RTEMS 4.11Annotated Report
Thu Dec 20 14:35:12 2012
02010f4c <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010f4c: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010f50: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
2010f54: c0 26 20 48 clr [ %i0 + 0x48 ]
/*
* Check if allocated_message_size is aligned to uintptr-size boundary.
* If not, it will increase allocated_message_size to multiplicity of pointer
* size.
*/
if (allocated_message_size & (sizeof(uintptr_t) - 1)) {
2010f58: 80 8e e0 03 btst 3, %i3
2010f5c: 02 80 00 09 be 2010f80 <_CORE_message_queue_Initialize+0x34>
2010f60: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
allocated_message_size += sizeof(uintptr_t);
2010f64: 96 06 e0 04 add %i3, 4, %o3
allocated_message_size &= ~(sizeof(uintptr_t) - 1);
2010f68: 96 0a ff fc and %o3, -4, %o3
/*
* Check for an overflow. It can occur while increasing allocated_message_size
* to multiplicity of uintptr_t above.
*/
if (allocated_message_size < maximum_message_size)
2010f6c: 80 a2 c0 1b cmp %o3, %i3
2010f70: 3a 80 00 06 bcc,a 2010f88 <_CORE_message_queue_Initialize+0x3c>
2010f74: ba 02 e0 10 add %o3, 0x10, %i5
return false;
2010f78: 10 80 00 24 b 2011008 <_CORE_message_queue_Initialize+0xbc>
2010f7c: b0 10 20 00 clr %i0
/*
* Check if allocated_message_size is aligned to uintptr-size boundary.
* If not, it will increase allocated_message_size to multiplicity of pointer
* size.
*/
if (allocated_message_size & (sizeof(uintptr_t) - 1)) {
2010f80: 96 10 00 1b mov %i3, %o3
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2010f84: ba 02 e0 10 add %o3, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2010f88: 90 10 20 00 clr %o0
2010f8c: 92 10 00 1a mov %i2, %o1
2010f90: 94 10 20 00 clr %o2
2010f94: 40 00 3f b2 call 2020e5c <__muldi3>
2010f98: 96 10 00 1d mov %i5, %o3
if ( x > SIZE_MAX )
2010f9c: 80 a2 20 00 cmp %o0, 0
2010fa0: 34 80 00 1a bg,a 2011008 <_CORE_message_queue_Initialize+0xbc>
2010fa4: b0 10 20 00 clr %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010fa8: 40 00 0b ec call 2013f58 <_Workspace_Allocate>
2010fac: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010fb0: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010fb4: 80 a2 20 00 cmp %o0, 0
2010fb8: 02 bf ff f0 be 2010f78 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN
2010fbc: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010fc0: 90 06 20 60 add %i0, 0x60, %o0
2010fc4: 94 10 00 1a mov %i2, %o2
2010fc8: 7f ff ff d3 call 2010f14 <_Chain_Initialize>
2010fcc: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010fd0: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010fd4: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
*/
RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority(
CORE_message_queue_Attributes *the_attribute
)
{
return
2010fd8: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010fdc: 84 06 20 54 add %i0, 0x54, %g2
2010fe0: 82 18 60 01 xor %g1, 1, %g1
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010fe4: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
2010fe8: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
2010fec: c0 26 20 54 clr [ %i0 + 0x54 ]
2010ff0: 90 10 00 18 mov %i0, %o0
2010ff4: 92 60 3f ff subx %g0, -1, %o1
2010ff8: 94 10 20 80 mov 0x80, %o2
2010ffc: 96 10 20 06 mov 6, %o3
2011000: 40 00 09 ad call 20136b4 <_Thread_queue_Initialize>
2011004: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011008: b0 0e 20 01 and %i0, 1, %i0
201100c: 81 c7 e0 08 ret
2011010: 81 e8 00 00 restore
02008568 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2008568: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
200856c: 90 10 00 18 mov %i0, %o0
2008570: 40 00 07 6c call 200a320 <_Thread_queue_Dequeue>
2008574: ba 10 00 18 mov %i0, %i5
2008578: 80 a2 20 00 cmp %o0, 0
200857c: 12 80 00 0e bne 20085b4 <_CORE_semaphore_Surrender+0x4c>
2008580: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2008584: 7f ff e8 10 call 20025c4 <sparc_disable_interrupts>
2008588: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
200858c: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2008590: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
2008594: 80 a0 40 02 cmp %g1, %g2
2008598: 1a 80 00 05 bcc 20085ac <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
200859c: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
20085a0: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20085a4: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20085a8: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20085ac: 7f ff e8 0a call 20025d4 <sparc_enable_interrupts>
20085b0: 01 00 00 00 nop
}
return status;
}
20085b4: 81 c7 e0 08 ret
20085b8: 81 e8 00 00 restore
02007260 <_Event_Surrender>:
rtems_event_set event_in,
Event_Control *event,
Thread_blocking_operation_States *sync_state,
States_Control wait_state
)
{
2007260: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events;
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
option_set = the_thread->Wait.option;
2007264: e0 06 20 30 ld [ %i0 + 0x30 ], %l0
_ISR_Disable( level );
2007268: 7f ff ec d7 call 20025c4 <sparc_disable_interrupts>
200726c: ba 10 00 18 mov %i0, %i5
2007270: b0 10 00 08 mov %o0, %i0
RTEMS_INLINE_ROUTINE void _Event_sets_Post(
rtems_event_set the_new_events,
rtems_event_set *the_event_set
)
{
*the_event_set |= the_new_events;
2007274: c2 06 80 00 ld [ %i2 ], %g1
2007278: b2 16 40 01 or %i1, %g1, %i1
200727c: f2 26 80 00 st %i1, [ %i2 ]
_Event_sets_Post( event_in, &event->pending_events );
pending_events = event->pending_events;
event_condition = the_thread->Wait.count;
2007280: c4 07 60 24 ld [ %i5 + 0x24 ], %g2
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2007284: 82 8e 40 02 andcc %i1, %g2, %g1
2007288: 02 80 00 3d be 200737c <_Event_Surrender+0x11c>
200728c: 07 00 80 70 sethi %hi(0x201c000), %g3
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2007290: 86 10 e2 90 or %g3, 0x290, %g3 ! 201c290 <_Per_CPU_Information>
2007294: c8 00 e0 08 ld [ %g3 + 8 ], %g4
2007298: 80 a1 20 00 cmp %g4, 0
200729c: 22 80 00 18 be,a 20072fc <_Event_Surrender+0x9c>
20072a0: c6 07 60 10 ld [ %i5 + 0x10 ], %g3
20072a4: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
20072a8: 80 a7 40 03 cmp %i5, %g3
20072ac: 32 80 00 14 bne,a 20072fc <_Event_Surrender+0x9c>
20072b0: c6 07 60 10 ld [ %i5 + 0x10 ], %g3
_Thread_Is_executing( the_thread ) &&
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20072b4: c6 06 c0 00 ld [ %i3 ], %g3
20072b8: 86 00 ff ff add %g3, -1, %g3
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
20072bc: 80 a0 e0 01 cmp %g3, 1
20072c0: 38 80 00 0f bgu,a 20072fc <_Event_Surrender+0x9c>
20072c4: c6 07 60 10 ld [ %i5 + 0x10 ], %g3
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
20072c8: 80 a0 40 02 cmp %g1, %g2
20072cc: 02 80 00 04 be 20072dc <_Event_Surrender+0x7c>
20072d0: 80 8c 20 02 btst 2, %l0
20072d4: 02 80 00 2a be 200737c <_Event_Surrender+0x11c> <== NEVER TAKEN
20072d8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
20072dc: b2 2e 40 01 andn %i1, %g1, %i1
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20072e0: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
event->pending_events = _Event_sets_Clear(
20072e4: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
20072e8: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20072ec: c2 20 80 00 st %g1, [ %g2 ]
*sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20072f0: 82 10 20 03 mov 3, %g1
20072f4: 10 80 00 22 b 200737c <_Event_Surrender+0x11c>
20072f8: c2 26 c0 00 st %g1, [ %i3 ]
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
20072fc: 80 8f 00 03 btst %i4, %g3
2007300: 02 80 00 1f be 200737c <_Event_Surrender+0x11c>
2007304: 80 a0 40 02 cmp %g1, %g2
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2007308: 02 80 00 04 be 2007318 <_Event_Surrender+0xb8>
200730c: 80 8c 20 02 btst 2, %l0
2007310: 02 80 00 1b be 200737c <_Event_Surrender+0x11c> <== NEVER TAKEN
2007314: 01 00 00 00 nop
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007318: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
200731c: b2 2e 40 01 andn %i1, %g1, %i1
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
event->pending_events = _Event_sets_Clear(
2007320: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
2007324: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007328: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
200732c: 7f ff ec aa call 20025d4 <sparc_enable_interrupts>
2007330: 90 10 00 18 mov %i0, %o0
2007334: 7f ff ec a4 call 20025c4 <sparc_disable_interrupts>
2007338: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200733c: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
2007340: 80 a0 60 02 cmp %g1, 2
2007344: 02 80 00 06 be 200735c <_Event_Surrender+0xfc>
2007348: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200734c: 7f ff ec a2 call 20025d4 <sparc_enable_interrupts>
2007350: 33 04 01 ff sethi %hi(0x1007fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007354: 10 80 00 08 b 2007374 <_Event_Surrender+0x114>
2007358: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1007fff8 <RAM_END+0xdc7fff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
200735c: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2007360: 7f ff ec 9d call 20025d4 <sparc_enable_interrupts>
2007364: 33 04 01 ff sethi %hi(0x1007fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
2007368: 40 00 0e 81 call 200ad6c <_Watchdog_Remove>
200736c: 90 07 60 48 add %i5, 0x48, %o0
2007370: b2 16 63 f8 or %i1, 0x3f8, %i1
2007374: 40 00 0a 22 call 2009bfc <_Thread_Clear_state>
2007378: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
200737c: 7f ff ec 96 call 20025d4 <sparc_enable_interrupts>
2007380: 81 e8 00 00 restore
02007384 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *arg
)
{
2007384: 9d e3 bf 98 save %sp, -104, %sp
ISR_Level level;
Thread_blocking_operation_States *sync_state;
sync_state = arg;
the_thread = _Thread_Get( id, &location );
2007388: 90 10 00 18 mov %i0, %o0
200738c: 40 00 0b 16 call 2009fe4 <_Thread_Get>
2007390: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2007394: c2 07 bf fc ld [ %fp + -4 ], %g1
2007398: 80 a0 60 00 cmp %g1, 0
200739c: 12 80 00 1b bne 2007408 <_Event_Timeout+0x84> <== NEVER TAKEN
20073a0: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
20073a4: 7f ff ec 88 call 20025c4 <sparc_disable_interrupts>
20073a8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20073ac: 03 00 80 70 sethi %hi(0x201c000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
20073b0: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201c2a0 <_Per_CPU_Information+0x10>
20073b4: 80 a7 40 01 cmp %i5, %g1
20073b8: 12 80 00 08 bne 20073d8 <_Event_Timeout+0x54>
20073bc: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
20073c0: c2 06 40 00 ld [ %i1 ], %g1
20073c4: 80 a0 60 01 cmp %g1, 1
20073c8: 12 80 00 05 bne 20073dc <_Event_Timeout+0x58>
20073cc: 82 10 20 06 mov 6, %g1
*sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
20073d0: 82 10 20 02 mov 2, %g1
20073d4: c2 26 40 00 st %g1, [ %i1 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
20073d8: 82 10 20 06 mov 6, %g1
20073dc: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
20073e0: 7f ff ec 7d call 20025d4 <sparc_enable_interrupts>
20073e4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20073e8: 90 10 00 1d mov %i5, %o0
20073ec: 13 04 01 ff sethi %hi(0x1007fc00), %o1
20073f0: 40 00 0a 03 call 2009bfc <_Thread_Clear_state>
20073f4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 <RAM_END+0xdc7fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
20073f8: 03 00 80 70 sethi %hi(0x201c000), %g1
20073fc: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level>
--level;
2007400: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
2007404: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
2007408: 81 c7 e0 08 ret
200740c: 81 e8 00 00 restore
0200cca8 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200cca8: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200ccac: 80 a6 60 00 cmp %i1, 0
200ccb0: 02 80 00 7a be 200ce98 <_Heap_Free+0x1f0>
200ccb4: 88 10 20 01 mov 1, %g4
200ccb8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200ccbc: 40 00 2b 4e call 20179f4 <.urem>
200ccc0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200ccc4: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ccc8: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cccc: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200ccd0: 80 a2 00 1b cmp %o0, %i3
200ccd4: 0a 80 00 05 bcs 200cce8 <_Heap_Free+0x40>
200ccd8: 82 10 20 00 clr %g1
200ccdc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200cce0: 80 a0 40 08 cmp %g1, %o0
200cce4: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200cce8: 80 a0 60 00 cmp %g1, 0
200ccec: 02 80 00 6b be 200ce98 <_Heap_Free+0x1f0>
200ccf0: 88 10 20 00 clr %g4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200ccf4: f8 02 20 04 ld [ %o0 + 4 ], %i4
200ccf8: 84 0f 3f fe and %i4, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200ccfc: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cd00: 80 a0 40 1b cmp %g1, %i3
200cd04: 0a 80 00 05 bcs 200cd18 <_Heap_Free+0x70> <== NEVER TAKEN
200cd08: 86 10 20 00 clr %g3
200cd0c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200cd10: 80 a0 c0 01 cmp %g3, %g1
200cd14: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200cd18: 80 a0 e0 00 cmp %g3, 0
200cd1c: 02 80 00 5f be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN
200cd20: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd24: fa 00 60 04 ld [ %g1 + 4 ], %i5
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200cd28: 80 8f 60 01 btst 1, %i5
200cd2c: 22 80 00 5c be,a 200ce9c <_Heap_Free+0x1f4> <== NEVER TAKEN
200cd30: b0 09 20 01 and %g4, 1, %i0 <== NOT EXECUTED
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200cd34: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200cd38: 80 a0 40 04 cmp %g1, %g4
200cd3c: 02 80 00 07 be 200cd58 <_Heap_Free+0xb0>
200cd40: ba 0f 7f fe and %i5, -2, %i5
200cd44: 86 00 40 1d add %g1, %i5, %g3
200cd48: f4 00 e0 04 ld [ %g3 + 4 ], %i2
200cd4c: b4 1e a0 01 xor %i2, 1, %i2
200cd50: 10 80 00 03 b 200cd5c <_Heap_Free+0xb4>
200cd54: b4 0e a0 01 and %i2, 1, %i2
200cd58: b4 10 20 00 clr %i2
if ( !_Heap_Is_prev_used( block ) ) {
200cd5c: 80 8f 20 01 btst 1, %i4
200cd60: 12 80 00 26 bne 200cdf8 <_Heap_Free+0x150>
200cd64: 80 8e a0 ff btst 0xff, %i2
uintptr_t const prev_size = block->prev_size;
200cd68: f8 02 00 00 ld [ %o0 ], %i4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cd6c: 86 22 00 1c sub %o0, %i4, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cd70: 80 a0 c0 1b cmp %g3, %i3
200cd74: 0a 80 00 04 bcs 200cd84 <_Heap_Free+0xdc> <== NEVER TAKEN
200cd78: b2 10 20 00 clr %i1
200cd7c: 80 a1 00 03 cmp %g4, %g3
200cd80: b2 60 3f ff subx %g0, -1, %i1
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200cd84: 80 a6 60 00 cmp %i1, 0
200cd88: 02 80 00 44 be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN
200cd8c: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd90: f6 00 e0 04 ld [ %g3 + 4 ], %i3
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cd94: 80 8e e0 01 btst 1, %i3
200cd98: 02 80 00 40 be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN
200cd9c: 80 8e a0 ff btst 0xff, %i2
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cda0: 22 80 00 0f be,a 200cddc <_Heap_Free+0x134>
200cda4: b8 00 80 1c add %g2, %i4, %i4
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200cda8: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200cdac: c2 00 60 0c ld [ %g1 + 0xc ], %g1
uintptr_t const size = block_size + prev_size + next_block_size;
200cdb0: ba 00 80 1d add %g2, %i5, %i5
prev->next = next;
200cdb4: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200cdb8: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cdbc: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cdc0: b8 07 40 1c add %i5, %i4, %i4
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cdc4: 82 00 7f ff add %g1, -1, %g1
200cdc8: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200cdcc: f8 20 c0 1c st %i4, [ %g3 + %i4 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cdd0: 82 17 20 01 or %i4, 1, %g1
200cdd4: 10 80 00 27 b 200ce70 <_Heap_Free+0x1c8>
200cdd8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cddc: 88 17 20 01 or %i4, 1, %g4
200cde0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cde4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200cde8: f8 22 00 02 st %i4, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cdec: 86 08 ff fe and %g3, -2, %g3
200cdf0: 10 80 00 20 b 200ce70 <_Heap_Free+0x1c8>
200cdf4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200cdf8: 22 80 00 0d be,a 200ce2c <_Heap_Free+0x184>
200cdfc: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200ce00: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200ce04: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200ce08: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200ce0c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200ce10: 86 07 40 02 add %i5, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200ce14: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200ce18: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200ce1c: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200ce20: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200ce24: 10 80 00 13 b 200ce70 <_Heap_Free+0x1c8>
200ce28: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200ce2c: f0 22 20 0c st %i0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200ce30: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200ce34: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200ce38: 86 10 a0 01 or %g2, 1, %g3
200ce3c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce40: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200ce44: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce48: 86 08 ff fe and %g3, -2, %g3
200ce4c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ce50: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce54: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ce58: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200ce5c: d0 26 20 08 st %o0, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce60: 80 a0 c0 01 cmp %g3, %g1
200ce64: 1a 80 00 03 bcc 200ce70 <_Heap_Free+0x1c8>
200ce68: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200ce6c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200ce70: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
200ce74: 82 00 7f ff add %g1, -1, %g1
200ce78: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200ce7c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200ce80: 82 00 60 01 inc %g1
200ce84: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200ce88: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200ce8c: 84 00 40 02 add %g1, %g2, %g2
200ce90: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200ce94: 88 10 20 01 mov 1, %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200ce98: b0 09 20 01 and %g4, 1, %i0
200ce9c: 81 c7 e0 08 ret
200cea0: 81 e8 00 00 restore
0200a6e0 <_Heap_Greedy_allocate>:
Heap_Block *_Heap_Greedy_allocate(
Heap_Control *heap,
const uintptr_t *block_sizes,
size_t block_count
)
{
200a6e0: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *allocated_blocks = NULL;
Heap_Block *blocks = NULL;
Heap_Block *current;
size_t i;
for (i = 0; i < block_count; ++i) {
200a6e4: b6 10 20 00 clr %i3
Heap_Block *_Heap_Greedy_allocate(
Heap_Control *heap,
const uintptr_t *block_sizes,
size_t block_count
)
{
200a6e8: ba 10 00 18 mov %i0, %i5
Heap_Block *allocated_blocks = NULL;
Heap_Block *blocks = NULL;
Heap_Block *current;
size_t i;
for (i = 0; i < block_count; ++i) {
200a6ec: 10 80 00 11 b 200a730 <_Heap_Greedy_allocate+0x50>
200a6f0: b8 10 20 00 clr %i4
* @brief See _Heap_Allocate_aligned_with_boundary() with alignment and
* boundary equals zero.
*/
RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size )
{
return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 );
200a6f4: d2 06 40 01 ld [ %i1 + %g1 ], %o1
200a6f8: 90 10 00 1d mov %i5, %o0
200a6fc: 94 10 20 00 clr %o2
200a700: 40 00 1b 80 call 2011500 <_Heap_Allocate_aligned_with_boundary>
200a704: 96 10 20 00 clr %o3
void *next = _Heap_Allocate( heap, block_sizes [i] );
if ( next != NULL ) {
200a708: 82 92 20 00 orcc %o0, 0, %g1
200a70c: 22 80 00 09 be,a 200a730 <_Heap_Greedy_allocate+0x50> <== NEVER TAKEN
200a710: b6 06 e0 01 inc %i3 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200a714: d2 07 60 10 ld [ %i5 + 0x10 ], %o1
200a718: 40 00 47 3f call 201c414 <.urem>
200a71c: b0 00 7f f8 add %g1, -8, %i0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200a720: 90 26 00 08 sub %i0, %o0, %o0
Heap_Block *next_block = _Heap_Block_of_alloc_area(
(uintptr_t) next,
heap->page_size
);
next_block->next = allocated_blocks;
200a724: f8 22 20 08 st %i4, [ %o0 + 8 ]
200a728: b8 10 00 08 mov %o0, %i4
Heap_Block *allocated_blocks = NULL;
Heap_Block *blocks = NULL;
Heap_Block *current;
size_t i;
for (i = 0; i < block_count; ++i) {
200a72c: b6 06 e0 01 inc %i3
200a730: 80 a6 c0 1a cmp %i3, %i2
200a734: 12 bf ff f0 bne 200a6f4 <_Heap_Greedy_allocate+0x14>
200a738: 83 2e e0 02 sll %i3, 2, %g1
200a73c: 10 80 00 0a b 200a764 <_Heap_Greedy_allocate+0x84>
200a740: b0 10 20 00 clr %i0
allocated_blocks = next_block;
}
}
while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) {
_Heap_Block_allocate(
200a744: 90 10 00 1d mov %i5, %o0
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a748: 96 0a ff fe and %o3, -2, %o3
200a74c: 92 10 00 1b mov %i3, %o1
200a750: 94 06 e0 08 add %i3, 8, %o2
200a754: 40 00 00 cb call 200aa80 <_Heap_Block_allocate>
200a758: 96 02 ff f8 add %o3, -8, %o3
current,
_Heap_Alloc_area_of_block( current ),
_Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE
);
current->next = blocks;
200a75c: f0 26 e0 08 st %i0, [ %i3 + 8 ]
200a760: b0 10 00 1b mov %i3, %i0
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200a764: f6 07 60 08 ld [ %i5 + 8 ], %i3
next_block->next = allocated_blocks;
allocated_blocks = next_block;
}
}
while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) {
200a768: 80 a6 c0 1d cmp %i3, %i5
200a76c: 32 bf ff f6 bne,a 200a744 <_Heap_Greedy_allocate+0x64>
200a770: d6 06 e0 04 ld [ %i3 + 4 ], %o3
current->next = blocks;
blocks = current;
}
while ( allocated_blocks != NULL ) {
200a774: 10 80 00 07 b 200a790 <_Heap_Greedy_allocate+0xb0>
200a778: 80 a7 20 00 cmp %i4, 0
current = allocated_blocks;
allocated_blocks = allocated_blocks->next;
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
200a77c: 92 07 20 08 add %i4, 8, %o1
200a780: 90 10 00 1d mov %i5, %o0
200a784: 40 00 1b d0 call 20116c4 <_Heap_Free>
200a788: b8 10 00 1b mov %i3, %i4
current->next = blocks;
blocks = current;
}
while ( allocated_blocks != NULL ) {
200a78c: 80 a7 20 00 cmp %i4, 0
200a790: 32 bf ff fb bne,a 200a77c <_Heap_Greedy_allocate+0x9c>
200a794: f6 07 20 08 ld [ %i4 + 8 ], %i3
allocated_blocks = allocated_blocks->next;
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
}
return blocks;
}
200a798: 81 c7 e0 08 ret
200a79c: 81 e8 00 00 restore
02011848 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
2011848: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
201184c: 90 10 20 00 clr %o0
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
Heap_Block *current = heap->first_block;
2011850: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
2011854: 10 80 00 0a b 201187c <_Heap_Iterate+0x34>
2011858: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
201185c: 90 10 00 01 mov %g1, %o0
2011860: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2011864: ba 00 40 09 add %g1, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2011868: d4 07 60 04 ld [ %i5 + 4 ], %o2
201186c: 96 10 00 1a mov %i2, %o3
2011870: 9f c6 40 00 call %i1
2011874: 94 0a a0 01 and %o2, 1, %o2
2011878: 82 10 00 1d mov %i5, %g1
{
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
201187c: 80 a0 40 1c cmp %g1, %i4
2011880: 02 80 00 05 be 2011894 <_Heap_Iterate+0x4c>
2011884: 90 1a 20 01 xor %o0, 1, %o0
2011888: 80 8a 20 ff btst 0xff, %o0
201188c: 32 bf ff f4 bne,a 201185c <_Heap_Iterate+0x14> <== ALWAYS TAKEN
2011890: d2 00 60 04 ld [ %g1 + 4 ], %o1
2011894: 81 c7 e0 08 ret
2011898: 81 e8 00 00 restore
0200cfcc <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
200cfcc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cfd0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200cfd4: 40 00 2a 88 call 20179f4 <.urem>
200cfd8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200cfdc: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cfe0: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cfe4: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cfe8: 80 a2 00 04 cmp %o0, %g4
200cfec: 0a 80 00 05 bcs 200d000 <_Heap_Size_of_alloc_area+0x34>
200cff0: 82 10 20 00 clr %g1
200cff4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200cff8: 80 a0 40 08 cmp %g1, %o0
200cffc: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200d000: 80 a0 60 00 cmp %g1, 0
200d004: 02 80 00 15 be 200d058 <_Heap_Size_of_alloc_area+0x8c>
200d008: 86 10 20 00 clr %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d00c: c2 02 20 04 ld [ %o0 + 4 ], %g1
200d010: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d014: 82 02 00 01 add %o0, %g1, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d018: 80 a0 40 04 cmp %g1, %g4
200d01c: 0a 80 00 05 bcs 200d030 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
200d020: 84 10 20 00 clr %g2
200d024: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200d028: 80 a0 80 01 cmp %g2, %g1
200d02c: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
200d030: 80 a0 a0 00 cmp %g2, 0
200d034: 02 80 00 09 be 200d058 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d038: 86 10 20 00 clr %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d03c: c4 00 60 04 ld [ %g1 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
200d040: 80 88 a0 01 btst 1, %g2
200d044: 02 80 00 05 be 200d058 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d048: 82 20 40 19 sub %g1, %i1, %g1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
200d04c: 86 10 20 01 mov 1, %g3
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
200d050: 82 00 60 04 add %g1, 4, %g1
200d054: c2 26 80 00 st %g1, [ %i2 ]
return true;
}
200d058: b0 08 e0 01 and %g3, 1, %i0
200d05c: 81 c7 e0 08 ret
200d060: 81 e8 00 00 restore
