=============================================================================== a00169d4 <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a00169d4: e590304c ldr r3, [r0, #76] ; 0x4c Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a00169d8: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a00169dc: e1530002 cmp r3, r2 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a00169e0: e1a07000 mov r7, r0 a00169e4: e1a05002 mov r5, r2 a00169e8: e1a08001 mov r8, r1 a00169ec: e59da020 ldr sl, [sp, #32] Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a00169f0: 3a000013 bcc a0016a44 <_CORE_message_queue_Broadcast+0x70> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { a00169f4: e5906048 ldr r6, [r0, #72] ; 0x48 a00169f8: e3560000 cmp r6, #0 a00169fc: 0a000009 beq a0016a28 <_CORE_message_queue_Broadcast+0x54> *count = 0; a0016a00: e3a00000 mov r0, #0 a0016a04: e58a0000 str r0, [sl] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0016a08: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} const void *source, void *destination, size_t size ) { memcpy(destination, source, size); a0016a0c: e594002c ldr r0, [r4, #44] ; 0x2c a0016a10: e1a01008 mov r1, r8 a0016a14: e1a02005 mov r2, r5 a0016a18: eb002077 bl a001ebfc buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0016a1c: e5943028 ldr r3, [r4, #40] ; 0x28 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; a0016a20: e2866001 add r6, r6, #1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0016a24: e5835000 str r5, [r3] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = a0016a28: e1a00007 mov r0, r7 a0016a2c: eb000a1e bl a00192ac <_Thread_queue_Dequeue> a0016a30: e2504000 subs r4, r0, #0 a0016a34: 1afffff4 bne a0016a0c <_CORE_message_queue_Broadcast+0x38> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; a0016a38: e58a6000 str r6, [sl] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0016a3c: e1a00004 mov r0, r4 a0016a40: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE; a0016a44: e3a00001 mov r0, #1 <== NOT EXECUTED #endif } *count = number_broadcasted; return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; } a0016a48: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED =============================================================================== a000a9fc <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a000a9fc: e59f2160 ldr r2, [pc, #352] ; a000ab64 <_CORE_mutex_Seize_interrupt_trylock+0x168> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000aa00: e590c050 ldr ip, [r0, #80] ; 0x50 #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { a000aa04: e1a03000 mov r3, r0 { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a000aa08: e5922004 ldr r2, [r2, #4] executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a000aa0c: e3a00000 mov r0, #0 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000aa10: e15c0000 cmp ip, r0 a000aa14: e92d40f0 push {r4, r5, r6, r7, lr} Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a000aa18: e5820034 str r0, [r2, #52] ; 0x34 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000aa1c: 0a00000e beq a000aa5c <_CORE_mutex_Seize_interrupt_trylock+0x60> return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } a000aa20: e593c048 ldr ip, [r3, #72] ; 0x48 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; a000aa24: e5925008 ldr r5, [r2, #8] the_mutex->nest_count = 1; a000aa28: e3a04001 mov r4, #1 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a000aa2c: e35c0002 cmp ip, #2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; a000aa30: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->holder = executing; a000aa34: e583205c str r2, [r3, #92] ; 0x5c the_mutex->holder_id = executing->Object.id; a000aa38: e5835060 str r5, [r3, #96] ; 0x60 the_mutex->nest_count = 1; a000aa3c: e5834054 str r4, [r3, #84] ; 0x54 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a000aa40: 0a00000a beq a000aa70 <_CORE_mutex_Seize_interrupt_trylock+0x74> a000aa44: e35c0003 cmp ip, #3 a000aa48: 0a000019 beq a000aab4 <_CORE_mutex_Seize_interrupt_trylock+0xb8> a000aa4c: e5913000 ldr r3, [r1] a000aa50: e129f003 msr CPSR_fc, r3 executing->resource_count++; } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; a000aa54: e3a00000 mov r0, #0 a000aa58: e8bd80f0 pop {r4, r5, r6, r7, pc} /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { a000aa5c: e593005c ldr r0, [r3, #92] ; 0x5c a000aa60: e1520000 cmp r2, r0 a000aa64: 0a000008 beq a000aa8c <_CORE_mutex_Seize_interrupt_trylock+0x90> /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a000aa68: e3a00001 mov r0, #1 a000aa6c: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000aa70: e592301c ldr r3, [r2, #28] a000aa74: e2833001 add r3, r3, #1 a000aa78: e582301c str r3, [r2, #28] a000aa7c: e5913000 ldr r3, [r1] a000aa80: e129f003 msr CPSR_fc, r3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; a000aa84: e3a00000 mov r0, #0 a000aa88: e8bd80f0 pop {r4, r5, r6, r7, pc} * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { a000aa8c: e5930040 ldr r0, [r3, #64] ; 0x40 a000aa90: e3500000 cmp r0, #0 a000aa94: 1a000017 bne a000aaf8 <_CORE_mutex_Seize_interrupt_trylock+0xfc> case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; a000aa98: e5932054 ldr r2, [r3, #84] ; 0x54 a000aa9c: e2822001 add r2, r2, #1 a000aaa0: e5832054 str r2, [r3, #84] ; 0x54 a000aaa4: e5913000 ldr r3, [r1] a000aaa8: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a000aaac: e3a00000 mov r0, #0 a000aab0: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000aab4: e592c01c ldr ip, [r2, #28] */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; a000aab8: e593604c ldr r6, [r3, #76] ; 0x4c current = executing->current_priority; a000aabc: e5925014 ldr r5, [r2, #20] _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000aac0: e08c7004 add r7, ip, r4 a000aac4: e582701c str r7, [r2, #28] Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { a000aac8: e1560005 cmp r6, r5 a000aacc: 0a000020 beq a000ab54 <_CORE_mutex_Seize_interrupt_trylock+0x158> _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { a000aad0: 3a000012 bcc a000ab20 <_CORE_mutex_Seize_interrupt_trylock+0x124> ); _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; a000aad4: e3a05006 mov r5, #6 a000aad8: e5825034 str r5, [r2, #52] ; 0x34 the_mutex->lock = CORE_MUTEX_UNLOCKED; a000aadc: e5834050 str r4, [r3, #80] ; 0x50 the_mutex->nest_count = 0; /* undo locking above */ a000aae0: e5830054 str r0, [r3, #84] ; 0x54 executing->resource_count--; /* undo locking above */ a000aae4: e582c01c str ip, [r2, #28] a000aae8: e5913000 ldr r3, [r1] a000aaec: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a000aaf0: e3a00000 mov r0, #0 a000aaf4: e8bd80f0 pop {r4, r5, r6, r7, pc} * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { a000aaf8: e3500001 cmp r0, #1 a000aafc: 0a000001 beq a000ab08 <_CORE_mutex_Seize_interrupt_trylock+0x10c> /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a000ab00: e3a00001 mov r0, #1 a000ab04: e8bd80f0 pop {r4, r5, r6, r7, pc} case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; a000ab08: e3a03002 mov r3, #2 <== NOT EXECUTED a000ab0c: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED a000ab10: e5913000 ldr r3, [r1] <== NOT EXECUTED a000ab14: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _ISR_Enable( *level_p ); return 0; a000ab18: e3a00000 mov r0, #0 <== NOT EXECUTED a000ab1c: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a000ab20: e59f2040 ldr r2, [pc, #64] ; a000ab68 <_CORE_mutex_Seize_interrupt_trylock+0x16c> a000ab24: e5920000 ldr r0, [r2] a000ab28: e2800001 add r0, r0, #1 a000ab2c: e5820000 str r0, [r2] a000ab30: e5912000 ldr r2, [r1] a000ab34: e129f002 msr CPSR_fc, r2 } if ( current > ceiling ) { _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority( a000ab38: e3a02000 mov r2, #0 a000ab3c: e593005c ldr r0, [r3, #92] ; 0x5c a000ab40: e593104c ldr r1, [r3, #76] ; 0x4c a000ab44: ebfff160 bl a00070cc <_Thread_Change_priority> the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); a000ab48: ebfff2be bl a0007648 <_Thread_Enable_dispatch> return 0; a000ab4c: e3a00000 mov r0, #0 a000ab50: e8bd80f0 pop {r4, r5, r6, r7, pc} a000ab54: e5913000 ldr r3, [r1] a000ab58: e129f003 msr CPSR_fc, r3 ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { _ISR_Enable( *level_p ); return 0; a000ab5c: e3a00000 mov r0, #0 a000ab60: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a000a99c <_Chain_Initialize>: count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000a99c: e3520000 cmp r2, #0 Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; a000a9a0: e3a0c000 mov ip, #0 next = starting_address; while ( count-- ) { a000a9a4: 12422001 subne r2, r2, #1 Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { a000a9a8: e92d0070 push {r4, r5, r6} Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; a000a9ac: e580c004 str ip, [r0, #4] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head( Chain_Control *the_chain ) { return (Chain_Node *) the_chain; a000a9b0: e1a04000 mov r4, r0 next = starting_address; while ( count-- ) { a000a9b4: 11a06002 movne r6, r2 Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; a000a9b8: 11a0c001 movne ip, r1 while ( count-- ) { a000a9bc: 1a000003 bne a000a9d0 <_Chain_Initialize+0x34> a000a9c0: ea000008 b a000a9e8 <_Chain_Initialize+0x4c> <== NOT EXECUTED a000a9c4: e1a0400c mov r4, ip a000a9c8: e2422001 sub r2, r2, #1 current->next = next; next->previous = current; current = next; next = (Chain_Node *) a000a9cc: e1a0c005 mov ip, r5 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000a9d0: e3520000 cmp r2, #0 current->next = next; a000a9d4: e584c000 str ip, [r4] next->previous = current; a000a9d8: e58c4004 str r4, [ip, #4] * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( a000a9dc: e08c5003 add r5, ip, r3 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000a9e0: 1afffff7 bne a000a9c4 <_Chain_Initialize+0x28> a000a9e4: e0241396 mla r4, r6, r3, r1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000a9e8: e2803004 add r3, r0, #4 next->previous = current; current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = _Chain_Tail( the_chain ); a000a9ec: e5843000 str r3, [r4] the_chain->last = current; a000a9f0: e5804008 str r4, [r0, #8] } a000a9f4: e8bd0070 pop {r4, r5, r6} a000a9f8: e12fff1e bx lr =============================================================================== a000abdc <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000abdc: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a000abe0: e1a08002 mov r8, r2 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; a000abe4: e5902010 ldr r2, [r0, #16] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000abe8: e24dd01c sub sp, sp, #28 a000abec: e1a05001 mov r5, r1 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { a000abf0: e2911004 adds r1, r1, #4 Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000abf4: e1a07000 mov r7, r0 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { a000abf8: e58d1000 str r1, [sp] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000abfc: e1a0b003 mov fp, r3 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; a000ac00: e58d200c str r2, [sp, #12] Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { a000ac04: 2a000078 bcs a000adec <_Heap_Allocate_aligned_with_boundary+0x210> /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { a000ac08: e3530000 cmp r3, #0 a000ac0c: 1a000074 bne a000ade4 <_Heap_Allocate_aligned_with_boundary+0x208> if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000ac10: e5979008 ldr r9, [r7, #8] do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { a000ac14: e1570009 cmp r7, r9 a000ac18: 0a000073 beq a000adec <_Heap_Allocate_aligned_with_boundary+0x210> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ac1c: e59d300c ldr r3, [sp, #12] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; a000ac20: e2651004 rsb r1, r5, #4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { a000ac24: e3a06001 mov r6, #1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ac28: e2833007 add r3, r3, #7 a000ac2c: e58d3010 str r3, [sp, #16] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; a000ac30: e58d1014 str r1, [sp, #20] /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { a000ac34: e599a004 ldr sl, [r9, #4] a000ac38: e59d2000 ldr r2, [sp] a000ac3c: e152000a cmp r2, sl a000ac40: 2a00004e bcs a000ad80 <_Heap_Allocate_aligned_with_boundary+0x1a4> if ( alignment == 0 ) { a000ac44: e3580000 cmp r8, #0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; a000ac48: 02894008 addeq r4, r9, #8 a000ac4c: 0a000051 beq a000ad98 <_Heap_Allocate_aligned_with_boundary+0x1bc> if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000ac50: e5973014 ldr r3, [r7, #20] uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; a000ac54: e59d1014 ldr r1, [sp, #20] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; a000ac58: e59d2010 ldr r2, [sp, #16] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000ac5c: e3caa001 bic sl, sl, #1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; a000ac60: e089a00a add sl, r9, sl uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; a000ac64: e081400a add r4, r1, sl if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000ac68: e58d3004 str r3, [sp, #4] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; a000ac6c: e0633002 rsb r3, r3, r2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ac70: e1a00004 mov r0, r4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ac74: e083a00a add sl, r3, sl a000ac78: e1a01008 mov r1, r8 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; a000ac7c: e2893008 add r3, r9, #8 a000ac80: e58d3008 str r3, [sp, #8] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ac84: eb00156c bl a001023c <__umodsi3> a000ac88: e0604004 rsb r4, r0, r4 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { a000ac8c: e15a0004 cmp sl, r4 a000ac90: 2a000003 bcs a000aca4 <_Heap_Allocate_aligned_with_boundary+0xc8> a000ac94: e1a0000a mov r0, sl a000ac98: e1a01008 mov r1, r8 a000ac9c: eb001566 bl a001023c <__umodsi3> a000aca0: e060400a rsb r4, r0, sl } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { a000aca4: e35b0000 cmp fp, #0 a000aca8: 0a000026 beq a000ad48 <_Heap_Allocate_aligned_with_boundary+0x16c> /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; a000acac: e084a005 add