a0016b2c <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
a0016b2c: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
a0016b30: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
a0016b34: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
a0016b38: e1a07000 mov r7, r0 a0016b3c: e1a05002 mov r5, r2 a0016b40: e1a08001 mov r8, r1 a0016b44: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { a0016b48: 3a000013 bcc a0016b9c <_CORE_message_queue_Broadcast+0x70> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) {
a0016b4c: e5906048 ldr r6, [r0, #72] ; 0x48 a0016b50: e3560000 cmp r6, #0
a0016b54: 0a000009 beq a0016b80 <_CORE_message_queue_Broadcast+0x54> *count = 0;
a0016b58: e3a00000 mov r0, #0 a0016b5c: e58a0000 str r0, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
a0016b60: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
a0016b64: e594002c ldr r0, [r4, #44] ; 0x2c a0016b68: e1a01008 mov r1, r8 a0016b6c: e1a02005 mov r2, r5 a0016b70: eb0020ef bl a001ef34 <memcpy>
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
a0016b74: e5943028 ldr r3, [r4, #40] ; 0x28
*/ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1;
a0016b78: e2866001 add r6, r6, #1
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
a0016b7c: e5835000 str r5, [r3]
* There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
a0016b80: e1a00007 mov r0, r7 a0016b84: eb0009d4 bl a00192dc <_Thread_queue_Dequeue>
/* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread =
a0016b88: e2504000 subs r4, r0, #0
a0016b8c: 1afffff4 bne a0016b64 <_CORE_message_queue_Broadcast+0x38> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted;
a0016b90: e58a6000 str r6, [sl] a0016b94: e1a00004 mov r0, r4
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; }
a0016b98: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
{ Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
a0016b9c: e3a00001 mov r0, #1 <== NOT EXECUTED a0016ba0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
a000a244 <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
a000a244: e59f2154 ldr r2, [pc, #340] ; a000a3a0 <_CORE_mutex_Seize_interrupt_trylock+0x15c>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
a000a248: e3a03000 mov r3, #0
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) {
a000a24c: e92d4070 push {r4, r5, r6, lr}
{ Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
a000a250: e5922000 ldr r2, [r2]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
a000a254: e5823034 str r3, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
a000a258: e590c050 ldr ip, [r0, #80] ; 0x50 a000a25c: e15c0003 cmp ip, r3
a000a260: 0a00000e beq a000a2a0 <_CORE_mutex_Seize_interrupt_trylock+0x5c> the_mutex->lock = CORE_MUTEX_LOCKED;
a000a264: e5803050 str r3, [r0, #80] ; 0x50
*/ RTEMS_INLINE_ROUTINE bool _CORE_mutex_Is_inherit_priority( CORE_mutex_Attributes *the_attribute ) { return the_attribute->discipline == CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT;
a000a268: e590c048 ldr ip, [r0, #72] ; 0x48
executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
a000a26c: e5925008 ldr r5, [r2, #8]
the_mutex->nest_count = 1;
a000a270: e3a04001 mov r4, #1
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
a000a274: e35c0002 cmp ip, #2
executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
a000a278: e5805060 str r5, [r0, #96] ; 0x60
executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing;
a000a27c: e580205c str r2, [r0, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id; the_mutex->nest_count = 1;
a000a280: e5804054 str r4, [r0, #84] ; 0x54
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || a000a284: 0a00000a beq a000a2b4 <_CORE_mutex_Seize_interrupt_trylock+0x70>
a000a288: e35c0003 cmp ip, #3
a000a28c: 0a000019 beq a000a2f8 <_CORE_mutex_Seize_interrupt_trylock+0xb4>
a000a290: e5913000 ldr r3, [r1] a000a294: e129f003 msr CPSR_fc, r3 a000a298: e3a00000 mov r0, #0 a000a29c: e8bd8070 pop {r4, r5, r6, pc}
/* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) {
a000a2a0: e590305c ldr r3, [r0, #92] ; 0x5c a000a2a4: e1520003 cmp r2, r3
a000a2a8: 0a000008 beq a000a2d0 <_CORE_mutex_Seize_interrupt_trylock+0x8c>
a000a2ac: e3a00001 mov r0, #1
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); }
a000a2b0: e8bd8070 pop {r4, r5, r6, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
a000a2b4: e592301c ldr r3, [r2, #28] a000a2b8: e2833001 add r3, r3, #1 a000a2bc: e582301c str r3, [r2, #28] a000a2c0: e5913000 ldr r3, [r1] a000a2c4: e129f003 msr CPSR_fc, r3 a000a2c8: e3a00000 mov r0, #0 a000a2cc: e8bd8070 pop {r4, r5, r6, pc}
* At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) {
a000a2d0: e5903040 ldr r3, [r0, #64] ; 0x40 a000a2d4: e3530000 cmp r3, #0
a000a2d8: 1a000017 bne a000a33c <_CORE_mutex_Seize_interrupt_trylock+0xf8> case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++;
a000a2dc: e5903054 ldr r3, [r0, #84] ; 0x54 a000a2e0: e2833001 add r3, r3, #1 a000a2e4: e5803054 str r3, [r0, #84] ; 0x54 a000a2e8: e5913000 ldr r3, [r1] a000a2ec: e129f003 msr CPSR_fc, r3 a000a2f0: e3a00000 mov r0, #0 a000a2f4: e8bd8070 pop {r4, r5, r6, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
a000a2f8: e592c01c ldr ip, [r2, #28]
{ Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority;
a000a2fc: e5925014 ldr r5, [r2, #20]
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
a000a300: e08c6004 add r6, ip, r4 a000a304: e582601c str r6, [r2, #28]
*/ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling;
a000a308: e590604c ldr r6, [r0, #76] ; 0x4c
current = executing->current_priority; if ( current == ceiling ) {
a000a30c: e1560005 cmp r6, r5
a000a310: 0a00001e beq a000a390 <_CORE_mutex_Seize_interrupt_trylock+0x14c> _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { a000a314: 3a000010 bcc a000a35c <_CORE_mutex_Seize_interrupt_trylock+0x118> ); _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
a000a318: e3a05006 mov r5, #6 a000a31c: e5825034 str r5, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */
a000a320: e5803054 str r3, [r0, #84] ; 0x54
_Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED;
a000a324: e5804050 str r4, [r0, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */
a000a328: e582c01c str ip, [r2, #28] a000a32c: e5913000 ldr r3, [r1] a000a330: e129f003 msr CPSR_fc, r3 a000a334: e3a00000 mov r0, #0 a000a338: e8bd8070 pop {r4, r5, r6, pc}
* At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) {
a000a33c: e3530001 cmp r3, #1
a000a340: 1affffd9 bne a000a2ac <_CORE_mutex_Seize_interrupt_trylock+0x68> case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
a000a344: e3a03002 mov r3, #2 <== NOT EXECUTED a000a348: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED a000a34c: e5913000 ldr r3, [r1] <== NOT EXECUTED a000a350: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED a000a354: e3a00000 mov r0, #0 <== NOT EXECUTED a000a358: e8bd8070 pop {r4, r5, r6, pc} <== NOT EXECUTED
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
a000a35c: e59f3040 ldr r3, [pc, #64] ; a000a3a4 <_CORE_mutex_Seize_interrupt_trylock+0x160> a000a360: e5932000 ldr r2, [r3] a000a364: e2822001 add r2, r2, #1 a000a368: e5832000 str r2, [r3] a000a36c: e5913000 ldr r3, [r1] a000a370: e129f003 msr CPSR_fc, r3
} if ( current > ceiling ) { _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority(
a000a374: e3a02000 mov r2, #0 a000a378: e590104c ldr r1, [r0, #76] ; 0x4c a000a37c: e590005c ldr r0, [r0, #92] ; 0x5c a000a380: ebfff173 bl a0006954 <_Thread_Change_priority>
the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch();
a000a384: ebfff2e0 bl a0006f0c <_Thread_Enable_dispatch> a000a388: e3a00000 mov r0, #0 a000a38c: e8bd8070 pop {r4, r5, r6, pc} a000a390: e5913000 ldr r3, [r1] a000a394: e129f003 msr CPSR_fc, r3 a000a398: e3a00000 mov r0, #0 a000a39c: e8bd8070 pop {r4, r5, r6, pc} a000a3a0: a0019a80 .word 0xa0019a80 a000a3a4: a00199cc .word 0xa00199cc
a000a488 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
a000a488: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a000a48c: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size;
a000a490: e5902010 ldr r2, [r0, #16]
Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
a000a494: e24dd01c sub sp, sp, #28 a000a498: e1a05001 mov r5, r1
- HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) {
a000a49c: e2911004 adds r1, r1, #4
Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
a000a4a0: e1a07000 mov r7, r0
- HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) {
a000a4a4: e58d1000 str r1, [sp]
Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
a000a4a8: e1a0b003 mov fp, r3
return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next;
a000a4ac: e590a008 ldr sl, [r0, #8]
Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size;
a000a4b0: e58d200c str r2, [sp, #12]
uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { a000a4b4: 2a000074 bcs a000a68c <_Heap_Allocate_aligned_with_boundary+0x204> /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) {
a000a4b8: e3530000 cmp r3, #0
a000a4bc: 1a000070 bne a000a684 <_Heap_Allocate_aligned_with_boundary+0x1fc> if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
a000a4c0: e157000a cmp r7, sl a000a4c4: 03a06000 moveq r6, #0
a000a4c8: 0a000072 beq a000a698 <_Heap_Allocate_aligned_with_boundary+0x210> uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
a000a4cc: e59d300c ldr r3, [sp, #12]
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
a000a4d0: e2651004 rsb r1, r5, #4
if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
a000a4d4: e3a06000 mov r6, #0
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
a000a4d8: e2833007 add r3, r3, #7 a000a4dc: e58d3010 str r3, [sp, #16]
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
a000a4e0: e58d1014 str r1, [sp, #20] a000a4e4: ea000004 b a000a4fc <_Heap_Allocate_aligned_with_boundary+0x74>
boundary ); } } if ( alloc_begin != 0 ) {
a000a4e8: e3540000 cmp r4, #0
a000a4ec: 1a000057 bne a000a650 <_Heap_Allocate_aligned_with_boundary+0x1c8> break; } block = block->next;
a000a4f0: e59aa008 ldr sl, [sl, #8]
if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
a000a4f4: e157000a cmp r7, sl
a000a4f8: 0a000066 beq a000a698 <_Heap_Allocate_aligned_with_boundary+0x210> /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) {
a000a4fc: e59a9004 ldr r9, [sl, #4] a000a500: e59d2000 ldr r2, [sp]
while ( block != free_list_tail ) { _HAssert( _Heap_Is_prev_used( block ) ); /* Statistics */ ++search_count;
a000a504: e2866001 add r6, r6, #1
/* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) {
a000a508: e1520009 cmp r2, r9
a000a50c: 2afffff7 bcs a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68> if ( alignment == 0 ) {
a000a510: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
a000a514: 028a4008 addeq r4, sl, #8
a000a518: 0afffff2 beq a000a4e8 <_Heap_Allocate_aligned_with_boundary+0x60> uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
a000a51c: e59d1014 ldr r1, [sp, #20]
uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size;
a000a520: e5973014 ldr r3, [r7, #20]
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
a000a524: e59d2010 ldr r2, [sp, #16]
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size;
a000a528: e3c99001 bic r9, r9, #1 a000a52c: e08a9009 add r9, sl, r9
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
a000a530: e0814009 add r4, r1, r9
uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size;
