ip, r8 a0006df0: 33a0c000 movcc ip, #0 a0006df4: 23a0c001 movcs ip, #1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { a0006df8: e21cc0ff ands ip, ip, #255 ; 0xff (*printer)( a0006dfc: 01a00005 moveq r0, r5 a0006e00: 03a01001 moveq r1, #1 a0006e04: 059f2330 ldreq r2, [pc, #816] ; a000713c <_Heap_Walk+0x508> a0006e08: 0a000012 beq a0006e58 <_Heap_Walk+0x224> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006e0c: e2880008 add r0, r8, #8 a0006e10: e1a0100b mov r1, fp a0006e14: ebffe716 bl a0000a74 <__umodsi3> ); return false; } if ( a0006e18: e250c000 subs ip, r0, #0 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( a0006e1c: 11a00005 movne r0, r5 a0006e20: 13a01001 movne r1, #1 a0006e24: 159f2314 ldrne r2, [pc, #788] ; a0007140 <_Heap_Walk+0x50c> a0006e28: 11a03008 movne r3, r8 a0006e2c: 1a0000b4 bne a0007104 <_Heap_Walk+0x4d0> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006e30: e5983004 ldr r3, [r8, #4] a0006e34: e3c33001 bic r3, r3, #1 block = next_block; } while ( block != first_block ); return true; } a0006e38: e0883003 add r3, r8, r3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006e3c: e5933004 ldr r3, [r3, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a0006e40: e2133001 ands r3, r3, #1 a0006e44: e58d302c str r3, [sp, #44] ; 0x2c a0006e48: 0a000008 beq a0006e70 <_Heap_Walk+0x23c> (*printer)( a0006e4c: e59f22f0 ldr r2, [pc, #752] ; a0007144 <_Heap_Walk+0x510> a0006e50: e1a00005 mov r0, r5 a0006e54: e3a01001 mov r1, #1 a0006e58: e1a03008 mov r3, r8 a0006e5c: e58dc01c str ip, [sp, #28] a0006e60: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006e64: e59dc01c ldr ip, [sp, #28] a0006e68: e1a0800c mov r8, ip a0006e6c: ea00009d b a00070e8 <_Heap_Walk+0x4b4> ); return false; } if ( free_block->prev != prev_block ) { a0006e70: e598300c ldr r3, [r8, #12] a0006e74: e153000a cmp r3, sl a0006e78: 0a000007 beq a0006e9c <_Heap_Walk+0x268> (*printer)( a0006e7c: e58d3000 str r3, [sp] a0006e80: e1a00005 mov r0, r5 a0006e84: e1a03008 mov r3, r8 a0006e88: e3a01001 mov r1, #1 a0006e8c: e59f22b4 ldr r2, [pc, #692] ; a0007148 <_Heap_Walk+0x514> a0006e90: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006e94: e59d802c ldr r8, [sp, #44] ; 0x2c a0006e98: ea000092 b a00070e8 <_Heap_Walk+0x4b4> return false; } prev_block = free_block; free_block = free_block->next; a0006e9c: e1a0a008 mov sl, r8 a0006ea0: e5988008 ldr r8, [r8, #8] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a0006ea4: e1580006 cmp r8, r6 a0006ea8: 1affffca bne a0006dd8 <_Heap_Walk+0x1a4> a0006eac: ea000000 b a0006eb4 <_Heap_Walk+0x280> block->prev_size ); } block = next_block; } while ( block != first_block ); a0006eb0: e1a07008 mov r7, r8 return true; } a0006eb4: e5973004 ldr r3, [r7, #4] const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006eb8: e5962020 ldr r2, [r6, #32] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006ebc: e3c3a001 bic sl, r3, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0006ec0: e087800a add r8, r7, sl const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006ec4: e1520008 cmp r2, r8 a0006ec8: 83a0b000 movhi fp, #0 a0006ecc: 8a000003 bhi a0006ee0 <_Heap_Walk+0x2ac> a0006ed0: e596b024 ldr fp, [r6, #36] ; 0x24 a0006ed4: e15b0008 cmp fp, r8 a0006ed8: 33a0b000 movcc fp, #0 a0006edc: 23a0b001 movcs fp, #1 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { a0006ee0: e21bb0ff ands fp, fp, #255 ; 0xff a0006ee4: 1a000006 bne a0006f04 <_Heap_Walk+0x2d0> (*printer)( a0006ee8: e58d8000 str r8, [sp] a0006eec: e1a00005 mov r0, r5 a0006ef0: e3a01001 mov r1, #1 a0006ef4: e59f2250 ldr r2, [pc, #592] ; a000714c <_Heap_Walk+0x518> a0006ef8: e1a03007 mov r3, r7 a0006efc: e12fff34 blx r4 a0006f00: ea000059 b a000706c <_Heap_Walk+0x438> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; a0006f04: e59d2028 ldr r2, [sp, #40] ; 0x28 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006f08: e1a0000a mov r0, sl a0006f0c: e1a01009 mov r1, r9 a0006f10: e057b002 subs fp, r7, r2 a0006f14: 13a0b001 movne fp, #1 a0006f18: e58d301c str r3, [sp, #28] a0006f1c: ebffe6d4 bl a0000a74 <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { a0006f20: e3500000 cmp r0, #0 a0006f24: e59d301c ldr r3, [sp, #28] a0006f28: 0a000005 beq a0006f44 <_Heap_Walk+0x310> a0006f2c: e35b0000 cmp fp, #0 (*printer)( a0006f30: 158da000 strne sl, [sp] a0006f34: 11a00005 movne r0, r5 a0006f38: 13a01001 movne r1, #1 a0006f3c: 159f220c ldrne r2, [pc, #524] ; a0007150 <_Heap_Walk+0x51c> a0006f40: 1a000013 bne a0006f94 <_Heap_Walk+0x360> ); return false; } if ( block_size < min_block_size && is_not_last_block ) { a0006f44: e59dc024 ldr ip, [sp, #36] ; 0x24 a0006f48: e15a000c cmp sl, ip a0006f4c: 2a000008 bcs a0006f74 <_Heap_Walk+0x340> a0006f50: e35b0000 cmp fp, #0 a0006f54: 0a000006 beq a0006f74 <_Heap_Walk+0x340> (*printer)( a0006f58: e88d1400 stm sp, {sl, ip} a0006f5c: e1a00005 mov r0, r5 a0006f60: e3a01001 mov r1, #1 a0006f64: e59f21e8 ldr r2, [pc, #488] ; a0007154 <_Heap_Walk+0x520> a0006f68: e1a03007 mov r3, r7 a0006f6c: e12fff34 blx r4 a0006f70: ea000064 b a0007108 <_Heap_Walk+0x4d4> ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { a0006f74: e1580007 cmp r8, r7 a0006f78: 8a000008 bhi a0006fa0 <_Heap_Walk+0x36c> a0006f7c: e35b0000 cmp fp, #0 a0006f80: 0a000006 beq a0006fa0 <_Heap_Walk+0x36c> (*printer)( a0006f84: e59f21cc ldr r2, [pc, #460] ; a0007158 <_Heap_Walk+0x524> a0006f88: e58d8000 str r8, [sp] a0006f8c: e1a00005 mov r0, r5 a0006f90: e3a01001 mov r1, #1 a0006f94: e1a03007 mov r3, r7 a0006f98: e12fff34 blx r4 a0006f9c: ea000059 b a0007108 <_Heap_Walk+0x4d4> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006fa0: e203b001 and fp, r3, #1 a0006fa4: e5983004 ldr r3, [r8, #4] ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a0006fa8: e3130001 tst r3, #1 a0006fac: 1a000038 bne a0007094 <_Heap_Walk+0x460> false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? a0006fb0: e597200c ldr r2, [r7, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0006fb4: e5963008 ldr r3, [r6, #8] block = next_block; } while ( block != first_block ); return true; } a0006fb8: e596100c ldr r1, [r6, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0006fbc: e1520003 cmp r2, r3 a0006fc0: 059f0194 ldreq r0, [pc, #404] ; a000715c <_Heap_Walk+0x528> a0006fc4: 0a000003 beq a0006fd8 <_Heap_Walk+0x3a4> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), a0006fc8: e59f3190 ldr r3, [pc, #400] ; a0007160 <_Heap_Walk+0x52c> a0006fcc: e1520006 cmp r2, r6 a0006fd0: e59f018c ldr r0, [pc, #396] ; a0007164 <_Heap_Walk+0x530> a0006fd4: 01a00003 moveq r0, r3 block->next, block->next == last_free_block ? a0006fd8: e5973008 ldr r3, [r7, #8] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0006fdc: e1530001 cmp r3, r1 a0006fe0: 059f1180 ldreq r1, [pc, #384] ; a0007168 <_Heap_Walk+0x534> a0006fe4: 0a000003 beq a0006ff8 <_Heap_Walk+0x3c4> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") a0006fe8: e59fc17c ldr ip, [pc, #380] ; a000716c <_Heap_Walk+0x538> a0006fec: e1530006 cmp r3, r6 a0006ff0: e59f116c ldr r1, [pc, #364] ; a0007164 <_Heap_Walk+0x530> a0006ff4: 01a0100c moveq r1, ip Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0006ff8: e58d2004 str r2, [sp, #4] a0006ffc: e58d0008 str r0, [sp, #8] a0007000: e58d300c str r3, [sp, #12] a0007004: e58d1010 str r1, [sp, #16] a0007008: e1a03007 mov r3, r7 a000700c: e58da000 str sl, [sp] a0007010: e1a00005 mov r0, r5 a0007014: e3a01000 mov r1, #0 a0007018: e59f2150 ldr r2, [pc, #336] ; a0007170 <_Heap_Walk+0x53c> a000701c: e12fff34 blx r4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { a0007020: e5983000 ldr r3, [r8] a0007024: e15a0003 cmp sl, r3 a0007028: 0a000008 beq a0007050 <_Heap_Walk+0x41c> (*printer)( a000702c: e58d3004 str r3, [sp, #4] a0007030: e58da000 str sl, [sp] a0007034: e58d8008 str r8, [sp, #8] a0007038: e1a00005 mov r0, r5 a000703c: e3a01001 mov r1, #1 a0007040: e59f212c ldr r2, [pc, #300] ; a0007174 <_Heap_Walk+0x540> a0007044: e1a03007 mov r3, r7 a0007048: e12fff34 blx r4 a000704c: ea00002d b a0007108 <_Heap_Walk+0x4d4> ); return false; } if ( !prev_used ) { a0007050: e35b0000 cmp fp, #0 a0007054: 1a000006 bne a0007074 <_Heap_Walk+0x440> (*printer)( a0007058: e59f2118 ldr r2, [pc, #280] ; a0007178 <_Heap_Walk+0x544> a000705c: e1a00005 mov r0, r5 a0007060: e3a01001 mov r1, #1 a0007064: e1a03007 mov r3, r7 a0007068: e12fff34 blx r4 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a000706c: e1a0800b mov r8, fp a0007070: ea00001c b a00070e8 <_Heap_Walk+0x4b4> block = next_block; } while ( block != first_block ); return true; } a0007074: e5963008 ldr r3, [r6, #8] a0007078: ea000002 b a0007088 <_Heap_Walk+0x454> { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { a000707c: e1530007 cmp r3, r7 a0007080: 0a000014 beq a00070d8 <_Heap_Walk+0x4a4> return true; } free_block = free_block->next; a0007084: e5933008 ldr r3, [r3, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a0007088: e1530006 cmp r3, r6 a000708c: 1afffffa bne a000707c <_Heap_Walk+0x448> a0007090: ea000017 b a00070f4 <_Heap_Walk+0x4c0> if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { a0007094: e35b0000 cmp fp, #0 a0007098: 0a000006 beq a00070b8 <_Heap_Walk+0x484> (*printer)( a000709c: e58da000 str sl, [sp] a00070a0: e1a00005 mov r0, r5 a00070a4: e3a01000 mov r1, #0 a00070a8: e59f20cc ldr r2, [pc, #204] ; a000717c <_Heap_Walk+0x548> a00070ac: e1a03007 mov r3, r7 a00070b0: e12fff34 blx r4 a00070b4: ea000007 b a00070d8 <_Heap_Walk+0x4a4> "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( a00070b8: e58da000 str sl, [sp] a00070bc: e5973000 ldr r3, [r7] a00070c0: e1a00005 mov r0, r5 a00070c4: e1a0100b mov r1, fp a00070c8: e58d3004 str r3, [sp, #4] a00070cc: e59f20ac ldr r2, [pc, #172] ; a0007180 <_Heap_Walk+0x54c> a00070d0: e1a03007 mov r3, r7 a00070d4: e12fff34 blx r4 block->prev_size ); } block = next_block; } while ( block != first_block ); a00070d8: e59d2020 ldr r2, [sp, #32] a00070dc: e1580002 cmp r8, r2 a00070e0: 1affff72 bne a0006eb0 <_Heap_Walk+0x27c> Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; a00070e4: e3a08001 mov r8, #1 block = next_block; } while ( block != first_block ); return true; } a00070e8: e1a00008 mov r0, r8 a00070ec: e28dd030 add sp, sp, #48 ; 0x30 a00070f0: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( a00070f4: e59f2088 ldr r2, [pc, #136] ; a0007184 <_Heap_Walk+0x550> a00070f8: e1a00005 mov r0, r5 a00070fc: e3a01001 mov r1, #1 a0007100: e1a03007 mov r3, r7 a0007104: e12fff34 blx r4 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a0007108: e3a08000 mov r8, #0 a000710c: eafffff5 b a00070e8 <_Heap_Walk+0x4b4> =============================================================================== a0006054 <_Internal_error_Occurred>: bool is_internal, Internal_errors_t the_error ) { _Internal_errors_What_happened.the_source = the_source; a0006054: e59f3038 ldr r3, [pc, #56] ; a0006094 <_Internal_error_Occurred+0x40> void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0006058: e20110ff and r1, r1, #255 ; 0xff a000605c: e52de004 push {lr} ; (str lr, [sp, #-4]!) _Internal_errors_What_happened.the_source = the_source; a0006060: e5830000 str r0, [r3] _Internal_errors_What_happened.is_internal = is_internal; a0006064: e5c31004 strb r1, [r3, #4] _Internal_errors_What_happened.the_error = the_error; a0006068: e5832008 str r2, [r3, #8] void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a000606c: e1a04002 mov r4, r2 _Internal_errors_What_happened.the_source = the_source; _Internal_errors_What_happened.is_internal = is_internal; _Internal_errors_What_happened.the_error = the_error; _User_extensions_Fatal( the_source, is_internal, the_error ); a0006070: eb0006e5 bl a0007c0c <_User_extensions_Fatal> RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; a0006074: e59f301c ldr r3, [pc, #28] ; a0006098 <_Internal_error_Occurred+0x44><== NOT EXECUTED a0006078: e3a02005 mov r2, #5 <== NOT EXECUTED a000607c: e5832000 str r2, [r3] <== NOT EXECUTED static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a0006080: e10f2000 mrs r2, CPSR <== NOT EXECUTED a0006084: e3823080 orr r3, r2, #128 ; 0x80 <== NOT EXECUTED a0006088: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); a000608c: e1a00004 mov r0, r4 <== NOT EXECUTED a0006090: eafffffe b a0006090 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED =============================================================================== a0005e18 <_TOD_Validate>: { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0005e18: e59f30b4 ldr r3, [pc, #180] ; a0005ed4 <_TOD_Validate+0xbc> */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { a0005e1c: e92d4010 push {r4, lr} uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0005e20: e2504000 subs r4, r0, #0 { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0005e24: e593100c ldr r1, [r3, #12] if ((!the_tod) || a0005e28: 0a000021 beq a0005eb4 <_TOD_Validate+0x9c> ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / a0005e2c: e59f00a4 ldr r0, [pc, #164] ; a0005ed8 <_TOD_Validate+0xc0> a0005e30: eb0042e1 bl a00169bc <__aeabi_uidiv> rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0005e34: e5943018 ldr r3, [r4, #24] a0005e38: e1530000 cmp r3, r0 a0005e3c: 2a000020 bcs a0005ec4 <_TOD_Validate+0xac> (the_tod->ticks >= ticks_per_second) || a0005e40: e5943014 ldr r3, [r4, #20] a0005e44: e353003b cmp r3, #59 ; 0x3b a0005e48: 8a00001d bhi a0005ec4 <_TOD_Validate+0xac> (the_tod->second >= TOD_SECONDS_PER_MINUTE) || a0005e4c: e5943010 ldr r3, [r4, #16] a0005e50: e353003b cmp r3, #59 ; 0x3b a0005e54: 8a00001a bhi a0005ec4 <_TOD_Validate+0xac> (the_tod->minute >= TOD_MINUTES_PER_HOUR) || a0005e58: e594300c ldr r3, [r4, #12] a0005e5c: e3530017 cmp r3, #23 a0005e60: 8a000017 bhi a0005ec4 <_TOD_Validate+0xac> (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || a0005e64: e5943004 ldr r3, [r4, #4] rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || a0005e68: e3530000 cmp r3, #0 a0005e6c: 0a000012 beq a0005ebc <_TOD_Validate+0xa4> (the_tod->month == 0) || a0005e70: e353000c cmp r3, #12 a0005e74: 8a000012 bhi a0005ec4 <_TOD_Validate+0xac> (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0005e78: e5942000 ldr r2, [r4] (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || a0005e7c: e59f1058 ldr r1, [pc, #88] ; a0005edc <_TOD_Validate+0xc4> a0005e80: e1520001 cmp r2, r1 a0005e84: 9a000010 bls a0005ecc <_TOD_Validate+0xb4> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) a0005e88: e5940008 ldr r0, [r4, #8] (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0005e8c: e3500000 cmp r0, #0 a0005e90: 0a00000e beq a0005ed0 <_TOD_Validate+0xb8> (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) a0005e94: e3120003 tst r2, #3 a0005e98: e59f2040 ldr r2, [pc, #64] ; a0005ee0 <_TOD_Validate+0xc8> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a0005e9c: 0283300d addeq r3, r3, #13 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a0005ea0: e7924103 ldr r4, [r2, r3, lsl #2] * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( a0005ea4: e1500004 cmp r0, r4 a0005ea8: 83a00000 movhi r0, #0 a0005eac: 93a00001 movls r0, #1 a0005eb0: e8bd8010 pop {r4, pc} (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a0005eb4: e1a00004 mov r0, r4 <== NOT EXECUTED a0005eb8: e8bd8010 pop {r4, pc} <== NOT EXECUTED a0005ebc: e1a00003 mov r0, r3 <== NOT EXECUTED a0005ec0: e8bd8010 pop {r4, pc} <== NOT EXECUTED a0005ec4: e3a00000 mov r0, #0 a0005ec8: e8bd8010 pop {r4, pc} a0005ecc: e3a00000 mov r0, #0 if ( the_tod->day > days_in_month ) return false; return true; } a0005ed0: e8bd8010 pop {r4, pc} =============================================================================== a0006e84 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006e84: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; a0006e88: e3a06000 mov r6, #0 a0006e8c: e5816100 str r6, [r1, #256] ; 0x100 a0006e90: e5816104 str r6, [r1, #260] ; 0x104 extensions_area = NULL; the_thread->libc_reent = NULL; a0006e94: e58160fc str r6, [r1, #252] ; 0xfc Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006e98: e1a05000 mov r5, r0 a0006e9c: e1a04001 mov r4, r1 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0006ea0: e1a00001 mov r0, r1 a0006ea4: e1a01003 mov r1, r3 Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006ea8: e1a07003 mov r7, r3 a0006eac: e59d8020 ldr r8, [sp, #32] a0006eb0: e5dda024 ldrb sl, [sp, #36] ; 0x24 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0006eb4: eb000261 bl a0007840 <_Thread_Stack_Allocate> if ( !actual_stack_size || actual_stack_size < stack_size ) a0006eb8: e1500006 cmp r0, r6 a0006ebc: 13a03000 movne r3, #0 a0006ec0: 03a03001 moveq r3, #1 a0006ec4: e1500007 cmp r0, r7 a0006ec8: 21a07003 movcs r7, r3 a0006ecc: 33837001 orrcc r7, r3, #1 a0006ed0: e1570006 cmp r7, r6 a0006ed4: 1a00004c bne a000700c <_Thread_Initialize+0x188> Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0006ed8: e59430c8 ldr r3, [r4, #200] ; 0xc8 the_stack->size = size; a0006edc: e58400c0 str r0, [r4, #192] ; 0xc0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; a0006ee0: e5847050 str r7, [r4, #80] ; 0x50 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0006ee4: e58430c4 str r3, [r4, #196] ; 0xc4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a0006ee8: e59f312c ldr r3, [pc, #300] ; a000701c <_Thread_Initialize+0x198> the_watchdog->routine = routine; a0006eec: e5847064 str r7, [r4, #100] ; 0x64 the_watchdog->id = id; a0006ef0: e5847068 str r7, [r4, #104] ; 0x68 a0006ef4: e5936000 ldr r6, [r3] the_watchdog->user_data = user_data; a0006ef8: e584706c str r7, [r4, #108] ; 0x6c a0006efc: e3560000 cmp r6, #0 a0006f00: 0a000004 beq a0006f18 <_Thread_Initialize+0x94> extensions_area = _Workspace_Allocate( a0006f04: e2866001 add r6, r6, #1 a0006f08: e1a00106 lsl r0, r6, #2 a0006f0c: eb000452 bl a000805c <_Workspace_Allocate> (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) a0006f10: e2506000 subs r6, r0, #0 a0006f14: 0a000028 beq a0006fbc <_Thread_Initialize+0x138> * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { a0006f18: e3560000 cmp r6, #0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; a0006f1c: e5846108 str r6, [r4, #264] ; 0x108 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { a0006f20: 0a000009 beq a0006f4c <_Thread_Initialize+0xc8> for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0006f24: e59f30f0 ldr r3, [pc, #240] ; a000701c <_Thread_Initialize+0x198> a0006f28: e1a02006 mov r2, r6 a0006f2c: e5930000 ldr r0, [r3] a0006f30: e3a03000 mov r3, #0 the_thread->extensions[i] = NULL; a0006f34: e1a01003 mov r1, r3 a0006f38: ea000001 b a0006f44 <_Thread_Initialize+0xc0> a0006f3c: e4821004 str r1, [r2], #4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0006f40: e2833001 add r3, r3, #1 a0006f44: e1530000 cmp r3, r0 a0006f48: 9afffffb bls a0006f3c <_Thread_Initialize+0xb8> /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a0006f4c: e59d3028 ldr r3, [sp, #40] ; 0x28 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a0006f50: e3a07000 mov r7, #0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; a0006f54: e5c4a0ac strb sl, [r4, #172] ; 0xac the_thread->Start.budget_algorithm = budget_algorithm; a0006f58: e58430b0 str r3, [r4, #176] ; 0xb0 the_thread->Start.budget_callout = budget_callout; a0006f5c: e59d302c ldr r3, [sp, #44] ; 0x2c #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a0006f60: e3a0a001 mov sl, #1 the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0006f64: e1a00004 mov r0, r4 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; a0006f68: e58430b4 str r3, [r4, #180] ; 0xb4 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0006f6c: e59d3030 ldr r3, [sp, #48] ; 0x30 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0006f70: e1a01008 mov r1, r8 #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a0006f74: e584a010 str sl, [r4, #16] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0006f78: e58430b8 str r3, [r4, #184] ; 0xb8 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a0006f7c: e5847044 str r7, [r4, #68] ; 0x44 the_thread->resource_count = 0; a0006f80: e584701c str r7, [r4, #28] the_thread->real_priority = priority; a0006f84: e5848018 str