=============================================================================== a0014c20 <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014c20: e590304c ldr r3, [r0, #76] ; 0x4c Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0014c24: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014c28: e1520003 cmp r2, r3 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0014c2c: e1a06000 mov r6, r0 a0014c30: e1a0a001 mov sl, r1 a0014c34: e1a07002 mov r7, r2 a0014c38: e59d8020 ldr r8, [sp, #32] Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0014c3c: 8a000013 bhi a0014c90 <_CORE_message_queue_Broadcast+0x70> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { a0014c40: e5905048 ldr r5, [r0, #72] ; 0x48 a0014c44: e3550000 cmp r5, #0 a0014c48: 0a000009 beq a0014c74 <_CORE_message_queue_Broadcast+0x54> *count = 0; a0014c4c: e3a00000 mov r0, #0 a0014c50: e5880000 str r0, [r8] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0014c54: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} const void *source, void *destination, size_t size ) { memcpy(destination, source, size); a0014c58: e594002c ldr r0, [r4, #44] ; 0x2c a0014c5c: e1a0100a mov r1, sl a0014c60: e1a02007 mov r2, r7 a0014c64: eb001ea8 bl a001c70c buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0014c68: e5943028 ldr r3, [r4, #40] ; 0x28 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; a0014c6c: e2855001 add r5, r5, #1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0014c70: e5837000 str r7, [r3] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = a0014c74: e1a00006 mov r0, r6 a0014c78: eb0009b2 bl a0017348 <_Thread_queue_Dequeue> a0014c7c: e2504000 subs r4, r0, #0 a0014c80: 1afffff4 bne a0014c58 <_CORE_message_queue_Broadcast+0x38> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; a0014c84: e5885000 str r5, [r8] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0014c88: e1a00004 mov r0, r4 a0014c8c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE; a0014c90: e3a00001 mov r0, #1 <== NOT EXECUTED #endif } *count = number_broadcasted; return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; } a0014c94: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED =============================================================================== a000dc6c <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dc6c: e92d40f0 push {r4, r5, r6, r7, lr} /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { a000dc70: e3130003 tst r3, #3 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dc74: e1a04000 mov r4, r0 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; a000dc78: e3a00000 mov r0, #0 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dc7c: e1a06002 mov r6, r2 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; a000dc80: e5842044 str r2, [r4, #68] ; 0x44 CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { a000dc84: e1a05001 mov r5, r1 size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; a000dc88: e5840048 str r0, [r4, #72] ; 0x48 the_message_queue->maximum_message_size = maximum_message_size; a000dc8c: e584304c str r3, [r4, #76] ; 0x4c /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { a000dc90: 01a02003 moveq r2, r3 a000dc94: 0a000003 beq a000dca8 <_CORE_message_queue_Initialize+0x3c> allocated_message_size += sizeof(uint32_t); a000dc98: e2832004 add r2, r3, #4 allocated_message_size &= ~(sizeof(uint32_t) - 1); a000dc9c: e3c22003 bic r2, r2, #3 } if (allocated_message_size < maximum_message_size) a000dca0: e1520003 cmp r2, r3 a000dca4: 3a00001e bcc a000dd24 <_CORE_message_queue_Initialize+0xb8> /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); a000dca8: e2827010 add r7, r2, #16 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * a000dcac: e0000796 mul r0, r6, r7 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) a000dcb0: e1500002 cmp r0, r2 a000dcb4: 3a000018 bcc a000dd1c <_CORE_message_queue_Initialize+0xb0> /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); a000dcb8: eb000acd bl a00107f4 <_Workspace_Allocate> if (the_message_queue->message_buffers == 0) a000dcbc: e3500000 cmp r0, #0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); a000dcc0: e1a01000 mov r1, r0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) a000dcc4: e584005c str r0, [r4, #92] ; 0x5c _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) a000dcc8: 0a000015 beq a000dd24 <_CORE_message_queue_Initialize+0xb8> /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( a000dccc: e2840060 add r0, r4, #96 ; 0x60 a000dcd0: e1a02006 mov r2, r6 a000dcd4: e1a03007 mov r3, r7 a000dcd8: eb001229 bl a0012584 <_Chain_Initialize> */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000dcdc: e2843054 add r3, r4, #84 ; 0x54 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( a000dce0: e5951000 ldr r1, [r5] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a000dce4: e5843050 str r3, [r4, #80] ; 0x50 the_chain->permanent_null = NULL; a000dce8: e3a03000 mov r3, #0 a000dcec: e5843054 str r3, [r4, #84] ; 0x54 the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); a000dcf0: e2843050 add r3, r4, #80 ; 0x50 the_chain->last = _Chain_Head(the_chain); a000dcf4: e5843058 str r3, [r4, #88] ; 0x58 _Thread_queue_Initialize( a000dcf8: e1a00004 mov r0, r4 a000dcfc: e3510001 cmp r1, #1 a000dd00: 13a01000 movne r1, #0 a000dd04: 03a01001 moveq r1, #1 a000dd08: e3a02080 mov r2, #128 ; 0x80 a000dd0c: e3a03006 mov r3, #6 a000dd10: eb0007e3 bl a000fca4 <_Thread_queue_Initialize> THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO, STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; a000dd14: e3a00001 mov r0, #1 a000dd18: e8bd80f0 pop {r4, r5, r6, r7, pc} */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) return false; a000dd1c: e3a00000 mov r0, #0 <== NOT EXECUTED a000dd20: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } a000dd24: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a0009e98 <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a0009e98: e59f212c ldr r2, [pc, #300] ; a0009fcc <_CORE_mutex_Seize_interrupt_trylock+0x134> #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { a0009e9c: e1a03000 mov r3, r0 executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009ea0: e593c050 ldr ip, [r3, #80] ; 0x50 { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a0009ea4: e5922004 ldr r2, [r2, #4] executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a0009ea8: e3a00000 mov r0, #0 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009eac: e15c0000 cmp ip, r0 a0009eb0: e92d4010 push {r4, lr} Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a0009eb4: e5820034 str r0, [r2, #52] ; 0x34 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a0009eb8: 0a00002c beq a0009f70 <_CORE_mutex_Seize_interrupt_trylock+0xd8> the_mutex->lock = CORE_MUTEX_LOCKED; a0009ebc: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; a0009ec0: e5920008 ldr r0, [r2, #8] executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; a0009ec4: e583205c str r2, [r3, #92] ; 0x5c the_mutex->holder_id = executing->Object.id; a0009ec8: e5830060 str r0, [r3, #96] ; 0x60 the_mutex->nest_count = 1; a0009ecc: e3a00001 mov r0, #1 a0009ed0: e5830054 str r0, [r3, #84] ; 0x54 return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } a0009ed4: e5930048 ldr r0, [r3, #72] ; 0x48 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a0009ed8: e3500002 cmp r0, #2 a0009edc: 0a000001 beq a0009ee8 <_CORE_mutex_Seize_interrupt_trylock+0x50> a0009ee0: e3500003 cmp r0, #3 a0009ee4: 1a000004 bne a0009efc <_CORE_mutex_Seize_interrupt_trylock+0x64> _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a0009ee8: e592c01c ldr ip, [r2, #28] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { a0009eec: e3500003 cmp r0, #3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a0009ef0: e28c4001 add r4, ip, #1 a0009ef4: e582401c str r4, [r2, #28] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { a0009ef8: 0a000000 beq a0009f00 <_CORE_mutex_Seize_interrupt_trylock+0x68> _ISR_Enable( *level_p ); a0009efc: ea00002a b a0009fac <_CORE_mutex_Seize_interrupt_trylock+0x114> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; a0009f00: e593004c ldr r0, [r3, #76] ; 0x4c current = executing->current_priority; a0009f04: e5924014 ldr r4, [r2, #20] if ( current == ceiling ) { a0009f08: e1540000 cmp r4, r0 a0009f0c: 1a000000 bne a0009f14 <_CORE_mutex_Seize_interrupt_trylock+0x7c> _ISR_Enable( *level_p ); a0009f10: ea000025 b a0009fac <_CORE_mutex_Seize_interrupt_trylock+0x114> return 0; } if ( current > ceiling ) { a0009f14: 9a00000b bls a0009f48 <_CORE_mutex_Seize_interrupt_trylock+0xb0> rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a0009f18: e59f20b0 ldr r2, [pc, #176] ; a0009fd0 <_CORE_mutex_Seize_interrupt_trylock+0x138> a0009f1c: e5920000 ldr r0, [r2] a0009f20: e2800001 add r0, r0, #1 a0009f24: e5820000 str r0, [r2] a0009f28: e5912000 ldr r2, [r1] a0009f2c: e129f002 msr CPSR_fc, r2 _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority( a0009f30: e3a02000 mov r2, #0 a0009f34: e593005c ldr r0, [r3, #92] ; 0x5c a0009f38: e593104c ldr r1, [r3, #76] ; 0x4c a0009f3c: ebfff276 bl a000691c <_Thread_Change_priority> the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); a0009f40: ebfff3bf bl a0006e44 <_Thread_Enable_dispatch> a0009f44: ea00001a b a0009fb4 <_CORE_mutex_Seize_interrupt_trylock+0x11c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; a0009f48: e3a00006 mov r0, #6 a0009f4c: e5820034 str r0, [r2, #52] ; 0x34 the_mutex->lock = CORE_MUTEX_UNLOCKED; a0009f50: e3a00001 mov r0, #1 a0009f54: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->nest_count = 0; /* undo locking above */ a0009f58: e3a00000 mov r0, #0 a0009f5c: e5830054 str r0, [r3, #84] ; 0x54 executing->resource_count--; /* undo locking above */ a0009f60: e582c01c str ip, [r2, #28] a0009f64: e5913000 ldr r3, [r1] a0009f68: e129f003 msr CPSR_fc, r3 a0009f6c: e8bd8010 pop {r4, pc} /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { a0009f70: e593005c ldr r0, [r3, #92] ; 0x5c a0009f74: e1500002 cmp r0, r2 a0009f78: 1a00000f bne a0009fbc <_CORE_mutex_Seize_interrupt_trylock+0x124> switch ( the_mutex->Attributes.lock_nesting_behavior ) { a0009f7c: e5932040 ldr r2, [r3, #64] ; 0x40 a0009f80: e3520000 cmp r2, #0 a0009f84: 0a000002 beq a0009f94 <_CORE_mutex_Seize_interrupt_trylock+0xfc> a0009f88: e3520001 cmp r2, #1 a0009f8c: 1a00000c bne a0009fc4 <_CORE_mutex_Seize_interrupt_trylock+0x12c> a0009f90: ea000003 b a0009fa4 <_CORE_mutex_Seize_interrupt_trylock+0x10c><== NOT EXECUTED case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; a0009f94: e5932054 ldr r2, [r3, #84] ; 0x54 a0009f98: e2822001 add r2, r2, #1 a0009f9c: e5832054 str r2, [r3, #84] ; 0x54 _ISR_Enable( *level_p ); a0009fa0: ea000001 b a0009fac <_CORE_mutex_Seize_interrupt_trylock+0x114> return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; a0009fa4: e3a03002 mov r3, #2 <== NOT EXECUTED a0009fa8: e5803034 str r3, [r0, #52] ; 0x34 <== NOT EXECUTED a0009fac: e5913000 ldr r3, [r1] a0009fb0: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a0009fb4: e3a00000 mov r0, #0 a0009fb8: e8bd8010 pop {r4, pc} /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a0009fbc: e3a00001 mov r0, #1 a0009fc0: e8bd8010 pop {r4, pc} a0009fc4: e3a00001 mov r0, #1 a0009fc8: e8bd8010 pop {r4, pc} =============================================================================== a0006c9c <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006c9c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0006ca0: e5903014 ldr r3, [r0, #20] bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006ca4: e24dd030 sub sp, sp, #48 ; 0x30 uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006ca8: e59f44c8 ldr r4, [pc, #1224] ; a0007178 <_Heap_Walk+0x4dc> int source, bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0006cac: e58d3024 str r3, [sp, #36] ; 0x24 Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; a0006cb0: e5903024 ldr r3, [r0, #36] ; 0x24 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006cb4: e31200ff tst r2, #255 ; 0xff bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; a0006cb8: e590c020 ldr ip, [r0, #32] Heap_Block *const last_block = heap->last_block; a0006cbc: e58d3028 str r3, [sp, #40] ; 0x28 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006cc0: e59f34b4 ldr r3, [pc, #1204] ; a000717c <_Heap_Walk+0x4e0> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0006cc4: e1a06000 mov r6, r0 a0006cc8: e1a05001 mov r5, r1 uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0006ccc: 11a04003 movne r4, r3 if ( !