02009698 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2009698: 9d e3 bf 80 save %sp, -128, %sp
200969c: ac 10 00 19 mov %i1, %l6
uintptr_t const page_size = heap->page_size;
20096a0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
20096a4: f6 06 20 14 ld [ %i0 + 0x14 ], %i3
Heap_Block *const first_block = heap->first_block;
20096a8: f2 06 20 20 ld [ %i0 + 0x20 ], %i1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20096ac: 80 a6 a0 00 cmp %i2, 0
20096b0: 02 80 00 05 be 20096c4 <_Heap_Walk+0x2c>
20096b4: e0 06 20 24 ld [ %i0 + 0x24 ], %l0
20096b8: 3b 00 80 25 sethi %hi(0x2009400), %i5
20096bc: 10 80 00 04 b 20096cc <_Heap_Walk+0x34>
20096c0: ba 17 62 48 or %i5, 0x248, %i5 ! 2009648 <_Heap_Walk_print>
20096c4: 3b 00 80 25 sethi %hi(0x2009400), %i5
20096c8: ba 17 62 40 or %i5, 0x240, %i5 ! 2009640 <_Heap_Walk_print_nothing>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20096cc: 05 00 80 79 sethi %hi(0x201e400), %g2
20096d0: c4 00 a2 6c ld [ %g2 + 0x26c ], %g2 ! 201e66c <_System_state_Current>
20096d4: 80 a0 a0 03 cmp %g2, 3
20096d8: 22 80 00 04 be,a 20096e8 <_Heap_Walk+0x50>
20096dc: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
return true;
20096e0: 10 80 01 2a b 2009b88 <_Heap_Walk+0x4f0>
20096e4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20096e8: da 06 20 18 ld [ %i0 + 0x18 ], %o5
20096ec: c4 23 a0 5c st %g2, [ %sp + 0x5c ]
20096f0: f2 23 a0 60 st %i1, [ %sp + 0x60 ]
20096f4: e0 23 a0 64 st %l0, [ %sp + 0x64 ]
20096f8: c4 06 20 08 ld [ %i0 + 8 ], %g2
20096fc: 90 10 00 16 mov %l6, %o0
2009700: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2009704: c4 06 20 0c ld [ %i0 + 0xc ], %g2
2009708: 92 10 20 00 clr %o1
200970c: c4 23 a0 6c st %g2, [ %sp + 0x6c ]
2009710: 15 00 80 6c sethi %hi(0x201b000), %o2
2009714: 96 10 00 1c mov %i4, %o3
2009718: 94 12 a2 18 or %o2, 0x218, %o2
200971c: 9f c7 40 00 call %i5
2009720: 98 10 00 1b mov %i3, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2009724: 80 a7 20 00 cmp %i4, 0
2009728: 12 80 00 07 bne 2009744 <_Heap_Walk+0xac>
200972c: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
2009730: 15 00 80 6c sethi %hi(0x201b000), %o2
2009734: 90 10 00 16 mov %l6, %o0
2009738: 92 10 20 01 mov 1, %o1
200973c: 10 80 00 37 b 2009818 <_Heap_Walk+0x180>
2009740: 94 12 a2 b0 or %o2, 0x2b0, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2009744: 22 80 00 08 be,a 2009764 <_Heap_Walk+0xcc>
2009748: 90 10 00 1b mov %i3, %o0
(*printer)(
200974c: 15 00 80 6c sethi %hi(0x201b000), %o2
2009750: 90 10 00 16 mov %l6, %o0
2009754: 92 10 20 01 mov 1, %o1
2009758: 94 12 a2 c8 or %o2, 0x2c8, %o2
200975c: 10 80 01 12 b 2009ba4 <_Heap_Walk+0x50c>
2009760: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009764: 7f ff e1 08 call 2001b84 <.urem>
2009768: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
200976c: 80 a2 20 00 cmp %o0, 0
2009770: 22 80 00 08 be,a 2009790 <_Heap_Walk+0xf8>
2009774: 90 06 60 08 add %i1, 8, %o0
(*printer)(
2009778: 15 00 80 6c sethi %hi(0x201b000), %o2
200977c: 90 10 00 16 mov %l6, %o0
2009780: 92 10 20 01 mov 1, %o1
2009784: 94 12 a2 e8 or %o2, 0x2e8, %o2
2009788: 10 80 01 07 b 2009ba4 <_Heap_Walk+0x50c>
200978c: 96 10 00 1b mov %i3, %o3
2009790: 7f ff e0 fd call 2001b84 <.urem>
2009794: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
2009798: 80 a2 20 00 cmp %o0, 0
200979c: 22 80 00 07 be,a 20097b8 <_Heap_Walk+0x120>
20097a0: c4 06 60 04 ld [ %i1 + 4 ], %g2
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
20097a4: 15 00 80 6c sethi %hi(0x201b000), %o2
20097a8: 90 10 00 16 mov %l6, %o0
20097ac: 92 10 20 01 mov 1, %o1
20097b0: 10 80 00 fc b 2009ba0 <_Heap_Walk+0x508>
20097b4: 94 12 a3 10 or %o2, 0x310, %o2
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20097b8: 80 88 a0 01 btst 1, %g2
20097bc: 32 80 00 07 bne,a 20097d8 <_Heap_Walk+0x140>
20097c0: f4 04 20 04 ld [ %l0 + 4 ], %i2
(*printer)(
20097c4: 15 00 80 6c sethi %hi(0x201b000), %o2
20097c8: 90 10 00 16 mov %l6, %o0
20097cc: 92 10 20 01 mov 1, %o1
20097d0: 10 80 00 12 b 2009818 <_Heap_Walk+0x180>
20097d4: 94 12 a3 48 or %o2, 0x348, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20097d8: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20097dc: b4 04 00 1a add %l0, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20097e0: c4 06 a0 04 ld [ %i2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20097e4: 80 88 a0 01 btst 1, %g2
20097e8: 12 80 00 07 bne 2009804 <_Heap_Walk+0x16c>
20097ec: 80 a6 80 19 cmp %i2, %i1
(*printer)(
20097f0: 15 00 80 6c sethi %hi(0x201b000), %o2
20097f4: 90 10 00 16 mov %l6, %o0
20097f8: 92 10 20 01 mov 1, %o1
20097fc: 10 80 00 07 b 2009818 <_Heap_Walk+0x180>
2009800: 94 12 a3 78 or %o2, 0x378, %o2
);
return false;
}
if (
2009804: 02 80 00 0a be 200982c <_Heap_Walk+0x194>
2009808: 15 00 80 6c sethi %hi(0x201b000), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
200980c: 90 10 00 16 mov %l6, %o0
2009810: 92 10 20 01 mov 1, %o1
2009814: 94 12 a3 90 or %o2, 0x390, %o2
2009818: 9f c7 40 00 call %i5
200981c: b0 10 20 00 clr %i0
2009820: b0 0e 20 ff and %i0, 0xff, %i0
2009824: 81 c7 e0 08 ret
2009828: 81 e8 00 00 restore
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
200982c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2009830: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2009834: 10 80 00 30 b 20098f4 <_Heap_Walk+0x25c>
2009838: b2 10 00 18 mov %i0, %i1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200983c: 80 a0 c0 0b cmp %g3, %o3
2009840: 18 80 00 05 bgu 2009854 <_Heap_Walk+0x1bc>
2009844: 84 10 20 00 clr %g2
2009848: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200984c: 80 a0 80 0b cmp %g2, %o3
2009850: 84 60 3f ff subx %g0, -1, %g2
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
2009854: 80 a0 a0 00 cmp %g2, 0
2009858: 32 80 00 07 bne,a 2009874 <_Heap_Walk+0x1dc>
200985c: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
2009860: 15 00 80 6c sethi %hi(0x201b000), %o2
2009864: 90 10 00 16 mov %l6, %o0
2009868: 92 10 20 01 mov 1, %o1
200986c: 10 80 00 ce b 2009ba4 <_Heap_Walk+0x50c>
2009870: 94 12 a3 c0 or %o2, 0x3c0, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009874: d6 27 bf fc st %o3, [ %fp + -4 ]
2009878: 7f ff e0 c3 call 2001b84 <.urem>
200987c: 92 10 00 11 mov %l1, %o1
);
return false;
}
if (
2009880: 80 a2 20 00 cmp %o0, 0
2009884: 02 80 00 07 be 20098a0 <_Heap_Walk+0x208>
2009888: d6 07 bf fc ld [ %fp + -4 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
200988c: 15 00 80 6c sethi %hi(0x201b000), %o2
2009890: 90 10 00 16 mov %l6, %o0
2009894: 92 10 20 01 mov 1, %o1
2009898: 10 80 00 c3 b 2009ba4 <_Heap_Walk+0x50c>
200989c: 94 12 a3 e0 or %o2, 0x3e0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20098a0: c4 02 e0 04 ld [ %o3 + 4 ], %g2
20098a4: 84 08 bf fe and %g2, -2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20098a8: 84 02 c0 02 add %o3, %g2, %g2
20098ac: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20098b0: 80 88 a0 01 btst 1, %g2
20098b4: 22 80 00 07 be,a 20098d0 <_Heap_Walk+0x238>
20098b8: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
20098bc: 15 00 80 6d sethi %hi(0x201b400), %o2
20098c0: 90 10 00 16 mov %l6, %o0
20098c4: 92 10 20 01 mov 1, %o1
20098c8: 10 80 00 b7 b 2009ba4 <_Heap_Walk+0x50c>
20098cc: 94 12 a0 10 or %o2, 0x10, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
20098d0: 80 a3 00 19 cmp %o4, %i1
20098d4: 02 80 00 07 be 20098f0 <_Heap_Walk+0x258>
20098d8: b2 10 00 0b mov %o3, %i1
(*printer)(
20098dc: 15 00 80 6d sethi %hi(0x201b400), %o2
20098e0: 90 10 00 16 mov %l6, %o0
20098e4: 92 10 20 01 mov 1, %o1
20098e8: 10 80 00 4d b 2009a1c <_Heap_Walk+0x384>
20098ec: 94 12 a0 30 or %o2, 0x30, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
20098f0: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
20098f4: 80 a2 c0 18 cmp %o3, %i0
20098f8: 32 bf ff d1 bne,a 200983c <_Heap_Walk+0x1a4>
20098fc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009900: 2b 00 80 6d sethi %hi(0x201b400), %l5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2009904: b2 10 00 1a mov %i2, %i1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009908: aa 15 61 30 or %l5, 0x130, %l5
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200990c: 23 00 80 6d sethi %hi(0x201b400), %l1
2009910: 2f 00 80 6c sethi %hi(0x201b000), %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009914: e4 06 60 04 ld [ %i1 + 4 ], %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009918: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
200991c: 9e 1e 40 10 xor %i1, %l0, %o7
2009920: 80 a0 00 0f cmp %g0, %o7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009924: a8 0c bf fe and %l2, -2, %l4
2009928: 9a 40 20 00 addx %g0, 0, %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200992c: a6 06 40 14 add %i1, %l4, %l3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009930: a4 0c a0 01 and %l2, 1, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009934: 80 a3 00 13 cmp %o4, %l3
2009938: 18 80 00 05 bgu 200994c <_Heap_Walk+0x2b4> <== NEVER TAKEN
200993c: 9e 10 20 00 clr %o7
2009940: de 06 20 24 ld [ %i0 + 0x24 ], %o7
2009944: 80 a3 c0 13 cmp %o7, %l3
2009948: 9e 60 3f ff subx %g0, -1, %o7
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200994c: 80 a3 e0 00 cmp %o7, 0
2009950: 32 80 00 07 bne,a 200996c <_Heap_Walk+0x2d4>
2009954: da 27 bf f8 st %o5, [ %fp + -8 ]
(*printer)(
2009958: 15 00 80 6d sethi %hi(0x201b400), %o2
200995c: 90 10 00 16 mov %l6, %o0
2009960: 92 10 20 01 mov 1, %o1
2009964: 10 80 00 2c b 2009a14 <_Heap_Walk+0x37c>
2009968: 94 12 a0 68 or %o2, 0x68, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200996c: 90 10 00 14 mov %l4, %o0
2009970: 7f ff e0 85 call 2001b84 <.urem>
2009974: 92 10 00 1c mov %i4, %o1
2009978: da 07 bf f8 ld [ %fp + -8 ], %o5
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
200997c: 80 a2 20 00 cmp %o0, 0
2009980: 02 80 00 0c be 20099b0 <_Heap_Walk+0x318>
2009984: 9e 0b 60 ff and %o5, 0xff, %o7
2009988: 80 a3 e0 00 cmp %o7, 0
200998c: 02 80 00 19 be 20099f0 <_Heap_Walk+0x358>
2009990: 80 a6 40 13 cmp %i1, %l3
(*printer)(
2009994: 15 00 80 6d sethi %hi(0x201b400), %o2
2009998: 90 10 00 16 mov %l6, %o0
200999c: 92 10 20 01 mov 1, %o1
20099a0: 94 12 a0 98 or %o2, 0x98, %o2
20099a4: 96 10 00 19 mov %i1, %o3
20099a8: 10 80 00 1d b 2009a1c <_Heap_Walk+0x384>
20099ac: 98 10 00 14 mov %l4, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
20099b0: 80 a3 e0 00 cmp %o7, 0
20099b4: 02 80 00 0f be 20099f0 <_Heap_Walk+0x358>
20099b8: 80 a6 40 13 cmp %i1, %l3
20099bc: 80 a5 00 1b cmp %l4, %i3
20099c0: 1a 80 00 0c bcc 20099f0 <_Heap_Walk+0x358>
20099c4: 80 a6 40 13 cmp %i1, %l3
(*printer)(
20099c8: 90 10 00 16 mov %l6, %o0
20099cc: 92 10 20 01 mov 1, %o1
20099d0: 15 00 80 6d sethi %hi(0x201b400), %o2
20099d4: 96 10 00 19 mov %i1, %o3
20099d8: 94 12 a0 c8 or %o2, 0xc8, %o2
20099dc: 98 10 00 14 mov %l4, %o4
20099e0: 9f c7 40 00 call %i5
20099e4: 9a 10 00 1b mov %i3, %o5
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
20099e8: 10 80 00 68 b 2009b88 <_Heap_Walk+0x4f0>
20099ec: b0 10 20 00 clr %i0
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
20099f0: 2a 80 00 10 bcs,a 2009a30 <_Heap_Walk+0x398>
20099f4: de 04 e0 04 ld [ %l3 + 4 ], %o7
20099f8: 80 8b 60 ff btst 0xff, %o5
20099fc: 22 80 00 0d be,a 2009a30 <_Heap_Walk+0x398>
2009a00: de 04 e0 04 ld [ %l3 + 4 ], %o7
(*printer)(
2009a04: 15 00 80 6d sethi %hi(0x201b400), %o2
2009a08: 90 10 00 16 mov %l6, %o0
2009a0c: 92 10 20 01 mov 1, %o1
2009a10: 94 12 a0 f8 or %o2, 0xf8, %o2
2009a14: 96 10 00 19 mov %i1, %o3
2009a18: 98 10 00 13 mov %l3, %o4
2009a1c: 9f c7 40 00 call %i5
2009a20: b0 10 20 00 clr %i0
2009a24: b0 0e 20 ff and %i0, 0xff, %i0
2009a28: 81 c7 e0 08 ret
2009a2c: 81 e8 00 00 restore
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2009a30: 80 8b e0 01 btst 1, %o7
2009a34: 12 80 00 3f bne 2009b30 <_Heap_Walk+0x498>
2009a38: 90 10 00 16 mov %l6, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2009a3c: da 06 60 0c ld [ %i1 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009a40: d8 06 20 08 ld [ %i0 + 8 ], %o4
2009a44: 80 a3 40 0c cmp %o5, %o4
2009a48: 02 80 00 08 be 2009a68 <_Heap_Walk+0x3d0>
2009a4c: de 06 20 0c ld [ %i0 + 0xc ], %o7
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2009a50: 80 a3 40 18 cmp %o5, %i0
2009a54: 12 80 00 07 bne 2009a70 <_Heap_Walk+0x3d8>
2009a58: 96 14 61 a0 or %l1, 0x1a0, %o3
2009a5c: 17 00 80 6c sethi %hi(0x201b000), %o3
2009a60: 10 80 00 04 b 2009a70 <_Heap_Walk+0x3d8>
2009a64: 96 12 e1 e8 or %o3, 0x1e8, %o3 ! 201b1e8 <__log2table+0x130>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009a68: 03 00 80 6c sethi %hi(0x201b000), %g1
2009a6c: 96 10 61 d8 or %g1, 0x1d8, %o3 ! 201b1d8 <__log2table+0x120>
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
2009a70: d8 06 60 08 ld [ %i1 + 8 ], %o4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009a74: 80 a3 00 0f cmp %o4, %o7
2009a78: 02 80 00 06 be 2009a90 <_Heap_Walk+0x3f8>
2009a7c: 80 a3 00 18 cmp %o4, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009a80: 12 80 00 06 bne 2009a98 <_Heap_Walk+0x400>
2009a84: 9e 14 61 a0 or %l1, 0x1a0, %o7
2009a88: 10 80 00 04 b 2009a98 <_Heap_Walk+0x400>
2009a8c: 9e 15 e2 08 or %l7, 0x208, %o7
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009a90: 03 00 80 6c sethi %hi(0x201b000), %g1
2009a94: 9e 10 61 f8 or %g1, 0x1f8, %o7 ! 201b1f8 <__log2table+0x140>
2009a98: d6 23 a0 5c st %o3, [ %sp + 0x5c ]
2009a9c: d8 23 a0 60 st %o4, [ %sp + 0x60 ]
2009aa0: de 23 a0 64 st %o7, [ %sp + 0x64 ]
2009aa4: 90 10 00 16 mov %l6, %o0
2009aa8: 92 10 20 00 clr %o1
2009aac: 94 10 00 15 mov %l5, %o2
2009ab0: 96 10 00 19 mov %i1, %o3
2009ab4: 9f c7 40 00 call %i5
2009ab8: 98 10 00 14 mov %l4, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2009abc: da 04 c0 00 ld [ %l3 ], %o5
2009ac0: 80 a5 00 0d cmp %l4, %o5
2009ac4: 02 80 00 0c be 2009af4 <_Heap_Walk+0x45c>
2009ac8: 80 a4 a0 00 cmp %l2, 0
(*printer)(
2009acc: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
2009ad0: 90 10 00 16 mov %l6, %o0
2009ad4: 92 10 20 01 mov 1, %o1
2009ad8: 15 00 80 6d sethi %hi(0x201b400), %o2
2009adc: 96 10 00 19 mov %i1, %o3
2009ae0: 94 12 a1 68 or %o2, 0x168, %o2
2009ae4: 9f c7 40 00 call %i5
2009ae8: 98 10 00 14 mov %l4, %o4
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2009aec: 10 bf ff ce b 2009a24 <_Heap_Walk+0x38c>
2009af0: b0 10 20 00 clr %i0
);
return false;
}
if ( !prev_used ) {
2009af4: 32 80 00 0a bne,a 2009b1c <_Heap_Walk+0x484>
2009af8: c6 06 20 08 ld [ %i0 + 8 ], %g3
(*printer)(
2009afc: 15 00 80 6d sethi %hi(0x201b400), %o2
2009b00: 90 10 00 16 mov %l6, %o0
2009b04: 92 10 20 01 mov 1, %o1
2009b08: 10 80 00 26 b 2009ba0 <_Heap_Walk+0x508>
2009b0c: 94 12 a1 a8 or %o2, 0x1a8, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2009b10: 22 80 00 19 be,a 2009b74 <_Heap_Walk+0x4dc>
2009b14: b2 10 00 13 mov %l3, %i1
return true;
}
free_block = free_block->next;
2009b18: c6 00 e0 08 ld [ %g3 + 8 ], %g3
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2009b1c: 80 a0 c0 18 cmp %g3, %i0
2009b20: 12 bf ff fc bne 2009b10 <_Heap_Walk+0x478>
2009b24: 80 a0 c0 19 cmp %g3, %i1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009b28: 10 80 00 1b b 2009b94 <_Heap_Walk+0x4fc>
2009b2c: 15 00 80 6d sethi %hi(0x201b400), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2009b30: 80 a4 a0 00 cmp %l2, 0
2009b34: 02 80 00 09 be 2009b58 <_Heap_Walk+0x4c0>
2009b38: 92 10 20 00 clr %o1
(*printer)(
2009b3c: 15 00 80 6d sethi %hi(0x201b400), %o2
2009b40: 96 10 00 19 mov %i1, %o3
2009b44: 94 12 a1 d8 or %o2, 0x1d8, %o2
2009b48: 9f c7 40 00 call %i5
2009b4c: 98 10 00 14 mov %l4, %o4
2009b50: 10 80 00 09 b 2009b74 <_Heap_Walk+0x4dc>
2009b54: b2 10 00 13 mov %l3, %i1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009b58: da 06 40 00 ld [ %i1 ], %o5
2009b5c: 15 00 80 6d sethi %hi(0x201b400), %o2
2009b60: 96 10 00 19 mov %i1, %o3
2009b64: 94 12 a1 f0 or %o2, 0x1f0, %o2
2009b68: 9f c7 40 00 call %i5
2009b6c: 98 10 00 14 mov %l4, %o4
2009b70: b2 10 00 13 mov %l3, %i1
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2009b74: 80 a4 c0 1a cmp %l3, %i2
2009b78: 32 bf ff 68 bne,a 2009918 <_Heap_Walk+0x280>
2009b7c: e4 06 60 04 ld [ %i1 + 4 ], %l2
2009b80: 10 80 00 02 b 2009b88 <_Heap_Walk+0x4f0>
2009b84: b0 10 20 01 mov 1, %i0
2009b88: b0 0e 20 ff and %i0, 0xff, %i0
2009b8c: 81 c7 e0 08 ret
2009b90: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009b94: 90 10 00 16 mov %l6, %o0
2009b98: 92 10 20 01 mov 1, %o1
2009b9c: 94 12 a2 18 or %o2, 0x218, %o2
2009ba0: 96 10 00 19 mov %i1, %o3
2009ba4: 9f c7 40 00 call %i5
2009ba8: b0 10 20 00 clr %i0
2009bac: b0 0e 20 ff and %i0, 0xff, %i0
2009bb0: 81 c7 e0 08 ret
2009bb4: 81 e8 00 00 restore
02008a8c <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2008a8c: 9d e3 bf 90 save %sp, -112, %sp
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
2008a90: 13 00 80 2a sethi %hi(0x200a800), %o1
2008a94: 90 07 bf f4 add %fp, -12, %o0
2008a98: 92 12 62 e0 or %o1, 0x2e0, %o1
Internal_errors_Source source,
bool is_internal,
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
2008a9c: f0 27 bf f4 st %i0, [ %fp + -12 ]
2008aa0: f2 2f bf f8 stb %i1, [ %fp + -8 ]
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
2008aa4: 40 00 08 1a call 200ab0c <_User_extensions_Iterate>
2008aa8: f4 27 bf fc st %i2, [ %fp + -4 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
_Internal_errors_What_happened.the_source = the_source;
2008aac: 05 00 80 70 sethi %hi(0x201c000), %g2 <== NOT EXECUTED
2008ab0: 82 10 a2 80 or %g2, 0x280, %g1 ! 201c280 <_Internal_errors_What_happened><== NOT EXECUTED
2008ab4: f0 20 a2 80 st %i0, [ %g2 + 0x280 ] <== NOT EXECUTED
_Internal_errors_What_happened.is_internal = is_internal;
2008ab8: f2 28 60 04 stb %i1, [ %g1 + 4 ] <== NOT EXECUTED
_Internal_errors_What_happened.the_error = the_error;
2008abc: f4 20 60 08 st %i2, [ %g1 + 8 ] <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
2008ac0: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
2008ac4: 03 00 80 70 sethi %hi(0x201c000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
2008ac8: 7f ff e6 bf call 20025c4 <sparc_disable_interrupts> <== NOT EXECUTED
2008acc: c4 20 62 8c st %g2, [ %g1 + 0x28c ] ! 201c28c <_System_state_Current><== NOT EXECUTED
2008ad0: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
2008ad4: 30 80 00 00 b,a 2008ad4 <_Internal_error_Occurred+0x48> <== NOT EXECUTED
02008b40 <_Objects_Allocate>:
#endif
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2008b40: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2008b44: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2008b48: 80 a0 60 00 cmp %g1, 0
2008b4c: 12 80 00 04 bne 2008b5c <_Objects_Allocate+0x1c> <== ALWAYS TAKEN
2008b50: ba 10 00 18 mov %i0, %i5
return NULL;
2008b54: 81 c7 e0 08 ret
2008b58: 91 e8 20 00 restore %g0, 0, %o0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008b5c: b8 06 20 20 add %i0, 0x20, %i4
2008b60: 7f ff fd 85 call 2008174 <_Chain_Get>
2008b64: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2008b68: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2008b6c: 80 a0 60 00 cmp %g1, 0
2008b70: 02 80 00 1d be 2008be4 <_Objects_Allocate+0xa4>
2008b74: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2008b78: 80 a2 20 00 cmp %o0, 0
2008b7c: 32 80 00 0a bne,a 2008ba4 <_Objects_Allocate+0x64>
2008b80: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Objects_Extend_information( information );
2008b84: 40 00 00 21 call 2008c08 <_Objects_Extend_information>
2008b88: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008b8c: 7f ff fd 7a call 2008174 <_Chain_Get>
2008b90: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
2008b94: b0 92 20 00 orcc %o0, 0, %i0
2008b98: 02 bf ff ef be 2008b54 <_Objects_Allocate+0x14>
2008b9c: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2008ba0: c4 07 60 08 ld [ %i5 + 8 ], %g2
2008ba4: d0 06 20 08 ld [ %i0 + 8 ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2008ba8: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2008bac: 03 00 00 3f sethi %hi(0xfc00), %g1
2008bb0: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff <PROM_START+0xffff>
2008bb4: 90 0a 00 01 and %o0, %g1, %o0
2008bb8: 82 08 80 01 and %g2, %g1, %g1
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2008bbc: 40 00 3a e2 call 2017744 <.udiv>
2008bc0: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2008bc4: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2008bc8: 91 2a 20 02 sll %o0, 2, %o0
2008bcc: c4 00 40 08 ld [ %g1 + %o0 ], %g2
2008bd0: 84 00 bf ff add %g2, -1, %g2
2008bd4: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2008bd8: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
2008bdc: 82 00 7f ff add %g1, -1, %g1
2008be0: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2008be4: 81 c7 e0 08 ret
2008be8: 81 e8 00 00 restore
02008f70 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2008f70: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2008f74: 80 a6 60 00 cmp %i1, 0
2008f78: 12 80 00 04 bne 2008f88 <_Objects_Get_information+0x18>
2008f7c: 01 00 00 00 nop
return NULL;
2008f80: 81 c7 e0 08 ret
2008f84: 91 e8 20 00 restore %g0, 0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2008f88: 40 00 10 37 call 200d064 <_Objects_API_maximum_class>
2008f8c: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2008f90: 80 a2 20 00 cmp %o0, 0
2008f94: 02 bf ff fb be 2008f80 <_Objects_Get_information+0x10>
2008f98: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2008f9c: 18 bf ff f9 bgu 2008f80 <_Objects_Get_information+0x10>
2008fa0: 03 00 80 6f sethi %hi(0x201bc00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2008fa4: b1 2e 20 02 sll %i0, 2, %i0
2008fa8: 82 10 63 e4 or %g1, 0x3e4, %g1
2008fac: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2008fb0: 80 a0 60 00 cmp %g1, 0
2008fb4: 02 bf ff f3 be 2008f80 <_Objects_Get_information+0x10> <== NEVER TAKEN
2008fb8: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2008fbc: f0 00 40 19 ld [ %g1 + %i1 ], %i0
if ( !info )
2008fc0: 80 a6 20 00 cmp %i0, 0
2008fc4: 02 bf ff ef be 2008f80 <_Objects_Get_information+0x10> <== NEVER TAKEN
2008fc8: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2008fcc: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2008fd0: 80 a0 60 00 cmp %g1, 0
2008fd4: 02 bf ff eb be 2008f80 <_Objects_Get_information+0x10>
2008fd8: 01 00 00 00 nop
return NULL;
#endif
return info;
}
2008fdc: 81 c7 e0 08 ret
2008fe0: 81 e8 00 00 restore
0201b2b8 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201b2b8: c2 02 20 08 ld [ %o0 + 8 ], %g1
201b2bc: 92 22 40 01 sub %o1, %g1, %o1
if ( information->maximum >= index ) {
201b2c0: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201b2c4: 92 02 60 01 inc %o1
if ( information->maximum >= index ) {
201b2c8: 80 a0 40 09 cmp %g1, %o1
201b2cc: 0a 80 00 09 bcs 201b2f0 <_Objects_Get_no_protection+0x38>
201b2d0: 93 2a 60 02 sll %o1, 2, %o1
if ( (the_object = information->local_table[ index ]) != NULL ) {
201b2d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
201b2d8: d0 00 40 09 ld [ %g1 + %o1 ], %o0
201b2dc: 80 a2 20 00 cmp %o0, 0
201b2e0: 02 80 00 05 be 201b2f4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
201b2e4: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
201b2e8: 81 c3 e0 08 retl
201b2ec: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
201b2f0: 82 10 20 01 mov 1, %g1
return NULL;
201b2f4: 90 10 20 00 clr %o0
}
201b2f8: 81 c3 e0 08 retl
201b2fc: c2 22 80 00 st %g1, [ %o2 ]
0200d078 <_Objects_Id_to_name>:
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
200d078: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200d07c: 80 a6 20 00 cmp %i0, 0
200d080: 12 80 00 06 bne 200d098 <_Objects_Id_to_name+0x20>
200d084: 83 36 20 18 srl %i0, 0x18, %g1
200d088: 03 00 80 b1 sethi %hi(0x202c400), %g1
200d08c: c2 00 60 d0 ld [ %g1 + 0xd0 ], %g1 ! 202c4d0 <_Per_CPU_Information+0x10>
200d090: f0 00 60 08 ld [ %g1 + 8 ], %i0
200d094: 83 36 20 18 srl %i0, 0x18, %g1
200d098: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200d09c: 84 00 7f ff add %g1, -1, %g2
200d0a0: 80 a0 a0 02 cmp %g2, 2
200d0a4: 08 80 00 14 bleu 200d0f4 <_Objects_Id_to_name+0x7c>
200d0a8: 83 28 60 02 sll %g1, 2, %g1
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
200d0ac: 81 c7 e0 08 ret
200d0b0: 91 e8 20 03 restore %g0, 3, %o0
if ( !_Objects_Information_table[ the_api ] )
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200d0b4: 85 28 a0 02 sll %g2, 2, %g2
200d0b8: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200d0bc: 80 a2 20 00 cmp %o0, 0
200d0c0: 02 bf ff fb be 200d0ac <_Objects_Id_to_name+0x34> <== NEVER TAKEN
200d0c4: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
200d0c8: 7f ff ff cf call 200d004 <_Objects_Get>
200d0cc: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200d0d0: 80 a2 20 00 cmp %o0, 0
200d0d4: 02 bf ff f6 be 200d0ac <_Objects_Id_to_name+0x34>
200d0d8: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
200d0dc: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200d0e0: b0 10 20 00 clr %i0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200d0e4: 40 00 03 c5 call 200dff8 <_Thread_Enable_dispatch>
200d0e8: c2 26 40 00 st %g1, [ %i1 ]
200d0ec: 81 c7 e0 08 ret
200d0f0: 81 e8 00 00 restore
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200d0f4: 05 00 80 b0 sethi %hi(0x202c000), %g2
200d0f8: 84 10 a1 d4 or %g2, 0x1d4, %g2 ! 202c1d4 <_Objects_Information_table>
200d0fc: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200d100: 80 a0 60 00 cmp %g1, 0
200d104: 12 bf ff ec bne 200d0b4 <_Objects_Id_to_name+0x3c>
200d108: 85 36 20 1b srl %i0, 0x1b, %g2
200d10c: 30 bf ff e8 b,a 200d0ac <_Objects_Id_to_name+0x34>
0200a15c <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a15c: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200a160: 80 a6 60 00 cmp %i1, 0
200a164: 02 80 00 69 be 200a308 <_RBTree_Extract_unprotected+0x1ac>
200a168: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200a16c: c2 06 20 08 ld [ %i0 + 8 ], %g1
200a170: 80 a6 40 01 cmp %i1, %g1
200a174: 32 80 00 07 bne,a 200a190 <_RBTree_Extract_unprotected+0x34>
200a178: c2 06 20 0c ld [ %i0 + 0xc ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_RIGHT );
200a17c: 90 10 00 19 mov %i1, %o0
200a180: 40 00 01 31 call 200a644 <_RBTree_Next_unprotected>
200a184: 92 10 20 01 mov 1, %o1
RBTree_Node *next;
next = _RBTree_Successor_unprotected(the_node);
the_rbtree->first[RBT_LEFT] = next;
200a188: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200a18c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200a190: 80 a6 40 01 cmp %i1, %g1
