=============================================================================== a0016a98 <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0016a98: e590304c ldr r3, [r0, #76] ; 0x4c Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0016a9c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0016aa0: e1530002 cmp r3, r2 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { a0016aa4: e1a07000 mov r7, r0 a0016aa8: e1a05002 mov r5, r2 a0016aac: e1a08001 mov r8, r1 a0016ab0: e59da020 ldr sl, [sp, #32] Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0016ab4: 3a000013 bcc a0016b08 <_CORE_message_queue_Broadcast+0x70> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { a0016ab8: e5906048 ldr r6, [r0, #72] ; 0x48 a0016abc: e3560000 cmp r6, #0 a0016ac0: 0a000009 beq a0016aec <_CORE_message_queue_Broadcast+0x54> *count = 0; a0016ac4: e3a00000 mov r0, #0 a0016ac8: e58a0000 str r0, [sl] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0016acc: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} const void *source, void *destination, size_t size ) { memcpy(destination, source, size); a0016ad0: e594002c ldr r0, [r4, #44] ; 0x2c a0016ad4: e1a01008 mov r1, r8 a0016ad8: e1a02005 mov r2, r5 a0016adc: eb0020b1 bl a001eda8 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0016ae0: e5943028 ldr r3, [r4, #40] ; 0x28 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; a0016ae4: e2866001 add r6, r6, #1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; a0016ae8: e5835000 str r5, [r3] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = a0016aec: e1a00007 mov r0, r7 a0016af0: eb000a19 bl a001935c <_Thread_queue_Dequeue> a0016af4: e2504000 subs r4, r0, #0 a0016af8: 1afffff4 bne a0016ad0 <_CORE_message_queue_Broadcast+0x38> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; a0016afc: e58a6000 str r6, [sl] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; a0016b00: e1a00004 mov r0, r4 a0016b04: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE; a0016b08: e3a00001 mov r0, #1 <== NOT EXECUTED #endif } *count = number_broadcasted; return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; } a0016b0c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED =============================================================================== a000aaf4 <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a000aaf4: e59f2160 ldr r2, [pc, #352] ; a000ac5c <_CORE_mutex_Seize_interrupt_trylock+0x168> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000aaf8: e590c050 ldr ip, [r0, #80] ; 0x50 #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { a000aafc: e1a03000 mov r3, r0 { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; a000ab00: e5922004 ldr r2, [r2, #4] executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a000ab04: e3a00000 mov r0, #0 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000ab08: e15c0000 cmp ip, r0 a000ab0c: e92d40f0 push {r4, r5, r6, r7, lr} Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; a000ab10: e5820034 str r0, [r2, #52] ; 0x34 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { a000ab14: 0a00000e beq a000ab54 <_CORE_mutex_Seize_interrupt_trylock+0x60> return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } a000ab18: e593c048 ldr ip, [r3, #72] ; 0x48 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; a000ab1c: e5925008 ldr r5, [r2, #8] the_mutex->nest_count = 1; a000ab20: e3a04001 mov r4, #1 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a000ab24: e35c0002 cmp ip, #2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; a000ab28: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->holder = executing; a000ab2c: e583205c str r2, [r3, #92] ; 0x5c the_mutex->holder_id = executing->Object.id; a000ab30: e5835060 str r5, [r3, #96] ; 0x60 the_mutex->nest_count = 1; a000ab34: e5834054 str r4, [r3, #84] ; 0x54 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a000ab38: 0a00000a beq a000ab68 <_CORE_mutex_Seize_interrupt_trylock+0x74> a000ab3c: e35c0003 cmp ip, #3 a000ab40: 0a000019 beq a000abac <_CORE_mutex_Seize_interrupt_trylock+0xb8> a000ab44: e5913000 ldr r3, [r1] a000ab48: e129f003 msr CPSR_fc, r3 executing->resource_count++; } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; a000ab4c: e3a00000 mov r0, #0 a000ab50: e8bd80f0 pop {r4, r5, r6, r7, pc} /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { a000ab54: e593005c ldr r0, [r3, #92] ; 0x5c a000ab58: e1520000 cmp r2, r0 a000ab5c: 0a000008 beq a000ab84 <_CORE_mutex_Seize_interrupt_trylock+0x90> /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a000ab60: e3a00001 mov r0, #1 a000ab64: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000ab68: e592301c ldr r3, [r2, #28] a000ab6c: e2833001 add r3, r3, #1 a000ab70: e582301c str r3, [r2, #28] a000ab74: e5913000 ldr r3, [r1] a000ab78: e129f003 msr CPSR_fc, r3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; a000ab7c: e3a00000 mov r0, #0 a000ab80: e8bd80f0 pop {r4, r5, r6, r7, pc} * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { a000ab84: e5930040 ldr r0, [r3, #64] ; 0x40 a000ab88: e3500000 cmp r0, #0 a000ab8c: 1a000017 bne a000abf0 <_CORE_mutex_Seize_interrupt_trylock+0xfc> case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; a000ab90: e5932054 ldr r2, [r3, #84] ; 0x54 a000ab94: e2822001 add r2, r2, #1 a000ab98: e5832054 str r2, [r3, #84] ; 0x54 a000ab9c: e5913000 ldr r3, [r1] a000aba0: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a000aba4: e3a00000 mov r0, #0 a000aba8: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000abac: e592c01c ldr ip, [r2, #28] */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; a000abb0: e593604c ldr r6, [r3, #76] ; 0x4c current = executing->current_priority; a000abb4: e5925014 ldr r5, [r2, #20] _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; a000abb8: e08c7004 add r7, ip, r4 a000abbc: e582701c str r7, [r2, #28] Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { a000abc0: e1560005 cmp r6, r5 a000abc4: 0a000020 beq a000ac4c <_CORE_mutex_Seize_interrupt_trylock+0x158> _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { a000abc8: 3a000012 bcc a000ac18 <_CORE_mutex_Seize_interrupt_trylock+0x124> ); _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; a000abcc: e3a05006 mov r5, #6 a000abd0: e5825034 str r5, [r2, #52] ; 0x34 the_mutex->lock = CORE_MUTEX_UNLOCKED; a000abd4: e5834050 str r4, [r3, #80] ; 0x50 the_mutex->nest_count = 0; /* undo locking above */ a000abd8: e5830054 str r0, [r3, #84] ; 0x54 executing->resource_count--; /* undo locking above */ a000abdc: e582c01c str ip, [r2, #28] a000abe0: e5913000 ldr r3, [r1] a000abe4: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; a000abe8: e3a00000 mov r0, #0 a000abec: e8bd80f0 pop {r4, r5, r6, r7, pc} * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { a000abf0: e3500001 cmp r0, #1 a000abf4: 0a000001 beq a000ac00 <_CORE_mutex_Seize_interrupt_trylock+0x10c> /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; a000abf8: e3a00001 mov r0, #1 a000abfc: e8bd80f0 pop {r4, r5, r6, r7, pc} case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; a000ac00: e3a03002 mov r3, #2 <== NOT EXECUTED a000ac04: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED a000ac08: e5913000 ldr r3, [r1] <== NOT EXECUTED a000ac0c: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _ISR_Enable( *level_p ); return 0; a000ac10: e3a00000 mov r0, #0 <== NOT EXECUTED a000ac14: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a000ac18: e59f2040 ldr r2, [pc, #64] ; a000ac60 <_CORE_mutex_Seize_interrupt_trylock+0x16c> a000ac1c: e5920000 ldr r0, [r2] a000ac20: e2800001 add r0, r0, #1 a000ac24: e5820000 str r0, [r2] a000ac28: e5912000 ldr r2, [r1] a000ac2c: e129f002 msr CPSR_fc, r2 } if ( current > ceiling ) { _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority( a000ac30: e3a02000 mov r2, #0 a000ac34: e593005c ldr r0, [r3, #92] ; 0x5c a000ac38: e593104c ldr r1, [r3, #76] ; 0x4c a000ac3c: ebfff13c bl a0007134 <_Thread_Change_priority> the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); a000ac40: ebfff29a bl a00076b0 <_Thread_Enable_dispatch> return 0; a000ac44: e3a00000 mov r0, #0 a000ac48: e8bd80f0 pop {r4, r5, r6, r7, pc} a000ac4c: e5913000 ldr r3, [r1] a000ac50: e129f003 msr CPSR_fc, r3 ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { _ISR_Enable( *level_p ); return 0; a000ac54: e3a00000 mov r0, #0 a000ac58: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a000aa98 <_Chain_Initialize>: count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000aa98: e3520000 cmp r2, #0 Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; a000aa9c: e3a0c000 mov ip, #0 Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { a000aaa0: e92d0070 push {r4, r5, r6} Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; a000aaa4: e580c004 str ip, [r0, #4] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head( Chain_Control *the_chain ) { return (Chain_Node *) the_chain; a000aaa8: e1a04000 mov r4, r0 next = starting_address; a000aaac: 11a05002 movne r5, r2 a000aab0: 11a0c001 movne ip, r1 while ( count-- ) { a000aab4: 1a000002 bne a000aac4 <_Chain_Initialize+0x2c> a000aab8: ea000008 b a000aae0 <_Chain_Initialize+0x48> <== NOT EXECUTED a000aabc: e1a0400c mov r4, ip current->next = next; next->previous = current; current = next; next = (Chain_Node *) a000aac0: e1a0c006 mov ip, r6 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000aac4: e2555001 subs r5, r5, #1 current->next = next; a000aac8: e584c000 str ip, [r4] next->previous = current; a000aacc: e58c4004 str r4, [ip, #4] * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( a000aad0: e08c6003 add r6, ip, r3 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000aad4: 1afffff8 bne a000aabc <_Chain_Initialize+0x24> * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( a000aad8: e2422001 sub r2, r2, #1 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { a000aadc: e0241293 mla r4, r3, r2, r1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000aae0: e2803004 add r3, r0, #4 next->previous = current; current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = _Chain_Tail( the_chain ); a000aae4: e5843000 str r3, [r4] the_chain->last = current; a000aae8: e5804008 str r4, [r0, #8] } a000aaec: e8bd0070 pop {r4, r5, r6} a000aaf0: e12fff1e bx lr =============================================================================== a000acd4 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000acd4: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a000acd8: e1a08002 mov r8, r2 Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; a000acdc: e5902010 ldr r2, [r0, #16] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000ace0: e24dd01c sub sp, sp, #28 a000ace4: e1a05001 mov r5, r1 - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { a000ace8: e2911004 adds r1, r1, #4 Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000acec: e1a07000 mov r7, r0 - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { a000acf0: e58d1000 str r1, [sp] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { a000acf4: e1a0b003 mov fp, r3 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000acf8: e5909008 ldr r9, [r0, #8] Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; a000acfc: e58d200c str r2, [sp, #12] uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { a000ad00: 2a000073 bcs a000aed4 <_Heap_Allocate_aligned_with_boundary+0x200> /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { a000ad04: e3530000 cmp r3, #0 a000ad08: 1a00006f bne a000aecc <_Heap_Allocate_aligned_with_boundary+0x1f8> if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { a000ad0c: e1570009 cmp r7, r9 a000ad10: 0a00006f beq a000aed4 <_Heap_Allocate_aligned_with_boundary+0x200> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ad14: e59d300c ldr r3, [sp, #12] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; a000ad18: e2651004 rsb r1, r5, #4 if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { a000ad1c: e3a06000 mov r6, #0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ad20: e2833007 add r3, r3, #7 a000ad24: e58d3010 str r3, [sp, #16] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; a000ad28: e58d1014 str r1, [sp, #20] /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { a000ad2c: e599a004 ldr sl, [r9, #4] a000ad30: e59d2000 ldr r2, [sp] while ( block != free_list_tail ) { _HAssert( _Heap_Is_prev_used( block ) ); /* Statistics */ ++search_count; a000ad34: e2866001 add r6, r6, #1 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { a000ad38: e152000a cmp r2, sl a000ad3c: 2a00004f bcs a000ae80 <_Heap_Allocate_aligned_with_boundary+0x1ac> if ( alignment == 0 ) { a000ad40: e3580000 cmp r8, #0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; a000ad44: 02894008 addeq r4, r9, #8 a000ad48: 0a00004a beq a000ae78 <_Heap_Allocate_aligned_with_boundary+0x1a4> if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000ad4c: e5973014 ldr r3, [r7, #20] uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size; a000ad50: e59d1014 ldr r1, [sp, #20] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; a000ad54: e59d2010 ldr r2, [sp, #16] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000ad58: e3caa001 bic sl, sl, #1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; a000ad5c: e089a00a add sl, r9, sl uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size; a000ad60: e081400a add r4, r1, sl if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } a000ad64: e58d3004 str