_System_state_Is_up( _System_state_Get() ) ) { a0006cd0: e59f34a8 ldr r3, [pc, #1192] ; a0007180 <_Heap_Walk+0x4e4> Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; a0006cd4: e5909010 ldr r9, [r0, #16] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; a0006cd8: e58dc020 str ip, [sp, #32] Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a0006cdc: e5933000 ldr r3, [r3] a0006ce0: e3530003 cmp r3, #3 a0006ce4: 1a000118 bne a000714c <_Heap_Walk+0x4b0> Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( a0006ce8: e59dc024 ldr ip, [sp, #36] ; 0x24 a0006cec: e59d2020 ldr r2, [sp, #32] a0006cf0: e58dc000 str ip, [sp] a0006cf4: e5903018 ldr r3, [r0, #24] a0006cf8: e58d3004 str r3, [sp, #4] a0006cfc: e590301c ldr r3, [r0, #28] a0006d00: e58d200c str r2, [sp, #12] a0006d04: e59f2478 ldr r2, [pc, #1144] ; a0007184 <_Heap_Walk+0x4e8> a0006d08: e58d3008 str r3, [sp, #8] a0006d0c: e59d3028 ldr r3, [sp, #40] ; 0x28 a0006d10: e58d3010 str r3, [sp, #16] a0006d14: e5903008 ldr r3, [r0, #8] a0006d18: e58d3014 str r3, [sp, #20] a0006d1c: e590300c ldr r3, [r0, #12] a0006d20: e1a00001 mov r0, r1 a0006d24: e3a01000 mov r1, #0 a0006d28: e58d3018 str r3, [sp, #24] a0006d2c: e1a03009 mov r3, r9 a0006d30: e12fff34 blx r4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { a0006d34: e3590000 cmp r9, #0 a0006d38: 1a000005 bne a0006d54 <_Heap_Walk+0xb8> (*printer)( source, true, "page size is zero\n" ); a0006d3c: e1a00005 mov r0, r5 a0006d40: e3a01001 mov r1, #1 a0006d44: e59f243c ldr r2, [pc, #1084] ; a0007188 <_Heap_Walk+0x4ec> a0006d48: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006d4c: e1a08009 mov r8, r9 a0006d50: ea0000fe b a0007150 <_Heap_Walk+0x4b4> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { a0006d54: e2198003 ands r8, r9, #3 (*printer)( a0006d58: 11a00005 movne r0, r5 a0006d5c: 13a01001 movne r1, #1 a0006d60: 159f2424 ldrne r2, [pc, #1060] ; a000718c <_Heap_Walk+0x4f0> a0006d64: 11a03009 movne r3, r9 a0006d68: 1a0000ff bne a000716c <_Heap_Walk+0x4d0> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006d6c: e59d0024 ldr r0, [sp, #36] ; 0x24 a0006d70: e1a01009 mov r1, r9 a0006d74: ebffe73e bl a0000a74 <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { a0006d78: e250b000 subs fp, r0, #0 a0006d7c: 0a000005 beq a0006d98 <_Heap_Walk+0xfc> (*printer)( a0006d80: e1a00005 mov r0, r5 a0006d84: e3a01001 mov r1, #1 a0006d88: e59f2400 ldr r2, [pc, #1024] ; a0007190 <_Heap_Walk+0x4f4> a0006d8c: e59d3024 ldr r3, [sp, #36] ; 0x24 a0006d90: e12fff34 blx r4 a0006d94: ea0000ed b a0007150 <_Heap_Walk+0x4b4> a0006d98: e59dc020 ldr ip, [sp, #32] a0006d9c: e1a01009 mov r1, r9 a0006da0: e28c0008 add r0, ip, #8 a0006da4: ebffe732 bl a0000a74 <__umodsi3> ); return false; } if ( a0006da8: e250a000 subs sl, r0, #0 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( a0006dac: 11a00005 movne r0, r5 a0006db0: 13a01001 movne r1, #1 a0006db4: 159f23d8 ldrne r2, [pc, #984] ; a0007194 <_Heap_Walk+0x4f8> a0006db8: 159d3020 ldrne r3, [sp, #32] a0006dbc: 1a0000c3 bne a00070d0 <_Heap_Walk+0x434> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006dc0: e59d2020 ldr r2, [sp, #32] a0006dc4: e5928004 ldr r8, [r2, #4] ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { a0006dc8: e2188001 ands r8, r8, #1 (*printer)( a0006dcc: 01a00005 moveq r0, r5 a0006dd0: 03a01001 moveq r1, #1 a0006dd4: 059f23bc ldreq r2, [pc, #956] ; a0007198 <_Heap_Walk+0x4fc> a0006dd8: 0a000009 beq a0006e04 <_Heap_Walk+0x168> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006ddc: e59d3028 ldr r3, [sp, #40] ; 0x28 a0006de0: e5937004 ldr r7, [r3, #4] a0006de4: e3c77001 bic r7, r7, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0006de8: e0837007 add r7, r3, r7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006dec: e5978004 ldr r8, [r7, #4] ); return false; } if ( _Heap_Is_free( last_block ) ) { a0006df0: e2188001 ands r8, r8, #1 a0006df4: 1a000004 bne a0006e0c <_Heap_Walk+0x170> (*printer)( a0006df8: e59f239c ldr r2, [pc, #924] ; a000719c <_Heap_Walk+0x500> a0006dfc: e1a00005 mov r0, r5 a0006e00: e3a01001 mov r1, #1 a0006e04: e12fff34 blx r4 a0006e08: ea0000d0 b a0007150 <_Heap_Walk+0x4b4> ); return false; } if ( a0006e0c: e59dc020 ldr ip, [sp, #32] a0006e10: e157000c cmp r7, ip a0006e14: 0a000005 beq a0006e30 <_Heap_Walk+0x194> _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( a0006e18: e1a00005 mov r0, r5 <== NOT EXECUTED a0006e1c: e3a01001 mov r1, #1 <== NOT EXECUTED a0006e20: e59f2378 ldr r2, [pc, #888] ; a00071a0 <_Heap_Walk+0x504> <== NOT EXECUTED a0006e24: e12fff34 blx r4 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006e28: e1a0800a mov r8, sl <== NOT EXECUTED a0006e2c: ea0000c7 b a0007150 <_Heap_Walk+0x4b4> <== NOT EXECUTED int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; a0006e30: e596b010 ldr fp, [r6, #16] block = next_block; } while ( block != first_block ); return true; } a0006e34: e5968008 ldr r8, [r6, #8] Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); a0006e38: e1a0a006 mov sl, r6 a0006e3c: ea000032 b a0006f0c <_Heap_Walk+0x270> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006e40: e5963020 ldr r3, [r6, #32] a0006e44: e1530008 cmp r3, r8 a0006e48: 83a0c000 movhi ip, #0 a0006e4c: 8a000003 bhi a0006e60 <_Heap_Walk+0x1c4> a0006e50: e596c024 ldr ip, [r6, #36] ; 0x24 a0006e54: e15c0008 cmp ip, r8 a0006e58: 33a0c000 movcc ip, #0 a0006e5c: 23a0c001 movcs ip, #1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { a0006e60: e21cc0ff ands ip, ip, #255 ; 0xff (*printer)( a0006e64: 01a00005 moveq r0, r5 a0006e68: 03a01001 moveq r1, #1 a0006e6c: 059f2330 ldreq r2, [pc, #816] ; a00071a4 <_Heap_Walk+0x508> a0006e70: 0a000012 beq a0006ec0 <_Heap_Walk+0x224> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006e74: e2880008 add r0, r8, #8 a0006e78: e1a0100b mov r1, fp a0006e7c: ebffe6fc bl a0000a74 <__umodsi3> ); return false; } if ( a0006e80: e250c000 subs ip, r0, #0 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( a0006e84: 11a00005 movne r0, r5 a0006e88: 13a01001 movne r1, #1 a0006e8c: 159f2314 ldrne r2, [pc, #788] ; a00071a8 <_Heap_Walk+0x50c> a0006e90: 11a03008 movne r3, r8 a0006e94: 1a0000b4 bne a000716c <_Heap_Walk+0x4d0> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006e98: e5983004 ldr r3, [r8, #4] a0006e9c: e3c33001 bic r3, r3, #1 block = next_block; } while ( block != first_block ); return true; } a0006ea0: e0883003 add r3, r8, r3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0006ea4: e5933004 ldr r3, [r3, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a0006ea8: e2133001 ands r3, r3, #1 a0006eac: e58d302c str r3, [sp, #44] ; 0x2c a0006eb0: 0a000008 beq a0006ed8 <_Heap_Walk+0x23c> (*printer)( a0006eb4: e59f22f0 ldr r2, [pc, #752] ; a00071ac <_Heap_Walk+0x510> a0006eb8: e1a00005 mov r0, r5 a0006ebc: e3a01001 mov r1, #1 a0006ec0: e1a03008 mov r3, r8 a0006ec4: e58dc01c str ip, [sp, #28] a0006ec8: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006ecc: e59dc01c ldr ip, [sp, #28] a0006ed0: e1a0800c mov r8, ip a0006ed4: ea00009d b a0007150 <_Heap_Walk+0x4b4> ); return false; } if ( free_block->prev != prev_block ) { a0006ed8: e598300c ldr r3, [r8, #12] a0006edc: e153000a cmp r3, sl a0006ee0: 0a000007 beq a0006f04 <_Heap_Walk+0x268> (*printer)( a0006ee4: e58d3000 str r3, [sp] a0006ee8: e1a00005 mov r0, r5 a0006eec: e1a03008 mov r3, r8 a0006ef0: e3a01001 mov r1, #1 a0006ef4: e59f22b4 ldr r2, [pc, #692] ; a00071b0 <_Heap_Walk+0x514> a0006ef8: e12fff34 blx r4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0006efc: e59d802c ldr r8, [sp, #44] ; 0x2c a0006f00: ea000092 b a0007150 <_Heap_Walk+0x4b4> return false; } prev_block = free_block; free_block = free_block->next; a0006f04: e1a0a008 mov sl, r8 a0006f08: e5988008 ldr r8, [r8, #8] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a0006f0c: e1580006 cmp r8, r6 a0006f10: 1affffca bne a0006e40 <_Heap_Walk+0x1a4> a0006f14: ea000000 b a0006f1c <_Heap_Walk+0x280> block->prev_size ); } block = next_block; } while ( block != first_block ); a0006f18: e1a07008 mov r7, r8 return true; } a0006f1c: e5973004 ldr r3, [r7, #4] const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006f20: e5962020 ldr r2, [r6, #32] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0006f24: e3c3a001 bic sl, r3, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0006f28: e087800a add r8, r7, sl const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0006f2c: e1520008 cmp r2, r8 a0006f30: 83a0b000 movhi fp, #0 a0006f34: 8a000003 bhi a0006f48 <_Heap_Walk+0x2ac> a0006f38: e596b024 ldr fp, [r6, #36] ; 0x24 a0006f3c: e15b0008 cmp fp, r8 a0006f40: 33a0b000 movcc fp, #0 a0006f44: 23a0b001 movcs fp, #1 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { a0006f48: e21bb0ff ands fp, fp, #255 ; 0xff a0006f4c: 1a000006 bne a0006f6c <_Heap_Walk+0x2d0> (*printer)( a0006f50: e58d8000 str r8, [sp] a0006f54: e1a00005 mov r0, r5 a0006f58: e3a01001 mov r1, #1 a0006f5c: e59f2250 ldr r2, [pc, #592] ; a00071b4 <_Heap_Walk+0x518> a0006f60: e1a03007 mov r3, r7 a0006f64: e12fff34 blx r4 a0006f68: ea000059 b a00070d4 <_Heap_Walk+0x438> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; a0006f6c: e59d2028 ldr r2, [sp, #40] ; 0x28 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0006f70: e1a0000a mov r0, sl a0006f74: e1a01009 mov r1, r9 a0006f78: e057b002 subs fp, r7, r2 a0006f7c: 13a0b001 movne fp, #1 a0006f80: e58d301c str r3, [sp, #28] a0006f84: ebffe6ba bl a0000a74 <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { a0006f88: e3500000 cmp r0, #0 a0006f8c: e59d301c ldr r3, [sp, #28] a0006f90: 0a000005 beq a0006fac <_Heap_Walk+0x310> a0006f94: e35b0000 cmp fp, #0 (*printer)( a0006f98: 158da000 strne sl, [sp] a0006f9c: 11a00005 movne r0, r5 a0006fa0: 13a01001 movne r1, #1 a0006fa4: 159f220c ldrne r2, [pc, #524] ; a00071b8 <_Heap_Walk+0x51c> a0006fa8: 1a000013 bne a0006ffc <_Heap_Walk+0x360> ); return false; } if ( block_size < min_block_size && is_not_last_block ) { a0006fac: e59dc024 ldr ip, [sp, #36] ; 0x24 a0006fb0: e15a000c cmp sl, ip a0006fb4: 2a000008 bcs a0006fdc <_Heap_Walk+0x340> a0006fb8: e35b0000 cmp fp, #0 a0006fbc: 0a000006 beq a0006fdc <_Heap_Walk+0x340> (*printer)( a0006fc0: e88d1400 stm sp, {sl, ip} a0006fc4: e1a00005 mov r0, r5 a0006fc8: e3a01001 mov r1, #1 a0006fcc: e59f21e8 ldr r2, [pc, #488] ; a00071bc <_Heap_Walk+0x520> a0006fd0: e1a03007 mov r3, r7 a0006fd4: e12fff34 blx r4 a0006fd8: ea000064 b a0007170 <_Heap_Walk+0x4d4> ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { a0006fdc: e1580007 cmp r8, r7 a0006fe0: 8a000008 bhi a0007008 <_Heap_Walk+0x36c> a0006fe4: e35b0000 cmp fp, #0 a0006fe8: 0a000006 beq a0007008 <_Heap_Walk+0x36c> (*printer)( a0006fec: e59f21cc ldr r2, [pc, #460] ; a00071c0 <_Heap_Walk+0x524> a0006ff0: e58d8000 str r8, [sp] a0006ff4: e1a00005 mov r0, r5 a0006ff8: e3a01001 mov r1, #1 a0006ffc: e1a03007 mov r3, r7 a0007000: e12fff34 blx r4 a0007004: ea000059 b a0007170 <_Heap_Walk+0x4d4> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0007008: e203b001 and fp, r3, #1 a000700c: e5983004 ldr r3, [r8, #4] ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a0007010: e3130001 tst r3, #1 a0007014: 1a000038 bne a00070fc <_Heap_Walk+0x460> false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? a0007018: e597200c ldr r2, [r7, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a000701c: e5963008 ldr r3, [r6, #8] block = next_block; } while ( block != first_block ); return true; } a0007020: e596100c ldr r1, [r6, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007024: e1520003 cmp r2, r3 a0007028: 059f0194 ldreq r0, [pc, #404] ; a00071c4 <_Heap_Walk+0x528> a000702c: 0a000003 beq a0007040 <_Heap_Walk+0x3a4> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), a0007030: e59f3190 ldr r3, [pc, #400] ; a00071c8 <_Heap_Walk+0x52c> a0007034: e1520006 cmp r2, r6 a0007038: e59f018c ldr r0, [pc, #396] ; a00071cc <_Heap_Walk+0x530> a000703c: 01a00003 moveq r0, r3 block->next, block->next == last_free_block ? a0007040: e5973008 ldr r3, [r7, #8] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007044: e1530001 cmp r3, r1 a0007048: 059f1180 ldreq r1, [pc, #384] ; a00071d0 <_Heap_Walk+0x534> a000704c: 0a000003 beq a0007060 <_Heap_Walk+0x3c4> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") a0007050: e59fc17c ldr ip, [pc, #380] ; a00071d4 <_Heap_Walk+0x538> a0007054: e1530006 cmp r3, r6 a0007058: e59f116c ldr r1, [pc, #364] ; a00071cc <_Heap_Walk+0x530> a000705c: 01a0100c moveq r1, ip Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007060: e58d2004 str r2, [sp, #4] a0007064: e58d0008 str r0, [sp, #8] a0007068: e58d300c str r3, [sp, #12] a000706c: e58d1010 str r1, [sp, #16] a0007070: e1a03007 mov r3, r7 a0007074: e58da000 str sl, [sp] a0007078: e1a00005 mov r0, r5 a000707c: e3a01000 mov r1, #0 a0007080: e59f2150 ldr r2, [pc, #336] ; a00071d8 <_Heap_Walk+0x53c> a0007084: e12fff34 blx r4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { a0007088: e5983000 ldr r3, [r8] a000708c: e15a0003 cmp sl, r3 a0007090: 0a000008 beq a00070b8 <_Heap_Walk+0x41c> (*printer)( a0007094: e58d3004 str r3, [sp, #4] a0007098: e58da000 str sl, [sp] a000709c: e58d8008 str r8, [sp, #8] a00070a0: e1a00005 mov r0, r5 a00070a4: e3a01001 mov r1, #1 a00070a8: e59f212c ldr r2, [pc, #300] ; a00071dc <_Heap_Walk+0x540> a00070ac: e1a03007 mov r3, r7 a00070b0: e12fff34 blx r4 a00070b4: ea00002d b a0007170 <_Heap_Walk+0x4d4> ); return false; } if ( !prev_used ) { a00070b8: e35b0000 cmp fp, #0 a00070bc: 1a000006 bne a00070dc <_Heap_Walk+0x440> (*printer)( a00070c0: e59f2118 ldr r2, [pc, #280] ; a00071e0 <_Heap_Walk+0x544> a00070c4: e1a00005 mov r0, r5 a00070c8: e3a01001 mov r1, #1 a00070cc: e1a03007 mov r3, r7 a00070d0: e12fff34 blx r4 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a00070d4: e1a0800b mov r8, fp a00070d8: ea00001c b a0007150 <_Heap_Walk+0x4b4> block = next_block; } while ( block != first_block ); return true; } a00070dc: e5963008 ldr r3, [r6, #8] a00070e0: ea000002 b a00070f0 <_Heap_Walk+0x454> { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { a00070e4: e1530007 cmp r3, r7 a00070e8: 0a000014 beq a0007140 <_Heap_Walk+0x4a4> return true; } free_block = free_block->next; a00070ec: e5933008 ldr r3, [r3, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a00070f0: e1530006 cmp r3, r6 a00070f4: 1afffffa bne a00070e4 <_Heap_Walk+0x448> a00070f8: ea000017 b a000715c <_Heap_Walk+0x4c0> if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { a00070fc: e35b0000 cmp fp, #0 a0007100: 0a000006 beq a0007120 <_Heap_Walk+0x484> (*printer)( a0007104: e58da000 str sl, [sp] a0007108: e1a00005 mov r0, r5 a000710c: e3a01000 mov r1, #0 a0007110: e59f20cc ldr r2, [pc, #204] ; a00071e4 <_Heap_Walk+0x548> a0007114: e1a03007 mov r3, r7 a0007118: e12fff34 blx r4 a000711c: ea000007 b a0007140 <_Heap_Walk+0x4a4> "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( a0007120: e58da000 str sl, [sp] a0007124: e5973000 ldr r3, [r7] a0007128: e1a00005 mov r0, r5 a000712c: e1a0100b mov r1, fp a0007130: e58d3004 str r3, [sp, #4] a0007134: e59f20ac ldr r2, [pc, #172] ; a00071e8 <_Heap_Walk+0x54c> a0007138: e1a03007 mov r3, r7 a000713c: e12fff34 blx r4 block->prev_size ); } block = next_block; } while ( block != first_block ); a0007140: e59d2020 ldr r2, [sp, #32] a0007144: e1580002 cmp r8, r2 a0007148: 1affff72 bne a0006f18 <_Heap_Walk+0x27c> Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; a000714c: e3a08001 mov r8, #1 block = next_block; } while ( block != first_block ); return true; } a0007150: e1a00008 mov r0, r8 a0007154: e28dd030 add sp, sp, #48 ; 0x30 a0007158: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( a000715c: e59f2088 ldr r2, [pc, #136] ; a00071ec <_Heap_Walk+0x550> a0007160: e1a00005 mov r0, r5 a0007164: e3a01001 mov r1, #1 a0007168: e1a03007 mov r3, r7 a000716c: e12fff34 blx r4 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a0007170: e3a08000 mov r8, #0 a0007174: eafffff5 b a0007150 <_Heap_Walk+0x4b4> =============================================================================== a0007b0c <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { a0007b0c: e92d4011 push {r0, r4, lr} a0007b10: e1a04001 mov r4, r1 /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; a0007b14: e2501000 subs r1, r0, #0 a0007b18: 059f306c ldreq r3, [pc, #108] ; a0007b8c <_Objects_Id_to_name+0x80> a0007b1c: 05933004 ldreq r3, [r3, #4] a0007b20: 05931008 ldreq r1, [r3, #8] a0007b24: e1a03c21 lsr r3, r1, #24 a0007b28: e2033007 and r3, r3, #7 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) a0007b2c: e2432001 sub r2, r3, #1 a0007b30: e3520002 cmp r2, #2 a0007b34: 8a00000d bhi a0007b70 <_Objects_Id_to_name+0x64> a0007b38: ea00000e b a0007b78 <_Objects_Id_to_name+0x6c> */ RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class( Objects_Id id ) { return (uint32_t) a0007b3c: e1a02da1 lsr r2, r1, #27 if ( !_Objects_Information_table[ the_api ] ) return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; a0007b40: e7930102 ldr r0, [r3, r2, lsl #2] if ( !information ) a0007b44: e3500000 cmp r0, #0 a0007b48: 0a000008 beq a0007b70 <_Objects_Id_to_name+0x64> #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); a0007b4c: e1a0200d mov r2, sp a0007b50: ebffffd3 bl a0007aa4 <_Objects_Get> if ( !the_object ) a0007b54: e3500000 cmp r0, #0 a0007b58: 0a000004 beq a0007b70 <_Objects_Id_to_name+0x64> return OBJECTS_INVALID_ID; *name = the_object->name; a0007b5c: e590300c ldr r3, [r0, #12] a0007b60: e5843000 str r3, [r4] _Thread_Enable_dispatch(); a0007b64: eb000214 bl a00083bc <_Thread_Enable_dispatch> return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; a0007b68: e3a00000 mov r0, #0 a0007b6c: ea000000 b a0007b74 <_Objects_Id_to_name+0x68> the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) return OBJECTS_INVALID_ID; a0007b70: e3a00003 mov r0, #3 return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } a0007b74: e8bd8018 pop {r3, r4, pc} the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) a0007b78: e59f2010 ldr r2, [pc, #16] ; a0007b90 <_Objects_Id_to_name+0x84> a0007b7c: e7923103 ldr r3, [r2, r3, lsl #2] a0007b80: e3530000 cmp r3, #0 a0007b84: 1affffec bne a0007b3c <_Objects_Id_to_name+0x30> a0007b88: eafffff8 b a0007b70 <_Objects_Id_to_name+0x64> <== NOT EXECUTED =============================================================================== a0005e9c <_TOD_Validate>: { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0005e9c: e59f30b4 ldr r3, [pc, #180] ; a0005f58 <_TOD_Validate+0xbc> */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { a0005ea0: e92d4010 push {r4, lr} uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0005ea4: e2504000 subs r4, r0, #0 { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0005ea8: e593100c ldr r1, [r3, #12] if ((!the_tod) || a0005eac: 0a000021 beq a0005f38 <_TOD_Validate+0x9c> ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / a0005eb0: e59f00a4 ldr r0, [pc, #164] ; a0005f5c <_TOD_Validate+0xc0> a0005eb4: eb004325 bl a0016b50 <__aeabi_uidiv> rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0005eb8: e5943018 ldr r3, [r4, #24] a0005ebc: e1530000 cmp r3, r0 a0005ec0: 2a000020 bcs a0005f48 <_TOD_Validate+0xac> (the_tod->ticks >= ticks_per_second) || a0005ec4: e5943014 ldr r3, [r4, #20] a0005ec8: e353003b cmp r3, #59 ; 0x3b a0005ecc: 8a00001d bhi a0005f48 <_TOD_Validate+0xac> (the_tod->second >= TOD_SECONDS_PER_MINUTE) || a0005ed0: e5943010 ldr r3, [r4, #16] a0005ed4: e353003b cmp r3, #59 ; 0x3b a0005ed8: 8a00001a bhi a0005f48 <_TOD_Validate+0xac> (the_tod->minute >= TOD_MINUTES_PER_HOUR) || a0005edc: e594300c ldr r3, [r4, #12] a0005ee0: e3530017 cmp r3, #23 a0005ee4: 8a000017 bhi a0005f48 <_TOD_Validate+0xac> (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || a0005ee8: e5943004 ldr r3, [r4, #4] rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || a0005eec: e3530000 cmp r3, #0 a0005ef0: 0a000012 beq a0005f40 <_TOD_Validate+0xa4> (the_tod->month == 0) || a0005ef4: e353000c cmp r3, #12 a0005ef8: 8a000012 bhi a0005f48 <_TOD_Validate+0xac> (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0005efc: e5942000 ldr r2, [r4] (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || a0005f00: e59f1058 ldr r1, [pc, #88] ; a0005f60 <_TOD_Validate+0xc4> a0005f04: e1520001 cmp r2, r1 a0005f08: 9a000010 bls a0005f50 <_TOD_Validate+0xb4> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) a0005f0c: e5940008 ldr r0, [r4, #8] (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0005f10: e3500000 cmp r0, #0 a0005f14: 0a00000e beq a0005f54 <_TOD_Validate+0xb8> (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) a0005f18: e3120003 tst r2, #3 a0005f1c: e59f2040 ldr r2, [pc, #64] ; a0005f64 <_TOD_Validate+0xc8> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a0005f20: 0283300d addeq r3, r3, #13 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a0005f24: e7924103 ldr r4, [r2, r3, lsl #2] * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( a0005f28: e1500004 cmp r0, r4 a0005f2c: 83a00000 movhi r0, #0 a0005f30: 93a00001 movls r0, #1 a0005f34: e8bd8010 pop {r4, pc} (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a0005f38: e1a00004 mov r0, r4 <== NOT