a000a534: e58d3004 str r3, [sp, #4]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
a000a538: e1a00004 mov r0, r4
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
a000a53c: e0633002 rsb r3, r3, r2 a000a540: e1a01008 mov r1, r8 a000a544: e0839009 add r9, r3, r9 a000a548: eb002e58 bl a0015eb0 <__umodsi3> a000a54c: e0604004 rsb r4, r0, r4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
a000a550: e28a3008 add r3, sl, #8
uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) {
a000a554: e1590004 cmp r9, r4 a000a558: e58d3008 str r3, [sp, #8]
a000a55c: 2a000003 bcs a000a570 <_Heap_Allocate_aligned_with_boundary+0xe8> RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
a000a560: e1a00009 mov r0, r9 a000a564: e1a01008 mov r1, r8 a000a568: eb002e50 bl a0015eb0 <__umodsi3> a000a56c: e0604009 rsb r4, r0, r9
} alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) {
a000a570: e35b0000 cmp fp, #0
a000a574: 0a000025 beq a000a610 <_Heap_Allocate_aligned_with_boundary+0x188> /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size;
a000a578: e0849005 add r9, r4, r5 a000a57c: e1a00009 mov r0, r9 a000a580: e1a0100b mov r1, fp a000a584: eb002e49 bl a0015eb0 <__umodsi3> a000a588: e0600009 rsb r0, r0, r9
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
a000a58c: e1590000 cmp r9, r0 a000a590: 93a03000 movls r3, #0 a000a594: 83a03001 movhi r3, #1 a000a598: e1540000 cmp r4, r0 a000a59c: 23a03000 movcs r3, #0 a000a5a0: e3530000 cmp r3, #0
a000a5a4: 0a000019 beq a000a610 <_Heap_Allocate_aligned_with_boundary+0x188> alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
a000a5a8: e59d1008 ldr r1, [sp, #8] a000a5ac: e0819005 add r9, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) {
a000a5b0: e1590000 cmp r9, r0 a000a5b4: 958d6018 strls r6, [sp, #24]
a000a5b8: 9a000002 bls a000a5c8 <_Heap_Allocate_aligned_with_boundary+0x140>
a000a5bc: eaffffcb b a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68> a000a5c0: e1590000 cmp r9, r0
a000a5c4: 8a000035 bhi a000a6a0 <_Heap_Allocate_aligned_with_boundary+0x218> return 0; } alloc_begin = boundary_line - alloc_size;
a000a5c8: e0654000 rsb r4, r5, r0 a000a5cc: e1a01008 mov r1, r8 a000a5d0: e1a00004 mov r0, r4 a000a5d4: eb002e35 bl a0015eb0 <__umodsi3> a000a5d8: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size;
a000a5dc: e0846005 add r6, r4, r5 a000a5e0: e1a00006 mov r0, r6 a000a5e4: e1a0100b mov r1, fp a000a5e8: eb002e30 bl a0015eb0 <__umodsi3> a000a5ec: e0600006 rsb r0, r0, r6
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
a000a5f0: e1560000 cmp r6, r0 a000a5f4: 93a03000 movls r3, #0 a000a5f8: 83a03001 movhi r3, #1 a000a5fc: e1540000 cmp r4, r0 a000a600: 23a03000 movcs r3, #0 a000a604: e3530000 cmp r3, #0
a000a608: 1affffec bne a000a5c0 <_Heap_Allocate_aligned_with_boundary+0x138>
a000a60c: e59d6018 ldr r6, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) {
a000a610: e59d2008 ldr r2, [sp, #8] a000a614: e1520004 cmp r2, r4
a000a618: 8affffb4 bhi a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68> uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin;
a000a61c: e59d100c ldr r1, [sp, #12] a000a620: e1a00004 mov r0, r4 a000a624: eb002e21 bl a0015eb0 <__umodsi3> a000a628: e3e09007 mvn r9, #7 a000a62c: e06a9009 rsb r9, sl, r9
if ( free_size >= min_block_size || free_size == 0 ) {
a000a630: e59d1004 ldr r1, [sp, #4]
/* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin;
a000a634: e0899004 add r9, r9, r4
if ( free_size >= min_block_size || free_size == 0 ) {
a000a638: e0603009 rsb r3, r0, r9 a000a63c: e1590000 cmp r9, r0 a000a640: 11510003 cmpne r1, r3
a000a644: 8affffa9 bhi a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68> boundary ); } } if ( alloc_begin != 0 ) {
a000a648: e3540000 cmp r4, #0
a000a64c: 0affffa7 beq a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68> block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
a000a650: e597204c ldr r2, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
a000a654: e1a0100a mov r1, sl a000a658: e1a03005 mov r3, r5
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
a000a65c: e0822006 add r2, r2, r6 a000a660: e587204c str r2, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
a000a664: e1a00007 mov r0, r7 a000a668: e1a02004 mov r2, r4 a000a66c: ebffee2f bl a0005f30 <_Heap_Block_allocate> a000a670: e1a00004 mov r0, r4
uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { Heap_Statistics *const stats = &heap->stats;
a000a674: e5973044 ldr r3, [r7, #68] ; 0x44 a000a678: e1530006 cmp r3, r6
); } /* Statistics */ if ( stats->max_search < search_count ) { stats->max_search = search_count;
a000a67c: 35876044 strcc r6, [r7, #68] ; 0x44 a000a680: ea000002 b a000a690 <_Heap_Allocate_aligned_with_boundary+0x208>
/* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) {
a000a684: e1550003 cmp r5, r3
a000a688: 9a000006 bls a000a6a8 <_Heap_Allocate_aligned_with_boundary+0x220> ); } /* Statistics */ if ( stats->max_search < search_count ) { stats->max_search = search_count;
a000a68c: e3a00000 mov r0, #0
} return (void *) alloc_begin; }
a000a690: e28dd01c add sp, sp, #28 a000a694: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
a000a698: e3a00000 mov r0, #0 a000a69c: eafffff4 b a000a674 <_Heap_Allocate_aligned_with_boundary+0x1ec>
a000a6a0: e59d6018 ldr r6, [sp, #24] <== NOT EXECUTED a000a6a4: eaffff91 b a000a4f0 <_Heap_Allocate_aligned_with_boundary+0x68><== NOT EXECUTED
if ( boundary != 0 ) { if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) {
a000a6a8: e3580000 cmp r8, #0 a000a6ac: 01a08002 moveq r8, r2 a000a6b0: eaffff82 b a000a4c0 <_Heap_Allocate_aligned_with_boundary+0x38>
a000f7ac <_Heap_Extend>: Heap_Control *heap, void *area_begin_ptr, uintptr_t area_size, uintptr_t *amount_extended ) {
a000f7ac: e92d41f0 push {r4, r5, r6, r7, r8, lr}
Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin; uintptr_t const heap_area_end = heap->area_end;
a000f7b0: e590c01c ldr ip, [r0, #28]
Heap_Control *heap, void *area_begin_ptr, uintptr_t area_size, uintptr_t *amount_extended ) {
a000f7b4: e1a04000 mov r4, r0
Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin;
a000f7b8: e5900018 ldr r0, [r0, #24] a000f7bc: e151000c cmp r1, ip a000f7c0: 23a05000 movcs r5, #0 a000f7c4: 33a05001 movcc r5, #1
Heap_Control *heap, void *area_begin_ptr, uintptr_t area_size, uintptr_t *amount_extended ) {
a000f7c8: e1a07003 mov r7, r3
Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin;
a000f7cc: e1510000 cmp r1, r0 a000f7d0: 33a05000 movcc r5, #0 a000f7d4: e3550000 cmp r5, #0
uintptr_t const heap_area_end = heap->area_end; uintptr_t const new_heap_area_end = heap_area_end + area_size; uintptr_t extend_size = 0; Heap_Block *const last_block = heap->last_block;
a000f7d8: e5946024 ldr r6, [r4, #36] ; 0x24
uintptr_t *amount_extended ) { Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin; a000f7dc: 1a000012 bne a000f82c <_Heap_Extend+0x80> * As noted, this code only supports (4). */ if ( area_begin >= heap_area_begin && area_begin < heap_area_end ) { return HEAP_EXTEND_ERROR; /* case 3 */ } else if ( area_begin != heap_area_end ) {
a000f7e0: e151000c cmp r1, ip
a000f7e4: 0a000001 beq a000f7f0 <_Heap_Extend+0x44>
a000f7e8: e3a00002 mov r0, #2 a000f7ec: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* block and free it. */ heap->area_end = new_heap_area_end; extend_size = new_heap_area_end
a000f7f0: e3e08007 mvn r8, #7
{ Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin; uintptr_t const heap_area_end = heap->area_end; uintptr_t const new_heap_area_end = heap_area_end + area_size;
a000f7f4: e0811002 add r1, r1, r2
* block and free it. */ heap->area_end = new_heap_area_end; extend_size = new_heap_area_end
a000f7f8: e0668008 rsb r8, r6, r8 a000f7fc: e0888001 add r8, r8, r1
* Currently only case 4 should make it to this point. * The basic trick is to make the extend area look like a used * block and free it. */ heap->area_end = new_heap_area_end;
a000f800: e584101c str r1, [r4, #28]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
a000f804: e1a00008 mov r0, r8 a000f808: e5941010 ldr r1, [r4, #16] a000f80c: ebffce5e bl a000318c <__umodsi3> a000f810: e0600008 rsb r0, r0, r8
extend_size = new_heap_area_end - (uintptr_t) last_block - HEAP_BLOCK_HEADER_SIZE; extend_size = _Heap_Align_down( extend_size, heap->page_size ); *amount_extended = extend_size;
a000f814: e5870000 str r0, [r7]
if( extend_size >= heap->min_block_size ) {
a000f818: e5943014 ldr r3, [r4, #20] a000f81c: e1530000 cmp r3, r0
a000f820: 9a000003 bls a000f834 <_Heap_Extend+0x88>
a000f824: e1a00005 mov r0, r5 <== NOT EXECUTED a000f828: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED
uintptr_t *amount_extended ) { Heap_Statistics *const stats = &heap->stats; uintptr_t const area_begin = (uintptr_t) area_begin_ptr; uintptr_t const heap_area_begin = heap->area_begin;
a000f82c: e3a00001 mov r0, #1 a000f830: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; block->size_and_flag = size | flag;
a000f834: e5961004 ldr r1, [r6, #4]
if( extend_size >= heap->min_block_size ) { Heap_Block *const new_last_block = _Heap_Block_at( last_block, extend_size ); _Heap_Block_set_size( last_block, extend_size ); new_last_block->size_and_flag =
a000f838: e5942020 ldr r2, [r4, #32]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
a000f83c: e0803006 add r3, r0, r6
uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; block->size_and_flag = size | flag;
a000f840: e2011001 and r1, r1, #1 a000f844: e0632002 rsb r2, r3, r2 a000f848: e1801001 orr r1, r0, r1 a000f84c: e3822001 orr r2, r2, #1 a000f850: e5861004 str r1, [r6, #4] a000f854: e5832004 str r2, [r3, #4]
| HEAP_PREV_BLOCK_USED; heap->last_block = new_last_block; /* Statistics */ stats->size += extend_size;
a000f858: e594802c ldr r8, [r4, #44] ; 0x2c
++stats->used_blocks;
a000f85c: e5941040 ldr r1, [r4, #64] ; 0x40
--stats->frees; /* Do not count subsequent call as actual free() */
a000f860: e5942050 ldr r2, [r4, #80] ; 0x50
| HEAP_PREV_BLOCK_USED; heap->last_block = new_last_block; /* Statistics */ stats->size += extend_size;
a000f864: e0880000 add r0, r8, r0
++stats->used_blocks;
a000f868: e2811001 add r1, r1, #1
--stats->frees; /* Do not count subsequent call as actual free() */
a000f86c: e2422001 sub r2, r2, #1
| HEAP_PREV_BLOCK_USED; heap->last_block = new_last_block; /* Statistics */ stats->size += extend_size;
a000f870: e584002c str r0, [r4, #44] ; 0x2c
++stats->used_blocks;
a000f874: e5841040 str r1, [r4, #64] ; 0x40
new_last_block->size_and_flag = ((uintptr_t) heap->first_block - (uintptr_t) new_last_block) | HEAP_PREV_BLOCK_USED; heap->last_block = new_last_block;
a000f878: e5843024 str r3, [r4, #36] ; 0x24
/* Statistics */ stats->size += extend_size; ++stats->used_blocks; --stats->frees; /* Do not count subsequent call as actual free() */
a000f87c: e5842050 str r2, [r4, #80] ; 0x50
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( last_block ));
a000f880: e1a00004 mov r0, r4 a000f884: e2861008 add r1, r6, #8 a000f888: ebffead1 bl a000a3d4 <_Heap_Free> a000f88c: e1a00005 mov r0, r5
} return HEAP_EXTEND_SUCCESSFUL; }
a000f890: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
a0006cb0 <_Heap_Walk>: Heap_Block *const last_block = heap->last_block; Heap_Block *block = heap->first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006cb0: e59f357c ldr r3, [pc, #1404] ; a0007234 <_Heap_Walk+0x584>
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