r3, [sp, #4] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; a000ad68: e0633002 rsb r3, r3, r2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ad6c: e1a00004 mov r0, r4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size a000ad70: e083a00a add sl, r3, sl a000ad74: e1a01008 mov r1, r8 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; a000ad78: e2893008 add r3, r9, #8 a000ad7c: e58d3008 str r3, [sp, #8] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000ad80: eb001590 bl a00103c8 <__umodsi3> a000ad84: e0604004 rsb r4, r0, r4 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { a000ad88: e15a0004 cmp sl, r4 a000ad8c: 2a000003 bcs a000ada0 <_Heap_Allocate_aligned_with_boundary+0xcc> a000ad90: e1a0000a mov r0, sl a000ad94: e1a01008 mov r1, r8 a000ad98: eb00158a bl a00103c8 <__umodsi3> a000ad9c: e060400a rsb r4, r0, sl } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { a000ada0: e35b0000 cmp fp, #0 a000ada4: 0a000025 beq a000ae40 <_Heap_Allocate_aligned_with_boundary+0x16c> /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; a000ada8: e084a005 add sl, r4, r5 a000adac: e1a0000a mov r0, sl a000adb0: e1a0100b mov r1, fp a000adb4: eb001583 bl a00103c8 <__umodsi3> a000adb8: e060000a rsb r0, r0, sl /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { a000adbc: e1540000 cmp r4, r0 a000adc0: 23a03000 movcs r3, #0 a000adc4: 33a03001 movcc r3, #1 a000adc8: e15a0000 cmp sl, r0 a000adcc: 93a03000 movls r3, #0 a000add0: e3530000 cmp r3, #0 a000add4: 0a000019 beq a000ae40 <_Heap_Allocate_aligned_with_boundary+0x16c> alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; a000add8: e59d1008 ldr r1, [sp, #8] a000addc: e081a005 add sl, r1, r5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { a000ade0: e15a0000 cmp sl, r0 a000ade4: 958d6018 strls r6, [sp, #24] a000ade8: 9a000002 bls a000adf8 <_Heap_Allocate_aligned_with_boundary+0x124> a000adec: ea000023 b a000ae80 <_Heap_Allocate_aligned_with_boundary+0x1ac> a000adf0: e15a0000 cmp sl, r0 a000adf4: 8a000038 bhi a000aedc <_Heap_Allocate_aligned_with_boundary+0x208> return 0; } alloc_begin = boundary_line - alloc_size; a000adf8: e0654000 rsb r4, r5, r0 a000adfc: e1a01008 mov r1, r8 a000ae00: e1a00004 mov r0, r4 a000ae04: eb00156f bl a00103c8 <__umodsi3> a000ae08: e0604004 rsb r4, r0, r4 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; a000ae0c: e0846005 add r6, r4, r5 a000ae10: e1a00006 mov r0, r6 a000ae14: e1a0100b mov r1, fp a000ae18: eb00156a bl a00103c8 <__umodsi3> a000ae1c: e0600006 rsb r0, r0, r6 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { a000ae20: e1560000 cmp r6, r0 a000ae24: 93a06000 movls r6, #0 a000ae28: 83a06001 movhi r6, #1 a000ae2c: e1540000 cmp r4, r0 a000ae30: 23a06000 movcs r6, #0 a000ae34: e3560000 cmp r6, #0 a000ae38: 1affffec bne a000adf0 <_Heap_Allocate_aligned_with_boundary+0x11c> a000ae3c: e59d6018 ldr r6, [sp, #24] boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { a000ae40: e59d2008 ldr r2, [sp, #8] a000ae44: e1520004 cmp r2, r4 a000ae48: 8a00000c bhi a000ae80 <_Heap_Allocate_aligned_with_boundary+0x1ac> a000ae4c: e59d100c ldr r1, [sp, #12] a000ae50: e1a00004 mov r0, r4 a000ae54: eb00155b bl a00103c8 <__umodsi3> a000ae58: e3e0a007 mvn sl, #7 a000ae5c: e069a00a rsb sl, r9, sl uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { a000ae60: e59d1004 ldr r1, [sp, #4] uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a000ae64: e08aa004 add sl, sl, r4 a000ae68: e060300a rsb r3, r0, sl a000ae6c: e15a0000 cmp sl, r0 a000ae70: 11510003 cmpne r1, r3 a000ae74: 8a000001 bhi a000ae80 <_Heap_Allocate_aligned_with_boundary+0x1ac> boundary ); } } if ( alloc_begin != 0 ) { a000ae78: e3540000 cmp r4, #0 a000ae7c: 1a000004 bne a000ae94 <_Heap_Allocate_aligned_with_boundary+0x1c0> break; } block = block->next; a000ae80: e5999008 ldr r9, [r9, #8] if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { a000ae84: e1570009 cmp r7, r9 a000ae88: 1affffa7 bne a000ad2c <_Heap_Allocate_aligned_with_boundary+0x58> a000ae8c: e3a00000 mov r0, #0 a000ae90: ea000008 b a000aeb8 <_Heap_Allocate_aligned_with_boundary+0x1e4> block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; a000ae94: e597304c ldr r3, [r7, #76] ; 0x4c block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); a000ae98: e1a00007 mov r0, r7 a000ae9c: e1a01009 mov r1, r9 block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; a000aea0: e0833006 add r3, r3, r6 a000aea4: e587304c str r3, [r7, #76] ; 0x4c block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); a000aea8: e1a02004 mov r2, r4 a000aeac: e1a03005 mov r3, r5 a000aeb0: ebffee19 bl a000671c <_Heap_Block_allocate> a000aeb4: e1a00004 mov r0, r4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { a000aeb8: e5973044 ldr r3, [r7, #68] ; 0x44 a000aebc: e1530006 cmp r3, r6 stats->max_search = search_count; a000aec0: 35876044 strcc r6, [r7, #68] ; 0x44 } return (void *) alloc_begin; } a000aec4: e28dd01c add sp, sp, #28 a000aec8: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { a000aecc: e1550003 cmp r5, r3 a000aed0: 9a000006 bls a000aef0 <_Heap_Allocate_aligned_with_boundary+0x21c> if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { a000aed4: e3a00000 mov r0, #0 a000aed8: eafffff9 b a000aec4 <_Heap_Allocate_aligned_with_boundary+0x1f0> if ( alloc_begin != 0 ) { break; } block = block->next; a000aedc: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED a000aee0: e59d6018 ldr r6, [sp, #24] <== NOT EXECUTED if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { a000aee4: e1570009 cmp r7, r9 <== NOT EXECUTED a000aee8: 1affff8f bne a000ad2c <_Heap_Allocate_aligned_with_boundary+0x58><== NOT EXECUTED a000aeec: eaffffe6 b a000ae8c <_Heap_Allocate_aligned_with_boundary+0x1b8><== NOT EXECUTED if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size; a000aef0: e3580000 cmp r8, #0 a000aef4: 01a08002 moveq r8, r2 a000aef8: eaffff83 b a000ad0c <_Heap_Allocate_aligned_with_boundary+0x38> =============================================================================== a000aefc <_Heap_Free>: #include #include #include bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { a000aefc: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} a000af00: e1a04000 mov r4, r0 a000af04: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000af08: e1a00001 mov r0, r1 a000af0c: e5941010 ldr r1, [r4, #16] a000af10: eb00152c bl a00103c8 <__umodsi3> RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block a000af14: e5943020 ldr r3, [r4, #32] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a000af18: e2455008 sub r5, r5, #8 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a000af1c: e0605005 rsb r5, r0, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000af20: e1550003 cmp r5, r3 a000af24: 3a000030 bcc a000afec <_Heap_Free+0xf0> a000af28: e5941024 ldr r1, [r4, #36] ; 0x24 a000af2c: e1550001 cmp r5, r1 a000af30: 8a00002d bhi a000afec <_Heap_Free+0xf0> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000af34: e595c004 ldr ip, [r5, #4] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000af38: e3cc6001 bic r6, ip, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a000af3c: e0852006 add r2, r5, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000af40: e1530002 cmp r3, r2 a000af44: 8a000028 bhi a000afec <_Heap_Free+0xf0> a000af48: e1510002 cmp r1, r2 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; a000af4c: 33a00000 movcc r0, #0 a000af50: 3a000027 bcc a000aff4 <_Heap_Free+0xf8> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000af54: e5927004 ldr r7, [r2, #4] if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a000af58: e2170001 ands r0, r7, #1 a000af5c: 0a000024 beq a000aff4 <_Heap_Free+0xf8> return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); a000af60: e1510002 cmp r1, r2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000af64: e3c77001 bic r7, r7, #1 a000af68: 03a08000 moveq r8, #0 a000af6c: 0a000004 beq a000af84 <_Heap_Free+0x88> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000af70: e0820007 add r0, r2, r7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a000af74: e5900004 ldr r0, [r0, #4] #include #include #include bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) a000af78: e3100001 tst r0, #1 a000af7c: 13a08000 movne r8, #0 a000af80: 03a08001 moveq r8, #1 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { a000af84: e21c0001 ands r0, ip, #1 a000af88: 1a00001a bne a000aff8 <_Heap_Free+0xfc> uintptr_t const prev_size = block->prev_size; a000af8c: e595c000 ldr ip, [r5] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a000af90: e06ca005 rsb sl, ip, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000af94: e153000a cmp r3, sl a000af98: 8a000015 bhi a000aff4 <_Heap_Free+0xf8> a000af9c: e151000a cmp r1, sl a000afa0: 3a000013 bcc a000aff4 <_Heap_Free+0xf8> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a000afa4: e59a0004 ldr r0, [sl, #4] return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { a000afa8: e2100001 ands r0, r0, #1 a000afac: 0a000010 beq a000aff4 <_Heap_Free+0xf8> _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ a000afb0: e3580000 cmp r8, #0 a000afb4: 0a000038 beq a000b09c <_Heap_Free+0x1a0> uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000afb8: e5940038 ldr r0, [r4, #56] ; 0x38 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000afbc: e5923008 ldr r3, [r2, #8] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; a000afc0: e0867007 add r7, r6, r7 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000afc4: e592200c ldr r2, [r2, #12] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; a000afc8: e087c00c add ip, r7, ip _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000afcc: e2400001 sub r0, r0, #1 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000afd0: e38c1001 orr r1, ip, #1 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; a000afd4: e5823008 str r3, [r2, #8] next->prev = prev; a000afd8: e583200c str r2, [r3, #12] } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; a000afdc: e5840038 str r0, [r4, #56] ; 0x38 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000afe0: e58a1004 str r1, [sl, #4] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; a000afe4: e78ac00c str ip, [sl, ip] a000afe8: ea00000e b a000b028 <_Heap_Free+0x12c> block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; a000afec: e3a00000 mov r0, #0 a000aff0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000aff4: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ a000aff8: e3580000 cmp r8, #0 a000affc: 0a000014 beq a000b054 <_Heap_Free+0x158> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } a000b000: e5923008 ldr r3, [r2, #8] a000b004: e592200c ldr r2, [r2, #12] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; a000b008: e0877006 add r7, r7, r6 _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000b00c: e3871001 orr r1, r7, #1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; a000b010: e5853008 str r3, [r5, #8] new_block->prev = prev; a000b014: e585200c str r2, [r5, #12] next->prev = new_block; prev->next = new_block; a000b018: e5825008 str r5, [r2, #8] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; a000b01c: e583500c str r5, [r3, #12] a000b020: e5851004 str r1, [r5, #4] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; a000b024: e7857007 str r7, [r5, r7] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000b028: e5942040 ldr r2, [r4, #64] ; 0x40 ++stats->frees; a000b02c: e5943050 ldr r3, [r4, #80] ; 0x50 stats->free_size += block_size; a000b030: e5941030 ldr r1, [r4, #48] ; 0x30 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000b034: e2422001 sub r2, r2, #1 ++stats->frees; a000b038: e2833001 add r3, r3, #1 stats->free_size += block_size; a000b03c: e0816006 add r6, r1, r6 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; a000b040: e5842040 str r2, [r4, #64] ; 0x40 ++stats->frees; a000b044: e5843050 str r3, [r4, #80] ; 0x50 stats->free_size += block_size; a000b048: e5846030 str r6, [r4, #48] ; 0x30 return( true ); a000b04c: e3a00001 mov r0, #1 a000b050: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; a000b054: e3863001 orr r3, r6, #1 a000b058: e5853004 str r3, [r5, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; a000b05c: e5943038 ldr r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { a000b060: e594c03c ldr ip, [r4, #60] ; 0x3c } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000b064: e5920004 ldr r0, [r2, #4] RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after( Heap_Block *block_before, Heap_Block *new_block ) { Heap_Block *next = block_before->next; a000b068: e5941008 ldr r1, [r4, #8] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; a000b06c: e2833001 add r3, r3, #1 } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000b070: e3c00001 bic r0, r0, #1 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { a000b074: e153000c cmp r3, ip new_block->next = next; a000b078: e5851008 str r1, [r5, #8] new_block->prev = block_before; a000b07c: e585400c str r4, [r5, #12] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000b080: e5820004 str r0, [r2, #4] block_before->next = new_block; next->prev = new_block; a000b084: e581500c str r5, [r1, #12] next_block->prev_size = block_size; a000b088: e7856006 str r6, [r5, r6] { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; a000b08c: e5845008 str r5, [r4, #8] /* Statistics */ ++stats->free_blocks; a000b090: e5843038 str r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { stats->max_free_blocks = stats->free_blocks; a000b094: 8584303c strhi r3, [r4, #60] ; 0x3c a000b098: eaffffe2 b a000b028 <_Heap_Free+0x12c> prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; a000b09c: e086c00c add ip, r6, ip prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; a000b0a0: e38c3001 orr r3, ip, #1 a000b0a4: e58a3004 str r3, [sl, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000b0a8: e5923004 ldr r3, [r2, #4] next_block->prev_size = size; a000b0ac: e785c006 str ip, [r5, r6] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; a000b0b0: e3c33001 bic r3, r3, #1 a000b0b4: e5823004 str r3, [r2, #4] a000b0b8: eaffffda b a000b028 <_Heap_Free+0x12c> =============================================================================== a00120d8 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { a00120d8: e92d40f0 push {r4, r5, r6, r7, lr} a00120dc: e1a04000 mov r4, r0 a00120e0: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a00120e4: e1a00001 mov r0, r1 a00120e8: e5941010 ldr r1, [r4, #16] a00120ec: e1a07002 mov r7, r2 a00120f0: ebfff8b4 bl a00103c8 <__umodsi3> RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block a00120f4: e5943020 ldr r3, [r4, #32] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); a00120f8: e2456008 sub r6, r5, #8 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); a00120fc: e0600006 rsb r0, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0012100: e1500003 cmp r0, r3 a0012104: 3a000012 bcc a0012154 <_Heap_Size_of_alloc_area+0x7c> a0012108: e5942024 ldr r2, [r4, #36] ; 0x24 a001210c: e1500002 cmp r0, r2 a0012110: 8a00000f bhi a0012154 <_Heap_Size_of_alloc_area+0x7c> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0012114: e5906004 ldr r6, [r0, #4] a0012118: e3c66001 bic r6, r6, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a001211c: e0806006 add r6, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0012120: e1530006 cmp r3, r6 a0012124: 8a00000a bhi a0012154 <_Heap_Size_of_alloc_area+0x7c> a0012128: e1520006 cmp r2, r6 if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) ) { return false; a001212c: 33a00000 movcc r0, #0 a0012130: 3a000009 bcc a001215c <_Heap_Size_of_alloc_area+0x84> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0012134: e5960004 ldr r0, [r6, #4] block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) a0012138: e2100001 ands r0, r0, #1 a001213c: 0a000006 beq a001215c <_Heap_Size_of_alloc_area+0x84> ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; a0012140: e2655004 rsb r5, r5, #4 a0012144: e0856006 add r6, r5, r6 a0012148: e5876000 str r6, [r7] return true; a001214c: e3a00001 mov r0, #1 a0012150: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) ) { return false; a0012154: e3a00000 mov r0, #0 a0012158: e8bd80f0 pop {r4, r5, r6, r7, pc} } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; return true; } a001215c: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED =============================================================================== a0007468 <_Heap_Walk>: Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a0007468: e59f3578 ldr r3, [pc, #1400] ; a00079e8 <_Heap_Walk+0x580> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a000746c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0007470: e31200ff tst r2, #255 ; 0xff if ( !_System_state_Is_up( _System_state_Get() ) ) { a0007474: e5933000 ldr r3, [r3] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0007478: e59f256c ldr r2, [pc, #1388] ; a00079ec <_Heap_Walk+0x584> a000747c: e59f956c ldr r9, [pc, #1388] ; a00079f0 <_Heap_Walk+0x588> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0007480: e1a0a001 mov sl, r1 uintptr_t const page_size = heap->page_size; a0007484: e5901010 ldr r1, [r0, #16] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; a0007488: 11a09002 movne r9, r2 if ( !_System_state_Is_up( _System_state_Get() ) ) { a000748c: e3530003 cmp r3, #3 int source, bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; a0007490: e5902014 ldr r2, [r0, #20] Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; a0007494: e5903024 ldr r3, [r0, #36] ; 0x24 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { a0007498: e24dd038 sub sp, sp, #56 ; 0x38 a000749c: e1a04000 mov r4, r0 uintptr_t const page_size = heap->page_size; a00074a0: e58d1024 str r1, [sp, #36] ; 0x24 uintptr_t const min_block_size = heap->min_block_size; a00074a4: e58d2028 str r2, [sp, #40] ; 0x28 Heap_Block *const first_block = heap->first_block; a00074a8: e5908020 ldr r8, [r0, #32] Heap_Block *const last_block = heap->last_block; a00074ac: e58d302c str r3, [sp, #44] ; 0x2c Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a00074b0: 0a000002 beq a00074c0 <_Heap_Walk+0x58> } block = next_block; } while ( block != first_block ); return true; a00074b4: e3a00001 mov r0, #1 } a00074b8: e28dd038 add sp, sp, #56 ; 0x38 a00074bc: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( a00074c0: e594101c ldr r1, [r4, #28] a00074c4: e5900018 ldr r0, [r0, #24] a00074c8: e5942008 ldr r2, [r4, #8] a00074cc: e594300c ldr r3, [r4, #12] a00074d0: e59dc028 ldr ip, [sp, #40] ; 0x28 a00074d4: e58d1008 str r1, [sp, #8] a00074d8: e59d102c ldr r1, [sp, #44] ; 0x2c a00074dc: e58d0004 str r0, [sp, #4] a00074e0: e58d2014 str r2, [sp, #20] a00074e4: e58d1010 str r1, [sp, #16] a00074e8: e58d3018 str r3, [sp, #24] a00074ec: e59f2500 ldr r2, [pc, #1280] ; a00079f4 <_Heap_Walk+0x58c> a00074f0: e58dc000 str ip, [sp] a00074f4: e58d800c str r8, [sp, #12] a00074f8: e1a0000a mov r0, sl a00074fc: e3a01000 mov r1, #0 a0007500: e59d3024 ldr r3, [sp, #36] ; 0x24 a0007504: e12fff39 blx r9 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { a0007508: e59d2024 ldr r2, [sp, #36] ; 0x24 a000750c: e3520000 cmp r2, #0 a0007510: 0a000024 beq a00075a8 <_Heap_Walk+0x140> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { a0007514: e59d3024 ldr r3, [sp, #36] ; 0x24 a0007518: e2135003 ands r5, r3, #3 a000751c: 1a000027 bne a00075c0 <_Heap_Walk+0x158> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0007520: e59d0028 ldr r0, [sp, #40] ; 0x28 a0007524: e59d1024 ldr r1, [sp, #36] ; 0x24 a0007528: ebffe54f bl a0000a6c <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { a000752c: e250b000 subs fp, r0, #0 a0007530: 1a000028 bne a00075d8 <_Heap_Walk+0x170> a0007534: e2880008 add r0, r8, #8 a0007538: e59d1024 ldr r1, [sp, #36] ; 0x24 a000753c: ebffe54a bl a0000a6c <__umodsi3> ); return false; } if ( a0007540: e2506000 subs r6, r0, #0 a0007544: 1a00002a bne a00075f4 <_Heap_Walk+0x18c> block = next_block; } while ( block != first_block ); return true; } a0007548: e598b004 ldr fp, [r8, #4] ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { a000754c: e21b5001 ands r5, fp, #1 a0007550: 0a0000bf beq a0007854 <_Heap_Walk+0x3ec> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0007554: e59dc02c ldr ip, [sp, #44] ; 0x2c a0007558: e59c3004 ldr r3, [ip, #4] a000755c: e3c33001 bic r3, r3, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0007560: e08c3003 add r3, ip, r3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0007564: e5935004 ldr r5, [r3, #4] ); return false; } if ( _Heap_Is_free( last_block ) ) { a0007568: e2155001 ands r5, r5, #1 a000756c: 0a000007 beq a0007590 <_Heap_Walk+0x128> ); return false; } if ( a0007570: e1580003 cmp r8, r3 a0007574: 0a000025 beq a0007610 <_Heap_Walk+0x1a8> _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( a0007578: e1a0000a mov r0, sl <== NOT EXECUTED a000757c: e3a01001 mov r1, #1 <== NOT EXECUTED a0007580: e59f2470 ldr r2, [pc, #1136] ; a00079f8 <_Heap_Walk+0x590> <== NOT EXECUTED a0007584: e12fff39 blx r9 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007588: e1a00006 mov r0, r6 <== NOT EXECUTED a000758c: eaffffc9 b a00074b8 <_Heap_Walk+0x50> <== NOT EXECUTED return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( a0007590: e1a0000a mov r0, sl a0007594: e3a01001 mov r1, #1 a0007598: e59f245c ldr r2, [pc, #1116] ; a00079fc <_Heap_Walk+0x594> a000759c: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075a0: e1a00005 mov r0, r5 a00075a4: eaffffc3 b a00074b8 <_Heap_Walk+0x50> first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); a00075a8: e1a0000a mov r0, sl a00075ac: e3a01001 mov r1, #1 a00075b0: e59f2448 ldr r2, [pc, #1096] ; a0007a00 <_Heap_Walk+0x598> a00075b4: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075b8: e59d0024 ldr r0, [sp, #36] ; 0x24 a00075bc: eaffffbd b a00074b8 <_Heap_Walk+0x50> return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( a00075c0: e1a0000a mov r0, sl a00075c4: e3a01001 mov r1, #1 a00075c8: e59f2434 ldr r2, [pc, #1076] ; a0007a04 <_Heap_Walk+0x59c> a00075cc: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075d0: e3a00000 mov r0, #0 a00075d4: eaffffb7 b a00074b8 <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( a00075d8: e1a0000a mov r0, sl a00075dc: e3a01001 mov r1, #1 a00075e0: e59f2420 ldr r2, [pc, #1056] ; a0007a08 <_Heap_Walk+0x5a0> a00075e4: e59d3028 ldr r3, [sp, #40] ; 0x28 a00075e8: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00075ec: e1a00005 mov r0, r5 a00075f0: eaffffb0 b a00074b8 <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( a00075f4: e1a0000a mov r0, sl a00075f8: e3a01001 mov r1, #1 a00075fc: e59f2408 ldr r2, [pc, #1032] ; a0007a0c <_Heap_Walk+0x5a4> a0007600: e1a03008 mov r3, r8 a0007604: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007608: e1a0000b mov r0, fp a000760c: eaffffa9 b a00074b8 <_Heap_Walk+0x50> block = next_block; } while ( block != first_block ); return true; } a0007610: e5945008 ldr r5, [r4, #8] int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; a0007614: e5947010 ldr r7, [r4, #16] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a0007618: e1540005 cmp r4, r5 a000761c: 05943020 ldreq r3, [r4, #32] a0007620: 0a00000c beq a0007658 <_Heap_Walk+0x1f0> block = next_block; } while ( block != first_block ); return true; } a0007624: e5943020 ldr r3, [r4, #32] const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007628: e1530005 cmp r3, r5 a000762c: 9a00008e bls a000786c <_Heap_Walk+0x404> const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( a0007630: e1a0000a mov r0, sl a0007634: e3a01001 mov r1, #1 a0007638: e59f23d0 ldr r2, [pc, #976] ; a0007a10 <_Heap_Walk+0x5a8> a000763c: e1a03005 mov r3, r5 a0007640: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007644: e3a00000 mov r0, #0 a0007648: eaffff9a b a00074b8 <_Heap_Walk+0x50> a000764c: e1a03008 mov r3, r8 a0007650: e59db034 ldr fp, [sp, #52] ; 0x34 a0007654: e59d8030 ldr r8, [sp, #48] ; 0x30 ); return false; } if ( _Heap_Is_used( free_block ) ) { a0007658: e1a06008 mov r6, r8 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000765c: e3cb7001 bic r7, fp, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); a0007660: e0875006 add r5, r7, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a0007664: e1530005 cmp r3, r5 a0007668: 9a000007 bls a000768c <_Heap_Walk+0x224> Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( a000766c: e1a0000a mov r0, sl a0007670: e58d5000 str r5, [sp] a0007674: e3a01001 mov r1, #1 a0007678: e59f2394 ldr r2, [pc, #916] ; a0007a14 <_Heap_Walk+0x5ac> a000767c: e1a03006 mov r3, r6 a0007680: e12fff39 blx r9 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; a0007684: e3a00000 mov r0, #0 a0007688: eaffff8a b a00074b8 <_Heap_Walk+0x50> a000768c: e5943024 ldr r3, [r4, #36] ; 0x24 a0007690: e1530005 cmp r3, r5 a0007694: 3afffff4 bcc a000766c <_Heap_Walk+0x204> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0007698: e59d1024 ldr r1, [sp, #36] ; 0x24 a000769c: e1a00007 mov r0, r7 a00076a0: ebffe4f1 bl a0000a6c <__umodsi3> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; a00076a4: e59d102c ldr r1, [sp, #44] ; 0x2c a00076a8: e0563001 subs r3, r6, r1 a00076ac: 13a03001 movne r3, #1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { a00076b0: e3500000 cmp r0, #0 a00076b4: 0a000001 beq a00076c0 <_Heap_Walk+0x258> a00076b8: e3530000 cmp r3, #0 a00076bc: 1a0000a2 bne a000794c <_Heap_Walk+0x4e4> ); return false; } if ( block_size < min_block_size && is_not_last_block ) { a00076c0: e59d2028 ldr r2, [sp, #40] ; 0x28 a00076c4: e1520007 cmp r2, r7 a00076c8: 9a000001 bls a00076d4 <_Heap_Walk+0x26c> a00076cc: e3530000 cmp r3, #0 a00076d0: 1a0000a5 bne a000796c <_Heap_Walk+0x504> ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { a00076d4: e1560005 cmp r6, r5 a00076d8: 3a000001 bcc a00076e4 <_Heap_Walk+0x27c> a00076dc: e3530000 cmp r3, #0 a00076e0: 1a0000aa bne a0007990 <_Heap_Walk+0x528> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a00076e4: e5953004 ldr r3, [r5, #4] a00076e8: e20bb001 and fp, fp, #1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { a00076ec: e3130001 tst r3, #1 a00076f0: 0a000016 beq a0007750 <_Heap_Walk+0x2e8> if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { a00076f4: e35b0000 cmp fp, #0 a00076f8: 0a00000b beq a000772c <_Heap_Walk+0x2c4> (*printer)( a00076fc: e58d7000 str r7, [sp] a0007700: e1a0000a mov r0, sl a0007704: e3a01000 mov r1, #0 a0007708: e59f2308 ldr r2, [pc, #776] ; a0007a18 <_Heap_Walk+0x5b0> a000770c: e1a03006 mov r3, r6 a0007710: e12fff39 blx r9 block->prev_size ); } block = next_block; } while ( block != first_block ); a0007714: e1580005 cmp r8, r5 a0007718: 0affff65 beq a00074b4 <_Heap_Walk+0x4c> a000771c: e595b004 ldr fp, [r5, #4] a0007720: e5943020 ldr r3, [r4, #32] a0007724: e1a06005 mov r6, r5 a0007728: eaffffcb b a000765c <_Heap_Walk+0x1f4> "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( a000772c: e58d7000 str r7, [sp] a0007730: e5963000 ldr r3, [r6] a0007734: e1a0000a mov r0, sl a0007738: e1a0100b mov r1, fp a000773c: e58d3004 str r3, [sp, #4] a0007740: e59f22d4 ldr r2, [pc, #724] ; a0007a1c <_Heap_Walk+0x5b4> a0007744: e1a03006 mov r3, r6 a0007748: e12fff39 blx r9 a000774c: eafffff0 b a0007714 <_Heap_Walk+0x2ac> false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? a0007750: e596200c ldr r2, [r6, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007754: e5943008 ldr r3, [r4, #8] block = next_block; } while ( block != first_block ); return true; } a0007758: e594100c ldr r1, [r4, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a000775c: e1530002 cmp r3, r2 a0007760: 059f02b8 ldreq r0, [pc, #696] ; a0007a20 <_Heap_Walk+0x5b8> a0007764: 0a000003 beq a0007778 <_Heap_Walk+0x310> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), a0007768: e59f32b4 ldr r3, [pc, #692] ; a0007a24 <_Heap_Walk+0x5bc> a000776c: e1540002 cmp r4, r2 a0007770: e59f02b0 ldr r0, [pc, #688] ; a0007a28 <_Heap_Walk+0x5c0> a0007774: 01a00003 moveq r0, r3 block->next, block->next == last_free_block ? a0007778: e5963008 ldr r3, [r6, #8] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a000777c: e1510003 cmp r1, r3 a0007780: 059f12a4 ldreq r1, [pc, #676] ; a0007a2c <_Heap_Walk+0x5c4> a0007784: 0a000003 beq a0007798 <_Heap_Walk+0x330> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") a0007788: e59fc2a0 ldr ip, [pc, #672] ; a0007a30 <_Heap_Walk+0x5c8> a000778c: e1540003 cmp r4, r3 a0007790: e59f1290 ldr r1, [pc, #656] ; a0007a28 <_Heap_Walk+0x5c0> a0007794: 01a0100c moveq r1, ip Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( a0007798: e58d2004 str r2, [sp, #4] a000779c: e58d0008 str r0, [sp, #8] a00077a0: e58d300c str r3, [sp, #12] a00077a4: e58d1010 str r1, [sp, #16] a00077a8: e1a03006 mov r3, r6 a00077ac: e58d7000 str r7, [sp] a00077b0: e1a0000a mov r0, sl a00077b4: e3a01000 mov r1, #0 a00077b8: e59f2274 ldr r2, [pc, #628] ; a0007a34 <_Heap_Walk+0x5cc> a00077bc: e12fff39 blx r9 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { a00077c0: e5953000 ldr r3, [r5] a00077c4: e1570003 cmp r7, r3 a00077c8: 1a000010 bne a0007810 <_Heap_Walk+0x3a8> ); return false; } if ( !prev_used ) { a00077cc: e35b0000 cmp fp, #0 a00077d0: 0a000018 beq a0007838 <_Heap_Walk+0x3d0> block = next_block; } while ( block != first_block ); return true; } a00077d4: e5943008 ldr r3, [r4, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a00077d8: e1540003 cmp r4, r3 a00077dc: 0a000004 beq a00077f4 <_Heap_Walk+0x38c> if ( free_block == block ) { a00077e0: e1560003 cmp r6, r3 a00077e4: 0affffca beq a0007714 <_Heap_Walk+0x2ac> return true; } free_block = free_block->next; a00077e8: e5933008 ldr r3, [r3, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { a00077ec: e1540003 cmp r4, r3 a00077f0: 1afffffa bne a00077e0 <_Heap_Walk+0x378> return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( a00077f4: e1a0000a mov r0, sl a00077f8: e3a01001 mov r1, #1 a00077fc: e59f2234 ldr r2, [pc, #564] ; a0007a38 <_Heap_Walk+0x5d0> a0007800: e1a03006 mov r3, r6 a0007804: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a0007808: e3a00000 mov r0, #0 a000780c: eaffff29 b a00074b8 <_Heap_Walk+0x50> " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( a0007810: e58d3004 str r3, [sp, #4] a0007814: e1a0000a mov r0, sl a0007818: e58d7000 str r7, [sp] a000781c: e58d5008 str r5, [sp, #8] a0007820: e3a01001 mov r1, #1 a0007824: e59f2210 ldr r2, [pc, #528] ; a0007a3c <_Heap_Walk+0x5d4> a0007828: e1a03006 mov r3, r6 a000782c: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a0007830: e3a00000 mov r0, #0 a0007834: eaffff1f b a00074b8 <_Heap_Walk+0x50> return false; } if ( !prev_used ) { (*printer)( a0007838: e1a0000a mov r0, sl a000783c: e3a01001 mov r1, #1 a0007840: e59f21f8 ldr r2, [pc, #504] ; a0007a40 <_Heap_Walk+0x5d8> a0007844: e1a03006 mov r3, r6 a0007848: e12fff39 blx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; a000784c: e1a0000b mov r0, fp a0007850: eaffff18 b a00074b8 <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( a0007854: e1a0000a mov r0, sl a0007858: e3a01001 mov r1, #1 a000785c: e59f21e0 ldr r2, [pc, #480] ; a0007a44 <_Heap_Walk+0x5dc> a0007860: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007864: e1a00005 mov r0, r5 a0007868: eaffff12 b a00074b8 <_Heap_Walk+0x50> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a000786c: e594c024 ldr ip, [r4, #36] ; 0x24 a0007870: e15c0005 cmp ip, r5 a0007874: 3affff6d bcc a0007630 <_Heap_Walk+0x1c8> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a0007878: e2850008 add r0, r5, #8 a000787c: e1a01007 mov r1, r7 a0007880: e58d301c str r3, [sp, #28] a0007884: e58dc020 str ip, [sp, #32] a0007888: ebffe477 bl a0000a6c <__umodsi3> ); return false; } if ( a000788c: e3500000 cmp r0, #0 a0007890: e59d301c ldr r3, [sp, #28] a0007894: e59dc020 ldr ip, [sp, #32] a0007898: 1a000044 bne a00079b0 <_Heap_Walk+0x548> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a000789c: e5952004 ldr r2, [r5, #4] a00078a0: e3c22001 bic r2, r2, #1 block = next_block; } while ( block != first_block ); return true; } a00078a4: e0852002 add r2, r5, r2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a00078a8: e5922004 ldr r2, [r2, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a00078ac: e3120001 tst r2, #1 a00078b0: 1a000045 bne a00079cc <_Heap_Walk+0x564> a00078b4: e58d8030 str r8, [sp, #48] ; 0x30 a00078b8: e58db034 str fp, [sp, #52] ; 0x34 a00078bc: e1a01004 mov r1, r4 a00078c0: e1a06005 mov r6, r5 a00078c4: e1a0b00c mov fp, ip a00078c8: e1a08003 mov r8, r3 a00078cc: ea000013 b a0007920 <_Heap_Walk+0x4b8> return false; } prev_block = free_block; free_block = free_block->next; a00078d0: e5955008 ldr r5, [r5, #8] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a00078d4: e1540005 cmp r4, r5 a00078d8: 0affff5b beq a000764c <_Heap_Walk+0x1e4> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a00078dc: e1580005 cmp r8, r5 a00078e0: 8affff52 bhi a0007630 <_Heap_Walk+0x1c8> a00078e4: e155000b cmp r5, fp RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a00078e8: e2850008 add r0, r5, #8 a00078ec: e1a01007 mov r1, r7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; a00078f0: 8affff4e bhi a0007630 <_Heap_Walk+0x1c8> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; a00078f4: ebffe45c bl a0000a6c <__umodsi3> ); return false; } if ( a00078f8: e3500000 cmp r0, #0 a00078fc: 1a00002b bne a00079b0 <_Heap_Walk+0x548> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; a0007900: e5953004 ldr r3, [r5, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a0007904: e1a01006 mov r1, r6 a0007908: e1a06005 mov r6, r5 a000790c: e3c33001 bic r3, r3, #1 block = next_block; } while ( block != first_block ); return true; } a0007910: e0833005 add r3, r3, r5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; a0007914: e5933004 ldr r3, [r3, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { a0007918: e3130001 tst r3, #1 a000791c: 1a00002a bne a00079cc <_Heap_Walk+0x564> ); return false; } if ( free_block->prev != prev_block ) { a0007920: e595200c ldr r2, [r5, #12] a0007924: e1520001 cmp r2, r1 a0007928: 0affffe8 beq a00078d0 <_Heap_Walk+0x468> (*printer)( a000792c: e58d2000 str r2, [sp] a0007930: e1a0000a mov r0, sl a0007934: e3a01001 mov r1, #1 a0007938: e59f2108 ldr r2, [pc, #264] ; a0007a48 <_Heap_Walk+0x5e0> a000793c: e1a03005 mov r3, r5 a0007940: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a0007944: e3a00000 mov r0, #0 a0007948: eafffeda b a00074b8 <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( a000794c: e1a0000a mov r0, sl a0007950: e58d7000 str r7, [sp] a0007954: e3a01001 mov r1, #1 a0007958: e59f20ec ldr r2, [pc, #236] ; a0007a4c <_Heap_Walk+0x5e4> a000795c: e1a03006 mov r3, r6 a0007960: e12fff39 blx r9 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; a0007964: e3a00000 mov r0, #0 a0007968: eafffed2 b a00074b8 <_Heap_Walk+0x50> } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( a000796c: e58d2004 str r2, [sp, #4] a0007970: e1a0000a mov r0, sl a0007974: e58d7000 str r7, [sp] a0007978: e3a01001 mov r1, #1 a000797c: e59f20cc ldr r2, [pc, #204] ; a0007a50 <_Heap_Walk+0x5e8> a0007980: e1a03006 mov r3, r6 a0007984: e12fff39 blx r9 block, block_size, min_block_size ); return false; a0007988: e3a00000 mov r0, #0 a000798c: eafffec9 b a00074b8 <_Heap_Walk+0x50> } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( a0007990: e1a0000a mov r0, sl a0007994: e58d5000 str r5, [sp] a0007998: e3a01001 mov r1, #1 a000799c: e59f20b0 ldr r2, [pc, #176] ; a0007a54 <_Heap_Walk+0x5ec> a00079a0: e1a03006 mov r3, r6 a00079a4: e12fff39 blx r9 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; a00079a8: e3a00000 mov r0, #0 a00079ac: eafffec1 b a00074b8 <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( a00079b0: e1a0000a mov r0, sl a00079b4: e3a01001 mov r1, #1 a00079b8: e59f2098 ldr r2, [pc, #152] ; a0007a58 <_Heap_Walk+0x5f0> a00079bc: e1a03005 mov r3, r5 a00079c0: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00079c4: e3a00000 mov r0, #0 a00079c8: eafffeba b a00074b8 <_Heap_Walk+0x50> return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( a00079cc: e1a0000a mov r0, sl a00079d0: e3a01001 mov r1, #1 a00079d4: e59f2080 ldr r2, [pc, #128] ; a0007a5c <_Heap_Walk+0x5f4> a00079d8: e1a03005 mov r3, r5 a00079dc: e12fff39 blx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; a00079e0: e3a00000 mov r0, #0 a00079e4: eafffeb3 b a00074b8 <_Heap_Walk+0x50> =============================================================================== a0006968 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { a0006968: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a000696c: e5904034 ldr r4, [r0, #52] ; 0x34 */ void _Objects_Extend_information( Objects_Information *information ) { a0006970: e24dd014 sub sp, sp, #20 a0006974: e1a05000 mov r5, r0 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a0006978: e3540000 cmp r4, #0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a000697c: e1d070b8 ldrh r7, [r0, #8] index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a0006980: 0a00009c beq a0006bf8 <_Objects_Extend_information+0x290> block_count = 0; else { block_count = information->maximum / information->allocation_size; a0006984: e1d081b4 ldrh r8, [r0, #20] a0006988: e1d0a1b0 ldrh sl, [r0, #16] a000698c: e1a01008 mov r1, r8 a0006990: e1a0000a mov r0, sl a0006994: eb002645 bl a00102b0 <__aeabi_uidiv> a0006998: e1a03800 lsl r3, r0, #16 for ( ; block < block_count; block++ ) { a000699c: e1b03823 lsrs r3, r3, #16 a00069a0: 0a00009a beq a0006c10 <_Objects_Extend_information+0x2a8> if ( information->object_blocks[ block ] == NULL ) { a00069a4: e5949000 ldr r9, [r4] a00069a8: e3590000 cmp r9, #0 a00069ac: 01a01008 moveq r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a00069b0: 01a06007 moveq r6, r7 index_base = minimum_index; block = 0; a00069b4: 01a04009 moveq r4, r9 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { a00069b8: 0a00000c beq a00069f0 <_Objects_Extend_information+0x88> a00069bc: e1a02004 mov r2, r4 a00069c0: e1a01008 mov r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a00069c4: e1a06007 mov r6, r7 index_base = minimum_index; block = 0; a00069c8: e3a04000 mov r4, #0 a00069cc: ea000002 b a00069dc <_Objects_Extend_information+0x74> block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { a00069d0: e5b29004 ldr r9, [r2, #4]! a00069d4: e3590000 cmp r9, #0 a00069d8: 0a000004 beq a00069f0 <_Objects_Extend_information+0x88> if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a00069dc: e2844001 add r4, r4, #1 a00069e0: e1530004 cmp r3, r4 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; a00069e4: e0866008 add r6, r6, r8 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a00069e8: 8afffff8 bhi a00069d0 <_Objects_Extend_information+0x68> /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a00069ec: e3a09001 mov r9, #1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; a00069f0: e08aa001 add sl, sl, r1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { a00069f4: e35a0801 cmp sl, #65536 ; 0x10000 a00069f8: 2a000064 bcs a0006b90 <_Objects_Extend_information+0x228> /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { a00069fc: e5d52012 ldrb r2, [r5, #18] /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; a0006a00: e5950018 ldr r0, [r5, #24] if ( information->auto_extend ) { a0006a04: e3520000 cmp r2, #0 /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; a0006a08: e0000091 mul r0, r1, r0 if ( information->auto_extend ) { a0006a0c: 1a000061 bne a0006b98 <_Objects_Extend_information+0x230> new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); a0006a10: e58d3000 str r3, [sp] a0006a14: eb000820 bl a0008a9c <_Workspace_Allocate_or_fatal_error> a0006a18: e59d3000 ldr r3, [sp] a0006a1c: e1a08000 mov r8, r0 } /* * Do we need to grow the tables? */ if ( do_extend ) { a0006a20: e3590000 cmp r9, #0 a0006a24: 0a00003a beq a0006b14 <_Objects_Extend_information+0x1ac> */ /* * Up the block count and maximum */ block_count++; a0006a28: e283b001 add fp, r3, #1 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + a0006a2c: e08b008b add r0, fp, fp, lsl #1 ((maximum + minimum_index) * sizeof(Objects_Control *)); a0006a30: e08a0000 add r0, sl, r0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + a0006a34: e0800007 add r0, r0, r7 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); a0006a38: e1a00100 lsl