=============================================================================== 02010f4c <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010f4c: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010f50: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 2010f54: c0 26 20 48 clr [ %i0 + 0x48 ] /* * Check if allocated_message_size is aligned to uintptr-size boundary. * If not, it will increase allocated_message_size to multiplicity of pointer * size. */ if (allocated_message_size & (sizeof(uintptr_t) - 1)) { 2010f58: 80 8e e0 03 btst 3, %i3 2010f5c: 02 80 00 09 be 2010f80 <_CORE_message_queue_Initialize+0x34> 2010f60: f6 26 20 4c st %i3, [ %i0 + 0x4c ] allocated_message_size += sizeof(uintptr_t); 2010f64: 96 06 e0 04 add %i3, 4, %o3 allocated_message_size &= ~(sizeof(uintptr_t) - 1); 2010f68: 96 0a ff fc and %o3, -4, %o3 /* * Check for an overflow. It can occur while increasing allocated_message_size * to multiplicity of uintptr_t above. */ if (allocated_message_size < maximum_message_size) 2010f6c: 80 a2 c0 1b cmp %o3, %i3 2010f70: 3a 80 00 06 bcc,a 2010f88 <_CORE_message_queue_Initialize+0x3c> 2010f74: ba 02 e0 10 add %o3, 0x10, %i5 return false; 2010f78: 10 80 00 24 b 2011008 <_CORE_message_queue_Initialize+0xbc> 2010f7c: b0 10 20 00 clr %i0 /* * Check if allocated_message_size is aligned to uintptr-size boundary. * If not, it will increase allocated_message_size to multiplicity of pointer * size. */ if (allocated_message_size & (sizeof(uintptr_t) - 1)) { 2010f80: 96 10 00 1b mov %i3, %o3 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 2010f84: ba 02 e0 10 add %o3, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 2010f88: 90 10 20 00 clr %o0 2010f8c: 92 10 00 1a mov %i2, %o1 2010f90: 94 10 20 00 clr %o2 2010f94: 40 00 3f b2 call 2020e5c <__muldi3> 2010f98: 96 10 00 1d mov %i5, %o3 if ( x > SIZE_MAX ) 2010f9c: 80 a2 20 00 cmp %o0, 0 2010fa0: 34 80 00 1a bg,a 2011008 <_CORE_message_queue_Initialize+0xbc> 2010fa4: b0 10 20 00 clr %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010fa8: 40 00 0b ec call 2013f58 <_Workspace_Allocate> 2010fac: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010fb0: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010fb4: 80 a2 20 00 cmp %o0, 0 2010fb8: 02 bf ff f0 be 2010f78 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN 2010fbc: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010fc0: 90 06 20 60 add %i0, 0x60, %o0 2010fc4: 94 10 00 1a mov %i2, %o2 2010fc8: 7f ff ff d3 call 2010f14 <_Chain_Initialize> 2010fcc: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010fd0: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 2010fd4: c2 26 20 58 st %g1, [ %i0 + 0x58 ] */ RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority( CORE_message_queue_Attributes *the_attribute ) { return 2010fd8: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010fdc: 84 06 20 54 add %i0, 0x54, %g2 2010fe0: 82 18 60 01 xor %g1, 1, %g1 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010fe4: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 2010fe8: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 2010fec: c0 26 20 54 clr [ %i0 + 0x54 ] 2010ff0: 90 10 00 18 mov %i0, %o0 2010ff4: 92 60 3f ff subx %g0, -1, %o1 2010ff8: 94 10 20 80 mov 0x80, %o2 2010ffc: 96 10 20 06 mov 6, %o3 2011000: 40 00 09 ad call 20136b4 <_Thread_queue_Initialize> 2011004: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2011008: b0 0e 20 01 and %i0, 1, %i0 201100c: 81 c7 e0 08 ret 2011010: 81 e8 00 00 restore =============================================================================== 02008568 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2008568: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 200856c: 90 10 00 18 mov %i0, %o0 2008570: 40 00 07 6c call 200a320 <_Thread_queue_Dequeue> 2008574: ba 10 00 18 mov %i0, %i5 2008578: 80 a2 20 00 cmp %o0, 0 200857c: 12 80 00 0e bne 20085b4 <_CORE_semaphore_Surrender+0x4c> 2008580: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2008584: 7f ff e8 10 call 20025c4 2008588: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 200858c: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 2008590: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 2008594: 80 a0 40 02 cmp %g1, %g2 2008598: 1a 80 00 05 bcc 20085ac <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 200859c: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 20085a0: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20085a4: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 20085a8: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 20085ac: 7f ff e8 0a call 20025d4 20085b0: 01 00 00 00 nop } return status; } 20085b4: 81 c7 e0 08 ret 20085b8: 81 e8 00 00 restore =============================================================================== 02007260 <_Event_Surrender>: rtems_event_set event_in, Event_Control *event, Thread_blocking_operation_States *sync_state, States_Control wait_state ) { 2007260: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set pending_events; rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; option_set = the_thread->Wait.option; 2007264: e0 06 20 30 ld [ %i0 + 0x30 ], %l0 _ISR_Disable( level ); 2007268: 7f ff ec d7 call 20025c4 200726c: ba 10 00 18 mov %i0, %i5 2007270: b0 10 00 08 mov %o0, %i0 RTEMS_INLINE_ROUTINE void _Event_sets_Post( rtems_event_set the_new_events, rtems_event_set *the_event_set ) { *the_event_set |= the_new_events; 2007274: c2 06 80 00 ld [ %i2 ], %g1 2007278: b2 16 40 01 or %i1, %g1, %i1 200727c: f2 26 80 00 st %i1, [ %i2 ] _Event_sets_Post( event_in, &event->pending_events ); pending_events = event->pending_events; event_condition = the_thread->Wait.count; 2007280: c4 07 60 24 ld [ %i5 + 0x24 ], %g2 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2007284: 82 8e 40 02 andcc %i1, %g2, %g1 2007288: 02 80 00 3d be 200737c <_Event_Surrender+0x11c> 200728c: 07 00 80 70 sethi %hi(0x201c000), %g3 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2007290: 86 10 e2 90 or %g3, 0x290, %g3 ! 201c290 <_Per_CPU_Information> 2007294: c8 00 e0 08 ld [ %g3 + 8 ], %g4 2007298: 80 a1 20 00 cmp %g4, 0 200729c: 22 80 00 18 be,a 20072fc <_Event_Surrender+0x9c> 20072a0: c6 07 60 10 ld [ %i5 + 0x10 ], %g3 20072a4: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 20072a8: 80 a7 40 03 cmp %i5, %g3 20072ac: 32 80 00 14 bne,a 20072fc <_Event_Surrender+0x9c> 20072b0: c6 07 60 10 ld [ %i5 + 0x10 ], %g3 _Thread_Is_executing( the_thread ) && ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 20072b4: c6 06 c0 00 ld [ %i3 ], %g3 20072b8: 86 00 ff ff add %g3, -1, %g3 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 20072bc: 80 a0 e0 01 cmp %g3, 1 20072c0: 38 80 00 0f bgu,a 20072fc <_Event_Surrender+0x9c> 20072c4: c6 07 60 10 ld [ %i5 + 0x10 ], %g3 ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 20072c8: 80 a0 40 02 cmp %g1, %g2 20072cc: 02 80 00 04 be 20072dc <_Event_Surrender+0x7c> 20072d0: 80 8c 20 02 btst 2, %l0 20072d4: 02 80 00 2a be 200737c <_Event_Surrender+0x11c> <== NEVER TAKEN 20072d8: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 20072dc: b2 2e 40 01 andn %i1, %g1, %i1 event->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20072e0: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { event->pending_events = _Event_sets_Clear( 20072e4: f2 26 80 00 st %i1, [ %i2 ] pending_events, seized_events ); the_thread->Wait.count = 0; 20072e8: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20072ec: c2 20 80 00 st %g1, [ %g2 ] *sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20072f0: 82 10 20 03 mov 3, %g1 20072f4: 10 80 00 22 b 200737c <_Event_Surrender+0x11c> 20072f8: c2 26 c0 00 st %g1, [ %i3 ] } /* * Otherwise, this is a normal send to another thread */ if ( _States_Are_set( the_thread->current_state, wait_state ) ) { 20072fc: 80 8f 00 03 btst %i4, %g3 2007300: 02 80 00 1f be 200737c <_Event_Surrender+0x11c> 2007304: 80 a0 40 02 cmp %g1, %g2 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2007308: 02 80 00 04 be 2007318 <_Event_Surrender+0xb8> 200730c: 80 8c 20 02 btst 2, %l0 2007310: 02 80 00 1b be 200737c <_Event_Surrender+0x11c> <== NEVER TAKEN 2007314: 01 00 00 00 nop event->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2007318: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 200731c: b2 2e 40 01 andn %i1, %g1, %i1 /* * Otherwise, this is a normal send to another thread */ if ( _States_Are_set( the_thread->current_state, wait_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { event->pending_events = _Event_sets_Clear( 2007320: f2 26 80 00 st %i1, [ %i2 ] pending_events, seized_events ); the_thread->Wait.count = 0; 2007324: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2007328: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 200732c: 7f ff ec aa call 20025d4 2007330: 90 10 00 18 mov %i0, %o0 2007334: 7f ff ec a4 call 20025c4 2007338: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200733c: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 2007340: 80 a0 60 02 cmp %g1, 2 2007344: 02 80 00 06 be 200735c <_Event_Surrender+0xfc> 2007348: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200734c: 7f ff ec a2 call 20025d4 2007350: 33 04 01 ff sethi %hi(0x1007fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007354: 10 80 00 08 b 2007374 <_Event_Surrender+0x114> 2007358: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1007fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 200735c: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2007360: 7f ff ec 9d call 20025d4 2007364: 33 04 01 ff sethi %hi(0x1007fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 2007368: 40 00 0e 81 call 200ad6c <_Watchdog_Remove> 200736c: 90 07 60 48 add %i5, 0x48, %o0 2007370: b2 16 63 f8 or %i1, 0x3f8, %i1 2007374: 40 00 0a 22 call 2009bfc <_Thread_Clear_state> 2007378: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 200737c: 7f ff ec 96 call 20025d4 2007380: 81 e8 00 00 restore =============================================================================== 02007384 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *arg ) { 2007384: 9d e3 bf 98 save %sp, -104, %sp ISR_Level level; Thread_blocking_operation_States *sync_state; sync_state = arg; the_thread = _Thread_Get( id, &location ); 2007388: 90 10 00 18 mov %i0, %o0 200738c: 40 00 0b 16 call 2009fe4 <_Thread_Get> 2007390: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2007394: c2 07 bf fc ld [ %fp + -4 ], %g1 2007398: 80 a0 60 00 cmp %g1, 0 200739c: 12 80 00 1b bne 2007408 <_Event_Timeout+0x84> <== NEVER TAKEN 20073a0: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 20073a4: 7f ff ec 88 call 20025c4 20073a8: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20073ac: 03 00 80 70 sethi %hi(0x201c000), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 20073b0: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201c2a0 <_Per_CPU_Information+0x10> 20073b4: 80 a7 40 01 cmp %i5, %g1 20073b8: 12 80 00 08 bne 20073d8 <_Event_Timeout+0x54> 20073bc: c0 27 60 24 clr [ %i5 + 0x24 ] if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 20073c0: c2 06 40 00 ld [ %i1 ], %g1 20073c4: 80 a0 60 01 cmp %g1, 1 20073c8: 12 80 00 05 bne 20073dc <_Event_Timeout+0x58> 20073cc: 82 10 20 06 mov 6, %g1 *sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 20073d0: 82 10 20 02 mov 2, %g1 20073d4: c2 26 40 00 st %g1, [ %i1 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 20073d8: 82 10 20 06 mov 6, %g1 