a0006cb4: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const last_block = heap->last_block; Heap_Block *block = heap->first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
a0006cb8: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006cbc: e5933000 ldr r3, [r3]
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const last_block = heap->last_block; Heap_Block *block = heap->first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
a0006cc0: e59f2570 ldr r2, [pc, #1392] ; a0007238 <_Heap_Walk+0x588> a0006cc4: e59fa570 ldr sl, [pc, #1392] ; a000723c <_Heap_Walk+0x58c>
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
a0006cc8: e24dd038 sub sp, sp, #56 ; 0x38 a0006ccc: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const last_block = heap->last_block; Heap_Block *block = heap->first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
a0006cd0: 01a0a002 moveq sl, r2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
a0006cd4: e3530003 cmp r3, #3
Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size;
a0006cd8: e5902010 ldr r2, [r0, #16]
uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const last_block = heap->last_block;
a0006cdc: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
a0006ce0: e1a08001 mov r8, r1
uintptr_t const page_size = heap->page_size;
a0006ce4: e58d2020 str r2, [sp, #32]
uintptr_t const min_block_size = heap->min_block_size;
a0006ce8: e590b014 ldr fp, [r0, #20]
Heap_Block *const last_block = heap->last_block;
a0006cec: e58d3024 str r3, [sp, #36] ; 0x24
Heap_Block *block = heap->first_block;
a0006cf0: e5905020 ldr r5, [r0, #32]
Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { a0006cf4: 0a000002 beq a0006d04 <_Heap_Walk+0x54> if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; } while ( block != last_block ) {
a0006cf8: e3a00001 mov r0, #1
block = next_block; } return true; }
a0006cfc: e28dd038 add sp, sp, #56 ; 0x38 a0006d00: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)(
a0006d04: e5900018 ldr r0, [r0, #24] a0006d08: e594101c ldr r1, [r4, #28] a0006d0c: e5942008 ldr r2, [r4, #8] a0006d10: e594300c ldr r3, [r4, #12] a0006d14: e59dc024 ldr ip, [sp, #36] ; 0x24 a0006d18: e98d0003 stmib sp, {r0, r1} a0006d1c: e58d2014 str r2, [sp, #20] a0006d20: e58d3018 str r3, [sp, #24] a0006d24: e59f2514 ldr r2, [pc, #1300] ; a0007240 <_Heap_Walk+0x590> a0006d28: e58db000 str fp, [sp] a0006d2c: e58d500c str r5, [sp, #12] a0006d30: e58dc010 str ip, [sp, #16] a0006d34: e1a00008 mov r0, r8 a0006d38: e3a01000 mov r1, #0 a0006d3c: e59d3020 ldr r3, [sp, #32] a0006d40: e12fff3a blx sl
heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) {
a0006d44: e59d2020 ldr r2, [sp, #32] a0006d48: e3520000 cmp r2, #0
a0006d4c: 0a000030 beq a0006e14 <_Heap_Walk+0x164> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
a0006d50: e59d3020 ldr r3, [sp, #32] a0006d54: e2139003 ands r9, r3, #3
a0006d58: 1a000033 bne a0006e2c <_Heap_Walk+0x17c> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
a0006d5c: e1a0000b mov r0, fp a0006d60: e59d1020 ldr r1, [sp, #32] a0006d64: ebffe75f bl a0000ae8 <__umodsi3> a0006d68: e2506000 subs r6, r0, #0
a0006d6c: 1a000034 bne a0006e44 <_Heap_Walk+0x194> ); return false; } if (
a0006d70: e2850008 add r0, r5, #8 a0006d74: e59d1020 ldr r1, [sp, #32] a0006d78: ebffe75a bl a0000ae8 <__umodsi3> a0006d7c: e2509000 subs r9, r0, #0
a0006d80: 1a000036 bne a0006e60 <_Heap_Walk+0x1b0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0006d84: e5957004 ldr r7, [r5, #4]
); return false; } if ( !_Heap_Is_prev_used( first_block ) ) {
a0006d88: e2176001 ands r6, r7, #1
a0006d8c: 0a00003a beq a0006e7c <_Heap_Walk+0x1cc> ); return false; } if ( first_block->prev_size != page_size ) {
a0006d90: e5953000 ldr r3, [r5] a0006d94: e59dc020 ldr ip, [sp, #32] a0006d98: e15c0003 cmp ip, r3
a0006d9c: 1a000015 bne a0006df8 <_Heap_Walk+0x148> ); return false; } if ( _Heap_Is_free( last_block ) ) {
a0006da0: e59d2024 ldr r2, [sp, #36] ; 0x24 a0006da4: e5923004 ldr r3, [r2, #4] a0006da8: e3c33001 bic r3, r3, #1 a0006dac: e0823003 add r3, r2, r3 a0006db0: e5939004 ldr r9, [r3, #4] a0006db4: e2199001 ands r9, r9, #1
a0006db8: 0a000101 beq a00071c4 <_Heap_Walk+0x514> return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next;
a0006dbc: e5949008 ldr r9, [r4, #8]
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
a0006dc0: e5943010 ldr r3, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
a0006dc4: e1540009 cmp r4, r9
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
a0006dc8: e58d3028 str r3, [sp, #40] ; 0x28
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { a0006dcc: 0a000065 beq a0006f68 <_Heap_Walk+0x2b8> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006dd0: e594c020 ldr ip, [r4, #32]
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
a0006dd4: e15c0009 cmp ip, r9
a0006dd8: 9a00002d bls a0006e94 <_Heap_Walk+0x1e4> if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)(
a0006ddc: e1a00008 mov r0, r8 a0006de0: e1a03009 mov r3, r9 a0006de4: e3a01001 mov r1, #1 a0006de8: e59f2454 ldr r2, [pc, #1108] ; a0007244 <_Heap_Walk+0x594> a0006dec: e12fff3a blx sl a0006df0: e3a00000 mov r0, #0 a0006df4: eaffffc0 b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( first_block->prev_size != page_size ) { (*printer)(
a0006df8: e1a00008 mov r0, r8 a0006dfc: e58dc000 str ip, [sp] a0006e00: e3a01001 mov r1, #1 a0006e04: e59f243c ldr r2, [pc, #1084] ; a0007248 <_Heap_Walk+0x598> a0006e08: e12fff3a blx sl a0006e0c: e1a00009 mov r0, r9 a0006e10: eaffffb9 b a0006cfc <_Heap_Walk+0x4c>
first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" );
a0006e14: e1a00008 mov r0, r8 a0006e18: e3a01001 mov r1, #1 a0006e1c: e59f2428 ldr r2, [pc, #1064] ; a000724c <_Heap_Walk+0x59c> a0006e20: e12fff3a blx sl a0006e24: e59d0020 ldr r0, [sp, #32] a0006e28: eaffffb3 b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)(
a0006e2c: e1a00008 mov r0, r8 a0006e30: e3a01001 mov r1, #1 a0006e34: e59f2414 ldr r2, [pc, #1044] ; a0007250 <_Heap_Walk+0x5a0> a0006e38: e12fff3a blx sl a0006e3c: e3a00000 mov r0, #0 a0006e40: eaffffad b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)(
a0006e44: e1a00008 mov r0, r8 a0006e48: e1a0300b mov r3, fp a0006e4c: e3a01001 mov r1, #1 a0006e50: e59f23fc ldr r2, [pc, #1020] ; a0007254 <_Heap_Walk+0x5a4> a0006e54: e12fff3a blx sl a0006e58: e1a00009 mov r0, r9 a0006e5c: eaffffa6 b a0006cfc <_Heap_Walk+0x4c>
} if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)(
a0006e60: e1a00008 mov r0, r8 a0006e64: e1a03005 mov r3, r5 a0006e68: e3a01001 mov r1, #1 a0006e6c: e59f23e4 ldr r2, [pc, #996] ; a0007258 <_Heap_Walk+0x5a8> a0006e70: e12fff3a blx sl a0006e74: e1a00006 mov r0, r6 a0006e78: eaffff9f b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)(
a0006e7c: e1a00008 mov r0, r8 a0006e80: e3a01001 mov r1, #1 a0006e84: e59f23d0 ldr r2, [pc, #976] ; a000725c <_Heap_Walk+0x5ac> a0006e88: e12fff3a blx sl a0006e8c: e1a00006 mov r0, r6 a0006e90: eaffff99 b a0006cfc <_Heap_Walk+0x4c>
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006e94: e5942024 ldr r2, [r4, #36] ; 0x24
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
a0006e98: e1520009 cmp r2, r9
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
a0006e9c: e58d202c str r2, [sp, #44] ; 0x2c
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block a0006ea0: 3affffcd bcc a0006ddc <_Heap_Walk+0x12c> ); return false; } if (
a0006ea4: e2890008 add r0, r9, #8 a0006ea8: e1a01003 mov r1, r3 a0006eac: e58dc01c str ip, [sp, #28] a0006eb0: ebffe70c bl a0000ae8 <__umodsi3> a0006eb4: e3500000 cmp r0, #0 a0006eb8: e59dc01c ldr ip, [sp, #28]
a0006ebc: 1a0000c6 bne a00071dc <_Heap_Walk+0x52c> ); return false; } if ( _Heap_Is_used( free_block ) ) {
a0006ec0: e5993004 ldr r3, [r9, #4] a0006ec4: e3c33001 bic r3, r3, #1 a0006ec8: e0893003 add r3, r9, r3 a0006ecc: e5933004 ldr r3, [r3, #4] a0006ed0: e3130001 tst r3, #1
a0006ed4: 1a0000cf bne a0007218 <_Heap_Walk+0x568> ); return false; } if ( free_block->prev != prev_block ) {
a0006ed8: e599200c ldr r2, [r9, #12] a0006edc: e1540002 cmp r4, r2
a0006ee0: 1a0000c4 bne a00071f8 <_Heap_Walk+0x548>
a0006ee4: e58d7030 str r7, [sp, #48] ; 0x30 a0006ee8: e58db034 str fp, [sp, #52] ; 0x34 a0006eec: e59d702c ldr r7, [sp, #44] ; 0x2c a0006ef0: e59db028 ldr fp, [sp, #40] ; 0x28 a0006ef4: e58d502c str r5, [sp, #44] ; 0x2c a0006ef8: e58d6028 str r6, [sp, #40] ; 0x28 a0006efc: e1a0600c mov r6, ip a0006f00: ea000011 b a0006f4c <_Heap_Walk+0x29c> a0006f04: e1590006 cmp r9, r6
a0006f08: 3affffb3 bcc a0006ddc <_Heap_Walk+0x12c>
a0006f0c: e1570009 cmp r7, r9
); return false; } if (
a0006f10: e2890008 add r0, r9, #8 a0006f14: e1a0100b mov r1, fp
a0006f18: 3affffaf bcc a0006ddc <_Heap_Walk+0x12c>
a0006f1c: ebffe6f1 bl a0000ae8 <__umodsi3> a0006f20: e3500000 cmp r0, #0
a0006f24: 1a0000ac bne a00071dc <_Heap_Walk+0x52c> ); return false; } if ( _Heap_Is_used( free_block ) ) {
a0006f28: e5993004 ldr r3, [r9, #4] a0006f2c: e3c33001 bic r3, r3, #1 a0006f30: e0833009 add r3, r3, r9 a0006f34: e5933004 ldr r3, [r3, #4] a0006f38: e3130001 tst r3, #1
a0006f3c: 1a0000b5 bne a0007218 <_Heap_Walk+0x568> ); return false; } if ( free_block->prev != prev_block ) {
a0006f40: e599200c ldr r2, [r9, #12] a0006f44: e1520005 cmp r2, r5
a0006f48: 1a0000aa bne a00071f8 <_Heap_Walk+0x548> (*printer)(
a0006f4c: e1a05009 mov r5, r9
return false; } prev_block = free_block; free_block = free_block->next;
a0006f50: e5999008 ldr r9, [r9, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
a0006f54: e1540009 cmp r4, r9
a0006f58: 1affffe9 bne a0006f04 <_Heap_Walk+0x254>
a0006f5c: e28d502c add r5, sp, #44 ; 0x2c a0006f60: e89508a0 ldm r5, {r5, r7, fp} a0006f64: e59d6028 ldr r6, [sp, #40] ; 0x28
if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; } while ( block != last_block ) {
a0006f68: e59d3024 ldr r3, [sp, #36] ; 0x24 a0006f6c: e1530005 cmp r3, r5
"block 0x%08x: prev 0x%08x%s, next 0x%08x%s\n", block, block->prev, block->prev == first_free_block ? " (= first)" : (block->prev == free_list_head ? " (= head)" : ""),
a0006f70: 158db028 strne fp, [sp, #40] ; 0x28
if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; } while ( block != last_block ) { a0006f74: 0affff5f beq a0006cf8 <_Heap_Walk+0x48> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0006f78: e3c77001 bic r7, r7, #1
uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; if ( prev_used ) {
a0006f7c: e21610ff ands r1, r6, #255 ; 0xff
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
a0006f80: e0876005 add r6, r7, r5
a0006f84: 0a000010 beq a0006fcc <_Heap_Walk+0x31c> (*printer)(
a0006f88: e1a03005 mov r3, r5 a0006f8c: e58d7000 str r7, [sp] a0006f90: e1a00008 mov r0, r8 a0006f94: e3a01000 mov r1, #0 a0006f98: e59f22c0 ldr r2, [pc, #704] ; a0007260 <_Heap_Walk+0x5b0> a0006f9c: e12fff3a blx sl
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
a0006fa0: e5943020 ldr r3, [r4, #32] a0006fa4: e1530006 cmp r3, r6
a0006fa8: 9a000011 bls a0006ff4 <_Heap_Walk+0x344> block->prev_size ); } if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)(
a0006fac: e1a00008 mov r0, r8 a0006fb0: e58d6000 str r6, [sp] a0006fb4: e1a03005 mov r3, r5 a0006fb8: e3a01001 mov r1, #1 a0006fbc: e59f22a0 ldr r2, [pc, #672] ; a0007264 <_Heap_Walk+0x5b4> a0006fc0: e12fff3a blx sl a0006fc4: e3a00000 mov r0, #0
"block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false;
a0006fc8: eaffff4b b a0006cfc <_Heap_Walk+0x4c>
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