r0, r0, #2 a0006a3c: e58d3000 str r3, [sp] a0006a40: eb00080b bl a0008a74 <_Workspace_Allocate> if ( !object_blocks ) { a0006a44: e2509000 subs r9, r0, #0 a0006a48: e59d3000 ldr r3, [sp] a0006a4c: 0a000074 beq a0006c24 <_Objects_Extend_information+0x2bc> * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { a0006a50: e1d521b0 ldrh r2, [r5, #16] RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset ( const void *base, uintptr_t offset ) { return (void *)((uintptr_t)base + offset); a0006a54: e089c10b add ip, r9, fp, lsl #2 a0006a58: e089b18b add fp, r9, fp, lsl #3 a0006a5c: e1570002 cmp r7, r2 a0006a60: 3a000052 bcc a0006bb0 <_Objects_Extend_information+0x248> } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a0006a64: e3570000 cmp r7, #0 a0006a68: 13a02000 movne r2, #0 a0006a6c: 11a0100b movne r1, fp local_table[ index ] = NULL; a0006a70: 11a00002 movne r0, r2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a0006a74: 0a000003 beq a0006a88 <_Objects_Extend_information+0x120> a0006a78: e2822001 add r2, r2, #1 a0006a7c: e1570002 cmp r7, r2 local_table[ index ] = NULL; a0006a80: e4810004 str r0, [r1], #4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a0006a84: 8afffffb bhi a0006a78 <_Objects_Extend_information+0x110> a0006a88: e1a03103 lsl r3, r3, #2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); a0006a8c: e1d511b4 ldrh r1, [r5, #20] } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; a0006a90: e3a00000 mov r0, #0 a0006a94: e7890003 str r0, [r9, r3] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); a0006a98: e0861001 add r1, r6, r1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006a9c: e1560001 cmp r6, r1 /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; a0006aa0: e78c0003 str r0, [ip, r3] for ( index=index_base ; a0006aa4: 2a000005 bcs a0006ac0 <_Objects_Extend_information+0x158> a0006aa8: e08b2106 add r2, fp, r6, lsl #2 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( a0006aac: e1a03006 mov r3, r6 object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { a0006ab0: e2833001 add r3, r3, #1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006ab4: e1530001 cmp r3, r1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; a0006ab8: e4820004 str r0, [r2], #4 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a0006abc: 3afffffb bcc a0006ab0 <_Objects_Extend_information+0x148> a0006ac0: e10f3000 mrs r3, CPSR a0006ac4: e3832080 orr r2, r3, #128 ; 0x80 a0006ac8: e129f002 msr CPSR_fc, r2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006acc: e5952000 ldr r2, [r5] information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( a0006ad0: e1d510b4 ldrh r1, [r5, #4] old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; a0006ad4: e1a0a80a lsl sl, sl, #16 a0006ad8: e1a02c02 lsl r2, r2, #24 a0006adc: e3822801 orr r2, r2, #65536 ; 0x10000 a0006ae0: e1a0a82a lsr sl, sl, #16 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | a0006ae4: e1822d81 orr r2, r2, r1, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006ae8: e182200a orr r2, r2, sl local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; a0006aec: e5950034 ldr r0, [r5, #52] ; 0x34 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; a0006af0: e585c030 str ip, [r5, #48] ; 0x30 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; a0006af4: e5859034 str r9, [r5, #52] ; 0x34 information->inactive_per_block = inactive_per_block; information->local_table = local_table; a0006af8: e585b01c str fp, [r5, #28] information->maximum = (Objects_Maximum) maximum; a0006afc: e1c5a1b0 strh sl, [r5, #16] information->maximum_id = _Objects_Build_id( a0006b00: e585200c str r2, [r5, #12] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a0006b04: e129f003 msr CPSR_fc, r3 information->maximum ); _ISR_Enable( level ); if ( old_tables ) a0006b08: e3500000 cmp r0, #0 a0006b0c: 0a000000 beq a0006b14 <_Objects_Extend_information+0x1ac> _Workspace_Free( old_tables ); a0006b10: eb0007dd bl a0008a8c <_Workspace_Free> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006b14: e5953034 ldr r3, [r5, #52] ; 0x34 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( a0006b18: e28d7008 add r7, sp, #8 a0006b1c: e1a01008 mov r1, r8 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006b20: e7838104 str r8, [r3, r4, lsl #2] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( a0006b24: e1a00007 mov r0, r7 a0006b28: e1d521b4 ldrh r2, [r5, #20] a0006b2c: e5953018 ldr r3, [r5, #24] a0006b30: eb000fd8 bl a000aa98 <_Chain_Initialize> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; a0006b34: e1a04104 lsl r4, r4, #2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006b38: e2858020 add r8, r5, #32 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { a0006b3c: ea000009 b a0006b68 <_Objects_Extend_information+0x200> a0006b40: e5953000 ldr r3, [r5] the_object->id = _Objects_Build_id( a0006b44: e1d520b4 ldrh r2, [r5, #4] information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006b48: e1a00008 mov r0, r8 a0006b4c: e1a03c03 lsl r3, r3, #24 a0006b50: e3833801 orr r3, r3, #65536 ; 0x10000 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | a0006b54: e1833d82 orr r3, r3, r2, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | a0006b58: e1833006 orr r3, r3, r6 */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { the_object->id = _Objects_Build_id( a0006b5c: e5813008 str r3, [r1, #8] information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); a0006b60: ebfffcdd bl a0005edc <_Chain_Append> index++; a0006b64: e2866001 add r6, r6, #1 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { a0006b68: e1a00007 mov r0, r7 a0006b6c: ebfffced bl a0005f28 <_Chain_Get> a0006b70: e2501000 subs r1, r0, #0 a0006b74: 1afffff1 bne a0006b40 <_Objects_Extend_information+0x1d8> index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); a0006b78: e1d522bc ldrh r2, [r5, #44] ; 0x2c _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; a0006b7c: e1d531b4 ldrh r3, [r5, #20] a0006b80: e5951030 ldr r1, [r5, #48] ; 0x30 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); a0006b84: e0832002 add r2, r3, r2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; a0006b88: e7813004 str r3, [r1, r4] information->inactive = a0006b8c: e1c522bc strh r2, [r5, #44] ; 0x2c (Objects_Maximum)(information->inactive + information->allocation_size); } a0006b90: e28dd014 add sp, sp, #20 a0006b94: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); a0006b98: e58d3000 str r3, [sp] a0006b9c: eb0007b4 bl a0008a74 <_Workspace_Allocate> if ( !new_object_block ) a0006ba0: e2508000 subs r8, r0, #0 a0006ba4: e59d3000 ldr r3, [sp] a0006ba8: 1affff9c bne a0006a20 <_Objects_Extend_information+0xb8> a0006bac: eafffff7 b a0006b90 <_Objects_Extend_information+0x228> /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, a0006bb0: e1a03103 lsl r3, r3, #2 a0006bb4: e5951034 ldr r1, [r5, #52] ; 0x34 a0006bb8: e1a02003 mov r2, r3 a0006bbc: e88d1008 stm sp, {r3, ip} a0006bc0: eb001a39 bl a000d4ac information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, a0006bc4: e89d1008 ldm sp, {r3, ip} a0006bc8: e5951030 ldr r1, [r5, #48] ; 0x30 a0006bcc: e1a0000c mov r0, ip a0006bd0: e1a02003 mov r2, r3 a0006bd4: eb001a34 bl a000d4ac information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); a0006bd8: e1d521b0 ldrh r2, [r5, #16] information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, a0006bdc: e1a0000b mov r0, fp a0006be0: e595101c ldr r1, [r5, #28] information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); a0006be4: e0872002 add r2, r7, r2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, a0006be8: e1a02102 lsl r2, r2, #2 a0006bec: eb001a2e bl a000d4ac a0006bf0: e89d1008 ldm sp, {r3, ip} a0006bf4: eaffffa4 b a0006a8c <_Objects_Extend_information+0x124> minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a0006bf8: e1d0a1b0 ldrh sl, [r0, #16] a0006bfc: e1d011b4 ldrh r1, [r0, #20] /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006c00: e1a06007 mov r6, r7 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a0006c04: e3a09001 mov r9, #1 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; a0006c08: e1a03004 mov r3, r4 a0006c0c: eaffff77 b a00069f0 <_Objects_Extend_information+0x88> else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a0006c10: e1a01008 mov r1, r8 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); a0006c14: e1a06007 mov r6, r7 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; a0006c18: e3a09001 mov r9, #1 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; a0006c1c: e1a04003 mov r4, r3 <== NOT EXECUTED a0006c20: eaffff72 b a00069f0 <_Objects_Extend_information+0x88> <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); a0006c24: e1a00008 mov r0, r8 a0006c28: eb000797 bl a0008a8c <_Workspace_Free> return; a0006c2c: eaffffd7 b a0006b90 <_Objects_Extend_information+0x228> =============================================================================== a0006f74 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { a0006f74: e92d40f0 push {r4, r5, r6, r7, lr} /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); a0006f78: e1d040b8 ldrh r4, [r0, #8] block_count = (information->maximum - index_base) / a0006f7c: e1d051b4 ldrh r5, [r0, #20] */ void _Objects_Shrink_information( Objects_Information *information ) { a0006f80: e1a06000 mov r6, r0 /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / a0006f84: e1d001b0 ldrh r0, [r0, #16] a0006f88: e1a01005 mov r1, r5 a0006f8c: e0640000 rsb r0, r4, r0 a0006f90: eb0024c6 bl a00102b0 <__aeabi_uidiv> information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006f94: e3500000 cmp r0, #0 a0006f98: 0a00000d beq a0006fd4 <_Objects_Shrink_information+0x60> if ( information->inactive_per_block[ block ] == a0006f9c: e5962030 ldr r2, [r6, #48] ; 0x30 a0006fa0: e5923000 ldr r3, [r2] a0006fa4: e1550003 cmp r5, r3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006fa8: 13a03000 movne r3, #0 if ( information->inactive_per_block[ block ] == a0006fac: 1a000005 bne a0006fc8 <_Objects_Shrink_information+0x54> a0006fb0: ea000008 b a0006fd8 <_Objects_Shrink_information+0x64> <== NOT EXECUTED a0006fb4: e5b21004 ldr r1, [r2, #4]! information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; a0006fb8: e0844005 add r4, r4, r5 a0006fbc: e1a07103 lsl r7, r3, #2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == a0006fc0: e1550001 cmp r5, r1 a0006fc4: 0a000004 beq a0006fdc <_Objects_Shrink_information+0x68> index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { a0006fc8: e2833001 add r3, r3, #1 a0006fcc: e1500003 cmp r0, r3 a0006fd0: 8afffff7 bhi a0006fb4 <_Objects_Shrink_information+0x40> a0006fd4: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( information->inactive_per_block[ block ] == a0006fd8: e3a07000 mov r7, #0 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; a0006fdc: e5960020 ldr r0, [r6, #32] a0006fe0: ea000002 b a0006ff0 <_Objects_Shrink_information+0x7c> if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); a0006fe4: e3550000 cmp r5, #0 a0006fe8: 0a00000b beq a000701c <_Objects_Shrink_information+0xa8> index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; a0006fec: e1a00005 mov r0, r5 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; do { index = _Objects_Get_index( the_object->id ); a0006ff0: e1d030b8 ldrh r3, [r0, #8] /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; a0006ff4: e5905000 ldr r5, [r0] if ((index >= index_base) && a0006ff8: e1530004 cmp r3, r4 a0006ffc: 3afffff8 bcc a0006fe4 <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { a0007000: e1d621b4 ldrh r2, [r6, #20] a0007004: e0842002 add r2, r4, r2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && a0007008: e1530002 cmp r3, r2 a000700c: 2afffff4 bcs a0006fe4 <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); a0007010: ebfffbbc bl a0005f08 <_Chain_Extract> } } while ( the_object ); a0007014: e3550000 cmp r5, #0 a0007018: 1afffff3 bne a0006fec <_Objects_Shrink_information+0x78> /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); a000701c: e5963034 ldr r3, [r6, #52] ; 0x34 a0007020: e7930007 ldr r0, [r3, r7] a0007024: eb000698 bl a0008a8c <_Workspace_Free> information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; a0007028: e1d602bc ldrh r0, [r6, #44] ; 0x2c a000702c: e1d631b4 ldrh r3, [r6, #20] /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; a0007030: e5961034 ldr r1, [r6, #52] ; 0x34 information->inactive_per_block[ block ] = 0; a0007034: e5962030 ldr r2, [r6, #48] ; 0x30 information->inactive -= information->allocation_size; a0007038: e0633000 rsb r3, r3, r0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; a000703c: e7815007 str r5, [r1, r7] information->inactive_per_block[ block ] = 0; a0007040: e7825007 str r5, [r2, r7] information->inactive -= information->allocation_size; a0007044: e1c632bc strh r3, [r6, #44] ; 0x2c return; a0007048: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a00065bc <_TOD_Validate>: { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a00065bc: e59f30bc ldr r3, [pc, #188] ; a0006680 <_TOD_Validate+0xc4> */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { a00065c0: e92d4010 push {r4, lr} uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a00065c4: e2504000 subs r4, r0, #0 { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); a00065c8: e593100c ldr r1, [r3, #12] if ((!the_tod) || a00065cc: 0a000029 beq a0006678 <_TOD_Validate+0xbc> ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / a00065d0: e3a0093d mov r0, #999424 ; 0xf4000 a00065d4: e2800d09 add r0, r0, #576 ; 0x240 a00065d8: eb004571 bl a0017ba4 <__aeabi_uidiv> rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || a00065dc: e5943018 ldr r3, [r4, #24] a00065e0: e1500003 cmp r0, r3 a00065e4: 9a00001f bls a0006668 <_TOD_Validate+0xac> (the_tod->ticks >= ticks_per_second) || a00065e8: e5943014 ldr r3, [r4, #20] a00065ec: e353003b cmp r3, #59 ; 0x3b a00065f0: 8a00001c bhi a0006668 <_TOD_Validate+0xac> (the_tod->second >= TOD_SECONDS_PER_MINUTE) || a00065f4: e5943010 ldr r3, [r4, #16] a00065f8: e353003b cmp r3, #59 ; 0x3b a00065fc: 8a000019 bhi a0006668 <_TOD_Validate+0xac> (the_tod->minute >= TOD_MINUTES_PER_HOUR) || a0006600: e594300c ldr r3, [r4, #12] a0006604: e3530017 cmp r3, #23 a0006608: 8a000016 bhi a0006668 <_TOD_Validate+0xac> (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || a000660c: e5940004 ldr r0, [r4, #4] rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || a0006610: e3500000 cmp r0, #0 a0006614: 0a000016 beq a0006674 <_TOD_Validate+0xb8> (the_tod->month == 0) || a0006618: e350000c cmp r0, #12 a000661c: 8a000011 bhi a0006668 <_TOD_Validate+0xac> (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0006620: e5942000 ldr r2, [r4] (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || a0006624: e3a03d1f mov r3, #1984 ; 0x7c0 a0006628: e2833003 add r3, r3, #3 a000662c: e1520003 cmp r2, r3 a0006630: 9a00000c bls a0006668 <_TOD_Validate+0xac> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) a0006634: e5944008 ldr r4, [r4, #8] (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || a0006638: e3540000 cmp r4, #0 a000663c: 0a00000b beq a0006670 <_TOD_Validate+0xb4> (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) a0006640: e3120003 tst r2, #3 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a0006644: 059f3038 ldreq r3, [pc, #56] ; a0006684 <_TOD_Validate+0xc8> else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a0006648: 159f3034 ldrne r3, [pc, #52] ; a0006684 <_TOD_Validate+0xc8> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; a000664c: 0280000d addeq r0, r0, #13 a0006650: 07930100 ldreq r0, [r3, r0, lsl #2] else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; a0006654: 17930100 ldrne r0, [r3, r0, lsl #2] * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( a0006658: e1500004 cmp r0, r4 a000665c: 33a00000 movcc r0, #0 a0006660: 23a00001 movcs r0, #1 a0006664: e8bd8010 pop {r4, pc} (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a0006668: e3a00000 mov r0, #0 a000666c: e8bd8010 pop {r4, pc} a0006670: e1a00004 mov r0, r4 <== NOT EXECUTED if ( the_tod->day > days_in_month ) return false; return true; } a0006674: e8bd8010 pop {r4, pc} <== NOT EXECUTED (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; a0006678: e1a00004 mov r0, r4 <== NOT EXECUTED a000667c: e8bd8010 pop {r4, pc} <== NOT EXECUTED =============================================================================== a0007768 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a0007768: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr} /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; a000776c: e3a05000 mov r5, #0 a0007770: e5815100 str r5, [r1, #256] ; 0x100 a0007774: e5815104 str r5, [r1, #260] ; 0x104 extensions_area = NULL; the_thread->libc_reent = NULL; a0007778: e58150fc str r5, [r1, #252] ; 0xfc Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a000777c: e1a04001 mov r4, r1 a0007780: e1a0a000 mov sl, r0 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0007784: e1a00001 mov r0, r1 a0007788: e1a01003 mov r1, r3 Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { a000778c: e1a06003 mov r6, r3 a0007790: e59d8024 ldr r8, [sp, #36] ; 0x24 a0007794: e5dd9028 ldrb r9, [sp, #40] ; 0x28 /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); a0007798: eb00027b bl a000818c <_Thread_Stack_Allocate> if ( !actual_stack_size || actual_stack_size < stack_size ) a000779c: e1500005 cmp r0, r5 a00077a0: 13a07000 movne r7, #0 a00077a4: 03a07001 moveq r7, #1 a00077a8: e1500006 cmp r0, r6 a00077ac: 33877001 orrcc r7, r7, #1 a00077b0: e1570005 cmp r7, r5 a00077b4: 1a00003d bne a00078b0 <_Thread_Initialize+0x148> #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a00077b8: e59f5134 ldr r5, [pc, #308] ; a00078f4 <_Thread_Initialize+0x18c> Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a00077bc: e59430c8 ldr r3, [r4, #200] ; 0xc8 the_stack->size = size; a00077c0: e58400c0 str r0, [r4, #192] ; 0xc0 a00077c4: e5956000 ldr r6, [r5] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; a00077c8: e58430c4 str r3, [r4, #196] ; 0xc4 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; a00077cc: e5847050 str r7, [r4, #80] ; 0x50 a00077d0: e3560000 cmp r6, #0 the_watchdog->routine = routine; a00077d4: e5847064 str r7, [r4, #100] ; 0x64 the_watchdog->id = id; a00077d8: e5847068 str r7, [r4, #104] ; 0x68 the_watchdog->user_data = user_data; a00077dc: e584706c str r7, [r4, #108] ; 0x6c (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; a00077e0: 05846108 streq r6, [r4, #264] ; 0x108 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { a00077e4: 1a000033 bne a00078b8 <_Thread_Initialize+0x150> /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a00077e8: e59d302c ldr r3, [sp, #44] ; 0x2c } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; a00077ec: e3a07000 mov r7, #0 #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; a00077f0: e3a05001 mov r5, #1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; a00077f4: e58430b0 str r3, [r4, #176] ; 0xb0 the_thread->Start.budget_callout = budget_callout; a00077f8: e59d3030 ldr r3, [sp, #48] ; 0x30 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a00077fc: e1a00004 mov r0, r4 a0007800: e1a01008 mov r1, r8 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; a0007804: e58430b4 str r3, [r4, #180] ; 0xb4 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0007808: e59d3034 ldr r3, [sp, #52] ; 0x34 the_thread->current_state = STATES_DORMANT; a000780c: e5845010 str r5, [r4, #16] the_thread->Wait.queue = NULL; a0007810: e5847044 str r7, [r4, #68] ; 0x44 case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; a0007814: e58430b8 str r3, [r4, #184] ; 0xb8 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; a0007818: e584701c str r7, [r4, #28] the_thread->real_priority = priority; a000781c: e5848018 str r8, [r4, #24] the_thread->Start.initial_priority = priority; a0007820: e58480bc str r8, [r4, #188] ; 0xbc /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; a0007824: e5c490ac strb r9, [r4, #172] ; 0xac the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); a0007828: eb0001c3 bl a0007f3c <_Thread_Set_priority> _Thread_Stack_Free( the_thread ); return false; } a000782c: e59a301c ldr r3, [sl, #28] Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( a0007830: e1d420b8 ldrh r2, [r4, #8] /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); a0007834: e5847084 str r7, [r4, #132] ; 0x84 a0007838: e5847088 str r7, [r4, #136] ; 0x88 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; a000783c: e7834102 str r4, [r3, r2, lsl #2] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; a0007840: e59d3038 ldr r3, [sp, #56] ; 0x38 * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); a0007844: e1a00004 mov r0, r4 a0007848: e584300c str r3, [r4, #12] a000784c: eb000363 bl a00085e0 <_User_extensions_Thread_create> if ( extension_status ) a0007850: e1500007 cmp r0, r7 a0007854: 1a000013 bne a00078a8 <_Thread_Initialize+0x140> return true; failed: if ( the_thread->libc_reent ) a0007858: e59400fc ldr r0, [r4, #252] ; 0xfc a000785c: e3500000 cmp r0, #0 a0007860: 0a000000 beq a0007868 <_Thread_Initialize+0x100> _Workspace_Free( the_thread->libc_reent ); a0007864: eb000488 bl a0008a8c <_Workspace_Free> for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007868: e5940100 ldr r0, [r4, #256] ; 0x100 a000786c: e3500000 cmp r0, #0 a0007870: 0a000000 beq a0007878 <_Thread_Initialize+0x110> _Workspace_Free( the_thread->API_Extensions[i] ); a0007874: eb000484 bl a0008a8c <_Workspace_Free> failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) a0007878: e5940104 ldr r0, [r4, #260] ; 0x104 a000787c: e3500000 cmp r0, #0 a0007880: 0a000000 beq a0007888 <_Thread_Initialize+0x120> _Workspace_Free( the_thread->API_Extensions[i] ); a0007884: eb000480 bl a0008a8c <_Workspace_Free> <== NOT EXECUTED if ( extensions_area ) a0007888: e3560000 cmp r6, #0 a000788c: 0a000001 beq a0007898 <_Thread_Initialize+0x130> (void) _Workspace_Free( extensions_area ); a0007890: e1a00006 mov r0, r6 a0007894: eb00047c bl a0008a8c <_Workspace_Free> #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); a0007898: e1a00004 mov r0, r4 a000789c: eb000255 bl a00081f8 <_Thread_Stack_Free> return false; a00078a0: e3a00000 mov r0, #0 a00078a4: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; a00078a8: e1a00005 mov r0, r5 _Thread_Stack_Free( the_thread ); return false; } a00078ac: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ a00078b0: e1a00005 mov r0, r5 a00078b4: e8bd87f0 pop {r4, r5, r6, r7, r8, r9, sl, pc} /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( a00078b8: e2866001 add r6, r6, #1 a00078bc: e1a00106 lsl r0, r6, #2 a00078c0: eb00046b bl a0008a74 <_Workspace_Allocate> (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) a00078c4: e2506000 subs r6, r0, #0 a00078c8: 0affffe2 beq a0007858 <_Thread_Initialize+0xf0> goto failed; } the_thread->extensions = (void **) extensions_area; a00078cc: e5951000 ldr r1, [r5] a00078d0: e5846108 str r6, [r4, #264] ; 0x108 a00078d4: e1a03007 mov r3, r7 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; a00078d8: e1a02007 mov r2, r7 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a00078dc: e2833001 add r3, r3, #1 a00078e0: e1530001 cmp r3, r1 the_thread->extensions[i] = NULL; a00078e4: e7862107 str r2, [r6, r7, lsl #2] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) a00078e8: e1a07003 mov r7, r3 a00078ec: 9afffffa bls a00078dc <_Thread_Initialize+0x174> a00078f0: eaffffbc b a00077e8 <_Thread_Initialize+0x80> =============================================================================== a000b22c <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) { a000b22c: e92d4070 push {r4, r5, r6, lr} a000b230: e20220ff and r2, r2, #255 ; 0xff a000b234: e24dd004 sub sp, sp, #4 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000b238: e10fc000 mrs ip, CPSR a000b23c: e38c3080 orr r3, ip, #128 ; 0x80 a000b240: e129f003 msr CPSR_fc, r3 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); a000b244: e5910010 ldr r0, [r1, #16] a000b248: e3a03bef mov r3, #244736 ; 0x3bc00 a000b24c: e2833e2e add r3, r3, #736 ; 0x2e0 a000b250: e0003003 and r3, r0, r3 Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level ); if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { a000b254: e3530000 cmp r3, #0 a000b258: 0a000021 beq a000b2e4 <_Thread_queue_Extract_priority_helper+0xb8> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a000b25c: e5913038 ldr r3, [r1, #56] ; 0x38 /* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next; a000b260: e8910030 ldm r1, {r4, r5} */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; a000b264: e281003c add r0, r1, #60 ; 0x3c previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { a000b268: e1530000 cmp r3, r0 new_first_thread->Wait.Block2n.last = last_node; last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); } } else { previous_node->next = next_node; a000b26c: 05854000 streq r4, [r5] next_node->previous = previous_node; a000b270: 05845004 streq r5, [r4, #4] */ next_node = the_node->next; previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { a000b274: 0a00000c beq a000b2ac <_Thread_queue_Extract_priority_helper+0x80> new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; a000b278: e5910040 ldr r0, [r1, #64] ; 0x40 new_second_node = new_first_node->next; a000b27c: e5936000 ldr r6, [r3] previous_node->next = new_first_node; next_node->previous = new_first_node; a000b280: e5843004 str r3, [r4, #4] new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { a000b284: e1500003 cmp r0, r3 new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node; a000b288: e5853000 str r3, [r5] next_node->previous = new_first_node; new_first_node->next = next_node; new_first_node->previous = previous_node; a000b28c: e8830030 stm r3, {r4, r5} if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { a000b290: 0a000005 beq a000b2ac <_Thread_queue_Extract_priority_helper+0x80> /* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n ); a000b294: e2835038 add r5, r3, #56 ; 0x38 a000b298: e283403c add r4, r3, #60 ; 0x3c new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous = a000b29c: e5865004 str r5, [r6, #4] _Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node; a000b2a0: e5836038 str r6, [r3, #56] ; 0x38 new_first_thread->Wait.Block2n.last = last_node; a000b2a4: e5830040 str r0, [r3, #64] ; 0x40 last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); a000b2a8: e5804000 str r4, [r0] /* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) { a000b2ac: e3520000 cmp r2, #0 a000b2b0: 1a000008 bne a000b2d8 <_Thread_queue_Extract_priority_helper+0xac> _ISR_Enable( level ); return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { a000b2b4: e5913050 ldr r3, [r1, #80] ; 0x50 a000b2b8: e3530002 cmp r3, #2 a000b2bc: 0a00000a beq a000b2ec <_Thread_queue_Extract_priority_helper+0xc0> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000b2c0: e129f00c msr CPSR_fc, ip a000b2c4: e1a00001 mov r0, r1 a000b2c8: e59f103c ldr r1, [pc, #60] ; a000b30c <_Thread_queue_Extract_priority_helper+0xe0> #if defined(RTEMS_MULTIPROCESSING) if ( !