20073dc: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 20073e0: 7f ff ec 7d call 20025d4 20073e4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20073e8: 90 10 00 1d mov %i5, %o0 20073ec: 13 04 01 ff sethi %hi(0x1007fc00), %o1 20073f0: 40 00 0a 03 call 2009bfc <_Thread_Clear_state> 20073f4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 20073f8: 03 00 80 70 sethi %hi(0x201c000), %g1 20073fc: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level> --level; 2007400: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 2007404: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 2007408: 81 c7 e0 08 ret 200740c: 81 e8 00 00 restore =============================================================================== 0200cca8 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200cca8: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200ccac: 80 a6 60 00 cmp %i1, 0 200ccb0: 02 80 00 7a be 200ce98 <_Heap_Free+0x1f0> 200ccb4: 88 10 20 01 mov 1, %g4 200ccb8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200ccbc: 40 00 2b 4e call 20179f4 <.urem> 200ccc0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200ccc4: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ccc8: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cccc: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200ccd0: 80 a2 00 1b cmp %o0, %i3 200ccd4: 0a 80 00 05 bcs 200cce8 <_Heap_Free+0x40> 200ccd8: 82 10 20 00 clr %g1 200ccdc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200cce0: 80 a0 40 08 cmp %g1, %o0 200cce4: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200cce8: 80 a0 60 00 cmp %g1, 0 200ccec: 02 80 00 6b be 200ce98 <_Heap_Free+0x1f0> 200ccf0: 88 10 20 00 clr %g4 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200ccf4: f8 02 20 04 ld [ %o0 + 4 ], %i4 200ccf8: 84 0f 3f fe and %i4, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ccfc: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd00: 80 a0 40 1b cmp %g1, %i3 200cd04: 0a 80 00 05 bcs 200cd18 <_Heap_Free+0x70> <== NEVER TAKEN 200cd08: 86 10 20 00 clr %g3 200cd0c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200cd10: 80 a0 c0 01 cmp %g3, %g1 200cd14: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200cd18: 80 a0 e0 00 cmp %g3, 0 200cd1c: 02 80 00 5f be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cd20: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd24: fa 00 60 04 ld [ %g1 + 4 ], %i5 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200cd28: 80 8f 60 01 btst 1, %i5 200cd2c: 22 80 00 5c be,a 200ce9c <_Heap_Free+0x1f4> <== NEVER TAKEN 200cd30: b0 09 20 01 and %g4, 1, %i0 <== NOT EXECUTED if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200cd34: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200cd38: 80 a0 40 04 cmp %g1, %g4 200cd3c: 02 80 00 07 be 200cd58 <_Heap_Free+0xb0> 200cd40: ba 0f 7f fe and %i5, -2, %i5 200cd44: 86 00 40 1d add %g1, %i5, %g3 200cd48: f4 00 e0 04 ld [ %g3 + 4 ], %i2 200cd4c: b4 1e a0 01 xor %i2, 1, %i2 200cd50: 10 80 00 03 b 200cd5c <_Heap_Free+0xb4> 200cd54: b4 0e a0 01 and %i2, 1, %i2 200cd58: b4 10 20 00 clr %i2 if ( !_Heap_Is_prev_used( block ) ) { 200cd5c: 80 8f 20 01 btst 1, %i4 200cd60: 12 80 00 26 bne 200cdf8 <_Heap_Free+0x150> 200cd64: 80 8e a0 ff btst 0xff, %i2 uintptr_t const prev_size = block->prev_size; 200cd68: f8 02 00 00 ld [ %o0 ], %i4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd6c: 86 22 00 1c sub %o0, %i4, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd70: 80 a0 c0 1b cmp %g3, %i3 200cd74: 0a 80 00 04 bcs 200cd84 <_Heap_Free+0xdc> <== NEVER TAKEN 200cd78: b2 10 20 00 clr %i1 200cd7c: 80 a1 00 03 cmp %g4, %g3 200cd80: b2 60 3f ff subx %g0, -1, %i1 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200cd84: 80 a6 60 00 cmp %i1, 0 200cd88: 02 80 00 44 be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cd8c: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd90: f6 00 e0 04 ld [ %g3 + 4 ], %i3 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200cd94: 80 8e e0 01 btst 1, %i3 200cd98: 02 80 00 40 be 200ce98 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cd9c: 80 8e a0 ff btst 0xff, %i2 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200cda0: 22 80 00 0f be,a 200cddc <_Heap_Free+0x134> 200cda4: b8 00 80 1c add %g2, %i4, %i4 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200cda8: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200cdac: c2 00 60 0c ld [ %g1 + 0xc ], %g1 uintptr_t const size = block_size + prev_size + next_block_size; 200cdb0: ba 00 80 1d add %g2, %i5, %i5 prev->next = next; 200cdb4: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200cdb8: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cdbc: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200cdc0: b8 07 40 1c add %i5, %i4, %i4 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cdc4: 82 00 7f ff add %g1, -1, %g1 200cdc8: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cdcc: f8 20 c0 1c st %i4, [ %g3 + %i4 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdd0: 82 17 20 01 or %i4, 1, %g1 200cdd4: 10 80 00 27 b 200ce70 <_Heap_Free+0x1c8> 200cdd8: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cddc: 88 17 20 01 or %i4, 1, %g4 200cde0: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cde4: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200cde8: f8 22 00 02 st %i4, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cdec: 86 08 ff fe and %g3, -2, %g3 200cdf0: 10 80 00 20 b 200ce70 <_Heap_Free+0x1c8> 200cdf4: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200cdf8: 22 80 00 0d be,a 200ce2c <_Heap_Free+0x184> 200cdfc: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200ce00: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200ce04: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200ce08: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200ce0c: c2 22 20 0c st %g1, [ %o0 + 0xc ] uintptr_t const size = block_size + next_block_size; 200ce10: 86 07 40 02 add %i5, %g2, %g3 next->prev = new_block; prev->next = new_block; 200ce14: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200ce18: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ce1c: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200ce20: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ce24: 10 80 00 13 b 200ce70 <_Heap_Free+0x1c8> 200ce28: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200ce2c: f0 22 20 0c st %i0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200ce30: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200ce34: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200ce38: 86 10 a0 01 or %g2, 1, %g3 200ce3c: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce40: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200ce44: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce48: 86 08 ff fe and %g3, -2, %g3 200ce4c: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce50: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200ce54: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce58: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200ce5c: d0 26 20 08 st %o0, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200ce60: 80 a0 c0 01 cmp %g3, %g1 200ce64: 1a 80 00 03 bcc 200ce70 <_Heap_Free+0x1c8> 200ce68: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200ce6c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200ce70: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 200ce74: 82 00 7f ff add %g1, -1, %g1 200ce78: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200ce7c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200ce80: 82 00 60 01 inc %g1 200ce84: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200ce88: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200ce8c: 84 00 40 02 add %g1, %g2, %g2 200ce90: c4 26 20 30 st %g2, [ %i0 + 0x30 ] * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200ce94: 88 10 20 01 mov 1, %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ce98: b0 09 20 01 and %g4, 1, %i0 200ce9c: 81 c7 e0 08 ret 200cea0: 81 e8 00 00 restore =============================================================================== 0200a6e0 <_Heap_Greedy_allocate>: Heap_Block *_Heap_Greedy_allocate( Heap_Control *heap, const uintptr_t *block_sizes, size_t block_count ) { 200a6e0: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a6e4: b6 10 20 00 clr %i3 Heap_Block *_Heap_Greedy_allocate( Heap_Control *heap, const uintptr_t *block_sizes, size_t block_count ) { 200a6e8: ba 10 00 18 mov %i0, %i5 Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a6ec: 10 80 00 11 b 200a730 <_Heap_Greedy_allocate+0x50> 200a6f0: b8 10 20 00 clr %i4 * @brief See _Heap_Allocate_aligned_with_boundary() with alignment and * boundary equals zero. */ RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size ) { return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 ); 200a6f4: d2 06 40 01 ld [ %i1 + %g1 ], %o1 200a6f8: 90 10 00 1d mov %i5, %o0 200a6fc: 94 10 20 00 clr %o2 200a700: 40 00 1b 80 call 2011500 <_Heap_Allocate_aligned_with_boundary> 200a704: 96 10 20 00 clr %o3 void *next = _Heap_Allocate( heap, block_sizes [i] ); if ( next != NULL ) { 200a708: 82 92 20 00 orcc %o0, 0, %g1 200a70c: 22 80 00 09 be,a 200a730 <_Heap_Greedy_allocate+0x50> <== NEVER TAKEN 200a710: b6 06 e0 01 inc %i3 <== NOT EXECUTED RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200a714: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 200a718: 40 00 47 3f call 201c414 <.urem> 200a71c: b0 00 7f f8 add %g1, -8, %i0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200a720: 90 26 00 08 sub %i0, %o0, %o0 Heap_Block *next_block = _Heap_Block_of_alloc_area( (uintptr_t) next, heap->page_size ); next_block->next = allocated_blocks; 200a724: f8 22 20 08 st %i4, [ %o0 + 8 ] 200a728: b8 10 00 08 mov %o0, %i4 Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a72c: b6 06 e0 01 inc %i3 200a730: 80 a6 c0 1a cmp %i3, %i2 200a734: 12 bf ff f0 bne 200a6f4 <_Heap_Greedy_allocate+0x14> 200a738: 83 2e e0 02 sll %i3, 2, %g1 200a73c: 10 80 00 0a b 200a764 <_Heap_Greedy_allocate+0x84> 200a740: b0 10 20 00 clr %i0 allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { _Heap_Block_allocate( 200a744: 90 10 00 1d mov %i5, %o0 } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200a748: 96 0a ff fe and %o3, -2, %o3 200a74c: 92 10 00 1b mov %i3, %o1 200a750: 94 06 e0 08 add %i3, 8, %o2 200a754: 40 00 00 cb call 200aa80 <_Heap_Block_allocate> 200a758: 96 02 ff f8 add %o3, -8, %o3 current, _Heap_Alloc_area_of_block( current ), _Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE ); current->next = blocks; 200a75c: f0 26 e0 08 st %i0, [ %i3 + 8 ] 200a760: b0 10 00 1b mov %i3, %i0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200a764: f6 07 60 08 ld [ %i5 + 8 ], %i3 next_block->next = allocated_blocks; allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { 200a768: 80 a6 c0 1d cmp %i3, %i5 200a76c: 32 bf ff f6 bne,a 200a744 <_Heap_Greedy_allocate+0x64> 200a770: d6 06 e0 04 ld [ %i3 + 4 ], %o3 current->next = blocks; blocks = current; } while ( allocated_blocks != NULL ) { 200a774: 10 80 00 07 b 200a790 <_Heap_Greedy_allocate+0xb0> 200a778: 80 a7 20 00 cmp %i4, 0 current = allocated_blocks; allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); 200a77c: 92 07 20 08 add %i4, 8, %o1 200a780: 90 10 00 1d mov %i5, %o0 200a784: 40 00 1b d0 call 20116c4 <_Heap_Free> 200a788: b8 10 00 1b mov %i3, %i4 current->next = blocks; blocks = current; } while ( allocated_blocks != NULL ) { 200a78c: 80 a7 20 00 cmp %i4, 0 200a790: 32 bf ff fb bne,a 200a77c <_Heap_Greedy_allocate+0x9c> 200a794: f6 07 20 08 ld [ %i4 + 8 ], %i3 allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); } return blocks; } 200a798: 81 c7 e0 08 ret 200a79c: 81 e8 00 00 restore =============================================================================== 02011848 <_Heap_Iterate>: void _Heap_Iterate( Heap_Control *heap, Heap_Block_visitor visitor, void *visitor_arg ) { 2011848: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *current = heap->first_block; Heap_Block *end = heap->last_block; bool stop = false; 201184c: 90 10 20 00 clr %o0 Heap_Control *heap, Heap_Block_visitor visitor, void *visitor_arg ) { Heap_Block *current = heap->first_block; 2011850: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *end = heap->last_block; bool stop = false; while ( !stop && current != end ) { 2011854: 10 80 00 0a b 201187c <_Heap_Iterate+0x34> 2011858: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 uintptr_t size = _Heap_Block_size( current ); Heap_Block *next = _Heap_Block_at( current, size ); bool used = _Heap_Is_prev_used( next ); stop = (*visitor)( current, size, used, visitor_arg ); 201185c: 90 10 00 01 mov %g1, %o0 2011860: 92 0a 7f fe and %o1, -2, %o1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2011864: ba 00 40 09 add %g1, %o1, %i5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2011868: d4 07 60 04 ld [ %i5 + 4 ], %o2 201186c: 96 10 00 1a mov %i2, %o3 2011870: 9f c6 40 00 call %i1 2011874: 94 0a a0 01 and %o2, 1, %o2 2011878: 82 10 00 1d mov %i5, %g1 { Heap_Block *current = heap->first_block; Heap_Block *end = heap->last_block; bool stop = false; while ( !stop && current != end ) { 201187c: 80 a0 40 1c cmp %g1, %i4 2011880: 02 80 00 05 be 2011894 <_Heap_Iterate+0x4c> 2011884: 90 1a 20 01 xor %o0, 1, %o0 2011888: 80 8a 20 ff btst 0xff, %o0 201188c: 32 bf ff f4 bne,a 201185c <_Heap_Iterate+0x14> <== ALWAYS TAKEN 2011890: d2 00 60 04 ld [ %g1 + 4 ], %o1 2011894: 81 c7 e0 08 ret 2011898: 81 e8 00 00 restore =============================================================================== 0200cfcc <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 200cfcc: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cfd0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200cfd4: 40 00 2a 88 call 20179f4 <.urem> 200cfd8: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200cfdc: c8 06 20 20 ld [ %i0 + 0x20 ], %g4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cfe0: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cfe4: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cfe8: 80 a2 00 04 cmp %o0, %g4 200cfec: 0a 80 00 05 bcs 200d000 <_Heap_Size_of_alloc_area+0x34> 200cff0: 82 10 20 00 clr %g1 200cff4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200cff8: 80 a0 40 08 cmp %g1, %o0 200cffc: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200d000: 80 a0 60 00 cmp %g1, 0 200d004: 02 80 00 15 be 200d058 <_Heap_Size_of_alloc_area+0x8c> 200d008: 86 10 20 00 clr %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d00c: c2 02 20 04 ld [ %o0 + 4 ], %g1 200d010: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d014: 82 02 00 01 add %o0, %g1, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d018: 80 a0 40 04 cmp %g1, %g4 200d01c: 0a 80 00 05 bcs 200d030 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 200d020: 84 10 20 00 clr %g2 200d024: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200d028: 80 a0 80 01 cmp %g2, %g1 200d02c: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 200d030: 80 a0 a0 00 cmp %g2, 0 200d034: 02 80 00 09 be 200d058 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 200d038: 86 10 20 00 clr %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d03c: c4 00 60 04 ld [ %g1 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 200d040: 80 88 a0 01 btst 1, %g2 200d044: 02 80 00 05 be 200d058 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 200d048: 82 20 40 19 sub %g1, %i1, %g1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 200d04c: 86 10 20 01 mov 1, %g3 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 200d050: 82 00 60 04 add %g1, 4, %g1 200d054: c2 26 80 00 st %g1, [ %i2 ] return true; } 200d058: b0 08 e0 01 and %g3, 1, %i0 200d05c: 81 c7 e0 08 ret 200d060: 81 e8 00 00 restore =============================================================================== 02009698 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2009698: 9d e3 bf 80 save %sp, -128, %sp 200969c: ac 10 00 19 mov %i1, %l6 uintptr_t const page_size = heap->page_size; 20096a0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 20096a4: f6 06 20 14 ld [ %i0 + 0x14 ], %i3 Heap_Block *const first_block = heap->first_block; 20096a8: f2 06 20 20 ld [ %i0 + 0x20 ], %i1 Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20096ac: 80 a6 a0 00 cmp %i2, 0 20096b0: 02 80 00 05 be 20096c4 <_Heap_Walk+0x2c> 20096b4: e0 06 20 24 ld [ %i0 + 0x24 ], %l0 20096b8: 3b 00 80 25 sethi %hi(0x2009400), %i5 20096bc: 10 80 00 04 b 20096cc <_Heap_Walk+0x34> 20096c0: ba 17 62 48 or %i5, 0x248, %i5 ! 2009648 <_Heap_Walk_print> 20096c4: 3b 00 80 25 sethi %hi(0x2009400), %i5 20096c8: ba 17 62 40 or %i5, 0x240, %i5 ! 2009640 <_Heap_Walk_print_nothing> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20096cc: 05 00 80 79 sethi %hi(0x201e400), %g2 20096d0: c4 00 a2 6c ld [ %g2 + 0x26c ], %g2 ! 201e66c <_System_state_Current> 20096d4: 80 a0 a0 03 cmp %g2, 3 20096d8: 22 80 00 04 be,a 20096e8 <_Heap_Walk+0x50> 20096dc: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 return true; 20096e0: 10 80 01 2a b 2009b88 <_Heap_Walk+0x4f0> 20096e4: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 20096e8: da 06 20 18 ld [ %i0 + 0x18 ], %o5 20096ec: c4 23 a0 5c st %g2, [ %sp + 0x5c ] 20096f0: f2 23 a0 60 st %i1, [ %sp + 0x60 ] 20096f4: e0 23 a0 64 st %l0, [ %sp + 0x64 ] 20096f8: c4 06 20 08 ld [ %i0 + 8 ], %g2 20096fc: 90 10 00 16 mov %l6, %o0 2009700: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 2009704: c4 06 20 0c ld [ %i0 + 0xc ], %g2 2009708: 92 10 20 00 clr %o1 200970c: c4 23 a0 6c st %g2, [ %sp + 0x6c ] 2009710: 15 00 80 6c sethi %hi(0x201b000), %o2 2009714: 96 10 00 1c mov %i4, %o3 2009718: 94 12 a2 18 or %o2, 0x218, %o2 200971c: 9f c7 40 00 call %i5 2009720: 98 10 00 1b mov %i3, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2009724: 80 a7 20 00 cmp %i4, 0 2009728: 12 80 00 07 bne 2009744 <_Heap_Walk+0xac> 200972c: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 2009730: 15 00 80 6c sethi %hi(0x201b000), %o2 2009734: 90 10 00 16 mov %l6, %o0 2009738: 92 10 20 01 mov 1, %o1 200973c: 10 80 00 37 b 2009818 <_Heap_Walk+0x180> 2009740: 94 12 a2 b0 or %o2, 0x2b0, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2009744: 22 80 00 08 be,a 2009764 <_Heap_Walk+0xcc> 2009748: 90 10 00 1b mov %i3, %o0 (*printer)( 200974c: 15 00 80 6c sethi %hi(0x201b000), %o2 2009750: 90 10 00 16 mov %l6, %o0 2009754: 92 10 20 01 mov 1, %o1 2009758: 94 12 a2 c8 or %o2, 0x2c8, %o2 200975c: 10 80 01 12 b 2009ba4 <_Heap_Walk+0x50c> 2009760: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009764: 7f ff e1 08 call 2001b84 <.urem> 2009768: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 200976c: 80 a2 20 00 cmp %o0, 0 2009770: 22 80 00 08 be,a 2009790 <_Heap_Walk+0xf8> 2009774: 90 06 60 08 add %i1, 8, %o0 (*printer)( 2009778: 15 00 80 6c sethi %hi(0x201b000), %o2 200977c: 90 10 00 16 mov %l6, %o0 2009780: 92 10 20 01 mov 1, %o1 2009784: 94 12 a2 e8 or %o2, 0x2e8, %o2 2009788: 10 80 01 07 b 2009ba4 <_Heap_Walk+0x50c> 200978c: 96 10 00 1b mov %i3, %o3 2009790: 7f ff e0 fd call 2001b84 <.urem> 2009794: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 2009798: 80 a2 20 00 cmp %o0, 0 200979c: 22 80 00 07 be,a 20097b8 <_Heap_Walk+0x120> 20097a0: c4 06 60 04 ld [ %i1 + 4 ], %g2 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20097a4: 15 00 80 6c sethi %hi(0x201b000), %o2 20097a8: 90 10 00 16 mov %l6, %o0 20097ac: 92 10 20 01 mov 1, %o1 20097b0: 10 80 00 fc b 2009ba0 <_Heap_Walk+0x508> 20097b4: 94 12 a3 10 or %o2, 0x310, %o2 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20097b8: 80 88 a0 01 btst 1, %g2 20097bc: 32 80 00 07 bne,a 20097d8 <_Heap_Walk+0x140> 20097c0: f4 04 20 04 ld [ %l0 + 4 ], %i2 (*printer)( 20097c4: 15 00 80 6c sethi %hi(0x201b000), %o2 20097c8: 90 10 00 16 mov %l6, %o0 20097cc: 92 10 20 01 mov 1, %o1 20097d0: 10 80 00 12 b 2009818 <_Heap_Walk+0x180> 20097d4: 94 12 a3 48 or %o2, 0x348, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20097d8: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20097dc: b4 04 00 1a add %l0, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20097e0: c4 06 a0 04 ld [ %i2 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20097e4: 80 88 a0 01 btst 1, %g2 20097e8: 12 80 00 07 bne 2009804 <_Heap_Walk+0x16c> 20097ec: 80 a6 80 19 cmp %i2, %i1 (*printer)( 20097f0: 15 00 80 6c sethi %hi(0x201b000), %o2 20097f4: 90 10 00 16 mov %l6, %o0 20097f8: 92 10 20 01 mov 1, %o1 20097fc: 10 80 00 07 b 2009818 <_Heap_Walk+0x180> 2009800: 94 12 a3 78 or %o2, 0x378, %o2 ); return false; } if ( 2009804: 02 80 00 0a be 200982c <_Heap_Walk+0x194> 2009808: 15 00 80 6c sethi %hi(0x201b000), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 200980c: 90 10 00 16 mov %l6, %o0 2009810: 92 10 20 01 mov 1, %o1 2009814: 94 12 a3 90 or %o2, 0x390, %o2 2009818: 9f c7 40 00 call %i5 200981c: b0 10 20 00 clr %i0 2009820: b0 0e 20 ff and %i0, 0xff, %i0 2009824: 81 c7 e0 08 ret 2009828: 81 e8 00 00 restore int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 200982c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2009830: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2009834: 10 80 00 30 b 20098f4 <_Heap_Walk+0x25c> 2009838: b2 10 00 18 mov %i0, %i1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200983c: 80 a0 c0 0b cmp %g3, %o3 2009840: 18 80 00 05 bgu 2009854 <_Heap_Walk+0x1bc> 2009844: 84 10 20 00 clr %g2 2009848: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200984c: 80 a0 80 0b cmp %g2, %o3 2009850: 84 60 3f ff subx %g0, -1, %g2 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2009854: 80 a0 a0 00 cmp %g2, 0 2009858: 32 80 00 07 bne,a 2009874 <_Heap_Walk+0x1dc> 200985c: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 2009860: 15 00 80 6c sethi %hi(0x201b000), %o2 2009864: 90 10 00 16 mov %l6, %o0 2009868: 92 10 20 01 mov 1, %o1 200986c: 10 80 00 ce b 2009ba4 <_Heap_Walk+0x50c> 2009870: 94 12 a3 c0 or %o2, 0x3c0, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009874: d6 27 bf fc st %o3, [ %fp + -4 ] 2009878: 7f ff e0 c3 call 2001b84 <.urem> 200987c: 92 10 00 11 mov %l1, %o1 ); return false; } if ( 2009880: 80 a2 20 00 cmp %o0, 0 2009884: 02 80 00 07 be 20098a0 <_Heap_Walk+0x208> 2009888: d6 07 bf fc ld [ %fp + -4 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 200988c: 15 00 80 6c sethi %hi(0x201b000), %o2 2009890: 90 10 00 16 mov %l6, %o0 2009894: 92 10 20 01 mov 1, %o1 2009898: 10 80 00 c3 b 2009ba4 <_Heap_Walk+0x50c> 200989c: 94 12 a3 e0 or %o2, 0x3e0, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20098a0: c4 02 e0 04 ld [ %o3 + 4 ], %g2 20098a4: 84 08 bf fe and %g2, -2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20098a8: 84 02 c0 02 add %o3, %g2, %g2 20098ac: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20098b0: 80 88 a0 01 btst 1, %g2 20098b4: 22 80 00 07 be,a 20098d0 <_Heap_Walk+0x238> 20098b8: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 20098bc: 15 00 80 6d sethi %hi(0x201b400), %o2 20098c0: 90 10 00 16 mov %l6, %o0 20098c4: 92 10 20 01 mov 1, %o1 20098c8: 10 80 00 b7 b 2009ba4 <_Heap_Walk+0x50c> 20098cc: 94 12 a0 10 or %o2, 0x10, %o2 ); return false; } if ( free_block->prev != prev_block ) { 20098d0: 80 a3 00 19 cmp %o4, %i1 20098d4: 02 80 00 07 be 20098f0 <_Heap_Walk+0x258> 20098d8: b2 10 00 0b mov %o3, %i1 (*printer)( 20098dc: 15 00 80 6d sethi %hi(0x201b400), %o2 20098e0: 90 10 00 16 mov %l6, %o0 20098e4: 92 10 20 01 mov 1, %o1 20098e8: 10 80 00 4d b 2009a1c <_Heap_Walk+0x384> 20098ec: 94 12 a0 30 or %o2, 0x30, %o2 return false; } prev_block = free_block; free_block = free_block->next; 20098f0: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 20098f4: 80 a2 c0 18 cmp %o3, %i0 20098f8: 32 bf ff d1 bne,a 200983c <_Heap_Walk+0x1a4> 20098fc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009900: 2b 00 80 6d sethi %hi(0x201b400), %l5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2009904: b2 10 00 1a mov %i2, %i1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009908: aa 15 61 30 or %l5, 0x130, %l5 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 200990c: 23 00 80 6d sethi %hi(0x201b400), %l1 2009910: 2f 00 80 6c sethi %hi(0x201b000), %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009914: e4 06 60 04 ld [ %i1 + 4 ], %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009918: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 200991c: 9e 1e 40 10 xor %i1, %l0, %o7 2009920: 80 a0 00 0f cmp %g0, %o7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009924: a8 0c bf fe and %l2, -2, %l4 2009928: 9a 40 20 00 addx %g0, 0, %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200992c: a6 06 40 14 add %i1, %l4, %l3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009930: a4 0c a0 01 and %l2, 1, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009934: 80 a3 00 13 cmp %o4, %l3 2009938: 18 80 00 05 bgu 200994c <_Heap_Walk+0x2b4> <== NEVER TAKEN 200993c: 9e 10 20 00 clr %o7 2009940: de 06 20 24 ld [ %i0 + 0x24 ], %o7 2009944: 80 a3 c0 13 cmp %o7, %l3 2009948: 9e 60 3f ff subx %g0, -1, %o7 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200994c: 80 a3 e0 00 cmp %o7, 0 2009950: 32 80 00 07 bne,a 200996c <_Heap_Walk+0x2d4> 2009954: da 27 bf f8 st %o5, [ %fp + -8 ] (*printer)( 2009958: 15 00 80 6d sethi %hi(0x201b400), %o2 200995c: 90 10 00 16 mov %l6, %o0 2009960: 92 10 20 01 mov 1, %o1 2009964: 10 80 00 2c b 2009a14 <_Heap_Walk+0x37c> 2009968: 94 12 a0 68 or %o2, 0x68, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200996c: 90 10 00 14 mov %l4, %o0 2009970: 7f ff e0 85 call 2001b84 <.urem> 2009974: 92 10 00 1c mov %i4, %o1 2009978: da 07 bf f8 ld [ %fp + -8 ], %o5 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 200997c: 80 a2 20 00 cmp %o0, 0 2009980: 02 80 00 0c be 20099b0 <_Heap_Walk+0x318> 2009984: 9e 0b 60 ff and %o5, 0xff, %o7 2009988: 80 a3 e0 00 cmp %o7, 0 200998c: 02 80 00 19 be 20099f0 <_Heap_Walk+0x358> 2009990: 80 a6 40 13 cmp %i1, %l3 (*printer)( 2009994: 15 00 80 6d sethi %hi(0x201b400), %o2 2009998: 90 10 00 16 mov %l6, %o0 200999c: 92 10 20 01 mov 1, %o1 20099a0: 94 12 a0 98 or %o2, 0x98, %o2 20099a4: 96 10 00 19 mov %i1, %o3 20099a8: 10 80 00 1d b 2009a1c <_Heap_Walk+0x384> 20099ac: 98 10 00 14 mov %l4, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20099b0: 80 a3 e0 00 cmp %o7, 0 20099b4: 02 80 00 0f be 20099f0 <_Heap_Walk+0x358> 20099b8: 80 a6 40 13 cmp %i1, %l3 20099bc: 80 a5 00 1b cmp %l4, %i3 20099c0: 1a 80 00 0c bcc 20099f0 <_Heap_Walk+0x358> 20099c4: 80 a6 40 13 cmp %i1, %l3 (*printer)( 20099c8: 90 10 00 16 mov %l6, %o0 20099cc: 92 10 20 01 mov 1, %o1 20099d0: 15 00 80 6d sethi %hi(0x201b400), %o2 20099d4: 96 10 00 19 mov %i1, %o3 20099d8: 94 12 a0 c8 or %o2, 0xc8, %o2 20099dc: 98 10 00 14 mov %l4, %o4 20099e0: 9f c7 40 00 call %i5 20099e4: 9a 10 00 1b mov %i3, %o5 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 20099e8: 10 80 00 68 b 2009b88 <_Heap_Walk+0x4f0> 20099ec: b0 10 20 00 clr %i0 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20099f0: 2a 80 00 10 bcs,a 2009a30 <_Heap_Walk+0x398> 20099f4: de 04 e0 04 ld [ %l3 + 4 ], %o7 20099f8: 80 8b 60 ff btst 0xff, %o5 20099fc: 22 80 00 0d be,a 2009a30 <_Heap_Walk+0x398> 2009a00: de 04 e0 04 ld [ %l3 + 4 ], %o7 (*printer)( 2009a04: 15 00 80 6d sethi %hi(0x201b400), %o2 2009a08: 90 10 00 16 mov %l6, %o0 2009a0c: 92 10 20 01 mov 1, %o1 2009a10: 94 12 a0 f8 or %o2, 0xf8, %o2 2009a14: 96 10 00 19 mov %i1, %o3 2009a18: 98 10 00 13 mov %l3, %o4 2009a1c: 9f c7 40 00 call %i5 2009a20: b0 10 20 00 clr %i0 2009a24: b0 0e 20 ff and %i0, 0xff, %i0 2009a28: 81 c7 e0 08 ret 2009a2c: 81 e8 00 00 restore ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2009a30: 80 8b e0 01 btst 1, %o7 2009a34: 12 80 00 3f bne 2009b30 <_Heap_Walk+0x498> 2009a38: 90 10 00 16 mov %l6, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2009a3c: da 06 60 0c ld [ %i1 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009a40: d8 06 20 08 ld [ %i0 + 8 ], %o4 2009a44: 80 a3 40 0c cmp %o5, %o4 2009a48: 02 80 00 08 be 2009a68 <_Heap_Walk+0x3d0> 2009a4c: de 06 20 0c ld [ %i0 + 0xc ], %o7 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2009a50: 80 a3 40 18 cmp %o5, %i0 2009a54: 12 80 00 07 bne 2009a70 <_Heap_Walk+0x3d8> 2009a58: 96 14 61 a0 or %l1, 0x1a0, %o3 2009a5c: 17 00 80 6c sethi %hi(0x201b000), %o3 2009a60: 10 80 00 04 b 2009a70 <_Heap_Walk+0x3d8> 2009a64: 96 12 e1 e8 or %o3, 0x1e8, %o3 ! 201b1e8 <__log2table+0x130> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009a68: 03 00 80 6c sethi %hi(0x201b000), %g1 2009a6c: 96 10 61 d8 or %g1, 0x1d8, %o3 ! 201b1d8 <__log2table+0x120> block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? 2009a70: d8 06 60 08 ld [ %i1 + 8 ], %o4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009a74: 80 a3 00 0f cmp %o4, %o7 2009a78: 02 80 00 06 be 2009a90 <_Heap_Walk+0x3f8> 2009a7c: 80 a3 00 18 cmp %o4, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2009a80: 12 80 00 06 bne 2009a98 <_Heap_Walk+0x400> 2009a84: 9e 14 61 a0 or %l1, 0x1a0, %o7 2009a88: 10 80 00 04 b 2009a98 <_Heap_Walk+0x400> 2009a8c: 9e 15 e2 08 or %l7, 0x208, %o7 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009a90: 03 00 80 6c sethi %hi(0x201b000), %g1 2009a94: 9e 10 61 f8 or %g1, 0x1f8, %o7 ! 201b1f8 <__log2table+0x140> 2009a98: d6 23 a0 5c st %o3, [ %sp + 0x5c ] 2009a9c: d8 23 a0 60 st %o4, [ %sp + 0x60 ] 2009aa0: de 23 a0 64 st %o7, [ %sp + 0x64 ] 2009aa4: 90 10 00 16 mov %l6, %o0 2009aa8: 92 10 20 00 clr %o1 2009aac: 94 10 00 15 mov %l5, %o2 2009ab0: 96 10 00 19 mov %i1, %o3 2009ab4: 9f c7 40 00 call %i5 2009ab8: 98 10 00 14 mov %l4, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2009abc: da 04 c0 00 ld [ %l3 ], %o5 2009ac0: 80 a5 00 0d cmp %l4, %o5 2009ac4: 02 80 00 0c be 2009af4 <_Heap_Walk+0x45c> 2009ac8: 80 a4 a0 00 cmp %l2, 0 (*printer)( 2009acc: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 2009ad0: 90 10 00 16 mov %l6, %o0 2009ad4: 92 10 20 01 mov 1, %o1 2009ad8: 15 00 80 6d sethi %hi(0x201b400), %o2 2009adc: 96 10 00 19 mov %i1, %o3 2009ae0: 94 12 a1 68 or %o2, 0x168, %o2 2009ae4: 9f c7 40 00 call %i5 2009ae8: 98 10 00 14 mov %l4, %o4 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2009aec: 10 bf ff ce b 2009a24 <_Heap_Walk+0x38c> 2009af0: b0 10 20 00 clr %i0 ); return false; } if ( !prev_used ) { 2009af4: 32 80 00 0a bne,a 2009b1c <_Heap_Walk+0x484> 2009af8: c6 06 20 08 ld [ %i0 + 8 ], %g3 (*printer)( 2009afc: 15 00 80 6d sethi %hi(0x201b400), %o2 2009b00: 90 10 00 16 mov %l6, %o0 2009b04: 92 10 20 01 mov 1, %o1 2009b08: 10 80 00 26 b 2009ba0 <_Heap_Walk+0x508> 2009b0c: 94 12 a1 a8 or %o2, 0x1a8, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2009b10: 22 80 00 19 be,a 2009b74 <_Heap_Walk+0x4dc> 2009b14: b2 10 00 13 mov %l3, %i1 return true; } free_block = free_block->next; 2009b18: c6 00 e0 08 ld [ %g3 + 8 ], %g3 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2009b1c: 80 a0 c0 18 cmp %g3, %i0 2009b20: 12 bf ff fc bne 2009b10 <_Heap_Walk+0x478> 2009b24: 80 a0 c0 19 cmp %g3, %i1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2009b28: 10 80 00 1b b 2009b94 <_Heap_Walk+0x4fc> 2009b2c: 15 00 80 6d sethi %hi(0x201b400), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2009b30: 80 a4 a0 00 cmp %l2, 0 2009b34: 02 80 00 09 be 2009b58 <_Heap_Walk+0x4c0> 2009b38: 92 10 20 00 clr %o1 (*printer)( 2009b3c: 15 00 80 6d sethi %hi(0x201b400), %o2 2009b40: 96 10 00 19 mov %i1, %o3 2009b44: 94 12 a1 d8 or %o2, 0x1d8, %o2 2009b48: 9f c7 40 00 call %i5 2009b4c: 98 10 00 14 mov %l4, %o4 2009b50: 10 80 00 09 b 2009b74 <_Heap_Walk+0x4dc> 2009b54: b2 10 00 13 mov %l3, %i1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2009b58: da 06 40 00 ld [ %i1 ], %o5 2009b5c: 15 00 80 6d sethi %hi(0x201b400), %o2 2009b60: 96 10 00 19 mov %i1, %o3 2009b64: 94 12 a1 f0 or %o2, 0x1f0, %o2 2009b68: 9f c7 40 00 call %i5 2009b6c: 98 10 00 14 mov %l4, %o4 2009b70: b2 10 00 13 mov %l3, %i1 block->prev_size ); } block = next_block; } while ( block != first_block ); 2009b74: 80 a4 c0 1a cmp %l3, %i2 2009b78: 32 bf ff 68 bne,a 2009918 <_Heap_Walk+0x280> 2009b7c: e4 06 60 04 ld [ %i1 + 4 ], %l2 2009b80: 10 80 00 02 b 2009b88 <_Heap_Walk+0x4f0> 2009b84: b0 10 20 01 mov 1, %i0 2009b88: b0 0e 20 ff and %i0, 0xff, %i0 2009b8c: 81 c7 e0 08 ret 2009b90: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2009b94: 90 10 00 16 mov %l6, %o0 2009b98: 92 10 20 01 mov 1, %o1 2009b9c: 94 12 a2 18 or %o2, 0x218, %o2 2009ba0: 96 10 00 19 mov %i1, %o3 2009ba4: 9f c7 40 00 call %i5 2009ba8: b0 10 20 00 clr %i0 2009bac: b0 0e 20 ff and %i0, 0xff, %i0 2009bb0: 81 c7 e0 08 ret 2009bb4: 81 e8 00 00 restore =============================================================================== 02008a8c <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2008a8c: 9d e3 bf 90 save %sp, -112, %sp Internal_errors_t error ) { User_extensions_Fatal_context ctx = { source, is_internal, error }; _User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor ); 2008a90: 13 00 80 2a sethi %hi(0x200a800), %o1 2008a94: 90 07 bf f4 add %fp, -12, %o0 2008a98: 92 12 62 e0 or %o1, 0x2e0, %o1 Internal_errors_Source source, bool is_internal, Internal_errors_t error ) { User_extensions_Fatal_context ctx = { source, is_internal, error }; 2008a9c: f0 27 bf f4 st %i0, [ %fp + -12 ] 2008aa0: f2 2f bf f8 stb %i1, [ %fp + -8 ] _User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor ); 2008aa4: 40 00 08 1a call 200ab0c <_User_extensions_Iterate> 2008aa8: f4 27 bf fc st %i2, [ %fp + -4 ] _User_extensions_Fatal( the_source, is_internal, the_error ); _Internal_errors_What_happened.the_source = the_source; 2008aac: 05 00 80 70 sethi %hi(0x201c000), %g2 <== NOT EXECUTED 2008ab0: 82 10 a2 80 or %g2, 0x280, %g1 ! 201c280 <_Internal_errors_What_happened><== NOT EXECUTED 2008ab4: f0 20 a2 80 st %i0, [ %g2 + 0x280 ] <== NOT EXECUTED _Internal_errors_What_happened.is_internal = is_internal; 2008ab8: f2 28 60 04 stb %i1, [ %g1 + 4 ] <== NOT EXECUTED _Internal_errors_What_happened.the_error = the_error; 2008abc: f4 20 60 08 st %i2, [ %g1 + 8 ] <== NOT EXECUTED RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; 2008ac0: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 2008ac4: 03 00 80 70 sethi %hi(0x201c000), %g1 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); 2008ac8: 7f ff e6 bf call 20025c4 <== NOT EXECUTED 2008acc: c4 20 62 8c st %g2, [ %g1 + 0x28c ] ! 