a0006fcc: e58d7000 str r7, [sp] a0006fd0: e5953000 ldr r3, [r5] a0006fd4: e1a00008 mov r0, r8 a0006fd8: e59f2288 ldr r2, [pc, #648] ; a0007268 <_Heap_Walk+0x5b8> a0006fdc: e58d3004 str r3, [sp, #4] a0006fe0: e1a03005 mov r3, r5 a0006fe4: e12fff3a blx sl a0006fe8: e5943020 ldr r3, [r4, #32] a0006fec: e1530006 cmp r3, r6
a0006ff0: 8affffed bhi a0006fac <_Heap_Walk+0x2fc>
a0006ff4: e5943024 ldr r3, [r4, #36] ; 0x24 a0006ff8: e1530006 cmp r3, r6
a0006ffc: 3affffea bcc a0006fac <_Heap_Walk+0x2fc> ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) ) {
a0007000: e1a00007 mov r0, r7 a0007004: e59d1020 ldr r1, [sp, #32] a0007008: ebffe6b6 bl a0000ae8 <__umodsi3> a000700c: e2509000 subs r9, r0, #0
a0007010: 1a000051 bne a000715c <_Heap_Walk+0x4ac> ); return false; } if ( block_size < min_block_size ) {
a0007014: e59d3028 ldr r3, [sp, #40] ; 0x28 a0007018: e1530007 cmp r3, r7
a000701c: 8a000056 bhi a000717c <_Heap_Walk+0x4cc> ); return false; } if ( next_block_begin <= block_begin ) {
a0007020: e1550006 cmp r5, r6
a0007024: 2a00005e bcs a00071a4 <_Heap_Walk+0x4f4> ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
a0007028: e5963004 ldr r3, [r6, #4] a000702c: e3130001 tst r3, #1
a0007030: 1a000034 bne a0007108 <_Heap_Walk+0x458> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
a0007034: e595b004 ldr fp, [r5, #4]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
a0007038: e595200c ldr r2, [r5, #12]
return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next;
a000703c: e5943008 ldr r3, [r4, #8]
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
a0007040: e3cb7001 bic r7, fp, #1
return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev;
a0007044: e594100c ldr r1, [r4, #12]
return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next;
a0007048: e1530002 cmp r3, r2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
a000704c: e0859007 add r9, r5, r7
return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next;
a0007050: 059f0214 ldreq r0, [pc, #532] ; a000726c <_Heap_Walk+0x5bc>
a0007054: 0a000003 beq a0007068 <_Heap_Walk+0x3b8> "block 0x%08x: prev 0x%08x%s, next 0x%08x%s\n", block, block->prev, block->prev == first_free_block ? " (= first)" : (block->prev == free_list_head ? " (= head)" : ""),
a0007058: e59fc210 ldr ip, [pc, #528] ; a0007270 <_Heap_Walk+0x5c0> a000705c: e1520004 cmp r2, r4 a0007060: e59f020c ldr r0, [pc, #524] ; a0007274 <_Heap_Walk+0x5c4> a0007064: 11a0000c movne r0, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
a0007068: e5953008 ldr r3, [r5, #8] a000706c: e1510003 cmp r1, r3 a0007070: 059f1200 ldreq r1, [pc, #512] ; a0007278 <_Heap_Walk+0x5c8>
a0007074: 0a000003 beq a0007088 <_Heap_Walk+0x3d8> " (= first)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last)" : (block->next == free_list_tail ? " (= tail)" : "")
a0007078: e59fc1f0 ldr ip, [pc, #496] ; a0007270 <_Heap_Walk+0x5c0> a000707c: e1530004 cmp r3, r4 a0007080: e59f11f4 ldr r1, [pc, #500] ; a000727c <_Heap_Walk+0x5cc> a0007084: 11a0100c movne r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
a0007088: e58d2000 str r2, [sp] a000708c: e98d0009 stmib sp, {r0, r3} a0007090: e58d100c str r1, [sp, #12] a0007094: e1a03005 mov r3, r5 a0007098: e1a00008 mov r0, r8 a000709c: e3a01000 mov r1, #0 a00070a0: e59f21d8 ldr r2, [pc, #472] ; a0007280 <_Heap_Walk+0x5d0> a00070a4: e12fff3a blx sl
block->next == last_free_block ? " (= last)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) {
a00070a8: e5993000 ldr r3, [r9] a00070ac: e1570003 cmp r7, r3
a00070b0: 0a000009 beq a00070dc <_Heap_Walk+0x42c> (*printer)(
a00070b4: e58d3004 str r3, [sp, #4] a00070b8: e1a00008 mov r0, r8 a00070bc: e58d7000 str r7, [sp] a00070c0: e58d9008 str r9, [sp, #8] a00070c4: e1a03005 mov r3, r5 a00070c8: e3a01001 mov r1, #1 a00070cc: e59f21b0 ldr r2, [pc, #432] ; a0007284 <_Heap_Walk+0x5d4> a00070d0: e12fff3a blx sl a00070d4: e3a00000 mov r0, #0 a00070d8: eaffff07 b a0006cfc <_Heap_Walk+0x4c>
); return false; } if ( !prev_used ) {
a00070dc: e21b9001 ands r9, fp, #1
a00070e0: 0a000016 beq a0007140 <_Heap_Walk+0x490>
a00070e4: e5943008 ldr r3, [r4, #8]
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
a00070e8: e1530004 cmp r3, r4
a00070ec: 1a000003 bne a0007100 <_Heap_Walk+0x450>
a00070f0: ea00000b b a0007124 <_Heap_Walk+0x474> <== NOT EXECUTED
if ( free_block == block ) { return true; } free_block = free_block->next;
a00070f4: e5933008 ldr r3, [r3, #8]
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
a00070f8: e1530004 cmp r3, r4
a00070fc: 0a000008 beq a0007124 <_Heap_Walk+0x474> if ( free_block == block ) {
a0007100: e1530005 cmp r3, r5
a0007104: 1afffffa bne a00070f4 <_Heap_Walk+0x444> if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; } while ( block != last_block ) {
a0007108: e59d2024 ldr r2, [sp, #36] ; 0x24 a000710c: e1520006 cmp r2, r6
a0007110: 0afffef8 beq a0006cf8 <_Heap_Walk+0x48> const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
a0007114: e5967004 ldr r7, [r6, #4] a0007118: e1a05006 mov r5, r6 a000711c: e2076001 and r6, r7, #1 a0007120: eaffff94 b a0006f78 <_Heap_Walk+0x2c8>
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
a0007124: e1a00008 mov r0, r8 a0007128: e1a03005 mov r3, r5 a000712c: e3a01001 mov r1, #1 a0007130: e59f2150 ldr r2, [pc, #336] ; a0007288 <_Heap_Walk+0x5d8> a0007134: e12fff3a blx sl a0007138: e3a00000 mov r0, #0 a000713c: eafffeee b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( !prev_used ) { (*printer)(
a0007140: e1a00008 mov r0, r8 a0007144: e1a03005 mov r3, r5 a0007148: e3a01001 mov r1, #1 a000714c: e59f2138 ldr r2, [pc, #312] ; a000728c <_Heap_Walk+0x5dc> a0007150: e12fff3a blx sl a0007154: e1a00009 mov r0, r9 a0007158: eafffee7 b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( !_Heap_Is_aligned( block_size, page_size ) ) { (*printer)(
a000715c: e1a00008 mov r0, r8 a0007160: e58d7000 str r7, [sp] a0007164: e1a03005 mov r3, r5 a0007168: e3a01001 mov r1, #1 a000716c: e59f211c ldr r2, [pc, #284] ; a0007290 <_Heap_Walk+0x5e0> a0007170: e12fff3a blx sl a0007174: e3a00000 mov r0, #0
"block 0x%08x: block size %u not page aligned\n", block, block_size ); return false;
a0007178: eafffedf b a0006cfc <_Heap_Walk+0x4c>
} if ( block_size < min_block_size ) { (*printer)(
a000717c: e58d3004 str r3, [sp, #4] a0007180: e1a00008 mov r0, r8 a0007184: e1a0b003 mov fp, r3 a0007188: e58d7000 str r7, [sp] a000718c: e1a03005 mov r3, r5 a0007190: e3a01001 mov r1, #1 a0007194: e59f20f8 ldr r2, [pc, #248] ; a0007294 <_Heap_Walk+0x5e4> a0007198: e12fff3a blx sl a000719c: e1a00009 mov r0, r9
block, block_size, min_block_size ); return false;
a00071a0: eafffed5 b a0006cfc <_Heap_Walk+0x4c>
} if ( next_block_begin <= block_begin ) { (*printer)(
a00071a4: e1a00008 mov r0, r8 a00071a8: e58d6000 str r6, [sp] a00071ac: e1a03005 mov r3, r5 a00071b0: e3a01001 mov r1, #1 a00071b4: e59f20dc ldr r2, [pc, #220] ; a0007298 <_Heap_Walk+0x5e8> a00071b8: e12fff3a blx sl a00071bc: e1a00009 mov r0, r9
"block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false;
a00071c0: eafffecd b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)(
a00071c4: e1a00008 mov r0, r8 a00071c8: e3a01001 mov r1, #1 a00071cc: e59f20c8 ldr r2, [pc, #200] ; a000729c <_Heap_Walk+0x5ec> a00071d0: e12fff3a blx sl a00071d4: e1a00009 mov r0, r9 a00071d8: eafffec7 b a0006cfc <_Heap_Walk+0x4c>
} if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)(
a00071dc: e1a00008 mov r0, r8 a00071e0: e1a03009 mov r3, r9 a00071e4: e3a01001 mov r1, #1 a00071e8: e59f20b0 ldr r2, [pc, #176] ; a00072a0 <_Heap_Walk+0x5f0> a00071ec: e12fff3a blx sl a00071f0: e3a00000 mov r0, #0 a00071f4: eafffec0 b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( free_block->prev != prev_block ) { (*printer)(
a00071f8: e58d2000 str r2, [sp] a00071fc: e1a00008 mov r0, r8 a0007200: e1a03009 mov r3, r9 a0007204: e3a01001 mov r1, #1 a0007208: e59f2094 ldr r2, [pc, #148] ; a00072a4 <_Heap_Walk+0x5f4> a000720c: e12fff3a blx sl a0007210: e3a00000 mov r0, #0 a0007214: eafffeb8 b a0006cfc <_Heap_Walk+0x4c>
return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)(
a0007218: e1a00008 mov r0, r8 a000721c: e1a03009 mov r3, r9 a0007220: e3a01001 mov r1, #1 a0007224: e59f207c ldr r2, [pc, #124] ; a00072a8 <_Heap_Walk+0x5f8> a0007228: e12fff3a blx sl a000722c: e3a00000 mov r0, #0 a0007230: eafffeb1 b a0006cfc <_Heap_Walk+0x4c> a0007234: a001c330 .word 0xa001c330 a0007238: a0006ca4 .word 0xa0006ca4 a000723c: a00072ac .word 0xa00072ac a0007240: a001a220 .word 0xa001a220 a0007244: a001a3c8 .word 0xa001a3c8 a0007248: a001a380 .word 0xa001a380 a000724c: a001a2b8 .word 0xa001a2b8 a0007250: a001a2d0 .word 0xa001a2d0 a0007254: a001a2f0 .word 0xa001a2f0 a0007258: a001a318 .word 0xa001a318 a000725c: a001a350 .word 0xa001a350 a0007260: a001a470 .word 0xa001a470 a0007264: a001a4b0 .word 0xa001a4b0 a0007268: a001a488 .word 0xa001a488 a000726c: a001a578 .word 0xa001a578 a0007270: a001a620 .word 0xa001a620 a0007274: a001a588 .word 0xa001a588 a0007278: a001a598 .word 0xa001a598 a000727c: a001a5a8 .word 0xa001a5a8 a0007280: a001a5b8 .word 0xa001a5b8 a0007284: a001a5e8 .word 0xa001a5e8 a0007288: a001a658 .word 0xa001a658 a000728c: a001a628 .word 0xa001a628 a0007290: a001a4e0 .word 0xa001a4e0 a0007294: a001a510 .word 0xa001a510 a0007298: a001a540 .word 0xa001a540 a000729c: a001a3b0 .word 0xa001a3b0 a00072a0: a001a3e8 .word 0xa001a3e8 a00072a4: a001a438 .word 0xa001a438 a00072a8: a001a418 .word 0xa001a418
a0006198 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) {
a0006198: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL )
a000619c: e5908034 ldr r8, [r0, #52] ; 0x34
*/ void _Objects_Extend_information( Objects_Information *information ) {
a00061a0: e24dd014 sub sp, sp, #20 a00061a4: e1a05000 mov r5, r0
minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL )
a00061a8: e3580000 cmp r8, #0
/* * Search for a free block of indexes. The block variable ends up set * to block_count + 1 if the table needs to be extended. */ minimum_index = _Objects_Get_index( information->minimum_id );
a00061ac: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) a00061b0: 0a00009d beq a000642c <_Objects_Extend_information+0x294> block_count = 0; else { block_count = information->maximum / information->allocation_size;
a00061b4: e1d091b4 ldrh r9, [r0, #20] a00061b8: e1d0a1b0 ldrh sl, [r0, #16] a00061bc: e1a01009 mov r1, r9 a00061c0: e1a0000a mov r0, sl a00061c4: eb003ef5 bl a0015da0 <__aeabi_uidiv> a00061c8: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
a00061cc: e1b03823 lsrs r3, r3, #16 a00061d0: 01a01009 moveq r1, r9 a00061d4: 01a06007 moveq r6, r7 a00061d8: 01a04003 moveq r4, r3
a00061dc: 0a00000f beq a0006220 <_Objects_Extend_information+0x88> if ( information->object_blocks[ block ] == NULL )
a00061e0: e5984000 ldr r4, [r8] a00061e4: e3540000 cmp r4, #0 a00061e8: 11a01009 movne r1, r9 a00061ec: 11a06007 movne r6, r7 a00061f0: 13a04000 movne r4, #0 a00061f4: 01a01009 moveq r1, r9 a00061f8: 01a06007 moveq r6, r7
a00061fc: 1a000003 bne a0006210 <_Objects_Extend_information+0x78>
a0006200: ea000006 b a0006220 <_Objects_Extend_information+0x88> <== NOT EXECUTED
a0006204: e7982104 ldr r2, [r8, r4, lsl #2] a0006208: e3520000 cmp r2, #0
a000620c: 0a000003 beq a0006220 <_Objects_Extend_information+0x88> if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) {
a0006210: e2844001 add r4, r4, #1 a0006214: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) break; else index_base += information->allocation_size;
a0006218: e0866009 add r6, r6, r9