200a194: 32 80 00 07 bne,a 200a1b0 <_RBTree_Extract_unprotected+0x54>
200a198: fa 06 60 04 ld [ %i1 + 4 ], %i5
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_LEFT );
200a19c: 90 10 00 19 mov %i1, %o0
200a1a0: 40 00 01 29 call 200a644 <_RBTree_Next_unprotected>
200a1a4: 92 10 20 00 clr %o1
RBTree_Node *previous;
previous = _RBTree_Predecessor_unprotected(the_node);
the_rbtree->first[RBT_RIGHT] = previous;
200a1a8: d0 26 20 0c st %o0, [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200a1ac: fa 06 60 04 ld [ %i1 + 4 ], %i5
200a1b0: 80 a7 60 00 cmp %i5, 0
200a1b4: 02 80 00 36 be 200a28c <_RBTree_Extract_unprotected+0x130>
200a1b8: f8 06 60 08 ld [ %i1 + 8 ], %i4
200a1bc: 80 a7 20 00 cmp %i4, 0
200a1c0: 32 80 00 05 bne,a 200a1d4 <_RBTree_Extract_unprotected+0x78>
200a1c4: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a1c8: 10 80 00 35 b 200a29c <_RBTree_Extract_unprotected+0x140>
200a1cc: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200a1d0: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a1d4: 80 a0 60 00 cmp %g1, 0
200a1d8: 32 bf ff fe bne,a 200a1d0 <_RBTree_Extract_unprotected+0x74>
200a1dc: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200a1e0: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200a1e4: 80 a7 20 00 cmp %i4, 0
200a1e8: 02 80 00 05 be 200a1fc <_RBTree_Extract_unprotected+0xa0>
200a1ec: 01 00 00 00 nop
leaf->parent = target->parent;
200a1f0: c2 07 40 00 ld [ %i5 ], %g1
200a1f4: 10 80 00 04 b 200a204 <_RBTree_Extract_unprotected+0xa8>
200a1f8: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200a1fc: 7f ff ff 73 call 2009fc8 <_RBTree_Extract_validate_unprotected>
200a200: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200a204: c4 07 40 00 ld [ %i5 ], %g2
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200a208: c2 07 60 0c ld [ %i5 + 0xc ], %g1
dir = target != target->parent->child[0];
200a20c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a210: 86 1f 40 03 xor %i5, %g3, %g3
200a214: 80 a0 00 03 cmp %g0, %g3
200a218: 86 40 20 00 addx %g0, 0, %g3
target->parent->child[dir] = leaf;
200a21c: 87 28 e0 02 sll %g3, 2, %g3
200a220: 84 00 80 03 add %g2, %g3, %g2
200a224: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200a228: c4 06 40 00 ld [ %i1 ], %g2
200a22c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a230: 86 1e 40 03 xor %i1, %g3, %g3
200a234: 80 a0 00 03 cmp %g0, %g3
200a238: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = target;
200a23c: 87 28 e0 02 sll %g3, 2, %g3
200a240: 84 00 80 03 add %g2, %g3, %g2
200a244: fa 20 a0 04 st %i5, [ %g2 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200a248: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a24c: c4 27 60 08 st %g2, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200a250: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a254: 80 a0 a0 00 cmp %g2, 0
200a258: 32 80 00 02 bne,a 200a260 <_RBTree_Extract_unprotected+0x104><== ALWAYS TAKEN
200a25c: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200a260: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a264: c4 27 60 04 st %g2, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200a268: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a26c: 80 a0 a0 00 cmp %g2, 0
200a270: 32 80 00 02 bne,a 200a278 <_RBTree_Extract_unprotected+0x11c>
200a274: fa 20 80 00 st %i5, [ %g2 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200a278: c4 06 40 00 ld [ %i1 ], %g2
200a27c: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200a280: c4 06 60 0c ld [ %i1 + 0xc ], %g2
200a284: 10 80 00 14 b 200a2d4 <_RBTree_Extract_unprotected+0x178>
200a288: c4 27 60 0c st %g2, [ %i5 + 0xc ]
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
200a28c: 80 a7 20 00 cmp %i4, 0
200a290: 32 80 00 04 bne,a 200a2a0 <_RBTree_Extract_unprotected+0x144>
200a294: c2 06 40 00 ld [ %i1 ], %g1
200a298: 30 80 00 04 b,a 200a2a8 <_RBTree_Extract_unprotected+0x14c>
leaf->parent = the_node->parent;
200a29c: c2 06 40 00 ld [ %i1 ], %g1
200a2a0: 10 80 00 04 b 200a2b0 <_RBTree_Extract_unprotected+0x154>
200a2a4: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200a2a8: 7f ff ff 48 call 2009fc8 <_RBTree_Extract_validate_unprotected>
200a2ac: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a2b0: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200a2b4: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a2b8: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a2bc: 86 1e 40 03 xor %i1, %g3, %g3
200a2c0: 80 a0 00 03 cmp %g0, %g3
200a2c4: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
200a2c8: 87 28 e0 02 sll %g3, 2, %g3
200a2cc: 84 00 80 03 add %g2, %g3, %g2
200a2d0: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200a2d4: 80 a0 60 00 cmp %g1, 0
200a2d8: 32 80 00 06 bne,a 200a2f0 <_RBTree_Extract_unprotected+0x194>
200a2dc: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200a2e0: 80 a7 20 00 cmp %i4, 0
200a2e4: 32 80 00 02 bne,a 200a2ec <_RBTree_Extract_unprotected+0x190>
200a2e8: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200a2ec: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200a2f0: c0 26 60 08 clr [ %i1 + 8 ]
200a2f4: c0 26 60 04 clr [ %i1 + 4 ]
200a2f8: 80 a0 60 00 cmp %g1, 0
200a2fc: 02 80 00 03 be 200a308 <_RBTree_Extract_unprotected+0x1ac>
200a300: c0 26 40 00 clr [ %i1 ]
200a304: c0 20 60 0c clr [ %g1 + 0xc ]
200a308: 81 c7 e0 08 ret
200a30c: 81 e8 00 00 restore
0200b350 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200b350: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200b354: 80 a6 20 00 cmp %i0, 0
200b358: 02 80 00 10 be 200b398 <_RBTree_Initialize+0x48> <== NEVER TAKEN
200b35c: 01 00 00 00 nop
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200b360: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200b364: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200b368: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200b36c: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200b370: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b374: 10 80 00 06 b 200b38c <_RBTree_Initialize+0x3c>
200b378: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert_unprotected(the_rbtree, next);
200b37c: 90 10 00 18 mov %i0, %o0
200b380: 7f ff ff 2e call 200b038 <_RBTree_Insert_unprotected>
200b384: b4 06 80 1c add %i2, %i4, %i2
200b388: b6 06 ff ff add %i3, -1, %i3
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b38c: 80 a6 e0 00 cmp %i3, 0
200b390: 12 bf ff fb bne 200b37c <_RBTree_Initialize+0x2c>
200b394: 92 10 00 1a mov %i2, %o1
200b398: 81 c7 e0 08 ret
200b39c: 81 e8 00 00 restore
0200a3b0 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a3b0: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
200a3b4: 80 a6 60 00 cmp %i1, 0
200a3b8: 02 80 00 7c be 200a5a8 <_RBTree_Insert_unprotected+0x1f8>
200a3bc: ba 10 00 18 mov %i0, %i5
RBTree_Node *iter_node = the_rbtree->root;
200a3c0: f0 06 20 04 ld [ %i0 + 4 ], %i0
int compare_result;
if (!iter_node) { /* special case: first node inserted */
200a3c4: b6 96 20 00 orcc %i0, 0, %i3
200a3c8: 32 80 00 0c bne,a 200a3f8 <_RBTree_Insert_unprotected+0x48>
200a3cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
the_node->color = RBT_BLACK;
200a3d0: c0 26 60 0c clr [ %i1 + 0xc ]
the_rbtree->root = the_node;
200a3d4: f2 27 60 04 st %i1, [ %i5 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
200a3d8: f2 27 60 0c st %i1, [ %i5 + 0xc ]
200a3dc: f2 27 60 08 st %i1, [ %i5 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200a3e0: fa 26 40 00 st %i5, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a3e4: c0 26 60 08 clr [ %i1 + 8 ]
200a3e8: c0 26 60 04 clr [ %i1 + 4 ]
200a3ec: 81 c7 e0 08 ret
200a3f0: 81 e8 00 00 restore
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
200a3f4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a3f8: 90 10 00 19 mov %i1, %o0
200a3fc: 9f c0 40 00 call %g1
200a400: 92 10 00 18 mov %i0, %o1
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200a404: c2 0f 60 14 ldub [ %i5 + 0x14 ], %g1
200a408: 80 a0 60 00 cmp %g1, 0
200a40c: 02 80 00 05 be 200a420 <_RBTree_Insert_unprotected+0x70>
200a410: b8 38 00 08 xnor %g0, %o0, %i4
200a414: 80 a2 20 00 cmp %o0, 0
200a418: 02 80 00 65 be 200a5ac <_RBTree_Insert_unprotected+0x1fc>
200a41c: 01 00 00 00 nop
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200a420: b9 37 20 1f srl %i4, 0x1f, %i4
if (!iter_node->child[dir]) {
200a424: 83 2f 20 02 sll %i4, 2, %g1
200a428: 82 06 00 01 add %i0, %g1, %g1
200a42c: f0 00 60 04 ld [ %g1 + 4 ], %i0
200a430: 80 a6 20 00 cmp %i0, 0
200a434: 32 bf ff f0 bne,a 200a3f4 <_RBTree_Insert_unprotected+0x44>
200a438: b6 10 00 18 mov %i0, %i3
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a43c: c0 26 60 08 clr [ %i1 + 8 ]
200a440: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
200a444: 84 10 20 01 mov 1, %g2
iter_node->child[dir] = the_node;
200a448: f2 20 60 04 st %i1, [ %g1 + 4 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200a44c: c4 26 60 0c st %g2, [ %i1 + 0xc ]
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
200a450: f6 26 40 00 st %i3, [ %i1 ]
/* update min/max */
compare_result = the_rbtree->compare_function(
200a454: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a458: b6 07 20 02 add %i4, 2, %i3
200a45c: 85 2e e0 02 sll %i3, 2, %g2
200a460: d2 07 40 02 ld [ %i5 + %g2 ], %o1
200a464: 9f c0 40 00 call %g1
200a468: 90 10 00 19 mov %i1, %o0
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
200a46c: 80 a7 20 00 cmp %i4, 0
200a470: 12 80 00 06 bne 200a488 <_RBTree_Insert_unprotected+0xd8>
200a474: 80 a2 20 00 cmp %o0, 0
200a478: 36 80 00 3c bge,a 200a568 <_RBTree_Insert_unprotected+0x1b8>
200a47c: d0 06 40 00 ld [ %i1 ], %o0
(dir && _RBTree_Is_greater(compare_result)) ) {
the_rbtree->first[dir] = the_node;
200a480: 10 80 00 04 b 200a490 <_RBTree_Insert_unprotected+0xe0>
200a484: b7 2e e0 02 sll %i3, 2, %i3
compare_result = the_rbtree->compare_function(
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
(dir && _RBTree_Is_greater(compare_result)) ) {
200a488: 04 80 00 37 ble 200a564 <_RBTree_Insert_unprotected+0x1b4>
200a48c: b7 2e e0 02 sll %i3, 2, %i3
the_rbtree->first[dir] = the_node;
200a490: 10 80 00 35 b 200a564 <_RBTree_Insert_unprotected+0x1b4>
200a494: f2 27 40 1b st %i1, [ %i5 + %i3 ]
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
200a498: 02 80 00 13 be 200a4e4 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN
200a49c: 82 10 20 00 clr %g1
if(!(the_node->parent->parent->parent)) return NULL;
200a4a0: c2 07 40 00 ld [ %i5 ], %g1
200a4a4: 80 a0 60 00 cmp %g1, 0
200a4a8: 02 80 00 0f be 200a4e4 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN
200a4ac: 82 10 20 00 clr %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200a4b0: c2 07 60 04 ld [ %i5 + 4 ], %g1
200a4b4: 80 a2 00 01 cmp %o0, %g1
200a4b8: 22 80 00 02 be,a 200a4c0 <_RBTree_Insert_unprotected+0x110>
200a4bc: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a4c0: 80 a0 60 00 cmp %g1, 0
200a4c4: 02 80 00 09 be 200a4e8 <_RBTree_Insert_unprotected+0x138>
200a4c8: 84 10 20 00 clr %g2
200a4cc: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200a4d0: 80 a0 a0 01 cmp %g2, 1
200a4d4: 32 80 00 05 bne,a 200a4e8 <_RBTree_Insert_unprotected+0x138>
200a4d8: 84 10 20 00 clr %g2
200a4dc: 10 80 00 03 b 200a4e8 <_RBTree_Insert_unprotected+0x138>
200a4e0: 84 10 20 01 mov 1, %g2
200a4e4: 84 10 20 00 clr %g2 <== NOT EXECUTED
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
200a4e8: 80 a0 a0 00 cmp %g2, 0
200a4ec: 22 80 00 08 be,a 200a50c <_RBTree_Insert_unprotected+0x15c>
200a4f0: c2 07 60 04 ld [ %i5 + 4 ], %g1
the_node->parent->color = RBT_BLACK;
200a4f4: c0 22 20 0c clr [ %o0 + 0xc ]
u->color = RBT_BLACK;
200a4f8: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a4fc: b2 10 00 1d mov %i5, %i1
200a500: 82 10 20 01 mov 1, %g1
200a504: 10 80 00 18 b 200a564 <_RBTree_Insert_unprotected+0x1b4>
200a508: c2 27 60 0c st %g1, [ %i5 + 0xc ]
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
200a50c: 82 1a 00 01 xor %o0, %g1, %g1
200a510: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a514: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
200a518: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a51c: 82 1e 40 01 xor %i1, %g1, %g1
200a520: 80 a0 00 01 cmp %g0, %g1
200a524: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200a528: 80 a0 40 1c cmp %g1, %i4
200a52c: 22 80 00 08 be,a 200a54c <_RBTree_Insert_unprotected+0x19c>
200a530: c2 06 40 00 ld [ %i1 ], %g1
_RBTree_Rotate(the_node->parent, pdir);
200a534: 7f ff ff 80 call 200a334 <_RBTree_Rotate>
200a538: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
200a53c: 83 2f 20 02 sll %i4, 2, %g1
200a540: b2 06 40 01 add %i1, %g1, %i1
200a544: f2 06 60 04 ld [ %i1 + 4 ], %i1
}
the_node->parent->color = RBT_BLACK;
200a548: c2 06 40 00 ld [ %i1 ], %g1
g->color = RBT_RED;
200a54c: 92 10 20 01 mov 1, %o1
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
200a550: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a554: d2 27 60 0c st %o1, [ %i5 + 0xc ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200a558: 90 10 00 1d mov %i5, %o0
200a55c: 7f ff ff 76 call 200a334 <_RBTree_Rotate>
200a560: 92 22 40 1c sub %o1, %i4, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200a564: d0 06 40 00 ld [ %i1 ], %o0
200a568: fa 02 00 00 ld [ %o0 ], %i5
200a56c: 80 a7 60 00 cmp %i5, 0
200a570: 22 80 00 06 be,a 200a588 <_RBTree_Insert_unprotected+0x1d8>
200a574: 82 10 20 00 clr %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a578: c2 02 20 0c ld [ %o0 + 0xc ], %g1
200a57c: 82 18 60 01 xor %g1, 1, %g1
200a580: 80 a0 00 01 cmp %g0, %g1
200a584: 82 60 3f ff subx %g0, -1, %g1
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
200a588: 80 a0 60 00 cmp %g1, 0
200a58c: 12 bf ff c3 bne 200a498 <_RBTree_Insert_unprotected+0xe8>
200a590: 80 a7 60 00 cmp %i5, 0
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a594: 12 80 00 06 bne 200a5ac <_RBTree_Insert_unprotected+0x1fc>
200a598: 01 00 00 00 nop
200a59c: c0 26 60 0c clr [ %i1 + 0xc ]
200a5a0: 81 c7 e0 08 ret
200a5a4: 81 e8 00 00 restore
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
if(!the_node) return (RBTree_Node*)-1;
200a5a8: b0 10 3f ff mov -1, %i0
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200a5ac: 81 c7 e0 08 ret
200a5b0: 81 e8 00 00 restore
0200a5e4 <_RBTree_Iterate_unprotected>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
200a5e4: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
200a5e8: b8 10 20 00 clr %i4
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a5ec: 80 a0 00 19 cmp %g0, %i1
200a5f0: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a5f4: 82 00 60 02 add %g1, 2, %g1
200a5f8: 83 28 60 02 sll %g1, 2, %g1
while ( !stop && current != NULL ) {
200a5fc: 10 80 00 0a b 200a624 <_RBTree_Iterate_unprotected+0x40>
200a600: fa 06 00 01 ld [ %i0 + %g1 ], %i5
stop = (*visitor)( current, dir, visitor_arg );
200a604: 92 10 00 19 mov %i1, %o1
200a608: 9f c6 80 00 call %i2
200a60c: 94 10 00 1b mov %i3, %o2
current = _RBTree_Next_unprotected( current, dir );
200a610: 92 10 00 19 mov %i1, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200a614: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next_unprotected( current, dir );
200a618: 40 00 00 0b call 200a644 <_RBTree_Next_unprotected>
200a61c: 90 10 00 1d mov %i5, %o0
200a620: ba 10 00 08 mov %o0, %i5
{
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200a624: 80 a7 60 00 cmp %i5, 0
200a628: 02 80 00 05 be 200a63c <_RBTree_Iterate_unprotected+0x58>
200a62c: b8 1f 20 01 xor %i4, 1, %i4
200a630: 80 8f 20 ff btst 0xff, %i4
200a634: 12 bf ff f4 bne 200a604 <_RBTree_Iterate_unprotected+0x20><== ALWAYS TAKEN
200a638: 90 10 00 1d mov %i5, %o0
200a63c: 81 c7 e0 08 ret
200a640: 81 e8 00 00 restore
02009f4c <_RBTree_Rotate>:
RBTree_Node *the_node,
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
2009f4c: 80 a2 20 00 cmp %o0, 0
2009f50: 02 80 00 1c be 2009fc0 <_RBTree_Rotate+0x74> <== NEVER TAKEN
2009f54: 80 a0 00 09 cmp %g0, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
2009f58: 86 60 3f ff subx %g0, -1, %g3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
2009f5c: 87 28 e0 02 sll %g3, 2, %g3
2009f60: 86 02 00 03 add %o0, %g3, %g3
2009f64: c2 00 e0 04 ld [ %g3 + 4 ], %g1
2009f68: 80 a0 60 00 cmp %g1, 0
2009f6c: 02 80 00 15 be 2009fc0 <_RBTree_Rotate+0x74> <== NEVER TAKEN
2009f70: 93 2a 60 02 sll %o1, 2, %o1
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
2009f74: 84 00 40 09 add %g1, %o1, %g2
2009f78: c8 00 a0 04 ld [ %g2 + 4 ], %g4
2009f7c: c8 20 e0 04 st %g4, [ %g3 + 4 ]
if (c->child[dir])
2009f80: c4 00 a0 04 ld [ %g2 + 4 ], %g2
2009f84: 80 a0 a0 00 cmp %g2, 0
2009f88: 32 80 00 02 bne,a 2009f90 <_RBTree_Rotate+0x44>
2009f8c: d0 20 80 00 st %o0, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009f90: c4 02 00 00 ld [ %o0 ], %g2
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
2009f94: 92 00 40 09 add %g1, %o1, %o1
2009f98: d0 22 60 04 st %o0, [ %o1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009f9c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
c->parent = the_node->parent;
2009fa0: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009fa4: 86 1a 00 03 xor %o0, %g3, %g3
c->parent = the_node->parent;
the_node->parent = c;
2009fa8: c2 22 00 00 st %g1, [ %o0 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009fac: 80 a0 00 03 cmp %g0, %g3
2009fb0: 86 40 20 00 addx %g0, 0, %g3
2009fb4: 87 28 e0 02 sll %g3, 2, %g3
2009fb8: 86 00 80 03 add %g2, %g3, %g3
2009fbc: c2 20 e0 04 st %g1, [ %g3 + 4 ]
2009fc0: 81 c3 e0 08 retl
02009efc <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
2009efc: 80 a2 20 00 cmp %o0, 0
2009f00: 02 80 00 10 be 2009f40 <_RBTree_Sibling+0x44> <== NEVER TAKEN
2009f04: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
2009f08: c4 02 00 00 ld [ %o0 ], %g2
2009f0c: 80 a0 a0 00 cmp %g2, 0
2009f10: 22 80 00 0d be,a 2009f44 <_RBTree_Sibling+0x48> <== NEVER TAKEN
2009f14: 90 10 00 01 mov %g1, %o0 <== NOT EXECUTED
if(!(the_node->parent->parent)) return NULL;
2009f18: c2 00 80 00 ld [ %g2 ], %g1
2009f1c: 80 a0 60 00 cmp %g1, 0
2009f20: 02 80 00 08 be 2009f40 <_RBTree_Sibling+0x44>
2009f24: 82 10 20 00 clr %g1
if(the_node == the_node->parent->child[RBT_LEFT])
2009f28: c2 00 a0 04 ld [ %g2 + 4 ], %g1
2009f2c: 80 a2 00 01 cmp %o0, %g1
2009f30: 22 80 00 04 be,a 2009f40 <_RBTree_Sibling+0x44>
2009f34: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
2009f38: 81 c3 e0 08 retl
2009f3c: 90 10 00 01 mov %g1, %o0
else
return the_node->parent->child[RBT_LEFT];
}
2009f40: 90 10 00 01 mov %g1, %o0
2009f44: 81 c3 e0 08 retl
02008820 <_RTEMS_signal_Post_switch_hook>:
#include <rtems/score/thread.h>
#include <rtems/score/apiext.h>
#include <rtems/rtems/tasks.h>
static void _RTEMS_signal_Post_switch_hook( Thread_Control *executing )
{
2008820: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
2008824: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
if ( !api )
2008828: 80 a7 60 00 cmp %i5, 0
200882c: 02 80 00 1c be 200889c <_RTEMS_signal_Post_switch_hook+0x7c><== NEVER TAKEN
2008830: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
2008834: 7f ff eb 45 call 2003548 <sparc_disable_interrupts>
2008838: 01 00 00 00 nop
signal_set = asr->signals_posted;
200883c: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
2008840: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
2008844: 7f ff eb 45 call 2003558 <sparc_enable_interrupts>
2008848: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200884c: 80 a7 20 00 cmp %i4, 0
2008850: 02 80 00 13 be 200889c <_RTEMS_signal_Post_switch_hook+0x7c>
2008854: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
2008858: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200885c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
2008860: 82 00 60 01 inc %g1
2008864: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008868: 37 00 00 3f sethi %hi(0xfc00), %i3
200886c: 40 00 01 03 call 2008c78 <rtems_task_mode>
2008870: 92 16 e3 ff or %i3, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
2008874: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2008878: 9f c0 40 00 call %g1
200887c: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
2008880: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008884: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
2008888: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200888c: 92 16 e3 ff or %i3, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
2008890: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008894: 40 00 00 f9 call 2008c78 <rtems_task_mode>
2008898: 94 07 bf fc add %fp, -4, %o2
200889c: 81 c7 e0 08 ret
20088a0: 81 e8 00 00 restore
020320a4 <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
20320a4: 9d e3 bf 98 save %sp, -104, %sp
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
20320a8: 13 00 81 82 sethi %hi(0x2060800), %o1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
20320ac: f6 06 20 40 ld [ %i0 + 0x40 ], %i3
20320b0: 90 07 bf f8 add %fp, -8, %o0
20320b4: 7f ff 58 8d call 20082e8 <_TOD_Get_with_nanoseconds>
20320b8: 92 12 61 e0 or %o1, 0x1e0, %o1
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20320bc: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
20320c0: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
20320c4: 09 00 81 83 sethi %hi(0x2060c00), %g4
20320c8: ba a0 c0 1d subcc %g3, %i5, %i5
20320cc: 88 11 20 a0 or %g4, 0xa0, %g4
20320d0: b8 60 80 1c subx %g2, %i4, %i4
20320d4: f8 3e 40 00 std %i4, [ %i1 ]
20320d8: fa 01 20 10 ld [ %g4 + 0x10 ], %i5
#endif
/*
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
20320dc: d8 1e e0 80 ldd [ %i3 + 0x80 ], %o4
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
20320e0: 80 a6 c0 1d cmp %i3, %i5
20320e4: 12 80 00 15 bne 2032138 <_Rate_monotonic_Get_status+0x94>
20320e8: 82 10 20 01 mov 1, %g1
20320ec: f8 19 20 20 ldd [ %g4 + 0x20 ], %i4
20320f0: 86 a0 c0 1d subcc %g3, %i5, %g3
20320f4: 84 60 80 1c subx %g2, %i4, %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
20320f8: ba 83 40 03 addcc %o5, %g3, %i5
20320fc: b8 43 00 02 addx %o4, %g2, %i4
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2032100: c4 1e 20 48 ldd [ %i0 + 0x48 ], %g2
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2032104: 80 a0 80 1c cmp %g2, %i4
2032108: 34 80 00 0c bg,a 2032138 <_Rate_monotonic_Get_status+0x94><== NEVER TAKEN
203210c: 82 10 20 00 clr %g1 <== NOT EXECUTED
2032110: 32 80 00 06 bne,a 2032128 <_Rate_monotonic_Get_status+0x84>
2032114: 86 a7 40 03 subcc %i5, %g3, %g3
2032118: 80 a0 c0 1d cmp %g3, %i5
203211c: 18 80 00 06 bgu 2032134 <_Rate_monotonic_Get_status+0x90>
2032120: 86 a7 40 03 subcc %i5, %g3, %g3
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2032124: 82 10 20 01 mov 1, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2032128: 84 67 00 02 subx %i4, %g2, %g2
203212c: 10 80 00 03 b 2032138 <_Rate_monotonic_Get_status+0x94>
2032130: c4 3e 80 00 std %g2, [ %i2 ]
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
return false;
2032134: 82 10 20 00 clr %g1
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
2032138: b0 08 60 01 and %g1, 1, %i0
203213c: 81 c7 e0 08 ret
2032140: 81 e8 00 00 restore
020324ac <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
20324ac: 9d e3 bf 98 save %sp, -104, %sp
20324b0: 11 00 81 83 sethi %hi(0x2060c00), %o0
20324b4: 92 10 00 18 mov %i0, %o1
20324b8: 90 12 22 c4 or %o0, 0x2c4, %o0
20324bc: 7f ff 5a 32 call 2008d84 <_Objects_Get>
20324c0: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20324c4: c2 07 bf fc ld [ %fp + -4 ], %g1
20324c8: 80 a0 60 00 cmp %g1, 0
20324cc: 12 80 00 24 bne 203255c <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
20324d0: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
20324d4: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
20324d8: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
20324dc: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
20324e0: 80 88 80 01 btst %g2, %g1
20324e4: 22 80 00 0b be,a 2032510 <_Rate_monotonic_Timeout+0x64>
20324e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
20324ec: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
20324f0: c2 07 60 08 ld [ %i5 + 8 ], %g1
20324f4: 80 a0 80 01 cmp %g2, %g1
20324f8: 32 80 00 06 bne,a 2032510 <_Rate_monotonic_Timeout+0x64>
20324fc: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2032500: 13 04 01 ff sethi %hi(0x1007fc00), %o1
2032504: 7f ff 5c df call 2009880 <_Thread_Clear_state>
2032508: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 <RAM_END+0xdc7fff8>
203250c: 30 80 00 06 b,a 2032524 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2032510: 80 a0 60 01 cmp %g1, 1
2032514: 12 80 00 0d bne 2032548 <_Rate_monotonic_Timeout+0x9c>
2032518: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
203251c: 82 10 20 03 mov 3, %g1
2032520: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2032524: 7f ff ff 51 call 2032268 <_Rate_monotonic_Initiate_statistics>
2032528: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203252c: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2032530: 11 00 81 82 sethi %hi(0x2060800), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2032534: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2032538: 90 12 23 2c or %o0, 0x32c, %o0
203253c: 7f ff 60 d5 call 200a890 <_Watchdog_Insert>
2032540: 92 07 60 10 add %i5, 0x10, %o1
2032544: 30 80 00 02 b,a 203254c <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2032548: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
203254c: 03 00 81 82 sethi %hi(0x2060800), %g1
2032550: c4 00 62 90 ld [ %g1 + 0x290 ], %g2 ! 2060a90 <_Thread_Dispatch_disable_level>
--level;
2032554: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
2032558: c4 20 62 90 st %g2, [ %g1 + 0x290 ]
203255c: 81 c7 e0 08 ret
2032560: 81 e8 00 00 restore
02032144 <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
2032144: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
2032148: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
203214c: 82 00 60 01 inc %g1
2032150: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2032154: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
2032158: 80 a0 60 04 cmp %g1, 4
203215c: 12 80 00 05 bne 2032170 <_Rate_monotonic_Update_statistics+0x2c>
2032160: 90 10 00 18 mov %i0, %o0
stats->missed_count++;
2032164: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
2032168: 82 00 60 01 inc %g1
203216c: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
/*
* Grab status for time statistics.