r8, [r4, #24] the_thread->Start.initial_priority = priority; a0006f88: e58480bc str r8, [r4, #188] ; 0xbc _Thread_Set_priority( the_thread, priority ); a0006f8c: eb00019d bl a0007608 <_Thread_Set_priority> _Thread_Stack_Free( the_thread ); return false; } a0006f90: e595301c ldr r3, [r5, #28] Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( a0006f94: e1d420b8 ldrh r2, [r4, #8] /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); a0006f98: e5847084 str r7, [r4, #132] ; 0x84 a0006f9c: e5847088 str r7, [r4, #136] ; 0x88 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; a0006fa0: e7834102 str r4, [r3, r2, lsl #2] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; a0006fa4: e59d3034 ldr r3, [sp, #52] ; 0x34 * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); a0006fa8: e1a00004 mov r0, r4 a0006fac: e584300c str r3, [r4, #12] a0006fb0: eb000328 bl a0007c58 <_User_extensions_Thread_create> if ( extension_status ) a0006fb4: e1500007 cmp r0, r7 a0006fb8: 1a000015 bne a0007014 <_Thread_Initialize+0x190> return true; failed: if ( the_thread->libc_reent ) a0006fbc: e59400fc ldr r0, [r4, #252] ; 0xfc a0006fc0: e3500000 cmp r0, #0 a0006fc4: 0a000000 beq a0006fcc <_Thread_Initialize+0x148> _Workspace_Free( the_thread->libc_reent ); a0006fc8: eb000429 bl a0008074 <_Workspace_Free> for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0006fcc: e5940100 ldr r0, [r4, #256] ; 0x100 a0006fd0: e3500000 cmp r0, #0 a0006fd4: 0a000000 beq a0006fdc <_Thread_Initialize+0x158> _Workspace_Free( the_thread->API_Extensions[i] ); a0006fd8: eb000425 bl a0008074 <_Workspace_Free> failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0006fdc: e5940104 ldr r0, [r4, #260] ; 0x104 a0006fe0: e3500000 cmp r0, #0 a0006fe4: 0a000000 beq a0006fec <_Thread_Initialize+0x168> _Workspace_Free( the_thread->API_Extensions[i] ); a0006fe8: eb000421 bl a0008074 <_Workspace_Free> <== NOT EXECUTED if ( extensions_area ) a0006fec: e3560000 cmp r6, #0 a0006ff0: 0a000001 beq a0006ffc <_Thread_Initialize+0x178> (void) _Workspace_Free( extensions_area ); a0006ff4: e1a00006 mov r0, r6 a0006ff8: eb00041d bl a0008074 <_Workspace_Free> #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); a0006ffc: e1a00004 mov r0, r4 a0007000: eb000225 bl a000789c <_Thread_Stack_Free> return false; a0007004: e3a00000 mov r0, #0 a0007008: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ a000700c: e1a00006 mov r0, r6 a0007010: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; a0007014: e1a0000a mov r0, sl _Thread_Stack_Free( the_thread ); return false; } a0007018: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} =============================================================================== a0013fc8 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { a0013fc8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a0013fcc: e24dd018 sub sp, sp, #24 a0013fd0: e28db00c add fp, sp, #12 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; a0013fd4: e3a03000 mov r3, #0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a0013fd8: e28ba004 add sl, fp, #4 a0013fdc: e28d7004 add r7, sp, #4 a0013fe0: e1a04000 mov r4, r0 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0013fe4: e58da00c str sl, [sp, #12] the_chain->permanent_null = NULL; a0013fe8: e58d3010 str r3, [sp, #16] the_chain->last = _Chain_Head(the_chain); a0013fec: e58db014 str fp, [sp, #20] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a0013ff0: e1a0500d mov r5, sp */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0013ff4: e58d7000 str r7, [sp] the_chain->permanent_null = NULL; a0013ff8: e98d2008 stmib sp, {r3, sp} */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0013ffc: e2809030 add r9, r0, #48 ; 0x30 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; a0014000: e584b078 str fp, [r4, #120] ; 0x78 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a0014004: e2848068 add r8, r4, #104 ; 0x68 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0014008: e59f2154 ldr r2, [pc, #340] ; a0014164 <_Timer_server_Body+0x19c> */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a001400c: e1a00009 mov r0, r9 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0014010: e5923000 ldr r3, [r2] /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; a0014014: e594103c ldr r1, [r4, #60] ; 0x3c watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014018: e1a02005 mov r2, r5 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; a001401c: e584303c str r3, [r4, #60] ; 0x3c _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014020: e0611003 rsb r1, r1, r3 a0014024: eb001095 bl a0018280 <_Watchdog_Adjust_to_chain> static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0014028: e59f3138 ldr r3, [pc, #312] ; a0014168 <_Timer_server_Body+0x1a0> Watchdog_Interval last_snapshot = watchdogs->last_snapshot; a001402c: e5942074 ldr r2, [r4, #116] ; 0x74 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0014030: e5936000 ldr r6, [r3] /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { a0014034: e1560002 cmp r6, r2 a0014038: 