RTEMS 4.11Annotated Report
Fri Oct 8 21:03:30 2010
a0014b54 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b54: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
a0014b58: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b5c: e1520003 cmp r2, r3
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
a0014b60: e1a06000 mov r6, r0
a0014b64: e1a0a001 mov sl, r1
a0014b68: e1a07002 mov r7, r2
a0014b6c: e59d8020 ldr r8, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
a0014b70: 8a000013 bhi a0014bc4 <_CORE_message_queue_Broadcast+0x70>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
a0014b74: e5905048 ldr r5, [r0, #72] ; 0x48
a0014b78: e3550000 cmp r5, #0
a0014b7c: 0a000009 beq a0014ba8 <_CORE_message_queue_Broadcast+0x54>
*count = 0;
a0014b80: e3a00000 mov r0, #0
a0014b84: e5880000 str r0, [r8]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
a0014b88: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
a0014b8c: e594002c ldr r0, [r4, #44] ; 0x2c
a0014b90: e1a0100a mov r1, sl
a0014b94: e1a02007 mov r2, r7
a0014b98: eb002260 bl a001d520 <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
a0014b9c: e5943028 ldr r3, [r4, #40] ; 0x28
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
a0014ba0: e2855001 add r5, r5, #1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
a0014ba4: e5837000 str r7, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
a0014ba8: e1a00006 mov r0, r6
a0014bac: eb0009fe bl a00173ac <_Thread_queue_Dequeue>
a0014bb0: e2504000 subs r4, r0, #0
a0014bb4: 1afffff4 bne a0014b8c <_CORE_message_queue_Broadcast+0x38>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
a0014bb8: e5885000 str r5, [r8]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
a0014bbc: e1a00004 mov r0, r4
a0014bc0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
a0014bc4: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
a0014bc8: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
a000dc30 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dc30: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
a000dc34: e3130003 tst r3, #3
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dc38: e1a04000 mov r4, r0
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
a000dc3c: e3a00000 mov r0, #0
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dc40: e1a06002 mov r6, r2
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
a000dc44: e5842044 str r2, [r4, #68] ; 0x44
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
a000dc48: e1a05001 mov r5, r1
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
a000dc4c: e5840048 str r0, [r4, #72] ; 0x48
the_message_queue->maximum_message_size = maximum_message_size;
a000dc50: e584304c str r3, [r4, #76] ; 0x4c
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Notify_Handler the_handler,
void *the_argument
)
{
the_message_queue->notify_handler = the_handler;
a000dc54: e5840060 str r0, [r4, #96] ; 0x60
the_message_queue->notify_argument = the_argument;
a000dc58: e5840064 str r0, [r4, #100] ; 0x64
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
a000dc5c: 01a02003 moveq r2, r3
a000dc60: 0a000003 beq a000dc74 <_CORE_message_queue_Initialize+0x44>
allocated_message_size += sizeof(uint32_t);
a000dc64: e2832004 add r2, r3, #4
allocated_message_size &= ~(sizeof(uint32_t) - 1);
a000dc68: e3c22003 bic r2, r2, #3
}
if (allocated_message_size < maximum_message_size)
a000dc6c: e1520003 cmp r2, r3
a000dc70: 3a00001e bcc a000dcf0 <_CORE_message_queue_Initialize+0xc0>
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
a000dc74: e2827014 add r7, r2, #20
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
a000dc78: e0000796 mul r0, r6, r7
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
a000dc7c: e1500002 cmp r0, r2
a000dc80: 3a000018 bcc a000dce8 <_CORE_message_queue_Initialize+0xb8>
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
a000dc84: eb000b21 bl a0010910 <_Workspace_Allocate>
if (the_message_queue->message_buffers == 0)
a000dc88: e3500000 cmp r0, #0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
a000dc8c: e1a01000 mov r1, r0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
a000dc90: e584005c str r0, [r4, #92] ; 0x5c
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
a000dc94: 0a000015 beq a000dcf0 <_CORE_message_queue_Initialize+0xc0>
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
a000dc98: e2840068 add r0, r4, #104 ; 0x68
a000dc9c: e1a02006 mov r2, r6
a000dca0: e1a03007 mov r3, r7
a000dca4: eb00149c bl a0012f1c <_Chain_Initialize>
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
a000dca8: e2843054 add r3, r4, #84 ; 0x54
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
a000dcac: e5951000 ldr r1, [r5]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
a000dcb0: e5843050 str r3, [r4, #80] ; 0x50
the_chain->permanent_null = NULL;
a000dcb4: e3a03000 mov r3, #0
a000dcb8: e5843054 str r3, [r4, #84] ; 0x54
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
a000dcbc: e2843050 add r3, r4, #80 ; 0x50
the_chain->last = _Chain_Head(the_chain);
a000dcc0: e5843058 str r3, [r4, #88] ; 0x58
_Thread_queue_Initialize(
a000dcc4: e1a00004 mov r0, r4
a000dcc8: e3510001 cmp r1, #1
a000dccc: 13a01000 movne r1, #0
a000dcd0: 03a01001 moveq r1, #1
a000dcd4: e3a02080 mov r2, #128 ; 0x80
a000dcd8: e3a03006 mov r3, #6
a000dcdc: eb000826 bl a000fd7c <_Thread_queue_Initialize>
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
a000dce0: e3a00001 mov r0, #1
a000dce4: e8bd80f0 pop {r4, r5, r6, r7, pc}
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
return false;
a000dce8: e3a00000 mov r0, #0 <== NOT EXECUTED
a000dcec: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
a000dcf0: e8bd80f0 pop {r4, r5, r6, r7, pc}
a0006c80 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006c80: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
a0006c84: e5903014 ldr r3, [r0, #20]
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006c88: e24dd030 sub sp, sp, #48 ; 0x30
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c8c: e59f44c8 ldr r4, [pc, #1224] ; a000715c <_Heap_Walk+0x4dc>
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
a0006c90: e58d3024 str r3, [sp, #36] ; 0x24
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
a0006c94: e5903024 ldr r3, [r0, #36] ; 0x24
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006c98: e31200ff tst r2, #255 ; 0xff