EXECUTED a0005f3c: e8bd8010 pop {r4, pc} <== NOT EXECUTED a0005f40: e1a00003 mov r0, r3 <== NOT EXECUTED a0005f44: e8bd8010 pop {r4, pc} <== NOT EXECUTED a0005f48: e3a00000 mov r0, #0 a0005f4c: e8bd8010 pop {r4, pc} a0005f50: e3a00000 mov r0, #0 if ( the_tod->day > days_in_month ) return false; return true; } a0005f54: e8bd8010 pop {r4, pc} =============================================================================== a0006efc <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006efc: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; a0006f00: e3a06000 mov r6, #0 a0006f04: e5816100 str r6, [r1, #256] ; 0x100 a0006f08: e5816104 str r6, [r1, #260] ; 0x104 extensions_area = NULL; the_thread->libc_reent = NULL; a0006f0c: e58160fc str r6, [r1, #252] ; 0xfc Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006f10: e1a05000 mov r5, r0 a0006f14: e1a04001 mov r4, r1 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0006f18: e1a00001 mov r0, r1 a0006f1c: e1a01003 mov r1, r3 Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0006f20: e1a07003 mov r7, r3 a0006f24: e59d8020 ldr r8, [sp, #32] a0006f28: e5dda024 ldrb sl, [sp, #36] ; 0x24 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0006f2c: eb000261 bl a00078b8 <_Thread_Stack_Allocate> if ( !actual_stack_size || actual_stack_size < stack_size ) a0006f30: e1500006 cmp r0, r6 a0006f34: 13a03000 movne r3, #0 a0006f38: 03a03001 moveq r3, #1 a0006f3c: e1500007 cmp r0, r7 a0006f40: 21a07003 movcs r7, r3 a0006f44: 33837001 orrcc r7, r3, #1 a0006f48: e1570006 cmp r7, r6 a0006f4c: 1a00004c bne a0007084 <_Thread_Initialize+0x188> Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0006f50: e59430c8 ldr r3, [r4, #200] ; 0xc8 the_stack->size = size; a0006f54: e58400c0 str r0, [r4, #192] ; 0xc0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; a0006f58: e5847050 str r7, [r4, #80] ; 0x50 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0006f5c: e58430c4 str r3, [r4, #196] ; 0xc4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a0006f60: e59f312c ldr r3, [pc, #300] ; a0007094 <_Thread_Initialize+0x198> the_watchdog->routine = routine; a0006f64: e5847064 str r7, [r4, #100] ; 0x64 the_watchdog->id = id; a0006f68: e5847068 str r7, [r4, #104] ; 0x68 a0006f6c: e5936000 ldr r6, [r3] the_watchdog->user_data = user_data; a0006f70: e584706c str r7, [r4, #108] ; 0x6c a0006f74: e3560000 cmp r6, #0 a0006f78: 0a000004 beq a0006f90 <_Thread_Initialize+0x94> extensions_area = _Workspace_Allocate( a0006f7c: e2866001 add r6, r6, #1 a0006f80: e1a00106 lsl r0, r6, #2 a0006f84: eb000452 bl a00080d4 <_Workspace_Allocate> (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) a0006f88: e2506000 subs r6, r0, #0 a0006f8c: 0a000028 beq a0007034 <_Thread_Initialize+0x138> * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { a0006f90: e3560000 cmp r6, #0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; a0006f94: e5846108 str r6, [r4, #264] ; 0x108 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { a0006f98: 0a000009 beq a0006fc4 <_Thread_Initialize+0xc8> for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0006f9c: e59f30f0 ldr r3, [pc, #240] ; a0007094 <_Thread_Initialize+0x198> a0006fa0: e1a02006 mov r2, r6 a0006fa4: e5930000 ldr r0, [r3] a0006fa8: e3a03000 mov r3, #0 the_thread->extensions[i] = NULL; a0006fac: e1a01003 mov r1, r3 a0006fb0: ea000001 b a0006fbc <_Thread_Initialize+0xc0> a0006fb4: e4821004 str r1, [r2], #4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0006fb8: e2833001 add r3, r3, #1 a0006fbc: e1530000 cmp r3, r0 a0006fc0: 9afffffb bls a0006fb4 <_Thread_Initialize+0xb8> /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a0006fc4: e59d3028 ldr r3, [sp, #40] ; 0x28 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a0006fc8: e3a07000 mov r7, #0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; a0006fcc: e5c4a0ac strb sl, [r4, #172] ; 0xac the_thread->Start.budget_algorithm = budget_algorithm; a0006fd0: e58430b0 str r3, [r4, #176] ; 0xb0 the_thread->Start.budget_callout = budget_callout; a0006fd4: e59d302c ldr r3, [sp, #44] ; 0x2c #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a0006fd8: e3a0a001 mov sl, #1 the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0006fdc: e1a00004 mov r0, r4 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; a0006fe0: e58430b4 str r3, [r4, #180] ; 0xb4 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0006fe4: e59d3030 ldr r3, [sp, #48] ; 0x30 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0006fe8: e1a01008 mov r1, r8 #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a0006fec: e584a010 str sl, [r4, #16] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0006ff0: e58430b8 str r3, [r4, #184] ; 0xb8 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a0006ff4: e5847044 str r7, [r4, #68] ; 0x44 the_thread->resource_count = 0; a0006ff8: e584701c str r7, [r4, #28] the_thread->real_priority = priority; a0006ffc: e5848018 str r8, [r4, #24] the_thread->Start.initial_priority = priority; a0007000: e58480bc str r8, [r4, #188] ; 0xbc _Thread_Set_priority( the_thread, priority ); a0007004: eb00019d bl a0007680 <_Thread_Set_priority> _Thread_Stack_Free( the_thread ); return false; } a0007008: e595301c ldr r3, [r5, #28] Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( a000700c: e1d420b8 ldrh r2, [r4, #8] /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); a0007010: e5847084 str r7, [r4, #132] ; 0x84 a0007014: e5847088 str r7, [r4, #136] ; 0x88 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; a0007018: e7834102 str r4, [r3, r2, lsl #2] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; a000701c: e59d3034 ldr r3, [sp, #52] ; 0x34 * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); a0007020: e1a00004 mov r0, r4 a0007024: e584300c str r3, [r4, #12] a0007028: eb000328 bl a0007cd0 <_User_extensions_Thread_create> if ( extension_status ) a000702c: e1500007 cmp r0, r7 a0007030: 1a000015 bne a000708c <_Thread_Initialize+0x190> return true; failed: if ( the_thread->libc_reent ) a0007034: e59400fc ldr r0, [r4, #252] ; 0xfc a0007038: e3500000 cmp r0, #0 a000703c: 0a000000 beq a0007044 <_Thread_Initialize+0x148> _Workspace_Free( the_thread->libc_reent ); a0007040: eb000429 bl a00080ec <_Workspace_Free> for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007044: e5940100 ldr r0, [r4, #256] ; 0x100 a0007048: e3500000 cmp r0, #0 a000704c: 0a000000 beq a0007054 <_Thread_Initialize+0x158> _Workspace_Free( the_thread->API_Extensions[i] ); a0007050: eb000425 bl a00080ec <_Workspace_Free> failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007054: e5940104 ldr r0, [r4, #260] ; 0x104 a0007058: e3500000 cmp r0, #0 a000705c: 0a000000 beq a0007064 <_Thread_Initialize+0x168> _Workspace_Free( the_thread->API_Extensions[i] ); a0007060: eb000421 bl a00080ec <_Workspace_Free> <== NOT EXECUTED if ( extensions_area ) a0007064: e3560000 cmp r6, #0 a0007068: 0a000001 beq a0007074 <_Thread_Initialize+0x178> (void) _Workspace_Free( extensions_area ); a000706c: e1a00006 mov r0, r6 a0007070: eb00041d bl a00080ec <_Workspace_Free> #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); a0007074: e1a00004 mov r0, r4 a0007078: eb000225 bl a0007914 <_Thread_Stack_Free> return false; a000707c: e3a00000 mov r0, #0 a0007080: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ a0007084: e1a00006 mov r0, r6 a0007088: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; a000708c: e1a0000a mov r0, sl _Thread_Stack_Free( the_thread ); return false; } a0007090: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} =============================================================================== a000a53c <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) { a000a53c: e92d4070 push {r4, r5, r6, lr} a000a540: e20220ff and r2, r2, #255 ; 0xff a000a544: e1a04001 mov r4, r1 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000a548: e10f1000 mrs r1, CPSR a000a54c: e3813080 orr r3, r1, #128 ; 0x80 a000a550: e129f003 msr CPSR_fc, r3 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); a000a554: e59f30a8 ldr r3, [pc, #168] ; a000a604 <_Thread_queue_Extract_priority_helper+0xc8> a000a558: e5940010 ldr r0, [r4, #16] a000a55c: e0003003 and r3, r0, r3 Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level ); if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { a000a560: e3530000 cmp r3, #0 a000a564: 1a000000 bne a000a56c <_Thread_queue_Extract_priority_helper+0x30> _ISR_Enable( level ); a000a568: ea000015 b a000a5c4 <_Thread_queue_Extract_priority_helper+0x88> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a000a56c: e5943038 ldr r3, [r4, #56] ; 0x38 /* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next; a000a570: e8941001 ldm r4, {r0, ip} */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000a574: e284503c add r5, r4, #60 ; 0x3c previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { a000a578: e1530005 cmp r3, r5 new_first_thread->Wait.Block2n.last = last_node; last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); } } else { previous_node->next = next_node; a000a57c: 058c0000 streq r0, [ip] next_node->previous = previous_node; a000a580: 0580c004 streq ip, [r0, #4] */ next_node = the_node->next; previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { a000a584: 0a00000c beq a000a5bc <_Thread_queue_Extract_priority_helper+0x80> new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; a000a588: e5945040 ldr r5, [r4, #64] ; 0x40 new_second_node = new_first_node->next; a000a58c: e5936000 ldr r6, [r3] previous_node->next = new_first_node; next_node->previous = new_first_node; a000a590: e5803004 str r3, [r0, #4] new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { a000a594: e1530005 cmp r3, r5 new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node; a000a598: e58c3000 str r3, [ip] next_node->previous = new_first_node; new_first_node->next = next_node; new_first_node->previous = previous_node; a000a59c: e8831001 stm r3, {r0, ip} if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { a000a5a0: 0a000005 beq a000a5bc <_Thread_queue_Extract_priority_helper+0x80> /* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n ); a000a5a4: e2830038 add r0, r3, #56 ; 0x38 new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous = a000a5a8: e5860004 str r0, [r6, #4] _Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node; a000a5ac: e5836038 str r6, [r3, #56] ; 0x38 new_first_thread->Wait.Block2n.last = last_node; a000a5b0: e5835040 str r5, [r3, #64] ; 0x40 a000a5b4: e283303c add r3, r3, #60 ; 0x3c last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); a000a5b8: e5853000 str r3, [r5] /* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) { a000a5bc: e3520000 cmp r2, #0 a000a5c0: 0a000001 beq a000a5cc <_Thread_queue_Extract_priority_helper+0x90> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000a5c4: e129f001 msr CPSR_fc, r1 a000a5c8: e8bd8070 pop {r4, r5, r6, pc} _ISR_Enable( level ); return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { a000a5cc: e5943050 ldr r3, [r4, #80] ; 0x50 a000a5d0: e3530002 cmp r3, #2 a000a5d4: 0a000001 beq a000a5e0 <_Thread_queue_Extract_priority_helper+0xa4> a000a5d8: e129f001 msr CPSR_fc, r1 a000a5dc: ea000004 b a000a5f4 <_Thread_queue_Extract_priority_helper+0xb8> a000a5e0: e3a03003 mov r3, #3 <== NOT EXECUTED a000a5e4: e5843050 str r3, [r4, #80] ; 0x50 <== NOT EXECUTED a000a5e8: e129f001 msr CPSR_fc, r1 <== NOT EXECUTED _ISR_Enable( level ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); (void) _Watchdog_Remove( &the_thread->Timer ); a000a5ec: e2840048 add r0, r4, #72 ; 0x48 <== NOT EXECUTED a000a5f0: ebfff654 bl a0007f48 <_Watchdog_Remove> <== NOT EXECUTED a000a5f4: e59f100c ldr r1, [pc, #12] ; a000a608 <_Thread_queue_Extract_priority_helper+0xcc> a000a5f8: e1a00004 mov r0, r4 #if defined(RTEMS_MULTIPROCESSING) if ( !_Objects_Is_local_id( the_thread->Object.id ) ) _Thread_MP_Free_proxy( the_thread ); #endif } a000a5fc: e8bd4070 pop {r4, r5, r6, lr} a000a600: eafff12a b a0006ab0 <_Thread_Clear_state> =============================================================================== a00140f0 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { a00140f0: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a00140f4: e24dd018 sub sp, sp, #24 a00140f8: e28db00c add fp, sp, #12 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; a00140fc: e3a03000 mov r3, #0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a0014100: e28ba004 add sl, fp, #4 a0014104: e28d7004 add r7, sp, #4 a0014108: e1a04000 mov r4, r0 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a001410c: e58da00c str sl, [sp, #12] the_chain->permanent_null = NULL; a0014110: e58d3010 str r3, [sp, #16] the_chain->last = _Chain_Head(the_chain); a0014114: e58db014 str fp, [sp, #20] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a0014118: e1a0500d mov r5, sp */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a001411c: e58d7000 str r7, [sp] the_chain->permanent_null = NULL; a0014120: e98d2008 stmib sp, {r3, sp} */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014124: e2809030 add r9, r0, #48 ; 0x30 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; a0014128: e584b078 str fp, [r4, #120] ; 0x78 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a001412c: e2848068 add r8, r4, #104 ; 0x68 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0014130: e59f2154 ldr r2, [pc, #340] ; a001428c <_Timer_server_Body+0x19c> */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014134: e1a00009 mov r0, r9 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0014138: e5923000 ldr r3, [r2] /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; a001413c: e594103c ldr r1, [r4, #60] ; 0x3c watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014140: e1a02005 mov r2, r5 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; a0014144: e584303c str r3, [r4, #60] ; 0x3c _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014148: e0611003 rsb r1, r1, r3 a001414c: eb00108a bl a001837c <_Watchdog_Adjust_to_chain> static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0014150: e59f3138 ldr r3, [pc, #312] ; a0014290 <_Timer_server_Body+0x1a0> Watchdog_Interval last_snapshot = watchdogs->last_snapshot; a0014154: e5942074 ldr r2, [r4, #116] ; 0x74 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0014158: e5936000 ldr r6, [r3] /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { a001415c: e1560002 cmp r6, r2 a0014160: 9a000004 bls a0014178 <_Timer_server_Body+0x88> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0014164: e0621006 rsb r1, r2, r6 a0014168: e1a00008 mov r0, r8 a001416c: e1a02005 mov r2, r5 a0014170: eb001081 bl a001837c <_Watchdog_Adjust_to_chain> a0014174: ea000004 b a001418c <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { a0014178: 2a000003 bcs a001418c <_Timer_server_Body+0x9c> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a001417c: e1a00008 mov r0, r8 a0014180: e3a01001 mov r1, #1 a0014184: e0662002 rsb r2, r6, r2 a0014188: eb001053 bl a00182dc <_Watchdog_Adjust> } watchdogs->last_snapshot = snapshot; a001418c: e5846074 str r6, [r4, #116] ; 0x74 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0014190: e5940078 ldr r0, [r4, #120] ; 0x78 a0014194: eb000284 bl a0014bac <_Chain_Get> if ( timer == NULL ) { a0014198: e2506000 subs r6, r0, #0 a001419c: 0a000009 beq a00141c8 <_Timer_server_Body+0xd8> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a00141a0: e5963038 ldr r3, [r6, #56] ; 0x38 a00141a4: e3530001 cmp r3, #1 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); a00141a8: 01a00009 moveq r0, r9 static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a00141ac: 0a000002 beq a00141bc <_Timer_server_Body+0xcc> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { a00141b0: e3530003 cmp r3, #3 a00141b4: 1afffff5 bne a0014190 <_Timer_server_Body+0xa0> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); a00141b8: e1a00008 mov r0, r8 a00141bc: e2861010 add r1, r6, #16 a00141c0: eb001098 bl a0018428 <_Watchdog_Insert> a00141c4: eafffff1 b a0014190 <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); a00141c8: ebffff96 bl a0014028 if ( _Chain_Is_empty( insert_chain ) ) { a00141cc: e59d300c ldr r3, [sp, #12] a00141d0: e153000a cmp r3, sl a00141d4: 1a000006 bne a00141f4 <_Timer_server_Body+0x104> ts->insert_chain = NULL; a00141d8: e5846078 str r6, [r4, #120] ; 0x78 a00141dc: e129f000 msr CPSR_fc, r0 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { a00141e0: e59d3000 ldr r3, [sp] a00141e4: e1530007 cmp r3, r7 ) { if ( !_Chain_Is_empty(the_chain)) return _Chain_Get_first_unprotected(the_chain); else return NULL; a00141e8: 13a06000 movne r6, #0 a00141ec: 1a000002 bne a00141fc <_Timer_server_Body+0x10c> a00141f0: ea000013 b a0014244 <_Timer_server_Body+0x154> a00141f4: e129f000 msr CPSR_fc, r0 <== NOT EXECUTED a00141f8: eaffffcc b a0014130 <_Timer_server_Body+0x40> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); a00141fc: ebffff89 bl a0014028 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a0014200: e59d2000 ldr r2, [sp] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) a0014204: e1520007 cmp r2, r7 a0014208: 0a00000b beq a001423c <_Timer_server_Body+0x14c> { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; a001420c: e5923000 ldr r3, [r2] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { a0014210: e3520000 cmp r2, #0 the_chain->first = new_first; a0014214: e58d3000 str r3, [sp] new_first->previous = _Chain_Head(the_chain); a0014218: e5835004 str r5, [r3, #4] a001421c: 0a000006 beq a001423c <_Timer_server_Body+0x14c> watchdog->state = WATCHDOG_INACTIVE; a0014220: e5826008 str r6, [r2, #8] a0014224: e129f000 msr CPSR_fc, r0 /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); a0014228: e592301c ldr r3, [r2, #28] a001422c: e5920020 ldr r0, [r2, #32] a0014230: e5921024 ldr r1, [r2, #36] ; 0x24 a0014234: e12fff33 blx r3 } a0014238: eaffffef b a00141fc <_Timer_server_Body+0x10c> a001423c: e129f000 msr CPSR_fc, r0 a0014240: eaffffb8 b a0014128 <_Timer_server_Body+0x38> } else { ts->active = false; a0014244: e3a03000 mov r3, #0 a0014248: e5c4307c strb r3, [r4, #124] ; 0x7c /* * Block until there is something to do. */ _Thread_Disable_dispatch(); a001424c: ebffff79 bl a0014038 <_Thread_Disable_dispatch> _Thread_Set_state( ts->thread, STATES_DELAYING ); a0014250: e3a01008 mov r1, #8 a0014254: e5940000 ldr r0, [r4] a0014258: eb000de2 bl a00179e8 <_Thread_Set_state> _Timer_server_Reset_interval_system_watchdog( ts ); a001425c: e1a00004 mov r0, r4 a0014260: ebffff7a bl a0014050 <_Timer_server_Reset_interval_system_watchdog> _Timer_server_Reset_tod_system_watchdog( ts ); a0014264: e1a00004 mov r0, r4 a0014268: ebffff8c bl a00140a0 <_Timer_server_Reset_tod_system_watchdog> _Thread_Enable_dispatch(); a001426c: eb000b63 bl a0017000 <_Thread_Enable_dispatch> ts->active = true; a0014270: e3a03001 mov r3, #1 a0014274: e5c4307c strb r3, [r4, #124] ; 0x7c static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); a0014278: e2840008 add r0, r4, #8 a001427c: eb0010bf bl a0018580 <_Watchdog_Remove> static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); a0014280: e2840040 add r0, r4, #64 ; 0x40 a0014284: eb0010bd bl a0018580 <_Watchdog_Remove> a0014288: eaffffa6 b a0014128 <_Timer_server_Body+0x38> =============================================================================== a0009780 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a0009780: e5902000 ldr r2, [r0] a0009784: e5913000 ldr r3, [r1] a0009788: e1520003 cmp r2, r3 return true; a000978c: c3a00001 movgt r0, #1 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a0009790: c12fff1e bxgt lr return true; if ( lhs->tv_sec < rhs->tv_sec ) a0009794: ba000005 blt a00097b0 <_Timespec_Greater_than+0x30> #include #include #include bool _Timespec_Greater_than( a0009798: e5900004 ldr r0, [r0, #4] a000979c: e5913004 ldr r3, [r1, #4] a00097a0: e1500003 cmp r0, r3 a00097a4: d3a00000 movle r0, #0 a00097a8: c3a00001 movgt r0, #1 a00097ac: e12fff1e bx lr { if ( lhs->tv_sec > rhs->tv_sec ) return true; if ( lhs->tv_sec < rhs->tv_sec ) return false; a00097b0: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } a00097b4: e12fff1e bx lr <== NOT EXECUTED