sl, r4, r5 a000acb0: e1a0000a mov r0, sl a000acb4: e1a0100b mov r1, fp a000acb8: eb00155f bl a001023c <__umodsi3> a000acbc: e060000a rsb r0, r0, sl /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { a000acc0: e15a0000 cmp sl, r0 a000acc4: 93a0a000 movls sl, #0 a000acc8: 83a0a001 movhi sl, #1 a000accc: e1540000 cmp r4, r0 a000acd0: 23a0a000 movcs sl, #0 a000acd4: e35a0000 cmp sl, #0 a000acd8: 0a00001a beq a000ad48 <_Heap_Allocate_aligned_with_boundary+0x16c> alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; a000acdc: e59d1008 ldr r1, [sp, #8] a000ace0: e0813005 add r3, r1, r5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { a000ace4: e1530000 cmp r3, r0 a000ace8: 958d9018 strls r9, [sp, #24] a000acec: 91a09003 movls r9, r3 a000acf0: 9a000002 bls a000ad00 <_Heap_Allocate_aligned_with_boundary+0x124> a000acf4: ea000021 b a000ad80 <_Heap_Allocate_aligned_with_boundary+0x1a4> a000acf8: e1590000 cmp r9, r0 a000acfc: 8a00003c bhi a000adf4 <_Heap_Allocate_aligned_with_boundary+0x218> return 0; } alloc_begin = boundary_line - alloc_size; a000ad00: e0654000 rsb r4, r5, r0 a000ad04: e1a01008 mov r1, r8 a000ad08: e1a00004 mov r0, r4 a000ad0c: eb00154a bl a001023c <__umodsi3> a000ad10: e0604004 rsb r4, r0, r4 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; a000ad14: e084a005 add sl, r4, r5 a000ad18: e1a0000a mov r0, sl a000ad1c: e1a0100b mov r1, fp a000ad20: eb001545 bl a001023c <__umodsi3> a000ad24: e060000a rsb r0, r0, sl /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { a000ad28: e15a0000 cmp sl, r0 a000ad2c: 93a0a000 movls sl, #0 a000ad30: 83a0a001 movhi sl, #1 a000ad34: e1540000 cmp r4, r0 a000ad38: 23a0a000 movcs sl, #0 a000ad3c: e35a0000 cmp sl, #0 a000ad40: 1affffec bne a000acf8 <_Heap_Allocate_aligned_with_boundary+0x11c> a000ad44: e59d9018 ldr r9, [sp, #24] boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { a000ad48: e59d2008 ldr r2, [sp, #8] a000ad4c: e1520004 cmp r2, r4 a000ad50: 8a00000a bhi a000ad80 <_Heap_Allocate_aligned_with_boundary+0x1a4> a000ad54: e59d100c ldr r1, [sp, #12] a000ad58: e1a00004 mov r0, r4 a000ad5c: eb001536 bl a001023c <__umodsi3> a000ad60: e3e0a007 mvn sl, #7 a000ad64: e069a00a rsb sl, r9, sl uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { a000ad68: e59d1004 ldr r1, [sp, #4] uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a000ad6c: e08aa004 add sl, sl, r4 a000ad70: e060300a rsb r3, r0, sl a000ad74: e15a0000 cmp sl, r0 a000ad78: 11510003 cmpne r1, r3 a000ad7c: 9a000005 bls a000ad98 <_Heap_Allocate_aligned_with_boundary+0x1bc> if ( alloc_begin != 0 ) { break; } block = block->next; a000ad80: e5999008 ldr r9, [r9, #8] a000ad84: e2863001 add r3, r6, #1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { a000ad88: e1570009 cmp r7, r9 a000ad8c: 0a00001d beq a000ae08 <_Heap_Allocate_aligned_with_boundary+0x22c> a000ad90: e1a06003 mov r6, r3 a000ad94: eaffffa6 b a000ac34 <_Heap_Allocate_aligned_with_boundary+0x58> } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { a000ad98: e3540000 cmp r4, #0 a000ad9c: 0afffff7 beq a000ad80 <_Heap_Allocate_aligned_with_boundary+0x1a4> search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; a000ada0: e5972048 ldr r2, [r7, #72] ; 0x48 stats->searches += search_count; a000ada4: e597304c ldr r3, [r7, #76] ; 0x4c block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); a000ada8: e1a00007 mov r0, r7 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; a000adac: e2822001 add r2, r2, #1 stats->searches += search_count; a000adb0: e0833006 add r3, r3, r6 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; a000adb4: e5872048 str r2, [r7, #72] ; 0x48 stats->searches += search_count; a000adb8: e587304c str r3, [r7, #76] ; 0x4c block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); a000adbc: e1a01009 mov r1, r9 a000adc0: e1a02004 mov r2, r4 a000adc4: e1a03005 mov r3, r5 a000adc8: ebffee36 bl a00066a8 <_Heap_Block_allocate> a000adcc: e1a00004 mov r0, r4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { a000add0: e5973044 ldr r3, [r7, #68] ; 0x44 a000add4: e1530006 cmp r3, r6 stats->max_search = search_count; a000add8: 35876044 strcc r6, [r7, #68] ; 0x44 } return (void *) alloc_begin; } a000addc: e28dd01c add sp, sp, #28 a000ade0: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { a000ade4: e1550003 cmp r5, r3 a000ade8: 9a000008 bls a000ae10 <_Heap_Allocate_aligned_with_boundary+0x234> do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { a000adec: e3a00000 mov r0, #0 a000adf0: eafffff9 b a000addc <_Heap_Allocate_aligned_with_boundary+0x200> a000adf4: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED if ( alloc_begin != 0 ) { break; } block = block->next; a000adf8: e2863001 add r3, r6, #1 <== NOT EXECUTED a000adfc: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { a000ae00: e1570009 cmp r7, r9 <== NOT EXECUTED a000ae04: 1affffe1 bne a000ad90 <_Heap_Allocate_aligned_with_boundary+0x1b4><== NOT EXECUTED a000ae08: e3a00000 mov r0, #0 a000ae0c: eaffffef b a000add0 <_Heap_Allocate_aligned_with_boundary+0x1f4> if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size; a000ae10: e3580000 cmp r8, #0 a000ae14: 01a08002 moveq r8, r2 a000ae18: eaffff7c b a000ac10 <_Heap_Allocate_aligned_with_boundary+0x34> =============================================================================== a000ae1c <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { a000ae1c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} a000ae20: e1a04000 mov r4, r0 a000ae24: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ae28: e1a00001 mov r0, r1 a000ae2c: e5941010 ldr r1, [r4, #16] a000ae30: eb001501 bl a001023c <__umodsi3> RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block a000ae34: e5943020 ldr r3, [r4, #32] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ae38: e2455008 sub r5, r5, #8 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a000ae3c: e0605005 rsb r5, r0, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000ae40: e1550003 cmp r5, r3 a000ae44: 3a000030 bcc a000af0c <_Heap_Free+0xf0> a000ae48: e5941024 ldr r1, [r4, #36] ; 0x24 a000ae4c: e1550001 cmp r5, r1 a000ae50: 8a00002d bhi a000af0c <_Heap_Free+0xf0> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000ae54: e595c004 ldr ip, [r5, #4] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000ae58: e3cc6001 bic r6, ip, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a000ae5c: e0852006 add r2, r5, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000ae60: e1530002 cmp r3, r2 a000ae64: 8a000028 bhi a000af0c <_Heap_Free+0xf0> a000ae68: e1510002 cmp r1, r2 _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; a000ae6c: 33a00000 movcc r0, #0 a000ae70: 3a000027 bcc a000af14 <_Heap_Free+0xf8> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000ae74: e5927004 ldr r7, [r2, #4] if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a000ae78: e2170001 ands r0, r7, #1 a000ae7c: 0a000024 beq a000af14 <_Heap_Free+0xf8> return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); a000ae80: e1510002 cmp r1, r2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000ae84: e3c77001 bic r7, r7, #1 a000ae88: 03a08000 moveq r8, #0 a000ae8c: 0a000004 beq a000aea4 <_Heap_Free+0x88> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000ae90: e0820007 add r0, r2, r7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a000ae94: e5900004 ldr r0, [r0, #4] return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) a000ae98: e3100001 tst r0, #1 a000ae9c: 13a08000 movne r8, #0 a000aea0: 03a08001 moveq r8, #1 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { a000aea4: e21c0001 ands r0, ip, #1 a000aea8: 1a00001a bne a000af18 <_Heap_Free+0xfc> uintptr_t const prev_size = block->prev_size; a000aeac: e595c000 ldr ip, [r5] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a000aeb0: e06ca005 rsb sl, ip, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000aeb4: e153000a cmp r3, sl a000aeb8: 8a000015 bhi a000af14 <_Heap_Free+0xf8> a000aebc: e151000a cmp r1, sl a000aec0: 3a000013 bcc a000af14 <_Heap_Free+0xf8> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a000aec4: e59a0004 ldr r0, [sl, #4] return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { a000aec8: e2100001 ands r0, r0, #1 a000aecc: 0a000010 beq a000af14 <_Heap_Free+0xf8> _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ a000aed0: e3580000 cmp r8, #0 a000aed4: 0a000038 beq a000afbc <_Heap_Free+0x1a0> uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000aed8: e5940038 ldr r0, [r4, #56] ; 0x38 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000aedc: e5923008 ldr r3, [r2, #8] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; a000aee0: e0867007 add r7, r6, r7 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000aee4: e592200c ldr r2, [r2, #12] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; a000aee8: e087c00c add ip, r7, ip _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000aeec: e2400001 sub r0, r0, #1 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000aef0: e38c1001 orr r1, ip, #1 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; a000aef4: e5823008 str r3, [r2, #8] next->prev = prev; a000aef8: e583200c str r2, [r3, #12] } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000aefc: e5840038 str r0, [r4, #56] ; 0x38 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000af00: e58a1004 str r1, [sl, #4] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; a000af04: e78ac00c str ip, [sl, ip] a000af08: ea00000e b a000af48 <_Heap_Free+0x12c> _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; a000af0c: e3a00000 mov r0, #0 a000af10: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000af14: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ a000af18: e3580000 cmp r8, #0 a000af1c: 0a000014 beq a000af74 <_Heap_Free+0x158> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000af20: e5923008 ldr r3, [r2, #8] a000af24: e592200c ldr r2, [r2, #12] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; a000af28: e0877006 add r7, r7, r6 _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000af2c: e3871001 orr r1, r7, #1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; a000af30: e5853008 str r3, [r5, #8] new_block->prev = prev; a000af34: e585200c str r2, [r5, #12] next->prev = new_block; prev->next = new_block; a000af38: e5825008 str r5, [r2, #8] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; a000af3c: e583500c str r5, [r3, #12] a000af40: e5851004 str r1, [r5, #4] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; a000af44: e7857007 str r7, [r5, r7] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000af48: e5942040 ldr r2, [r4, #64] ; 0x40 ++stats->frees; a000af4c: e5943050 ldr r3, [r4, #80] ; 0x50 stats->free_size += block_size; a000af50: e5941030 ldr r1, [r4, #48] ; 0x30 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000af54: e2422001 sub r2, r2, #1 ++stats->frees; a000af58: e2833001 add r3, r3, #1 stats->free_size += block_size; a000af5c: e0816006 add r6, r1, r6 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000af60: e5842040 str r2, [r4, #64] ; 0x40 ++stats->frees; a000af64: e5843050 str r3, [r4, #80] ; 0x50 stats->free_size += block_size; a000af68: e5846030 str r6, [r4, #48] ; 0x30 return( true ); a000af6c: e3a00001 mov r0, #1 a000af70: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; a000af74: e3863001 orr r3, r6, #1 a000af78: e5853004 str r3, [r5, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; a000af7c: e5943038 ldr r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { a000af80: e594c03c ldr ip, [r4, #60] ; 0x3c } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000af84: e5920004 ldr r0, [r2, #4] RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after( Heap_Block *block_before, Heap_Block *new_block ) { Heap_Block *next = block_before->next; a000af88: e5941008 ldr r1, [r4, #8] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; a000af8c: e2833001 add r3, r3, #1 } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000af90: e3c00001 bic r0, r0, #1 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { a000af94: e153000c cmp r3, ip new_block->next = next; a000af98: e5851008 str r1, [r5, #8] new_block->prev = block_before; a000af9c: e585400c str r4, [r5, #12] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000afa0: e5820004 str r0, [r2, #4] block_before->next = new_block; next->prev = new_block; a000afa4: e581500c str r5, [r1, #12] next_block->prev_size = block_size; a000afa8: e7856006 str r6, [r5, r6] { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; a000afac: e5845008 str r5, [r4, #8] /* Statistics */ ++stats->free_blocks; a000afb0: e5843038 str r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { stats->max_free_blocks = stats->free_blocks; a000afb4: 8584303c strhi r3, [r4, #60] ; 0x3c a000afb8: eaffffe2 b a000af48 <_Heap_Free+0x12c> prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; a000afbc: e086c00c add ip, r6, ip prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000afc0: e38c3001 orr r3, ip, #1 a000afc4: e58a3004 str r3, [sl, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000afc8: e5923004 ldr r3, [r2, #4] next_block->prev_size = size; a000afcc: e785c006 str ip, [r5, r6] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000afd0: e3c33001 bic r3, r3, #1 a000afd4: e5823004 str r3, [r2, #4] a000afd8: eaffffda b a000af48 <_Heap_Free+0x12c> =============================================================================== a0011ef4 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { a0011ef4: e92d40f0 push {r4, r5, r6, r7, lr} a0011ef8: e1a04000 mov r4, r0 a0011efc: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a0011f00: e1a00001 mov r0, r1 a0011f04: e5941010 ldr r1, [r4, #16] a0011f08: e1a07002 mov r7, r2 a0011f0c: ebfff8ca bl a001023c <__umodsi3> RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block a0011f10: e5943020 ldr r3, [r4, #32] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a0011f14: e2456008 sub r6, r5, #8 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a0011f18: e0600006 rsb r0, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0011f1c: e1500003 cmp r0, r3 a0011f20: 3a000012 bcc a0011f70 <_Heap_Size_of_alloc_area+0x7c> a0011f24: e5942024 ldr r2, [r4, #36] ; 0x24 a0011f28: e1500002 cmp r0, r2 a0011f2c: 8a00000f bhi a0011f70 <_Heap_Size_of_alloc_area+0x7c> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0011f30: e5906004 ldr r6, [r0, #4] a0011f34: e3c66001 bic r6, r6, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0011f38: e0806006 add r6, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0011f3c: e1530006 cmp r3, r6 a0011f40: 8a00000a bhi a0011f70 <_Heap_Size_of_alloc_area+0x7c> a0011f44: e1520006 cmp r2, r6 if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) ) { return false; a0011f48: 33a00000 movcc r0, #0 a0011f4c: 3a000009 bcc a0011f78 <_Heap_Size_of_alloc_area+0x84> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0011f50: e5960004 ldr r0, [r6, #4] block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) a0011f54: e2100001 ands r0, r0, #1 a0011f58: 0a000006 beq a0011f78 <_Heap_Size_of_alloc_area+0x84> ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; a0011f5c: e2655004 rsb r5, r5, #4 a0011f60: e0856006 add r6, r5, r6 a0011f64: e5876000 str r6, [r7] return true; a0011f68: e3a00001 mov r0, #1 a0011f6c: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) ) { return false; a0011f70: e3a00000 mov r0, #0 a0011f74: e8bd80f0 pop {r4, r5, r6, r7, pc} } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; } a0011f78: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED =============================================================================== a000740c <_Heap_Walk>: Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a000740c: e59f3578 ldr r3, [pc, #1400] ; a000798c <_Heap_Walk+0x580> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0007410: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0007414: e31200ff tst r2, #255 ; 0xff if ( !