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
a0006c9c: e590c020 ldr ip, [r0, #32]
Heap_Block *const last_block = heap->last_block;
a0006ca0: e58d3028 str r3, [sp, #40] ; 0x28
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006ca4: e59f34b4 ldr r3, [pc, #1204] ; a0007160 <_Heap_Walk+0x4e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
a0006ca8: e1a06000 mov r6, r0
a0006cac: e1a05001 mov r5, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
a0006cb0: 11a04003 movne r4, r3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006cb4: e59f34a8 ldr r3, [pc, #1192] ; a0007164 <_Heap_Walk+0x4e4>
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
a0006cb8: e5909010 ldr r9, [r0, #16]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
a0006cbc: e58dc020 str ip, [sp, #32]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006cc0: e5933000 ldr r3, [r3]
a0006cc4: e3530003 cmp r3, #3
a0006cc8: 1a000118 bne a0007130 <_Heap_Walk+0x4b0>
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
a0006ccc: e59dc024 ldr ip, [sp, #36] ; 0x24
a0006cd0: e59d2020 ldr r2, [sp, #32]
a0006cd4: e58dc000 str ip, [sp]
a0006cd8: e5903018 ldr r3, [r0, #24]
a0006cdc: e58d3004 str r3, [sp, #4]
a0006ce0: e590301c ldr r3, [r0, #28]
a0006ce4: e58d200c str r2, [sp, #12]
a0006ce8: e59f2478 ldr r2, [pc, #1144] ; a0007168 <_Heap_Walk+0x4e8>
a0006cec: e58d3008 str r3, [sp, #8]
a0006cf0: e59d3028 ldr r3, [sp, #40] ; 0x28
a0006cf4: e58d3010 str r3, [sp, #16]
a0006cf8: e5903008 ldr r3, [r0, #8]
a0006cfc: e58d3014 str r3, [sp, #20]
a0006d00: e590300c ldr r3, [r0, #12]
a0006d04: e1a00001 mov r0, r1
a0006d08: e3a01000 mov r1, #0
a0006d0c: e58d3018 str r3, [sp, #24]
a0006d10: e1a03009 mov r3, r9
a0006d14: e12fff34 blx r4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
a0006d18: e3590000 cmp r9, #0
a0006d1c: 1a000005 bne a0006d38 <_Heap_Walk+0xb8>
(*printer)( source, true, "page size is zero\n" );
a0006d20: e1a00005 mov r0, r5
a0006d24: e3a01001 mov r1, #1
a0006d28: e59f243c ldr r2, [pc, #1084] ; a000716c <_Heap_Walk+0x4ec>
a0006d2c: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006d30: e1a08009 mov r8, r9
a0006d34: ea0000fe b a0007134 <_Heap_Walk+0x4b4>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
a0006d38: e2198003 ands r8, r9, #3
(*printer)(
a0006d3c: 11a00005 movne r0, r5
a0006d40: 13a01001 movne r1, #1
a0006d44: 159f2424 ldrne r2, [pc, #1060] ; a0007170 <_Heap_Walk+0x4f0>
a0006d48: 11a03009 movne r3, r9
a0006d4c: 1a0000ff bne a0007150 <_Heap_Walk+0x4d0>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006d50: e59d0024 ldr r0, [sp, #36] ; 0x24
a0006d54: e1a01009 mov r1, r9
a0006d58: ebffe745 bl a0000a74 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
a0006d5c: e250b000 subs fp, r0, #0
a0006d60: 0a000005 beq a0006d7c <_Heap_Walk+0xfc>
(*printer)(
a0006d64: e1a00005 mov r0, r5
a0006d68: e3a01001 mov r1, #1
a0006d6c: e59f2400 ldr r2, [pc, #1024] ; a0007174 <_Heap_Walk+0x4f4>
a0006d70: e59d3024 ldr r3, [sp, #36] ; 0x24
a0006d74: e12fff34 blx r4
a0006d78: ea0000ed b a0007134 <_Heap_Walk+0x4b4>
a0006d7c: e59dc020 ldr ip, [sp, #32]
a0006d80: e1a01009 mov r1, r9
a0006d84: e28c0008 add r0, ip, #8
a0006d88: ebffe739 bl a0000a74 <__umodsi3>
);
return false;
}
if (
a0006d8c: e250a000 subs sl, r0, #0
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
a0006d90: 11a00005 movne r0, r5
a0006d94: 13a01001 movne r1, #1
a0006d98: 159f23d8 ldrne r2, [pc, #984] ; a0007178 <_Heap_Walk+0x4f8>
a0006d9c: 159d3020 ldrne r3, [sp, #32]
a0006da0: 1a0000c3 bne a00070b4 <_Heap_Walk+0x434>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006da4: e59d2020 ldr r2, [sp, #32]
a0006da8: e5928004 ldr r8, [r2, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
a0006dac: e2188001 ands r8, r8, #1
(*printer)(
a0006db0: 01a00005 moveq r0, r5
a0006db4: 03a01001 moveq r1, #1
a0006db8: 059f23bc ldreq r2, [pc, #956] ; a000717c <_Heap_Walk+0x4fc>
a0006dbc: 0a000009 beq a0006de8 <_Heap_Walk+0x168>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006dc0: e59d3028 ldr r3, [sp, #40] ; 0x28
a0006dc4: e5937004 ldr r7, [r3, #4]
a0006dc8: e3c77001 bic r7, r7, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
a0006dcc: e0837007 add r7, r3, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006dd0: e5978004 ldr r8, [r7, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
a0006dd4: e2188001 ands r8, r8, #1
a0006dd8: 1a000004 bne a0006df0 <_Heap_Walk+0x170>
(*printer)(
a0006ddc: e59f239c ldr r2, [pc, #924] ; a0007180 <_Heap_Walk+0x500>
a0006de0: e1a00005 mov r0, r5
a0006de4: e3a01001 mov r1, #1
a0006de8: e12fff34 blx r4
a0006dec: ea0000d0 b a0007134 <_Heap_Walk+0x4b4>
);
return false;
}
if (
a0006df0: e59dc020 ldr ip, [sp, #32]
a0006df4: e157000c cmp r7, ip
a0006df8: 0a000005 beq a0006e14 <_Heap_Walk+0x194>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
a0006dfc: e1a00005 mov r0, r5 <== NOT EXECUTED
a0006e00: e3a01001 mov r1, #1 <== NOT EXECUTED
a0006e04: e59f2378 ldr r2, [pc, #888] ; a0007184 <_Heap_Walk+0x504> <== NOT EXECUTED
a0006e08: e12fff34 blx r4 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006e0c: e1a0800a mov r8, sl <== NOT EXECUTED
a0006e10: ea0000c7 b a0007134 <_Heap_Walk+0x4b4> <== NOT EXECUTED
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
a0006e14: e596b010 ldr fp, [r6, #16]
block = next_block;
} while ( block != first_block );
return true;
}
a0006e18: e5968008 ldr r8, [r6, #8]
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
a0006e1c: e1a0a006 mov sl, r6
a0006e20: ea000032 b a0006ef0 <_Heap_Walk+0x270>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006e24: e5963020 ldr r3, [r6, #32]
a0006e28: e1530008 cmp r3, r8
a0006e2c: 83a0c000 movhi ip, #0
a0006e30: 8a000003 bhi a0006e44 <_Heap_Walk+0x1c4>
a0006e34: e596c024 ldr ip, [r6, #36] ; 0x24
a0006e38: e15c0008 cmp ip, r8
a0006e3c: 33a0c000 movcc ip, #0
a0006e40: 23a0c001 movcs ip, #1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
a0006e44: e21cc0ff ands ip, ip, #255 ; 0xff
(*printer)(
a0006e48: 01a00005 moveq r0, r5
a0006e4c: 03a01001 moveq r1, #1
a0006e50: 059f2330 ldreq r2, [pc, #816] ; a0007188 <_Heap_Walk+0x508>
a0006e54: 0a000012 beq a0006ea4 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006e58: e2880008 add r0, r8, #8
a0006e5c: e1a0100b mov r1, fp
a0006e60: ebffe703 bl a0000a74 <__umodsi3>
);
return false;
}
if (
a0006e64: e250c000 subs ip, r0, #0