if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { a000621c: 8afffff8 bhi a0006204 <_Objects_Extend_information+0x6c> else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size;
a0006220: e08aa001 add sl, sl, r1
/* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
a0006224: e35a0801 cmp sl, #65536 ; 0x10000
a0006228: 2a000065 bcs a00063c4 <_Objects_Extend_information+0x22c> /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) {
a000622c: e5d50012 ldrb r0, [r5, #18]
/* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size;
a0006230: e5952018 ldr r2, [r5, #24]
if ( information->auto_extend ) {
a0006234: e3500000 cmp r0, #0
/* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size;
a0006238: e0000192 mul r0, r2, r1
if ( information->auto_extend ) { a000623c: 1a000062 bne a00063cc <_Objects_Extend_information+0x234> new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
a0006240: e58d3000 str r3, [sp] a0006244: eb00081b bl a00082b8 <_Workspace_Allocate_or_fatal_error> a0006248: e59d3000 ldr r3, [sp] a000624c: e1a09000 mov r9, r0
} /* * If the index_base is the maximum we need to grow the tables. */ if (index_base >= information->maximum ) {
a0006250: e1d521b0 ldrh r2, [r5, #16] a0006254: e1560002 cmp r6, r2
a0006258: 3a000039 bcc a0006344 <_Objects_Extend_information+0x1ac> */ /* * Up the block count and maximum */ block_count++;
a000625c: e283c001 add ip, r3, #1
* Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size );
a0006260: e08c008c add r0, ip, ip, lsl #1 a0006264: e08a0000 add r0, sl, r0 a0006268: e0800007 add r0, r0, r7 a000626c: e1a00100 lsl r0, r0, #2 a0006270: e88d1008 stm sp, {r3, ip} a0006274: eb00081b bl a00082e8 <_Workspace_Allocate>
if ( !object_blocks ) {
a0006278: e250b000 subs fp, r0, #0 a000627c: e89d1008 ldm sp, {r3, ip}
a0006280: 0a00006f beq a0006444 <_Objects_Extend_information+0x2ac> * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) {
a0006284: e1d521b0 ldrh r2, [r5, #16]
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset ( const void *base, uintptr_t offset ) { return (void *)((uintptr_t)base + offset);
a0006288: e08b818c add r8, fp, ip, lsl #3 a000628c: e08bc10c add ip, fp, ip, lsl #2 a0006290: e1570002 cmp r7, r2
a0006294: 3a000052 bcc a00063e4 <_Objects_Extend_information+0x24c> } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) {
a0006298: e3570000 cmp r7, #0
information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table,
a000629c: 13a02000 movne r2, #0
/* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { local_table[ index ] = NULL;
a00062a0: 11a01002 movne r1, r2
} else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { a00062a4: 0a000003 beq a00062b8 <_Objects_Extend_information+0x120> local_table[ index ] = NULL;
a00062a8: e7881102 str r1, [r8, r2, lsl #2]
} else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) {
a00062ac: e2822001 add r2, r2, #1 a00062b0: e1570002 cmp r7, r2
a00062b4: 8afffffb bhi a00062a8 <_Objects_Extend_information+0x110>
a00062b8: e1a03103 lsl r3, r3, #2
*/ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base );
a00062bc: e1d511b4 ldrh r1, [r5, #20]
} /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL;
a00062c0: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
a00062c4: e78c0003 str r0, [ip, r3]
for ( index=index_base ; index < ( information->allocation_size + index_base );
a00062c8: e0861001 add r1, r6, r1
* Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ;
a00062cc: e1560001 cmp r6, r1
} /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL;
a00062d0: e78b0003 str r0, [fp, r3]
inactive_per_block[block_count] = 0; for ( index=index_base ; a00062d4: 2a000005 bcs a00062f0 <_Objects_Extend_information+0x158>
a00062d8: e0882106 add r2, r8, r6, lsl #2 a00062dc: e1a03006 mov r3, r6
index < ( information->allocation_size + index_base ); index++ ) {
a00062e0: e2833001 add r3, r3, #1
* Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ;
a00062e4: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL;
a00062e8: e4820004 str r0, [r2], #4
* Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; a00062ec: 3afffffb bcc a00062e0 <_Objects_Extend_information+0x148>
a00062f0: e10f3000 mrs r3, CPSR a00062f4: e3832080 orr r2, r3, #128 ; 0x80 a00062f8: e129f002 msr CPSR_fc, r2
information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id(
a00062fc: e5952000 ldr r2, [r5] a0006300: e1d510b4 ldrh r1, [r5, #4]
old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum;
a0006304: e1a0a80a lsl sl, sl, #16
information->maximum_id = _Objects_Build_id(
a0006308: e1a02c02 lsl r2, r2, #24 a000630c: e3822801 orr r2, r2, #65536 ; 0x10000
old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum;
a0006310: e1a0a82a lsr sl, sl, #16
information->maximum_id = _Objects_Build_id(
a0006314: e1822d81 orr r2, r2, r1, lsl #27 a0006318: e182200a orr r2, r2, sl
local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks;
a000631c: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block;
a0006320: e585c030 str ip, [r5, #48] ; 0x30
information->local_table = local_table;
a0006324: e585801c str r8, [r5, #28]
information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id(
a0006328: e585200c str r2, [r5, #12]
old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum;
a000632c: e1c5a1b0 strh sl, [r5, #16]
_ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks;
a0006330: e585b034 str fp, [r5, #52] ; 0x34
static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0006334: e129f003 msr CPSR_fc, r3
information->maximum ); _ISR_Enable( level ); if ( old_tables )
a0006338: e3500000 cmp r0, #0
a000633c: 0a000000 beq a0006344 <_Objects_Extend_information+0x1ac> _Workspace_Free( old_tables );
a0006340: eb0007ee bl a0008300 <_Workspace_Free>
} /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block;
a0006344: e5953034 ldr r3, [r5, #52] ; 0x34
/* * Initialize objects .. add to a local chain first. */ _Chain_Initialize(
a0006348: e28d7008 add r7, sp, #8 a000634c: e1a01009 mov r1, r9
} /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block;
a0006350: e7839104 str r9, [r3, r4, lsl #2]
/* * Initialize objects .. add to a local chain first. */ _Chain_Initialize(
a0006354: e1a00007 mov r0, r7 a0006358: e1d521b4 ldrh r2, [r5, #20] a000635c: e5953018 ldr r3, [r5, #24] a0006360: eb000fa8 bl a000a208 <_Chain_Initialize>
} /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block;
a0006364: e1a04104 lsl r4, r4, #2
information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node );
a0006368: e2858020 add r8, r5, #32
/* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
a000636c: ea000008 b a0006394 <_Objects_Extend_information+0x1fc>
the_object->id = _Objects_Build_id(
a0006370: e5952000 ldr r2, [r5] a0006374: e1d5c0b4 ldrh ip, [r5, #4] a0006378: e1a02c02 lsl r2, r2, #24 a000637c: e3822801 orr r2, r2, #65536 ; 0x10000 a0006380: e1822d8c orr r2, r2, ip, lsl #27 a0006384: e1822006 orr r2, r2, r6 a0006388: e5832008 str r2, [r3, #8]
information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node );
a000638c: ebfffd15 bl a00057e8 <_Chain_Append>
index++;
a0006390: e2866001 add r6, r6, #1
/* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
a0006394: e1a00007 mov r0, r7 a0006398: ebfffd1d bl a0005814 <_Chain_Get> a000639c: e2503000 subs r3, r0, #0
information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node );
a00063a0: e1a01003 mov r1, r3 a00063a4: e1a00008 mov r0, r8
/* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { a00063a8: 1afffff0 bne a0006370 <_Objects_Extend_information+0x1d8> _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size;
a00063ac: e1d531b4 ldrh r3, [r5, #20]
information->inactive =
a00063b0: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size;
a00063b4: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
a00063b8: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size;
a00063bc: e7813004 str r3, [r1, r4]
information->inactive =
a00063c0: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size); }
a00063c4: e28dd014 add sp, sp, #20 a00063c8: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size );
a00063cc: e58d3000 str r3, [sp] a00063d0: eb0007c4 bl a00082e8 <_Workspace_Allocate>
if ( !new_object_block )
a00063d4: e2509000 subs r9, r0, #0 a00063d8: e59d3000 ldr r3, [sp]
a00063dc: 1affff9b bne a0006250 <_Objects_Extend_information+0xb8>
a00063e0: eafffff7 b a00063c4 <_Objects_Extend_information+0x22c>
/* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks,
a00063e4: e1a03103 lsl r3, r3, #2 a00063e8: e1a02003 mov r2, r3 a00063ec: e5951034 ldr r1, [r5, #52] ; 0x34 a00063f0: e88d1008 stm sp, {r3, ip} a00063f4: eb001b04 bl a000d00c <memcpy>
information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block,
a00063f8: e89d1008 ldm sp, {r3, ip} a00063fc: e5951030 ldr r1, [r5, #48] ; 0x30 a0006400: e1a0000c mov r0, ip a0006404: e1a02003 mov r2, r3 a0006408: eb001aff bl a000d00c <memcpy>
information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table,
a000640c: e1d521b0 ldrh r2, [r5, #16] a0006410: e1a00008 mov r0, r8 a0006414: e595101c ldr r1, [r5, #28] a0006418: e0872002 add r2, r7, r2 a000641c: e1a02102 lsl r2, r2, #2 a0006420: eb001af9 bl a000d00c <memcpy> a0006424: e89d1008 ldm sp, {r3, ip} a0006428: eaffffa3 b a00062bc <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL )
a000642c: e1a04008 mov r4, r8 a0006430: e1d0a1b0 ldrh sl, [r0, #16] a0006434: e1d011b4 ldrh r1, [r0, #20] a0006438: e1a06007 mov r6, r7 a000643c: e1a03008 mov r3, r8 a0006440: eaffff76 b a0006220 <_Objects_Extend_information+0x88>
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block );
a0006444: e1a00009 mov r0, r9 a0006448: eb0007ac bl a0008300 <_Workspace_Free>
return;
a000644c: eaffffdc b a00063c4 <_Objects_Extend_information+0x22c>
a000748c <_Thread_queue_Enqueue_priority>: Priority_Control priority; States_Control block_state; _Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority;
a000748c: e5913014 ldr r3, [r1, #20]
Thread_blocking_operation_States _Thread_queue_Enqueue_priority ( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread, ISR_Level *level_p ) {
a0007490: e92d05f0 push {r4, r5, r6, r7, r8, sl}
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
a0007494: e281503c add r5, r1, #60 ; 0x3c a0007498: e5815038 str r5, [r1, #56] ; 0x38
the_chain->permanent_null = NULL;
a000749c: e3a05000 mov r5, #0
the_chain->last = _Chain_Head(the_chain);
a00074a0: e281c038 add ip, r1, #56 ; 0x38
priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ]; block_state = the_thread_queue->state; if ( _Thread_queue_Is_reverse_search( priority ) )
a00074a4: e3130020 tst r3, #32
_Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ];
a00074a8: e1a04323 lsr r4, r3, #6
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
a00074ac: e581503c str r5, [r1, #60] ; 0x3c a00074b0: e3a0500c mov r5, #12
the_chain->last = _Chain_Head(the_chain);
a00074b4: e581c040 str ip, [r1, #64] ; 0x40
block_state = the_thread_queue->state;
a00074b8: e5906038 ldr r6, [r0, #56] ; 0x38
_Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ];
a00074bc: e02c0495 mla ip, r5, r4, r0 a00074c0: 159fa17c ldrne sl, [pc, #380] ; a0007644 <_Thread_queue_Enqueue_priority+0x1b8>
block_state = the_thread_queue->state; if ( _Thread_queue_Is_reverse_search( priority ) ) a00074c4: 1a00001c bne a000753c <_Thread_queue_Enqueue_priority+0xb0> */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
a00074c8: e28ca004 add sl, ip, #4