*/
valid_status =
2032170: 92 07 bf f8 add %fp, -8, %o1
2032174: 7f ff ff cc call 20320a4 <_Rate_monotonic_Get_status>
2032178: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
203217c: 80 8a 20 ff btst 0xff, %o0
2032180: 02 80 00 38 be 2032260 <_Rate_monotonic_Update_statistics+0x11c>
2032184: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2032188: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
203218c: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
2032190: b6 87 40 03 addcc %i5, %g3, %i3
2032194: b4 47 00 02 addx %i4, %g2, %i2
2032198: 80 a0 40 02 cmp %g1, %g2
203219c: 14 80 00 09 bg 20321c0 <_Rate_monotonic_Update_statistics+0x7c>
20321a0: f4 3e 20 70 std %i2, [ %i0 + 0x70 ]
20321a4: 80 a0 40 02 cmp %g1, %g2
20321a8: 32 80 00 08 bne,a 20321c8 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN
20321ac: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
20321b0: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
20321b4: 80 a0 40 03 cmp %g1, %g3
20321b8: 28 80 00 04 bleu,a 20321c8 <_Rate_monotonic_Update_statistics+0x84>
20321bc: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
20321c0: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
20321c4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
20321c8: 80 a0 40 02 cmp %g1, %g2
20321cc: 26 80 00 0a bl,a 20321f4 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
20321d0: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
20321d4: 80 a0 40 02 cmp %g1, %g2
20321d8: 32 80 00 08 bne,a 20321f8 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
20321dc: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED
20321e0: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
20321e4: 80 a0 40 03 cmp %g1, %g3
20321e8: 3a 80 00 04 bcc,a 20321f8 <_Rate_monotonic_Update_statistics+0xb4>
20321ec: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
20321f0: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
20321f4: c4 1f bf f8 ldd [ %fp + -8 ], %g2
20321f8: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
20321fc: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2032200: b6 87 40 03 addcc %i5, %g3, %i3
2032204: b4 47 00 02 addx %i4, %g2, %i2
2032208: 80 a0 40 02 cmp %g1, %g2
203220c: 14 80 00 09 bg 2032230 <_Rate_monotonic_Update_statistics+0xec>
2032210: f4 3e 20 88 std %i2, [ %i0 + 0x88 ]
2032214: 80 a0 40 02 cmp %g1, %g2
2032218: 32 80 00 08 bne,a 2032238 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN
203221c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
2032220: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
2032224: 80 a0 40 03 cmp %g1, %g3
2032228: 28 80 00 04 bleu,a 2032238 <_Rate_monotonic_Update_statistics+0xf4>
203222c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
2032230: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
2032234: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
2032238: 80 a0 40 02 cmp %g1, %g2
203223c: 26 80 00 09 bl,a 2032260 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
2032240: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
2032244: 80 a0 40 02 cmp %g1, %g2
2032248: 12 80 00 06 bne 2032260 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
203224c: 01 00 00 00 nop
2032250: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
2032254: 80 a0 40 03 cmp %g1, %g3
2032258: 2a 80 00 02 bcs,a 2032260 <_Rate_monotonic_Update_statistics+0x11c>
203225c: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
2032260: 81 c7 e0 08 ret
2032264: 81 e8 00 00 restore
02009f64 <_Scheduler_CBS_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_CBS_Allocate(
Thread_Control *the_thread
)
{
2009f64: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_CBS_Per_thread *schinfo;
sched = _Workspace_Allocate(sizeof(Scheduler_CBS_Per_thread));
2009f68: 40 00 06 aa call 200ba10 <_Workspace_Allocate>
2009f6c: 90 10 20 1c mov 0x1c, %o0
if ( sched ) {
2009f70: 80 a2 20 00 cmp %o0, 0
2009f74: 02 80 00 06 be 2009f8c <_Scheduler_CBS_Allocate+0x28> <== NEVER TAKEN
2009f78: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
2009f7c: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_CBS_Per_thread *)(the_thread->scheduler_info);
schinfo->edf_per_thread.thread = the_thread;
2009f80: f0 22 00 00 st %i0, [ %o0 ]
schinfo->edf_per_thread.queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
2009f84: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
schinfo->cbs_server = NULL;
2009f88: c0 22 20 18 clr [ %o0 + 0x18 ]
}
return sched;
}
2009f8c: 81 c7 e0 08 ret
2009f90: 91 e8 00 08 restore %g0, %o0, %o0
0200b2a4 <_Scheduler_CBS_Budget_callout>:
Scheduler_CBS_Server **_Scheduler_CBS_Server_list;
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
200b2a4: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200b2a8: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200b2ac: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b2b0: 80 a0 40 09 cmp %g1, %o1
200b2b4: 32 80 00 02 bne,a 200b2bc <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
200b2b8: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200b2bc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200b2c0: 80 a0 40 09 cmp %g1, %o1
200b2c4: 02 80 00 04 be 200b2d4 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
200b2c8: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200b2cc: 40 00 01 81 call 200b8d0 <_Thread_Change_priority>
200b2d0: 94 10 20 01 mov 1, %o2
/* Invoke callback function if any. */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
200b2d4: fa 06 20 88 ld [ %i0 + 0x88 ], %i5
if ( sched_info->cbs_server->cbs_budget_overrun ) {
200b2d8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b2dc: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200b2e0: 80 a0 a0 00 cmp %g2, 0
200b2e4: 02 80 00 09 be 200b308 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
200b2e8: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
200b2ec: d0 00 40 00 ld [ %g1 ], %o0
200b2f0: 7f ff ff d7 call 200b24c <_Scheduler_CBS_Get_server_id>
200b2f4: 92 07 bf fc add %fp, -4, %o1
sched_info->cbs_server->task_id,
&server_id
);
sched_info->cbs_server->cbs_budget_overrun( server_id );
200b2f8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b2fc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200b300: 9f c0 40 00 call %g1
200b304: d0 07 bf fc ld [ %fp + -4 ], %o0
200b308: 81 c7 e0 08 ret
200b30c: 81 e8 00 00 restore
0200aeac <_Scheduler_CBS_Create_server>:
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200aeac: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200aeb0: c2 06 20 04 ld [ %i0 + 4 ], %g1
200aeb4: 80 a0 60 00 cmp %g1, 0
200aeb8: 04 80 00 1d ble 200af2c <_Scheduler_CBS_Create_server+0x80>
200aebc: 01 00 00 00 nop
200aec0: c2 06 00 00 ld [ %i0 ], %g1
200aec4: 80 a0 60 00 cmp %g1, 0
200aec8: 04 80 00 19 ble 200af2c <_Scheduler_CBS_Create_server+0x80>
200aecc: 03 00 80 7a sethi %hi(0x201e800), %g1
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200aed0: c4 00 63 c0 ld [ %g1 + 0x3c0 ], %g2 ! 201ebc0 <_Scheduler_CBS_Maximum_servers>
if ( !_Scheduler_CBS_Server_list[i] )
200aed4: 03 00 80 7e sethi %hi(0x201f800), %g1
200aed8: c6 00 62 08 ld [ %g1 + 0x208 ], %g3 ! 201fa08 <_Scheduler_CBS_Server_list>
200aedc: 10 80 00 07 b 200aef8 <_Scheduler_CBS_Create_server+0x4c>
200aee0: 82 10 20 00 clr %g1
200aee4: c8 00 c0 1c ld [ %g3 + %i4 ], %g4
200aee8: 80 a1 20 00 cmp %g4, 0
200aeec: 02 80 00 14 be 200af3c <_Scheduler_CBS_Create_server+0x90>
200aef0: 3b 00 80 7e sethi %hi(0x201f800), %i5
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200aef4: 82 00 60 01 inc %g1
200aef8: 80 a0 40 02 cmp %g1, %g2
200aefc: 12 bf ff fa bne 200aee4 <_Scheduler_CBS_Create_server+0x38>
200af00: b9 28 60 02 sll %g1, 2, %i4
if ( !_Scheduler_CBS_Server_list[i] )
break;
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
200af04: 81 c7 e0 08 ret
200af08: 91 e8 3f e6 restore %g0, -26, %o0
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200af0c: c4 20 60 04 st %g2, [ %g1 + 4 ]
200af10: c4 06 20 04 ld [ %i0 + 4 ], %g2
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
200af14: f2 20 60 0c st %i1, [ %g1 + 0xc ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200af18: c4 20 60 08 st %g2, [ %g1 + 8 ]
the_server->task_id = -1;
200af1c: 84 10 3f ff mov -1, %g2
200af20: c4 20 40 00 st %g2, [ %g1 ]
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
200af24: 81 c7 e0 08 ret
200af28: 91 e8 20 00 restore %g0, 0, %o0
if ( params->budget <= 0 ||
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200af2c: 81 c7 e0 08 ret
200af30: 91 e8 3f ee restore %g0, -18, %o0
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
200af34: 81 c7 e0 08 ret <== NOT EXECUTED
200af38: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200af3c: f6 07 62 08 ld [ %i5 + 0x208 ], %i3
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
200af40: c2 26 80 00 st %g1, [ %i2 ]
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
200af44: 40 00 07 9c call 200cdb4 <_Workspace_Allocate>
200af48: 90 10 20 10 mov 0x10, %o0
the_server = _Scheduler_CBS_Server_list[*server_id];
200af4c: c2 06 80 00 ld [ %i2 ], %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200af50: d0 26 c0 1c st %o0, [ %i3 + %i4 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
200af54: c4 07 62 08 ld [ %i5 + 0x208 ], %g2
200af58: 83 28 60 02 sll %g1, 2, %g1
200af5c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_server )
200af60: 80 a0 60 00 cmp %g1, 0
200af64: 32 bf ff ea bne,a 200af0c <_Scheduler_CBS_Create_server+0x60><== ALWAYS TAKEN
200af68: c4 06 00 00 ld [ %i0 ], %g2
200af6c: 30 bf ff f2 b,a 200af34 <_Scheduler_CBS_Create_server+0x88><== NOT EXECUTED
0200afe4 <_Scheduler_CBS_Detach_thread>:
int _Scheduler_CBS_Detach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
200afe4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
Scheduler_CBS_Per_thread *sched_info;
the_thread = _Thread_Get(task_id, &location);
200afe8: 90 10 00 19 mov %i1, %o0
200afec: 40 00 03 77 call 200bdc8 <_Thread_Get>
200aff0: 92 07 bf fc add %fp, -4, %o1
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
200aff4: ba 92 20 00 orcc %o0, 0, %i5
200aff8: 02 80 00 05 be 200b00c <_Scheduler_CBS_Detach_thread+0x28>
200affc: 03 00 80 7a sethi %hi(0x201e800), %g1
_Thread_Enable_dispatch();
200b000: 40 00 03 66 call 200bd98 <_Thread_Enable_dispatch>
200b004: 01 00 00 00 nop
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
200b008: 03 00 80 7a sethi %hi(0x201e800), %g1
200b00c: c2 00 63 c0 ld [ %g1 + 0x3c0 ], %g1 ! 201ebc0 <_Scheduler_CBS_Maximum_servers>
200b010: 80 a6 00 01 cmp %i0, %g1
200b014: 1a 80 00 1b bcc 200b080 <_Scheduler_CBS_Detach_thread+0x9c>
200b018: 80 a7 60 00 cmp %i5, 0
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
200b01c: 02 80 00 19 be 200b080 <_Scheduler_CBS_Detach_thread+0x9c>
200b020: 03 00 80 7e sethi %hi(0x201f800), %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
200b024: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 201fa08 <_Scheduler_CBS_Server_list>
200b028: b1 2e 20 02 sll %i0, 2, %i0
200b02c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200b030: 80 a0 60 00 cmp %g1, 0
200b034: 02 80 00 11 be 200b078 <_Scheduler_CBS_Detach_thread+0x94>
200b038: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
200b03c: c4 00 40 00 ld [ %g1 ], %g2
200b040: 80 a0 80 19 cmp %g2, %i1
200b044: 12 80 00 0f bne 200b080 <_Scheduler_CBS_Detach_thread+0x9c><== NEVER TAKEN
200b048: 84 10 3f ff mov -1, %g2
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
200b04c: c4 20 40 00 st %g2, [ %g1 ]
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b050: c2 07 60 88 ld [ %i5 + 0x88 ], %g1
200b054: c0 20 60 18 clr [ %g1 + 0x18 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b058: c2 07 60 a0 ld [ %i5 + 0xa0 ], %g1
200b05c: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
200b060: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1
200b064: c2 27 60 7c st %g1, [ %i5 + 0x7c ]
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b068: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1
200b06c: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
return SCHEDULER_CBS_OK;
200b070: 81 c7 e0 08 ret
200b074: 91 e8 20 00 restore %g0, 0, %o0
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
return SCHEDULER_CBS_ERROR_NOSERVER;
200b078: 81 c7 e0 08 ret
200b07c: 91 e8 3f e7 restore %g0, -25, %o0
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
the_thread->is_preemptible = the_thread->Start.is_preemptible;
return SCHEDULER_CBS_OK;
}
200b080: 81 c7 e0 08 ret
200b084: 91 e8 3f ee restore %g0, -18, %o0
0200b310 <_Scheduler_CBS_Initialize>:
}
}
int _Scheduler_CBS_Initialize(void)
{
200b310: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
200b314: 3b 00 80 7a sethi %hi(0x201e800), %i5
200b318: d0 07 63 c0 ld [ %i5 + 0x3c0 ], %o0 ! 201ebc0 <_Scheduler_CBS_Maximum_servers>
}
int _Scheduler_CBS_Initialize(void)
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
200b31c: 40 00 06 a6 call 200cdb4 <_Workspace_Allocate>
200b320: 91 2a 20 02 sll %o0, 2, %o0
200b324: 05 00 80 7e sethi %hi(0x201f800), %g2
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
200b328: 80 a2 20 00 cmp %o0, 0
200b32c: 02 80 00 0d be 200b360 <_Scheduler_CBS_Initialize+0x50> <== NEVER TAKEN
200b330: d0 20 a2 08 st %o0, [ %g2 + 0x208 ]
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b334: c6 07 63 c0 ld [ %i5 + 0x3c0 ], %g3
200b338: 10 80 00 05 b 200b34c <_Scheduler_CBS_Initialize+0x3c>
200b33c: 82 10 20 00 clr %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b340: 89 28 60 02 sll %g1, 2, %g4
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b344: 82 00 60 01 inc %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b348: c0 27 40 04 clr [ %i5 + %g4 ]
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b34c: 80 a0 40 03 cmp %g1, %g3
200b350: 12 bf ff fc bne 200b340 <_Scheduler_CBS_Initialize+0x30>
200b354: fa 00 a2 08 ld [ %g2 + 0x208 ], %i5
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200b358: 81 c7 e0 08 ret
200b35c: 91 e8 20 00 restore %g0, 0, %o0
}
200b360: 81 c7 e0 08 ret <== NOT EXECUTED
200b364: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
02009f94 <_Scheduler_CBS_Release_job>:
{
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info =
(Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
Scheduler_CBS_Server *serv_info =
(Scheduler_CBS_Server *) sched_info->cbs_server;
2009f94: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
if (deadline) {
2009f98: 80 a2 60 00 cmp %o1, 0
2009f9c: 02 80 00 10 be 2009fdc <_Scheduler_CBS_Release_job+0x48>
2009fa0: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
/* Initializing or shifting deadline. */
if (serv_info)
2009fa4: 80 a0 60 00 cmp %g1, 0
2009fa8: 02 80 00 08 be 2009fc8 <_Scheduler_CBS_Release_job+0x34>
2009fac: 05 00 80 77 sethi %hi(0x201dc00), %g2
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
2009fb0: d2 00 a1 5c ld [ %g2 + 0x15c ], %o1 ! 201dd5c <_Watchdog_Ticks_since_boot>
2009fb4: c4 00 60 04 ld [ %g1 + 4 ], %g2
2009fb8: 92 02 40 02 add %o1, %g2, %o1
2009fbc: 05 20 00 00 sethi %hi(0x80000000), %g2
2009fc0: 10 80 00 0a b 2009fe8 <_Scheduler_CBS_Release_job+0x54>
2009fc4: 92 2a 40 02 andn %o1, %g2, %o1
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
2009fc8: c2 00 a1 5c ld [ %g2 + 0x15c ], %g1
2009fcc: 92 02 40 01 add %o1, %g1, %o1
2009fd0: 03 20 00 00 sethi %hi(0x80000000), %g1
2009fd4: 10 80 00 07 b 2009ff0 <_Scheduler_CBS_Release_job+0x5c>
2009fd8: 92 2a 40 01 andn %o1, %g1, %o1
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
2009fdc: 80 a0 60 00 cmp %g1, 0
2009fe0: 02 80 00 04 be 2009ff0 <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN
2009fe4: d2 02 20 ac ld [ %o0 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
2009fe8: c2 00 60 08 ld [ %g1 + 8 ], %g1
2009fec: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
2009ff0: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
2009ff4: 94 10 20 01 mov 1, %o2
2009ff8: 82 13 c0 00 mov %o7, %g1
2009ffc: 40 00 01 24 call 200a48c <_Thread_Change_priority>
200a000: 9e 10 40 00 mov %g1, %o7
0200a004 <_Scheduler_CBS_Unblock>:
#include <rtems/score/schedulercbs.h>
void _Scheduler_CBS_Unblock(
Thread_Control *the_thread
)
{
200a004: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server *serv_info;
Priority_Control new_priority;
_Scheduler_EDF_Enqueue(the_thread);
200a008: 40 00 00 4c call 200a138 <_Scheduler_EDF_Enqueue>
200a00c: 90 10 00 18 mov %i0, %o0
/* TODO: flash critical section? */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server;
200a010: c2 06 20 88 ld [ %i0 + 0x88 ], %g1
200a014: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
200a018: 80 a7 60 00 cmp %i5, 0
200a01c: 02 80 00 18 be 200a07c <_Scheduler_CBS_Unblock+0x78>
200a020: 03 00 80 77 sethi %hi(0x201dc00), %g1
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a024: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
200a028: d0 00 61 5c ld [ %g1 + 0x15c ], %o0
200a02c: f8 06 20 18 ld [ %i0 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a030: 40 00 3b f2 call 2018ff8 <.umul>
200a034: 90 27 00 08 sub %i4, %o0, %o0
200a038: d2 06 20 74 ld [ %i0 + 0x74 ], %o1
200a03c: b6 10 00 08 mov %o0, %i3
200a040: 40 00 3b ee call 2018ff8 <.umul>
200a044: d0 07 60 08 ld [ %i5 + 8 ], %o0
200a048: 80 a6 c0 08 cmp %i3, %o0
200a04c: 24 80 00 0d ble,a 200a080 <_Scheduler_CBS_Unblock+0x7c>
200a050: 3b 00 80 77 sethi %hi(0x201dc00), %i5
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200a054: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200a058: 80 a7 00 09 cmp %i4, %o1
200a05c: 32 80 00 02 bne,a 200a064 <_Scheduler_CBS_Unblock+0x60>
200a060: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200a064: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a068: 80 a0 40 09 cmp %g1, %o1
200a06c: 02 80 00 04 be 200a07c <_Scheduler_CBS_Unblock+0x78>
200a070: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200a074: 40 00 01 06 call 200a48c <_Thread_Change_priority>
200a078: 94 10 20 01 mov 1, %o2
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
200a07c: 3b 00 80 77 sethi %hi(0x201dc00), %i5
200a080: ba 17 62 80 or %i5, 0x280, %i5 ! 201de80 <_Per_CPU_Information>
200a084: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
200a088: 03 00 80 74 sethi %hi(0x201d000), %g1
200a08c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
200a090: c2 00 60 94 ld [ %g1 + 0x94 ], %g1
200a094: 9f c0 40 00 call %g1
200a098: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1
200a09c: 80 a2 20 00 cmp %o0, 0
200a0a0: 04 80 00 0f ble 200a0dc <_Scheduler_CBS_Unblock+0xd8>
200a0a4: 01 00 00 00 nop
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a0a8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
200a0ac: f0 27 60 14 st %i0, [ %i5 + 0x14 ]
if ( _Thread_Executing->is_preemptible ||
200a0b0: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a0b4: 80 a0 60 00 cmp %g1, 0
200a0b8: 12 80 00 06 bne 200a0d0 <_Scheduler_CBS_Unblock+0xcc>
200a0bc: 84 10 20 01 mov 1, %g2
200a0c0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a0c4: 80 a0 60 00 cmp %g1, 0
200a0c8: 12 80 00 05 bne 200a0dc <_Scheduler_CBS_Unblock+0xd8> <== ALWAYS TAKEN
200a0cc: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a0d0: 03 00 80 77 sethi %hi(0x201dc00), %g1
200a0d4: 82 10 62 80 or %g1, 0x280, %g1 ! 201de80 <_Per_CPU_Information>
200a0d8: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
200a0dc: 81 c7 e0 08 ret
200a0e0: 81 e8 00 00 restore
02009f64 <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
2009f64: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
2009f68: 40 00 06 7f call 200b964 <_Workspace_Allocate>
2009f6c: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
2009f70: 80 a2 20 00 cmp %o0, 0
2009f74: 02 80 00 05 be 2009f88 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
2009f78: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
2009f7c: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
2009f80: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
2009f84: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
2009f88: 81 c7 e0 08 ret
2009f8c: 91 e8 00 08 restore %g0, %o0, %o0
0200a12c <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
200a12c: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
200a130: 7f ff ff ad call 2009fe4 <_Scheduler_EDF_Enqueue>
200a134: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
200a138: 3b 00 80 77 sethi %hi(0x201dc00), %i5
200a13c: ba 17 61 e0 or %i5, 0x1e0, %i5 ! 201dde0 <_Per_CPU_Information>
200a140: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
200a144: 03 00 80 73 sethi %hi(0x201cc00), %g1
200a148: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0
200a14c: c2 00 63 f4 ld [ %g1 + 0x3f4 ], %g1
200a150: 9f c0 40 00 call %g1
200a154: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
200a158: 80 a2 20 00 cmp %o0, 0
200a15c: 16 80 00 0f bge 200a198 <_Scheduler_EDF_Unblock+0x6c>
200a160: 01 00 00 00 nop
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a164: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
200a168: f0 27 60 14 st %i0, [ %i5 + 0x14 ]
if ( _Thread_Executing->is_preemptible ||
200a16c: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a170: 80 a0 60 00 cmp %g1, 0
200a174: 12 80 00 06 bne 200a18c <_Scheduler_EDF_Unblock+0x60>
200a178: 84 10 20 01 mov 1, %g2
200a17c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a180: 80 a0 60 00 cmp %g1, 0
200a184: 12 80 00 05 bne 200a198 <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN
200a188: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a18c: 03 00 80 77 sethi %hi(0x201dc00), %g1
200a190: 82 10 61 e0 or %g1, 0x1e0, %g1 ! 201dde0 <_Per_CPU_Information>
200a194: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
200a198: 81 c7 e0 08 ret
200a19c: 81 e8 00 00 restore
020084a0 <_TOD_Validate>:
};
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20084a0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
20084a4: 03 00 80 6d sethi %hi(0x201b400), %g1
20084a8: d2 00 62 fc ld [ %g1 + 0x2fc ], %o1 ! 201b6fc <Configuration+0xc>
20084ac: 11 00 03 d0 sethi %hi(0xf4000), %o0
20084b0: 40 00 45 19 call 2019914 <.udiv>
20084b4: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20084b8: 80 a6 20 00 cmp %i0, 0
20084bc: 02 80 00 28 be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN
20084c0: 84 10 20 00 clr %g2
20084c4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
20084c8: 80 a0 40 08 cmp %g1, %o0
20084cc: 3a 80 00 25 bcc,a 2008560 <_TOD_Validate+0xc0>
20084d0: b0 08 a0 01 and %g2, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
20084d4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20084d8: 80 a0 60 3b cmp %g1, 0x3b
20084dc: 38 80 00 21 bgu,a 2008560 <_TOD_Validate+0xc0>
20084e0: b0 08 a0 01 and %g2, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20084e4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
20084e8: 80 a0 60 3b cmp %g1, 0x3b
20084ec: 38 80 00 1d bgu,a 2008560 <_TOD_Validate+0xc0>
20084f0: b0 08 a0 01 and %g2, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20084f4: c2 06 20 0c ld [ %i0 + 0xc ], %g1
20084f8: 80 a0 60 17 cmp %g1, 0x17
20084fc: 38 80 00 19 bgu,a 2008560 <_TOD_Validate+0xc0>
2008500: b0 08 a0 01 and %g2, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2008504: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2008508: 80 a0 60 00 cmp %g1, 0
200850c: 02 80 00 14 be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN
2008510: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
2008514: 38 80 00 13 bgu,a 2008560 <_TOD_Validate+0xc0>
2008518: b0 08 a0 01 and %g2, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
200851c: c8 06 00 00 ld [ %i0 ], %g4
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2008520: 80 a1 27 c3 cmp %g4, 0x7c3
2008524: 28 80 00 0f bleu,a 2008560 <_TOD_Validate+0xc0>
2008528: b0 08 a0 01 and %g2, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
200852c: c6 06 20 08 ld [ %i0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008530: 80 a0 e0 00 cmp %g3, 0
2008534: 02 80 00 0a be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN
2008538: 80 89 20 03 btst 3, %g4
200853c: 05 00 80 72 sethi %hi(0x201c800), %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2008540: 12 80 00 03 bne 200854c <_TOD_Validate+0xac>
2008544: 84 10 a0 f0 or %g2, 0xf0, %g2 ! 201c8f0 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2008548: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
200854c: 83 28 60 02 sll %g1, 2, %g1
2008550: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( the_tod->day > days_in_month )
2008554: 80 a0 40 03 cmp %g1, %g3
2008558: 84 60 3f ff subx %g0, -1, %g2
return false;
return true;
}
200855c: b0 08 a0 01 and %g2, 1, %i0
2008560: 81 c7 e0 08 ret
2008564: 81 e8 00 00 restore
02009aec <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2009aec: 9d e3 bf a0 save %sp, -96, %sp
2009af0: ba 10 00 18 mov %i0, %i5
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2009af4: f0 06 20 10 ld [ %i0 + 0x10 ], %i0
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2009af8: 40 00 03 6c call 200a8a8 <_Thread_Set_transient>
2009afc: 90 10 00 1d mov %i5, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2009b00: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2009b04: 80 a0 40 19 cmp %g1, %i1
2009b08: 02 80 00 04 be 2009b18 <_Thread_Change_priority+0x2c>
2009b0c: 90 10 00 1d mov %i5, %o0
_Thread_Set_priority( the_thread, new_priority );
2009b10: 40 00 03 4d call 200a844 <_Thread_Set_priority>
2009b14: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2009b18: 7f ff e2 ab call 20025c4 <sparc_disable_interrupts>
2009b1c: 01 00 00 00 nop
2009b20: b6 10 00 08 mov %o0, %i3
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2009b24: f8 07 60 10 ld [ %i5 + 0x10 ], %i4
if ( state != STATES_TRANSIENT ) {
2009b28: 80 a7 20 04 cmp %i4, 4
2009b2c: 02 80 00 10 be 2009b6c <_Thread_Change_priority+0x80>
2009b30: 82 0e 20 04 and %i0, 4, %g1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2009b34: 80 a0 60 00 cmp %g1, 0
2009b38: 12 80 00 03 bne 2009b44 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2009b3c: 82 0f 3f fb and %i4, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009b40: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2009b44: 7f ff e2 a4 call 20025d4 <sparc_enable_interrupts>
2009b48: 90 10 00 1b mov %i3, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2009b4c: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009b50: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2009b54: 80 8f 00 01 btst %i4, %g1
2009b58: 02 80 00 27 be 2009bf4 <_Thread_Change_priority+0x108>
2009b5c: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2009b60: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2009b64: 40 00 03 0b call 200a790 <_Thread_queue_Requeue>
2009b68: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2009b6c: 80 a0 60 00 cmp %g1, 0
2009b70: 12 80 00 0b bne 2009b9c <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2009b74: 03 00 80 6d sethi %hi(0x201b400), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009b78: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
2009b7c: 80 a6 a0 00 cmp %i2, 0
2009b80: 02 80 00 04 be 2009b90 <_Thread_Change_priority+0xa4>
2009b84: 82 10 60 e4 or %g1, 0xe4, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2009b88: 10 80 00 03 b 2009b94 <_Thread_Change_priority+0xa8>
2009b8c: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2009b90: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2009b94: 9f c0 40 00 call %g1
2009b98: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2009b9c: 7f ff e2 8e call 20025d4 <sparc_enable_interrupts>