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
a0006e68: 11a00005 movne r0, r5
a0006e6c: 13a01001 movne r1, #1
a0006e70: 159f2314 ldrne r2, [pc, #788] ; a000718c <_Heap_Walk+0x50c>
a0006e74: 11a03008 movne r3, r8
a0006e78: 1a0000b4 bne a0007150 <_Heap_Walk+0x4d0>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006e7c: e5983004 ldr r3, [r8, #4]
a0006e80: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
a0006e84: e0883003 add r3, r8, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006e88: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
a0006e8c: e2133001 ands r3, r3, #1
a0006e90: e58d302c str r3, [sp, #44] ; 0x2c
a0006e94: 0a000008 beq a0006ebc <_Heap_Walk+0x23c>
(*printer)(
a0006e98: e59f22f0 ldr r2, [pc, #752] ; a0007190 <_Heap_Walk+0x510>
a0006e9c: e1a00005 mov r0, r5
a0006ea0: e3a01001 mov r1, #1
a0006ea4: e1a03008 mov r3, r8
a0006ea8: e58dc01c str ip, [sp, #28]
a0006eac: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006eb0: e59dc01c ldr ip, [sp, #28]
a0006eb4: e1a0800c mov r8, ip
a0006eb8: ea00009d b a0007134 <_Heap_Walk+0x4b4>
);
return false;
}
if ( free_block->prev != prev_block ) {
a0006ebc: e598300c ldr r3, [r8, #12]
a0006ec0: e153000a cmp r3, sl
a0006ec4: 0a000007 beq a0006ee8 <_Heap_Walk+0x268>
(*printer)(
a0006ec8: e58d3000 str r3, [sp]
a0006ecc: e1a00005 mov r0, r5
a0006ed0: e1a03008 mov r3, r8
a0006ed4: e3a01001 mov r1, #1
a0006ed8: e59f22b4 ldr r2, [pc, #692] ; a0007194 <_Heap_Walk+0x514>
a0006edc: e12fff34 blx r4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
a0006ee0: e59d802c ldr r8, [sp, #44] ; 0x2c
a0006ee4: ea000092 b a0007134 <_Heap_Walk+0x4b4>
return false;
}
prev_block = free_block;
free_block = free_block->next;
a0006ee8: e1a0a008 mov sl, r8
a0006eec: e5988008 ldr r8, [r8, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
a0006ef0: e1580006 cmp r8, r6
a0006ef4: 1affffca bne a0006e24 <_Heap_Walk+0x1a4>
a0006ef8: ea000000 b a0006f00 <_Heap_Walk+0x280>
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
a0006efc: e1a07008 mov r7, r8
return true;
}
a0006f00: e5973004 ldr r3, [r7, #4]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006f04: e5962020 ldr r2, [r6, #32]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006f08: e3c3a001 bic sl, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
a0006f0c: e087800a add r8, r7, sl
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006f10: e1520008 cmp r2, r8
a0006f14: 83a0b000 movhi fp, #0
a0006f18: 8a000003 bhi a0006f2c <_Heap_Walk+0x2ac>
a0006f1c: e596b024 ldr fp, [r6, #36] ; 0x24
a0006f20: e15b0008 cmp fp, r8
a0006f24: 33a0b000 movcc fp, #0
a0006f28: 23a0b001 movcs fp, #1
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
a0006f2c: e21bb0ff ands fp, fp, #255 ; 0xff
a0006f30: 1a000006 bne a0006f50 <_Heap_Walk+0x2d0>
(*printer)(
a0006f34: e58d8000 str r8, [sp]
a0006f38: e1a00005 mov r0, r5
a0006f3c: e3a01001 mov r1, #1
a0006f40: e59f2250 ldr r2, [pc, #592] ; a0007198 <_Heap_Walk+0x518>
a0006f44: e1a03007 mov r3, r7
a0006f48: e12fff34 blx r4
a0006f4c: ea000059 b a00070b8 <_Heap_Walk+0x438>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
a0006f50: e59d2028 ldr r2, [sp, #40] ; 0x28
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
a0006f54: e1a0000a mov r0, sl
a0006f58: e1a01009 mov r1, r9
a0006f5c: e057b002 subs fp, r7, r2
a0006f60: 13a0b001 movne fp, #1
a0006f64: e58d301c str r3, [sp, #28]
a0006f68: ebffe6c1 bl a0000a74 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
a0006f6c: e3500000 cmp r0, #0
a0006f70: e59d301c ldr r3, [sp, #28]
a0006f74: 0a000005 beq a0006f90 <_Heap_Walk+0x310>
a0006f78: e35b0000 cmp fp, #0
(*printer)(
a0006f7c: 158da000 strne sl, [sp]
a0006f80: 11a00005 movne r0, r5
a0006f84: 13a01001 movne r1, #1
a0006f88: 159f220c ldrne r2, [pc, #524] ; a000719c <_Heap_Walk+0x51c>
a0006f8c: 1a000013 bne a0006fe0 <_Heap_Walk+0x360>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
a0006f90: e59dc024 ldr ip, [sp, #36] ; 0x24
a0006f94: e15a000c cmp sl, ip
a0006f98: 2a000008 bcs a0006fc0 <_Heap_Walk+0x340>
a0006f9c: e35b0000 cmp fp, #0
a0006fa0: 0a000006 beq a0006fc0 <_Heap_Walk+0x340>
(*printer)(
a0006fa4: e88d1400 stm sp, {sl, ip}
a0006fa8: e1a00005 mov r0, r5
a0006fac: e3a01001 mov r1, #1
a0006fb0: e59f21e8 ldr r2, [pc, #488] ; a00071a0 <_Heap_Walk+0x520>
a0006fb4: e1a03007 mov r3, r7
a0006fb8: e12fff34 blx r4
a0006fbc: ea000064 b a0007154 <_Heap_Walk+0x4d4>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
a0006fc0: e1580007 cmp r8, r7
a0006fc4: 8a000008 bhi a0006fec <_Heap_Walk+0x36c>
a0006fc8: e35b0000 cmp fp, #0
a0006fcc: 0a000006 beq a0006fec <_Heap_Walk+0x36c>
(*printer)(
a0006fd0: e59f21cc ldr r2, [pc, #460] ; a00071a4 <_Heap_Walk+0x524>
a0006fd4: e58d8000 str r8, [sp]
a0006fd8: e1a00005 mov r0, r5
a0006fdc: e3a01001 mov r1, #1
a0006fe0: e1a03007 mov r3, r7
a0006fe4: e12fff34 blx r4
a0006fe8: ea000059 b a0007154 <_Heap_Walk+0x4d4>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006fec: e203b001 and fp, r3, #1
a0006ff0: e5983004 ldr r3, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
a0006ff4: e3130001 tst r3, #1
a0006ff8: 1a000038 bne a00070e0 <_Heap_Walk+0x460>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
a0006ffc: e597200c ldr r2, [r7, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0007000: e5963008 ldr r3, [r6, #8]
block = next_block;
} while ( block != first_block );
return true;
}
a0007004: e596100c ldr r1, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0007008: e1520003 cmp r2, r3
a000700c: 059f0194 ldreq r0, [pc, #404] ; a00071a8 <_Heap_Walk+0x528>
a0007010: 0a000003 beq a0007024 <_Heap_Walk+0x3a4>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
a0007014: e59f3190 ldr r3, [pc, #400] ; a00071ac <_Heap_Walk+0x52c>
a0007018: e1520006 cmp r2, r6
a000701c: e59f018c ldr r0, [pc, #396] ; a00071b0 <_Heap_Walk+0x530>
a0007020: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
a0007024: e5973008 ldr r3, [r7, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0007028: e1530001 cmp r3, r1
a000702c: 059f1180 ldreq r1, [pc, #384] ; a00071b4 <_Heap_Walk+0x534>
a0007030: 0a000003 beq a0007044 <_Heap_Walk+0x3c4>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
a0007034: e59fc17c ldr ip, [pc, #380] ; a00071b8 <_Heap_Walk+0x538>
a0007038: e1530006 cmp r3, r6
a000703c: e59f116c ldr r1, [pc, #364] ; a00071b0 <_Heap_Walk+0x530>
a0007040: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