201c28c <_System_state_Current><== NOT EXECUTED 2008ad0: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 2008ad4: 30 80 00 00 b,a 2008ad4 <_Internal_error_Occurred+0x48> <== NOT EXECUTED =============================================================================== 02008b40 <_Objects_Allocate>: #endif Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2008b40: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2008b44: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2008b48: 80 a0 60 00 cmp %g1, 0 2008b4c: 12 80 00 04 bne 2008b5c <_Objects_Allocate+0x1c> <== ALWAYS TAKEN 2008b50: ba 10 00 18 mov %i0, %i5 return NULL; 2008b54: 81 c7 e0 08 ret 2008b58: 91 e8 20 00 restore %g0, 0, %o0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2008b5c: b8 06 20 20 add %i0, 0x20, %i4 2008b60: 7f ff fd 85 call 2008174 <_Chain_Get> 2008b64: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2008b68: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2008b6c: 80 a0 60 00 cmp %g1, 0 2008b70: 02 80 00 1d be 2008be4 <_Objects_Allocate+0xa4> 2008b74: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2008b78: 80 a2 20 00 cmp %o0, 0 2008b7c: 32 80 00 0a bne,a 2008ba4 <_Objects_Allocate+0x64> 2008b80: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Objects_Extend_information( information ); 2008b84: 40 00 00 21 call 2008c08 <_Objects_Extend_information> 2008b88: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2008b8c: 7f ff fd 7a call 2008174 <_Chain_Get> 2008b90: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2008b94: b0 92 20 00 orcc %o0, 0, %i0 2008b98: 02 bf ff ef be 2008b54 <_Objects_Allocate+0x14> 2008b9c: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2008ba0: c4 07 60 08 ld [ %i5 + 8 ], %g2 2008ba4: d0 06 20 08 ld [ %i0 + 8 ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2008ba8: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2008bac: 03 00 00 3f sethi %hi(0xfc00), %g1 2008bb0: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff 2008bb4: 90 0a 00 01 and %o0, %g1, %o0 2008bb8: 82 08 80 01 and %g2, %g1, %g1 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2008bbc: 40 00 3a e2 call 2017744 <.udiv> 2008bc0: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2008bc4: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2008bc8: 91 2a 20 02 sll %o0, 2, %o0 2008bcc: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2008bd0: 84 00 bf ff add %g2, -1, %g2 2008bd4: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2008bd8: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 2008bdc: 82 00 7f ff add %g1, -1, %g1 2008be0: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2008be4: 81 c7 e0 08 ret 2008be8: 81 e8 00 00 restore =============================================================================== 02008f70 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2008f70: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2008f74: 80 a6 60 00 cmp %i1, 0 2008f78: 12 80 00 04 bne 2008f88 <_Objects_Get_information+0x18> 2008f7c: 01 00 00 00 nop return NULL; 2008f80: 81 c7 e0 08 ret 2008f84: 91 e8 20 00 restore %g0, 0, %o0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2008f88: 40 00 10 37 call 200d064 <_Objects_API_maximum_class> 2008f8c: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2008f90: 80 a2 20 00 cmp %o0, 0 2008f94: 02 bf ff fb be 2008f80 <_Objects_Get_information+0x10> 2008f98: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2008f9c: 18 bf ff f9 bgu 2008f80 <_Objects_Get_information+0x10> 2008fa0: 03 00 80 6f sethi %hi(0x201bc00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2008fa4: b1 2e 20 02 sll %i0, 2, %i0 2008fa8: 82 10 63 e4 or %g1, 0x3e4, %g1 2008fac: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2008fb0: 80 a0 60 00 cmp %g1, 0 2008fb4: 02 bf ff f3 be 2008f80 <_Objects_Get_information+0x10> <== NEVER TAKEN 2008fb8: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2008fbc: f0 00 40 19 ld [ %g1 + %i1 ], %i0 if ( !info ) 2008fc0: 80 a6 20 00 cmp %i0, 0 2008fc4: 02 bf ff ef be 2008f80 <_Objects_Get_information+0x10> <== NEVER TAKEN 2008fc8: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2008fcc: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2008fd0: 80 a0 60 00 cmp %g1, 0 2008fd4: 02 bf ff eb be 2008f80 <_Objects_Get_information+0x10> 2008fd8: 01 00 00 00 nop return NULL; #endif return info; } 2008fdc: 81 c7 e0 08 ret 2008fe0: 81 e8 00 00 restore =============================================================================== 0201b2b8 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201b2b8: c2 02 20 08 ld [ %o0 + 8 ], %g1 201b2bc: 92 22 40 01 sub %o1, %g1, %o1 if ( information->maximum >= index ) { 201b2c0: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201b2c4: 92 02 60 01 inc %o1 if ( information->maximum >= index ) { 201b2c8: 80 a0 40 09 cmp %g1, %o1 201b2cc: 0a 80 00 09 bcs 201b2f0 <_Objects_Get_no_protection+0x38> 201b2d0: 93 2a 60 02 sll %o1, 2, %o1 if ( (the_object = information->local_table[ index ]) != NULL ) { 201b2d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 201b2d8: d0 00 40 09 ld [ %g1 + %o1 ], %o0 201b2dc: 80 a2 20 00 cmp %o0, 0 201b2e0: 02 80 00 05 be 201b2f4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 201b2e4: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 201b2e8: 81 c3 e0 08 retl 201b2ec: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 201b2f0: 82 10 20 01 mov 1, %g1 return NULL; 201b2f4: 90 10 20 00 clr %o0 } 201b2f8: 81 c3 e0 08 retl 201b2fc: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 0200d078 <_Objects_Id_to_name>: Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 200d078: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 200d07c: 80 a6 20 00 cmp %i0, 0 200d080: 12 80 00 06 bne 200d098 <_Objects_Id_to_name+0x20> 200d084: 83 36 20 18 srl %i0, 0x18, %g1 200d088: 03 00 80 b1 sethi %hi(0x202c400), %g1 200d08c: c2 00 60 d0 ld [ %g1 + 0xd0 ], %g1 ! 202c4d0 <_Per_CPU_Information+0x10> 200d090: f0 00 60 08 ld [ %g1 + 8 ], %i0 200d094: 83 36 20 18 srl %i0, 0x18, %g1 200d098: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 200d09c: 84 00 7f ff add %g1, -1, %g2 200d0a0: 80 a0 a0 02 cmp %g2, 2 200d0a4: 08 80 00 14 bleu 200d0f4 <_Objects_Id_to_name+0x7c> 200d0a8: 83 28 60 02 sll %g1, 2, %g1 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; 200d0ac: 81 c7 e0 08 ret 200d0b0: 91 e8 20 03 restore %g0, 3, %o0 if ( !_Objects_Information_table[ the_api ] ) return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 200d0b4: 85 28 a0 02 sll %g2, 2, %g2 200d0b8: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 200d0bc: 80 a2 20 00 cmp %o0, 0 200d0c0: 02 bf ff fb be 200d0ac <_Objects_Id_to_name+0x34> <== NEVER TAKEN 200d0c4: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 200d0c8: 7f ff ff cf call 200d004 <_Objects_Get> 200d0cc: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 200d0d0: 80 a2 20 00 cmp %o0, 0 200d0d4: 02 bf ff f6 be 200d0ac <_Objects_Id_to_name+0x34> 200d0d8: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200d0dc: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 200d0e0: b0 10 20 00 clr %i0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 200d0e4: 40 00 03 c5 call 200dff8 <_Thread_Enable_dispatch> 200d0e8: c2 26 40 00 st %g1, [ %i1 ] 200d0ec: 81 c7 e0 08 ret 200d0f0: 81 e8 00 00 restore the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200d0f4: 05 00 80 b0 sethi %hi(0x202c000), %g2 200d0f8: 84 10 a1 d4 or %g2, 0x1d4, %g2 ! 202c1d4 <_Objects_Information_table> 200d0fc: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200d100: 80 a0 60 00 cmp %g1, 0 200d104: 12 bf ff ec bne 200d0b4 <_Objects_Id_to_name+0x3c> 200d108: 85 36 20 1b srl %i0, 0x1b, %g2 200d10c: 30 bf ff e8 b,a 200d0ac <_Objects_Id_to_name+0x34> =============================================================================== 0200a15c <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200a15c: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 200a160: 80 a6 60 00 cmp %i1, 0 200a164: 02 80 00 69 be 200a308 <_RBTree_Extract_unprotected+0x1ac> 200a168: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 200a16c: c2 06 20 08 ld [ %i0 + 8 ], %g1 200a170: 80 a6 40 01 cmp %i1, %g1 200a174: 32 80 00 07 bne,a 200a190 <_RBTree_Extract_unprotected+0x34> 200a178: c2 06 20 0c ld [ %i0 + 0xc ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_RIGHT ); 200a17c: 90 10 00 19 mov %i1, %o0 200a180: 40 00 01 31 call 200a644 <_RBTree_Next_unprotected> 200a184: 92 10 20 01 mov 1, %o1 RBTree_Node *next; next = _RBTree_Successor_unprotected(the_node); the_rbtree->first[RBT_LEFT] = next; 200a188: d0 26 20 08 st %o0, [ %i0 + 8 ] } /* Check if max needs to be updated. min=max for 1 element trees so * do not use else if here. */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 200a18c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200a190: 80 a6 40 01 cmp %i1, %g1 200a194: 32 80 00 07 bne,a 200a1b0 <_RBTree_Extract_unprotected+0x54> 200a198: fa 06 60 04 ld [ %i1 + 4 ], %i5 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_LEFT ); 200a19c: 90 10 00 19 mov %i1, %o0 200a1a0: 40 00 01 29 call 200a644 <_RBTree_Next_unprotected> 200a1a4: 92 10 20 00 clr %o1 RBTree_Node *previous; previous = _RBTree_Predecessor_unprotected(the_node); the_rbtree->first[RBT_RIGHT] = previous; 200a1a8: d0 26 20 0c st %o0, [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200a1ac: fa 06 60 04 ld [ %i1 + 4 ], %i5 200a1b0: 80 a7 60 00 cmp %i5, 0 200a1b4: 02 80 00 36 be 200a28c <_RBTree_Extract_unprotected+0x130> 200a1b8: f8 06 60 08 ld [ %i1 + 8 ], %i4 200a1bc: 80 a7 20 00 cmp %i4, 0 200a1c0: 32 80 00 05 bne,a 200a1d4 <_RBTree_Extract_unprotected+0x78> 200a1c4: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a1c8: 10 80 00 35 b 200a29c <_RBTree_Extract_unprotected+0x140> 200a1cc: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 200a1d0: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a1d4: 80 a0 60 00 cmp %g1, 0 200a1d8: 32 bf ff fe bne,a 200a1d0 <_RBTree_Extract_unprotected+0x74> 200a1dc: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 200a1e0: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 200a1e4: 80 a7 20 00 cmp %i4, 0 200a1e8: 02 80 00 05 be 200a1fc <_RBTree_Extract_unprotected+0xa0> 200a1ec: 01 00 00 00 nop leaf->parent = target->parent; 200a1f0: c2 07 40 00 ld [ %i5 ], %g1 200a1f4: 10 80 00 04 b 200a204 <_RBTree_Extract_unprotected+0xa8> 200a1f8: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 200a1fc: 7f ff ff 73 call 2009fc8 <_RBTree_Extract_validate_unprotected> 200a200: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 200a204: c4 07 40 00 ld [ %i5 ], %g2 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 200a208: c2 07 60 0c ld [ %i5 + 0xc ], %g1 dir = target != target->parent->child[0]; 200a20c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a210: 86 1f 40 03 xor %i5, %g3, %g3 200a214: 80 a0 00 03 cmp %g0, %g3 200a218: 86 40 20 00 addx %g0, 0, %g3 target->parent->child[dir] = leaf; 200a21c: 87 28 e0 02 sll %g3, 2, %g3 200a220: 84 00 80 03 add %g2, %g3, %g2 200a224: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200a228: c4 06 40 00 ld [ %i1 ], %g2 200a22c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a230: 86 1e 40 03 xor %i1, %g3, %g3 200a234: 80 a0 00 03 cmp %g0, %g3 200a238: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = target; 200a23c: 87 28 e0 02 sll %g3, 2, %g3 200a240: 84 00 80 03 add %g2, %g3, %g2 200a244: fa 20 a0 04 st %i5, [ %g2 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 200a248: c4 06 60 08 ld [ %i1 + 8 ], %g2 200a24c: c4 