_System_state_Is_up( _System_state_Get() ) ) { a0007418: e5933000 ldr r3, [r3] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a000741c: e59f256c ldr r2, [pc, #1388] ; a0007990 <_Heap_Walk+0x584> a0007420: e59f956c ldr r9, [pc, #1388] ; a0007994 <_Heap_Walk+0x588> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0007424: e1a0a001 mov sl, r1 uintptr_t const page_size = heap->page_size; a0007428: e5901010 ldr r1, [r0, #16] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a000742c: 11a09002 movne r9, r2 if ( !_System_state_Is_up( _System_state_Get() ) ) { a0007430: e3530003 cmp r3, #3 int source, bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0007434: e5902014 ldr r2, [r0, #20] Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; a0007438: e5903024 ldr r3, [r0, #36] ; 0x24 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a000743c: e24dd038 sub sp, sp, #56 ; 0x38 a0007440: e1a04000 mov r4, r0 uintptr_t const page_size = heap->page_size; a0007444: e58d1024 str r1, [sp, #36] ; 0x24 uintptr_t const min_block_size = heap->min_block_size; a0007448: e58d2028 str r2, [sp, #40] ; 0x28 Heap_Block *const first_block = heap->first_block; a000744c: e5908020 ldr r8, [r0, #32] Heap_Block *const last_block = heap->last_block; a0007450: e58d302c str r3, [sp, #44] ; 0x2c Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a0007454: 0a000002 beq a0007464 <_Heap_Walk+0x58> } block = next_block; } while ( block != first_block ); return true; a0007458: e3a00001 mov r0, #1 } a000745c: e28dd038 add sp, sp, #56 ; 0x38 a0007460: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( a0007464: e594101c ldr r1, [r4, #28] a0007468: e5900018 ldr r0, [r0, #24] a000746c: e5942008 ldr r2, [r4, #8] a0007470: e594300c ldr r3, [r4, #12] a0007474: e59dc028 ldr ip, [sp, #40] ; 0x28 a0007478: e58d1008 str r1, [sp, #8] a000747c: e59d102c ldr r1, [sp, #44] ; 0x2c a0007480: e58d0004 str r0, [sp, #4] a0007484: e58d2014 str r2, [sp, #20] a0007488: e58d1010 str r1, [sp, #16] a000748c: e58d3018 str r3, [sp, #24] a0007490: e59f2500 ldr r2, [pc, #1280] ; a0007998 <_Heap_Walk+0x58c> a0007494: e58dc000 str ip, [sp] a0007498: e58d800c str r8, [sp, #12] a000749c: e1a0000a mov r0, sl a00074a0: e3a01000 mov r1, #0 a00074a4: e59d3024 ldr r3, [sp, #36] ; 0x24 a00074a8: e12fff39 blx r9 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { a00074ac: e59d2024 ldr r2, [sp, #36] ; 0x24 a00074b0: e3520000 cmp r2, #0 a00074b4: 0a000024 beq a000754c <_Heap_Walk+0x140> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { a00074b8: e59d3024 ldr r3, [sp, #36] ; 0x24 a00074bc: e2135003 ands r5, r3, #3 a00074c0: 1a000027 bne a0007564 <_Heap_Walk+0x158> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a00074c4: e59d0028 ldr r0, [sp, #40] ; 0x28 a00074c8: e59d1024 ldr r1, [sp, #36] ; 0x24 a00074cc: ebffe566 bl a0000a6c <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { a00074d0: e250b000 subs fp, r0, #0 a00074d4: 1a000028 bne a000757c <_Heap_Walk+0x170> a00074d8: e2880008 add r0, r8, #8 a00074dc: e59d1024 ldr r1, [sp, #36] ; 0x24 a00074e0: ebffe561 bl a0000a6c <__umodsi3> ); return false; } if ( a00074e4: e2506000 subs r6, r0, #0 a00074e8: 1a00002a bne a0007598 <_Heap_Walk+0x18c> block = next_block; } while ( block != first_block ); return true; } a00074ec: e598b004 ldr fp, [r8, #4] ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { a00074f0: e21b5001 ands r5, fp, #1 a00074f4: 0a0000bf beq a00077f8 <_Heap_Walk+0x3ec> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a00074f8: e59dc02c ldr ip, [sp, #44] ; 0x2c a00074fc: e59c3004 ldr r3, [ip, #4] a0007500: e3c33001 bic r3, r3, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0007504: e08c3003 add r3, ip, r3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0007508: e5935004 ldr r5, [r3, #4] ); return false; } if ( _Heap_Is_free( last_block ) ) { a000750c: e2155001 ands r5, r5, #1 a0007510: 0a000007 beq a0007534 <_Heap_Walk+0x128> ); return false; } if ( a0007514: e1580003 cmp r8, r3 a0007518: 0a000025 beq a00075b4 <_Heap_Walk+0x1a8> _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( a000751c: e1a0000a mov r0, sl <== NOT EXECUTED a0007520: e3a01001 mov r1, #1 <== NOT EXECUTED a0007524: e59f2470 ldr r2, [pc, #1136] ; a000799c <_Heap_Walk+0x590> <== NOT EXECUTED a0007528: e12fff39 blx r9 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a000752c: e1a00006 mov r0, r6 <== NOT EXECUTED a0007530: eaffffc9 b a000745c <_Heap_Walk+0x50> <== NOT EXECUTED return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( a0007534: e1a0000a mov r0, sl a0007538: e3a01001 mov r1, #1 a000753c: e59f245c ldr r2, [pc, #1116] ; a00079a0 <_Heap_Walk+0x594> a0007540: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007544: e1a00005 mov r0, r5 a0007548: eaffffc3 b a000745c <_Heap_Walk+0x50> first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); a000754c: e1a0000a mov r0, sl a0007550: e3a01001 mov r1, #1 a0007554: e59f2448 ldr r2, [pc, #1096] ; a00079a4 <_Heap_Walk+0x598> a0007558: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a000755c: e59d0024 ldr r0, [sp, #36] ; 0x24 a0007560: eaffffbd b a000745c <_Heap_Walk+0x50> return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( a0007564: e1a0000a mov r0, sl a0007568: e3a01001 mov r1, #1 a000756c: e59f2434 ldr r2, [pc, #1076] ; a00079a8 <_Heap_Walk+0x59c> a0007570: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007574: e3a00000 mov r0, #0 a0007578: eaffffb7 b a000745c <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( a000757c: e1a0000a mov r0, sl a0007580: e3a01001 mov r1, #1 a0007584: e59f2420 ldr r2, [pc, #1056] ; a00079ac <_Heap_Walk+0x5a0> a0007588: e59d3028 ldr r3, [sp, #40] ; 0x28 a000758c: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007590: e1a00005 mov r0, r5 a0007594: eaffffb0 b a000745c <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( a0007598: e1a0000a mov r0, sl a000759c: e3a01001 mov r1, #1 a00075a0: e59f2408 ldr r2, [pc, #1032] ; a00079b0 <_Heap_Walk+0x5a4> a00075a4: e1a03008 mov r3, r8 a00075a8: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075ac: e1a0000b mov r0, fp a00075b0: eaffffa9 b a000745c <_Heap_Walk+0x50> block = next_block; } while ( block != first_block ); return true; } a00075b4: e5945008 ldr r5, [r4, #8] int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; a00075b8: e5947010 ldr r7, [r4, #16] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a00075bc: e1540005 cmp r4, r5 a00075c0: 05943020 ldreq r3, [r4, #32] a00075c4: 0a00000c beq a00075fc <_Heap_Walk+0x1f0> block = next_block; } while ( block != first_block ); return true; } a00075c8: e5943020 ldr r3, [r4, #32] const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a00075cc: e1530005 cmp r3, r5 a00075d0: 9a00008e bls a0007810 <_Heap_Walk+0x404> const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( a00075d4: e1a0000a mov r0, sl a00075d8: e3a01001 mov r1, #1 a00075dc: e59f23d0 ldr r2, [pc, #976] ; a00079b4 <_Heap_Walk+0x5a8> a00075e0: e1a03005 mov r3, r5 a00075e4: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075e8: e3a00000 mov r0, #0 a00075ec: eaffff9a b a000745c <_Heap_Walk+0x50> a00075f0: e1a03008 mov r3, r8 a00075f4: e59db034 ldr fp, [sp, #52] ; 0x34 a00075f8: e59d8030 ldr r8, [sp, #48] ; 0x30 ); return false; } if ( _Heap_Is_used( free_block ) ) { a00075fc: e1a06008 mov r6, r8 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0007600: e3cb7001 bic r7, fp, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0007604: e0875006 add r5, r7, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007608: e1530005 cmp r3, r5 a000760c: 9a000007 bls a0007630 <_Heap_Walk+0x224> Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( a0007610: e1a0000a mov r0, sl a0007614: e58d5000 str r5, [sp] a0007618: e3a01001 mov r1, #1 a000761c: e59f2394 ldr r2, [pc, #916] ; a00079b8 <_Heap_Walk+0x5ac> a0007620: e1a03006 mov r3, r6 a0007624: e12fff39 blx r9 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; a0007628: e3a00000 mov r0, #0 a000762c: eaffff8a b a000745c <_Heap_Walk+0x50> a0007630: e5943024 ldr r3, [r4, #36] ; 0x24 a0007634: e1530005 cmp r3, r5 a0007638: 3afffff4 bcc a0007610 <_Heap_Walk+0x204> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a000763c: e59d1024 ldr r1, [sp, #36] ; 0x24 a0007640: e1a00007 mov r0, r7 a0007644: ebffe508 bl a0000a6c <__umodsi3> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; a0007648: e59d102c ldr r1, [sp, #44] ; 0x2c a000764c: e0563001 subs r3, r6, r1 a0007650: 13a03001 movne r3, #1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { a0007654: e3500000 cmp r0, #0 a0007658: 0a000001 beq a0007664 <_Heap_Walk+0x258> a000765c: e3530000 cmp r3, #0 a0007660: 1a0000a2 bne a00078f0 <_Heap_Walk+0x4e4> ); return false; } if ( block_size < min_block_size && is_not_last_block ) { a0007664: e59d2028 ldr r2, [sp, #40] ; 0x28 a0007668: e1520007 cmp r2, r7 a000766c: 9a000001 bls a0007678 <_Heap_Walk+0x26c> a0007670: e3530000 cmp r3, #0 a0007674: 1a0000a5 bne a0007910 <_Heap_Walk+0x504> ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { a0007678: e1560005 cmp r6, r5 a000767c: 3a000001 bcc a0007688 <_Heap_Walk+0x27c> a0007680: e3530000 cmp r3, #0 a0007684: 1a0000aa bne a0007934 <_Heap_Walk+0x528> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0007688: e5953004 ldr r3, [r5, #4] a000768c: e20bb001 and fp, fp, #1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a0007690: e3130001 tst r3, #1 a0007694: 0a000016 beq a00076f4 <_Heap_Walk+0x2e8> if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { a0007698: e35b0000 cmp fp, #0 a000769c: 0a00000b beq a00076d0 <_Heap_Walk+0x2c4> (*printer)( a00076a0: e58d7000 str r7, [sp] a00076a4: e1a0000a mov r0, sl a00076a8: e3a01000 mov r1, #0 a00076ac: e59f2308 ldr r2, [pc, #776] ; a00079bc <_Heap_Walk+0x5b0> a00076b0: e1a03006 mov r3, r6 a00076b4: e12fff39 blx r9 block->prev_size ); } block = next_block; } while ( block != first_block ); a00076b8: e1580005 cmp r8, r5 a00076bc: 0affff65 beq a0007458 <_Heap_Walk+0x4c> a00076c0: e595b004 ldr fp, [r5, #4] a00076c4: e5943020 ldr r3, [r4, #32] a00076c8: e1a06005 mov r6, r5 a00076cc: eaffffcb b a0007600 <_Heap_Walk+0x1f4> "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( a00076d0: e58d7000 str r7, [sp] a00076d4: e5963000 ldr r3, [r6] a00076d8: e1a0000a mov r0, sl a00076dc: e1a0100b mov r1, fp a00076e0: e58d3004 str r3, [sp, #4] a00076e4: e59f22d4 ldr r2, [pc, #724] ; a00079c0 <_Heap_Walk+0x5b4> a00076e8: e1a03006 mov r3, r6 a00076ec: e12fff39 blx r9 a00076f0: eafffff0 b a00076b8 <_Heap_Walk+0x2ac> false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? a00076f4: e596200c ldr r2, [r6, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a00076f8: e5943008 ldr r3, [r4, #8] block = next_block; } while ( block != first_block ); return true; } a00076fc: e594100c ldr r1, [r4, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007700: e1530002 cmp r3, r2 a0007704: 059f02b8 ldreq r0, [pc, #696] ; a00079c4 <_Heap_Walk+0x5b8> a0007708: 0a000003 beq a000771c <_Heap_Walk+0x310> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), a000770c: e59f32b4 ldr r3, [pc, #692] ; a00079c8 <_Heap_Walk+0x5bc> a0007710: e1540002 cmp r4, r2 a0007714: e59f02b0 ldr r0, [pc, #688] ; a00079cc <_Heap_Walk+0x5c0> a0007718: 01a00003 moveq r0, r3 block->next, block->next == last_free_block ? a000771c: e5963008 ldr r3, [r6, #8] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007720: e1510003 cmp r1, r3 a0007724: 059f12a4 ldreq r1, [pc, #676] ; a00079d0 <_Heap_Walk+0x5c4> a0007728: 0a000003 beq a000773c <_Heap_Walk+0x330> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") a000772c: e59fc2a0 ldr ip, [pc, #672] ; a00079d4 <_Heap_Walk+0x5c8> a0007730: e1540003 cmp r4, r3 a0007734: e59f1290 ldr r1, [pc, #656] ; a00079cc <_Heap_Walk+0x5c0> a0007738: 01a0100c moveq r1, ip Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a000773c: e58d2004 str r2, [sp, #4] a0007740: e58d0008 str r0, [sp, #8] a0007744: e58d300c str r3, [sp, #12] a0007748: e58d1010 str r1, [sp, #16] a000774c: e1a03006 mov r3, r6 a0007750: e58d7000 str r7, [sp] a0007754: e1a0000a mov r0, sl a0007758: e3a01000 mov r1, #0 a000775c: e59f2274 ldr r2, [pc, #628] ; a00079d8 <_Heap_Walk+0x5cc> a0007760: e12fff39 blx r9 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { a0007764: e5953000 ldr r3, [r5] a0007768: e1570003 cmp r7, r3 a000776c: 1a000010 bne a00077b4 <_Heap_Walk+0x3a8> ); return false; } if ( !prev_used ) { a0007770: e35b0000 cmp fp, #0 a0007774: 0a000018 beq a00077dc <_Heap_Walk+0x3d0> block = next_block; } while ( block != first_block ); return true; } a0007778: e5943008 ldr r3, [r4, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a000777c: e1540003 cmp r4, r3 a0007780: 0a000004 beq a0007798 <_Heap_Walk+0x38c> if ( free_block == block ) { a0007784: e1560003 cmp r6, r3 a0007788: 0affffca beq a00076b8 <_Heap_Walk+0x2ac> return true; } free_block = free_block->next; a000778c: e5933008 ldr r3, [r3, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a0007790: e1540003 cmp r4, r3 a0007794: 1afffffa bne a0007784 <_Heap_Walk+0x378> return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( a0007798: e1a0000a mov r0, sl a000779c: e3a01001 mov r1, #1 a00077a0: e59f2234 ldr r2, [pc, #564] ; a00079dc <_Heap_Walk+0x5d0> a00077a4: e1a03006 mov r3, r6 a00077a8: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a00077ac: e3a00000 mov r0, #0 a00077b0: eaffff29 b a000745c <_Heap_Walk+0x50> " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( a00077b4: e58d3004 str r3, [sp, #4] a00077b8: e1a0000a mov r0, sl a00077bc: e58d7000 str r7, [sp] a00077c0: e58d5008 str r5, [sp, #8] a00077c4: e3a01001 mov r1, #1 a00077c8: e59f2210 ldr r2, [pc, #528] ; a00079e0 <_Heap_Walk+0x5d4> a00077cc: e1a03006 mov r3, r6 a00077d0: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a00077d4: e3a00000 mov r0, #0 a00077d8: eaffff1f b a000745c <_Heap_Walk+0x50> return false; } if ( !prev_used ) { (*printer)( a00077dc: e1a0000a mov r0, sl a00077e0: e3a01001 mov r1, #1 a00077e4: e59f21f8 ldr r2, [pc, #504] ; a00079e4 <_Heap_Walk+0x5d8> a00077e8: e1a03006 mov r3, r6 a00077ec: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a00077f0: e1a0000b mov r0, fp a00077f4: eaffff18 b a000745c <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( a00077f8: e1a0000a mov r0, sl a00077fc: e3a01001 mov r1, #1 a0007800: e59f21e0 ldr r2, [pc, #480] ; a00079e8 <_Heap_Walk+0x5dc> a0007804: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007808: e1a00005 mov r0, r5 a000780c: eaffff12 b a000745c <_Heap_Walk+0x50> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007810: e594c024 ldr ip, [r4, #36] ; 0x24 a0007814: e15c0005 cmp ip, r5 a0007818: 3affff6d bcc a00075d4 <_Heap_Walk+0x1c8> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a000781c: e2850008 add r0, r5, #8 a0007820: e1a01007 mov r1, r7 a0007824: e58d3020 str r3, [sp, #32] a0007828: e58dc01c str ip, [sp, #28] a000782c: ebffe48e bl a0000a6c <__umodsi3> ); return false; } if ( a0007830: e3500000 cmp r0, #0 a0007834: e59d3020 ldr r3, [sp, #32] a0007838: e59dc01c ldr ip, [sp, #28] a000783c: 1a000044 bne a0007954 <_Heap_Walk+0x548> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0007840: e5952004 ldr r2, [r5, #4] a0007844: e3c22001 bic r2, r2, #1 block = next_block; } while ( block != first_block ); return true; } a0007848: e0852002 add r2, r5, r2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a000784c: e5922004 ldr r2, [r2, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a0007850: e3120001 tst r2, #1 a0007854: 1a000045 bne a0007970 <_Heap_Walk+0x564> a0007858: e58d8030 str r8, [sp, #48] ; 0x30 a000785c: e58db034 str fp, [sp, #52] ; 0x34 a0007860: e1a01004 mov r1, r4 a0007864: e1a06005 mov r6, r5 a0007868: e1a08003 mov r8, r3 a000786c: e1a0b00c mov fp, ip a0007870: ea000013 b a00078c4 <_Heap_Walk+0x4b8> return false; } prev_block = free_block; free_block = free_block->next; a0007874: e5955008 ldr r5, [r5, #8] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a0007878: e1540005 cmp r4, r5 a000787c: 0affff5b beq a00075f0 <_Heap_Walk+0x1e4> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007880: e1580005 cmp r8, r5 a0007884: 8affff52 bhi a00075d4 <_Heap_Walk+0x1c8> a0007888: e155000b cmp r5, fp RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a000788c: e2850008 add r0, r5, #8 a0007890: e1a01007 mov r1, r7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007894: 8affff4e bhi a00075d4 <_Heap_Walk+0x1c8> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0007898: ebffe473 bl a0000a6c <__umodsi3> ); return false; } if ( a000789c: e3500000 cmp r0, #0 a00078a0: 1a00002b bne a0007954 <_Heap_Walk+0x548> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a00078a4: e5953004 ldr r3, [r5, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a00078a8: e1a01006 mov r1, r6 a00078ac: e1a06005 mov r6, r5 a00078b0: e3c33001 bic r3, r3, #1 block = next_block; } while ( block != first_block ); return true; } a00078b4: e0833005 add r3, r3, r5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a00078b8: e5933004 ldr r3, [r3, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a00078bc: e3130001 tst r3, #1 a00078c0: 1a00002a bne a0007970 <_Heap_Walk+0x564> ); return false; } if ( free_block->prev != prev_block ) { a00078c4: e595200c ldr r2, [r5, #12] a00078c8: e1520001 cmp r2, r1 a00078cc: 0affffe8 beq a0007874 <_Heap_Walk+0x468> (*printer)( a00078d0: e58d2000 str r2, [sp] a00078d4: e1a0000a mov r0, sl a00078d8: e3a01001 mov r1, #1 a00078dc: e59f2108 ldr r2, [pc, #264] ; a00079ec <_Heap_Walk+0x5e0> a00078e0: e1a03005 mov r3, r5 a00078e4: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00078e8: e3a00000 mov r0, #0 a00078ec: eafffeda b a000745c <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( a00078f0: e1a0000a mov r0, sl a00078f4: e58d7000 str r7, [sp] a00078f8: e3a01001 mov r1, #1 a00078fc: e59f20ec ldr r2, [pc, #236] ; a00079f0 <_Heap_Walk+0x5e4> a0007900: e1a03006 mov r3, r6 a0007904: e12fff39 blx r9 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; a0007908: e3a00000 mov r0, #0 a000790c: eafffed2 b a000745c <_Heap_Walk+0x50> } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( a0007910: e58d2004 str r2, [sp, #4] a0007914: e1a0000a mov r0, sl a0007918: e58d7000 str r7, [sp] a000791c: e3a01001 mov r1, #1 a0007920: e59f20cc ldr r2, [pc, #204] ; a00079f4 <_Heap_Walk+0x5e8> a0007924: e1a03006 mov r3, r6 a0007928: e12fff39 blx r9 block, block_size, min_block_size ); return false; a000792c: e3a00000 mov r0, #0 a0007930: eafffec9 b a000745c <_Heap_Walk+0x50> } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( a0007934: e1a0000a mov r0, sl a0007938: e58d5000 str r5, [sp] a000793c: e3a01001 mov r1, #1 a0007940: e59f20b0 ldr r2, [pc, #176] ; a00079f8 <_Heap_Walk+0x5ec> a0007944: e1a03006 mov r3, r6 a0007948: e12fff39 blx r9 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; a000794c: e3a00000 mov r0, #0 a0007950: eafffec1 b a000745c <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( a0007954: e1a0000a mov r0, sl a0007958: e3a01001 mov r1, #1 a000795c: e59f2098 ldr r2, [pc, #152] ; a00079fc <_Heap_Walk+0x5f0> a0007960: e1a03005 mov r3, r5 a0007964: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007968: e3a00000 mov r0, #0 a000796c: eafffeba b a000745c <_Heap_Walk+0x50> return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( a0007970: e1a0000a mov r0, sl a0007974: e3a01001 mov r1, #1 a0007978: e59f2080 ldr r2, [pc, #128] ; a0007a00 <_Heap_Walk+0x5f4> a000797c: e1a03005 mov r3, r5 a0007980: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007984: e3a00000 mov r0, #0 a0007988: eafffeb3 b a000745c <_Heap_Walk+0x50> =============================================================================== a00067ec <_Internal_error_Occurred>: bool is_internal, Internal_errors_t the_error ) { _Internal_errors_What_happened.the_source = the_source; a00067ec: e59f303c ldr r3, [pc, #60] ; a0006830 <_Internal_error_Occurred+0x44> void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a00067f0: e201c0ff and ip, r1, #255 ; 0xff a00067f4: e52de004 push {lr} ; (str lr, [sp, #-4]!) _Internal_errors_What_happened.the_source = the_source; _Internal_errors_What_happened.is_internal = is_internal; _Internal_errors_What_happened.the_error = the_error; _User_extensions_Fatal( the_source, is_internal, the_error ); a00067f8: e1a0100c mov r1, ip bool is_internal, Internal_errors_t the_error ) { _Internal_errors_What_happened.the_source = the_source; a00067fc: e5830000 str r0, [r3] _Internal_errors_What_happened.is_internal = is_internal; a0006800: e5c3c004 strb ip, [r3, #4] _Internal_errors_What_happened.the_error = the_error; a0006804: e5832008 str r2, [r3, #8] void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0006808: e1a04002 mov r4, r2 _Internal_errors_What_happened.the_source = the_source; _Internal_errors_What_happened.is_internal = is_internal; _Internal_errors_What_happened.the_error = the_error; _User_extensions_Fatal( the_source, is_internal, the_error ); a000680c: eb000745 bl a0008528 <_User_extensions_Fatal> RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; a0006810: e59f301c ldr r3, [pc, #28] ; a0006834 <_Internal_error_Occurred+0x48><== NOT EXECUTED a0006814: e3a02005 mov r2, #5 <== NOT EXECUTED a0006818: e5832000 str r2, [r3] <== NOT EXECUTED static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000681c: e10f2000 mrs r2, CPSR <== NOT EXECUTED a0006820: e3823080 orr r3, r2, #128 ; 0x80 <== NOT EXECUTED a0006824: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); a0006828: e1a00004 mov r0, r4 <== NOT EXECUTED a000682c: eafffffe b a000682c <_Internal_error_Occurred+0x40> <== NOT EXECUTED =============================================================================== a00068f4 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { a00068f4: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a00068f8: e5904034 ldr r4, [r0, #52] ; 0x34 */ void _Objects_Extend_information( Objects_Information *information ) { a00068fc: e24dd014 sub sp, sp, #20 a0006900: e1a05000 mov r5, r0 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a0006904: e3540000 cmp r4, #0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006908: e1d070b8 ldrh r7, [r0, #8] index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a000690c: 0a00009c beq a0006b84 <_Objects_Extend_information+0x290> block_count = 0; else { block_count = information->maximum / information->allocation_size; a0006910: e1d081b4 ldrh r8, [r0, #20] a0006914: e1d0a1b0 ldrh sl, [r0, #16] a0006918: e1a01008 mov r1, r8 a000691c: e1a0000a mov r0, sl a0006920: eb0025ff bl a0010124 <__aeabi_uidiv> a0006924: e1a03800 lsl r3, r0, #16 for ( ; block < block_count; block++ ) { a0006928: e1b03823 lsrs r3, r3, #16 a000692c: 0a00009a beq a0006b9c <_Objects_Extend_information+0x2a8> if ( information->object_blocks[ block ] == NULL ) { a0006930: e5949000 ldr r9, [r4] a0006934: e3590000 cmp r9, #0 a0006938: 01a01008 moveq r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a000693c: 01a06007 moveq r6, r7 index_base = minimum_index; block = 0; a0006940: 01a04009 moveq r4, r9 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { a0006944: 0a00000c beq a000697c <_Objects_Extend_information+0x88> a0006948: e1a02004 mov r2, r4 a000694c: e1a01008 mov r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006950: e1a06007 mov r6, r7 index_base = minimum_index; block = 0; a0006954: e3a04000 mov r4, #0 a0006958: ea000002 b a0006968 <_Objects_Extend_information+0x74> block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { a000695c: e5b29004 ldr r9, [r2, #4]! a0006960: e3590000 cmp r9, #0 a0006964: 0a000004 beq a000697c <_Objects_Extend_information+0x88> if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a0006968: e2844001 add r4, r4, #1 a000696c: e1530004 cmp r3, r4 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; a0006970: e0866008 add r6, r6, r8 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a0006974: 8afffff8 bhi a000695c <_Objects_Extend_information+0x68> /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a0006978: e3a09001 mov r9, #1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; a000697c: e08aa001 add sl, sl, r1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { a0006980: e35a0801 cmp sl, #65536 ; 0x10000 a0006984: 2a000064 bcs a0006b1c <_Objects_Extend_information+0x228> /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { a0006988: e5d52012 ldrb r2, [r5, #18] /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; a000698c: e5950018 ldr r0, [r5, #24] if ( information->auto_extend ) { a0006990: e3520000 cmp r2, #0 /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; a0006994: e0000091 mul r0, r1, r0 if ( information->auto_extend ) { a0006998: 1a000061 bne a0006b24 <_Objects_Extend_information+0x230> new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); a000699c: e58d3000 str r3, [sp] a00069a0: eb000823 bl a0008a34 <_Workspace_Allocate_or_fatal_error> a00069a4: e59d3000 ldr r3, [sp] a00069a8: e1a08000 mov r8, r0 } /* * Do we need to grow the tables? */ if ( do_extend ) { a00069ac: e3590000 cmp r9, #0 a00069b0: 0a00003a beq a0006aa0 <_Objects_Extend_information+0x1ac> */ /* * Up the block count and maximum */ block_count++; a00069b4: e283b001 add fp, r3, #1 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + a00069b8: e08b008b add r0, fp, fp, lsl #1 ((maximum + minimum_index) * sizeof(Objects_Control *)); a00069bc: e08a0000 add r0, sl, r0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + a00069c0: e0800007 add r0, r0, r7 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); a00069c4: e1a00100 lsl r0, r0, #2 a00069c8: e58d3000 str r3, [sp] a00069cc: eb00080e bl a0008a0c <_Workspace_Allocate> if ( !object_blocks ) { a00069d0: e2509000 subs r9, r0, #0 a00069d4: e59d3000 ldr r3, [sp] a00069d8: 0a000074 beq a0006bb0 <_Objects_Extend_information+0x2bc> * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { a00069dc: e1d521b0 ldrh r2, [r5, #16] RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset ( const void *base, uintptr_t offset ) { return (void *)((uintptr_t)base + offset); a00069e0: e089c10b add ip, r9, fp, lsl #2 a00069e4: e089b18b add fp, r9, fp, lsl #3 a00069e8: e1570002 cmp r7, r2 a00069ec: 3a000052 bcc a0006b3c <_Objects_Extend_information+0x248> } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a00069f0: e3570000 cmp r7, #0 a00069f4: 13a02000 movne r2, #0 a00069f8: 11a0100b movne r1, fp local_table[ index ] = NULL; a00069fc: 11a00002 movne r0, r2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a0006a00: 0a000003 beq a0006a14 <_Objects_Extend_information+0x120> a0006a04: e2822001 add r2, r2, #1 a0006a08: e1570002 cmp r7, r2 local_table[ index ] = NULL; a0006a0c: e4810004 str r0, [r1], #4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a0006a10: 8afffffb bhi a0006a04 <_Objects_Extend_information+0x110> a0006a14: e1a03103 lsl r3, r3, #2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); a0006a18: e1d511b4 ldrh r1, [r5, #20] } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; a0006a1c: e3a00000 mov r0, #0 a0006a20: e7890003 