2009ba0: 90 10 00 1b mov %i3, %o0
2009ba4: 7f ff e2 88 call 20025c4 <sparc_disable_interrupts>
2009ba8: 01 00 00 00 nop
2009bac: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2009bb0: 03 00 80 6d sethi %hi(0x201b400), %g1
2009bb4: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 201b4ec <_Scheduler+0x8>
2009bb8: 9f c0 40 00 call %g1
2009bbc: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2009bc0: 03 00 80 70 sethi %hi(0x201c000), %g1
2009bc4: 82 10 62 90 or %g1, 0x290, %g1 ! 201c290 <_Per_CPU_Information>
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2009bc8: c4 18 60 10 ldd [ %g1 + 0x10 ], %g2
2009bcc: 80 a0 80 03 cmp %g2, %g3
2009bd0: 02 80 00 07 be 2009bec <_Thread_Change_priority+0x100>
2009bd4: 01 00 00 00 nop
2009bd8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
2009bdc: 80 a0 a0 00 cmp %g2, 0
2009be0: 02 80 00 03 be 2009bec <_Thread_Change_priority+0x100>
2009be4: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2009be8: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
_ISR_Enable( level );
2009bec: 7f ff e2 7a call 20025d4 <sparc_enable_interrupts>
2009bf0: 81 e8 00 00 restore
2009bf4: 81 c7 e0 08 ret
2009bf8: 81 e8 00 00 restore
02009ddc <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009ddc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009de0: 90 10 00 18 mov %i0, %o0
2009de4: 40 00 00 80 call 2009fe4 <_Thread_Get>
2009de8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009dec: c2 07 bf fc ld [ %fp + -4 ], %g1
2009df0: 80 a0 60 00 cmp %g1, 0
2009df4: 12 80 00 08 bne 2009e14 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
2009df8: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2009dfc: 7f ff ff 80 call 2009bfc <_Thread_Clear_state>
2009e00: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2009e04: 03 00 80 70 sethi %hi(0x201c000), %g1
2009e08: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level>
--level;
2009e0c: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
2009e10: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
2009e14: 81 c7 e0 08 ret
2009e18: 81 e8 00 00 restore
02009e1c <_Thread_Dispatch>:
#if defined(RTEMS_SMP)
#include <rtems/score/smp.h>
#endif
void _Thread_Dispatch( void )
{
2009e1c: 9d e3 bf 98 save %sp, -104, %sp
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2009e20: 35 00 80 70 sethi %hi(0x201c000), %i2
2009e24: 82 16 a2 90 or %i2, 0x290, %g1 ! 201c290 <_Per_CPU_Information>
_ISR_Disable( level );
2009e28: 7f ff e1 e7 call 20025c4 <sparc_disable_interrupts>
2009e2c: f6 00 60 10 ld [ %g1 + 0x10 ], %i3
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
2009e30: 21 00 80 6f sethi %hi(0x201bc00), %l0
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
2009e34: 27 00 80 6d sethi %hi(0x201b400), %l3
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
2009e38: 33 00 80 70 sethi %hi(0x201c000), %i1
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009e3c: 31 00 80 6f sethi %hi(0x201bc00), %i0
2009e40: a0 14 23 d0 or %l0, 0x3d0, %l0
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2009e44: 23 00 80 70 sethi %hi(0x201c000), %l1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2009e48: 25 00 80 6d sethi %hi(0x201b400), %l2
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2009e4c: 10 80 00 4b b 2009f78 <_Thread_Dispatch+0x15c>
2009e50: a6 14 e2 bc or %l3, 0x2bc, %l3
2009e54: 84 10 20 01 mov 1, %g2
2009e58: c4 26 60 80 st %g2, [ %i1 + 0x80 ]
heir = _Thread_Heir;
#ifndef RTEMS_SMP
_Thread_Dispatch_set_disable_level( 1 );
#endif
_Thread_Dispatch_necessary = false;
2009e5c: c0 28 60 0c clrb [ %g1 + 0xc ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2009e60: 80 a5 00 1b cmp %l4, %i3
2009e64: 12 80 00 0a bne 2009e8c <_Thread_Dispatch+0x70>
2009e68: e8 20 60 10 st %l4, [ %g1 + 0x10 ]
2009e6c: 03 00 80 70 sethi %hi(0x201c000), %g1
2009e70: c0 20 60 80 clr [ %g1 + 0x80 ] ! 201c080 <_Thread_Dispatch_disable_level>
post_switch:
#ifndef RTEMS_SMP
_Thread_Dispatch_set_disable_level( 0 );
#endif
_ISR_Enable( level );
2009e74: 7f ff e1 d8 call 20025d4 <sparc_enable_interrupts>
2009e78: 39 00 80 70 sethi %hi(0x201c000), %i4
2009e7c: 03 00 80 70 sethi %hi(0x201c000), %g1
2009e80: fa 00 60 f4 ld [ %g1 + 0xf4 ], %i5 ! 201c0f4 <_API_extensions_Post_switch_list>
{
const Chain_Control *chain = &_API_extensions_Post_switch_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
2009e84: 10 80 00 47 b 2009fa0 <_Thread_Dispatch+0x184>
2009e88: b8 17 20 f8 or %i4, 0xf8, %i4
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2009e8c: c2 05 20 78 ld [ %l4 + 0x78 ], %g1
2009e90: 80 a0 60 01 cmp %g1, 1
2009e94: 12 80 00 03 bne 2009ea0 <_Thread_Dispatch+0x84>
2009e98: c2 06 23 e0 ld [ %i0 + 0x3e0 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009e9c: c2 25 20 74 st %g1, [ %l4 + 0x74 ]
_ISR_Enable( level );
2009ea0: 7f ff e1 cd call 20025d4 <sparc_enable_interrupts>
2009ea4: 01 00 00 00 nop
2009ea8: 90 07 bf f8 add %fp, -8, %o0
2009eac: 7f ff f9 c4 call 20085bc <_TOD_Get_with_nanoseconds>
2009eb0: 92 10 00 10 mov %l0, %o1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2009eb4: c4 1f bf f8 ldd [ %fp + -8 ], %g2
2009eb8: 82 16 a2 90 or %i2, 0x290, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2009ebc: f8 18 60 20 ldd [ %g1 + 0x20 ], %i4
2009ec0: 96 a0 c0 1d subcc %g3, %i5, %o3
2009ec4: 94 60 80 1c subx %g2, %i4, %o2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2009ec8: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4
2009ecc: 9a 87 40 0b addcc %i5, %o3, %o5
2009ed0: 98 47 00 0a addx %i4, %o2, %o4
2009ed4: d8 3e e0 80 std %o4, [ %i3 + 0x80 ]
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2009ed8: c4 38 60 20 std %g2, [ %g1 + 0x20 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2009edc: c2 04 60 f0 ld [ %l1 + 0xf0 ], %g1
2009ee0: 80 a0 60 00 cmp %g1, 0
2009ee4: 22 80 00 0c be,a 2009f14 <_Thread_Dispatch+0xf8> <== NEVER TAKEN
2009ee8: fa 04 a2 b8 ld [ %l2 + 0x2b8 ], %i5 <== NOT EXECUTED
executing->libc_reent = *_Thread_libc_reent;
2009eec: c4 00 40 00 ld [ %g1 ], %g2
2009ef0: c4 26 e1 4c st %g2, [ %i3 + 0x14c ]
*_Thread_libc_reent = heir->libc_reent;
2009ef4: c4 05 21 4c ld [ %l4 + 0x14c ], %g2
2009ef8: c4 20 40 00 st %g2, [ %g1 ]
2009efc: 10 80 00 06 b 2009f14 <_Thread_Dispatch+0xf8>
2009f00: fa 04 a2 b8 ld [ %l2 + 0x2b8 ], %i5
const User_extensions_Switch_control *extension =
(const User_extensions_Switch_control *) node;
(*extension->thread_switch)( executing, heir );
2009f04: 90 10 00 1b mov %i3, %o0
2009f08: 9f c0 40 00 call %g1
2009f0c: 92 10 00 14 mov %l4, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next(
const Chain_Node *the_node
)
{
return the_node->next;
2009f10: fa 07 40 00 ld [ %i5 ], %i5
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
2009f14: 80 a7 40 13 cmp %i5, %l3
2009f18: 32 bf ff fb bne,a 2009f04 <_Thread_Dispatch+0xe8>
2009f1c: c2 07 60 08 ld [ %i5 + 8 ], %g1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2009f20: 90 06 e0 c0 add %i3, 0xc0, %o0
2009f24: 40 00 04 81 call 200b128 <_CPU_Context_switch>
2009f28: 92 05 20 c0 add %l4, 0xc0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2009f2c: c2 06 e1 48 ld [ %i3 + 0x148 ], %g1
2009f30: 80 a0 60 00 cmp %g1, 0
2009f34: 02 80 00 0e be 2009f6c <_Thread_Dispatch+0x150>
2009f38: 03 00 80 70 sethi %hi(0x201c000), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
2009f3c: d0 00 60 ec ld [ %g1 + 0xec ], %o0 ! 201c0ec <_Thread_Allocated_fp>
2009f40: 80 a6 c0 08 cmp %i3, %o0
2009f44: 02 80 00 0a be 2009f6c <_Thread_Dispatch+0x150>
2009f48: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2009f4c: 02 80 00 04 be 2009f5c <_Thread_Dispatch+0x140>
2009f50: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2009f54: 40 00 04 3b call 200b040 <_CPU_Context_save_fp>
2009f58: 90 02 21 48 add %o0, 0x148, %o0
_Context_Restore_fp( &executing->fp_context );
2009f5c: 40 00 04 56 call 200b0b4 <_CPU_Context_restore_fp>
2009f60: 90 06 e1 48 add %i3, 0x148, %o0
_Thread_Allocated_fp = executing;
2009f64: 03 00 80 70 sethi %hi(0x201c000), %g1
2009f68: f6 20 60 ec st %i3, [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp>
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
2009f6c: 82 16 a2 90 or %i2, 0x290, %g1
_ISR_Disable( level );
2009f70: 7f ff e1 95 call 20025c4 <sparc_disable_interrupts>
2009f74: f6 00 60 10 ld [ %g1 + 0x10 ], %i3
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2009f78: 82 16 a2 90 or %i2, 0x290, %g1
2009f7c: c4 08 60 0c ldub [ %g1 + 0xc ], %g2
2009f80: 80 a0 a0 00 cmp %g2, 0
2009f84: 32 bf ff b4 bne,a 2009e54 <_Thread_Dispatch+0x38>
2009f88: e8 00 60 14 ld [ %g1 + 0x14 ], %l4
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
2009f8c: 10 bf ff b9 b 2009e70 <_Thread_Dispatch+0x54>
2009f90: 03 00 80 70 sethi %hi(0x201c000), %g1
const API_extensions_Post_switch_control *post_switch =
(const API_extensions_Post_switch_control *) node;
(*post_switch->hook)( executing );
2009f94: 9f c0 40 00 call %g1
2009f98: 90 10 00 1b mov %i3, %o0
2009f9c: fa 07 40 00 ld [ %i5 ], %i5
{
const Chain_Control *chain = &_API_extensions_Post_switch_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
2009fa0: 80 a7 40 1c cmp %i5, %i4
2009fa4: 32 bf ff fc bne,a 2009f94 <_Thread_Dispatch+0x178>
2009fa8: c2 07 60 08 ld [ %i5 + 8 ], %g1
#ifdef RTEMS_SMP
_Thread_Unnest_dispatch();
#endif
_API_extensions_Run_post_switch( executing );
}
2009fac: 81 c7 e0 08 ret
2009fb0: 81 e8 00 00 restore
0200e6f4 <_Thread_Handler>:
#define INIT_NAME __main
#define EXECUTE_GLOBAL_CONSTRUCTORS
#endif
void _Thread_Handler( void )
{
200e6f4: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200e6f8: 03 00 80 70 sethi %hi(0x201c000), %g1
200e6fc: fa 00 62 a0 ld [ %g1 + 0x2a0 ], %i5 ! 201c2a0 <_Per_CPU_Information+0x10>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e700: 3f 00 80 39 sethi %hi(0x200e400), %i7
200e704: be 17 e2 f4 or %i7, 0x2f4, %i7 ! 200e6f4 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e708: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level(level);
200e70c: 7f ff cf b2 call 20025d4 <sparc_enable_interrupts>
200e710: 91 2a 20 08 sll %o0, 8, %o0
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e714: 03 00 80 6f sethi %hi(0x201bc00), %g1
doneConstructors = true;
200e718: 84 10 20 01 mov 1, %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e71c: f8 08 61 78 ldub [ %g1 + 0x178 ], %i4
doneConstructors = true;
200e720: c4 28 61 78 stb %g2, [ %g1 + 0x178 ]
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e724: c2 07 61 48 ld [ %i5 + 0x148 ], %g1
200e728: 80 a0 60 00 cmp %g1, 0
200e72c: 02 80 00 0c be 200e75c <_Thread_Handler+0x68>
200e730: 03 00 80 70 sethi %hi(0x201c000), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e734: d0 00 60 ec ld [ %g1 + 0xec ], %o0 ! 201c0ec <_Thread_Allocated_fp>
200e738: 80 a7 40 08 cmp %i5, %o0
200e73c: 02 80 00 08 be 200e75c <_Thread_Handler+0x68>
200e740: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e744: 22 80 00 06 be,a 200e75c <_Thread_Handler+0x68>
200e748: fa 20 60 ec st %i5, [ %g1 + 0xec ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e74c: 7f ff f2 3d call 200b040 <_CPU_Context_save_fp>
200e750: 90 02 21 48 add %o0, 0x148, %o0
_Thread_Allocated_fp = executing;
200e754: 03 00 80 70 sethi %hi(0x201c000), %g1
200e758: fa 20 60 ec st %i5, [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp>
);
}
static inline void _User_extensions_Thread_begin( Thread_Control *executing )
{
_User_extensions_Iterate(
200e75c: 90 10 00 1d mov %i5, %o0
200e760: 13 00 80 2a sethi %hi(0x200a800), %o1
200e764: 7f ff f0 ea call 200ab0c <_User_extensions_Iterate>
200e768: 92 12 62 98 or %o1, 0x298, %o1 ! 200aa98 <_User_extensions_Thread_begin_visitor>
_User_extensions_Thread_begin( executing );
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e76c: 7f ff ee 12 call 2009fb4 <_Thread_Enable_dispatch>
200e770: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200e774: 80 8f 20 ff btst 0xff, %i4
200e778: 32 80 00 05 bne,a 200e78c <_Thread_Handler+0x98>
200e77c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
INIT_NAME ();
200e780: 40 00 33 26 call 201b418 <_init>
200e784: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e788: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200e78c: 80 a0 60 00 cmp %g1, 0
200e790: 12 80 00 07 bne 200e7ac <_Thread_Handler+0xb8> <== NEVER TAKEN
200e794: 90 10 00 1d mov %i5, %o0
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e798: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
200e79c: 9f c0 40 00 call %g1
200e7a0: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e7a4: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
}
}
static inline void _User_extensions_Thread_exitted( Thread_Control *executing )
{
_User_extensions_Iterate(
200e7a8: 90 10 00 1d mov %i5, %o0
200e7ac: 13 00 80 2a sethi %hi(0x200a800), %o1
200e7b0: 7f ff f0 d7 call 200ab0c <_User_extensions_Iterate>
200e7b4: 92 12 62 bc or %o1, 0x2bc, %o1 ! 200aabc <_User_extensions_Thread_exitted_visitor>
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
_Internal_error_Occurred(
200e7b8: 90 10 20 00 clr %o0
200e7bc: 92 10 20 01 mov 1, %o1
200e7c0: 7f ff e8 b3 call 2008a8c <_Internal_error_Occurred>
200e7c4: 94 10 20 05 mov 5, %o2
0200a270 <_Thread_Handler_initialization>:
#if defined(RTEMS_SMP)
#include <rtems/bspsmp.h>
#endif
void _Thread_Handler_initialization(void)
{
200a270: 9d e3 bf 98 save %sp, -104, %sp
uint32_t ticks_per_timeslice =
200a274: 03 00 80 65 sethi %hi(0x2019400), %g1
200a278: 82 10 60 78 or %g1, 0x78, %g1 ! 2019478 <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a27c: c6 00 60 28 ld [ %g1 + 0x28 ], %g3
#include <rtems/bspsmp.h>
#endif
void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice =
200a280: fa 00 60 14 ld [ %g1 + 0x14 ], %i5
rtems_configuration_get_ticks_per_timeslice();
uint32_t maximum_extensions =
200a284: f8 00 60 08 ld [ %g1 + 8 ], %i4
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a288: 80 a0 e0 00 cmp %g3, 0
200a28c: 02 80 00 06 be 200a2a4 <_Thread_Handler_initialization+0x34><== NEVER TAKEN
200a290: c4 00 60 24 ld [ %g1 + 0x24 ], %g2
200a294: c6 00 60 2c ld [ %g1 + 0x2c ], %g3
200a298: 80 a0 e0 00 cmp %g3, 0
200a29c: 12 80 00 06 bne 200a2b4 <_Thread_Handler_initialization+0x44>
200a2a0: 80 a0 a0 00 cmp %g2, 0
rtems_configuration_get_stack_free_hook() == NULL)
_Internal_error_Occurred(
200a2a4: 90 10 20 00 clr %o0
200a2a8: 92 10 20 01 mov 1, %o1
200a2ac: 7f ff f9 f8 call 2008a8c <_Internal_error_Occurred>
200a2b0: 94 10 20 0e mov 0xe, %o2
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
200a2b4: 22 80 00 05 be,a 200a2c8 <_Thread_Handler_initialization+0x58>
200a2b8: 03 00 80 70 sethi %hi(0x201c000), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
200a2bc: 9f c0 80 00 call %g2
200a2c0: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 201c004 <_Thread_BSP_context+0xc>
_Thread_Dispatch_necessary = false;
200a2c4: 03 00 80 70 sethi %hi(0x201c000), %g1
200a2c8: 82 10 62 90 or %g1, 0x290, %g1 ! 201c290 <_Per_CPU_Information>
200a2cc: c0 28 60 0c clrb [ %g1 + 0xc ]
_Thread_Executing = NULL;
200a2d0: c0 20 60 10 clr [ %g1 + 0x10 ]
_Thread_Heir = NULL;
200a2d4: c0 20 60 14 clr [ %g1 + 0x14 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Thread_Allocated_fp = NULL;
200a2d8: 03 00 80 70 sethi %hi(0x201c000), %g1
200a2dc: c0 20 60 ec clr [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp>
#endif
_Thread_Maximum_extensions = maximum_extensions;
200a2e0: 03 00 80 70 sethi %hi(0x201c000), %g1
200a2e4: f8 20 61 00 st %i4, [ %g1 + 0x100 ] ! 201c100 <_Thread_Maximum_extensions>
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
200a2e8: 03 00 80 6f sethi %hi(0x201bc00), %g1
200a2ec: fa 20 63 e0 st %i5, [ %g1 + 0x3e0 ] ! 201bfe0 <_Thread_Ticks_per_timeslice>
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
200a2f0: 82 10 20 08 mov 8, %g1
200a2f4: 11 00 80 70 sethi %hi(0x201c000), %o0
200a2f8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200a2fc: 90 12 21 74 or %o0, 0x174, %o0
200a300: 92 10 20 01 mov 1, %o1
200a304: 94 10 20 01 mov 1, %o2
200a308: 96 10 20 01 mov 1, %o3
200a30c: 98 10 21 60 mov 0x160, %o4
200a310: 7f ff fb 6f call 20090cc <_Objects_Initialize_information>
200a314: 9a 10 20 00 clr %o5
200a318: 81 c7 e0 08 ret
200a31c: 81 e8 00 00 restore
0200a094 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200a094: 9d e3 bf 98 save %sp, -104, %sp
200a098: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
200a09c: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200a0a0: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200a0a4: c0 26 61 50 clr [ %i1 + 0x150 ]
200a0a8: c0 26 61 54 clr [ %i1 + 0x154 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
200a0ac: c0 26 61 4c clr [ %i1 + 0x14c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200a0b0: 90 10 00 19 mov %i1, %o0
200a0b4: 40 00 02 0c call 200a8e4 <_Thread_Stack_Allocate>
200a0b8: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
200a0bc: 80 a2 00 1b cmp %o0, %i3
200a0c0: 0a 80 00 68 bcs 200a260 <_Thread_Initialize+0x1cc>
200a0c4: 80 a2 20 00 cmp %o0, 0
200a0c8: 02 80 00 66 be 200a260 <_Thread_Initialize+0x1cc> <== NEVER TAKEN
200a0cc: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a0d0: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
200a0d4: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a0d8: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
200a0dc: 02 80 00 07 be 200a0f8 <_Thread_Initialize+0x64>
200a0e0: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200a0e4: 40 00 03 bb call 200afd0 <_Workspace_Allocate>
200a0e8: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
200a0ec: b6 92 20 00 orcc %o0, 0, %i3
200a0f0: 22 80 00 4d be,a 200a224 <_Thread_Initialize+0x190>
200a0f4: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a0f8: 03 00 80 70 sethi %hi(0x201c000), %g1
200a0fc: d0 00 61 00 ld [ %g1 + 0x100 ], %o0 ! 201c100 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
200a100: f6 26 61 48 st %i3, [ %i1 + 0x148 ]
the_thread->Start.fp_context = fp_area;
200a104: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200a108: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
200a10c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200a110: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
200a114: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a118: 80 a2 20 00 cmp %o0, 0
200a11c: 02 80 00 08 be 200a13c <_Thread_Initialize+0xa8>
200a120: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
200a124: 90 02 20 01 inc %o0
200a128: 40 00 03 aa call 200afd0 <_Workspace_Allocate>
200a12c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
200a130: b8 92 20 00 orcc %o0, 0, %i4
200a134: 22 80 00 3d be,a 200a228 <_Thread_Initialize+0x194>
200a138: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
200a13c: 80 a7 20 00 cmp %i4, 0
200a140: 12 80 00 17 bne 200a19c <_Thread_Initialize+0x108>
200a144: f8 26 61 58 st %i4, [ %i1 + 0x158 ]
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a148: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200a14c: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ]
the_thread->Start.budget_algorithm = budget_algorithm;
200a150: c2 26 60 a0 st %g1, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
200a154: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
200a158: a0 10 20 01 mov 1, %l0
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
200a15c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a160: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
200a164: e0 26 60 10 st %l0, [ %i1 + 0x10 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a168: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
200a16c: 03 00 80 6d sethi %hi(0x201b400), %g1
200a170: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 201b4fc <_Scheduler+0x18>
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
200a174: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
200a178: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
200a17c: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200a180: fa 26 60 ac st %i5, [ %i1 + 0xac ]
200a184: 9f c0 40 00 call %g1
200a188: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
200a18c: b4 92 20 00 orcc %o0, 0, %i2
200a190: 12 80 00 0f bne 200a1cc <_Thread_Initialize+0x138>
200a194: 90 10 00 19 mov %i1, %o0
200a198: 30 80 00 24 b,a 200a228 <_Thread_Initialize+0x194>
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a19c: 03 00 80 70 sethi %hi(0x201c000), %g1
200a1a0: c4 00 61 00 ld [ %g1 + 0x100 ], %g2 ! 201c100 <_Thread_Maximum_extensions>
200a1a4: 10 80 00 05 b 200a1b8 <_Thread_Initialize+0x124>
200a1a8: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
200a1ac: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a1b0: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
200a1b4: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a1b8: 80 a0 40 02 cmp %g1, %g2
200a1bc: 28 bf ff fc bleu,a 200a1ac <_Thread_Initialize+0x118>
200a1c0: c8 06 61 58 ld [ %i1 + 0x158 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a1c4: 10 bf ff e2 b 200a14c <_Thread_Initialize+0xb8>
200a1c8: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
goto failed;
_Thread_Set_priority( the_thread, priority );
200a1cc: 40 00 01 9e call 200a844 <_Thread_Set_priority>
200a1d0: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a1d4: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200a1d8: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
200a1dc: c0 26 60 80 clr [ %i1 + 0x80 ]
200a1e0: c0 26 60 84 clr [ %i1 + 0x84 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a1e4: 83 28 60 02 sll %g1, 2, %g1
200a1e8: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200a1ec: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* @{
*/
static inline bool _User_extensions_Thread_create( Thread_Control *created )
{
User_extensions_Thread_create_context ctx = { created, true };
200a1f0: f2 27 bf f8 st %i1, [ %fp + -8 ]
200a1f4: e0 2f bf fc stb %l0, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Thread_create_visitor );
200a1f8: 90 07 bf f8 add %fp, -8, %o0
200a1fc: 13 00 80 2a sethi %hi(0x200a800), %o1
200a200: 40 00 02 43 call 200ab0c <_User_extensions_Iterate>
200a204: 92 12 61 e8 or %o1, 0x1e8, %o1 ! 200a9e8 <_User_extensions_Thread_create_visitor>
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
200a208: c2 0f bf fc ldub [ %fp + -4 ], %g1
200a20c: 80 a0 60 00 cmp %g1, 0
200a210: 02 80 00 06 be 200a228 <_Thread_Initialize+0x194>
200a214: b0 10 20 01 mov 1, %i0
200a218: b0 0e 20 01 and %i0, 1, %i0
200a21c: 81 c7 e0 08 ret
200a220: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200a224: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
200a228: 40 00 03 72 call 200aff0 <_Workspace_Free>
200a22c: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
200a230: 40 00 03 70 call 200aff0 <_Workspace_Free>
200a234: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
200a238: 40 00 03 6e call 200aff0 <_Workspace_Free>
200a23c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
_Workspace_Free( extensions_area );
200a240: 40 00 03 6c call 200aff0 <_Workspace_Free>
200a244: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
200a248: 40 00 03 6a call 200aff0 <_Workspace_Free>
200a24c: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200a250: 40 00 03 68 call 200aff0 <_Workspace_Free>
200a254: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
200a258: 40 00 01 b3 call 200a924 <_Thread_Stack_Free>
200a25c: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
200a260: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
200a264: b0 0e 20 01 and %i0, 1, %i0
200a268: 81 c7 e0 08 ret
200a26c: 81 e8 00 00 restore
0200a790 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200a790: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200a794: 80 a6 20 00 cmp %i0, 0
200a798: 02 80 00 19 be 200a7fc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a79c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200a7a0: fa 06 20 34 ld [ %i0 + 0x34 ], %i5
200a7a4: 80 a7 60 01 cmp %i5, 1
200a7a8: 12 80 00 15 bne 200a7fc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a7ac: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
200a7b0: 7f ff df 85 call 20025c4 <sparc_disable_interrupts>
200a7b4: 01 00 00 00 nop
200a7b8: b8 10 00 08 mov %o0, %i4
200a7bc: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200a7c0: 03 00 00 ef sethi %hi(0x3bc00), %g1
200a7c4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
200a7c8: 80 88 80 01 btst %g2, %g1
200a7cc: 02 80 00 0a be 200a7f4 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
200a7d0: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200a7d4: 92 10 00 19 mov %i1, %o1
200a7d8: 94 10 20 01 mov 1, %o2
200a7dc: 40 00 0a 8a call 200d204 <_Thread_queue_Extract_priority_helper>
200a7e0: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200a7e4: 90 10 00 18 mov %i0, %o0
200a7e8: 92 10 00 19 mov %i1, %o1
200a7ec: 7f ff ff 50 call 200a52c <_Thread_queue_Enqueue_priority>
200a7f0: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
200a7f4: 7f ff df 78 call 20025d4 <sparc_enable_interrupts>
200a7f8: 90 10 00 1c mov %i4, %o0
200a7fc: 81 c7 e0 08 ret
200a800: 81 e8 00 00 restore
0200a804 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200a804: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200a808: 90 10 00 18 mov %i0, %o0
200a80c: 7f ff fd f6 call 2009fe4 <_Thread_Get>
200a810: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a814: c2 07 bf fc ld [ %fp + -4 ], %g1
200a818: 80 a0 60 00 cmp %g1, 0
200a81c: 12 80 00 08 bne 200a83c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
200a820: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200a824: 40 00 0a af call 200d2e0 <_Thread_queue_Process_timeout>
200a828: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
200a82c: 03 00 80 70 sethi %hi(0x201c000), %g1
200a830: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level>
--level;
200a834: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
200a838: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
200a83c: 81 c7 e0 08 ret
200a840: 81 e8 00 00 restore
020189dc <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20189dc: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20189e0: 27 00 80 ec sethi %hi(0x203b000), %l3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20189e4: a4 07 bf e8 add %fp, -24, %l2
20189e8: aa 07 bf ec add %fp, -20, %l5
20189ec: b8 07 bf f4 add %fp, -12, %i4
20189f0: b2 07 bf f8 add %fp, -8, %i1
20189f4: ea 27 bf e8 st %l5, [ %fp + -24 ]
head->previous = NULL;
20189f8: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20189fc: e4 27 bf f0 st %l2, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2018a00: f2 27 bf f4 st %i1, [ %fp + -12 ]
head->previous = NULL;
2018a04: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2018a08: f8 27 bf fc st %i4, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018a0c: b4 06 20 30 add %i0, 0x30, %i2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2018a10: 29 00 80 ec sethi %hi(0x203b000), %l4
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018a14: b6 06 20 68 add %i0, 0x68, %i3
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018a18: a2 06 20 08 add %i0, 8, %l1
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2018a1c: a0 06 20 40 add %i0, 0x40, %l0
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2018a20: e4 26 20 78 st %l2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2018a24: c2 04 e3 ec ld [ %l3 + 0x3ec ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2018a28: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018a2c: 90 10 00 1a mov %i2, %o0