a0007044: e58d2004 str r2, [sp, #4]
a0007048: e58d0008 str r0, [sp, #8]
a000704c: e58d300c str r3, [sp, #12]
a0007050: e58d1010 str r1, [sp, #16]
a0007054: e1a03007 mov r3, r7
a0007058: e58da000 str sl, [sp]
a000705c: e1a00005 mov r0, r5
a0007060: e3a01000 mov r1, #0
a0007064: e59f2150 ldr r2, [pc, #336] ; a00071bc <_Heap_Walk+0x53c>
a0007068: e12fff34 blx r4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
a000706c: e5983000 ldr r3, [r8]
a0007070: e15a0003 cmp sl, r3
a0007074: 0a000008 beq a000709c <_Heap_Walk+0x41c>
(*printer)(
a0007078: e58d3004 str r3, [sp, #4]
a000707c: e58da000 str sl, [sp]
a0007080: e58d8008 str r8, [sp, #8]
a0007084: e1a00005 mov r0, r5
a0007088: e3a01001 mov r1, #1
a000708c: e59f212c ldr r2, [pc, #300] ; a00071c0 <_Heap_Walk+0x540>
a0007090: e1a03007 mov r3, r7
a0007094: e12fff34 blx r4
a0007098: ea00002d b a0007154 <_Heap_Walk+0x4d4>
);
return false;
}
if ( !prev_used ) {
a000709c: e35b0000 cmp fp, #0
a00070a0: 1a000006 bne a00070c0 <_Heap_Walk+0x440>
(*printer)(
a00070a4: e59f2118 ldr r2, [pc, #280] ; a00071c4 <_Heap_Walk+0x544>
a00070a8: e1a00005 mov r0, r5
a00070ac: e3a01001 mov r1, #1
a00070b0: e1a03007 mov r3, r7
a00070b4: e12fff34 blx r4
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
a00070b8: e1a0800b mov r8, fp
a00070bc: ea00001c b a0007134 <_Heap_Walk+0x4b4>
block = next_block;
} while ( block != first_block );
return true;
}
a00070c0: e5963008 ldr r3, [r6, #8]
a00070c4: ea000002 b a00070d4 <_Heap_Walk+0x454>
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
a00070c8: e1530007 cmp r3, r7
a00070cc: 0a000014 beq a0007124 <_Heap_Walk+0x4a4>
return true;
}
free_block = free_block->next;
a00070d0: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
a00070d4: e1530006 cmp r3, r6
a00070d8: 1afffffa bne a00070c8 <_Heap_Walk+0x448>
a00070dc: ea000017 b a0007140 <_Heap_Walk+0x4c0>
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
a00070e0: e35b0000 cmp fp, #0
a00070e4: 0a000006 beq a0007104 <_Heap_Walk+0x484>
(*printer)(
a00070e8: e58da000 str sl, [sp]
a00070ec: e1a00005 mov r0, r5
a00070f0: e3a01000 mov r1, #0
a00070f4: e59f20cc ldr r2, [pc, #204] ; a00071c8 <_Heap_Walk+0x548>
a00070f8: e1a03007 mov r3, r7
a00070fc: e12fff34 blx r4
a0007100: ea000007 b a0007124 <_Heap_Walk+0x4a4>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
a0007104: e58da000 str sl, [sp]
a0007108: e5973000 ldr r3, [r7]
a000710c: e1a00005 mov r0, r5
a0007110: e1a0100b mov r1, fp
a0007114: e58d3004 str r3, [sp, #4]
a0007118: e59f20ac ldr r2, [pc, #172] ; a00071cc <_Heap_Walk+0x54c>
a000711c: e1a03007 mov r3, r7
a0007120: e12fff34 blx r4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
a0007124: e59d2020 ldr r2, [sp, #32]
a0007128: e1580002 cmp r8, r2
a000712c: 1affff72 bne a0006efc <_Heap_Walk+0x27c>
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
a0007130: e3a08001 mov r8, #1
block = next_block;
} while ( block != first_block );
return true;
}
a0007134: e1a00008 mov r0, r8
a0007138: e28dd030 add sp, sp, #48 ; 0x30
a000713c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
a0007140: e59f2088 ldr r2, [pc, #136] ; a00071d0 <_Heap_Walk+0x550>
a0007144: e1a00005 mov r0, r5
a0007148: e3a01001 mov r1, #1
a000714c: e1a03007 mov r3, r7
a0007150: e12fff34 blx r4
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
a0007154: e3a08000 mov r8, #0
a0007158: eafffff5 b a0007134 <_Heap_Walk+0x4b4>
a002077c <_POSIX_signals_Unblock_thread>:
bool _POSIX_signals_Unblock_thread(
Thread_Control *the_thread,
int signo,
siginfo_t *info
)
{
a002077c: e92d41f0 push {r4, r5, r6, r7, r8, lr}
/*
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
a0020780: e5903010 ldr r3, [r0, #16]
a0020784: e59f5110 ldr r5, [pc, #272] ; a002089c <_POSIX_signals_Unblock_thread+0x120>
a0020788: e59f810c ldr r8, [pc, #268] ; a002089c <_POSIX_signals_Unblock_thread+0x120>
a002078c: e241c001 sub ip, r1, #1
a0020790: e0035005 and r5, r3, r5
a0020794: e3a06001 mov r6, #1
a0020798: e1550008 cmp r5, r8
bool _POSIX_signals_Unblock_thread(
Thread_Control *the_thread,
int signo,
siginfo_t *info
)
{
a002079c: e1a04000 mov r4, r0
POSIX_API_Control *api;
sigset_t mask;
siginfo_t *the_info = NULL;
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
a00207a0: e5907108 ldr r7, [r0, #264] ; 0x108
a00207a4: e1a0cc16 lsl ip, r6, ip
/*
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
a00207a8: 1a000019 bne a0020814 <_POSIX_signals_Unblock_thread+0x98>
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
a00207ac: e5903030 ldr r3, [r0, #48] ; 0x30
a00207b0: e11c0003 tst ip, r3
a00207b4: 1a000002 bne a00207c4 <_POSIX_signals_Unblock_thread+0x48>
a00207b8: e59750d0 ldr r5, [r7, #208] ; 0xd0
a00207bc: e1dc5005 bics r5, ip, r5
a00207c0: 0a000033 beq a0020894 <_POSIX_signals_Unblock_thread+0x118>
the_thread->Wait.return_code = EINTR;
a00207c4: e3a03004 mov r3, #4
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
a00207c8: e3520000 cmp r2, #0
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
the_thread->Wait.return_code = EINTR;
a00207cc: e5843034 str r3, [r4, #52] ; 0x34
the_info = (siginfo_t *) the_thread->Wait.return_argument;
a00207d0: e5943028 ldr r3, [r4, #40] ; 0x28
if ( !info ) {
the_info->si_signo = signo;
a00207d4: 05831000 streq r1, [r3]
the_info->si_code = SI_USER;
a00207d8: 03a01001 moveq r1, #1
a00207dc: 09830006 stmibeq r3, {r1, r2}
a00207e0: 0a000007 beq a0020804 <_POSIX_signals_Unblock_thread+0x88>
the_info->si_value.sival_int = 0;
} else {
*the_info = *info;
a00207e4: e1a00002 mov r0, r2
a00207e8: e490c004 ldr ip, [r0], #4
a00207ec: e1a01003 mov r1, r3
a00207f0: e481c004 str ip, [r1], #4
a00207f4: e5922004 ldr r2, [r2, #4]
a00207f8: e5832004 str r2, [r3, #4]
a00207fc: e5903004 ldr r3, [r0, #4]
a0020800: e5813004 str r3, [r1, #4]
}
_Thread_queue_Extract_with_proxy( the_thread );
a0020804: e1a00004 mov r0, r4
a0020808: ebffaf68 bl a000c5b0 <_Thread_queue_Extract_with_proxy>
return true;
a002080c: e3a05001 mov r5, #1
a0020810: ea00001f b a0020894 <_POSIX_signals_Unblock_thread+0x118>
}
/*
* Thread is not waiting due to a sigwait.
*/
if ( ~api->signals_blocked & mask ) {
a0020814: e59750d0 ldr r5, [r7, #208] ; 0xd0
a0020818: e1dc5005 bics r5, ip, r5
a002081c: 0a00001c beq a0020894 <_POSIX_signals_Unblock_thread+0x118>
* it is not blocked, THEN
* we need to dispatch at the end of this ISR.
* + Any other combination, do nothing.