str r0, [r9, r3] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); a0006a24: e0861001 add r1, r6, r1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006a28: e1560001 cmp r6, r1 /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; a0006a2c: e78c0003 str r0, [ip, r3] for ( index=index_base ; a0006a30: 2a000005 bcs a0006a4c <_Objects_Extend_information+0x158> a0006a34: e08b2106 add r2, fp, r6, lsl #2 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( a0006a38: e1a03006 mov r3, r6 object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { a0006a3c: e2833001 add r3, r3, #1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006a40: e1530001 cmp r3, r1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; a0006a44: e4820004 str r0, [r2], #4 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006a48: 3afffffb bcc a0006a3c <_Objects_Extend_information+0x148> a0006a4c: e10f3000 mrs r3, CPSR a0006a50: e3832080 orr r2, r3, #128 ; 0x80 a0006a54: e129f002 msr CPSR_fc, r2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006a58: e5952000 ldr r2, [r5] information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( a0006a5c: e1d510b4 ldrh r1, [r5, #4] old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; a0006a60: e1a0a80a lsl sl, sl, #16 a0006a64: e1a02c02 lsl r2, r2, #24 a0006a68: e3822801 orr r2, r2, #65536 ; 0x10000 a0006a6c: e1a0a82a lsr sl, sl, #16 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | a0006a70: e1822d81 orr r2, r2, r1, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006a74: e182200a orr r2, r2, sl local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; a0006a78: e5950034 ldr r0, [r5, #52] ; 0x34 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; a0006a7c: e585c030 str ip, [r5, #48] ; 0x30 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; a0006a80: e5859034 str r9, [r5, #52] ; 0x34 information->inactive_per_block = inactive_per_block; information->local_table = local_table; a0006a84: e585b01c str fp, [r5, #28] information->maximum = (Objects_Maximum) maximum; a0006a88: e1c5a1b0 strh sl, [r5, #16] information->maximum_id = _Objects_Build_id( a0006a8c: e585200c str r2, [r5, #12] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a0006a90: e129f003 msr CPSR_fc, r3 information->maximum ); _ISR_Enable( level ); if ( old_tables ) a0006a94: e3500000 cmp r0, #0 a0006a98: 0a000000 beq a0006aa0 <_Objects_Extend_information+0x1ac> _Workspace_Free( old_tables ); a0006a9c: eb0007e0 bl a0008a24 <_Workspace_Free> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006aa0: e5953034 ldr r3, [r5, #52] ; 0x34 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( a0006aa4: e28d7008 add r7, sp, #8 a0006aa8: e1a01008 mov r1, r8 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006aac: e7838104 str r8, [r3, r4, lsl #2] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( a0006ab0: e1a00007 mov r0, r7 a0006ab4: e1d521b4 ldrh r2, [r5, #20] a0006ab8: e5953018 ldr r3, [r5, #24] a0006abc: eb000fb6 bl a000a99c <_Chain_Initialize> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006ac0: e1a04104 lsl r4, r4, #2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006ac4: e2858020 add r8, r5, #32 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { a0006ac8: ea000009 b a0006af4 <_Objects_Extend_information+0x200> a0006acc: e5953000 ldr r3, [r5] the_object->id = _Objects_Build_id( a0006ad0: e1d520b4 ldrh r2, [r5, #4] information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006ad4: e1a00008 mov r0, r8 a0006ad8: e1a03c03 lsl r3, r3, #24 a0006adc: e3833801 orr r3, r3, #65536 ; 0x10000 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | a0006ae0: e1833d82 orr r3, r3, r2, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006ae4: e1833006 orr r3, r3, r6 */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { the_object->id = _Objects_Build_id( a0006ae8: e5813008 str r3, [r1, #8] information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006aec: ebfffce1 bl a0005e78 <_Chain_Append> index++; a0006af0: e2866001 add r6, r6, #1 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { a0006af4: e1a00007 mov r0, r7 a0006af8: ebfffcf1 bl a0005ec4 <_Chain_Get> a0006afc: e2501000 subs r1, r0, #0 a0006b00: 1afffff1 bne a0006acc <_Objects_Extend_information+0x1d8> index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); a0006b04: e1d522bc ldrh r2, [r5, #44] ; 0x2c _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; a0006b08: e1d531b4 ldrh r3, [r5, #20] a0006b0c: e5951030 ldr r1, [r5, #48] ; 0x30 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); a0006b10: e0832002 add r2, r3, r2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; a0006b14: e7813004 str r3, [r1, r4] information->inactive = a0006b18: e1c522bc strh r2, [r5, #44] ; 0x2c (Objects_Maximum)(information->inactive + information->allocation_size); } a0006b1c: e28dd014 add sp, sp, #20 a0006b20: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); a0006b24: e58d3000 str r3, [sp] a0006b28: eb0007b7 bl a0008a0c <_Workspace_Allocate> if ( !new_object_block ) a0006b2c: e2508000 subs r8, r0, #0 a0006b30: e59d3000 ldr r3, [sp] a0006b34: 1affff9c bne a00069ac <_Objects_Extend_information+0xb8> a0006b38: eafffff7 b a0006b1c <_Objects_Extend_information+0x228> /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, a0006b3c: e1a03103 lsl r3, r3, #2 a0006b40: e5951034 ldr r1, [r5, #52] ; 0x34 a0006b44: e1a02003 mov r2, r3 a0006b48: e88d1008 stm sp, {r3, ip} a0006b4c: eb001a03 bl a000d360 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, a0006b50: e89d1008 ldm sp, {r3, ip} a0006b54: e5951030 ldr r1, [r5, #48] ; 0x30 a0006b58: e1a0000c mov r0, ip a0006b5c: e1a02003 mov r2, r3 a0006b60: eb0019fe bl a000d360 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); a0006b64: e1d521b0 ldrh r2, [r5, #16] information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, a0006b68: e1a0000b mov r0, fp a0006b6c: e595101c ldr r1, [r5, #28] information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); a0006b70: e0872002 add r2, r7, r2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, a0006b74: e1a02102 lsl r2, r2, #2 a0006b78: eb0019f8 bl a000d360 a0006b7c: e89d1008 ldm sp, {r3, ip} a0006b80: eaffffa4 b a0006a18 <_Objects_Extend_information+0x124> minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a0006b84: e1d0a1b0 ldrh sl, [r0, #16] a0006b88: e1d011b4 ldrh r1, [r0, #20] /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006b8c: e1a06007 mov r6, r7 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a0006b90: e3a09001 mov r9, #1 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; a0006b94: e1a03004 mov r3, r4 a0006b98: eaffff77 b a000697c <_Objects_Extend_information+0x88> else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a0006b9c: e1a01008 mov r1, r8 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006ba0: e1a06007 mov r6, r7 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a0006ba4: e3a09001 mov r9, #1 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; a0006ba8: e1a04003 mov r4, r3 <== NOT EXECUTED a0006bac: eaffff72 b a000697c <_Objects_Extend_information+0x88> <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); a0006bb0: e1a00008 mov r0, r8 a0006bb4: eb00079a bl a0008a24 <_Workspace_Free> return; a0006bb8: eaffffd7 b a0006b1c <_Objects_Extend_information+0x228> =============================================================================== a0006f0c <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { a0006f0c: e92d40f0 push {r4, r5, r6, r7, lr} /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); a0006f10: e1d040b8 ldrh r4, [r0, #8] block_count = (information->maximum - index_base) / a0006f14: e1d051b4 ldrh r5, [r0, #20] */ void _Objects_Shrink_information( Objects_Information *information ) { a0006f18: e1a06000 mov r6, r0 /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / a0006f1c: e1d001b0 ldrh r0, [r0, #16] a0006f20: e1a01005 mov r1, r5 a0006f24: e0640000 rsb r0, r4, r0 a0006f28: eb00247d bl a0010124 <__aeabi_uidiv> information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006f2c: e3500000 cmp r0, #0 a0006f30: 0a00000d beq a0006f6c <_Objects_Shrink_information+0x60> if ( information->inactive_per_block[ block ] == a0006f34: e5962030 ldr r2, [r6, #48] ; 0x30 a0006f38: e5923000 ldr r3, [r2] a0006f3c: e1550003 cmp r5, r3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006f40: 13a03000 movne r3, #0 if ( information->inactive_per_block[ block ] == a0006f44: 1a000005 bne a0006f60 <_Objects_Shrink_information+0x54> a0006f48: ea000008 b a0006f70 <_Objects_Shrink_information+0x64> <== NOT EXECUTED a0006f4c: e5b21004 ldr r1, [r2, #4]! information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; a0006f50: e0844005 add r4, r4, r5 a0006f54: e1a07103 lsl r7, r3, #2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == a0006f58: e1550001 cmp r5, r1 a0006f5c: 0a000004 beq a0006f74 <_Objects_Shrink_information+0x68> index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006f60: e2833001 add r3, r3, #1 a0006f64: e1500003 cmp r0, r3 a0006f68: 8afffff7 bhi a0006f4c <_Objects_Shrink_information+0x40> a0006f6c: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( information->inactive_per_block[ block ] == a0006f70: e3a07000 mov r7, #0 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; a0006f74: e5960020 ldr r0, [r6, #32] a0006f78: ea000002 b a0006f88 <_Objects_Shrink_information+0x7c> if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); a0006f7c: e3550000 cmp r5, #0 a0006f80: 0a00000b beq a0006fb4 <_Objects_Shrink_information+0xa8> index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; a0006f84: e1a00005 mov r0, r5 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; do { index = _Objects_Get_index( the_object->id ); a0006f88: e1d030b8 ldrh r3, [r0, #8] /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; a0006f8c: e5905000 ldr r5, [r0] if ((index >= index_base) && a0006f90: e1530004 cmp r3, r4 a0006f94: 3afffff8 bcc a0006f7c <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { a0006f98: e1d621b4 ldrh r2, [r6, #20] a0006f9c: e0842002 add r2, r4, r2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && a0006fa0: e1530002 cmp r3, r2 a0006fa4: 2afffff4 bcs a0006f7c <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); a0006fa8: ebfffbbd bl a0005ea4 <_Chain_Extract> } } while ( the_object ); a0006fac: e3550000 cmp r5, #0 a0006fb0: 1afffff3 bne a0006f84 <_Objects_Shrink_information+0x78> /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); a0006fb4: e5963034 ldr r3, [r6, #52] ; 0x34 a0006fb8: e7930007 ldr r0, [r3, r7] a0006fbc: eb000698 bl a0008a24 <_Workspace_Free> information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; a0006fc0: e1d602bc ldrh r0, [r6, #44] ; 0x2c a0006fc4: e1d631b4 ldrh r3, [r6, #20] /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; a0006fc8: e5961034 ldr r1, [r6, #52] ; 0x34 information->inactive_per_block[ block ] = 0; a0006fcc: e5962030 ldr r2, [r6, #48] ; 0x30 information->inactive -= information->allocation_size; a0006fd0: e0633000 rsb r3, r3, r0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; a0006fd4: e7815007 str r5, [r1, r7] information->inactive_per_block[ block ] = 0; a0006fd8: e7825007 str r5, [r2, r7] information->inactive -= information->allocation_size; a0006fdc: e1c632bc strh r3, [r6, #44] ; 0x2c return; a0006fe0: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a0006548 <_TOD_Validate>: { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0006548: e59f30bc ldr r3, [pc, #188] ; a000660c <_TOD_Validate+0xc4> */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { a000654c: e92d4010 push {r4, lr} uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0006550: e2504000 subs r4, r0, #0 { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a0006554: e593100c ldr r1, [r3, #12] if ((!the_tod) || a0006558: 0a000029 beq a0006604 <_TOD_Validate+0xbc> ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / a000655c: e3a0093d mov r0, #999424 ; 0xf4000 a0006560: e2800d09 add r0, r0, #576 ; 0x240 a0006564: eb004527 bl a0017a08 <__aeabi_uidiv> rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a0006568: e5943018 ldr r3, [r4, #24] a000656c: e1500003 cmp r0, r3 a0006570: 9a00001f bls a00065f4 <_TOD_Validate+0xac> (the_tod->ticks >= ticks_per_second) || a0006574: e5943014 ldr r3, [r4, #20] a0006578: e353003b cmp r3, #59 ; 0x3b a000657c: 8a00001c bhi a00065f4 <_TOD_Validate+0xac> (the_tod->second >= TOD_SECONDS_PER_MINUTE) || a0006580: e5943010 ldr r3, [r4, #16] a0006584: e353003b cmp r3, #59 ; 0x3b a0006588: 8a000019 bhi a00065f4 <_TOD_Validate+0xac> (the_tod->minute >= TOD_MINUTES_PER_HOUR) || a000658c: e594300c ldr r3, [r4, #12] a0006590: e3530017 cmp r3, #23 a0006594: 8a000016 bhi a00065f4 <_TOD_Validate+0xac> (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || a0006598: e5940004 ldr r0, [r4, #4] rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || a000659c: e3500000 cmp r0, #0 a00065a0: 0a000016 beq a0006600 <_TOD_Validate+0xb8> (the_tod->month == 0) || a00065a4: e350000c cmp r0, #12 a00065a8: 8a000011 bhi a00065f4 <_TOD_Validate+0xac> (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a00065ac: e5942000 ldr r2, [r4] (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || a00065b0: e3a03d1f mov r3, #1984 ; 0x7c0 a00065b4: e2833003 add r3, r3, #3 a00065b8: e1520003 cmp r2, r3 a00065bc: 9a00000c bls a00065f4 <_TOD_Validate+0xac> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) a00065c0: e5944008 ldr r4, [r4, #8] (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a00065c4: e3540000 cmp r4, #0 a00065c8: 0a00000b beq a00065fc <_TOD_Validate+0xb4> (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) a00065cc: e3120003 tst r2, #3 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a00065d0: 059f3038 ldreq r3, [pc, #56] ; a0006610 <_TOD_Validate+0xc8> else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a00065d4: 159f3034 ldrne r3, [pc, #52] ; a0006610 <_TOD_Validate+0xc8> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a00065d8: 0280000d addeq r0, r0, #13 a00065dc: 07930100 ldreq r0, [r3, r0, lsl #2] else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a00065e0: 17930100 ldrne r0, [r3, r0, lsl #2] * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( a00065e4: e1500004 cmp r0, r4 a00065e8: 33a00000 movcc r0, #0 