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a00074cc: e10f8000 mrs r8, CPSR a00074d0: e3884080 orr r4, r8, #128 ; 0x80 a00074d4: e129f004 msr CPSR_fc, r4
goto restart_reverse_search; restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first;
a00074d8: e59c4000 ldr r4, [ip]
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
a00074dc: e154000a cmp r4, sl
a00074e0: 1a000009 bne a000750c <_Thread_queue_Enqueue_priority+0x80>
a00074e4: ea000053 b a0007638 <_Thread_queue_Enqueue_priority+0x1ac>
static inline void arm_interrupt_flash( uint32_t level ) { uint32_t arm_switch_reg; asm volatile (
a00074e8: e10f7000 mrs r7, CPSR a00074ec: e129f008 msr CPSR_fc, r8 a00074f0: e129f007 msr CPSR_fc, r7
search_priority = search_thread->current_priority; if ( priority <= search_priority ) break; #endif _ISR_Flash( level ); if ( !_States_Are_set( search_thread->current_state, block_state) ) {
a00074f4: e5947010 ldr r7, [r4, #16] a00074f8: e1160007 tst r6, r7
a00074fc: 0a000034 beq a00075d4 <_Thread_queue_Enqueue_priority+0x148> _ISR_Enable( level ); goto restart_forward_search; } search_thread = (Thread_Control *)search_thread->Object.Node.next;
a0007500: e5944000 ldr r4, [r4]
restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first; while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
a0007504: e154000a cmp r4, sl
a0007508: 0a000002 beq a0007518 <_Thread_queue_Enqueue_priority+0x8c> search_priority = search_thread->current_priority;
a000750c: e5945014 ldr r5, [r4, #20]
if ( priority <= search_priority )
a0007510: e1530005 cmp r3, r5
a0007514: 8afffff3 bhi a00074e8 <_Thread_queue_Enqueue_priority+0x5c> restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first; while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
a0007518: e1a06008 mov r6, r8
} search_thread = (Thread_Control *)search_thread->Object.Node.next; } if ( the_thread_queue->sync_state !=
a000751c: e590c030 ldr ip, [r0, #48] ; 0x30 a0007520: e35c0001 cmp ip, #1
a0007524: 0a00002c beq a00075dc <_Thread_queue_Enqueue_priority+0x150> * For example, the blocking thread could have been given * the mutex by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ *level_p = level;
a0007528: e5826000 str r6, [r2]
return the_thread_queue->sync_state;
a000752c: e1a0000c mov r0, ip
}
a0007530: e8bd05f0 pop {r4, r5, r6, r7, r8, sl} a0007534: e12fff1e bx lr
static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0007538: e129f008 msr CPSR_fc, r8
the_thread->Wait.queue = the_thread_queue; _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1;
a000753c: e5da5000 ldrb r5, [sl] a0007540: e2855001 add r5, r5, #1
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a0007544: e10f8000 mrs r8, CPSR a0007548: e3884080 orr r4, r8, #128 ; 0x80 a000754c: e129f004 msr CPSR_fc, r4
_ISR_Disable( level ); search_thread = (Thread_Control *) header->last;
a0007550: e59c4008 ldr r4, [ip, #8]
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
a0007554: e154000c cmp r4, ip
a0007558: 1a000009 bne a0007584 <_Thread_queue_Enqueue_priority+0xf8>
a000755c: ea00000b b a0007590 <_Thread_queue_Enqueue_priority+0x104>
static inline void arm_interrupt_flash( uint32_t level ) { uint32_t arm_switch_reg; asm volatile (
a0007560: e10f7000 mrs r7, CPSR a0007564: e129f008 msr CPSR_fc, r8 a0007568: e129f007 msr CPSR_fc, r7
search_priority = search_thread->current_priority; if ( priority >= search_priority ) break; #endif _ISR_Flash( level ); if ( !_States_Are_set( search_thread->current_state, block_state) ) {
a000756c: e5947010 ldr r7, [r4, #16] a0007570: e1160007 tst r6, r7
a0007574: 0affffef beq a0007538 <_Thread_queue_Enqueue_priority+0xac> _ISR_Enable( level ); goto restart_reverse_search; } search_thread = (Thread_Control *)
a0007578: e5944004 ldr r4, [r4, #4]
restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->last; while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
a000757c: e154000c cmp r4, ip
a0007580: 0a000002 beq a0007590 <_Thread_queue_Enqueue_priority+0x104> search_priority = search_thread->current_priority;
a0007584: e5945014 ldr r5, [r4, #20]
if ( priority >= search_priority )
a0007588: e1530005 cmp r3, r5
a000758c: 3afffff3 bcc a0007560 <_Thread_queue_Enqueue_priority+0xd4> } search_thread = (Thread_Control *) search_thread->Object.Node.previous; } if ( the_thread_queue->sync_state !=
a0007590: e590c030 ldr ip, [r0, #48] ; 0x30
restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->last; while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
a0007594: e1a06008 mov r6, r8
} search_thread = (Thread_Control *) search_thread->Object.Node.previous; } if ( the_thread_queue->sync_state !=
a0007598: e35c0001 cmp ip, #1
a000759c: 1affffe1 bne a0007528 <_Thread_queue_Enqueue_priority+0x9c> THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; if ( priority == search_priority )
a00075a0: e1530005 cmp r3, r5
if ( the_thread_queue->sync_state != THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
a00075a4: e3a03000 mov r3, #0 a00075a8: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority ) a00075ac: 0a000017 beq a0007610 <_Thread_queue_Enqueue_priority+0x184> goto equal_priority; search_node = (Chain_Node *) search_thread; next_node = search_node->next;
a00075b0: e5943000 ldr r3, [r4]
the_node = (Chain_Node *) the_thread; the_node->next = next_node; the_node->previous = search_node;
a00075b4: e5814004 str r4, [r1, #4]
search_node->next = the_node; next_node->previous = the_node; the_thread->Wait.queue = the_thread_queue;
a00075b8: e5810044 str r0, [r1, #68] ; 0x44
search_node = (Chain_Node *) search_thread; next_node = search_node->next; the_node = (Chain_Node *) the_thread; the_node->next = next_node;
a00075bc: e5813000 str r3, [r1]
the_node->previous = search_node; search_node->next = the_node; next_node->previous = the_node;
a00075c0: e5831004 str r1, [r3, #4]
next_node = search_node->next; the_node = (Chain_Node *) the_thread; the_node->next = next_node; the_node->previous = search_node; search_node->next = the_node;
a00075c4: e5841000 str r1, [r4]
static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a00075c8: e129f008 msr CPSR_fc, r8 a00075cc: e3a00001 mov r0, #1
next_node->previous = the_node; the_thread->Wait.queue = the_thread_queue; _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
a00075d0: eaffffd6 b a0007530 <_Thread_queue_Enqueue_priority+0xa4>
a00075d4: e129f008 msr CPSR_fc, r8 <== NOT EXECUTED a00075d8: eaffffbb b a00074cc <_Thread_queue_Enqueue_priority+0x40> <== NOT EXECUTED
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; if ( priority == search_priority )
a00075dc: e1530005 cmp r3, r5
if ( the_thread_queue->sync_state != THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
a00075e0: e3a03000 mov r3, #0 a00075e4: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority ) a00075e8: 0a000008 beq a0007610 <_Thread_queue_Enqueue_priority+0x184> goto equal_priority; search_node = (Chain_Node *) search_thread; previous_node = search_node->previous;
a00075ec: e5943004 ldr r3, [r4, #4]
the_node = (Chain_Node *) the_thread; the_node->next = search_node;
a00075f0: e5814000 str r4, [r1]
the_node->previous = previous_node; previous_node->next = the_node; search_node->previous = the_node; the_thread->Wait.queue = the_thread_queue;
a00075f4: e5810044 str r0, [r1, #68] ; 0x44
search_node = (Chain_Node *) search_thread; previous_node = search_node->previous; the_node = (Chain_Node *) the_thread; the_node->next = search_node; the_node->previous = previous_node;
a00075f8: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
a00075fc: e5831000 str r1, [r3]
search_node->previous = the_node;
a0007600: e5841004 str r1, [r4, #4] a0007604: e129f008 msr CPSR_fc, r8 a0007608: e3a00001 mov r0, #1
the_thread->Wait.queue = the_thread_queue; _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
a000760c: eaffffc7 b a0007530 <_Thread_queue_Enqueue_priority+0xa4> a0007610: e284403c add r4, r4, #60 ; 0x3c
_ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; equal_priority: /* add at end of priority group */ search_node = _Chain_Tail( &search_thread->Wait.Block2n ); previous_node = search_node->previous;
a0007614: e5943004 ldr r3, [r4, #4]
the_node = (Chain_Node *) the_thread; the_node->next = search_node;
a0007618: e5814000 str r4, [r1]
the_node->previous = previous_node; previous_node->next = the_node; search_node->previous = the_node; the_thread->Wait.queue = the_thread_queue;
a000761c: e5810044 str r0, [r1, #68] ; 0x44
search_node = _Chain_Tail( &search_thread->Wait.Block2n ); previous_node = search_node->previous; the_node = (Chain_Node *) the_thread; the_node->next = search_node; the_node->previous = previous_node;
a0007620: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
a0007624: e5831000 str r1, [r3]
search_node->previous = the_node;
a0007628: e5841004 str r1, [r4, #4] a000762c: e129f006 msr CPSR_fc, r6 a0007630: e3a00001 mov r0, #1
the_thread->Wait.queue = the_thread_queue; _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
a0007634: eaffffbd b a0007530 <_Thread_queue_Enqueue_priority+0xa4>
restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first; while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
a0007638: e1a06008 mov r6, r8 a000763c: e3e05000 mvn r5, #0 a0007640: eaffffb5 b a000751c <_Thread_queue_Enqueue_priority+0x90> a0007644: a0017fa0 .word 0xa0017fa0
a00160f4 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) {
a00160f4: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} a00160f8: e24dd024 sub sp, sp, #36 ; 0x24 a00160fc: e1a04000 mov r4, r0
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
a0016100: e3a03000 mov r3, #0
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
a0016104: e28d0018 add r0, sp, #24 a0016108: e28d700c add r7, sp, #12 a001610c: e59f91c8 ldr r9, [pc, #456] ; a00162dc <_Timer_server_Body+0x1e8> a0016110: e59fb1c8 ldr fp, [pc, #456] ; a00162e0 <_Timer_server_Body+0x1ec> a0016114: e280a004 add sl, r0, #4 a0016118: e2872004 add r2, r7, #4
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
a001611c: e58d301c str r3, [sp, #28]
the_chain->last = _Chain_Head(the_chain);
a0016120: e58d0020 str r0, [sp, #32]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
a0016124: e58d3010 str r3, [sp, #16]
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
a0016128: e2840040 add r0, r4, #64 ; 0x40
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
a001612c: e2843008 add r3, r4, #8
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
a0016130: e58d2000 str r2, [sp]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
a0016134: e58da018 str sl, [sp, #24] a0016138: e58d200c str r2, [sp, #12]
the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain);
a001613c: e58d7014 str r7, [sp, #20]
*/ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0016140: e2846030 add r6, r4, #48 ; 0x30
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0016144: e2848068 add r8, r4, #104 ; 0x68
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
a0016148: e98d0009 stmib sp, {r0, r3}
{ /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain;
a001614c: e28d2018 add r2, sp, #24 a0016150: e5842078 str r2, [r4, #120] ; 0x78
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
a0016154: e5993000 ldr r3, [r9]
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
a0016158: e594103c ldr r1, [r4, #60] ; 0x3c
watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a001615c: e1a00006 mov r0, r6