*/
if ( _States_Is_interruptible_by_signal( the_thread->current_state ) ) {
a0020820: e2135201 ands r5, r3, #268435456 ; 0x10000000
a0020824: 0a000010 beq a002086c <_POSIX_signals_Unblock_thread+0xf0>
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
a0020828: e59f5070 ldr r5, [pc, #112] ; a00208a0 <_POSIX_signals_Unblock_thread+0x124>
the_thread->Wait.return_code = EINTR;
a002082c: e3a02004 mov r2, #4
a0020830: e5802034 str r2, [r0, #52] ; 0x34
a0020834: e0035005 and r5, r3, r5
/*
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
a0020838: e3550000 cmp r5, #0
a002083c: 0a000002 beq a002084c <_POSIX_signals_Unblock_thread+0xd0>
_Thread_queue_Extract_with_proxy( the_thread );
a0020840: ebffaf5a bl a000c5b0 <_Thread_queue_Extract_with_proxy> <== NOT EXECUTED
} else if ( the_thread->current_state == STATES_READY ) {
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
}
return false;
a0020844: e3a05000 mov r5, #0 <== NOT EXECUTED
a0020848: ea000011 b a0020894 <_POSIX_signals_Unblock_thread+0x118> <== NOT EXECUTED
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
_Thread_queue_Extract_with_proxy( the_thread );
else if ( _States_Is_delaying(the_thread->current_state) ) {
a002084c: e2133008 ands r3, r3, #8
a0020850: 0a00000e beq a0020890 <_POSIX_signals_Unblock_thread+0x114>
(void) _Watchdog_Remove( &the_thread->Timer );
a0020854: e2800048 add r0, r0, #72 ; 0x48
a0020858: ebffb1ec bl a000d010 <_Watchdog_Remove>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
a002085c: e1a00004 mov r0, r4
a0020860: e59f103c ldr r1, [pc, #60] ; a00208a4 <_POSIX_signals_Unblock_thread+0x128>
a0020864: ebffacaa bl a000bb14 <_Thread_Clear_state>
a0020868: ea000009 b a0020894 <_POSIX_signals_Unblock_thread+0x118>
_Thread_Unblock( the_thread );
}
} else if ( the_thread->current_state == STATES_READY ) {
a002086c: e3530000 cmp r3, #0
a0020870: 1a000007 bne a0020894 <_POSIX_signals_Unblock_thread+0x118>
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
a0020874: e59f202c ldr r2, [pc, #44] ; a00208a8 <_POSIX_signals_Unblock_thread+0x12c>
a0020878: e5925000 ldr r5, [r2]
a002087c: e3550000 cmp r5, #0
a0020880: 0a000003 beq a0020894 <_POSIX_signals_Unblock_thread+0x118>
a0020884: e5921004 ldr r1, [r2, #4]
a0020888: e1500001 cmp r0, r1
_Thread_Dispatch_necessary = true;
a002088c: 05c26010 strbeq r6, [r2, #16]
}
}
return false;
a0020890: e1a05003 mov r5, r3
}
a0020894: e1a00005 mov r0, r5
a0020898: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
a0005e18 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
a0005e18: e59f30b4 ldr r3, [pc, #180] ; a0005ed4 <_TOD_Validate+0xbc>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
a0005e1c: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
a0005e20: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
a0005e24: e593100c ldr r1, [r3, #12]
if ((!the_tod) ||
a0005e28: 0a000021 beq a0005eb4 <_TOD_Validate+0x9c>
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
a0005e2c: e59f00a4 ldr r0, [pc, #164] ; a0005ed8 <_TOD_Validate+0xc0>
a0005e30: eb004688 bl a0017858 <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
a0005e34: e5943018 ldr r3, [r4, #24]
a0005e38: e1530000 cmp r3, r0
a0005e3c: 2a000020 bcs a0005ec4 <_TOD_Validate+0xac>
(the_tod->ticks >= ticks_per_second) ||
a0005e40: e5943014 ldr r3, [r4, #20]
a0005e44: e353003b cmp r3, #59 ; 0x3b
a0005e48: 8a00001d bhi a0005ec4 <_TOD_Validate+0xac>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
a0005e4c: e5943010 ldr r3, [r4, #16]
a0005e50: e353003b cmp r3, #59 ; 0x3b
a0005e54: 8a00001a bhi a0005ec4 <_TOD_Validate+0xac>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
a0005e58: e594300c ldr r3, [r4, #12]
a0005e5c: e3530017 cmp r3, #23
a0005e60: 8a000017 bhi a0005ec4 <_TOD_Validate+0xac>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
a0005e64: e5943004 ldr r3, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
a0005e68: e3530000 cmp r3, #0
a0005e6c: 0a000012 beq a0005ebc <_TOD_Validate+0xa4>
(the_tod->month == 0) ||
a0005e70: e353000c cmp r3, #12
a0005e74: 8a000012 bhi a0005ec4 <_TOD_Validate+0xac>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
a0005e78: e5942000 ldr r2, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
a0005e7c: e59f1058 ldr r1, [pc, #88] ; a0005edc <_TOD_Validate+0xc4>
a0005e80: e1520001 cmp r2, r1
a0005e84: 9a000010 bls a0005ecc <_TOD_Validate+0xb4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
a0005e88: e5940008 ldr r0, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
a0005e8c: e3500000 cmp r0, #0
a0005e90: 0a00000e beq a0005ed0 <_TOD_Validate+0xb8>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
a0005e94: e3120003 tst r2, #3
a0005e98: e59f2040 ldr r2, [pc, #64] ; a0005ee0 <_TOD_Validate+0xc8>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
a0005e9c: 0283300d addeq r3, r3, #13
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
a0005ea0: e7924103 ldr r4, [r2, r3, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
a0005ea4: e1500004 cmp r0, r4
a0005ea8: 83a00000 movhi r0, #0
a0005eac: 93a00001 movls r0, #1
a0005eb0: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
a0005eb4: e1a00004 mov r0, r4 <== NOT EXECUTED
a0005eb8: e8bd8010 pop {r4, pc} <== NOT EXECUTED
a0005ebc: e1a00003 mov r0, r3 <== NOT EXECUTED
a0005ec0: e8bd8010 pop {r4, pc} <== NOT EXECUTED
a0005ec4: e3a00000 mov r0, #0
a0005ec8: e8bd8010 pop {r4, pc}
a0005ecc: e3a00000 mov r0, #0
if ( the_tod->day > days_in_month )
return false;
return true;
}
a0005ed0: e8bd8010 pop {r4, pc}
a0013fc8 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
a0013fc8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
a0013fcc: e24dd018 sub sp, sp, #24
a0013fd0: e28db00c add fp, sp, #12
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
a0013fd4: e3a03000 mov r3, #0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
a0013fd8: e28ba004 add sl, fp, #4
a0013fdc: e28d7004 add r7, sp, #4
a0013fe0: e1a04000 mov r4, r0
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
a0013fe4: e58da00c str sl, [sp, #12]
the_chain->permanent_null = NULL;
a0013fe8: e58d3010 str r3, [sp, #16]
the_chain->last = _Chain_Head(the_chain);
a0013fec: e58db014 str fp, [sp, #20]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
a0013ff0: e1a0500d mov r5, sp
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
a0013ff4: e58d7000 str r7, [sp]
the_chain->permanent_null = NULL;
a0013ff8: e98d2008 stmib sp, {r3, sp}
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0013ffc: e2809030 add r9, r0, #48 ; 0x30
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
a0014000: e584b078 str fp, [r4, #120] ; 0x78
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
a0014004: e2848068 add r8, r4, #104 ; 0x68
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
a0014008: e59f2154 ldr r2, [pc, #340] ; a0014164 <_Timer_server_Body+0x19c>
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a001400c: e1a00009 mov r0, r9
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
a0014010: e5923000 ldr r3, [r2]
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
a0014014: e594103c ldr r1, [r4, #60] ; 0x3c
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0014018: e1a02005 mov r2, r5
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
a001401c: e584303c str r3, [r4, #60] ; 0x3c
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0014020: e0611003 rsb r1, r1, r3