27 60 08 st %g2, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 200a250: c4 06 60 08 ld [ %i1 + 8 ], %g2 200a254: 80 a0 a0 00 cmp %g2, 0 200a258: 32 80 00 02 bne,a 200a260 <_RBTree_Extract_unprotected+0x104><== ALWAYS TAKEN 200a25c: fa 20 80 00 st %i5, [ %g2 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 200a260: c4 06 60 04 ld [ %i1 + 4 ], %g2 200a264: c4 27 60 04 st %g2, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 200a268: c4 06 60 04 ld [ %i1 + 4 ], %g2 200a26c: 80 a0 a0 00 cmp %g2, 0 200a270: 32 80 00 02 bne,a 200a278 <_RBTree_Extract_unprotected+0x11c> 200a274: fa 20 80 00 st %i5, [ %g2 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200a278: c4 06 40 00 ld [ %i1 ], %g2 200a27c: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 200a280: c4 06 60 0c ld [ %i1 + 0xc ], %g2 200a284: 10 80 00 14 b 200a2d4 <_RBTree_Extract_unprotected+0x178> 200a288: c4 27 60 0c st %g2, [ %i5 + 0xc ] * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 200a28c: 80 a7 20 00 cmp %i4, 0 200a290: 32 80 00 04 bne,a 200a2a0 <_RBTree_Extract_unprotected+0x144> 200a294: c2 06 40 00 ld [ %i1 ], %g1 200a298: 30 80 00 04 b,a 200a2a8 <_RBTree_Extract_unprotected+0x14c> leaf->parent = the_node->parent; 200a29c: c2 06 40 00 ld [ %i1 ], %g1 200a2a0: 10 80 00 04 b 200a2b0 <_RBTree_Extract_unprotected+0x154> 200a2a4: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 200a2a8: 7f ff ff 48 call 2009fc8 <_RBTree_Extract_validate_unprotected> 200a2ac: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200a2b0: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 200a2b4: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200a2b8: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a2bc: 86 1e 40 03 xor %i1, %g3, %g3 200a2c0: 80 a0 00 03 cmp %g0, %g3 200a2c4: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 200a2c8: 87 28 e0 02 sll %g3, 2, %g3 200a2cc: 84 00 80 03 add %g2, %g3, %g2 200a2d0: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 200a2d4: 80 a0 60 00 cmp %g1, 0 200a2d8: 32 80 00 06 bne,a 200a2f0 <_RBTree_Extract_unprotected+0x194> 200a2dc: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 200a2e0: 80 a7 20 00 cmp %i4, 0 200a2e4: 32 80 00 02 bne,a 200a2ec <_RBTree_Extract_unprotected+0x190> 200a2e8: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 200a2ec: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 200a2f0: c0 26 60 08 clr [ %i1 + 8 ] 200a2f4: c0 26 60 04 clr [ %i1 + 4 ] 200a2f8: 80 a0 60 00 cmp %g1, 0 200a2fc: 02 80 00 03 be 200a308 <_RBTree_Extract_unprotected+0x1ac> 200a300: c0 26 40 00 clr [ %i1 ] 200a304: c0 20 60 0c clr [ %g1 + 0xc ] 200a308: 81 c7 e0 08 ret 200a30c: 81 e8 00 00 restore =============================================================================== 0200b350 <_RBTree_Initialize>: void *starting_address, size_t number_nodes, size_t node_size, bool is_unique ) { 200b350: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 200b354: 80 a6 20 00 cmp %i0, 0 200b358: 02 80 00 10 be 200b398 <_RBTree_Initialize+0x48> <== NEVER TAKEN 200b35c: 01 00 00 00 nop RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 200b360: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 200b364: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 200b368: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 200b36c: c0 26 20 0c clr [ %i0 + 0xc ] the_rbtree->compare_function = compare_function; 200b370: f2 26 20 10 st %i1, [ %i0 + 0x10 ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b374: 10 80 00 06 b 200b38c <_RBTree_Initialize+0x3c> 200b378: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ] _RBTree_Insert_unprotected(the_rbtree, next); 200b37c: 90 10 00 18 mov %i0, %o0 200b380: 7f ff ff 2e call 200b038 <_RBTree_Insert_unprotected> 200b384: b4 06 80 1c add %i2, %i4, %i2 200b388: b6 06 ff ff add %i3, -1, %i3 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b38c: 80 a6 e0 00 cmp %i3, 0 200b390: 12 bf ff fb bne 200b37c <_RBTree_Initialize+0x2c> 200b394: 92 10 00 1a mov %i2, %o1 200b398: 81 c7 e0 08 ret 200b39c: 81 e8 00 00 restore =============================================================================== 0200a3b0 <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200a3b0: 9d e3 bf a0 save %sp, -96, %sp if(!the_node) return (RBTree_Node*)-1; 200a3b4: 80 a6 60 00 cmp %i1, 0 200a3b8: 02 80 00 7c be 200a5a8 <_RBTree_Insert_unprotected+0x1f8> 200a3bc: ba 10 00 18 mov %i0, %i5 RBTree_Node *iter_node = the_rbtree->root; 200a3c0: f0 06 20 04 ld [ %i0 + 4 ], %i0 int compare_result; if (!iter_node) { /* special case: first node inserted */ 200a3c4: b6 96 20 00 orcc %i0, 0, %i3 200a3c8: 32 80 00 0c bne,a 200a3f8 <_RBTree_Insert_unprotected+0x48> 200a3cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 the_node->color = RBT_BLACK; 200a3d0: c0 26 60 0c clr [ %i1 + 0xc ] the_rbtree->root = the_node; 200a3d4: f2 27 60 04 st %i1, [ %i5 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 200a3d8: f2 27 60 0c st %i1, [ %i5 + 0xc ] 200a3dc: f2 27 60 08 st %i1, [ %i5 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 200a3e0: fa 26 40 00 st %i5, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200a3e4: c0 26 60 08 clr [ %i1 + 8 ] 200a3e8: c0 26 60 04 clr [ %i1 + 4 ] 200a3ec: 81 c7 e0 08 ret 200a3f0: 81 e8 00 00 restore } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 200a3f4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200a3f8: 90 10 00 19 mov %i1, %o0 200a3fc: 9f c0 40 00 call %g1 200a400: 92 10 00 18 mov %i0, %o1 if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200a404: c2 0f 60 14 ldub [ %i5 + 0x14 ], %g1 200a408: 80 a0 60 00 cmp %g1, 0 200a40c: 02 80 00 05 be 200a420 <_RBTree_Insert_unprotected+0x70> 200a410: b8 38 00 08 xnor %g0, %o0, %i4 200a414: 80 a2 20 00 cmp %o0, 0 200a418: 02 80 00 65 be 200a5ac <_RBTree_Insert_unprotected+0x1fc> 200a41c: 01 00 00 00 nop return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); 200a420: b9 37 20 1f srl %i4, 0x1f, %i4 if (!iter_node->child[dir]) { 200a424: 83 2f 20 02 sll %i4, 2, %g1 200a428: 82 06 00 01 add %i0, %g1, %g1 200a42c: f0 00 60 04 ld [ %g1 + 4 ], %i0 200a430: 80 a6 20 00 cmp %i0, 0 200a434: 32 bf ff f0 bne,a 200a3f4 <_RBTree_Insert_unprotected+0x44> 200a438: b6 10 00 18 mov %i0, %i3 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200a43c: c0 26 60 08 clr [ %i1 + 8 ] 200a440: c0 26 60 04 clr [ %i1 + 4 ] the_node->color = RBT_RED; 200a444: 84 10 20 01 mov 1, %g2 iter_node->child[dir] = the_node; 200a448: f2 20 60 04 st %i1, [ %g1 + 4 ] if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 200a44c: c4 26 60 0c st %g2, [ %i1 + 0xc ] iter_node->child[dir] = the_node; the_node->parent = iter_node; 200a450: f6 26 40 00 st %i3, [ %i1 ] /* update min/max */ compare_result = the_rbtree->compare_function( 200a454: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200a458: b6 07 20 02 add %i4, 2, %i3 200a45c: 85 2e e0 02 sll %i3, 2, %g2 200a460: d2 07 40 02 ld [ %i5 + %g2 ], %o1 200a464: 9f c0 40 00 call %g1 200a468: 90 10 00 19 mov %i1, %o0 the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || 200a46c: 80 a7 20 00 cmp %i4, 0 200a470: 12 80 00 06 bne 200a488 <_RBTree_Insert_unprotected+0xd8> 200a474: 80 a2 20 00 cmp %o0, 0 200a478: 36 80 00 3c bge,a 200a568 <_RBTree_Insert_unprotected+0x1b8> 200a47c: d0 06 40 00 ld [ %i1 ], %o0 (dir && _RBTree_Is_greater(compare_result)) ) { the_rbtree->first[dir] = the_node; 200a480: 10 80 00 04 b 200a490 <_RBTree_Insert_unprotected+0xe0> 200a484: b7 2e e0 02 sll %i3, 2, %i3 compare_result = the_rbtree->compare_function( the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || (dir && _RBTree_Is_greater(compare_result)) ) { 200a488: 04 80 00 37 ble 200a564 <_RBTree_Insert_unprotected+0x1b4> 200a48c: b7 2e e0 02 sll %i3, 2, %i3 the_rbtree->first[dir] = the_node; 200a490: 10 80 00 35 b 200a564 <_RBTree_Insert_unprotected+0x1b4> 200a494: f2 27 40 1b st %i1, [ %i5 + %i3 ] const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; 200a498: 02 80 00 13 be 200a4e4 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN 200a49c: 82 10 20 00 clr %g1 if(!(the_node->parent->parent->parent)) return NULL; 200a4a0: c2 07 40 00 ld [ %i5 ], %g1 200a4a4: 80 a0 60 00 cmp %g1, 0 200a4a8: 02 80 00 0f be 200a4e4 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN 200a4ac: 82 10 20 00 clr %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200a4b0: c2 07 60 04 ld [ %i5 + 4 ], %g1 200a4b4: 80 a2 00 01 cmp %o0, %g1 200a4b8: 22 80 00 02 be,a 200a4c0 <_RBTree_Insert_unprotected+0x110> 200a4bc: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a4c0: 80 a0 60 00 cmp %g1, 0 200a4c4: 02 80 00 09 be 200a4e8 <_RBTree_Insert_unprotected+0x138> 200a4c8: 84 10 20 00 clr %g2 200a4cc: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200a4d0: 80 a0 a0 01 cmp %g2, 1 200a4d4: 32 80 00 05 bne,a 200a4e8 <_RBTree_Insert_unprotected+0x138> 200a4d8: 84 10 20 00 clr %g2 200a4dc: 10 80 00 03 b 200a4e8 <_RBTree_Insert_unprotected+0x138> 200a4e0: 84 10 20 01 mov 1, %g2 200a4e4: 84 10 20 00 clr %g2 <== NOT EXECUTED while (_RBTree_Is_red(_RBTree_Parent(the_node))) { u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { 200a4e8: 80 a0 a0 00 cmp %g2, 0 200a4ec: 22 80 00 08 be,a 200a50c <_RBTree_Insert_unprotected+0x15c> 200a4f0: c2 07 60 04 ld [ %i5 + 4 ], %g1 the_node->parent->color = RBT_BLACK; 200a4f4: c0 22 20 0c clr [ %o0 + 0xc ] u->color = RBT_BLACK; 200a4f8: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 200a4fc: b2 10 00 1d mov %i5, %i1 200a500: 82 10 20 01 mov 1, %g1 200a504: 10 80 00 18 b 200a564 <_RBTree_Insert_unprotected+0x1b4> 200a508: c2 27 60 0c st %g1, [ %i5 + 0xc ] the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 200a50c: 82 1a 00 01 xor %o0, %g1, %g1 200a510: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200a514: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 200a518: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200a51c: 82 1e 40 01 xor %i1, %g1, %g1 200a520: 80 a0 00 01 cmp %g0, %g1 200a524: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 200a528: 80 a0 40 1c cmp %g1, %i4 200a52c: 22 80 00 08 be,a 200a54c <_RBTree_Insert_unprotected+0x19c> 200a530: c2 06 40 00 ld [ %i1 ], %g1 _RBTree_Rotate(the_node->parent, pdir); 200a534: 7f ff ff 80 call 200a334 <_RBTree_Rotate> 200a538: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 200a53c: 83 2f 20 02 sll %i4, 2, %g1 200a540: b2 06 40 01 add %i1, %g1, %i1 200a544: f2 06 60 04 ld [ %i1 + 4 ], %i1 } the_node->parent->color = RBT_BLACK; 200a548: c2 06 40 00 ld [ %i1 ], %g1 g->color = RBT_RED; 200a54c: 92 10 20 01 mov 1, %o1 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 200a550: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 200a554: d2 27 60 0c st %o1, [ %i5 + 0xc ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 200a558: 90 10 00 1d mov %i5, %o0 200a55c: 7f ff ff 76 call 200a334 <_RBTree_Rotate> 200a560: 92 22 40 1c sub %o1, %i4, %o1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( const RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200a564: d0 06 40 00 ld [ %i1 ], %o0 200a568: fa 02 00 00 ld [ %o0 ], %i5 200a56c: 80 a7 60 00 cmp %i5, 0 200a570: 22 80 00 06 be,a 200a588 <_RBTree_Insert_unprotected+0x1d8> 200a574: 82 10 20 00 clr %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a578: c2 02 20 0c ld [ %o0 + 0xc ], %g1 200a57c: 82 18 60 01 xor %g1, 1, %g1 200a580: 80 a0 00 01 cmp %g0, %g1 200a584: 82 60 3f ff subx %g0, -1, %g1 RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 200a588: 80 a0 60 00 cmp %g1, 0 200a58c: 12 bf ff c3 bne 200a498 <_RBTree_Insert_unprotected+0xe8> 200a590: 80 a7 60 00 cmp %i5, 0 /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200a594: 12 80 00 06 bne 200a5ac <_RBTree_Insert_unprotected+0x1fc> 200a598: 01 00 00 00 nop 200a59c: c0 26 60 0c clr [ %i1 + 0xc ] 200a5a0: 81 c7 e0 08 ret 200a5a4: 81 e8 00 00 restore RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { if(!the_node) return (RBTree_Node*)-1; 200a5a8: b0 10 3f ff mov -1, %i0 /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; } 200a5ac: 81 c7 e0 08 ret 200a5b0: 81 e8 00 00 restore =============================================================================== 0200a5e4 <_RBTree_Iterate_unprotected>: const RBTree_Control *rbtree, RBTree_Direction dir, RBTree_Visitor visitor, void *visitor_arg ) { 200a5e4: 9d e3 bf a0 save %sp, -96, %sp RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; 200a5e8: b8 10 20 00 clr %i4 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200a5ec: 80 a0 00 19 cmp %g0, %i1 200a5f0: 82 60 3f ff subx %g0, -1, %g1 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200a5f4: 82 00 60 02 add %g1, 2, %g1 200a5f8: 83 28 60 02 sll %g1, 2, %g1 while ( !stop && current != NULL ) { 200a5fc: 10 80 00 0a b 200a624 <_RBTree_Iterate_unprotected+0x40> 200a600: fa 06 00 01 ld [ %i0 + %g1 ], %i5 stop = (*visitor)( current, dir, visitor_arg ); 200a604: 92 10 00 19 mov %i1, %o1 200a608: 9f c6 80 00 call %i2 200a60c: 94 10 00 1b mov %i3, %o2 current = _RBTree_Next_unprotected( current, dir ); 200a610: 92 10 00 19 mov %i1, %o1 RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { stop = (*visitor)( current, dir, visitor_arg ); 200a614: b8 10 00 08 mov %o0, %i4 current = _RBTree_Next_unprotected( current, dir ); 200a618: 40 00 00 0b call 200a644 <_RBTree_Next_unprotected> 200a61c: 90 10 00 1d mov %i5, %o0 200a620: ba 10 00 08 mov %o0, %i5 { RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { 200a624: 80 a7 60 00 cmp %i5, 0 200a628: 02 80 00 05 be 200a63c <_RBTree_Iterate_unprotected+0x58> 200a62c: b8 1f 20 01 xor %i4, 1, %i4 200a630: 80 8f 20 ff btst 0xff, %i4 200a634: 12 bf ff f4 bne 200a604 <_RBTree_Iterate_unprotected+0x20><== ALWAYS TAKEN 200a638: 90 10 00 1d mov %i5, %o0 200a63c: 81 c7 e0 08 ret 200a640: 81 e8 00 00 restore =============================================================================== 02009f4c <_RBTree_Rotate>: RBTree_Node *the_node, RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; 2009f4c: 80 a2 20 00 cmp %o0, 0 2009f50: 02 80 00 1c be 2009fc0 <_RBTree_Rotate+0x74> <== NEVER TAKEN 2009f54: 80 a0 00 09 cmp %g0, %o1 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 2009f58: 86 60 3f ff subx %g0, -1, %g3 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 2009f5c: 87 28 e0 02 sll %g3, 2, %g3 2009f60: 86 02 00 03 add %o0, %g3, %g3 2009f64: c2 00 e0 04 ld [ %g3 + 4 ], %g1 2009f68: 80 a0 60 00 cmp %g1, 0 2009f6c: 02 80 00 15 be 2009fc0 <_RBTree_Rotate+0x74> <== NEVER TAKEN 2009f70: 93 2a 60 02 sll %o1, 2, %o1 c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 2009f74: 84 00 40 09 add %g1, %o1, %g2 2009f78: c8 00 a0 04 ld [ %g2 + 4 ], %g4 2009f7c: c8 20 e0 04 st %g4, [ %g3 + 4 ] if (c->child[dir]) 2009f80: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2009f84: 80 a0 a0 00 cmp %g2, 0 2009f88: 32 80 00 02 bne,a 2009f90 <_RBTree_Rotate+0x44> 2009f8c: d0 20 80 00 st %o0, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009f90: c4 02 00 00 ld [ %o0 ], %g2 the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2009f94: 92 00 40 09 add %g1, %o1, %o1 2009f98: d0 22 60 04 st %o0, [ %o1 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009f9c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 c->parent = the_node->parent; 2009fa0: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009fa4: 86 1a 00 03 xor %o0, %g3, %g3 c->parent = the_node->parent; the_node->parent = c; 2009fa8: c2 22 00 00 st %g1, [ %o0 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009fac: 80 a0 00 03 cmp %g0, %g3 2009fb0: 86 40 20 00 addx %g0, 0, %g3 2009fb4: 87 28 e0 02 sll %g3, 2, %g3 2009fb8: 86 00 80 03 add %g2, %g3, %g3 2009fbc: c2 20 e0 04 st %g1, [ %g3 + 4 ] 2009fc0: 81 c3 e0 08 retl =============================================================================== 02009efc <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; 2009efc: 80 a2 20 00 cmp %o0, 0 2009f00: 02 80 00 10 be 2009f40 <_RBTree_Sibling+0x44> <== NEVER TAKEN 2009f04: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 2009f08: c4 02 00 00 ld [ %o0 ], %g2 2009f0c: 80 a0 a0 00 cmp %g2, 0 2009f10: 22 80 00 0d be,a 2009f44 <_RBTree_Sibling+0x48> <== NEVER TAKEN 2009f14: 90 10 00 01 mov %g1, %o0 <== NOT EXECUTED if(!(the_node->parent->parent)) return NULL; 2009f18: c2 00 80 00 ld [ %g2 ], %g1 2009f1c: 80 a0 60 00 cmp %g1, 0 2009f20: 02 80 00 08 be 2009f40 <_RBTree_Sibling+0x44> 2009f24: 82 10 20 00 clr %g1 if(the_node == the_node->parent->child[RBT_LEFT]) 2009f28: c2 00 a0 04 ld [ %g2 + 4 ], %g1 2009f2c: 80 a2 00 01 cmp %o0, %g1 2009f30: 22 80 00 04 be,a 2009f40 <_RBTree_Sibling+0x44> 2009f34: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; 2009f38: 81 c3 e0 08 retl 2009f3c: 90 10 00 01 mov %g1, %o0 else return the_node->parent->child[RBT_LEFT]; } 2009f40: 90 10 00 01 mov %g1, %o0 2009f44: 81 c3 e0 08 retl =============================================================================== 02008820 <_RTEMS_signal_Post_switch_hook>: #include #include #include static void _RTEMS_signal_Post_switch_hook( Thread_Control *executing ) { 2008820: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 2008824: fa 06 21 50 ld [ %i0 + 0x150 ], %i5 if ( !api ) 2008828: 80 a7 60 00 cmp %i5, 0 200882c: 02 80 00 1c be 200889c <_RTEMS_signal_Post_switch_hook+0x7c><== NEVER TAKEN 2008830: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 2008834: 7f ff eb 45 call 2003548 2008838: 01 00 00 00 nop signal_set = asr->signals_posted; 200883c: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 2008840: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 2008844: 7f ff eb 45 call 2003558 2008848: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200884c: 80 a7 20 00 cmp %i4, 0 2008850: 02 80 00 13 be 200889c <_RTEMS_signal_Post_switch_hook+0x7c> 2008854: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 2008858: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200885c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 2008860: 82 00 60 01 inc %g1 2008864: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008868: 37 00 00 3f sethi %hi(0xfc00), %i3 200886c: 40 00 01 03 call 2008c78 2008870: 92 16 e3 ff or %i3, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 2008874: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2008878: 9f c0 40 00 call %g1 200887c: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 2008880: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008884: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 2008888: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200888c: 92 16 e3 ff or %i3, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 2008890: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008894: 40 00 00 f9 call 2008c78 2008898: 94 07 bf fc add %fp, -4, %o2 200889c: 81 c7 e0 08 ret 20088a0: 81 e8 00 00 restore =============================================================================== 020320a4 <_Rate_monotonic_Get_status>: bool _Rate_monotonic_Get_status( Rate_monotonic_Control *the_period, Rate_monotonic_Period_time_t *wall_since_last_period, Thread_CPU_usage_t *cpu_since_last_period ) { 20320a4: 9d e3 bf 98 save %sp, -104, %sp */ static inline void _TOD_Get_uptime( Timestamp_Control *time ) { _TOD_Get_with_nanoseconds( time, &_TOD.uptime ); 20320a8: 13 00 81 82 sethi %hi(0x2060800), %o1 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ Timestamp_Control uptime; #endif Thread_Control *owning_thread = the_period->owner; 20320ac: f6 06 20 40 ld [ %i0 + 0x40 ], %i3 20320b0: 90 07 bf f8 add %fp, -8, %o0 20320b4: 7f ff 58 8d call 20082e8 <_TOD_Get_with_nanoseconds> 20320b8: 92 12 61 e0 or %o1, 0x1e0, %o1 /* * Determine elapsed wall time since period initiated. */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20320bc: c4 1f bf f8 ldd [ %fp + -8 ], %g2 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 20320c0: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4 * Determine cpu usage since period initiated. */ used = owning_thread->cpu_time_used; #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ if (owning_thread == _Thread_Executing) { 20320c4: 09 00 81 83 sethi %hi(0x2060c00), %g4 20320c8: ba a0 c0 1d subcc %g3, %i5, %i5 20320cc: 88 11 20 a0 or %g4, 0xa0, %g4 20320d0: b8 60 80 1c subx %g2, %i4, %i4 20320d4: f8 3e 40 00 std %i4, [ %i1 ] 20320d8: fa 01 20 10 ld [ %g4 + 0x10 ], %i5 #endif /* * Determine cpu usage since period initiated. */ used = owning_thread->cpu_time_used; 20320dc: d8 1e e0 80 ldd [ %i3 + 0x80 ], %o4 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ if (owning_thread == _Thread_Executing) { 20320e0: 80 a6 c0 1d cmp %i3, %i5 20320e4: 12 80 00 15 bne 2032138 <_Rate_monotonic_Get_status+0x94> 20320e8: 82 10 20 01 mov 1, %g1 20320ec: f8 19 20 20 ldd [ %g4 + 0x20 ], %i4 20320f0: 86 a0 c0 1d subcc %g3, %i5, %g3 20320f4: 84 60 80 1c subx %g2, %i4, %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 20320f8: ba 83 40 03 addcc %o5, %g3, %i5 20320fc: b8 43 00 02 addx %o4, %g2, %i4 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2032100: c4 1e 20 48 ldd [ %i0 + 0x48 ], %g2 /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) 2032104: 80 a0 80 1c cmp %g2, %i4 2032108: 34 80 00 0c bg,a 2032138 <_Rate_monotonic_Get_status+0x94><== NEVER TAKEN 203210c: 82 10 20 00 clr %g1 <== NOT EXECUTED 2032110: 32 80 00 06 bne,a 2032128 <_Rate_monotonic_Get_status+0x84> 2032114: 86 a7 40 03 subcc %i5, %g3, %g3 2032118: 80 a0 c0 1d cmp %g3, %i5 203211c: 18 80 00 06 bgu 2032134 <_Rate_monotonic_Get_status+0x90> 2032120: 86 a7 40 03 subcc %i5, %g3, %g3 if (used < the_period->cpu_usage_period_initiated) return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; 2032124: 82 10 20 01 mov 1, %g1 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 2032128: 84 67 00 02 subx %i4, %g2, %g2 203212c: 10 80 00 03 b 2032138 <_Rate_monotonic_Get_status+0x94> 2032130: c4 3e 80 00 std %g2, [ %i2 ] /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) return false; 2032134: 82 10 20 00 clr %g1 return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; } 2032138: b0 08 60 01 and %g1, 1, %i0 203213c: 81 c7 e0 08 ret 2032140: 81 e8 00 00 restore =============================================================================== 020324ac <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 20324ac: 9d e3 bf 98 save %sp, -104, %sp 20324b0: 11 00 81 83 sethi %hi(0x2060c00), %o0 20324b4: 92 10 00 18 mov %i0, %o1 20324b8: 90 12 22 c4 or %o0, 0x2c4, %o0 20324bc: 7f ff 5a 32 call 2008d84 <_Objects_Get> 20324c0: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20324c4: c2 07 bf fc ld [ %fp + -4 ], %g1 20324c8: 80 a0 60 00 cmp %g1, 0 20324cc: 12 80 00 24 bne 203255c <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 20324d0: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 20324d4: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20324d8: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 20324dc: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 20324e0: 80 88 80 01 btst %g2, %g1 20324e4: 22 80 00 0b be,a 2032510 <_Rate_monotonic_Timeout+0x64> 20324e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 20324ec: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 20324f0: c2 07 60 08 ld [ %i5 + 8 ], %g1 20324f4: 80 a0 80 01 cmp %g2, %g1 20324f8: 32 80 00 06 bne,a 2032510 <_Rate_monotonic_Timeout+0x64> 20324fc: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2032500: 13 04 01 ff sethi %hi(0x1007fc00), %o1 2032504: 7f ff 5c df call 2009880 <_Thread_Clear_state> 2032508: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 203250c: 30 80 00 06 b,a 2032524 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2032510: 80 a0 60 01 cmp %g1, 1 2032514: 12 80 00 0d bne 2032548 <_Rate_monotonic_Timeout+0x9c> 2032518: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 203251c: 82 10 20 03 mov 3, %g1 2032520: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2032524: 7f ff ff 51 call 2032268 <_Rate_monotonic_Initiate_statistics> 2032528: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 203252c: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2032530: 11 00 81 82 sethi %hi(0x2060800), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2032534: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2032538: 90 12 23 2c or %o0, 0x32c, %o0 203253c: 7f ff 60 d5 call 200a890 <_Watchdog_Insert> 2032540: 92 07 60 10 add %i5, 0x10, %o1 2032544: 30 80 00 02 b,a 203254c <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2032548: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 203254c: 03 00 81 82 sethi %hi(0x2060800), %g1 2032550: c4 00 62 90 ld [ %g1 + 0x290 ], %g2 ! 