9a000004 bls a0014050 <_Timer_server_Body+0x88> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a001403c: e0621006 rsb r1, r2, r6 a0014040: e1a00008 mov r0, r8 a0014044: e1a02005 mov r2, r5 a0014048: eb00108c bl a0018280 <_Watchdog_Adjust_to_chain> a001404c: ea000004 b a0014064 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { a0014050: 2a000003 bcs a0014064 <_Timer_server_Body+0x9c> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a0014054: e1a00008 mov r0, r8 a0014058: e3a01001 mov r1, #1 a001405c: e0662002 rsb r2, r6, r2 a0014060: eb00105e bl a00181e0 <_Watchdog_Adjust> } watchdogs->last_snapshot = snapshot; a0014064: e5846074 str r6, [r4, #116] ; 0x74 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0014068: e5940078 ldr r0, [r4, #120] ; 0x78 a001406c: eb000288 bl a0014a94 <_Chain_Get> if ( timer == NULL ) { a0014070: e2506000 subs r6, r0, #0 a0014074: 0a000009 beq a00140a0 <_Timer_server_Body+0xd8> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a0014078: e5963038 ldr r3, [r6, #56] ; 0x38 a001407c: e3530001 cmp r3, #1 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); a0014080: 01a00009 moveq r0, r9 static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a0014084: 0a000002 beq a0014094 <_Timer_server_Body+0xcc> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { a0014088: e3530003 cmp r3, #3 a001408c: 1afffff5 bne a0014068 <_Timer_server_Body+0xa0> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); a0014090: e1a00008 mov r0, r8 a0014094: e2861010 add r1, r6, #16 a0014098: eb0010a3 bl a001832c <_Watchdog_Insert> a001409c: eafffff1 b a0014068 <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); a00140a0: ebffff96 bl a0013f00 if ( _Chain_Is_empty( insert_chain ) ) { a00140a4: e59d300c ldr r3, [sp, #12] a00140a8: e153000a cmp r3, sl a00140ac: 1a000006 bne a00140cc <_Timer_server_Body+0x104> ts->insert_chain = NULL; a00140b0: e5846078 str r6, [r4, #120] ; 0x78 a00140b4: e129f000 msr CPSR_fc, r0 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { a00140b8: e59d3000 ldr r3, [sp] a00140bc: e1530007 cmp r3, r7 ) { if ( !_Chain_Is_empty(the_chain)) return _Chain_Get_first_unprotected(the_chain); else return NULL; a00140c0: 13a06000 movne r6, #0 a00140c4: 1a000002 bne a00140d4 <_Timer_server_Body+0x10c> a00140c8: ea000013 b a001411c <_Timer_server_Body+0x154> a00140cc: e129f000 msr CPSR_fc, r0 <== NOT EXECUTED a00140d0: eaffffcc b a0014008 <_Timer_server_Body+0x40> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); a00140d4: ebffff89 bl a0013f00 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a00140d8: e59d2000 ldr r2, [sp] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) a00140dc: e1520007 cmp r2, r7 a00140e0: 0a00000b beq a0014114 <_Timer_server_Body+0x14c> { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; a00140e4: e5923000 ldr r3, [r2] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { a00140e8: e3520000 cmp r2, #0 the_chain->first = new_first; a00140ec: e58d3000 str r3, [sp] new_first->previous = _Chain_Head(the_chain); a00140f0: e5835004 str r5, [r3, #4] a00140f4: 0a000006 beq a0014114 <_Timer_server_Body+0x14c> watchdog->state = WATCHDOG_INACTIVE; a00140f8: e5826008 str r6, [r2, #8] a00140fc: e129f000 msr CPSR_fc, r0 /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); a0014100: e592301c ldr r3, [r2, #28] a0014104: e5920020 ldr r0, [r2, #32] a0014108: e5921024 ldr r1, [r2, #36] ; 0x24 a001410c: e12fff33 blx r3 } a0014110: eaffffef b a00140d4 <_Timer_server_Body+0x10c> a0014114: e129f000 msr CPSR_fc, r0 a0014118: eaffffb8 b a0014000 <_Timer_server_Body+0x38> } else { ts->active = false; a001411c: e3a03000 mov r3, #0 a0014120: e5c4307c strb r3, [r4, #124] ; 0x7c /* * Block until there is something to do. */ _Thread_Disable_dispatch(); a0014124: ebffff79 bl a0013f10 <_Thread_Disable_dispatch> _Thread_Set_state( ts->thread, STATES_DELAYING ); a0014128: e3a01008 mov r1, #8 a001412c: e5940000 ldr r0, [r4] a0014130: eb000ded bl a00178ec <_Thread_Set_state> _Timer_server_Reset_interval_system_watchdog( ts ); a0014134: e1a00004 mov r0, r4 a0014138: ebffff7a bl a0013f28 <_Timer_server_Reset_interval_system_watchdog> _Timer_server_Reset_tod_system_watchdog( ts ); a001413c: e1a00004 mov r0, r4 a0014140: ebffff8c bl a0013f78 <_Timer_server_Reset_tod_system_watchdog> _Thread_Enable_dispatch(); a0014144: eb000b6e bl a0016f04 <_Thread_Enable_dispatch> ts->active = true; a0014148: e3a03001 mov r3, #1 a001414c: e5c4307c strb r3, [r4, #124] ; 0x7c static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); a0014150: e2840008 add r0, r4, #8 a0014154: eb0010ca bl a0018484 <_Watchdog_Remove> static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); a0014158: e2840040 add r0, r4, #64 ; 0x40 a001415c: eb0010c8 bl a0018484 <_Watchdog_Remove> a0014160: eaffffa6 b a0014000 <_Timer_server_Body+0x38> =============================================================================== a0009704 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a0009704: e5902000 ldr r2, [r0] a0009708: e5913000 ldr