2018a30: 92 20 40 09 sub %g1, %o1, %o1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2018a34: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018a38: 40 00 11 6c call 201cfe8 <_Watchdog_Adjust_to_chain>
2018a3c: 94 10 00 1c mov %i4, %o2
2018a40: d0 1d 22 48 ldd [ %l4 + 0x248 ], %o0
2018a44: 94 10 20 00 clr %o2
2018a48: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018a4c: 40 00 4b 86 call 202b864 <__divdi3>
2018a50: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2018a54: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2018a58: 80 a2 40 0a cmp %o1, %o2
2018a5c: 08 80 00 07 bleu 2018a78 <_Timer_server_Body+0x9c>
2018a60: ba 10 00 09 mov %o1, %i5
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018a64: 92 22 40 0a sub %o1, %o2, %o1
2018a68: 90 10 00 1b mov %i3, %o0
2018a6c: 40 00 11 5f call 201cfe8 <_Watchdog_Adjust_to_chain>
2018a70: 94 10 00 1c mov %i4, %o2
2018a74: 30 80 00 06 b,a 2018a8c <_Timer_server_Body+0xb0>
} else if ( snapshot < last_snapshot ) {
2018a78: 1a 80 00 05 bcc 2018a8c <_Timer_server_Body+0xb0>
2018a7c: 90 10 00 1b mov %i3, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018a80: 92 10 20 01 mov 1, %o1
2018a84: 40 00 11 31 call 201cf48 <_Watchdog_Adjust>
2018a88: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
2018a8c: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2018a90: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018a94: 40 00 02 d8 call 20195f4 <_Chain_Get>
2018a98: 01 00 00 00 nop
if ( timer == NULL ) {
2018a9c: 92 92 20 00 orcc %o0, 0, %o1
2018aa0: 02 80 00 0c be 2018ad0 <_Timer_server_Body+0xf4>
2018aa4: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2018aa8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2018aac: 80 a0 60 01 cmp %g1, 1
2018ab0: 02 80 00 05 be 2018ac4 <_Timer_server_Body+0xe8>
2018ab4: 90 10 00 1a mov %i2, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2018ab8: 80 a0 60 03 cmp %g1, 3
2018abc: 12 bf ff f5 bne 2018a90 <_Timer_server_Body+0xb4> <== NEVER TAKEN
2018ac0: 90 10 00 1b mov %i3, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018ac4: 40 00 11 73 call 201d090 <_Watchdog_Insert>
2018ac8: 92 02 60 10 add %o1, 0x10, %o1
2018acc: 30 bf ff f1 b,a 2018a90 <_Timer_server_Body+0xb4>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2018ad0: 7f ff df 18 call 2010730 <sparc_disable_interrupts>
2018ad4: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2018ad8: c2 07 bf e8 ld [ %fp + -24 ], %g1
2018adc: 80 a0 40 15 cmp %g1, %l5
2018ae0: 12 80 00 0a bne 2018b08 <_Timer_server_Body+0x12c> <== NEVER TAKEN
2018ae4: 01 00 00 00 nop
ts->insert_chain = NULL;
2018ae8: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2018aec: 7f ff df 15 call 2010740 <sparc_enable_interrupts>
2018af0: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2018af4: c2 07 bf f4 ld [ %fp + -12 ], %g1
2018af8: 80 a0 40 19 cmp %g1, %i1
2018afc: 12 80 00 06 bne 2018b14 <_Timer_server_Body+0x138>
2018b00: 01 00 00 00 nop
2018b04: 30 80 00 18 b,a 2018b64 <_Timer_server_Body+0x188>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2018b08: 7f ff df 0e call 2010740 <sparc_enable_interrupts> <== NOT EXECUTED
2018b0c: 01 00 00 00 nop <== NOT EXECUTED
2018b10: 30 bf ff c5 b,a 2018a24 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2018b14: 7f ff df 07 call 2010730 <sparc_disable_interrupts>
2018b18: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018b1c: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2018b20: 80 a7 40 19 cmp %i5, %i1
2018b24: 02 80 00 0d be 2018b58 <_Timer_server_Body+0x17c>
2018b28: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2018b2c: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
2018b30: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2018b34: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2018b38: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
2018b3c: 7f ff df 01 call 2010740 <sparc_enable_interrupts>
2018b40: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2018b44: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
2018b48: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
2018b4c: 9f c0 40 00 call %g1
2018b50: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
}
2018b54: 30 bf ff f0 b,a 2018b14 <_Timer_server_Body+0x138>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2018b58: 7f ff de fa call 2010740 <sparc_enable_interrupts>
2018b5c: 01 00 00 00 nop
2018b60: 30 bf ff b0 b,a 2018a20 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2018b64: c0 2e 20 7c clrb [ %i0 + 0x7c ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2018b68: 03 00 80 ec sethi %hi(0x203b000), %g1
2018b6c: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level>
++level;
2018b70: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
2018b74: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2018b78: d0 06 00 00 ld [ %i0 ], %o0
2018b7c: 40 00 10 09 call 201cba0 <_Thread_Set_state>
2018b80: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2018b84: 7f ff ff 6e call 201893c <_Timer_server_Reset_interval_system_watchdog>
2018b88: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2018b8c: 7f ff ff 80 call 201898c <_Timer_server_Reset_tod_system_watchdog>
2018b90: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2018b94: 40 00 0d b2 call 201c25c <_Thread_Enable_dispatch>
2018b98: 01 00 00 00 nop
ts->active = true;
2018b9c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018ba0: 90 10 00 11 mov %l1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2018ba4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018ba8: 40 00 11 92 call 201d1f0 <_Watchdog_Remove>
2018bac: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2018bb0: 40 00 11 90 call 201d1f0 <_Watchdog_Remove>
2018bb4: 90 10 00 10 mov %l0, %o0
2018bb8: 30 bf ff 9a b,a 2018a20 <_Timer_server_Body+0x44>
02018bbc <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2018bbc: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2018bc0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2018bc4: 80 a0 60 00 cmp %g1, 0
2018bc8: 12 80 00 51 bne 2018d0c <_Timer_server_Schedule_operation_method+0x150>
2018bcc: ba 10 00 19 mov %i1, %i5
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2018bd0: 03 00 80 ec sethi %hi(0x203b000), %g1
2018bd4: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level>
++level;
2018bd8: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
2018bdc: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2018be0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2018be4: 80 a0 60 01 cmp %g1, 1
2018be8: 12 80 00 1f bne 2018c64 <_Timer_server_Schedule_operation_method+0xa8>
2018bec: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018bf0: 7f ff de d0 call 2010730 <sparc_disable_interrupts>
2018bf4: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2018bf8: 03 00 80 ec sethi %hi(0x203b000), %g1
2018bfc: c4 00 63 ec ld [ %g1 + 0x3ec ], %g2 ! 203b3ec <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018c00: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2018c04: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018c08: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2018c0c: 80 a0 40 03 cmp %g1, %g3
2018c10: 02 80 00 08 be 2018c30 <_Timer_server_Schedule_operation_method+0x74>
2018c14: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2018c18: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
2018c1c: 80 a7 00 04 cmp %i4, %g4
2018c20: 08 80 00 03 bleu 2018c2c <_Timer_server_Schedule_operation_method+0x70>
2018c24: 86 10 20 00 clr %g3
delta_interval -= delta;
2018c28: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2018c2c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2018c30: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2018c34: 7f ff de c3 call 2010740 <sparc_enable_interrupts>
2018c38: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2018c3c: 90 06 20 30 add %i0, 0x30, %o0
2018c40: 40 00 11 14 call 201d090 <_Watchdog_Insert>
2018c44: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018c48: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018c4c: 80 a0 60 00 cmp %g1, 0
2018c50: 12 80 00 2d bne 2018d04 <_Timer_server_Schedule_operation_method+0x148>
2018c54: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2018c58: 7f ff ff 39 call 201893c <_Timer_server_Reset_interval_system_watchdog>
2018c5c: 90 10 00 18 mov %i0, %o0
2018c60: 30 80 00 29 b,a 2018d04 <_Timer_server_Schedule_operation_method+0x148>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2018c64: 12 80 00 28 bne 2018d04 <_Timer_server_Schedule_operation_method+0x148>
2018c68: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018c6c: 7f ff de b1 call 2010730 <sparc_disable_interrupts>
2018c70: 01 00 00 00 nop
2018c74: b8 10 00 08 mov %o0, %i4
2018c78: 03 00 80 ec sethi %hi(0x203b000), %g1
2018c7c: d0 18 62 48 ldd [ %g1 + 0x248 ], %o0 ! 203b248 <_TOD>
2018c80: 94 10 20 00 clr %o2
2018c84: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018c88: 40 00 4a f7 call 202b864 <__divdi3>
2018c8c: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018c90: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2018c94: c4 06 20 74 ld [ %i0 + 0x74 ], %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018c98: 86 06 20 6c add %i0, 0x6c, %g3
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2018c9c: 80 a0 40 03 cmp %g1, %g3
2018ca0: 02 80 00 0d be 2018cd4 <_Timer_server_Schedule_operation_method+0x118>
2018ca4: 80 a2 40 02 cmp %o1, %g2
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2018ca8: 08 80 00 08 bleu 2018cc8 <_Timer_server_Schedule_operation_method+0x10c>
2018cac: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2018cb0: 88 22 40 02 sub %o1, %g2, %g4
if (delta_interval > delta) {
2018cb4: 80 a0 c0 04 cmp %g3, %g4
2018cb8: 08 80 00 06 bleu 2018cd0 <_Timer_server_Schedule_operation_method+0x114><== NEVER TAKEN
2018cbc: 84 10 20 00 clr %g2
delta_interval -= delta;
2018cc0: 10 80 00 04 b 2018cd0 <_Timer_server_Schedule_operation_method+0x114>
2018cc4: 84 20 c0 04 sub %g3, %g4, %g2
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2018cc8: 84 00 c0 02 add %g3, %g2, %g2
delta_interval += delta;
2018ccc: 84 20 80 09 sub %g2, %o1, %g2
}
first_watchdog->delta_interval = delta_interval;
2018cd0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2018cd4: d2 26 20 74 st %o1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2018cd8: 7f ff de 9a call 2010740 <sparc_enable_interrupts>
2018cdc: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018ce0: 90 06 20 68 add %i0, 0x68, %o0
2018ce4: 40 00 10 eb call 201d090 <_Watchdog_Insert>
2018ce8: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018cec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018cf0: 80 a0 60 00 cmp %g1, 0
2018cf4: 12 80 00 04 bne 2018d04 <_Timer_server_Schedule_operation_method+0x148>
2018cf8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2018cfc: 7f ff ff 24 call 201898c <_Timer_server_Reset_tod_system_watchdog>
2018d00: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2018d04: 40 00 0d 56 call 201c25c <_Thread_Enable_dispatch>
2018d08: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2018d0c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2018d10: 40 00 02 2d call 20195c4 <_Chain_Append>
2018d14: 81 e8 00 00 restore
0200c2dc <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200c2dc: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200c2e0: d4 1e 40 00 ldd [ %i1 ], %o2
200c2e4: 80 92 80 0b orcc %o2, %o3, %g0
200c2e8: 32 80 00 06 bne,a 200c300 <_Timestamp64_Divide+0x24> <== ALWAYS TAKEN
200c2ec: d8 1e 00 00 ldd [ %i0 ], %o4
*_ival_percentage = 0;
200c2f0: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
*_fval_percentage = 0;
200c2f4: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
200c2f8: 81 c7 e0 08 ret <== NOT EXECUTED
200c2fc: 81 e8 00 00 restore <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c300: 83 2b 20 02 sll %o4, 2, %g1
200c304: 87 2b 60 02 sll %o5, 2, %g3
200c308: 89 33 60 1e srl %o5, 0x1e, %g4
200c30c: bb 28 e0 05 sll %g3, 5, %i5
200c310: 84 11 00 01 or %g4, %g1, %g2
200c314: 83 30 e0 1b srl %g3, 0x1b, %g1
200c318: b9 28 a0 05 sll %g2, 5, %i4
200c31c: 86 a7 40 03 subcc %i5, %g3, %g3
200c320: b8 10 40 1c or %g1, %i4, %i4
200c324: 84 67 00 02 subx %i4, %g2, %g2
200c328: b2 80 c0 0d addcc %g3, %o5, %i1
200c32c: b0 40 80 0c addx %g2, %o4, %i0
200c330: 83 36 60 1e srl %i1, 0x1e, %g1
200c334: 87 2e 60 02 sll %i1, 2, %g3
200c338: 85 2e 20 02 sll %i0, 2, %g2
200c33c: 84 10 40 02 or %g1, %g2, %g2
200c340: ba 86 40 03 addcc %i1, %g3, %i5
200c344: b8 46 00 02 addx %i0, %g2, %i4
200c348: 83 37 60 1e srl %i5, 0x1e, %g1
200c34c: 87 2f 60 02 sll %i5, 2, %g3
200c350: 85 2f 20 02 sll %i4, 2, %g2
200c354: 84 10 40 02 or %g1, %g2, %g2
200c358: 92 87 40 03 addcc %i5, %g3, %o1
200c35c: 90 47 00 02 addx %i4, %g2, %o0
200c360: 87 32 60 1b srl %o1, 0x1b, %g3
200c364: 85 2a 20 05 sll %o0, 5, %g2
200c368: 83 2a 60 05 sll %o1, 5, %g1
200c36c: 90 10 c0 02 or %g3, %g2, %o0
200c370: 40 00 36 c1 call 2019e74 <__divdi3>
200c374: 92 10 00 01 mov %g1, %o1
*_ival_percentage = answer / 1000;
200c378: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c37c: b8 10 00 08 mov %o0, %i4
200c380: ba 10 00 09 mov %o1, %i5
*_ival_percentage = answer / 1000;
200c384: 40 00 36 bc call 2019e74 <__divdi3>
200c388: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
200c38c: 90 10 00 1c mov %i4, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
200c390: d2 26 80 00 st %o1, [ %i2 ]
*_fval_percentage = answer % 1000;
200c394: 94 10 20 00 clr %o2
200c398: 92 10 00 1d mov %i5, %o1
200c39c: 40 00 37 a1 call 201a220 <__moddi3>
200c3a0: 96 10 23 e8 mov 0x3e8, %o3
200c3a4: d2 26 c0 00 st %o1, [ %i3 ]
200c3a8: 81 c7 e0 08 ret
200c3ac: 81 e8 00 00 restore
0200abcc <_User_extensions_Handler_initialization>:
}
}
void _User_extensions_Handler_initialization(void)
{
200abcc: 9d e3 bf 98 save %sp, -104, %sp
uint32_t number_of_initial_extensions =
200abd0: 03 00 80 65 sethi %hi(0x2019400), %g1
200abd4: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1 ! 20194b8 <Configuration+0x40>
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
200abd8: 80 a0 60 00 cmp %g1, 0
200abdc: 02 80 00 0a be 200ac04 <_User_extensions_Handler_initialization+0x38><== NEVER TAKEN
200abe0: 91 28 60 02 sll %g1, 2, %o0
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
200abe4: 83 28 60 04 sll %g1, 4, %g1
{
uint32_t number_of_initial_extensions =
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
User_extensions_Switch_control *initial_extension_switch_controls =
200abe8: 40 00 01 08 call 200b008 <_Workspace_Allocate_or_fatal_error>
200abec: 90 20 40 08 sub %g1, %o0, %o0
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
200abf0: 13 00 80 2a sethi %hi(0x200a800), %o1
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
200abf4: d0 27 bf fc st %o0, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
200abf8: 92 12 63 88 or %o1, 0x388, %o1
200abfc: 7f ff ff c4 call 200ab0c <_User_extensions_Iterate>
200ac00: 90 07 bf fc add %fp, -4, %o0
200ac04: 81 c7 e0 08 ret
200ac08: 81 e8 00 00 restore
0200c614 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200c614: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200c618: 7f ff db 7d call 200340c <sparc_disable_interrupts>
200c61c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c620: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c624: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200c628: 80 a0 40 1c cmp %g1, %i4
200c62c: 02 80 00 20 be 200c6ac <_Watchdog_Adjust+0x98>
200c630: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200c634: 02 80 00 1b be 200c6a0 <_Watchdog_Adjust+0x8c>
200c638: b6 10 20 01 mov 1, %i3
200c63c: 80 a6 60 01 cmp %i1, 1
200c640: 12 80 00 1b bne 200c6ac <_Watchdog_Adjust+0x98> <== NEVER TAKEN
200c644: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200c648: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c64c: 10 80 00 07 b 200c668 <_Watchdog_Adjust+0x54>
200c650: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200c654: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c658: 80 a6 80 02 cmp %i2, %g2
200c65c: 3a 80 00 05 bcc,a 200c670 <_Watchdog_Adjust+0x5c>
200c660: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200c664: b4 20 80 1a sub %g2, %i2, %i2
break;
200c668: 10 80 00 11 b 200c6ac <_Watchdog_Adjust+0x98>
200c66c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200c670: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200c674: 7f ff db 6a call 200341c <sparc_enable_interrupts>
200c678: 01 00 00 00 nop
_Watchdog_Tickle( header );
200c67c: 40 00 00 90 call 200c8bc <_Watchdog_Tickle>
200c680: 90 10 00 18 mov %i0, %o0
_ISR_Disable( level );
200c684: 7f ff db 62 call 200340c <sparc_disable_interrupts>
200c688: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200c68c: c2 06 00 00 ld [ %i0 ], %g1
200c690: 80 a0 40 1c cmp %g1, %i4
200c694: 12 80 00 04 bne 200c6a4 <_Watchdog_Adjust+0x90>
200c698: 80 a6 a0 00 cmp %i2, 0
200c69c: 30 80 00 04 b,a 200c6ac <_Watchdog_Adjust+0x98>
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200c6a0: 80 a6 a0 00 cmp %i2, 0
200c6a4: 32 bf ff ec bne,a 200c654 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200c6a8: c2 06 00 00 ld [ %i0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200c6ac: 7f ff db 5c call 200341c <sparc_enable_interrupts>
200c6b0: 91 e8 00 08 restore %g0, %o0, %o0
0200ad6c <_Watchdog_Remove>:
#include <rtems/score/watchdog.h>
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200ad6c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200ad70: 7f ff de 15 call 20025c4 <sparc_disable_interrupts>
200ad74: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
200ad78: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
200ad7c: 80 a6 20 01 cmp %i0, 1
200ad80: 22 80 00 1e be,a 200adf8 <_Watchdog_Remove+0x8c>
200ad84: c0 27 60 08 clr [ %i5 + 8 ]
200ad88: 0a 80 00 1d bcs 200adfc <_Watchdog_Remove+0x90>
200ad8c: 03 00 80 70 sethi %hi(0x201c000), %g1
200ad90: 80 a6 20 03 cmp %i0, 3
200ad94: 18 80 00 1a bgu 200adfc <_Watchdog_Remove+0x90> <== NEVER TAKEN
200ad98: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next(
Watchdog_Control *the_watchdog
)
{
return ( (Watchdog_Control *) the_watchdog->Node.next );
200ad9c: 10 80 00 02 b 200ada4 <_Watchdog_Remove+0x38>
200ada0: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200ada4: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200ada8: c4 00 40 00 ld [ %g1 ], %g2
200adac: 80 a0 a0 00 cmp %g2, 0
200adb0: 02 80 00 07 be 200adcc <_Watchdog_Remove+0x60>
200adb4: 05 00 80 70 sethi %hi(0x201c000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200adb8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200adbc: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200adc0: 84 00 c0 02 add %g3, %g2, %g2
200adc4: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200adc8: 05 00 80 70 sethi %hi(0x201c000), %g2
200adcc: c4 00 a1 68 ld [ %g2 + 0x168 ], %g2 ! 201c168 <_Watchdog_Sync_count>
200add0: 80 a0 a0 00 cmp %g2, 0
200add4: 22 80 00 07 be,a 200adf0 <_Watchdog_Remove+0x84>
200add8: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200addc: 05 00 80 70 sethi %hi(0x201c000), %g2
200ade0: c6 00 a2 98 ld [ %g2 + 0x298 ], %g3 ! 201c298 <_Per_CPU_Information+0x8>
200ade4: 05 00 80 70 sethi %hi(0x201c000), %g2
200ade8: c6 20 a1 08 st %g3, [ %g2 + 0x108 ] ! 201c108 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200adec: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
200adf0: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200adf4: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200adf8: 03 00 80 70 sethi %hi(0x201c000), %g1
200adfc: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201c16c <_Watchdog_Ticks_since_boot>
200ae00: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
200ae04: 7f ff dd f4 call 20025d4 <sparc_enable_interrupts>
200ae08: 01 00 00 00 nop
return( previous_state );
}
200ae0c: 81 c7 e0 08 ret
200ae10: 81 e8 00 00 restore
0200bfc0 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200bfc0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200bfc4: 7f ff db ef call 2002f80 <sparc_disable_interrupts>
200bfc8: b8 10 00 18 mov %i0, %i4
200bfcc: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200bfd0: 11 00 80 70 sethi %hi(0x201c000), %o0
200bfd4: 94 10 00 19 mov %i1, %o2
200bfd8: 90 12 21 68 or %o0, 0x168, %o0
200bfdc: 7f ff e3 72 call 2004da4 <printk>
200bfe0: 92 10 00 1c mov %i4, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200bfe4: fa 06 40 00 ld [ %i1 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200bfe8: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200bfec: 80 a7 40 19 cmp %i5, %i1
200bff0: 12 80 00 04 bne 200c000 <_Watchdog_Report_chain+0x40>
200bff4: 92 10 00 1d mov %i5, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200bff8: 10 80 00 0d b 200c02c <_Watchdog_Report_chain+0x6c>
200bffc: 11 00 80 70 sethi %hi(0x201c000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200c000: 40 00 00 0f call 200c03c <_Watchdog_Report>
200c004: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200c008: fa 07 40 00 ld [ %i5 ], %i5
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200c00c: 80 a7 40 19 cmp %i5, %i1
200c010: 12 bf ff fc bne 200c000 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200c014: 92 10 00 1d mov %i5, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200c018: 11 00 80 70 sethi %hi(0x201c000), %o0
200c01c: 92 10 00 1c mov %i4, %o1
200c020: 7f ff e3 61 call 2004da4 <printk>
200c024: 90 12 21 80 or %o0, 0x180, %o0
200c028: 30 80 00 03 b,a 200c034 <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200c02c: 7f ff e3 5e call 2004da4 <printk>
200c030: 90 12 21 90 or %o0, 0x190, %o0
}
_ISR_Enable( level );
200c034: 7f ff db d7 call 2002f90 <sparc_enable_interrupts>
200c038: 81 e8 00 00 restore
0200ae14 <_Watchdog_Tickle>:
#include <rtems/score/watchdog.h>
void _Watchdog_Tickle(
Chain_Control *header
)
{
200ae14: 9d e3 bf a0 save %sp, -96, %sp
* See the comment in watchdoginsert.c and watchdogadjust.c
* about why it's safe not to declare header a pointer to
* volatile data - till, 2003/7
*/
_ISR_Disable( level );
200ae18: 7f ff dd eb call 20025c4 <sparc_disable_interrupts>
200ae1c: b8 10 00 18 mov %i0, %i4
200ae20: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200ae24: fa 07 00 00 ld [ %i4 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200ae28: b6 07 20 04 add %i4, 4, %i3
if ( _Chain_Is_empty( header ) )
200ae2c: 80 a7 40 1b cmp %i5, %i3
200ae30: 02 80 00 1f be 200aeac <_Watchdog_Tickle+0x98>
200ae34: 01 00 00 00 nop
* to be inserted has already had its delta_interval adjusted to 0, and
* so is added to the head of the chain with a delta_interval of 0.
*
* Steven Johnson - 12/2005 (gcc-3.2.3 -O3 on powerpc)
*/
if (the_watchdog->delta_interval != 0) {
200ae38: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200ae3c: 80 a0 60 00 cmp %g1, 0
200ae40: 02 80 00 06 be 200ae58 <_Watchdog_Tickle+0x44> <== NEVER TAKEN
200ae44: 82 00 7f ff add %g1, -1, %g1
the_watchdog->delta_interval--;
200ae48: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
if ( the_watchdog->delta_interval != 0 )
200ae4c: 80 a0 60 00 cmp %g1, 0
200ae50: 12 80 00 17 bne 200aeac <_Watchdog_Tickle+0x98>
200ae54: 01 00 00 00 nop
goto leave;
}
do {
watchdog_state = _Watchdog_Remove( the_watchdog );
200ae58: 7f ff ff c5 call 200ad6c <_Watchdog_Remove>
200ae5c: 90 10 00 1d mov %i5, %o0
200ae60: b4 10 00 08 mov %o0, %i2
_ISR_Enable( level );
200ae64: 7f ff dd dc call 20025d4 <sparc_enable_interrupts>
200ae68: 90 10 00 18 mov %i0, %o0
switch( watchdog_state ) {
200ae6c: 80 a6 a0 02 cmp %i2, 2
200ae70: 12 80 00 06 bne 200ae88 <_Watchdog_Tickle+0x74>
200ae74: 01 00 00 00 nop
case WATCHDOG_ACTIVE:
(*the_watchdog->routine)(
200ae78: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200ae7c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
200ae80: 9f c0 40 00 call %g1
200ae84: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
case WATCHDOG_REMOVE_IT:
break;
}
_ISR_Disable( level );
200ae88: 7f ff dd cf call 20025c4 <sparc_disable_interrupts>
200ae8c: 01 00 00 00 nop
200ae90: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200ae94: fa 07 00 00 ld [ %i4 ], %i5
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
(the_watchdog->delta_interval == 0) );
200ae98: 80 a7 40 1b cmp %i5, %i3
200ae9c: 02 80 00 04 be 200aeac <_Watchdog_Tickle+0x98>
200aea0: 01 00 00 00 nop
}
_ISR_Disable( level );
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
200aea4: 10 bf ff ea b 200ae4c <_Watchdog_Tickle+0x38>
200aea8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
(the_watchdog->delta_interval == 0) );
leave:
_ISR_Enable(level);
200aeac: 7f ff dd ca call 20025d4 <sparc_enable_interrupts>
200aeb0: 81 e8 00 00 restore
0200aeb4 <_Workspace_Handler_initialization>:
void _Workspace_Handler_initialization(
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
200aeb4: 9d e3 bf a0 save %sp, -96, %sp
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
uintptr_t remaining = rtems_configuration_get_work_space_size();
200aeb8: 05 00 80 65 sethi %hi(0x2019400), %g2
200aebc: 82 10 a0 78 or %g2, 0x78, %g1 ! 2019478 <Configuration>
200aec0: c6 08 60 32 ldub [ %g1 + 0x32 ], %g3
200aec4: fa 00 a0 78 ld [ %g2 + 0x78 ], %i5
200aec8: 80 a0 e0 00 cmp %g3, 0
200aecc: 12 80 00 03 bne 200aed8 <_Workspace_Handler_initialization+0x24>
200aed0: 84 10 20 00 clr %g2
200aed4: c4 00 60 04 ld [ %g1 + 4 ], %g2
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
200aed8: 21 00 80 22 sethi %hi(0x2008800), %l0
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200aedc: 27 00 80 70 sethi %hi(0x201c000), %l3
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
uintptr_t remaining = rtems_configuration_get_work_space_size();
200aee0: ba 00 80 1d add %g2, %i5, %i5
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200aee4: b6 10 20 00 clr %i3
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
200aee8: a0 14 20 40 or %l0, 0x40, %l0
size_t i;
for (i = 0; i < area_count; ++i) {
Heap_Area *area = &areas [i];
if ( do_zero ) {
200aeec: e2 08 60 30 ldub [ %g1 + 0x30 ], %l1
if ( area->size > overhead ) {
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
200aef0: e4 08 60 31 ldub [ %g1 + 0x31 ], %l2
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200aef4: 10 80 00 2c b 200afa4 <_Workspace_Handler_initialization+0xf0>
200aef8: a6 14 e0 90 or %l3, 0x90, %l3
Heap_Area *area = &areas [i];
if ( do_zero ) {
200aefc: 22 80 00 07 be,a 200af18 <_Workspace_Handler_initialization+0x64>
200af00: f8 06 20 04 ld [ %i0 + 4 ], %i4
memset( area->begin, 0, area->size );
200af04: d0 06 00 00 ld [ %i0 ], %o0
200af08: d4 06 20 04 ld [ %i0 + 4 ], %o2
200af0c: 40 00 10 fd call 200f300 <memset>
200af10: 92 10 20 00 clr %o1
}
if ( area->size > overhead ) {
200af14: f8 06 20 04 ld [ %i0 + 4 ], %i4
200af18: 80 a7 20 16 cmp %i4, 0x16
200af1c: 28 80 00 21 bleu,a 200afa0 <_Workspace_Handler_initialization+0xec>
200af20: b6 06 e0 01 inc %i3
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
200af24: 80 a4 a0 00 cmp %l2, 0
200af28: 32 80 00 0c bne,a 200af58 <_Workspace_Handler_initialization+0xa4>
200af2c: d2 06 00 00 ld [ %i0 ], %o1
size = area->size;
} else {
if ( remaining > 0 ) {
200af30: 80 a7 60 00 cmp %i5, 0
200af34: 22 80 00 08 be,a 200af54 <_Workspace_Handler_initialization+0xa0><== NEVER TAKEN
200af38: b8 10 20 00 clr %i4 <== NOT EXECUTED
size = remaining < area->size - overhead ?