a0014024: eb0010fe bl a0018424 <_Watchdog_Adjust_to_chain>
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
a0014028: e59f3138 ldr r3, [pc, #312] ; a0014168 <_Timer_server_Body+0x1a0>
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
a001402c: e5942074 ldr r2, [r4, #116] ; 0x74
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
a0014030: e5936000 ldr r6, [r3]
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
a0014034: e1560002 cmp r6, r2
a0014038: 9a000004 bls a0014050 <_Timer_server_Body+0x88>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a001403c: e0621006 rsb r1, r2, r6
a0014040: e1a00008 mov r0, r8
a0014044: e1a02005 mov r2, r5
a0014048: eb0010f5 bl a0018424 <_Watchdog_Adjust_to_chain>
a001404c: ea000004 b a0014064 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
a0014050: 2a000003 bcs a0014064 <_Timer_server_Body+0x9c>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
a0014054: e1a00008 mov r0, r8
a0014058: e3a01001 mov r1, #1
a001405c: e0662002 rsb r2, r6, r2
a0014060: eb0010c7 bl a0018384 <_Watchdog_Adjust>
}
watchdogs->last_snapshot = snapshot;
a0014064: e5846074 str r6, [r4, #116] ; 0x74
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
a0014068: e5940078 ldr r0, [r4, #120] ; 0x78
a001406c: eb00029b bl a0014ae0 <_Chain_Get>
if ( timer == NULL ) {
a0014070: e2506000 subs r6, r0, #0
a0014074: 0a000009 beq a00140a0 <_Timer_server_Body+0xd8>
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
a0014078: e5963038 ldr r3, [r6, #56] ; 0x38
a001407c: e3530001 cmp r3, #1
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
a0014080: 01a00009 moveq r0, r9
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
a0014084: 0a000002 beq a0014094 <_Timer_server_Body+0xcc>
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
a0014088: e3530003 cmp r3, #3
a001408c: 1afffff5 bne a0014068 <_Timer_server_Body+0xa0>
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
a0014090: e1a00008 mov r0, r8
a0014094: e2861010 add r1, r6, #16
a0014098: eb00110c bl a00184d0 <_Watchdog_Insert>
a001409c: eafffff1 b a0014068 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
a00140a0: ebffff96 bl a0013f00 <arm_interrupt_disable>
if ( _Chain_Is_empty( insert_chain ) ) {
a00140a4: e59d300c ldr r3, [sp, #12]
a00140a8: e153000a cmp r3, sl
a00140ac: 1a000006 bne a00140cc <_Timer_server_Body+0x104>
ts->insert_chain = NULL;
a00140b0: e5846078 str r6, [r4, #120] ; 0x78
a00140b4: e129f000 msr CPSR_fc, r0
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
a00140b8: e59d3000 ldr r3, [sp]
a00140bc: e1530007 cmp r3, r7
)
{
if ( !_Chain_Is_empty(the_chain))
return _Chain_Get_first_unprotected(the_chain);
else
return NULL;
a00140c0: 13a06000 movne r6, #0
a00140c4: 1a000002 bne a00140d4 <_Timer_server_Body+0x10c>
a00140c8: ea000013 b a001411c <_Timer_server_Body+0x154>
a00140cc: e129f000 msr CPSR_fc, r0 <== NOT EXECUTED
a00140d0: eaffffcc b a0014008 <_Timer_server_Body+0x40> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
a00140d4: ebffff89 bl a0013f00 <arm_interrupt_disable>
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
a00140d8: e59d2000 ldr r2, [sp]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
a00140dc: e1520007 cmp r2, r7
a00140e0: 0a00000b beq a0014114 <_Timer_server_Body+0x14c>
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
a00140e4: e5923000 ldr r3, [r2]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
a00140e8: e3520000 cmp r2, #0
the_chain->first = new_first;
a00140ec: e58d3000 str r3, [sp]
new_first->previous = _Chain_Head(the_chain);
a00140f0: e5835004 str r5, [r3, #4]
a00140f4: 0a000006 beq a0014114 <_Timer_server_Body+0x14c>
watchdog->state = WATCHDOG_INACTIVE;
a00140f8: e5826008 str r6, [r2, #8]
a00140fc: e129f000 msr CPSR_fc, r0
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
a0014100: e592301c ldr r3, [r2, #28]
a0014104: e5920020 ldr r0, [r2, #32]
a0014108: e5921024 ldr r1, [r2, #36] ; 0x24
a001410c: e12fff33 blx r3
}
a0014110: eaffffef b a00140d4 <_Timer_server_Body+0x10c>
a0014114: e129f000 msr CPSR_fc, r0
a0014118: eaffffb8 b a0014000 <_Timer_server_Body+0x38>
} else {
ts->active = false;
a001411c: e3a03000 mov r3, #0
a0014120: e5c4307c strb r3, [r4, #124] ; 0x7c
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
a0014124: ebffff79 bl a0013f10 <_Thread_Disable_dispatch>
_Thread_Set_state( ts->thread, STATES_DELAYING );
a0014128: e3a01008 mov r1, #8
a001412c: e5940000 ldr r0, [r4]
a0014130: eb000e45 bl a0017a4c <_Thread_Set_state>
_Timer_server_Reset_interval_system_watchdog( ts );
a0014134: e1a00004 mov r0, r4
a0014138: ebffff7a bl a0013f28 <_Timer_server_Reset_interval_system_watchdog>
_Timer_server_Reset_tod_system_watchdog( ts );
a001413c: e1a00004 mov r0, r4
a0014140: ebffff8c bl a0013f78 <_Timer_server_Reset_tod_system_watchdog>
_Thread_Enable_dispatch();
a0014144: eb000bbe bl a0017044 <_Thread_Enable_dispatch>
ts->active = true;
a0014148: e3a03001 mov r3, #1
a001414c: e5c4307c strb r3, [r4, #124] ; 0x7c
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
a0014150: e2840008 add r0, r4, #8
a0014154: eb001133 bl a0018628 <_Watchdog_Remove>
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
a0014158: e2840040 add r0, r4, #64 ; 0x40
a001415c: eb001131 bl a0018628 <_Watchdog_Remove>
a0014160: eaffffa6 b a0014000 <_Timer_server_Body+0x38>
a000a1e0 <pthread_attr_setschedpolicy>:
int pthread_attr_setschedpolicy(
pthread_attr_t *attr,
int policy
)
{
if ( !attr || !attr->is_initialized )
a000a1e0: e3500000 cmp r0, #0
a000a1e4: 0a00000b beq a000a218 <pthread_attr_setschedpolicy+0x38>
a000a1e8: e5903000 ldr r3, [r0]
a000a1ec: e3530000 cmp r3, #0
a000a1f0: 0a000008 beq a000a218 <pthread_attr_setschedpolicy+0x38>
return EINVAL;
switch ( policy ) {
a000a1f4: e3510004 cmp r1, #4
a000a1f8: 8a000008 bhi a000a220 <pthread_attr_setschedpolicy+0x40>
a000a1fc: e3a03001 mov r3, #1
a000a200: e1a03113 lsl r3, r3, r1
a000a204: e3130017 tst r3, #23
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
case SCHED_SPORADIC:
attr->schedpolicy = policy;
a000a208: 15801014 strne r1, [r0, #20]
return 0;
a000a20c: 13a00000 movne r0, #0
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
switch ( policy ) {
a000a210: 112fff1e bxne lr
a000a214: ea000001 b a000a220 <pthread_attr_setschedpolicy+0x40> <== NOT EXECUTED
pthread_attr_t *attr,
int policy
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
a000a218: e3a00016 mov r0, #22
a000a21c: e12fff1e bx lr
case SCHED_SPORADIC:
attr->schedpolicy = policy;
return 0;
default:
return ENOTSUP;
a000a220: e3a00086 mov r0, #134 ; 0x86
}
}
a000a224: e12fff1e bx lr
a0005d14 <pthread_cond_init>:
int pthread_cond_init(
pthread_cond_t *cond,
const pthread_condattr_t *attr
)
{
a0005d14: e92d40f0 push {r4, r5, r6, r7, lr}
POSIX_Condition_variables_Control *the_cond;
const pthread_condattr_t *the_attr;
if ( attr ) the_attr = attr;
else the_attr = &_POSIX_Condition_variables_Default_attributes;
a0005d18: e59f50a8 ldr r5, [pc, #168] ; a0005dc8 <pthread_cond_init+0xb4>
a0005d1c: e3510000 cmp r1, #0
a0005d20: 11a05001 movne r5, r1
/*
* Be careful about attributes when global!!!
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
a0005d24: e5953004 ldr r3, [r5, #4]
int pthread_cond_init(
pthread_cond_t *cond,
const pthread_condattr_t *attr
)
{
a0005d28: e1a07000 mov r7, r0
else the_attr = &_POSIX_Condition_variables_Default_attributes;
/*
* Be careful about attributes when global!!!