a00065ec: 23a00001 movcs r0, #1 a00065f0: e8bd8010 pop {r4, pc} (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a00065f4: e3a00000 mov r0, #0 a00065f8: e8bd8010 pop {r4, pc} a00065fc: e1a00004 mov r0, r4 <== NOT EXECUTED if ( the_tod->day > days_in_month ) return false; return true; } a0006600: e8bd8010 pop {r4, pc} <== NOT EXECUTED (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a0006604: e1a00004 mov r0, r4 <== NOT EXECUTED a0006608: e8bd8010 pop {r4, pc} <== NOT EXECUTED =============================================================================== a0007700 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0007700: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr} /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; a0007704: e3a05000 mov r5, #0 a0007708: e5815100 str r5, [r1, #256] ; 0x100 a000770c: e5815104 str r5, [r1, #260] ; 0x104 extensions_area = NULL; the_thread->libc_reent = NULL; a0007710: e58150fc str r5, [r1, #252] ; 0xfc Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0007714: e1a04001 mov r4, r1 a0007718: e1a0a000 mov sl, r0 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a000771c: e1a00001 mov r0, r1 a0007720: e1a01003 mov r1, r3 Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0007724: e1a06003 mov r6, r3 a0007728: e59d8024 ldr r8, [sp, #36] ; 0x24 a000772c: e5dd9028 ldrb r9, [sp, #40] ; 0x28 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0007730: eb00027b bl a0008124 <_Thread_Stack_Allocate> if ( !actual_stack_size || actual_stack_size < stack_size ) a0007734: e1500005 cmp r0, r5 a0007738: 13a07000 movne r7, #0 a000773c: 03a07001 moveq r7, #1 a0007740: e1500006 cmp r0, r6 a0007744: 33877001 orrcc r7, r7, #1 a0007748: e1570005 cmp r7, r5 a000774c: 1a00003d bne a0007848 <_Thread_Initialize+0x148> #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a0007750: e59f5134 ldr r5, [pc, #308] ; a000788c <_Thread_Initialize+0x18c> Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0007754: e59430c8 ldr r3, [r4, #200] ; 0xc8 the_stack->size = size; a0007758: e58400c0 str r0, [r4, #192] ; 0xc0 a000775c: e5956000 ldr r6, [r5] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a0007760: e58430c4 str r3, [r4, #196] ; 0xc4 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; a0007764: e5847050 str r7, [r4, #80] ; 0x50 a0007768: e3560000 cmp r6, #0 the_watchdog->routine = routine; a000776c: e5847064 str r7, [r4, #100] ; 0x64 the_watchdog->id = id; a0007770: e5847068 str r7, [r4, #104] ; 0x68 the_watchdog->user_data = user_data; a0007774: e584706c str r7, [r4, #108] ; 0x6c (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; a0007778: 05846108 streq r6, [r4, #264] ; 0x108 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a000777c: 1a000033 bne a0007850 <_Thread_Initialize+0x150> /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a0007780: e59d302c ldr r3, [sp, #44] ; 0x2c } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a0007784: e3a07000 mov r7, #0 #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a0007788: e3a05001 mov r5, #1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a000778c: e58430b0 str r3, [r4, #176] ; 0xb0 the_thread->Start.budget_callout = budget_callout; a0007790: e59d3030 ldr r3, [sp, #48] ; 0x30 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0007794: e1a00004 mov r0, r4 a0007798: e1a01008 mov r1, r8 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; a000779c: e58430b4 str r3, [r4, #180] ; 0xb4 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a00077a0: e59d3034 ldr r3, [sp, #52] ; 0x34 the_thread->current_state = STATES_DORMANT; a00077a4: e5845010 str r5, [r4, #16] the_thread->Wait.queue = NULL; a00077a8: e5847044 str r7, [r4, #68] ; 0x44 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a00077ac: e58430b8 str r3, [r4, #184] ; 0xb8 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; a00077b0: e584701c str r7, [r4, #28] the_thread->real_priority = priority; a00077b4: e5848018 str r8, [r4, #24] the_thread->Start.initial_priority = priority; a00077b8: e58480bc str r8, [r4, #188] ; 0xbc /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; a00077bc: e5c490ac strb r9, [r4, #172] ; 0xac the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a00077c0: eb0001c3 bl a0007ed4 <_Thread_Set_priority> _Thread_Stack_Free( the_thread ); return false; } a00077c4: e59a301c ldr r3, [sl, #28] Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( a00077c8: e1d420b8 ldrh r2, [r4, #8] /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); a00077cc: e5847084 str r7, [r4, #132] ; 0x84 a00077d0: e5847088 str r7, [r4, #136] ; 0x88 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; a00077d4: e7834102 str r4, [r3, r2, lsl #2] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; a00077d8: e59d3038 ldr r3, [sp, #56] ; 0x38 * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); a00077dc: e1a00004 mov r0, r4 a00077e0: e584300c str r3, [r4, #12] a00077e4: eb000363 bl a0008578 <_User_extensions_Thread_create> if ( extension_status ) a00077e8: e1500007 cmp r0, r7 a00077ec: 1a000013 bne a0007840 <_Thread_Initialize+0x140> return true; failed: if ( the_thread->libc_reent ) a00077f0: e59400fc ldr r0, [r4, #252] ; 0xfc a00077f4: e3500000 cmp r0, #0 a00077f8: 0a000000 beq a0007800 <_Thread_Initialize+0x100> _Workspace_Free( the_thread->libc_reent ); a00077fc: eb000488 bl a0008a24 <_Workspace_Free> for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007800: e5940100 ldr r0, [r4, #256] ; 0x100 a0007804: e3500000 cmp r0, #0 a0007808: 0a000000 beq a0007810 <_Thread_Initialize+0x110> _Workspace_Free( the_thread->API_Extensions[i] ); a000780c: eb000484 bl a0008a24 <_Workspace_Free> failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007810: e5940104 ldr r0, [r4, #260] ; 0x104 a0007814: e3500000 cmp r0, #0 a0007818: 0a000000 beq a0007820 <_Thread_Initialize+0x120> _Workspace_Free( the_thread->API_Extensions[i] ); a000781c: eb000480 bl a0008a24 <_Workspace_Free> <== NOT EXECUTED if ( extensions_area ) a0007820: e3560000 cmp r6, #0 a0007824: 0a000001 beq a0007830 <_Thread_Initialize+0x130> (void) _Workspace_Free( extensions_area ); a0007828: e1a00006 mov r0, r6 a000782c: eb00047c bl a0008a24 <_Workspace_Free> #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); a0007830: e1a00004 mov r0, r4 a0007834: eb000255 bl a0008190 <_Thread_Stack_Free> return false; a0007838: e3a00000 mov r0, #0 a000783c: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; a0007840: e1a00005 mov r0, r5 _Thread_Stack_Free( the_thread ); return false; } a0007844: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ a0007848: e1a00005 mov r0, r5 a000784c: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( a0007850: e2866001 add r6, r6, #1 a0007854: e1a00106 lsl r0, r6, #2 a0007858: eb00046b bl a0008a0c <_Workspace_Allocate> (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) a000785c: e2506000 subs r6, r0, #0 a0007860: 0affffe2 beq a00077f0 <_Thread_Initialize+0xf0> goto failed; } the_thread->extensions = (void **) extensions_area; a0007864: e5951000 ldr r1, [r5] a0007868: e5846108 str r6, [r4, #264] ; 0x108 a000786c: e1a03007 mov r3, r7 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; a0007870: e1a02007 mov r2, r7 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0007874: e2833001 add r3, r3, #1 a0007878: e1530001 cmp r3, r1 the_thread->extensions[i] = NULL; a000787c: e7862107 str r2, [r6, r7, lsl #2] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a0007880: e1a07003 mov r7, r3 a0007884: 9afffffa bls a0007874 <_Thread_Initialize+0x174> a0007888: eaffffbc b a0007780 <_Thread_Initialize+0x80> =============================================================================== a0015d94 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { a0015d94: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a0015d98: e24dd024 sub sp, sp, #36 ; 0x24 a0015d9c: e28d700c add r7, sp, #12 a0015da0: e28d2018 add r2, sp, #24 a0015da4: e282a004 add sl, r2, #4 a0015da8: e2872004 add r2, r7, #4 a0015dac: e58d2000 str r2, [sp] Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); a0015db0: e28d2018 add r2, sp, #24 a0015db4: e58d2020 str r2, [sp, #32] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0015db8: e59d2000 ldr r2, [sp] a0015dbc: e59f91cc ldr r9, [pc, #460] ; a0015f90 <_Timer_server_Body+0x1fc> a0015dc0: e59fb1cc ldr fp, [pc, #460] ; a0015f94 <_Timer_server_Body+0x200> a0015dc4: e58d200c str r2, [sp, #12] a0015dc8: e2802008 add r2, r0, #8 the_chain->permanent_null = NULL; a0015dcc: e3a03000 mov r3, #0 a0015dd0: e58d2004 str r2, [sp, #4] a0015dd4: e2802040 add r2, r0, #64 ; 0x40 a0015dd8: e1a04000 mov r4, r0 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0015ddc: e58da018 str sl, [sp, #24] the_chain->permanent_null = NULL; a0015de0: e58d301c str r3, [sp, #28] a0015de4: e58d3010 str r3, [sp, #16] the_chain->last = _Chain_Head(the_chain); a0015de8: e58d7014 str r7, [sp, #20] a0015dec: e2806030 add r6, r0, #48 ; 0x30 a0015df0: e2808068 add r8, r0, #104 ; 0x68 a0015df4: e58d2008 str r2, [sp, #8] { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; a0015df8: e28d3018 add r3, sp, #24 a0015dfc: e5843078 str r3, [r4, #120] ; 0x78 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0015e00: e5993000 ldr r3, [r9] /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; a0015e04: e594103c ldr r1, [r4, #60] ; 0x3c watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015e08: e1a02007 mov r2, r7 a0015e0c: e1a00006 mov r0, r6 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; a0015e10: e584303c str r3, [r4, #60] ; 0x3c _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015e14: e0611003 rsb r1, r1, r3 a0015e18: eb001170 bl a001a3e0 <_Watchdog_Adjust_to_chain> static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0015e1c: e59b5000 ldr r5, [fp] Watchdog_Interval last_snapshot = watchdogs->last_snapshot; a0015e20: e5942074 ldr r2, [r4, #116] ; 0x74 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { a0015e24: e1550002 cmp r5, r2 a0015e28: 8a000022 bhi a0015eb8 <_Timer_server_Body+0x124> * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { a0015e2c: 3a000018 bcc a0015e94 <_Timer_server_Body+0x100> */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; a0015e30: e5845074 str r5, [r4, #116] ; 0x74 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0015e34: e5940078 ldr r0, [r4, #120] ; 0x78 a0015e38: eb0002c0 bl a0016940 <_Chain_Get> if ( timer == NULL ) { a0015e3c: e2501000 subs r1, r0, #0 a0015e40: 0a00000b beq a0015e74 <_Timer_server_Body+0xe0> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a0015e44: e5913038 ldr r3, [r1, #56] ; 0x38 a0015e48: e3530001 cmp r3, #1 a0015e4c: 0a000015 beq a0015ea8 <_Timer_server_Body+0x114> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { a0015e50: e3530003 cmp r3, #3 a0015e54: 1afffff6 bne a0015e34 <_Timer_server_Body+0xa0> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); a0015e58: e2811010 add r1, r1, #16 a0015e5c: e1a00008 mov r0, r8 a0015e60: eb001188 bl a001a488 <_Watchdog_Insert> } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0015e64: e5940078 ldr r0, [r4, #120] ; 0x78 a0015e68: eb0002b4 bl a0016940 <_Chain_Get> if ( timer == NULL ) { a0015e6c: e2501000 subs r1, r0, #0 a0015e70: 1afffff3 bne a0015e44 <_Timer_server_Body+0xb0> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a0015e74: e10f2000 mrs r2, CPSR a0015e78: e3823080 orr r3, r2, #128 ; 0x80 a0015e7c: e129f003 msr CPSR_fc, r3 * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { a0015e80: e59d3018 ldr r3, [sp, #24] a0015e84: e15a0003 cmp sl, r3 a0015e88: 0a00000f beq a0015ecc <_Timer_server_Body+0x138> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a0015e8c: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED a0015e90: eaffffda b a0015e00 <_Timer_server_Body+0x6c> <== NOT EXECUTED /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a0015e94: e1a00008 mov r0, r8 a0015e98: e3a01001 mov r1, #1 a0015e9c: e0652002 rsb r2, r5, r2 a0015ea0: eb00111f bl a001a324 <_Watchdog_Adjust> a0015ea4: eaffffe1 b a0015e30 <_Timer_server_Body+0x9c> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); a0015ea8: e1a00006 mov r0, r6 a0015eac: e2811010 add r1, r1, #16 a0015eb0: eb001174 bl a001a488 <_Watchdog_Insert> a0015eb4: eaffffde b a0015e34 <_Timer_server_Body+0xa0> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015eb8: e0621005 rsb r1, r2, r5 a0015ebc: e1a00008 mov r0, r8 a0015ec0: e1a02007 mov r2, r7 a0015ec4: eb001145 bl a001a3e0 <_Watchdog_Adjust_to_chain> a0015ec8: eaffffd8 b a0015e30 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; a0015ecc: e5841078 str r1, [r4, #120] ; 0x78 a0015ed0: e129f002 msr CPSR_fc, r2 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { a0015ed4: e59d300c ldr r3, [sp, #12] a0015ed8: e59d2000 ldr r2, [sp] a0015edc: e1520003 cmp r2, r3 a0015ee0: 0a000015 beq a0015f3c <_Timer_server_Body+0x1a8> a0015ee4: e1a05004 mov r5, r4 a0015ee8: e59d4000 ldr r4, [sp] a0015eec: ea000009 b a0015f18 <_Timer_server_Body+0x184> { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; a0015ef0: e5923000 ldr r3, [r2] the_chain->first = new_first; new_first->previous = _Chain_Head(the_chain); a0015ef4: e5837004 str r7, [r3, #4] Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; the_chain->first = new_first; a0015ef8: e58d300c str r3, [sp, #12] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; a0015efc: e3a03000 mov r3, #0 a0015f00: e5823008 str r3, [r2, #8] a0015f04: e129f001 msr CPSR_fc, r1 /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); a0015f08: e592301c ldr r3, [r2, #28] a0015f0c: e5920020 ldr r0, [r2, #32] a0015f10: e5921024 ldr r1, [r2, #36] ; 0x24 a0015f14: e12fff33 blx r3 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a0015f18: e10f1000 mrs r1, CPSR a0015f1c: e3813080 orr r3, r1, #128 ; 0x80 a0015f20: e129f003 msr CPSR_fc, r3 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a0015f24: e59d200c ldr r2, [sp, #12] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) a0015f28: e1540002 cmp r4, r2 a0015f2c: 1affffef bne a0015ef0 <_Timer_server_Body+0x15c> a0015f30: e1a04005 mov r4, r5 static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a0015f34: e129f001 msr CPSR_fc, r1 a0015f38: eaffffae b a0015df8 <_Timer_server_Body+0x64> } } else { ts->active = false; a0015f3c: e3a02000 mov r2, #0 a0015f40: e5c4207c strb r2, [r4, #124] ; 