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot;
a0016160: e584303c str r3, [r4, #60] ; 0x3c
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a0016164: e0611003 rsb r1, r1, r3 a0016168: e1a02007 mov r2, r7 a001616c: eb0010b5 bl a001a448 <_Watchdog_Adjust_to_chain>
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
a0016170: e59b5000 ldr r5, [fp]
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
a0016174: e5941074 ldr r1, [r4, #116] ; 0x74
/* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) {
a0016178: e1550001 cmp r5, r1
a001617c: 8a000022 bhi a001620c <_Timer_server_Body+0x118> * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { a0016180: 3a000018 bcc a00161e8 <_Timer_server_Body+0xf4> */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot;
a0016184: e5845074 str r5, [r4, #116] ; 0x74
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
a0016188: e5940078 ldr r0, [r4, #120] ; 0x78 a001618c: eb00024a bl a0016abc <_Chain_Get>
if ( timer == NULL ) {
a0016190: e3500000 cmp r0, #0
a0016194: 0a00000b beq a00161c8 <_Timer_server_Body+0xd4> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
a0016198: e5903038 ldr r3, [r0, #56] ; 0x38 a001619c: e3530001 cmp r3, #1
a00161a0: 0a000015 beq a00161fc <_Timer_server_Body+0x108> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
a00161a4: e3530003 cmp r3, #3
a00161a8: 1afffff6 bne a0016188 <_Timer_server_Body+0x94> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
a00161ac: e2801010 add r1, r0, #16 a00161b0: e1a00008 mov r0, r8 a00161b4: eb0010d2 bl a001a504 <_Watchdog_Insert>
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
a00161b8: e5940078 ldr r0, [r4, #120] ; 0x78 a00161bc: eb00023e bl a0016abc <_Chain_Get>
if ( timer == NULL ) {
a00161c0: e3500000 cmp r0, #0
a00161c4: 1afffff3 bne a0016198 <_Timer_server_Body+0xa4> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a00161c8: e10f2000 mrs r2, CPSR a00161cc: e3823080 orr r3, r2, #128 ; 0x80 a00161d0: e129f003 msr CPSR_fc, r3
* body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) {
a00161d4: e59d3018 ldr r3, [sp, #24] a00161d8: e15a0003 cmp sl, r3
a00161dc: 0a00000f beq a0016220 <_Timer_server_Body+0x12c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a00161e0: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED a00161e4: eaffffda b a0016154 <_Timer_server_Body+0x60> <== NOT EXECUTED
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
a00161e8: e0652001 rsb r2, r5, r1 a00161ec: e1a00008 mov r0, r8 a00161f0: e3a01001 mov r1, #1 a00161f4: eb001064 bl a001a38c <_Watchdog_Adjust> a00161f8: eaffffe1 b a0016184 <_Timer_server_Body+0x90>
Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
a00161fc: e2801010 add r1, r0, #16 a0016200: e1a00006 mov r0, r6 a0016204: eb0010be bl a001a504 <_Watchdog_Insert> a0016208: eaffffde b a0016188 <_Timer_server_Body+0x94>
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
a001620c: e0611005 rsb r1, r1, r5 a0016210: e1a00008 mov r0, r8 a0016214: e1a02007 mov r2, r7 a0016218: eb00108a bl a001a448 <_Watchdog_Adjust_to_chain> a001621c: eaffffd8 b a0016184 <_Timer_server_Body+0x90>
*/ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL;
a0016220: e5840078 str r0, [r4, #120] ; 0x78 a0016224: e129f002 msr CPSR_fc, r2
_Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) {
a0016228: e59d300c ldr r3, [sp, #12] a001622c: e59d0000 ldr r0, [sp] a0016230: e1500003 cmp r0, r3 a0016234: 159d5000 ldrne r5, [sp]
a0016238: 1a00000a bne a0016268 <_Timer_server_Body+0x174>
a001623c: ea000011 b a0016288 <_Timer_server_Body+0x194>
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
a0016240: e5932000 ldr r2, [r3]
* service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE;
a0016244: e3a00000 mov r0, #0 a0016248: e5830008 str r0, [r3, #8]
the_chain->first = new_first;
a001624c: e58d200c str r2, [sp, #12]
new_first->previous = _Chain_Head(the_chain);
a0016250: e5827004 str r7, [r2, #4] a0016254: e129f001 msr CPSR_fc, r1
/* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data );
a0016258: e5930020 ldr r0, [r3, #32] a001625c: e5931024 ldr r1, [r3, #36] ; 0x24 a0016260: e1a0e00f mov lr, pc a0016264: e593f01c ldr pc, [r3, #28]
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a0016268: e10f1000 mrs r1, CPSR a001626c: e3813080 orr r3, r1, #128 ; 0x80 a0016270: e129f003 msr CPSR_fc, r3
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
a0016274: e59d300c ldr r3, [sp, #12]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
a0016278: e1550003 cmp r5, r3
a001627c: 1affffef bne a0016240 <_Timer_server_Body+0x14c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0016280: e129f001 msr CPSR_fc, r1 a0016284: eaffffb0 b a001614c <_Timer_server_Body+0x58> a0016288: e59f0054 ldr r0, [pc, #84] ; a00162e4 <_Timer_server_Body+0x1f0>
} } else { ts->active = false;
a001628c: e3a02000 mov r2, #0 a0016290: e5c4207c strb r2, [r4, #124] ; 0x7c a0016294: e5903000 ldr r3, [r0] a0016298: e2833001 add r3, r3, #1 a001629c: e5803000 str r3, [r0]
/* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING );
a00162a0: e3a01008 mov r1, #8 a00162a4: e5940000 ldr r0, [r4] a00162a8: eb000dc9 bl a00199d4 <_Thread_Set_state>
_Timer_server_Reset_interval_system_watchdog( ts );
a00162ac: e1a00004 mov r0, r4 a00162b0: ebffff63 bl a0016044 <_Timer_server_Reset_interval_system_watchdog>
_Timer_server_Reset_tod_system_watchdog( ts );
a00162b4: e1a00004 mov r0, r4 a00162b8: ebffff77 bl a001609c <_Timer_server_Reset_tod_system_watchdog>
_Thread_Enable_dispatch();
a00162bc: eb000b16 bl a0018f1c <_Thread_Enable_dispatch>
ts->active = true;
a00162c0: e3a02001 mov r2, #1 a00162c4: e5c4207c strb r2, [r4, #124] ; 0x7c
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
a00162c8: e59d0008 ldr r0, [sp, #8] a00162cc: eb0010f9 bl a001a6b8 <_Watchdog_Remove>
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
a00162d0: e59d0004 ldr r0, [sp, #4] a00162d4: eb0010f7 bl a001a6b8 <_Watchdog_Remove> a00162d8: eaffff9b b a001614c <_Timer_server_Body+0x58> a00162dc: a003b104 .word 0xa003b104 a00162e0: a003b034 .word 0xa003b034 a00162e4: a003afac .word 0xa003afac
a0009f38 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) {
a0009f38: e92d41f0 push {r4, r5, r6, r7, r8, lr} a0009f3c: e1a04000 mov r4, r0 a0009f40: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a0009f44: e10f3000 mrs r3, CPSR a0009f48: e3832080 orr r2, r3, #128 ; 0x80 a0009f4c: e129f002 msr CPSR_fc, r2
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
a0009f50: e1a07000 mov r7, r0 a0009f54: e4972004 ldr r2, [r7], #4
* hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) {
a0009f58: e1520007 cmp r2, r7
a0009f5c: 0a000018 beq a0009fc4 <_Watchdog_Adjust+0x8c> switch ( direction ) {
a0009f60: e3510000 cmp r1, #0
a0009f64: 1a000018 bne a0009fcc <_Watchdog_Adjust+0x94> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
a0009f68: e3550000 cmp r5, #0
a0009f6c: 0a000014 beq a0009fc4 <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) {
a0009f70: e5926010 ldr r6, [r2, #16] a0009f74: e1550006 cmp r5, r6
_Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1;
a0009f78: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { a0009f7c: 2a000005 bcs a0009f98 <_Watchdog_Adjust+0x60>
a0009f80: ea000018 b a0009fe8 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED
switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
a0009f84: e0555006 subs r5, r5, r6
a0009f88: 0a00000d beq a0009fc4 <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) {
a0009f8c: e5926010 ldr r6, [r2, #16] a0009f90: e1560005 cmp r6, r5
a0009f94: 8a000013 bhi a0009fe8 <_Watchdog_Adjust+0xb0> _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1;
a0009f98: e5828010 str r8, [r2, #16]
static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0009f9c: e129f003 msr CPSR_fc, r3
_ISR_Enable( level ); _Watchdog_Tickle( header );
a0009fa0: e1a00004 mov r0, r4 a0009fa4: eb0000aa bl a000a254 <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a0009fa8: e10f3000 mrs r3, CPSR a0009fac: e3832080 orr r2, r3, #128 ; 0x80 a0009fb0: e129f002 msr CPSR_fc, r2 a0009fb4: e5941000 ldr r1, [r4]
_ISR_Disable( level ); if ( _Chain_Is_empty( header ) )
a0009fb8: e1570001 cmp r7, r1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First( Chain_Control *header ) { return ( (Watchdog_Control *) header->first );
a0009fbc: e1a02001 mov r2, r1
a0009fc0: 1affffef bne a0009f84 <_Watchdog_Adjust+0x4c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0009fc4: e129f003 msr CPSR_fc, r3
} } _ISR_Enable( level ); }
a0009fc8: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) {
a0009fcc: e3510001 cmp r1, #1
a0009fd0: 1afffffb bne a0009fc4 <_Watchdog_Adjust+0x8c> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units;
a0009fd4: e5921010 ldr r1, [r2, #16] a0009fd8: e0815005 add r5, r1, r5 a0009fdc: e5825010 str r5, [r2, #16] a0009fe0: e129f003 msr CPSR_fc, r3
} } _ISR_Enable( level ); }
a0009fe4: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
_Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units;
a0009fe8: e0655006 rsb r5, r5, r6 a0009fec: e5825010 str r5, [r2, #16]
break;
a0009ff0: eafffff3 b a0009fc4 <_Watchdog_Adjust+0x8c>
a0006e7c <rtems_io_register_driver>: rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) {
a0006e7c: e92d4010 push {r4, lr} a0006e80: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() )
a0006e84: e59f0148 ldr r0, [pc, #328] ; a0006fd4 <rtems_io_register_driver+0x158>
rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers;
a0006e88: e59f3148 ldr r3, [pc, #328] ; a0006fd8 <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
a0006e8c: e5900000 ldr r0, [r0] a0006e90: e3500000 cmp r0, #0
rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers;
a0006e94: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() ) a0006e98: 1a000032 bne a0006f68 <rtems_io_register_driver+0xec> return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL )
a0006e9c: e3520000 cmp r2, #0
a0006ea0: 0a000040 beq a0006fa8 <rtems_io_register_driver+0x12c> return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL )
a0006ea4: e3510000 cmp r1, #0
if ( registered_major == NULL ) return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit;
a0006ea8: e5820000 str r0, [r2]
if ( driver_table == NULL ) a0006eac: 0a00003d beq a0006fa8 <rtems_io_register_driver+0x12c> static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006eb0: e591c000 ldr ip, [r1] a0006eb4: e35c0000 cmp ip, #0
a0006eb8: 0a000037 beq a0006f9c <rtems_io_register_driver+0x120> return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit )
a0006ebc: e1500004 cmp r0, r4
a0006ec0: 9a000026 bls a0006f60 <rtems_io_register_driver+0xe4> rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
a0006ec4: e59f0110 ldr r0, [pc, #272] ; a0006fdc <rtems_io_register_driver+0x160> a0006ec8: e590c000 ldr ip, [r0] a0006ecc: e28cc001 add ip, ip, #1 a0006ed0: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) {
a0006ed4: e3540000 cmp r4, #0
a0006ed8: 1a000024 bne a0006f70 <rtems_io_register_driver+0xf4> static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers;
a0006edc: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) {
a0006ee0: e35c0000 cmp ip, #0
a0006ee4: 0a000031 beq a0006fb0 <rtems_io_register_driver+0x134>
a0006ee8: e59f30f0 ldr r3, [pc, #240] ; a0006fe0 <rtems_io_register_driver+0x164> a0006eec: e593e000 ldr lr, [r3] a0006ef0: e1a0300e mov r3, lr a0006ef4: ea000003 b a0006f08 <rtems_io_register_driver+0x8c> a0006ef8: e2844001 add r4, r4, #1 a0006efc: e15c0004 cmp ip, r4 a0006f00: e2833018 add r3, r3, #24