_Objects_Is_local_id( the_thread->Object.id ) ) _Thread_MP_Free_proxy( the_thread ); #endif } a000b2cc: e28dd004 add sp, sp, #4 a000b2d0: e8bd4070 pop {r4, r5, r6, lr} a000b2d4: eaffeffd b a00072d0 <_Thread_Clear_state> a000b2d8: e129f00c msr CPSR_fc, ip a000b2dc: e28dd004 add sp, sp, #4 a000b2e0: e8bd8070 pop {r4, r5, r6, pc} a000b2e4: e129f00c msr CPSR_fc, ip a000b2e8: eafffffb b a000b2dc <_Thread_queue_Extract_priority_helper+0xb0> a000b2ec: e3a03003 mov r3, #3 <== NOT EXECUTED a000b2f0: e5813050 str r3, [r1, #80] ; 0x50 <== NOT EXECUTED a000b2f4: e129f00c msr CPSR_fc, ip <== NOT EXECUTED if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); (void) _Watchdog_Remove( &the_thread->Timer ); a000b2f8: e2810048 add r0, r1, #72 ; 0x48 <== NOT EXECUTED a000b2fc: e58d1000 str r1, [sp] <== NOT EXECUTED a000b300: ebfff571 bl a00088cc <_Watchdog_Remove> <== NOT EXECUTED a000b304: e59d1000 ldr r1, [sp] <== NOT EXECUTED a000b308: eaffffed b a000b2c4 <_Thread_queue_Extract_priority_helper+0x98><== NOT EXECUTED =============================================================================== a0015e6c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { a0015e6c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a0015e70: e24dd024 sub sp, sp, #36 ; 0x24 a0015e74: e28d700c add r7, sp, #12 a0015e78: e28d2018 add r2, sp, #24 a0015e7c: e282a004 add sl, r2, #4 a0015e80: e2872004 add r2, r7, #4 a0015e84: e58d2000 str r2, [sp] Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); a0015e88: e28d2018 add r2, sp, #24 a0015e8c: e58d2020 str r2, [sp, #32] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0015e90: e59d2000 ldr r2, [sp] a0015e94: e59f91cc ldr r9, [pc, #460] ; a0016068 <_Timer_server_Body+0x1fc> a0015e98: e59fb1cc ldr fp, [pc, #460] ; a001606c <_Timer_server_Body+0x200> a0015e9c: e58d200c str r2, [sp, #12] a0015ea0: e2802008 add r2, r0, #8 the_chain->permanent_null = NULL; a0015ea4: e3a03000 mov r3, #0 a0015ea8: e58d2004 str r2, [sp, #4] a0015eac: e2802040 add r2, r0, #64 ; 0x40 a0015eb0: e1a04000 mov r4, r0 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); a0015eb4: e58da018 str sl, [sp, #24] the_chain->permanent_null = NULL; a0015eb8: e58d301c str r3, [sp, #28] a0015ebc: e58d3010 str r3, [sp, #16] the_chain->last = _Chain_Head(the_chain); a0015ec0: e58d7014 str r7, [sp, #20] a0015ec4: e2806030 add r6, r0, #48 ; 0x30 a0015ec8: e2808068 add r8, r0, #104 ; 0x68 a0015ecc: e58d2008 str r2, [sp, #8] { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; a0015ed0: e28d3018 add r3, sp, #24 a0015ed4: e5843078 str r3, [r4, #120] ; 0x78 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; a0015ed8: e5993000 ldr r3, [r9] /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; a0015edc: e594103c ldr r1, [r4, #60] ; 0x3c watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015ee0: e1a02007 mov r2, r7 a0015ee4: e1a00006 mov r0, r6 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; a0015ee8: e584303c str r3, [r4, #60] ; 0x3c _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015eec: e0611003 rsb r1, r1, r3 a0015ef0: eb001166 bl a001a490 <_Watchdog_Adjust_to_chain> static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); a0015ef4: e59b5000 ldr r5, [fp] Watchdog_Interval last_snapshot = watchdogs->last_snapshot; a0015ef8: e5942074 ldr r2, [r4, #116] ; 0x74 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { a0015efc: e1550002 cmp r5, r2 a0015f00: 8a000022 bhi a0015f90 <_Timer_server_Body+0x124> * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { a0015f04: 3a000018 bcc a0015f6c <_Timer_server_Body+0x100> */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; a0015f08: e5845074 str r5, [r4, #116] ; 0x74 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0015f0c: e5940078 ldr r0, [r4, #120] ; 0x78 a0015f10: eb0002bc bl a0016a08 <_Chain_Get> if ( timer == NULL ) { a0015f14: e2501000 subs r1, r0, #0 a0015f18: 0a00000b beq a0015f4c <_Timer_server_Body+0xe0> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { a0015f1c: e5913038 ldr r3, [r1, #56] ; 0x38 a0015f20: e3530001 cmp r3, #1 a0015f24: 0a000015 beq a0015f80 <_Timer_server_Body+0x114> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { a0015f28: e3530003 cmp r3, #3 a0015f2c: 1afffff6 bne a0015f0c <_Timer_server_Body+0xa0> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); a0015f30: e2811010 add r1, r1, #16 a0015f34: e1a00008 mov r0, r8 a0015f38: eb00117e bl a001a538 <_Watchdog_Insert> } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); a0015f3c: e5940078 ldr r0, [r4, #120] ; 0x78 a0015f40: eb0002b0 bl a0016a08 <_Chain_Get> if ( timer == NULL ) { a0015f44: e2501000 subs r1, r0, #0 a0015f48: 1afffff3 bne a0015f1c <_Timer_server_Body+0xb0> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a0015f4c: e10f2000 mrs r2, CPSR a0015f50: e3823080 orr r3, r2, #128 ; 0x80 a0015f54: e129f003 msr CPSR_fc, r3 * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { a0015f58: e59d3018 ldr r3, [sp, #24] a0015f5c: e15a0003 cmp sl, r3 a0015f60: 0a00000f beq a0015fa4 <_Timer_server_Body+0x138> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a0015f64: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED a0015f68: eaffffda b a0015ed8 <_Timer_server_Body+0x6c> <== NOT EXECUTED /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); a0015f6c: e1a00008 mov r0, r8 a0015f70: e3a01001 mov r1, #1 a0015f74: e0652002 rsb r2, r5, r2 a0015f78: eb001115 bl a001a3d4 <_Watchdog_Adjust> a0015f7c: eaffffe1 b a0015f08 <_Timer_server_Body+0x9c> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); a0015f80: e1a00006 mov r0, r6 a0015f84: e2811010 add r1, r1, #16 a0015f88: eb00116a bl a001a538 <_Watchdog_Insert> a0015f8c: eaffffde b a0015f0c <_Timer_server_Body+0xa0> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); a0015f90: e0621005 rsb r1, r2, r5 a0015f94: e1a00008 mov r0, r8 a0015f98: e1a02007 mov r2, r7 a0015f9c: eb00113b bl a001a490 <_Watchdog_Adjust_to_chain> a0015fa0: eaffffd8 b a0015f08 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; a0015fa4: e5841078 str r1, [r4, #120] ; 0x78 a0015fa8: e129f002 msr CPSR_fc, r2 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { a0015fac: e59d300c ldr r3, [sp, #12] a0015fb0: e59d2000 ldr r2, [sp] a0015fb4: e1520003 cmp r2, r3 a0015fb8: 0a000015 beq a0016014 <_Timer_server_Body+0x1a8> a0015fbc: e1a05004 mov r5, r4 a0015fc0: e59d4000 ldr r4, [sp] a0015fc4: ea000009 b a0015ff0 <_Timer_server_Body+0x184> { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; a0015fc8: e5923000 ldr r3, [r2] the_chain->first = new_first; new_first->previous = _Chain_Head(the_chain); a0015fcc: e5837004 str r7, [r3, #4] Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; the_chain->first = new_first; a0015fd0: e58d300c str r3, [sp, #12] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; a0015fd4: e3a03000 mov r3, #0 a0015fd8: e5823008 str r3, [r2, #8] a0015fdc: e129f001 msr CPSR_fc, r1 /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); a0015fe0: e592301c ldr r3, [r2, #28] a0015fe4: e5920020 ldr r0, [r2, #32] a0015fe8: e5921024 ldr r1, [r2, #36] ; 0x24 a0015fec: e12fff33 blx r3 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a0015ff0: e10f1000 mrs r1, CPSR a0015ff4: e3813080 orr r3, r1, #128 ; 0x80 a0015ff8: e129f003 msr CPSR_fc, r3 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a0015ffc: e59d200c ldr r2, [sp, #12] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) a0016000: e1540002 cmp r4, r2 a0016004: 1affffef bne a0015fc8 <_Timer_server_Body+0x15c> a0016008: e1a04005 mov r4, r5 static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a001600c: e129f001 msr CPSR_fc, r1 a0016010: eaffffae b a0015ed0 <_Timer_server_Body+0x64> } } else { ts->active = false; a0016014: e3a02000 mov r2, #0 a0016018: e5c4207c strb r2, [r4, #124] ; 0x7c a001601c: e59f204c ldr r2, [pc, #76] ; a0016070 <_Timer_server_Body+0x204> a0016020: e5923000 ldr r3, [r2] a0016024: e2833001 add r3, r3, #1 a0016028: e5823000 str r3, [r2] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); a001602c: e3a01008 mov r1, #8 a0016030: e5940000 ldr r0, [r4] a0016034: eb000e8c bl a0019a6c <_Thread_Set_state> _Timer_server_Reset_interval_system_watchdog( ts ); a0016038: e1a00004 mov r0, r4 a001603c: ebffff5e bl a0015dbc <_Timer_server_Reset_interval_system_watchdog> _Timer_server_Reset_tod_system_watchdog( ts ); a0016040: e1a00004 mov r0, r4 a0016044: ebffff72 bl a0015e14 <_Timer_server_Reset_tod_system_watchdog> _Thread_Enable_dispatch(); a0016048: eb000bf5 bl a0019024 <_Thread_Enable_dispatch> ts->active = true; a001604c: e3a03001 mov r3, #1 a0016050: e5c4307c strb r3, [r4, #124] ; 0x7c static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); a0016054: e59d0004 ldr r0, [sp, #4] a0016058: eb0011a3 bl a001a6ec <_Watchdog_Remove> static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); a001605c: e59d0008 ldr r0, [sp, #8] a0016060: eb0011a1 bl a001a6ec <_Watchdog_Remove> a0016064: eaffff99 b a0015ed0 <_Timer_server_Body+0x64> =============================================================================== a000a1f8 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a000a1f8: e5902000 ldr r2, [r0] a000a1fc: e5913000 ldr r3, [r1] a000a200: e1520003 cmp r2, r3 return true; a000a204: c3a00001 movgt r0, #1 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) a000a208: c12fff1e bxgt lr return true; if ( lhs->tv_sec < rhs->tv_sec ) a000a20c: ba000005 blt a000a228 <_Timespec_Greater_than+0x30> #include #include #include bool _Timespec_Greater_than( a000a210: e5900004 ldr r0, [r0, #4] a000a214: e5913004 ldr r3, [r1, #4] a000a218: e1500003 cmp r0, r3 a000a21c: d3a00000 movle r0, #0 a000a220: c3a00001 movgt r0, #1 a000a224: e12fff1e bx lr { if ( lhs->tv_sec > rhs->tv_sec ) return true; if ( lhs->tv_sec < rhs->tv_sec ) return false; a000a228: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } a000a22c: e12fff1e bx lr <== NOT EXECUTED =============================================================================== a00085e0 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { a00085e0: e92d40f0 push {r4, r5, r6, r7, lr} Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a00085e4: e59f504c ldr r5, [pc, #76] ; a0008638 <_User_extensions_Thread_create+0x58> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { a00085e8: e1a06000 mov r6, r0 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a00085ec: e4954004 ldr r4, [r5], #4 a00085f0: e1540005 cmp r4, r5 a00085f4: 0a00000d beq a0008630 <_User_extensions_Thread_create+0x50> the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( a00085f8: e59f703c ldr r7, [pc, #60] ; a000863c <_User_extensions_Thread_create+0x5c> !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { a00085fc: e5943014 ldr r3, [r4, #20] status = (*the_extension->Callouts.thread_create)( a0008600: e1a01006 mov r1, r6 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { a0008604: e3530000 cmp r3, #0 a0008608: 0a000003 beq a000861c <_User_extensions_Thread_create+0x3c> status = (*the_extension->Callouts.thread_create)( a000860c: e5970004 ldr r0, [r7, #4] a0008610: e12fff33 blx r3 _Thread_Executing, the_thread ); if ( !status ) a0008614: e3500000 cmp r0, #0 a0008618: 0a000005 beq a0008634 <_User_extensions_Thread_create+0x54> User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { a000861c: e5944000 ldr r4, [r4] { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; a0008620: e1540005 cmp r4, r5 a0008624: 1afffff4 bne a00085fc <_User_extensions_Thread_create+0x1c> if ( !status ) return false; } } return true; a0008628: e3a00001 mov r0, #1 a000862c: e8bd80f0 pop {r4, r5, r6, r7, pc} a0008630: e3a00001 mov r0, #1 <== NOT EXECUTED } a0008634: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== a000a5a4 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { a000a5a4: e92d41f0 push {r4, r5, r6, r7, r8, lr} a000a5a8: e1a04000 mov r4, r0 a000a5ac: e1a05002 mov r5, r2 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000a5b0: e10f3000 mrs r3, CPSR a000a5b4: e3832080 orr r2, r3, #128 ; 0x80 a000a5b8: e129f002 msr CPSR_fc, r2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); a000a5bc: e1a07000 mov r7, r0 a000a5c0: e4972004 ldr r2, [r7], #4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { a000a5c4: e1520007 cmp r2, r7 a000a5c8: 0a000018 beq a000a630 <_Watchdog_Adjust+0x8c> switch ( direction ) { a000a5cc: e3510000 cmp r1, #0 a000a5d0: 1a000018 bne a000a638 <_Watchdog_Adjust+0x94> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { a000a5d4: e3550000 cmp r5, #0 a000a5d8: 0a000014 beq a000a630 <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { a000a5dc: e5926010 ldr r6, [r2, #16] a000a5e0: e1550006 cmp r5, r6 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; a000a5e4: 23a08001 movcs r8, #1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { a000a5e8: 2a000005 bcs a000a604 <_Watchdog_Adjust+0x60> a000a5ec: ea000018 b a000a654 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { a000a5f0: e0555006 subs r5, r5, r6 a000a5f4: 0a00000d beq a000a630 <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { a000a5f8: e5926010 ldr r6, [r2, #16] a000a5fc: e1560005 cmp r6, r5 a000a600: 8a000013 bhi a000a654 <_Watchdog_Adjust+0xb0> _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; a000a604: e5828010 str r8, [r2, #16] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000a608: e129f003 msr CPSR_fc, r3 _ISR_Enable( level ); _Watchdog_Tickle( header ); a000a60c: e1a00004 mov r0, r4 a000a610: eb0000aa bl a000a8c0 <_Watchdog_Tickle> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000a614: e10f3000 mrs r3, CPSR a000a618: e3832080 orr r2, r3, #128 ; 0x80 a000a61c: e129f002 msr CPSR_fc, r2 a000a620: e5941000 ldr r1, [r4] _ISR_Disable( level ); if ( _Chain_Is_empty( header ) ) a000a624: e1570001 cmp r7, r1 RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First( Chain_Control *header ) { return ( (Watchdog_Control *) header->first ); a000a628: e1a02001 mov r2, r1 a000a62c: 1affffef bne a000a5f0 <_Watchdog_Adjust+0x4c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000a630: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } a000a634: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { a000a638: e3510001 cmp r1, #1 a000a63c: 1afffffb bne a000a630 <_Watchdog_Adjust+0x8c> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; a000a640: e5921010 ldr r1, [r2, #16] a000a644: e0815005 add r5, r1, r5 a000a648: e5825010 str r5, [r2, #16] a000a64c: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } a000a650: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; a000a654: e0655006 rsb r5, r5, r6 a000a658: e5825010 str r5, [r2, #16] break; a000a65c: eafffff3 b a000a630 <_Watchdog_Adjust+0x8c> =============================================================================== a0006e54 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { a0006e54: e92d4030 push {r4, r5, lr} a0006e58: e1a04000 mov r4, r0 rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) a0006e5c: e59f014c ldr r0, [pc, #332] ; a0006fb0 rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; a0006e60: e59f314c ldr r3, [pc, #332] ; a0006fb4 if ( rtems_interrupt_is_in_progress() ) a0006e64: e5900000 ldr r0, [r0] a0006e68: e3500000 cmp r0, #0 rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; a0006e6c: e5930000 ldr r0, [r3] if ( rtems_interrupt_is_in_progress() ) a0006e70: 1a000033 bne a0006f44 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) a0006e74: e3520000 cmp r2, #0 a0006e78: 0a000041 beq a0006f84 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) a0006e7c: e3510000 cmp r1, #0 if ( registered_major == NULL ) return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; a0006e80: e5820000 str r0, [r2] if ( driver_table == NULL ) a0006e84: 0a00003e beq a0006f84 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006e88: e591c000 ldr ip, [r1] a0006e8c: e35c0000 cmp ip, #0 a0006e90: 0a000038 beq a0006f78 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) a0006e94: e1500004 cmp r0, r4 a0006e98: 9a000027 bls a0006f3c rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; a0006e9c: e59f0114 ldr r0, [pc, #276] ; a0006fb8 a0006ea0: e590c000 ldr ip, [r0] a0006ea4: e28cc001 add ip, ip, #1 a0006ea8: e580c000 str ip, [r0] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { a0006eac: e3540000 cmp r4, #0 a0006eb0: 1a000025 bne a0006f4c static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; a0006eb4: e593c000 ldr ip, [r3] rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { a0006eb8: e35c0000 cmp ip, #0 a0006ebc: 0a000032 beq a0006f8c a0006ec0: e59fe0f4 ldr lr, [pc, #244] ; a0006fbc a0006ec4: e59e3000 ldr r3, [lr] a0006ec8: ea000003 b a0006edc a0006ecc: e2844001 add r4, r4, #1 a0006ed0: e15c0004 cmp ip, r4 a0006ed4: e2833018 add r3, r3, #24 a0006ed8: 9a000005 bls a0006ef4 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006edc: e5930000 ldr r0, [r3] a0006ee0: e3500000 cmp r0, #0 a0006ee4: 1afffff8 bne a0006ecc a0006ee8: e5930004 ldr r0, [r3, #4] a0006eec: e3500000 cmp r0, #0 a0006ef0: 1afffff5 bne a0006ecc } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) a0006ef4: e15c0004 cmp ip, r4 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; a0006ef8: e5824000 str r4, [r2] if ( m != n ) a0006efc: 0a000023 beq a0006f90 a0006f00: e3a0c018 mov ip, #24 a0006f04: e00c0c94 mul ip, r4, ip } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; a0006f08: e59e5000 ldr r5, [lr] a0006f0c: e1a0e001 mov lr, r1 a0006f10: e8be000f ldm lr!, {r0, r1, r2, r3} a0006f14: e085c00c add ip, r5, ip a0006f18: e8ac000f stmia ip!, {r0, r1, r2, r3} a0006f1c: e89e0003 ldm lr, {r0, r1} a0006f20: e88c0003 stm ip, {r0, r1} _Thread_Enable_dispatch(); a0006f24: eb000699 bl a0008990 <_Thread_Enable_dispatch> return rtems_io_initialize( major, 0, NULL ); a0006f28: e3a01000 mov r1, #0 a0006f2c: e1a00004 mov r0, r4 a0006f30: e1a02001 mov r2, r1 } a0006f34: e8bd4030 pop {r4, r5, lr} _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); a0006f38: ea001ed2 b a000ea88 if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) return RTEMS_INVALID_NUMBER; a0006f3c: e3a0000a mov r0, #10 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } a0006f40: e8bd8030 pop {r4, r5, pc} ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; a0006f44: e3a00012 mov r0, #18 a0006f48: e8bd8030 pop {r4, r5, pc} _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; a0006f4c: e59fe068 ldr lr, [pc, #104] ; a0006fbc a0006f50: e3a0c018 mov ip, #24 a0006f54: e00c0c94 mul ip, r4, ip a0006f58: e59e3000 ldr r3, [lr] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f5c: e793000c ldr r0, [r3, ip] _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; a0006f60: e083300c add r3, r3, ip static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f64: e3500000 cmp r0, #0 a0006f68: 0a00000b beq a0006f9c major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); a0006f6c: eb000687 bl a0008990 <_Thread_Enable_dispatch> return RTEMS_RESOURCE_IN_USE; a0006f70: e3a0000c mov r0, #12 a0006f74: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f78: e591c004 ldr ip, [r1, #4] a0006f7c: e35c0000 cmp ip, #0 a0006f80: 1affffc3 bne a0006e94 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; a0006f84: e3a00009 mov r0, #9 a0006f88: e8bd8030 pop {r4, r5, pc} if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; a0006f8c: e5824000 str r4, [r2] <== NOT EXECUTED if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); a0006f90: eb00067e bl a0008990 <_Thread_Enable_dispatch> *major = m; if ( m != n ) return RTEMS_SUCCESSFUL; return RTEMS_TOO_MANY; a0006f94: e3a00005 mov r0, #5 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); return sc; a0006f98: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; a0006f9c: e5933004 ldr r3, [r3, #4] a0006fa0: e3530000 cmp r3, #0 a0006fa4: 1afffff0 bne a0006f6c if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; a0006fa8: e5824000 str r4, [r2] a0006fac: eaffffd5 b a0006f08 =============================================================================== a000c764 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { a000c764: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) a000c768: e2525000 subs r5, r2, #0 rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { a000c76c: e1a04000 mov r4, r0 a000c770: e1a06001 mov r6, r1 ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) a000c774: 0a000056 beq a000c8d4 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; a000c778: e59f915c ldr r9, [pc, #348] ; a000c8dc a000c77c: e5997004 ldr r7, [r9, #4] api = executing->API_Extensions[ THREAD_API_RTEMS ]; a000c780: e5978100 ldr r8, [r7, #256] ; 0x100 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; a000c784: e5d7a074 ldrb sl, [r7, #116] ; 0x74 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) a000c788: e597307c ldr r3, [r7, #124] ; 0x7c old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c78c: e5d8b008 ldrb fp, [r8, #8] executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; a000c790: e35a0000 cmp sl, #0 a000c794: 03a0ac01 moveq sl, #256 ; 0x100 a000c798: 13a0a000 movne sl, #0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) a000c79c: e3530000 cmp r3, #0 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; a000c7a0: 138aac02 orrne sl, sl, #512 ; 0x200 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c7a4: e35b0000 cmp fp, #0 a000c7a8: 03a0bb01 moveq fp, #1024 ; 0x400 a000c7ac: 13a0b000 movne fp, #0 old_mode |= _ISR_Get_level(); a000c7b0: ebfff1ab bl a0008e64 <_CPU_ISR_Get_level> if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; a000c7b4: e18bb000 orr fp, fp, r0 old_mode |= _ISR_Get_level(); a000c7b8: e18ba00a orr sl, fp, sl /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) a000c7bc: e3160c01 tst r6, #256 ; 0x100 old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; old_mode |= _ISR_Get_level(); *previous_mode_set = old_mode; a000c7c0: e585a000 str sl, [r5] /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) a000c7c4: 0a000003 beq a000c7d8 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; a000c7c8: e3140c01 tst r4, #256 ; 0x100 a000c7cc: 13a03000 movne r3, #0 a000c7d0: 03a03001 moveq r3, #1 a000c7d4: e5c73074 strb r3, [r7, #116] ; 0x74 if ( mask & RTEMS_TIMESLICE_MASK ) { a000c7d8: e3160c02 tst r6, #512 ; 0x200 a000c7dc: 1a00001c bne a000c854 /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) a000c7e0: e3160080 tst r6, #128 ; 0x80 a000c7e4: 1a000023 bne a000c878 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { a000c7e8: e2166b01 ands r6, r6, #1024 ; 0x400 a000c7ec: 0a000012 beq a000c83c is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c7f0: e5d82008 ldrb r2, [r8, #8] * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( a000c7f4: e3140b01 tst r4, #1024 ; 0x400 a000c7f8: 13a03000 movne r3, #0 a000c7fc: 03a03001 moveq r3, #1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c800: e1520003 cmp r2, r3 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; a000c804: 03a06000 moveq r6, #0 if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { a000c808: 0a00000b beq a000c83c asr->is_enabled = is_asr_enabled; a000c80c: e5c83008 strb r3, [r8, #8] static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( a000c810: e10f3000 mrs r3, CPSR a000c814: e3832080 orr r2, r3, #128 ; 0x80 a000c818: e129f002 msr CPSR_fc, r2 { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; a000c81c: e5981018 ldr r1, [r8, #24] information->signals_pending = information->signals_posted; a000c820: e5982014 ldr r2, [r8, #20] information->signals_posted = _signals; a000c824: e5881014 str r1, [r8, #20] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; a000c828: e5882018 str r2, [r8, #24] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( a000c82c: e129f003 msr CPSR_fc, r3 _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { a000c830: e5986014 ldr r6, [r8, #20] a000c834: e3560000 cmp r6, #0 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; a000c838: 13a06001 movne r6, #1 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) a000c83c: e59f309c ldr r3, [pc, #156] ; a000c8e0 a000c840: e5933000 ldr r3, [r3] a000c844: e3530003 cmp r3, #3 a000c848: 0a00000d beq a000c884 if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) _Thread_Dispatch(); return RTEMS_SUCCESSFUL; a000c84c: e3a00000 mov r0, #0 <== NOT EXECUTED a000c850: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { a000c854: e2143c02 ands r3, r4, #512 ; 0x200 executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; a000c858: 13a03001 movne r3, #1 a000c85c: 1587307c strne r3, [r7, #124] ; 0x7c executing->cpu_time_budget = _Thread_Ticks_per_timeslice; a000c860: 159f307c ldrne r3, [pc, #124] ; a000c8e4 } else executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE; a000c864: 0587307c streq r3, [r7, #124] ; 0x7c executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; a000c868: 15933000 ldrne r3, [r3] a000c86c: 15873078 strne r3, [r7, #120] ; 0x78 /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) a000c870: e3160080 tst r6, #128 ; 0x80 a000c874: 0affffdb beq a000c7e8 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); a000c878: e2040080 and r0, r4, #128 ; 0x80 a000c87c: ebfff173 bl a0008e50 <_CPU_ISR_Set_level> a000c880: eaffffd8 b a000c7e8 */ RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void ) { Thread_Control *executing; executing = _Thread_Executing; a000c884: e5993004 ldr r3, [r9, #4] if ( !_States_Is_ready( executing->current_state ) || a000c888: e5932010 ldr r2, [r3, #16] a000c88c: e3520000 cmp r2, #0 a000c890: 1a00000a bne a000c8c0 a000c894: e59f2040 ldr r2, [pc, #64] ; a000c8dc a000c898: e5922008 ldr r2, [r2, #8] a000c89c: e1530002 cmp r3, r2 a000c8a0: 0a000002 beq a000c8b0 ( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) { a000c8a4: e5d33074 ldrb r3, [r3, #116] ; 0x74 a000c8a8: e3530000 cmp r3, #0 a000c8ac: 1a000003 bne a000c8c0 } } } if ( _System_state_Is_up( _System_state_Get() ) ) if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) a000c8b0: e3560000 cmp r6, #0 a000c8b4: 1a000003 bne a000c8c8 _Thread_Dispatch(); return RTEMS_SUCCESSFUL; a000c8b8: e1a00006 mov r0, r6 } a000c8bc: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} _Context_Switch_necessary = true; a000c8c0: e3a03001 mov r3, #1 a000c8c4: e5c93010 strb r3, [r9, #16] } } if ( _System_state_Is_up( _System_state_Get() ) ) if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) _Thread_Dispatch(); a000c8c8: ebffeb26 bl a0007568 <_Thread_Dispatch> return RTEMS_SUCCESSFUL; a000c8cc: e3a00000 mov r0, #0 a000c8d0: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; a000c8d4: e3a00009 mov r0, #9 a000c8d8: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}