r3, [r1] a000970c: e1520003 cmp r2, r3 return true; a0009710: c3a00001 movgt r0, #1 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a0009714: c12fff1e bxgt lr return true; if ( lhs->tv_sec < rhs->tv_sec ) a0009718: ba000005 blt a0009734 <_Timespec_Greater_than+0x30> #include #include #include bool _Timespec_Greater_than( a000971c: e5900004 ldr r0, [r0, #4] a0009720: e5913004 ldr r3, [r1, #4] a0009724: e1500003 cmp r0, r3 a0009728: d3a00000 movle r0, #0 a000972c: c3a00001 movgt r0, #1 a0009730: e12fff1e bx lr { if ( lhs->tv_sec > rhs->tv_sec ) return true; if ( lhs->tv_sec < rhs->tv_sec ) return false; a0009734: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } a0009738: e12fff1e bx lr <== NOT EXECUTED =============================================================================== a000973c <_Timespec_Less_than>: bool _Timespec_Less_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec < rhs->tv_sec ) a000973c: e5902000 ldr r2, [r0] a0009740: e5913000 ldr r3, [r1] a0009744: e1520003 cmp r2, r3 return true; a0009748: b3a00001 movlt r0, #1 bool _Timespec_Less_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec < rhs->tv_sec ) a000974c: b12fff1e bxlt lr return true; if ( lhs->tv_sec > rhs->tv_sec ) a0009750: ca000005 bgt a000976c <_Timespec_Less_than+0x30> #include #include #include bool _Timespec_Less_than( a0009754: e5900004 ldr r0, [r0, #4] a0009758: e5913004 ldr r3, [r1, #4] a000975c: e1500003 cmp r0, r3 a0009760: a3a00000 movge r0, #0 a0009764: b3a00001 movlt r0, #1 a0009768: e12fff1e bx lr { if ( lhs->tv_sec < rhs->tv_sec ) return true; if ( lhs->tv_sec > rhs->tv_sec ) return false; a000976c: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec < rhs->tv_nsec ) return true; return false; } a0009770: e12fff1e bx lr <== NOT EXECUTED =============================================================================== a0007c0c <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0007c0c: e92d41f0 push {r4, r5, r6, r7, r8, lr} Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0007c10: e59f503c ldr r5, [pc, #60] ; a0007c54 <_User_extensions_Fatal+0x48> void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0007c14: e1a08000 mov r8, r0 a0007c18: e1a07002 mov r7, r2 a0007c1c: e20160ff and r6, r1, #255 ; 0xff Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0007c20: e5954008 ldr r4, [r5, #8] a0007c24: ea000007 b a0007c48 <_User_extensions_Fatal+0x3c> !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) a0007c28: e5943030 ldr r3, [r4, #48] ; 0x30 a0007c2c: e3530000 cmp r3, #0 a0007c30: 0a000003 beq a0007c44 <_User_extensions_Fatal+0x38> (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); a0007c34: e1a00008 mov r0, r8 a0007c38: e1a01006 mov r1, r6 a0007c3c: e1a02007 mov r2, r7 a0007c40: e12fff33 blx r3 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { a0007c44: e5944004 ldr r4, [r4, #4] ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0007c48: e1540005 cmp r4, r5 a0007c4c: 1afffff5 bne a0007c28 <_User_extensions_Fatal+0x1c> the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } a0007c50: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== a0005978 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { a0005978: e92d4030 push {r4, r5, lr} a000597c: e1a04002 mov r4, r2 a0005980: e1a05003 mov r5, r3 RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); a0005984: eb000126 bl a0005e24 <_Chain_Append_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { a0005988: e3500000 cmp r0, #0 a000598c: 0a000003 beq a00059a0 sc = rtems_event_send( task, events ); a0005990: e1a00004 mov r0, r4 a0005994: e1a01005 mov r1, r5 } return sc; } a0005998: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { sc = rtems_event_send( task, events ); a000599c: eafffda8 b a0005044 } return sc; } a00059a0: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED =============================================================================== a00059a4 : rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) { a00059a4: e92d4030 push {r4, r5, lr} a00059a8: e1a04001 mov r4, r1 RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node ); a00059ac: e1a01003 mov r1, r3 a00059b0: e1a05002 mov r5, r2 a00059b4: eb00013d bl a0005eb0 <_Chain_Get_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { a00059b8: e3500000 cmp r0, #0 a00059bc: 0a000003 beq a00059d0 sc = rtems_event_send( task, events ); a00059c0: e1a00004 mov r0, r4 a00059c4: e1a01005 mov r1, r5 } return sc; } a00059c8: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { sc = rtems_event_send( task, events ); a00059cc: eafffd9c b a0005044 } return sc; } a00059d0: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED =============================================================================== a0005a28 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { a0005a28: e92d4030 push {r4, r5, lr} a0005a2c: e1a04002 mov r4, r2 a0005a30: e1a05003 mov r5, r3 RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); a0005a34: eb000148 bl a0005f5c <_Chain_Prepend_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { a0005a38: e3500000 cmp r0, #0 a0005a3c: 0a000003 beq a0005a50 sc = rtems_event_send( task, events ); a0005a40: e1a00004 mov r0, r4 a0005a44: e1a01005 mov r1, r5 } return sc; } a0005a48: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { sc = rtems_event_send( task, events ); a0005a4c: eafffd7c b a0005044 } return sc; } a0005a50: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED =============================================================================== a0007a74 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { a0007a74: e92d41f0 push {r4, r5, r6, r7, r8, lr} uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) a0007a78: e2508000 subs r8, r0, #0 a0007a7c: 0a000012 beq a0007acc a0007a80: e59f4048 ldr r4, [pc, #72] ; a0007ad0 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) a0007a84: e284700c add r7, r4, #12 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; a0007a88: e5b43004 ldr r3, [r4, #4]! a0007a8c: e5936004 ldr r6, [r3, #4] if ( !information ) a0007a90: e3560000 cmp r6, #0 a0007a94: 13a05001 movne r5, #1 a0007a98: 1a000006 bne a0007ab8 a0007a9c: ea000008 b a0007ac4 continue; for ( i=1 ; i <= information->maximum ; i++ ) { the_thread = (Thread_Control *)information->local_table[ i ]; a0007aa0: e596301c ldr r3, [r6, #28] a0007aa4: e7930105 ldr r0, [r3, r5, lsl #2] if ( !the_thread ) a0007aa8: e3500000 cmp r0, #0 a0007aac: 0a000000 beq a0007ab4 continue; (*routine)(the_thread); a0007ab0: e12fff38 blx r8 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { a0007ab4: e2855001 add r5, r5, #1 a0007ab8: e1d631b0 ldrh r3, [r6, #16] a0007abc: e1550003 cmp r5, r3 a0007ac0: 9afffff6 bls a0007aa0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { a0007ac4: e1540007 cmp r4, r7 a0007ac8: 1affffee bne a0007a88 a0007acc: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== a000b764 : rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { a000b764: e92d4010 push {r4, lr} Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) a000b768: e2514000 subs r4, r1, #0 rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { a000b76c: e1a03000 mov r3, r0 a000b770: e24dd014 sub sp, sp, #20 Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) return RTEMS_INVALID_ADDRESS; a000b774: 03a00009 moveq r0, #9 Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) a000b778: 0a000023 beq a000b80c a000b77c: e1a01003 mov r1, r3 a000b780: e28d2010 add r2, sp, #16 a000b784: e59f0088 ldr r0, [pc, #136] ; a000b814 a000b788: ebfff212 bl a0007fd8 <_Objects_Get> return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { a000b78c: e59d2010 ldr r2, [sp, #16] a000b790: e1a03000 mov r3, r0 a000b794: e3520000 cmp r2, #0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; a000b798: 13a00004 movne r0, #4 if ( !status ) return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { a000b79c: 1a00001a bne a000b80c case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; a000b7a0: e5932040 ldr r2, [r3, #64] ; 0x40 status->state = the_period->state; a000b7a4: e5933038 ldr r3, [r3, #56] ; 0x38 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; a000b7a8: e5922008 ldr r2, [r2, #8] status->state = the_period->state; /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { a000b7ac: e3530000 cmp r3, #0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; status->state = the_period->state; a000b7b0: e884000c stm r4, {r2, r3} /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timespec_Set_to_zero( &status->since_last_period ); a000b7b4: 05843008 streq r3, [r4, #8] a000b7b8: 0584300c streq r3, [r4, #12] _Timespec_Set_to_zero( &status->executed_since_last_period ); a000b7bc: 05843010 streq r3, [r4, #16] a000b7c0: 05843014 streq r3, [r4, #20] a000b7c4: 0a00000e beq a000b804 } else { /* * Grab the current status. */ valid_status = a000b7c8: e1a0100d mov r1, sp a000b7cc: e28d2008 add r2, sp, #8 a000b7d0: ebffe942 bl a0005ce0 <_Rate_monotonic_Get_status> _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) { a000b7d4: e3500000 cmp r0, #0 a000b7d8: 1a000002 bne a000b7e8 _Thread_Enable_dispatch(); a000b7dc: ebfff423 bl a0008870 <_Thread_Enable_dispatch> <== NOT EXECUTED return RTEMS_NOT_DEFINED; a000b7e0: e3a0000b mov r0, #11 <== NOT EXECUTED a000b7e4: ea000008 b a000b80c <== NOT EXECUTED } #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_To_timespec( a000b7e8: e89d000c ldm sp, {r2, r3} a000b7ec: e5842008 str r2, [r4, #8] a000b7f0: e584300c str r3, [r4, #12] &since_last_period, &status->since_last_period ); _Timestamp_To_timespec( a000b7f4: e28d3008 add r3, sp, #8 a000b7f8: e893000c ldm r3, {r2, r3} a000b7fc: e5842010 str r2, [r4, #16] a000b800: e5843014 str r3, [r4, #20] status->since_last_period = since_last_period; status->executed_since_last_period = executed; #endif } _Thread_Enable_dispatch(); a000b804: ebfff419 bl a0008870 <_Thread_Enable_dispatch> return RTEMS_SUCCESSFUL; a000b808: e3a00000 mov r0, #0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } a000b80c: e28dd014 add sp, sp, #20 a000b810: e8bd8010 pop {r4, pc}