0x7c a0015f44: e59f204c ldr r2, [pc, #76] ; a0015f98 <_Timer_server_Body+0x204> a0015f48: e5923000 ldr r3, [r2] a0015f4c: e2833001 add r3, r3, #1 a0015f50: e5823000 str r3, [r2] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); a0015f54: e3a01008 mov r1, #8 a0015f58: e5940000 ldr r0, [r4] a0015f5c: eb000e96 bl a00199bc <_Thread_Set_state> _Timer_server_Reset_interval_system_watchdog( ts ); a0015f60: e1a00004 mov r0, r4 a0015f64: ebffff5e bl a0015ce4 <_Timer_server_Reset_interval_system_watchdog> _Timer_server_Reset_tod_system_watchdog( ts ); a0015f68: e1a00004 mov r0, r4 a0015f6c: ebffff72 bl a0015d3c <_Timer_server_Reset_tod_system_watchdog> _Thread_Enable_dispatch(); a0015f70: eb000bff bl a0018f74 <_Thread_Enable_dispatch> ts->active = true; a0015f74: e3a03001 mov r3, #1 a0015f78: e5c4307c strb r3, [r4, #124] ; 0x7c static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); a0015f7c: e59d0004 ldr r0, [sp, #4] a0015f80: eb0011ad bl a001a63c <_Watchdog_Remove> static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); a0015f84: e59d0008 ldr r0, [sp, #8] a0015f88: eb0011ab bl a001a63c <_Watchdog_Remove> a0015f8c: eaffff99 b a0015df8 <_Timer_server_Body+0x64> =============================================================================== a000a194 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a000a194: e5902000 ldr r2, [r0] a000a198: e5913000 ldr r3, [r1] a000a19c: e1520003 cmp r2, r3 return true; a000a1a0: c3a00001 movgt r0, #1 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a000a1a4: c12fff1e bxgt lr return true; if ( lhs->tv_sec < rhs->tv_sec ) a000a1a8: ba000005 blt a000a1c4 <_Timespec_Greater_than+0x30> #include #include #include bool _Timespec_Greater_than( a000a1ac: e5900004 ldr r0, [r0, #4] a000a1b0: e5913004 ldr r3, [r1, #4] a000a1b4: e1500003 cmp r0, r3 a000a1b8: d3a00000 movle r0, #0 a000a1bc: c3a00001 movgt r0, #1 a000a1c0: e12fff1e bx lr { if ( lhs->tv_sec > rhs->tv_sec ) return true; if ( lhs->tv_sec < rhs->tv_sec ) return false; a000a1c4: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } a000a1c8: e12fff1e bx lr <== NOT EXECUTED =============================================================================== a000a1cc <_Timespec_Less_than>: bool _Timespec_Less_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec < rhs->tv_sec ) a000a1cc: e5902000 ldr r2, [r0] a000a1d0: e5913000 ldr r3, [r1] a000a1d4: e1520003 cmp r2, r3 return true; a000a1d8: b3a00001 movlt r0, #1 bool _Timespec_Less_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec < rhs->tv_sec ) a000a1dc: b12fff1e bxlt lr return true; if ( lhs->tv_sec > rhs->tv_sec ) a000a1e0: ca000005 bgt a000a1fc <_Timespec_Less_than+0x30> #include #include #include bool _Timespec_Less_than( a000a1e4: e5900004 ldr r0, [r0, #4] a000a1e8: e5913004 ldr r3, [r1, #4] a000a1ec: e1500003 cmp r0, r3 a000a1f0: a3a00000 movge r0, #0 a000a1f4: b3a00001 movlt r0, #1 a000a1f8: e12fff1e bx lr { if ( lhs->tv_sec < rhs->tv_sec ) return true; if ( lhs->tv_sec > rhs->tv_sec ) return false; a000a1fc: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec < rhs->tv_nsec ) return true; return false; } a000a200: e12fff1e bx lr <== NOT EXECUTED =============================================================================== a0008528 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0008528: e92d41f0 push {r4, r5, r6, r7, r8, lr} Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a000852c: e59f5040 ldr r5, [pc, #64] ; a0008574 <_User_extensions_Fatal+0x4c> void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a0008530: e1a08000 mov r8, r0 a0008534: e1a07002 mov r7, r2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0008538: e5954008 ldr r4, [r5, #8] void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { a000853c: e20160ff and r6, r1, #255 ; 0xff Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0008540: e1540005 cmp r4, r5 a0008544: 0a000009 beq a0008570 <_User_extensions_Fatal+0x48> !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) a0008548: e5943030 ldr r3, [r4, #48] ; 0x30 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); a000854c: e1a00008 mov r0, r8 a0008550: e1a01006 mov r1, r6 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) a0008554: e3530000 cmp r3, #0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); a0008558: e1a02007 mov r2, r7 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) a000855c: 0a000000 beq a0008564 <_User_extensions_Fatal+0x3c> (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); a0008560: e12fff33 blx r3 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { a0008564: e5944004 ldr r4, [r4, #4] ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; a0008568: e1540005 cmp r4, r5 a000856c: 1afffff5 bne a0008548 <_User_extensions_Fatal+0x20> a0008570: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== a0008578 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { a0008578: e92d40f0 push {r4, r5, r6, r7, lr} Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a000857c: e59f504c ldr r5, [pc, #76] ; a00085d0 <_User_extensions_Thread_create+0x58> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { a0008580: e1a06000 mov r6, r0 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a0008584: e4954004 ldr r4, [r5], #4 a0008588: e1540005 cmp r4, r5 a000858c: 0a00000d beq a00085c8 <_User_extensions_Thread_create+0x50> the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( a0008590: e59f703c ldr r7, [pc, #60] ; a00085d4 <_User_extensions_Thread_create+0x5c> !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { a0008594: e5943014 ldr r3, [r4, #20] status = (*the_extension->Callouts.thread_create)( a0008598: e1a01006 mov r1, r6 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { a000859c: e3530000 cmp r3, #0 a00085a0: 0a000003 beq a00085b4 <_User_extensions_Thread_create+0x3c> status = (*the_extension->Callouts.thread_create)( a00085a4: e5970004 ldr r0, [r7, #4] a00085a8: e12fff33 blx r3 _Thread_Executing, the_thread ); if ( !status ) a00085ac: e3500000 cmp r0, #0 a00085b0: 0a000005 beq a00085cc <_User_extensions_Thread_create+0x54> User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { a00085b4: e5944000 ldr r4, [r4] { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a00085b8: e1540005 cmp r4, r5 a00085bc: 1afffff4 bne a0008594 <_User_extensions_Thread_create+0x1c> if ( !status ) return false; } } return true; a00085c0: e3a00001 mov r0, #1 a00085c4: e8bd80f0 pop {r4, r5, r6, r7, pc} a00085c8: e3a00001 mov r0, #1 <== NOT EXECUTED } a00085cc: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a000a530 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { a000a530: e92d41f0 push {r4, r5, r6, r7, r8, lr} a000a534: e1a04000 mov r4, r0 a000a538: e1a05002 mov r5, r2 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000a53c: e10f3000 mrs r3, CPSR a000a540: e3832080 orr r2, r3, #128 ; 0x80 a000a544: e129f002 msr CPSR_fc, r2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a000a548: e1a07000 mov r7, r0 a000a54c: e4972004 ldr r2, [r7], #4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { a000a550: e1520007 cmp r2, r7 a000a554: 0a000018 beq a000a5bc <_Watchdog_Adjust+0x8c> switch ( direction ) { a000a558: e3510000 cmp r1, #0 a000a55c: 1a000018 bne a000a5c4 <_Watchdog_Adjust+0x94> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { a000a560: e3550000 cmp r5, #0 a000a564: 0a000014 beq a000a5bc <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { a000a568: e5926010 ldr r6, [r2, #16] a000a56c: e1550006 cmp r5, r6 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; a000a570: 23a08001 movcs r8, #1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { a000a574: 2a000005 bcs a000a590 <_Watchdog_Adjust+0x60> a000a578: ea000018 b a000a5e0 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { a000a57c: e0555006 subs r5, r5, r6 a000a580: 0a00000d beq a000a5bc <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { a000a584: e5926010 ldr r6, [r2, #16] a000a588: e1560005 cmp r6, r5 a000a58c: 8a000013 bhi a000a5e0 <_Watchdog_Adjust+0xb0> _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; a000a590: e5828010 str r8, [r2, #16] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000a594: e129f003 msr CPSR_fc, r3 _ISR_Enable( level ); _Watchdog_Tickle( header ); a000a598: e1a00004 mov r0, r4 a000a59c: eb0000aa bl a000a84c <_Watchdog_Tickle> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000a5a0: e10f3000 mrs r3, CPSR a000a5a4: e3832080 orr r2, r3, #128 ; 0x80 a000a5a8: e129f002 msr CPSR_fc, r2 a000a5ac: e5941000 ldr r1, [r4] _ISR_Disable( level ); if ( _Chain_Is_empty( header ) ) a000a5b0: e1570001 cmp r7, r1 RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First( Chain_Control *header ) { return ( (Watchdog_Control *) header->first ); a000a5b4: e1a02001 mov r2, r1 a000a5b8: 1affffef bne a000a57c <_Watchdog_Adjust+0x4c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000a5bc: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } a000a5c0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { a000a5c4: e3510001 cmp r1, #1 a000a5c8: 1afffffb bne a000a5bc <_Watchdog_Adjust+0x8c> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; a000a5cc: e5921010 ldr r1, [r2, #16] a000a5d0: e0815005 add r5, r1, r5 a000a5d4: e5825010 str r5, [r2, #16] a000a5d8: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } a000a5dc: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; a000a5e0: e0655006 rsb r5, r5, r6 a000a5e4: e5825010 str r5, [r2, #16] break; a000a5e8: eafffff3 b a000a5bc <_Watchdog_Adjust+0x8c> =============================================================================== a00060f0 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { a00060f0: e92d4030 push {r4, r5, lr} a00060f4: e1a04002 mov r4, r2 a00060f8: e1a05003 mov r5, r3 RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); a00060fc: eb000135 bl a00065d8 <_Chain_Append_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { a0006100: e3500000 cmp r0, #0 a0006104: 1a000000 bne a000610c sc = rtems_event_send( task, events ); } return sc; } a0006108: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { sc = rtems_event_send( task, events ); a000610c: e1a00004 mov r0, r4 a0006110: e1a01005 mov r1, r5 } return sc; } a0006114: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { sc = rtems_event_send( task, events ); a0006118: eafffd89 b a0005744 =============================================================================== a000611c : rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) { a000611c: e92d4030 push {r4, r5, lr} a0006120: e1a04001 mov r4, r1 RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node ); a0006124: e1a01003 mov r1, r3 a0006128: e1a05002 mov r5, r2 a000612c: eb00014e bl a000666c <_Chain_Get_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { a0006130: e3500000 cmp r0, #0 a0006134: 1a000000 bne a000613c sc = rtems_event_send( task, events ); } return sc; } a0006138: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { sc = rtems_event_send( task, events ); a000613c: e1a00004 mov r0, r4 a0006140: e1a01005 mov r1, r5 } return sc; } a0006144: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { sc = rtems_event_send( task, events ); a0006148: eafffd7d b a0005744 =============================================================================== a00061a8 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { a00061a8: e92d4030 push {r4, r5, lr} a00061ac: e1a04002 mov r4, r2 a00061b0: e1a05003 mov r5, r3 RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); a00061b4: eb000158 bl a000671c <_Chain_Prepend_with_empty_check> rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { a00061b8: e3500000 cmp r0, #0 a00061bc: 1a000000 bne a00061c4 sc = rtems_event_send( task, events ); } return sc; } a00061c0: e8bd8030 pop {r4, r5, pc} <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { sc = rtems_event_send( task, events ); a00061c4: e1a00004 mov r0, r4 a00061c8: e1a01005 mov r1, r5 } return sc; } a00061cc: e8bd4030 pop {r4, r5, lr} { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { sc = rtems_event_send( task, events ); a00061d0: eafffd5b b a0005744 =============================================================================== a0006df0 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { a0006df0: e92d4030 push {r4, r5, lr} a0006df4: e1a04000 mov r4, r0 rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) a0006df8: e59f014c ldr r0, [pc, #332] ; a0006f4c rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; a0006dfc: e59f314c ldr r3, [pc, #332] ; a0006f50 if ( rtems_interrupt_is_in_progress() ) a0006e00: e5900000 ldr r0, [r0] a0006e04: e3500000 cmp r0, #0 rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; a0006e08: e5930000 ldr r0, [r3] if ( rtems_interrupt_is_in_progress() ) a0006e0c: 1a000033 bne a0006ee0 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) a0006e10: e3520000 cmp r2, #0 a0006e14: 0a000041 beq a0006f20 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) a0006e18: e3510000 cmp r1, #0 if ( registered_major == NULL ) return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; a0006e1c: e5820000 str r0, [r2] if ( driver_table == NULL ) a0006e20: 0a00003e beq a0006f20 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006e24: e591c000 ldr ip, [r1] a0006e28: e35c0000 cmp ip, #0 a0006e2c: 0a000038 beq a0006f14 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) a0006e30: e1500004 cmp r0, r4 a0006e34: 9a000027 bls a0006ed8 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a0006e38: e59f0114 ldr r0, [pc, #276] ; a0006f54 a0006e3c: e590c000 ldr ip, [r0] a0006e40: e28cc001 add ip, ip, #1 a0006e44: e580c000 str ip, [r0] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { a0006e48: e3540000 cmp r4, #0 a0006e4c: 1a000025 bne a0006ee8 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; a0006e50: e593c000 ldr ip, [r3] rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { a0006e54: e35c0000 cmp ip, #0 a0006e58: 0a000032 beq a0006f28 a0006e5c: e59fe0f4 ldr lr, [pc, #244] ; a0006f58 a0006e60: e59e3000 ldr r3, [lr] a0006e64: ea000003 b a0006e78 a0006e68: e2844001 add r4, r4, #1 a0006e6c: e15c0004 cmp ip, r4 a0006e70: e2833018 add r3, r3, #24 a0006e74: 9a000005 bls a0006e90 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006e78: e5930000 ldr r0, [r3] a0006e7c: e3500000 cmp r0, #0 a0006e80: 1afffff8 