200af3c: 82 07 3f ea add %i4, -22, %g1
remaining + overhead : area->size;
200af40: 80 a7 40 01 cmp %i5, %g1
200af44: 2a 80 00 04 bcs,a 200af54 <_Workspace_Handler_initialization+0xa0><== ALWAYS TAKEN
200af48: b8 07 60 16 add %i5, 0x16, %i4
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200af4c: 10 80 00 03 b 200af58 <_Workspace_Handler_initialization+0xa4><== NOT EXECUTED
200af50: d2 06 00 00 ld [ %i0 ], %o1 <== NOT EXECUTED
200af54: d2 06 00 00 ld [ %i0 ], %o1
200af58: 94 10 00 1c mov %i4, %o2
200af5c: 90 10 00 13 mov %l3, %o0
200af60: 9f c4 00 00 call %l0
200af64: 96 10 20 08 mov 8, %o3
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
200af68: c2 06 00 00 ld [ %i0 ], %g1
area->size -= size;
if ( space_available < remaining ) {
200af6c: 80 a2 00 1d cmp %o0, %i5
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
200af70: 82 00 40 1c add %g1, %i4, %g1
200af74: c2 26 00 00 st %g1, [ %i0 ]
area->size -= size;
200af78: c2 06 20 04 ld [ %i0 + 4 ], %g1
200af7c: b8 20 40 1c sub %g1, %i4, %i4
if ( space_available < remaining ) {
200af80: 1a 80 00 05 bcc 200af94 <_Workspace_Handler_initialization+0xe0><== ALWAYS TAKEN
200af84: f8 26 20 04 st %i4, [ %i0 + 4 ]
remaining -= space_available;
200af88: ba 27 40 08 sub %i5, %o0, %i5 <== NOT EXECUTED
} else {
remaining = 0;
}
init_or_extend = extend;
200af8c: 10 80 00 04 b 200af9c <_Workspace_Handler_initialization+0xe8><== NOT EXECUTED
200af90: a0 10 00 1a mov %i2, %l0 <== NOT EXECUTED
200af94: a0 10 00 1a mov %i2, %l0
area->size -= size;
if ( space_available < remaining ) {
remaining -= space_available;
} else {
remaining = 0;
200af98: ba 10 20 00 clr %i5
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200af9c: b6 06 e0 01 inc %i3
200afa0: b0 06 20 08 add %i0, 8, %i0
200afa4: 80 a6 c0 19 cmp %i3, %i1
200afa8: 12 bf ff d5 bne 200aefc <_Workspace_Handler_initialization+0x48>
200afac: 80 a4 60 00 cmp %l1, 0
init_or_extend = extend;
}
}
if ( remaining > 0 ) {
200afb0: 80 a7 60 00 cmp %i5, 0
200afb4: 02 80 00 05 be 200afc8 <_Workspace_Handler_initialization+0x114>
200afb8: 90 10 20 00 clr %o0
_Internal_error_Occurred(
200afbc: 92 10 20 01 mov 1, %o1
200afc0: 7f ff f6 b3 call 2008a8c <_Internal_error_Occurred>
200afc4: 94 10 20 02 mov 2, %o2
200afc8: 81 c7 e0 08 ret
200afcc: 81 e8 00 00 restore
0200adc0 <_Workspace_String_duplicate>:
char *_Workspace_String_duplicate(
const char *string,
size_t len
)
{
200adc0: 9d e3 bf a0 save %sp, -96, %sp
char *dup = _Workspace_Allocate(len + 1);
200adc4: 7f ff ff e3 call 200ad50 <_Workspace_Allocate>
200adc8: 90 06 60 01 add %i1, 1, %o0
if (dup != NULL) {
200adcc: ba 92 20 00 orcc %o0, 0, %i5
200add0: 02 80 00 05 be 200ade4 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN
200add4: 92 10 00 18 mov %i0, %o1
dup [len] = '\0';
200add8: c0 2f 40 19 clrb [ %i5 + %i1 ]
memcpy(dup, string, len);
200addc: 40 00 11 03 call 200f1e8 <memcpy>
200ade0: 94 10 00 19 mov %i1, %o2
}
return dup;
}
200ade4: 81 c7 e0 08 ret
200ade8: 91 e8 00 1d restore %g0, %i5, %o0
02008338 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2008338: 9d e3 bf 98 save %sp, -104, %sp
200833c: 30 80 00 08 b,a 200835c <rtems_chain_get_with_wait+0x24>
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2008340: 92 10 20 00 clr %o1
2008344: 94 10 00 1a mov %i2, %o2
2008348: 7f ff fc fb call 2007734 <rtems_event_receive>
200834c: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2008350: 80 a2 20 00 cmp %o0, 0
2008354: 32 80 00 09 bne,a 2008378 <rtems_chain_get_with_wait+0x40><== ALWAYS TAKEN
2008358: fa 26 c0 00 st %i5, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
200835c: 40 00 01 79 call 2008940 <_Chain_Get>
2008360: 90 10 00 18 mov %i0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2008364: ba 92 20 00 orcc %o0, 0, %i5
2008368: 02 bf ff f6 be 2008340 <rtems_chain_get_with_wait+0x8>
200836c: 90 10 00 19 mov %i1, %o0
2008370: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2008374: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008378: 81 c7 e0 08 ret
200837c: 91 e8 00 08 restore %g0, %o0, %o0
020107dc <rtems_event_system_receive>:
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out
)
{
20107dc: 9d e3 bf 98 save %sp, -104, %sp
rtems_status_code sc;
if ( event_out != NULL ) {
20107e0: 80 a6 e0 00 cmp %i3, 0
20107e4: 02 80 00 1e be 201085c <rtems_event_system_receive+0x80> <== NEVER TAKEN
20107e8: 82 10 20 09 mov 9, %g1
Thread_Control *executing = _Thread_Executing;
20107ec: 03 00 80 81 sethi %hi(0x2020400), %g1
20107f0: fa 00 62 d0 ld [ %g1 + 0x2d0 ], %i5 ! 20206d0 <_Per_CPU_Information+0x10>
RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ];
Event_Control *event = &api->System_event;
if ( !_Event_sets_Is_empty( event_in ) ) {
20107f4: 80 a6 20 00 cmp %i0, 0
20107f8: 02 80 00 16 be 2010850 <rtems_event_system_receive+0x74> <== NEVER TAKEN
20107fc: da 07 61 50 ld [ %i5 + 0x150 ], %o5
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2010800: 03 00 80 81 sethi %hi(0x2020400), %g1
2010804: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 20204b0 <_Thread_Dispatch_disable_level>
++level;
2010808: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
201080c: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ]
_Thread_Disable_dispatch();
_Event_Seize(
2010810: 03 00 80 81 sethi %hi(0x2020400), %g1
2010814: 82 10 63 20 or %g1, 0x320, %g1 ! 2020720 <_System_event_Sync_state>
2010818: 90 10 00 18 mov %i0, %o0
201081c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2010820: 92 10 00 19 mov %i1, %o1
2010824: 03 00 01 00 sethi %hi(0x40000), %g1
2010828: 94 10 00 1a mov %i2, %o2
201082c: 96 10 00 1b mov %i3, %o3
2010830: 98 10 00 1d mov %i5, %o4
2010834: 9a 03 60 04 add %o5, 4, %o5
2010838: 7f ff df 42 call 2008540 <_Event_Seize>
201083c: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
executing,
event,
&_System_event_Sync_state,
STATES_WAITING_FOR_SYSTEM_EVENT
);
_Thread_Enable_dispatch();
2010840: 7f ff ea 9c call 200b2b0 <_Thread_Enable_dispatch>
2010844: 01 00 00 00 nop
sc = executing->Wait.return_code;
2010848: 10 80 00 05 b 201085c <rtems_event_system_receive+0x80>
201084c: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
} else {
*event_out = event->pending_events;
2010850: c2 03 60 04 ld [ %o5 + 4 ], %g1 <== NOT EXECUTED
2010854: c2 26 c0 00 st %g1, [ %i3 ] <== NOT EXECUTED
sc = RTEMS_SUCCESSFUL;
2010858: 82 10 20 00 clr %g1 <== NOT EXECUTED
} else {
sc = RTEMS_INVALID_ADDRESS;
}
return sc;
}
201085c: 81 c7 e0 08 ret
2010860: 91 e8 00 01 restore %g0, %g1, %o0
0200789c <rtems_event_system_send>:
rtems_status_code rtems_event_system_send(
rtems_id id,
rtems_event_set event_in
)
{
200789c: 9d e3 bf 98 save %sp, -104, %sp
rtems_status_code sc;
Thread_Control *thread;
Objects_Locations location;
RTEMS_API_Control *api;
thread = _Thread_Get( id, &location );
20078a0: 90 10 00 18 mov %i0, %o0
20078a4: 40 00 09 d0 call 2009fe4 <_Thread_Get>
20078a8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20078ac: c4 07 bf fc ld [ %fp + -4 ], %g2
20078b0: 80 a0 a0 00 cmp %g2, 0
20078b4: 12 80 00 0d bne 20078e8 <rtems_event_system_send+0x4c> <== NEVER TAKEN
20078b8: 92 10 00 19 mov %i1, %o1
case OBJECTS_LOCAL:
api = thread->API_Extensions[ THREAD_API_RTEMS ];
_Event_Surrender(
20078bc: d4 02 21 50 ld [ %o0 + 0x150 ], %o2
20078c0: 94 02 a0 04 add %o2, 4, %o2
20078c4: 19 00 01 00 sethi %hi(0x40000), %o4
20078c8: 17 00 80 70 sethi %hi(0x201c000), %o3
20078cc: 96 12 e2 f0 or %o3, 0x2f0, %o3 ! 201c2f0 <_System_event_Sync_state>
20078d0: 7f ff fe 64 call 2007260 <_Event_Surrender>
20078d4: b0 10 20 00 clr %i0
event_in,
&api->System_event,
&_System_event_Sync_state,
STATES_WAITING_FOR_SYSTEM_EVENT
);
_Thread_Enable_dispatch();
20078d8: 40 00 09 b7 call 2009fb4 <_Thread_Enable_dispatch>
20078dc: 01 00 00 00 nop
sc = RTEMS_SUCCESSFUL;
break;
20078e0: 81 c7 e0 08 ret
20078e4: 81 e8 00 00 restore
sc = RTEMS_INVALID_ID;
break;
}
return sc;
}
20078e8: 81 c7 e0 08 ret <== NOT EXECUTED
20078ec: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
0200a358 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200a358: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200a35c: ba 10 20 01 mov 1, %i5
200a360: 80 a6 20 00 cmp %i0, 0
200a364: 02 80 00 0c be 200a394 <rtems_iterate_over_all_threads+0x3c><== NEVER TAKEN
200a368: 35 00 80 7b sethi %hi(0x201ec00), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200a36c: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200a370: 84 16 a0 44 or %i2, 0x44, %g2
200a374: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200a378: 80 a0 60 00 cmp %g1, 0
200a37c: 32 80 00 08 bne,a 200a39c <rtems_iterate_over_all_threads+0x44>
200a380: f6 00 60 04 ld [ %g1 + 4 ], %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a384: ba 07 60 01 inc %i5
200a388: 80 a7 60 04 cmp %i5, 4
200a38c: 12 bf ff f9 bne 200a370 <rtems_iterate_over_all_threads+0x18>
200a390: 83 2f 60 02 sll %i5, 2, %g1
200a394: 81 c7 e0 08 ret
200a398: 81 e8 00 00 restore
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
200a39c: 80 a6 e0 00 cmp %i3, 0
200a3a0: 02 bf ff f9 be 200a384 <rtems_iterate_over_all_threads+0x2c>
200a3a4: b8 10 20 01 mov 1, %i4
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a3a8: 10 80 00 0a b 200a3d0 <rtems_iterate_over_all_threads+0x78>
200a3ac: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
the_thread = (Thread_Control *)information->local_table[ i ];
200a3b0: 83 2f 20 02 sll %i4, 2, %g1
200a3b4: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
200a3b8: 80 a2 20 00 cmp %o0, 0
200a3bc: 02 80 00 04 be 200a3cc <rtems_iterate_over_all_threads+0x74>
200a3c0: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
200a3c4: 9f c6 00 00 call %i0
200a3c8: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a3cc: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
200a3d0: 80 a7 00 01 cmp %i4, %g1
200a3d4: 28 bf ff f7 bleu,a 200a3b0 <rtems_iterate_over_all_threads+0x58>
200a3d8: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a3dc: 10 bf ff eb b 200a388 <rtems_iterate_over_all_threads+0x30>
200a3e0: ba 07 60 01 inc %i5
02016148 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2016148: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
201614c: 80 a6 20 00 cmp %i0, 0
2016150: 02 80 00 38 be 2016230 <rtems_partition_create+0xe8>
2016154: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
2016158: 80 a6 60 00 cmp %i1, 0
201615c: 02 80 00 35 be 2016230 <rtems_partition_create+0xe8>
2016160: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2016164: 80 a7 60 00 cmp %i5, 0
2016168: 02 80 00 32 be 2016230 <rtems_partition_create+0xe8> <== NEVER TAKEN
201616c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2016170: 02 80 00 30 be 2016230 <rtems_partition_create+0xe8>
2016174: 82 10 20 08 mov 8, %g1
2016178: 80 a6 a0 00 cmp %i2, 0
201617c: 02 80 00 2d be 2016230 <rtems_partition_create+0xe8>
2016180: 80 a6 80 1b cmp %i2, %i3
2016184: 0a 80 00 2b bcs 2016230 <rtems_partition_create+0xe8>
2016188: 80 8e e0 07 btst 7, %i3
201618c: 12 80 00 29 bne 2016230 <rtems_partition_create+0xe8>
2016190: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2016194: 12 80 00 27 bne 2016230 <rtems_partition_create+0xe8>
2016198: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
201619c: 03 00 80 ec sethi %hi(0x203b000), %g1
20161a0: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level>
++level;
20161a4: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
20161a8: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
20161ac: 23 00 80 ec sethi %hi(0x203b000), %l1
20161b0: 40 00 12 fc call 201ada0 <_Objects_Allocate>
20161b4: 90 14 60 fc or %l1, 0xfc, %o0 ! 203b0fc <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
20161b8: a0 92 20 00 orcc %o0, 0, %l0
20161bc: 32 80 00 06 bne,a 20161d4 <rtems_partition_create+0x8c>
20161c0: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
20161c4: 40 00 18 26 call 201c25c <_Thread_Enable_dispatch>
20161c8: 01 00 00 00 nop
return RTEMS_TOO_MANY;
20161cc: 10 80 00 19 b 2016230 <rtems_partition_create+0xe8>
20161d0: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20161d4: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
20161d8: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
20161dc: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
20161e0: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
20161e4: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20161e8: 40 00 54 15 call 202b23c <.udiv>
20161ec: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20161f0: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
20161f4: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20161f8: 96 10 00 1b mov %i3, %o3
20161fc: b8 04 20 24 add %l0, 0x24, %i4
2016200: 40 00 0d 0c call 2019630 <_Chain_Initialize>
2016204: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2016208: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
201620c: a2 14 60 fc or %l1, 0xfc, %l1
2016210: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2016214: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2016218: 85 28 a0 02 sll %g2, 2, %g2
201621c: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2016220: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2016224: 40 00 18 0e call 201c25c <_Thread_Enable_dispatch>
2016228: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
201622c: 82 10 20 00 clr %g1
}
2016230: 81 c7 e0 08 ret
2016234: 91 e8 00 01 restore %g0, %g1, %o0
02016364 <rtems_partition_return_buffer>:
rtems_status_code rtems_partition_return_buffer(
rtems_id id,
void *buffer
)
{
2016364: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Partition_Control *)
2016368: 11 00 80 ec sethi %hi(0x203b000), %o0
201636c: 92 10 00 18 mov %i0, %o1
2016370: 90 12 20 fc or %o0, 0xfc, %o0
2016374: 40 00 13 e3 call 201b300 <_Objects_Get>
2016378: 94 07 bf fc add %fp, -4, %o2
register Partition_Control *the_partition;
Objects_Locations location;
the_partition = _Partition_Get( id, &location );
switch ( location ) {
201637c: c2 07 bf fc ld [ %fp + -4 ], %g1
2016380: 80 a0 60 00 cmp %g1, 0
2016384: 12 80 00 21 bne 2016408 <rtems_partition_return_buffer+0xa4>
2016388: ba 10 00 08 mov %o0, %i5
)
{
void *starting;
void *ending;
starting = the_partition->starting_address;
201638c: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
2016390: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2016394: 82 02 00 01 add %o0, %g1, %g1
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
2016398: 80 a6 40 01 cmp %i1, %g1
201639c: 18 80 00 0b bgu 20163c8 <rtems_partition_return_buffer+0x64><== NEVER TAKEN
20163a0: 82 10 20 00 clr %g1
20163a4: 80 a6 40 08 cmp %i1, %o0
20163a8: 0a 80 00 09 bcs 20163cc <rtems_partition_return_buffer+0x68>
20163ac: 80 a0 60 00 cmp %g1, 0
offset = (uint32_t) _Addresses_Subtract(
the_buffer,
the_partition->starting_address
);
return ((offset % the_partition->buffer_size) == 0);
20163b0: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
20163b4: 40 00 54 4e call 202b4ec <.urem>
20163b8: 90 26 40 08 sub %i1, %o0, %o0
starting = the_partition->starting_address;
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
20163bc: 80 a0 00 08 cmp %g0, %o0
20163c0: 10 80 00 02 b 20163c8 <rtems_partition_return_buffer+0x64>
20163c4: 82 60 3f ff subx %g0, -1, %g1
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
20163c8: 80 a0 60 00 cmp %g1, 0
20163cc: 02 80 00 0b be 20163f8 <rtems_partition_return_buffer+0x94>
20163d0: 90 07 60 24 add %i5, 0x24, %o0
RTEMS_INLINE_ROUTINE void _Partition_Free_buffer (
Partition_Control *the_partition,
Chain_Node *the_buffer
)
{
_Chain_Append( &the_partition->Memory, the_buffer );
20163d4: 40 00 0c 7c call 20195c4 <_Chain_Append>
20163d8: 92 10 00 19 mov %i1, %o1
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
20163dc: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
20163e0: b0 10 20 00 clr %i0
switch ( location ) {
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
20163e4: 82 00 7f ff add %g1, -1, %g1
_Thread_Enable_dispatch();
20163e8: 40 00 17 9d call 201c25c <_Thread_Enable_dispatch>
20163ec: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
20163f0: 81 c7 e0 08 ret
20163f4: 81 e8 00 00 restore
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
20163f8: 40 00 17 99 call 201c25c <_Thread_Enable_dispatch>
20163fc: b0 10 20 09 mov 9, %i0
2016400: 81 c7 e0 08 ret
2016404: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016408: 81 c7 e0 08 ret
201640c: 91 e8 20 04 restore %g0, 4, %o0
020322d8 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
20322d8: 9d e3 bf 98 save %sp, -104, %sp
20322dc: 11 00 81 83 sethi %hi(0x2060c00), %o0
20322e0: 92 10 00 18 mov %i0, %o1
20322e4: 90 12 22 c4 or %o0, 0x2c4, %o0
20322e8: 7f ff 5a a7 call 2008d84 <_Objects_Get>
20322ec: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20322f0: c2 07 bf fc ld [ %fp + -4 ], %g1
20322f4: 80 a0 60 00 cmp %g1, 0
20322f8: 12 80 00 6a bne 20324a0 <rtems_rate_monotonic_period+0x1c8>
20322fc: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2032300: 37 00 81 83 sethi %hi(0x2060c00), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2032304: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
2032308: b6 16 e0 a0 or %i3, 0xa0, %i3
203230c: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1
2032310: 80 a0 80 01 cmp %g2, %g1
2032314: 02 80 00 06 be 203232c <rtems_rate_monotonic_period+0x54>
2032318: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
203231c: 7f ff 5e 47 call 2009c38 <_Thread_Enable_dispatch>
2032320: b0 10 20 17 mov 0x17, %i0
2032324: 81 c7 e0 08 ret
2032328: 81 e8 00 00 restore
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
203232c: 12 80 00 0d bne 2032360 <rtems_rate_monotonic_period+0x88>
2032330: 01 00 00 00 nop
switch ( the_period->state ) {
2032334: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2032338: 80 a0 60 04 cmp %g1, 4
203233c: 18 80 00 05 bgu 2032350 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
2032340: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2032344: 05 00 81 6a sethi %hi(0x205a800), %g2
2032348: 84 10 a0 58 or %g2, 0x58, %g2 ! 205a858 <CSWTCH.24>
203234c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
2032350: 7f ff 5e 3a call 2009c38 <_Thread_Enable_dispatch>
2032354: 01 00 00 00 nop
2032358: 81 c7 e0 08 ret
203235c: 81 e8 00 00 restore
return( return_value );
}
_ISR_Disable( level );
2032360: 7f ff 3f fc call 2002350 <sparc_disable_interrupts>
2032364: 01 00 00 00 nop
2032368: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
203236c: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
2032370: 80 a7 20 00 cmp %i4, 0
2032374: 12 80 00 15 bne 20323c8 <rtems_rate_monotonic_period+0xf0>
2032378: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
203237c: 7f ff 3f f9 call 2002360 <sparc_enable_interrupts>
2032380: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2032384: 90 10 00 1d mov %i5, %o0
2032388: 7f ff ff b8 call 2032268 <_Rate_monotonic_Initiate_statistics>
203238c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
2032390: 82 10 20 02 mov 2, %g1
2032394: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2032398: 03 00 80 c9 sethi %hi(0x2032400), %g1
203239c: 82 10 60 ac or %g1, 0xac, %g1 ! 20324ac <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20323a0: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
20323a4: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
20323a8: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
20323ac: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20323b0: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20323b4: 11 00 81 82 sethi %hi(0x2060800), %o0
20323b8: 92 07 60 10 add %i5, 0x10, %o1
20323bc: 7f ff 61 35 call 200a890 <_Watchdog_Insert>
20323c0: 90 12 23 2c or %o0, 0x32c, %o0
20323c4: 30 80 00 1b b,a 2032430 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20323c8: 12 80 00 1e bne 2032440 <rtems_rate_monotonic_period+0x168>
20323cc: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20323d0: 7f ff ff 5d call 2032144 <_Rate_monotonic_Update_statistics>
20323d4: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20323d8: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20323dc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20323e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20323e4: 7f ff 3f df call 2002360 <sparc_enable_interrupts>
20323e8: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20323ec: d0 06 e0 10 ld [ %i3 + 0x10 ], %o0
20323f0: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20323f4: 13 00 00 10 sethi %hi(0x4000), %o1
20323f8: 7f ff 60 3c call 200a4e8 <_Thread_Set_state>
20323fc: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2032400: 7f ff 3f d4 call 2002350 <sparc_disable_interrupts>
2032404: 01 00 00 00 nop
local_state = the_period->state;
2032408: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
203240c: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
2032410: 7f ff 3f d4 call 2002360 <sparc_enable_interrupts>
2032414: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2032418: 80 a6 a0 03 cmp %i2, 3
203241c: 12 80 00 05 bne 2032430 <rtems_rate_monotonic_period+0x158>
2032420: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2032424: d0 06 e0 10 ld [ %i3 + 0x10 ], %o0
2032428: 7f ff 5d 16 call 2009880 <_Thread_Clear_state>
203242c: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
2032430: 7f ff 5e 02 call 2009c38 <_Thread_Enable_dispatch>
2032434: b0 10 20 00 clr %i0
2032438: 81 c7 e0 08 ret
203243c: 81 e8 00 00 restore
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
2032440: 12 bf ff b9 bne 2032324 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2032444: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2032448: 7f ff ff 3f call 2032144 <_Rate_monotonic_Update_statistics>
203244c: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
2032450: 7f ff 3f c4 call 2002360 <sparc_enable_interrupts>
2032454: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2032458: 82 10 20 02 mov 2, %g1
203245c: 92 07 60 10 add %i5, 0x10, %o1
2032460: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
2032464: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2032468: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203246c: 11 00 81 82 sethi %hi(0x2060800), %o0
2032470: 7f ff 61 08 call 200a890 <_Watchdog_Insert>
2032474: 90 12 23 2c or %o0, 0x32c, %o0 ! 2060b2c <_Watchdog_Ticks_chain>
2032478: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
203247c: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2032480: 03 00 81 71 sethi %hi(0x205c400), %g1
2032484: c2 00 63 c4 ld [ %g1 + 0x3c4 ], %g1 ! 205c7c4 <_Scheduler+0x34>
2032488: 9f c0 40 00 call %g1
203248c: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
2032490: 7f ff 5d ea call 2009c38 <_Thread_Enable_dispatch>
2032494: 01 00 00 00 nop
2032498: 81 c7 e0 08 ret
203249c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20324a0: b0 10 20 04 mov 4, %i0
}
20324a4: 81 c7 e0 08 ret
20324a8: 81 e8 00 00 restore
020255c8 <rtems_rate_monotonic_report_statistics_with_plugin>:
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
20255c8: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
20255cc: 80 a6 60 00 cmp %i1, 0
20255d0: 02 80 00 75 be 20257a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
20255d4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
20255d8: 13 00 81 5e sethi %hi(0x2057800), %o1
20255dc: 9f c6 40 00 call %i1
20255e0: 92 12 62 b0 or %o1, 0x2b0, %o1 ! 2057ab0 <_TOD_Days_per_month+0x68>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
20255e4: 90 10 00 18 mov %i0, %o0
20255e8: 13 00 81 5e sethi %hi(0x2057800), %o1
20255ec: 9f c6 40 00 call %i1
20255f0: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 2057ad0 <_TOD_Days_per_month+0x88>
(*print)( context, "--- Wall times are in seconds ---\n" );
20255f4: 90 10 00 18 mov %i0, %o0
20255f8: 13 00 81 5e sethi %hi(0x2057800), %o1
20255fc: 9f c6 40 00 call %i1
2025600: 92 12 62 f8 or %o1, 0x2f8, %o1 ! 2057af8 <_TOD_Days_per_month+0xb0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2025604: 90 10 00 18 mov %i0, %o0
2025608: 13 00 81 5e sethi %hi(0x2057800), %o1
202560c: 9f c6 40 00 call %i1
2025610: 92 12 63 20 or %o1, 0x320, %o1 ! 2057b20 <_TOD_Days_per_month+0xd8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2025614: 90 10 00 18 mov %i0, %o0
2025618: 13 00 81 5e sethi %hi(0x2057800), %o1
202561c: 9f c6 40 00 call %i1
2025620: 92 12 63 70 or %o1, 0x370, %o1 ! 2057b70 <_TOD_Days_per_month+0x128>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025624: 03 00 81 83 sethi %hi(0x2060c00), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2025628: 39 00 81 5e sethi %hi(0x2057800), %i4
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
202562c: 37 00 81 5e sethi %hi(0x2057800), %i3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2025630: 35 00 81 5e sethi %hi(0x2057800), %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2025634: 21 00 81 64 sethi %hi(0x2059000), %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025638: fa 00 62 cc ld [ %g1 + 0x2cc ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
202563c: b8 17 23 c0 or %i4, 0x3c0, %i4
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2025640: b6 16 e3 d8 or %i3, 0x3d8, %i3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2025644: b4 16 a3 f8 or %i2, 0x3f8, %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025648: 10 80 00 52 b 2025790 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
202564c: a0 14 20 80 or %l0, 0x80, %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2025650: 40 00 31 df call 2031dcc <rtems_rate_monotonic_get_statistics>
2025654: 92 07 bf c8 add %fp, -56, %o1
if ( status != RTEMS_SUCCESSFUL )
2025658: 80 a2 20 00 cmp %o0, 0
202565c: 32 80 00 4d bne,a 2025790 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2025660: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2025664: 92 07 bf b0 add %fp, -80, %o1
2025668: 40 00 32 4a call 2031f90 <rtems_rate_monotonic_get_status>
202566c: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2025670: d0 07 bf b0 ld [ %fp + -80 ], %o0
2025674: 92 10 20 05 mov 5, %o1
2025678: 7f ff a3 e0 call 200e5f8 <rtems_object_get_name>
202567c: 94 07 bf a0 add %fp, -96, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2025680: d8 1f bf c8 ldd [ %fp + -56 ], %o4
2025684: 92 10 00 1c mov %i4, %o1
2025688: 90 10 00 18 mov %i0, %o0
202568c: 94 10 00 1d mov %i5, %o2
2025690: 9f c6 40 00 call %i1
2025694: 96 07 bf a0 add %fp, -96, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2025698: d2 07 bf c8 ld [ %fp + -56 ], %o1
202569c: 80 a2 60 00 cmp %o1, 0
20256a0: 12 80 00 07 bne 20256bc <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
20256a4: 94 07 bf a8 add %fp, -88, %o2
(*print)( context, "\n" );
20256a8: 90 10 00 18 mov %i0, %o0
20256ac: 9f c6 40 00 call %i1
20256b0: 92 10 00 10 mov %l0, %o1
continue;
20256b4: 10 80 00 37 b 2025790 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20256b8: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20256bc: 40 00 02 ad call 2026170 <_Timespec_Divide_by_integer>
20256c0: 90 07 bf e0 add %fp, -32, %o0
(*print)( context,
20256c4: d0 07 bf d4 ld [ %fp + -44 ], %o0
20256c8: 40 00 a6 aa call 204f170 <.div>
20256cc: 92 10 23 e8 mov 0x3e8, %o1
20256d0: a6 10 00 08 mov %o0, %l3
20256d4: d0 07 bf dc ld [ %fp + -36 ], %o0
20256d8: 40 00 a6 a6 call 204f170 <.div>
20256dc: 92 10 23 e8 mov 0x3e8, %o1
20256e0: c2 07 bf a8 ld [ %fp + -88 ], %g1
20256e4: a2 10 00 08 mov %o0, %l1
20256e8: d0 07 bf ac ld [ %fp + -84 ], %o0
20256ec: e8 07 bf d0 ld [ %fp + -48 ], %l4
20256f0: e4 07 bf d8 ld [ %fp + -40 ], %l2
20256f4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20256f8: 40 00 a6 9e call 204f170 <.div>
20256fc: 92 10 23 e8 mov 0x3e8, %o1