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
a0005d2c: e3530001 cmp r3, #1
a0005d30: 0a000020 beq a0005db8 <pthread_cond_init+0xa4>
return EINVAL;
if ( !the_attr->is_initialized )
a0005d34: e5953000 ldr r3, [r5]
a0005d38: e3530000 cmp r3, #0
a0005d3c: 0a00001f beq a0005dc0 <pthread_cond_init+0xac>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
a0005d40: e59f3084 ldr r3, [pc, #132] ; a0005dcc <pthread_cond_init+0xb8>
a0005d44: e5932000 ldr r2, [r3]
a0005d48: e2822001 add r2, r2, #1
a0005d4c: e5832000 str r2, [r3]
RTEMS_INLINE_ROUTINE POSIX_Condition_variables_Control
*_POSIX_Condition_variables_Allocate( void )
{
return (POSIX_Condition_variables_Control *)
_Objects_Allocate( &_POSIX_Condition_variables_Information );
a0005d50: e59f6078 ldr r6, [pc, #120] ; a0005dd0 <pthread_cond_init+0xbc>
a0005d54: e1a00006 mov r0, r6
a0005d58: eb00092b bl a000820c <_Objects_Allocate>
_Thread_Disable_dispatch();
the_cond = _POSIX_Condition_variables_Allocate();
if ( !the_cond ) {
a0005d5c: e2504000 subs r4, r0, #0
a0005d60: 1a000002 bne a0005d70 <pthread_cond_init+0x5c>
_Thread_Enable_dispatch();
a0005d64: eb000c56 bl a0008ec4 <_Thread_Enable_dispatch>
return ENOMEM;
a0005d68: e3a0000c mov r0, #12
a0005d6c: e8bd80f0 pop {r4, r5, r6, r7, pc}
}
the_cond->process_shared = the_attr->process_shared;
a0005d70: e5953004 ldr r3, [r5, #4]
the_cond->Mutex = POSIX_CONDITION_VARIABLES_NO_MUTEX;
a0005d74: e3a05000 mov r5, #0
_Thread_queue_Initialize(
a0005d78: e2840018 add r0, r4, #24
if ( !the_cond ) {
_Thread_Enable_dispatch();
return ENOMEM;
}
the_cond->process_shared = the_attr->process_shared;
a0005d7c: e5843010 str r3, [r4, #16]
the_cond->Mutex = POSIX_CONDITION_VARIABLES_NO_MUTEX;
_Thread_queue_Initialize(
a0005d80: e1a01005 mov r1, r5
a0005d84: e59f2048 ldr r2, [pc, #72] ; a0005dd4 <pthread_cond_init+0xc0>
a0005d88: e3a03074 mov r3, #116 ; 0x74
return ENOMEM;
}
the_cond->process_shared = the_attr->process_shared;
the_cond->Mutex = POSIX_CONDITION_VARIABLES_NO_MUTEX;
a0005d8c: e5845014 str r5, [r4, #20]
_Thread_queue_Initialize(
a0005d90: eb000e3f bl a0009694 <_Thread_queue_Initialize>
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
a0005d94: e596201c ldr r2, [r6, #28]
Objects_Information *information,
Objects_Control *the_object,
uint32_t name
)
{
_Objects_Set_local_object(
a0005d98: e5943008 ldr r3, [r4, #8]
a0005d9c: e1d410b8 ldrh r1, [r4, #8]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
a0005da0: e7824101 str r4, [r2, r1, lsl #2]
_Objects_Get_index( the_object->id ),
the_object
);
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
a0005da4: e584500c str r5, [r4, #12]
&_POSIX_Condition_variables_Information,
&the_cond->Object,
0
);
*cond = the_cond->Object.id;
a0005da8: e5873000 str r3, [r7]
_Thread_Enable_dispatch();
a0005dac: eb000c44 bl a0008ec4 <_Thread_Enable_dispatch>
return 0;
a0005db0: e1a00005 mov r0, r5
a0005db4: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* Be careful about attributes when global!!!
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
return EINVAL;
a0005db8: e3a00016 mov r0, #22 <== NOT EXECUTED
a0005dbc: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
if ( !the_attr->is_initialized )
return EINVAL;
a0005dc0: e3a00016 mov r0, #22
*cond = the_cond->Object.id;
_Thread_Enable_dispatch();
return 0;
}
a0005dc4: e8bd80f0 pop {r4, r5, r6, r7, pc}
a000700c <pthread_mutexattr_setpshared>:
int pthread_mutexattr_setpshared(
pthread_mutexattr_t *attr,
int pshared
)
{
if ( !attr || !attr->is_initialized )
a000700c: e3500000 cmp r0, #0
a0007010: 0a000007 beq a0007034 <pthread_mutexattr_setpshared+0x28>
a0007014: e5903000 ldr r3, [r0]
a0007018: e3530000 cmp r3, #0
a000701c: 0a000004 beq a0007034 <pthread_mutexattr_setpshared+0x28>
return EINVAL;
switch ( pshared ) {
a0007020: e3510001 cmp r1, #1
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
a0007024: 95801004 strls r1, [r0, #4]
return 0;
a0007028: 93a00000 movls r0, #0
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
switch ( pshared ) {
a000702c: 912fff1e bxls lr
a0007030: ea000001 b a000703c <pthread_mutexattr_setpshared+0x30> <== NOT EXECUTED
pthread_mutexattr_t *attr,
int pshared
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
a0007034: e3a00016 mov r0, #22
a0007038: e12fff1e bx lr
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
return 0;
default:
return EINVAL;
a000703c: e3a00016 mov r0, #22 <== NOT EXECUTED
}
}
a0007040: e12fff1e bx lr <== NOT EXECUTED
a0006a78 <pthread_rwlockattr_setpshared>:
int pthread_rwlockattr_setpshared(
pthread_rwlockattr_t *attr,
int pshared
)
{
if ( !attr )
a0006a78: e3500000 cmp r0, #0
a0006a7c: 0a000007 beq a0006aa0 <pthread_rwlockattr_setpshared+0x28>
return EINVAL;
if ( !attr->is_initialized )
a0006a80: e5903000 ldr r3, [r0]
a0006a84: e3530000 cmp r3, #0
a0006a88: 0a000004 beq a0006aa0 <pthread_rwlockattr_setpshared+0x28>
return EINVAL;
switch ( pshared ) {
a0006a8c: e3510001 cmp r1, #1
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
a0006a90: 95801004 strls r1, [r0, #4]
return 0;
a0006a94: 93a00000 movls r0, #0
return EINVAL;
if ( !attr->is_initialized )
return EINVAL;
switch ( pshared ) {
a0006a98: 912fff1e bxls lr
a0006a9c: ea000001 b a0006aa8 <pthread_rwlockattr_setpshared+0x30> <== NOT EXECUTED
{
if ( !attr )
return EINVAL;
if ( !attr->is_initialized )
return EINVAL;
a0006aa0: e3a00016 mov r0, #22
a0006aa4: e12fff1e bx lr
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
return 0;
default:
return EINVAL;
a0006aa8: e3a00016 mov r0, #22 <== NOT EXECUTED
}
}
a0006aac: e12fff1e bx lr <== NOT EXECUTED
a0005978 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
a0005978: e92d4030 push {r4, r5, lr}
a000597c: e1a04002 mov r4, r2
a0005980: e1a05003 mov r5, r3
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
a0005984: eb000139 bl a0005e70 <_Chain_Append_with_empty_check>
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
a0005988: e3500000 cmp r0, #0
a000598c: 0a000003 beq a00059a0 <rtems_chain_append_with_notification+0x28>
sc = rtems_event_send( task, events );
a0005990: e1a00004 mov r0, r4
a0005994: e1a01005 mov r1, r5
}
return sc;
}
a0005998: e8bd4030 pop {r4, r5, lr}
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
a000599c: eafffda8 b a0005044 <rtems_event_send>
}
return sc;
}
a00059a0: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED
a00059a4 <rtems_chain_get_with_notification>:
rtems_chain_control *chain,