a0006f04: 9a000005 bls a0006f20 <rtems_io_register_driver+0xa4> static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006f08: e5930000 ldr r0, [r3] a0006f0c: e3500000 cmp r0, #0
a0006f10: 1afffff8 bne a0006ef8 <rtems_io_register_driver+0x7c>
a0006f14: e5930004 ldr r0, [r3, #4] a0006f18: e3500000 cmp r0, #0
a0006f1c: 1afffff5 bne a0006ef8 <rtems_io_register_driver+0x7c> } /* Assigns invalid value in case of failure */ *major = m; if ( m != n )
a0006f20: e15c0004 cmp ip, r4
if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m;
a0006f24: e5824000 str r4, [r2]
if ( m != n ) a0006f28: 0a000021 beq a0006fb4 <rtems_io_register_driver+0x138>
a0006f2c: e3a03018 mov r3, #24 a0006f30: e02ce493 mla ip, r3, r4, lr
} *registered_major = major; } _IO_Driver_address_table [major] = *driver_table;
a0006f34: e1a0e001 mov lr, r1 a0006f38: e8be000f ldm lr!, {r0, r1, r2, r3} a0006f3c: e8ac000f stmia ip!, {r0, r1, r2, r3} a0006f40: e89e0003 ldm lr, {r0, r1} a0006f44: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
a0006f48: eb000691 bl a0008994 <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
a0006f4c: e3a01000 mov r1, #0 a0006f50: e1a00004 mov r0, r4 a0006f54: e1a02001 mov r2, r1
}
a0006f58: e8bd4010 pop {r4, lr}
_IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL );
a0006f5c: ea002159 b a000f4c8 <rtems_io_initialize>
return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit )
a0006f60: e3a0000a mov r0, #10 a0006f64: e8bd8010 pop {r4, pc}
rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() )
a0006f68: e3a00012 mov r0, #18 a0006f6c: e8bd8010 pop {r4, pc}
_Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major;
a0006f70: e3a00018 mov r0, #24 a0006f74: e0030490 mul r3, r0, r4 a0006f78: e59f0060 ldr r0, [pc, #96] ; a0006fe0 <rtems_io_register_driver+0x164> a0006f7c: e590c000 ldr ip, [r0]
static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006f80: e79c0003 ldr r0, [ip, r3]
_Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major;
a0006f84: e08cc003 add ip, ip, r3
static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006f88: e3500000 cmp r0, #0
a0006f8c: 0a00000b beq a0006fc0 <rtems_io_register_driver+0x144> major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch();
a0006f90: eb00067f bl a0008994 <_Thread_Enable_dispatch> a0006f94: e3a0000c mov r0, #12
return RTEMS_RESOURCE_IN_USE;
a0006f98: e8bd8010 pop {r4, pc}
static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006f9c: e591c004 ldr ip, [r1, #4] a0006fa0: e35c0000 cmp ip, #0
a0006fa4: 1affffc4 bne a0006ebc <rtems_io_register_driver+0x40> _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL );
a0006fa8: e3a00009 mov r0, #9
}
a0006fac: e8bd8010 pop {r4, pc}
if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m;
a0006fb0: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch();
a0006fb4: eb000676 bl a0008994 <_Thread_Enable_dispatch> a0006fb8: e3a00005 mov r0, #5
return sc;
a0006fbc: e8bd8010 pop {r4, pc}
static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL;
a0006fc0: e59c3004 ldr r3, [ip, #4] a0006fc4: e3530000 cmp r3, #0
a0006fc8: 1afffff0 bne a0006f90 <rtems_io_register_driver+0x114> if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major;
a0006fcc: e5824000 str r4, [r2] a0006fd0: eaffffd7 b a0006f34 <rtems_io_register_driver+0xb8> a0006fd4: a001f89c .word 0xa001f89c a0006fd8: a001fa84 .word 0xa001fa84 a0006fdc: a001f80c .word 0xa001f80c a0006fe0: a001fa88 .word 0xa001fa88
a00388b8 <rtems_rate_monotonic_period>: rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) {
a00388b8: e92d41f0 push {r4, r5, r6, r7, r8, lr} a00388bc: e1a04000 mov r4, r0 a00388c0: e24dd008 sub sp, sp, #8 a00388c4: e1a05001 mov r5, r1 a00388c8: e59f0180 ldr r0, [pc, #384] ; a0038a50 <rtems_rate_monotonic_period+0x198> a00388cc: e1a01004 mov r1, r4 a00388d0: e28d2004 add r2, sp, #4 a00388d4: ebff4729 bl a000a580 <_Objects_Get>
rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
a00388d8: e59d3004 ldr r3, [sp, #4] a00388dc: e1a06000 mov r6, r0 a00388e0: e3530000 cmp r3, #0
a00388e4: 1a000008 bne a003890c <rtems_rate_monotonic_period+0x54> case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) {
a00388e8: e59f7164 ldr r7, [pc, #356] ; a0038a54 <rtems_rate_monotonic_period+0x19c> a00388ec: e5902040 ldr r2, [r0, #64] ; 0x40 a00388f0: e5973000 ldr r3, [r7] a00388f4: e1520003 cmp r2, r3
a00388f8: 0a000005 beq a0038914 <rtems_rate_monotonic_period+0x5c> _Thread_Enable_dispatch();
a00388fc: ebff498c bl a000af34 <_Thread_Enable_dispatch> a0038900: e3a00017 mov r0, #23
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
a0038904: e28dd008 add sp, sp, #8 a0038908: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_TIMEOUT;
a003890c: e3a00004 mov r0, #4 a0038910: eafffffb b a0038904 <rtems_rate_monotonic_period+0x4c>
if ( !_Thread_Is_executing( the_period->owner ) ) { _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) {
a0038914: e3550000 cmp r5, #0
a0038918: 0a00002b beq a00389cc <rtems_rate_monotonic_period+0x114> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a003891c: e10f8000 mrs r8, CPSR a0038920: e3883080 orr r3, r8, #128 ; 0x80 a0038924: e129f003 msr CPSR_fc, r3
_Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); switch ( the_period->state ) {
a0038928: e5903038 ldr r3, [r0, #56] ; 0x38 a003892c: e3530002 cmp r3, #2
a0038930: 0a00002b beq a00389e4 <rtems_rate_monotonic_period+0x12c>
a0038934: e3530004 cmp r3, #4
a0038938: 0a000015 beq a0038994 <rtems_rate_monotonic_period+0xdc>
a003893c: e3530000 cmp r3, #0
a0038940: 1afffff1 bne a003890c <rtems_rate_monotonic_period+0x54> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0038944: e129f008 msr CPSR_fc, r8
_ISR_Enable( level ); /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period );
a0038948: ebffff50 bl a0038690 <_Rate_monotonic_Initiate_statistics>
the_period->state = RATE_MONOTONIC_ACTIVE;
a003894c: e3a03002 mov r3, #2 a0038950: e5863038 str r3, [r6, #56] ; 0x38
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
a0038954: e59f30fc ldr r3, [pc, #252] ; a0038a58 <rtems_rate_monotonic_period+0x1a0>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
a0038958: e3a07000 mov r7, #0
) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
a003895c: e59f00f8 ldr r0, [pc, #248] ; a0038a5c <rtems_rate_monotonic_period+0x1a4>
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
a0038960: e586302c str r3, [r6, #44] ; 0x2c
the_watchdog->id = id;
a0038964: e5864030 str r4, [r6, #48] ; 0x30
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
a0038968: e586501c str r5, [r6, #28]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
a003896c: e2861010 add r1, r6, #16
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
a0038970: e5867018 str r7, [r6, #24]
the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data;
a0038974: e5867034 str r7, [r6, #52] ; 0x34
_Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length;
a0038978: e586503c str r5, [r6, #60] ; 0x3c
) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
a003897c: ebff4d99 bl a000bfe8 <_Watchdog_Insert>
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
a0038980: e1a00007 mov r0, r7 a0038984: e58d0000 str r0, [sp] a0038988: ebff4969 bl a000af34 <_Thread_Enable_dispatch>
return RTEMS_SUCCESSFUL;
a003898c: e59d0000 ldr r0, [sp] a0038990: eaffffdb b a0038904 <rtems_rate_monotonic_period+0x4c>
case RATE_MONOTONIC_EXPIRED: /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period );
a0038994: ebffff8c bl a00387cc <_Rate_monotonic_Update_statistics> a0038998: e129f008 msr CPSR_fc, r8
_ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE;
a003899c: e3a03002 mov r3, #2 a00389a0: e5863038 str r3, [r6, #56] ; 0x38 a00389a4: e2861010 add r1, r6, #16 a00389a8: e59f00ac ldr r0, [pc, #172] ; a0038a5c <rtems_rate_monotonic_period+0x1a4>
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
a00389ac: e586501c str r5, [r6, #28]
the_period->next_length = length;
a00389b0: e586503c str r5, [r6, #60] ; 0x3c
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
a00389b4: ebff4d8b bl a000bfe8 <_Watchdog_Insert>
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
a00389b8: e3a00006 mov r0, #6 a00389bc: e58d0000 str r0, [sp] a00389c0: ebff495b bl a000af34 <_Thread_Enable_dispatch>
return RTEMS_TIMEOUT;
a00389c4: e59d0000 ldr r0, [sp] a00389c8: eaffffcd b a0038904 <rtems_rate_monotonic_period+0x4c>
_Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { switch ( the_period->state ) {
a00389cc: e5903038 ldr r3, [r0, #56] ; 0x38 a00389d0: e3530004 cmp r3, #4 a00389d4: 959f2084 ldrls r2, [pc, #132] ; a0038a60 <rtems_rate_monotonic_period+0x1a8> a00389d8: 81a00005 movhi r0, r5 a00389dc: 97920103 ldrls r0, [r2, r3, lsl #2] a00389e0: eaffffe7 b a0038984 <rtems_rate_monotonic_period+0xcc>
case RATE_MONOTONIC_ACTIVE: /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period );
a00389e4: ebffff78 bl a00387cc <_Rate_monotonic_Update_statistics>
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
a00389e8: e3a03001 mov r3, #1
the_period->next_length = length;
a00389ec: e586503c str r5, [r6, #60] ; 0x3c
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
a00389f0: e5863038 str r3, [r6, #56] ; 0x38 a00389f4: e129f008 msr CPSR_fc, r8
the_period->next_length = length; _ISR_Enable( level ); _Thread_Executing->Wait.id = the_period->Object.id;
a00389f8: e5973000 ldr r3, [r7] a00389fc: e5962008 ldr r2, [r6, #8]
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
a0038a00: e3a01901 mov r1, #16384 ; 0x4000 a0038a04: e1a00003 mov r0, r3
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; the_period->next_length = length; _ISR_Enable( level ); _Thread_Executing->Wait.id = the_period->Object.id;
a0038a08: e5832020 str r2, [r3, #32]
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
a0038a0c: ebff4b8b bl a000b840 <_Thread_Set_state>
static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile (
a0038a10: e10f2000 mrs r2, CPSR a0038a14: e3823080 orr r3, r2, #128 ; 0x80 a0038a18: e129f003 msr CPSR_fc, r3
* Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); local_state = the_period->state; the_period->state = RATE_MONOTONIC_ACTIVE;
a0038a1c: e3a01002 mov r1, #2
/* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); local_state = the_period->state;
a0038a20: e5963038 ldr r3, [r6, #56] ; 0x38
the_period->state = RATE_MONOTONIC_ACTIVE;
a0038a24: e5861038 str r1, [r6, #56] ; 0x38
static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile (
a0038a28: e129f002 msr CPSR_fc, r2
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
a0038a2c: e3530003 cmp r3, #3
a0038a30: 0a000002 beq a0038a40 <rtems_rate_monotonic_period+0x188> _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch();
a0038a34: ebff493e bl a000af34 <_Thread_Enable_dispatch> a0038a38: e3a00000 mov r0, #0
return RTEMS_SUCCESSFUL;
a0038a3c: eaffffb0 b a0038904 <rtems_rate_monotonic_period+0x4c>
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
a0038a40: e5970000 ldr r0, [r7] <== NOT EXECUTED a0038a44: e3a01901 mov r1, #16384 ; 0x4000 <== NOT EXECUTED a0038a48: ebff4836 bl a000ab28 <_Thread_Clear_state> <== NOT EXECUTED a0038a4c: eafffff8 b a0038a34 <rtems_rate_monotonic_period+0x17c> <== NOT EXECUTED
a0038a50: a0066a64 .word 0xa0066a64 a0038a54: a00666a0 .word 0xa00666a0 a0038a58: a0038a64 .word 0xa0038a64 a0038a5c: a00666c0 .word 0xa00666c0 a0038a60: a005ad38 .word 0xa005ad38