bne a0006e68 a0006e84: e5930004 ldr r0, [r3, #4] a0006e88: e3500000 cmp r0, #0 a0006e8c: 1afffff5 bne a0006e68 } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) a0006e90: e15c0004 cmp ip, r4 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; a0006e94: e5824000 str r4, [r2] if ( m != n ) a0006e98: 0a000023 beq a0006f2c a0006e9c: e3a0c018 mov ip, #24 a0006ea0: e00c0c94 mul ip, r4, ip } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; a0006ea4: e59e5000 ldr r5, [lr] a0006ea8: e1a0e001 mov lr, r1 a0006eac: e8be000f ldm lr!, {r0, r1, r2, r3} a0006eb0: e085c00c add ip, r5, ip a0006eb4: e8ac000f stmia ip!, {r0, r1, r2, r3} a0006eb8: e89e0003 ldm lr, {r0, r1} a0006ebc: e88c0003 stm ip, {r0, r1} _Thread_Enable_dispatch(); a0006ec0: eb000698 bl a0008928 <_Thread_Enable_dispatch> return rtems_io_initialize( major, 0, NULL ); a0006ec4: e3a01000 mov r1, #0 a0006ec8: e1a00004 mov r0, r4 a0006ecc: e1a02001 mov r2, r1 } a0006ed0: e8bd4030 pop {r4, r5, lr} _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); a0006ed4: ea001eaa b a000e984 if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) return RTEMS_INVALID_NUMBER; a0006ed8: e3a0000a mov r0, #10 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } a0006edc: e8bd8030 pop {r4, r5, pc} ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; a0006ee0: e3a00012 mov r0, #18 a0006ee4: e8bd8030 pop {r4, r5, pc} _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; a0006ee8: e59fe068 ldr lr, [pc, #104] ; a0006f58 a0006eec: e3a0c018 mov ip, #24 a0006ef0: e00c0c94 mul ip, r4, ip a0006ef4: e59e3000 ldr r3, [lr] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006ef8: e793000c ldr r0, [r3, ip] _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; a0006efc: e083300c add r3, r3, ip static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f00: e3500000 cmp r0, #0 a0006f04: 0a00000b beq a0006f38 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); a0006f08: eb000686 bl a0008928 <_Thread_Enable_dispatch> return RTEMS_RESOURCE_IN_USE; a0006f0c: e3a0000c mov r0, #12 a0006f10: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f14: e591c004 ldr ip, [r1, #4] a0006f18: e35c0000 cmp ip, #0 a0006f1c: 1affffc3 bne a0006e30 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; a0006f20: e3a00009 mov r0, #9 a0006f24: e8bd8030 pop {r4, r5, pc} if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; a0006f28: e5824000 str r4, [r2] <== NOT EXECUTED if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); a0006f2c: eb00067d bl a0008928 <_Thread_Enable_dispatch> *major = m; if ( m != n ) return RTEMS_SUCCESSFUL; return RTEMS_TOO_MANY; a0006f30: e3a00005 mov r0, #5 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); return sc; a0006f34: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f38: e5933004 ldr r3, [r3, #4] a0006f3c: e3530000 cmp r3, #0 a0006f40: 1afffff0 bne a0006f08 if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; a0006f44: e5824000 str r4, [r2] a0006f48: eaffffd5 b a0006ea4 =============================================================================== a00082f4 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { a00082f4: e92d41f0 push {r4, r5, r6, r7, r8, lr} uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) a00082f8: e2506000 subs r6, r0, #0 a00082fc: 0a000014 beq a0008354 a0008300: e59f7050 ldr r7, [pc, #80] ; a0008358 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) a0008304: e287800c add r8, r7, #12 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; a0008308: e5b73004 ldr r3, [r7, #4]! a000830c: e5935004 ldr r5, [r3, #4] if ( !information ) a0008310: e3550000 cmp r5, #0 a0008314: 0a00000c beq a000834c continue; for ( i=1 ; i <= information->maximum ; i++ ) { a0008318: e1d521b0 ldrh r2, [r5, #16] a000831c: e3520000 cmp r2, #0 a0008320: 0a000009 beq a000834c a0008324: e3a04001 mov r4, #1 the_thread = (Thread_Control *)information->local_table[ i ]; a0008328: e595301c ldr r3, [r5, #28] a000832c: e7930104 ldr r0, [r3, r4, lsl #2] if ( !the_thread ) a0008330: e3500000 cmp r0, #0 a0008334: 0a000001 beq a0008340 continue; (*routine)(the_thread); a0008338: e12fff36 blx r6 a000833c: e1d521b0 ldrh r2, [r5, #16] information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { a0008340: e2844001 add r4, r4, #1 a0008344: e1520004 cmp r2, r4 a0008348: 2afffff6 bcs a0008328 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { a000834c: e1570008 cmp r7, r8 a0008350: 1affffec bne a0008308 a0008354: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== a000c514 : rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { a000c514: e92d4010 push {r4, lr} Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) a000c518: e2514000 subs r4, r1, #0 rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { a000c51c: e24dd014 sub sp, sp, #20 a000c520: e1a01000 mov r1, r0 Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) return RTEMS_INVALID_ADDRESS; a000c524: 03a00009 moveq r0, #9 Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) a000c528: 0a000013 beq a000c57c a000c52c: e28d2010 add r2, sp, #16 a000c530: e59f008c ldr r0, [pc, #140] ; a000c5c4 a000c534: ebfff105 bl a0008950 <_Objects_Get> return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { a000c538: e59d2010 ldr r2, [sp, #16] a000c53c: e1a03000 mov r3, r0 a000c540: e3520000 cmp r2, #0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; a000c544: 13a00004 movne r0, #4 if ( !status ) return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { a000c548: 1a00000b bne a000c57c case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; a000c54c: e5932040 ldr r2, [r3, #64] ; 0x40 status->state = the_period->state; a000c550: e5933038 ldr r3, [r3, #56] ; 0x38 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; a000c554: e5922008 ldr r2, [r2, #8] status->state = the_period->state; /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { a000c558: e3530000 cmp r3, #0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; status->state = the_period->state; a000c55c: e884000c stm r4, {r2, r3} /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { a000c560: 1a000007 bne a000c584 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timespec_Set_to_zero( &status->since_last_period ); a000c564: e5843008 str r3, [r4, #8] a000c568: e584300c str r3, [r4, #12] _Timespec_Set_to_zero( &status->executed_since_last_period ); a000c56c: e5843010 str r3, [r4, #16] a000c570: e5843014 str r3, [r4, #20] status->since_last_period = since_last_period; status->executed_since_last_period = executed; #endif } _Thread_Enable_dispatch(); a000c574: ebfff33f bl a0009278 <_Thread_Enable_dispatch> return RTEMS_SUCCESSFUL; a000c578: e3a00000 mov r0, #0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } a000c57c: e28dd014 add sp, sp, #20 a000c580: e8bd8010 pop {r4, pc} } else { /* * Grab the current status. */ valid_status = a000c584: e1a0100d mov r1, sp a000c588: e28d2008 add r2, sp, #8 a000c58c: ebffe7a6 bl a000642c <_Rate_monotonic_Get_status> _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) { a000c590: e3500000 cmp r0, #0 a000c594: 0a000007 beq a000c5b8 _Thread_Enable_dispatch(); return RTEMS_NOT_DEFINED; } #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_To_timespec( a000c598: e89d000c ldm sp, {r2, r3} a000c59c: e5842008 str r2, [r4, #8] a000c5a0: e584300c str r3, [r4, #12] &since_last_period, &status->since_last_period ); _Timestamp_To_timespec( a000c5a4: e28d3008 add r3, sp, #8 a000c5a8: e893000c ldm r3, {r2, r3} a000c5ac: e5842010 str r2, [r4, #16] a000c5b0: e5843014 str r3, [r4, #20] a000c5b4: eaffffee b a000c574 valid_status = _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) { _Thread_Enable_dispatch(); a000c5b8: ebfff32e bl a0009278 <_Thread_Enable_dispatch> <== NOT EXECUTED return RTEMS_NOT_DEFINED; a000c5bc: e3a0000b mov r0, #11 <== NOT EXECUTED a000c5c0: eaffffed b a000c57c <== NOT EXECUTED =============================================================================== a000c61c : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { a000c61c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) a000c620: e2525000 subs r5, r2, #0 rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { a000c624: e1a04000 mov r4, r0 a000c628: e1a06001 mov r6, r1 ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) a000c62c: 0a000053 beq a000c780 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; a000c630: e59f9158 ldr r9, [pc, #344] ; a000c790 a000c634: e5997004 ldr r7, [r9, #4] api = executing->API_Extensions[ THREAD_API_RTEMS ]; a000c638: e5978100 ldr r8, [r7, #256] ; 0x100 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; a000c63c: e5d7a074 ldrb sl, [r7, #116] ; 0x74 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) a000c640: e597307c ldr r3, [r7, #124] ; 0x7c old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c644: e5d8b008 ldrb fp, [r8, #8] executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; a000c648: e35a0000 cmp sl, #0 a000c64c: 03a0ac01 moveq sl, #256 ; 0x100 a000c650: 13a0a000 movne sl, #0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) a000c654: e3530000 cmp r3, #0 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; a000c658: 138aac02 orrne sl, sl, #512 ; 0x200 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c65c: e35b0000 cmp fp, #0 a000c660: 03a0bb01 moveq fp, #1024 ; 0x400 a000c664: 13a0b000 movne fp, #0 old_mode |= _ISR_Get_level(); a000c668: ebfff1e3 bl a0008dfc <_CPU_ISR_Get_level> if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c66c: e18bb000 orr fp, fp, r0 old_mode |= _ISR_Get_level(); a000c670: e18ba00a orr sl, fp, sl *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) a000c674: e3160c01 tst r6, #256 ; 0x100 old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; old_mode |= _ISR_Get_level(); *previous_mode_set = old_mode; a000c678: e585a000 str sl, [r5] /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) a000c67c: 0a000003 beq a000c690 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; a000c680: e3140c01 tst r4, #256 ; 0x100 a000c684: 13a03000 movne r3, #0 a000c688: 03a03001 moveq r3, #1 a000c68c: e5c73074 strb r3, [r7, #116] ; 0x74 if ( mask & RTEMS_TIMESLICE_MASK ) { a000c690: e3160c02 tst r6, #512 ; 0x200 a000c694: 1a00001c bne a000c70c } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) a000c698: e3160080 tst r6, #128 ; 0x80 a000c69c: 1a000023 bne a000c730 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { a000c6a0: e2166b01 ands r6, r6, #1024 ; 0x400 a000c6a4: 0a000012 beq a000c6f4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c6a8: e5d82008 ldrb r2, [r8, #8] * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( a000c6ac: e3140b01 tst r4, #1024 ; 0x400 a000c6b0: 13a03000 movne r3, #0 a000c6b4: 03a03001 moveq r3, #1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c6b8: e1520003 cmp r2, r3 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; a000c6bc: 03a06000 moveq r6, #0 if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c6c0: 0a00000b beq a000c6f4 asr->is_enabled = is_asr_enabled; a000c6c4: e5c83008 strb r3, [r8, #8] static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000c6c8: e10f3000 mrs r3, CPSR a000c6cc: e3832080 orr r2, r3, #128 ; 0x80 a000c6d0: e129f002 msr CPSR_fc, r2 { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; a000c6d4: e5981018 ldr r1, [r8, #24] information->signals_pending = information->signals_posted; a000c6d8: e5982014 ldr r2, [r8, #20] information->signals_posted = _signals; a000c6dc: e5881014 str r1, [r8, #20] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; a000c6e0: e5882018 str r2, [r8, #24] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000c6e4: e129f003 msr CPSR_fc, r3 _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { a000c6e8: e5986014 ldr r6, [r8, #20] a000c6ec: e3560000 cmp r6, #0 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; a000c6f0: 13a06001 movne r6, #1 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { a000c6f4: e59f3098 ldr r3, [pc, #152] ; a000c794 a000c6f8: e5933000 ldr r3, [r3] a000c6fc: e3530003 cmp r3, #3 a000c700: 0a00000d beq a000c73c if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; a000c704: e3a00000 mov r0, #0 <== NOT EXECUTED a000c708: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { a000c70c: e2143c02 ands r3, r4, #512 ; 0x200 executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; a000c710: 13a03001 movne r3, #1 a000c714: 1587307c strne r3, [r7, #124] ; 0x7c executing->cpu_time_budget = _Thread_Ticks_per_timeslice; a000c718: 159f3078 ldrne r3, [pc, #120] ; a000c798 } else executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE; a000c71c: 0587307c streq r3, [r7, #124] ; 0x7c executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; a000c720: 15933000 ldrne r3, [r3] a000c724: 15873078 strne r3, [r7, #120] ; 0x78 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) a000c728: e3160080 tst r6, #128 ; 0x80 a000c72c: 0affffdb beq a000c6a0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); a000c730: e2040080 and r0, r4, #128 ; 0x80 a000c734: ebfff1ab bl a0008de8 <_CPU_ISR_Set_level> a000c738: eaffffd8 b a000c6a0 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || a000c73c: e3560000 cmp r6, #0 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; a000c740: e5993004 ldr r3, [r9, #4] if ( are_signals_pending || a000c744: 1a000008 bne a000c76c a000c748: e59f2040 ldr r2, [pc, #64] ; a000c790 a000c74c: e5922008 ldr r2, [r2, #8] a000c750: e1530002 cmp r3, r2 a000c754: 0a00000b beq a000c788 (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { a000c758: e5d33074 ldrb r3, [r3, #116] ; 0x74 a000c75c: e3530000 cmp r3, #0 a000c760: 1a000001 bne a000c76c if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; a000c764: e1a00006 mov r0, r6 <== NOT EXECUTED } a000c768: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED _Thread_Dispatch_necessary = true; a000c76c: e3a03001 mov r3, #1 a000c770: e5c93010 strb r3, [r9, #16] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); a000c774: ebffeb61 bl a0007500 <_Thread_Dispatch> } return RTEMS_SUCCESSFUL; a000c778: e3a00000 mov r0, #0 a000c77c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; a000c780: e3a00009 mov r0, #9 a000c784: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; a000c788: e1a00006 mov r0, r6 a000c78c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}