rtems_id task,
rtems_event_set events,
rtems_chain_node **node
)
{
a00059a4: e92d4030 push {r4, r5, lr}
a00059a8: e1a04001 mov r4, r1
RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node **node
)
{
return _Chain_Get_with_empty_check( chain, node );
a00059ac: e1a01003 mov r1, r3
a00059b0: e1a05002 mov r5, r2
a00059b4: eb000150 bl a0005efc <_Chain_Get_with_empty_check>
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
a00059b8: e3500000 cmp r0, #0
a00059bc: 0a000003 beq a00059d0 <rtems_chain_get_with_notification+0x2c>
sc = rtems_event_send( task, events );
a00059c0: e1a00004 mov r0, r4
a00059c4: e1a01005 mov r1, r5
}
return sc;
}
a00059c8: e8bd4030 pop {r4, r5, lr}
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
sc = rtems_event_send( task, events );
a00059cc: eafffd9c b a0005044 <rtems_event_send>
}
return sc;
}
a00059d0: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED
a0005a28 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
a0005a28: e92d4030 push {r4, r5, lr}
a0005a2c: e1a04002 mov r4, r2
a0005a30: e1a05003 mov r5, r3
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
a0005a34: eb00015b bl a0005fa8 <_Chain_Prepend_with_empty_check>
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
a0005a38: e3500000 cmp r0, #0
a0005a3c: 0a000003 beq a0005a50 <rtems_chain_prepend_with_notification+0x28>
sc = rtems_event_send( task, events );
a0005a40: e1a00004 mov r0, r4
a0005a44: e1a01005 mov r1, r5
}
return sc;
}
a0005a48: e8bd4030 pop {r4, r5, lr}
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
a0005a4c: eafffd7c b a0005044 <rtems_event_send>
}
return sc;
}
a0005a50: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED
a0005704 <sigaction>:
struct sigaction *oact
)
{
ISR_Level level;
if ( oact )
a0005704: e3520000 cmp r2, #0
int sigaction(
int sig,
const struct sigaction *act,
struct sigaction *oact
)
{
a0005708: e92d40f0 push {r4, r5, r6, r7, lr}
a000570c: e1a04000 mov r4, r0
a0005710: e1a05001 mov r5, r1
ISR_Level level;
if ( oact )
a0005714: 0a00000a beq a0005744 <sigaction+0x40>
*oact = _POSIX_signals_Vectors[ sig ];
a0005718: e3a0300c mov r3, #12
a000571c: e0030394 mul r3, r4, r3
a0005720: e59f00dc ldr r0, [pc, #220] ; a0005804 <sigaction+0x100>
a0005724: e0801003 add r1, r0, r3
a0005728: e7900003 ldr r0, [r0, r3]
a000572c: e1a03002 mov r3, r2
a0005730: e4830004 str r0, [r3], #4
a0005734: e5910004 ldr r0, [r1, #4]
a0005738: e5820004 str r0, [r2, #4]
a000573c: e5912008 ldr r2, [r1, #8]
a0005740: e5832004 str r2, [r3, #4]
if ( !sig )
a0005744: e3540000 cmp r4, #0
a0005748: 0a000004 beq a0005760 <sigaction+0x5c>
static inline bool is_valid_signo(
int signo
)
{
return ((signo) >= 1 && (signo) <= 32 );
a000574c: e2443001 sub r3, r4, #1
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
a0005750: e353001f cmp r3, #31
a0005754: 8a000001 bhi a0005760 <sigaction+0x5c>
*
* NOTE: Solaris documentation claims to "silently enforce" this which
* contradicts the POSIX specification.
*/
if ( sig == SIGKILL )
a0005758: e3540009 cmp r4, #9
a000575c: 1a000004 bne a0005774 <sigaction+0x70>
rtems_set_errno_and_return_minus_one( EINVAL );
a0005760: eb002140 bl a000dc68 <__errno>
a0005764: e3a03016 mov r3, #22
a0005768: e5803000 str r3, [r0]
a000576c: e3e00000 mvn r0, #0
a0005770: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* Evaluate the new action structure and set the global signal vector
* appropriately.
*/
if ( act ) {
a0005774: e3550000 cmp r5, #0
a0005778: 0a00001f beq a00057fc <sigaction+0xf8>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
a000577c: e10f7000 mrs r7, CPSR
a0005780: e3873080 orr r3, r7, #128 ; 0x80
a0005784: e129f003 msr CPSR_fc, r3
* Unless the user is installing the default signal actions, then
* we can just copy the provided sigaction structure into the vectors.
*/
_ISR_Disable( level );
if ( act->sa_handler == SIG_DFL ) {
a0005788: e5953008 ldr r3, [r5, #8]
a000578c: e59f6070 ldr r6, [pc, #112] ; a0005804 <sigaction+0x100>
a0005790: e3530000 cmp r3, #0
a0005794: 1a000009 bne a00057c0 <sigaction+0xbc>
_POSIX_signals_Vectors[ sig ] = _POSIX_signals_Default_vectors[ sig ];
a0005798: e283300c add r3, r3, #12
a000579c: e0040493 mul r4, r3, r4
a00057a0: e59f1060 ldr r1, [pc, #96] ; a0005808 <sigaction+0x104>
a00057a4: e0863004 add r3, r6, r4
a00057a8: e0812004 add r2, r1, r4
a00057ac: e7911004 ldr r1, [r1, r4]
a00057b0: e7861004 str r1, [r6, r4]
a00057b4: e9920006 ldmib r2, {r1, r2}
a00057b8: e9830006 stmib r3, {r1, r2}
a00057bc: ea00000b b a00057f0 <sigaction+0xec>
} else {
_POSIX_signals_Clear_process_signals( sig );
a00057c0: e1a00004 mov r0, r4
a00057c4: eb001597 bl a000ae28 <_POSIX_signals_Clear_process_signals>
_POSIX_signals_Vectors[ sig ] = *act;
a00057c8: e3a0300c mov r3, #12
a00057cc: e0040493 mul r4, r3, r4
a00057d0: e1a03005 mov r3, r5
a00057d4: e4931004 ldr r1, [r3], #4
a00057d8: e0862004 add r2, r6, r4
a00057dc: e7861004 str r1, [r6, r4]
a00057e0: e5951004 ldr r1, [r5, #4]
a00057e4: e5821004 str r1, [r2, #4]
a00057e8: e5933004 ldr r3, [r3, #4]
a00057ec: e5823008 str r3, [r2, #8]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
a00057f0: e129f007 msr CPSR_fc, r7
* now (signals not posted when SIG_IGN).
* + If we are now ignoring a signal that was previously pending,
* we clear the pending signal indicator.
*/
return 0;
a00057f4: e3a00000 mov r0, #0
a00057f8: e8bd80f0 pop {r4, r5, r6, r7, pc}
a00057fc: e1a00005 mov r0, r5 <== NOT EXECUTED
}
a0005800: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
a0007e20 <sigwait>:
int sigwait(
const sigset_t *set,
int *sig
)
{
a0007e20: e92d4010 push {r4, lr}
a0007e24: e1a04001 mov r4, r1
int status;
status = sigtimedwait( set, NULL, NULL );
a0007e28: e3a01000 mov r1, #0
a0007e2c: e1a02001 mov r2, r1
a0007e30: ebffff84 bl a0007c48 <sigtimedwait>
if ( status != -1 ) {
a0007e34: e3700001 cmn r0, #1
a0007e38: 0a000004 beq a0007e50 <sigwait+0x30>
if ( sig )
a0007e3c: e3540000 cmp r4, #0
a0007e40: 0a000005 beq a0007e5c <sigwait+0x3c>
*sig = status;
a0007e44: e5840000 str r0, [r4]
return 0;
a0007e48: e3a00000 mov r0, #0
a0007e4c: e8bd8010 pop {r4, pc}
}
return errno;
a0007e50: eb002067 bl a000fff4 <__errno>
a0007e54: e5900000 ldr r0, [r0]
a0007e58: e8bd8010 pop {r4, pc}
status = sigtimedwait( set, NULL, NULL );
if ( status != -1 ) {
if ( sig )
*sig = status;
return 0;
a0007e5c: e1a00004 mov r0, r4 <== NOT EXECUTED
}
return errno;
}
a0007e60: e8bd8010 pop {r4, pc} <== NOT EXECUTED