2025700: 96 10 00 13 mov %l3, %o3
2025704: 98 10 00 12 mov %l2, %o4
2025708: 9a 10 00 11 mov %l1, %o5
202570c: 94 10 00 14 mov %l4, %o2
2025710: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2025714: 92 10 00 1b mov %i3, %o1
2025718: 9f c6 40 00 call %i1
202571c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2025720: d2 07 bf c8 ld [ %fp + -56 ], %o1
2025724: 94 07 bf a8 add %fp, -88, %o2
2025728: 40 00 02 92 call 2026170 <_Timespec_Divide_by_integer>
202572c: 90 07 bf f8 add %fp, -8, %o0
(*print)( context,
2025730: d0 07 bf ec ld [ %fp + -20 ], %o0
2025734: 40 00 a6 8f call 204f170 <.div>
2025738: 92 10 23 e8 mov 0x3e8, %o1
202573c: a6 10 00 08 mov %o0, %l3
2025740: d0 07 bf f4 ld [ %fp + -12 ], %o0
2025744: 40 00 a6 8b call 204f170 <.div>
2025748: 92 10 23 e8 mov 0x3e8, %o1
202574c: c2 07 bf a8 ld [ %fp + -88 ], %g1
2025750: a2 10 00 08 mov %o0, %l1
2025754: d0 07 bf ac ld [ %fp + -84 ], %o0
2025758: e8 07 bf e8 ld [ %fp + -24 ], %l4
202575c: e4 07 bf f0 ld [ %fp + -16 ], %l2
2025760: 92 10 23 e8 mov 0x3e8, %o1
2025764: 40 00 a6 83 call 204f170 <.div>
2025768: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
202576c: 92 10 00 1a mov %i2, %o1
2025770: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2025774: 94 10 00 14 mov %l4, %o2
2025778: 90 10 00 18 mov %i0, %o0
202577c: 96 10 00 13 mov %l3, %o3
2025780: 98 10 00 12 mov %l2, %o4
2025784: 9f c6 40 00 call %i1
2025788: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
202578c: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
2025790: 03 00 81 83 sethi %hi(0x2060c00), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025794: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 2060ed0 <_Rate_monotonic_Information+0xc>
2025798: 80 a7 40 01 cmp %i5, %g1
202579c: 08 bf ff ad bleu 2025650 <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
20257a0: 90 10 00 1d mov %i5, %o0
20257a4: 81 c7 e0 08 ret
20257a8: 81 e8 00 00 restore
02008834 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
2008834: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
2008838: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
200883c: 90 10 00 19 mov %i1, %o0
2008840: 92 10 00 1d mov %i5, %o1
2008844: 40 00 41 31 call 2018d08 <.urem>
2008848: b6 10 00 19 mov %i1, %i3
if (excess > 0) {
200884c: 80 a2 20 00 cmp %o0, 0
2008850: 02 80 00 05 be 2008864 <rtems_rbheap_allocate+0x30> <== ALWAYS TAKEN
2008854: 80 a6 c0 19 cmp %i3, %i1
value += alignment - excess;
2008858: b6 06 40 1d add %i1, %i5, %i3 <== NOT EXECUTED
200885c: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
2008860: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED
2008864: 0a 80 00 04 bcs 2008874 <rtems_rbheap_allocate+0x40> <== NEVER TAKEN
2008868: 80 a6 60 00 cmp %i1, 0
200886c: 32 80 00 04 bne,a 200887c <rtems_rbheap_allocate+0x48>
2008870: c2 06 00 00 ld [ %i0 ], %g1
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
2008874: 81 c7 e0 08 ret
2008878: 91 e8 20 00 restore %g0, 0, %o0
rtems_chain_control *free_chain,
size_t size
)
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
200887c: 84 06 20 04 add %i0, 4, %g2
rtems_rbheap_chunk *big_enough = NULL;
2008880: 10 80 00 06 b 2008898 <rtems_rbheap_allocate+0x64>
2008884: ba 10 20 00 clr %i5
while (current != tail && big_enough == NULL) {
rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current;
if (free_chunk->size >= size) {
2008888: 80 a0 c0 1b cmp %g3, %i3
200888c: ba 40 3f ff addx %g0, -1, %i5
2008890: ba 08 40 1d and %g1, %i5, %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Next(
Chain_Node *the_node
)
{
return the_node->next;
2008894: c2 00 40 00 ld [ %g1 ], %g1
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2008898: 80 a7 60 00 cmp %i5, 0
200889c: 12 80 00 04 bne 20088ac <rtems_rbheap_allocate+0x78>
20088a0: 80 a0 40 02 cmp %g1, %g2
20088a4: 32 bf ff f9 bne,a 2008888 <rtems_rbheap_allocate+0x54>
20088a8: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size);
if (free_chunk != NULL) {
20088ac: 80 a7 60 00 cmp %i5, 0
20088b0: 02 bf ff f1 be 2008874 <rtems_rbheap_allocate+0x40>
20088b4: 01 00 00 00 nop
uintptr_t free_size = free_chunk->size;
20088b8: f4 07 60 1c ld [ %i5 + 0x1c ], %i2
if (free_size > aligned_size) {
20088bc: 80 a6 80 1b cmp %i2, %i3
20088c0: 28 80 00 14 bleu,a 2008910 <rtems_rbheap_allocate+0xdc>
20088c4: c4 07 40 00 ld [ %i5 ], %g2
rtems_rbheap_chunk *new_chunk = get_chunk(control);
20088c8: 7f ff ff 80 call 20086c8 <get_chunk>
20088cc: 90 10 00 18 mov %i0, %o0
if (new_chunk != NULL) {
20088d0: b8 92 20 00 orcc %o0, 0, %i4
20088d4: 02 bf ff e8 be 2008874 <rtems_rbheap_allocate+0x40> <== NEVER TAKEN
20088d8: b4 26 80 1b sub %i2, %i3, %i2
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
20088dc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
rtems_rbheap_chunk *new_chunk = get_chunk(control);
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
20088e0: f4 27 60 1c st %i2, [ %i5 + 0x1c ]
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
20088e4: f6 27 20 1c st %i3, [ %i4 + 0x1c ]
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
20088e8: b4 06 80 01 add %i2, %g1, %i2
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
20088ec: c0 27 20 04 clr [ %i4 + 4 ]
20088f0: f4 27 20 18 st %i2, [ %i4 + 0x18 ]
20088f4: c0 27 00 00 clr [ %i4 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
20088f8: 90 06 20 18 add %i0, 0x18, %o0
20088fc: 40 00 06 ad call 200a3b0 <_RBTree_Insert_unprotected>
2008900: 92 07 20 08 add %i4, 8, %o1
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
rtems_chain_set_off_chain(&new_chunk->chain_node);
insert_into_tree(chunk_tree, new_chunk);
ptr = (void *) new_chunk->begin;
2008904: f0 07 20 18 ld [ %i4 + 0x18 ], %i0
2008908: 81 c7 e0 08 ret
200890c: 81 e8 00 00 restore
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2008910: c2 07 60 04 ld [ %i5 + 4 ], %g1
}
} else {
rtems_chain_extract_unprotected(&free_chunk->chain_node);
rtems_chain_set_off_chain(&free_chunk->chain_node);
ptr = (void *) free_chunk->begin;
2008914: f0 07 60 18 ld [ %i5 + 0x18 ], %i0
next->previous = previous;
2008918: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200891c: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
2008920: c0 27 60 04 clr [ %i5 + 4 ]
2008924: c0 27 40 00 clr [ %i5 ]
}
}
}
return ptr;
}
2008928: 81 c7 e0 08 ret
200892c: 81 e8 00 00 restore
02008a60 <rtems_rbheap_extend_descriptors_with_malloc>:
/* Do nothing */
}
void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control)
{
2008a60: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk));
2008a64: 7f ff ed 79 call 2004048 <malloc> <== NOT EXECUTED
2008a68: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED
if (chunk != NULL) {
2008a6c: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED
2008a70: 02 80 00 07 be 2008a8c <rtems_rbheap_extend_descriptors_with_malloc+0x2c><== NOT EXECUTED
2008a74: 82 06 20 0c add %i0, 0xc, %g1 <== NOT EXECUTED
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008a78: c2 22 20 04 st %g1, [ %o0 + 4 ] <== NOT EXECUTED
before_node = after_node->next;
2008a7c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED
after_node->next = the_node;
2008a80: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED
the_node->next = before_node;
2008a84: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED
before_node->previous = the_node;
2008a88: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED
2008a8c: 81 c7 e0 08 ret <== NOT EXECUTED
2008a90: 81 e8 00 00 restore <== NOT EXECUTED
02008930 <rtems_rbheap_free>:
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
2008930: 9d e3 bf 80 save %sp, -128, %sp
2008934: b6 10 00 18 mov %i0, %i3
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (ptr != NULL) {
2008938: 80 a6 60 00 cmp %i1, 0
200893c: 02 80 00 45 be 2008a50 <rtems_rbheap_free+0x120>
2008940: b0 10 20 00 clr %i0
#define NULL_PAGE rtems_rbheap_chunk_of_node(NULL)
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
2008944: 90 07 bf e0 add %fp, -32, %o0
2008948: 92 10 20 00 clr %o1
200894c: 94 10 20 20 mov 0x20, %o2
2008950: 40 00 1f 31 call 2010614 <memset>
2008954: b4 06 e0 18 add %i3, 0x18, %i2
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
2008958: ba 10 20 00 clr %i5
200895c: f2 27 bf f8 st %i1, [ %fp + -8 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
2008960: 10 80 00 12 b 20089a8 <rtems_rbheap_free+0x78>
2008964: f8 06 e0 1c ld [ %i3 + 0x1c ], %i4
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
2008968: 90 07 bf e8 add %fp, -24, %o0
200896c: 9f c0 40 00 call %g1
2008970: 92 10 00 1c mov %i4, %o1
if ( _RBTree_Is_equal( compare_result ) ) {
2008974: 80 a2 20 00 cmp %o0, 0
2008978: 12 80 00 07 bne 2008994 <rtems_rbheap_free+0x64>
200897c: 83 3a 20 1f sra %o0, 0x1f, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2008980: c2 0e a0 14 ldub [ %i2 + 0x14 ], %g1
2008984: 80 a0 60 00 cmp %g1, 0
2008988: 12 80 00 0c bne 20089b8 <rtems_rbheap_free+0x88> <== ALWAYS TAKEN
200898c: ba 10 00 1c mov %i4, %i5
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
2008990: 83 3a 20 1f sra %o0, 0x1f, %g1 <== NOT EXECUTED
2008994: 90 20 40 08 sub %g1, %o0, %o0
2008998: 91 32 20 1f srl %o0, 0x1f, %o0
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200899c: 91 2a 20 02 sll %o0, 2, %o0
20089a0: b8 07 00 08 add %i4, %o0, %i4
20089a4: f8 07 20 04 ld [ %i4 + 4 ], %i4
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
20089a8: 80 a7 20 00 cmp %i4, 0
20089ac: 32 bf ff ef bne,a 2008968 <rtems_rbheap_free+0x38>
20089b0: c2 06 a0 10 ld [ %i2 + 0x10 ], %g1
20089b4: b8 10 00 1d mov %i5, %i4
return rtems_rbheap_chunk_of_node(
20089b8: ba 07 3f f8 add %i4, -8, %i5
if (ptr != NULL) {
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr);
if (chunk != NULL_PAGE) {
20089bc: 80 a7 7f f8 cmp %i5, -8
20089c0: 02 80 00 24 be 2008a50 <rtems_rbheap_free+0x120>
20089c4: b0 10 20 04 mov 4, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
20089c8: c4 07 3f f8 ld [ %i4 + -8 ], %g2
20089cc: 80 a0 a0 00 cmp %g2, 0
20089d0: 12 80 00 05 bne 20089e4 <rtems_rbheap_free+0xb4>
20089d4: 82 10 20 00 clr %g1
20089d8: c2 07 60 04 ld [ %i5 + 4 ], %g1
20089dc: 80 a0 00 01 cmp %g0, %g1
20089e0: 82 60 3f ff subx %g0, -1, %g1
if (!rtems_rbheap_is_chunk_free(chunk)) {
20089e4: 80 a0 60 00 cmp %g1, 0
20089e8: 02 80 00 1a be 2008a50 <rtems_rbheap_free+0x120>
20089ec: b0 10 20 0e mov 0xe, %i0
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
20089f0: b8 07 60 08 add %i5, 8, %i4
20089f4: 92 10 20 00 clr %o1
20089f8: 40 00 07 13 call 200a644 <_RBTree_Next_unprotected>
20089fc: 90 10 00 1c mov %i4, %o0
2008a00: 92 10 20 01 mov 1, %o1
2008a04: b2 10 00 08 mov %o0, %i1
2008a08: 40 00 07 0f call 200a644 <_RBTree_Next_unprotected>
2008a0c: 90 10 00 1c mov %i4, %o0
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008a10: 92 10 00 1a mov %i2, %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2008a14: 96 02 3f f8 add %o0, -8, %o3
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008a18: 94 10 00 1d mov %i5, %o2
2008a1c: 7f ff ff 02 call 2008624 <check_and_merge>
2008a20: 90 10 00 1b mov %i3, %o0
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008a24: c2 06 c0 00 ld [ %i3 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008a28: f6 27 60 04 st %i3, [ %i5 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008a2c: fa 26 c0 00 st %i5, [ %i3 ]
the_node->next = before_node;
2008a30: c2 27 40 00 st %g1, [ %i5 ]
before_node->previous = the_node;
2008a34: fa 20 60 04 st %i5, [ %g1 + 4 ]
add_to_chain(free_chain, chunk);
check_and_merge(free_chain, chunk_tree, chunk, pred);
2008a38: 90 10 00 1b mov %i3, %o0
2008a3c: 92 10 00 1a mov %i2, %o1
2008a40: 94 10 00 1d mov %i5, %o2
2008a44: 96 06 7f f8 add %i1, -8, %o3
2008a48: 7f ff fe f7 call 2008624 <check_and_merge>
2008a4c: b0 10 20 00 clr %i0
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
2008a50: 81 c7 e0 08 ret
2008a54: 81 e8 00 00 restore
0201789c <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
201789c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20178a0: 80 a6 60 00 cmp %i1, 0
20178a4: 02 80 00 35 be 2017978 <rtems_signal_send+0xdc>
20178a8: 82 10 20 0a mov 0xa, %g1
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20178ac: 90 10 00 18 mov %i0, %o0
20178b0: 40 00 12 77 call 201c28c <_Thread_Get>
20178b4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20178b8: c2 07 bf fc ld [ %fp + -4 ], %g1
20178bc: 80 a0 60 00 cmp %g1, 0
20178c0: 12 80 00 2d bne 2017974 <rtems_signal_send+0xd8>
20178c4: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20178c8: fa 02 21 50 ld [ %o0 + 0x150 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20178cc: c2 07 60 0c ld [ %i5 + 0xc ], %g1
20178d0: 80 a0 60 00 cmp %g1, 0
20178d4: 02 80 00 24 be 2017964 <rtems_signal_send+0xc8>
20178d8: 01 00 00 00 nop
if ( asr->is_enabled ) {
20178dc: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
20178e0: 80 a0 60 00 cmp %g1, 0
20178e4: 02 80 00 15 be 2017938 <rtems_signal_send+0x9c>
20178e8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20178ec: 7f ff e3 91 call 2010730 <sparc_disable_interrupts>
20178f0: 01 00 00 00 nop
*signal_set |= signals;
20178f4: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
20178f8: b2 10 40 19 or %g1, %i1, %i1
20178fc: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2017900: 7f ff e3 90 call 2010740 <sparc_enable_interrupts>
2017904: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2017908: 03 00 80 ed sethi %hi(0x203b400), %g1
201790c: 82 10 61 20 or %g1, 0x120, %g1 ! 203b520 <_Per_CPU_Information>
2017910: c4 00 60 08 ld [ %g1 + 8 ], %g2
2017914: 80 a0 a0 00 cmp %g2, 0
2017918: 02 80 00 0f be 2017954 <rtems_signal_send+0xb8>
201791c: 01 00 00 00 nop
2017920: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
2017924: 80 a7 00 02 cmp %i4, %g2
2017928: 12 80 00 0b bne 2017954 <rtems_signal_send+0xb8> <== NEVER TAKEN
201792c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2017930: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
2017934: 30 80 00 08 b,a 2017954 <rtems_signal_send+0xb8>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2017938: 7f ff e3 7e call 2010730 <sparc_disable_interrupts>
201793c: 01 00 00 00 nop
*signal_set |= signals;
2017940: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2017944: b2 10 40 19 or %g1, %i1, %i1
2017948: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
201794c: 7f ff e3 7d call 2010740 <sparc_enable_interrupts>
2017950: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2017954: 40 00 12 42 call 201c25c <_Thread_Enable_dispatch>
2017958: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201795c: 10 80 00 07 b 2017978 <rtems_signal_send+0xdc>
2017960: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
_Thread_Enable_dispatch();
2017964: 40 00 12 3e call 201c25c <_Thread_Enable_dispatch>
2017968: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
201796c: 10 80 00 03 b 2017978 <rtems_signal_send+0xdc>
2017970: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2017974: 82 10 20 04 mov 4, %g1
}
2017978: 81 c7 e0 08 ret
201797c: 91 e8 00 01 restore %g0, %g1, %o0
02010864 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
2010864: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
2010868: 80 a6 a0 00 cmp %i2, 0
201086c: 02 80 00 5a be 20109d4 <rtems_task_mode+0x170>
2010870: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
2010874: 03 00 80 81 sethi %hi(0x2020400), %g1
2010878: f8 00 62 d0 ld [ %g1 + 0x2d0 ], %i4 ! 20206d0 <_Per_CPU_Information+0x10>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
201087c: c2 0f 20 70 ldub [ %i4 + 0x70 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
2010880: fa 07 21 50 ld [ %i4 + 0x150 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
2010884: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
2010888: c2 07 20 78 ld [ %i4 + 0x78 ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
201088c: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
2010890: 80 a0 60 00 cmp %g1, 0
2010894: 02 80 00 03 be 20108a0 <rtems_task_mode+0x3c>
2010898: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
201089c: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20108a0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
20108a4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
20108a8: 7f ff ef 12 call 200c4f0 <_CPU_ISR_Get_level>
20108ac: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20108b0: a1 2c 20 0a sll %l0, 0xa, %l0
20108b4: 90 14 00 08 or %l0, %o0, %o0
old_mode |= _ISR_Get_level();
20108b8: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
20108bc: 80 8e 61 00 btst 0x100, %i1
20108c0: 02 80 00 06 be 20108d8 <rtems_task_mode+0x74>
20108c4: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
20108c8: 83 36 20 08 srl %i0, 8, %g1
20108cc: 82 18 60 01 xor %g1, 1, %g1
20108d0: 82 08 60 01 and %g1, 1, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
20108d4: c2 2f 20 70 stb %g1, [ %i4 + 0x70 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
20108d8: 80 8e 62 00 btst 0x200, %i1
20108dc: 02 80 00 0b be 2010908 <rtems_task_mode+0xa4>
20108e0: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
20108e4: 80 8e 22 00 btst 0x200, %i0
20108e8: 22 80 00 07 be,a 2010904 <rtems_task_mode+0xa0>
20108ec: c0 27 20 78 clr [ %i4 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
20108f0: 82 10 20 01 mov 1, %g1
20108f4: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
20108f8: 03 00 80 81 sethi %hi(0x2020400), %g1
20108fc: c2 00 60 10 ld [ %g1 + 0x10 ], %g1 ! 2020410 <_Thread_Ticks_per_timeslice>
2010900: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
2010904: 80 8e 60 0f btst 0xf, %i1
2010908: 02 80 00 06 be 2010920 <rtems_task_mode+0xbc>
201090c: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
2010910: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
2010914: 7f ff c9 42 call 2002e1c <sparc_enable_interrupts>
2010918: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
201091c: 80 8e 64 00 btst 0x400, %i1
2010920: 02 80 00 14 be 2010970 <rtems_task_mode+0x10c>
2010924: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
2010928: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
201092c: b1 36 20 0a srl %i0, 0xa, %i0
2010930: b0 1e 20 01 xor %i0, 1, %i0
2010934: b0 0e 20 01 and %i0, 1, %i0
if ( is_asr_enabled != asr->is_enabled ) {
2010938: 80 a6 00 01 cmp %i0, %g1
201093c: 22 80 00 0e be,a 2010974 <rtems_task_mode+0x110>
2010940: 03 00 80 81 sethi %hi(0x2020400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
2010944: 7f ff c9 32 call 2002e0c <sparc_disable_interrupts>
2010948: f0 2f 60 08 stb %i0, [ %i5 + 8 ]
_signals = information->signals_pending;
201094c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
2010950: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
2010954: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
2010958: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
201095c: 7f ff c9 30 call 2002e1c <sparc_enable_interrupts>
2010960: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
2010964: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2010968: 80 a0 00 01 cmp %g0, %g1
201096c: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
2010970: 03 00 80 81 sethi %hi(0x2020400), %g1
2010974: c4 00 62 bc ld [ %g1 + 0x2bc ], %g2 ! 20206bc <_System_state_Current>
2010978: 80 a0 a0 03 cmp %g2, 3
201097c: 12 80 00 16 bne 20109d4 <rtems_task_mode+0x170>
2010980: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
2010984: 07 00 80 81 sethi %hi(0x2020400), %g3
if ( are_signals_pending ||
2010988: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
201098c: 86 10 e2 c0 or %g3, 0x2c0, %g3
if ( are_signals_pending ||
2010990: 12 80 00 0a bne 20109b8 <rtems_task_mode+0x154>
2010994: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
2010998: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
201099c: 80 a0 80 03 cmp %g2, %g3
20109a0: 02 80 00 0d be 20109d4 <rtems_task_mode+0x170>
20109a4: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
20109a8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
20109ac: 80 a0 a0 00 cmp %g2, 0
20109b0: 02 80 00 09 be 20109d4 <rtems_task_mode+0x170> <== NEVER TAKEN
20109b4: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
20109b8: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
20109bc: 03 00 80 81 sethi %hi(0x2020400), %g1
20109c0: 82 10 62 c0 or %g1, 0x2c0, %g1 ! 20206c0 <_Per_CPU_Information>
20109c4: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
20109c8: 40 00 02 67 call 2011364 <_Thread_Dispatch>
20109cc: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
20109d0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
20109d4: 81 c7 e0 08 ret
20109d8: 91 e8 00 01 restore %g0, %g1, %o0
0200bdf0 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200bdf0: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200bdf4: 80 a6 60 00 cmp %i1, 0
200bdf8: 02 80 00 08 be 200be18 <rtems_task_set_priority+0x28>
200bdfc: 80 a6 a0 00 cmp %i2, 0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200be00: 03 00 80 7e sethi %hi(0x201f800), %g1
200be04: c4 08 62 ac ldub [ %g1 + 0x2ac ], %g2 ! 201faac <rtems_maximum_priority>
200be08: 80 a6 40 02 cmp %i1, %g2
200be0c: 18 80 00 1e bgu 200be84 <rtems_task_set_priority+0x94>
200be10: 82 10 20 13 mov 0x13, %g1
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200be14: 80 a6 a0 00 cmp %i2, 0
200be18: 02 80 00 1b be 200be84 <rtems_task_set_priority+0x94>
200be1c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200be20: 90 10 00 18 mov %i0, %o0
200be24: 40 00 09 7f call 200e420 <_Thread_Get>
200be28: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200be2c: c2 07 bf fc ld [ %fp + -4 ], %g1
200be30: 80 a0 60 00 cmp %g1, 0
200be34: 12 80 00 14 bne 200be84 <rtems_task_set_priority+0x94>
200be38: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200be3c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200be40: 80 a6 60 00 cmp %i1, 0
200be44: 02 80 00 0d be 200be78 <rtems_task_set_priority+0x88>
200be48: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200be4c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200be50: 80 a0 60 00 cmp %g1, 0
200be54: 02 80 00 06 be 200be6c <rtems_task_set_priority+0x7c>
200be58: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200be5c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200be60: 80 a0 40 19 cmp %g1, %i1
200be64: 08 80 00 05 bleu 200be78 <rtems_task_set_priority+0x88> <== ALWAYS TAKEN
200be68: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200be6c: 92 10 00 19 mov %i1, %o1
200be70: 40 00 08 2e call 200df28 <_Thread_Change_priority>
200be74: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200be78: 40 00 09 5e call 200e3f0 <_Thread_Enable_dispatch>
200be7c: 01 00 00 00 nop
200be80: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200be84: 81 c7 e0 08 ret
200be88: 91 e8 00 01 restore %g0, %g1, %o0
02018324 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2018324: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2018328: 11 00 80 ed sethi %hi(0x203b400), %o0
201832c: 92 10 00 18 mov %i0, %o1
2018330: 90 12 21 c8 or %o0, 0x1c8, %o0
2018334: 40 00 0b f3 call 201b300 <_Objects_Get>
2018338: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
201833c: c2 07 bf fc ld [ %fp + -4 ], %g1
2018340: 80 a0 60 00 cmp %g1, 0
2018344: 12 80 00 0c bne 2018374 <rtems_timer_cancel+0x50>
2018348: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
201834c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2018350: 80 a0 60 04 cmp %g1, 4
2018354: 02 80 00 04 be 2018364 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2018358: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
201835c: 40 00 13 a5 call 201d1f0 <_Watchdog_Remove>
2018360: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2018364: 40 00 0f be call 201c25c <_Thread_Enable_dispatch>
2018368: b0 10 20 00 clr %i0
201836c: 81 c7 e0 08 ret
2018370: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2018374: 81 c7 e0 08 ret
2018378: 91 e8 20 04 restore %g0, 4, %o0
02018834 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2018834: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2018838: 03 00 80 ed sethi %hi(0x203b400), %g1
201883c: f8 00 62 08 ld [ %g1 + 0x208 ], %i4 ! 203b608 <_Timer_server>
if ( !timer_server )
2018840: 80 a7 20 00 cmp %i4, 0
2018844: 02 80 00 3c be 2018934 <rtems_timer_server_fire_when+0x100>
2018848: 82 10 20 0e mov 0xe, %g1
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
201884c: 21 00 80 ec sethi %hi(0x203b000), %l0
2018850: 82 14 22 48 or %l0, 0x248, %g1 ! 203b248 <_TOD>
2018854: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2
2018858: 80 a0 a0 00 cmp %g2, 0
201885c: 02 80 00 36 be 2018934 <rtems_timer_server_fire_when+0x100><== NEVER TAKEN
2018860: 82 10 20 0b mov 0xb, %g1
return RTEMS_NOT_DEFINED;
if ( !routine )
2018864: 80 a6 a0 00 cmp %i2, 0
2018868: 02 80 00 33 be 2018934 <rtems_timer_server_fire_when+0x100>
201886c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2018870: 7f ff f3 7f call 201566c <_TOD_Validate>
2018874: 90 10 00 19 mov %i1, %o0
2018878: 80 8a 20 ff btst 0xff, %o0
201887c: 02 80 00 2e be 2018934 <rtems_timer_server_fire_when+0x100>
2018880: 82 10 20 14 mov 0x14, %g1
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2018884: 7f ff f3 40 call 2015584 <_TOD_To_seconds>
2018888: 90 10 00 19 mov %i1, %o0
201888c: b2 10 00 08 mov %o0, %i1
2018890: d0 1c 22 48 ldd [ %l0 + 0x248 ], %o0
2018894: 94 10 20 00 clr %o2
2018898: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
201889c: 40 00 4b f2 call 202b864 <__divdi3>
20188a0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
if ( seconds <= _TOD_Seconds_since_epoch() )
20188a4: 80 a6 40 09 cmp %i1, %o1
20188a8: 08 80 00 23 bleu 2018934 <rtems_timer_server_fire_when+0x100>
20188ac: 82 10 20 14 mov 0x14, %g1
20188b0: 11 00 80 ed sethi %hi(0x203b400), %o0
20188b4: 92 10 00 18 mov %i0, %o1
20188b8: 90 12 21 c8 or %o0, 0x1c8, %o0
20188bc: 40 00 0a 91 call 201b300 <_Objects_Get>
20188c0: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20188c4: c2 07 bf fc ld [ %fp + -4 ], %g1
20188c8: 80 a0 60 00 cmp %g1, 0
20188cc: 12 80 00 19 bne 2018930 <rtems_timer_server_fire_when+0xfc>
20188d0: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20188d4: 40 00 12 47 call 201d1f0 <_Watchdog_Remove>
20188d8: 90 02 20 10 add %o0, 0x10, %o0
20188dc: d0 1c 22 48 ldd [ %l0 + 0x248 ], %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20188e0: 82 10 20 03 mov 3, %g1
20188e4: 94 10 20 00 clr %o2
20188e8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20188ec: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
20188f0: f4 27 60 2c st %i2, [ %i5 + 0x2c ]
the_watchdog->id = id;
20188f4: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
20188f8: f6 27 60 34 st %i3, [ %i5 + 0x34 ]
20188fc: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018900: 40 00 4b d9 call 202b864 <__divdi3>
2018904: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
2018908: c2 07 20 04 ld [ %i4 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201890c: 92 26 40 09 sub %i1, %o1, %o1
(*timer_server->schedule_operation)( timer_server, the_timer );
2018910: 90 10 00 1c mov %i4, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2018914: d2 27 60 1c st %o1, [ %i5 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2018918: 9f c0 40 00 call %g1
201891c: 92 10 00 1d mov %i5, %o1
_Thread_Enable_dispatch();
2018920: 40 00 0e 4f call 201c25c <_Thread_Enable_dispatch>
2018924: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2018928: 10 80 00 03 b 2018934 <rtems_timer_server_fire_when+0x100>
201892c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2018930: 82 10 20 04 mov 4, %g1
}
2018934: 81 c7 e0 08 ret
2018938: 91 e8 00 01 restore %g0, %g1, %o0