2060a90 <_Thread_Dispatch_disable_level> --level; 2032554: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 2032558: c4 20 62 90 st %g2, [ %g1 + 0x290 ] 203255c: 81 c7 e0 08 ret 2032560: 81 e8 00 00 restore =============================================================================== 02032144 <_Rate_monotonic_Update_statistics>: } static void _Rate_monotonic_Update_statistics( Rate_monotonic_Control *the_period ) { 2032144: 9d e3 bf 90 save %sp, -112, %sp /* * Update the counts. */ stats = &the_period->Statistics; stats->count++; 2032148: c2 06 20 58 ld [ %i0 + 0x58 ], %g1 203214c: 82 00 60 01 inc %g1 2032150: c2 26 20 58 st %g1, [ %i0 + 0x58 ] if ( the_period->state == RATE_MONOTONIC_EXPIRED ) 2032154: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 2032158: 80 a0 60 04 cmp %g1, 4 203215c: 12 80 00 05 bne 2032170 <_Rate_monotonic_Update_statistics+0x2c> 2032160: 90 10 00 18 mov %i0, %o0 stats->missed_count++; 2032164: c2 06 20 5c ld [ %i0 + 0x5c ], %g1 2032168: 82 00 60 01 inc %g1 203216c: c2 26 20 5c st %g1, [ %i0 + 0x5c ] /* * Grab status for time statistics. */ valid_status = 2032170: 92 07 bf f8 add %fp, -8, %o1 2032174: 7f ff ff cc call 20320a4 <_Rate_monotonic_Get_status> 2032178: 94 07 bf f0 add %fp, -16, %o2 _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) 203217c: 80 8a 20 ff btst 0xff, %o0 2032180: 02 80 00 38 be 2032260 <_Rate_monotonic_Update_statistics+0x11c> 2032184: c4 1f bf f0 ldd [ %fp + -16 ], %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 2032188: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4 * Update CPU time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_cpu_time, &executed ); if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) ) 203218c: c2 06 20 60 ld [ %i0 + 0x60 ], %g1 2032190: b6 87 40 03 addcc %i5, %g3, %i3 2032194: b4 47 00 02 addx %i4, %g2, %i2 2032198: 80 a0 40 02 cmp %g1, %g2 203219c: 14 80 00 09 bg 20321c0 <_Rate_monotonic_Update_statistics+0x7c> 20321a0: f4 3e 20 70 std %i2, [ %i0 + 0x70 ] 20321a4: 80 a0 40 02 cmp %g1, %g2 20321a8: 32 80 00 08 bne,a 20321c8 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN 20321ac: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED 20321b0: c2 06 20 64 ld [ %i0 + 0x64 ], %g1 20321b4: 80 a0 40 03 cmp %g1, %g3 20321b8: 28 80 00 04 bleu,a 20321c8 <_Rate_monotonic_Update_statistics+0x84> 20321bc: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 stats->min_cpu_time = executed; 20321c0: c4 3e 20 60 std %g2, [ %i0 + 0x60 ] if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) ) 20321c4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 20321c8: 80 a0 40 02 cmp %g1, %g2 20321cc: 26 80 00 0a bl,a 20321f4 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN 20321d0: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED 20321d4: 80 a0 40 02 cmp %g1, %g2 20321d8: 32 80 00 08 bne,a 20321f8 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN 20321dc: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED 20321e0: c2 06 20 6c ld [ %i0 + 0x6c ], %g1 20321e4: 80 a0 40 03 cmp %g1, %g3 20321e8: 3a 80 00 04 bcc,a 20321f8 <_Rate_monotonic_Update_statistics+0xb4> 20321ec: c4 1f bf f8 ldd [ %fp + -8 ], %g2 stats->max_cpu_time = executed; 20321f0: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] /* * Update Wall time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_wall_time, &since_last_period ); 20321f4: c4 1f bf f8 ldd [ %fp + -8 ], %g2 20321f8: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4 if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) ) 20321fc: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2032200: b6 87 40 03 addcc %i5, %g3, %i3 2032204: b4 47 00 02 addx %i4, %g2, %i2 2032208: 80 a0 40 02 cmp %g1, %g2 203220c: 14 80 00 09 bg 2032230 <_Rate_monotonic_Update_statistics+0xec> 2032210: f4 3e 20 88 std %i2, [ %i0 + 0x88 ] 2032214: 80 a0 40 02 cmp %g1, %g2 2032218: 32 80 00 08 bne,a 2032238 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN 203221c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED 2032220: c2 06 20 7c ld [ %i0 + 0x7c ], %g1 2032224: 80 a0 40 03 cmp %g1, %g3 2032228: 28 80 00 04 bleu,a 2032238 <_Rate_monotonic_Update_statistics+0xf4> 203222c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 stats->min_wall_time = since_last_period; 2032230: c4 3e 20 78 std %g2, [ %i0 + 0x78 ] if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) ) 2032234: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 2032238: 80 a0 40 02 cmp %g1, %g2 203223c: 26 80 00 09 bl,a 2032260 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN 2032240: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED 2032244: 80 a0 40 02 cmp %g1, %g2 2032248: 12 80 00 06 bne 2032260 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN 203224c: 01 00 00 00 nop 2032250: c2 06 20 84 ld [ %i0 + 0x84 ], %g1 2032254: 80 a0 40 03 cmp %g1, %g3 2032258: 2a 80 00 02 bcs,a 2032260 <_Rate_monotonic_Update_statistics+0x11c> 203225c: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] 2032260: 81 c7 e0 08 ret 2032264: 81 e8 00 00 restore =============================================================================== 02009f64 <_Scheduler_CBS_Allocate>: #include void *_Scheduler_CBS_Allocate( Thread_Control *the_thread ) { 2009f64: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_CBS_Per_thread *schinfo; sched = _Workspace_Allocate(sizeof(Scheduler_CBS_Per_thread)); 2009f68: 40 00 06 aa call 200ba10 <_Workspace_Allocate> 2009f6c: 90 10 20 1c mov 0x1c, %o0 if ( sched ) { 2009f70: 80 a2 20 00 cmp %o0, 0 2009f74: 02 80 00 06 be 2009f8c <_Scheduler_CBS_Allocate+0x28> <== NEVER TAKEN 2009f78: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 2009f7c: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_CBS_Per_thread *)(the_thread->scheduler_info); schinfo->edf_per_thread.thread = the_thread; 2009f80: f0 22 00 00 st %i0, [ %o0 ] schinfo->edf_per_thread.queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 2009f84: c2 22 20 14 st %g1, [ %o0 + 0x14 ] schinfo->cbs_server = NULL; 2009f88: c0 22 20 18 clr [ %o0 + 0x18 ] } return sched; } 2009f8c: 81 c7 e0 08 ret 2009f90: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200b2a4 <_Scheduler_CBS_Budget_callout>: Scheduler_CBS_Server **_Scheduler_CBS_Server_list; void _Scheduler_CBS_Budget_callout( Thread_Control *the_thread ) { 200b2a4: 9d e3 bf 98 save %sp, -104, %sp Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server_id server_id; /* Put violating task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200b2a8: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200b2ac: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200b2b0: 80 a0 40 09 cmp %g1, %o1 200b2b4: 32 80 00 02 bne,a 200b2bc <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN 200b2b8: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200b2bc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200b2c0: 80 a0 40 09 cmp %g1, %o1 200b2c4: 02 80 00 04 be 200b2d4 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN 200b2c8: 90 10 00 18 mov %i0, %o0 _Thread_Change_priority(the_thread, new_priority, true); 200b2cc: 40 00 01 81 call 200b8d0 <_Thread_Change_priority> 200b2d0: 94 10 20 01 mov 1, %o2 /* Invoke callback function if any. */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; 200b2d4: fa 06 20 88 ld [ %i0 + 0x88 ], %i5 if ( sched_info->cbs_server->cbs_budget_overrun ) { 200b2d8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b2dc: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200b2e0: 80 a0 a0 00 cmp %g2, 0 200b2e4: 02 80 00 09 be 200b308 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN 200b2e8: 01 00 00 00 nop _Scheduler_CBS_Get_server_id( 200b2ec: d0 00 40 00 ld [ %g1 ], %o0 200b2f0: 7f ff ff d7 call 200b24c <_Scheduler_CBS_Get_server_id> 200b2f4: 92 07 bf fc add %fp, -4, %o1 sched_info->cbs_server->task_id, &server_id ); sched_info->cbs_server->cbs_budget_overrun( server_id ); 200b2f8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b2fc: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200b300: 9f c0 40 00 call %g1 200b304: d0 07 bf fc ld [ %fp + -4 ], %o0 200b308: 81 c7 e0 08 ret 200b30c: 81 e8 00 00 restore =============================================================================== 0200aeac <_Scheduler_CBS_Create_server>: int _Scheduler_CBS_Create_server ( Scheduler_CBS_Parameters *params, Scheduler_CBS_Budget_overrun budget_overrun_callback, rtems_id *server_id ) { 200aeac: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; Scheduler_CBS_Server *the_server; if ( params->budget <= 0 || 200aeb0: c2 06 20 04 ld [ %i0 + 4 ], %g1 200aeb4: 80 a0 60 00 cmp %g1, 0 200aeb8: 04 80 00 1d ble 200af2c <_Scheduler_CBS_Create_server+0x80> 200aebc: 01 00 00 00 nop 200aec0: c2 06 00 00 ld [ %i0 ], %g1 200aec4: 80 a0 60 00 cmp %g1, 0 200aec8: 04 80 00 19 ble 200af2c <_Scheduler_CBS_Create_server+0x80> 200aecc: 03 00 80 7a sethi %hi(0x201e800), %g1 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200aed0: c4 00 63 c0 ld [ %g1 + 0x3c0 ], %g2 ! 201ebc0 <_Scheduler_CBS_Maximum_servers> if ( !_Scheduler_CBS_Server_list[i] ) 200aed4: 03 00 80 7e sethi %hi(0x201f800), %g1 200aed8: c6 00 62 08 ld [ %g1 + 0x208 ], %g3 ! 201fa08 <_Scheduler_CBS_Server_list> 200aedc: 10 80 00 07 b 200aef8 <_Scheduler_CBS_Create_server+0x4c> 200aee0: 82 10 20 00 clr %g1 200aee4: c8 00 c0 1c ld [ %g3 + %i4 ], %g4 200aee8: 80 a1 20 00 cmp %g4, 0 200aeec: 02 80 00 14 be 200af3c <_Scheduler_CBS_Create_server+0x90> 200aef0: 3b 00 80 7e sethi %hi(0x201f800), %i5 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200aef4: 82 00 60 01 inc %g1 200aef8: 80 a0 40 02 cmp %g1, %g2 200aefc: 12 bf ff fa bne 200aee4 <_Scheduler_CBS_Create_server+0x38> 200af00: b9 28 60 02 sll %g1, 2, %i4 if ( !_Scheduler_CBS_Server_list[i] ) break; } if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; 200af04: 81 c7 e0 08 ret 200af08: 91 e8 3f e6 restore %g0, -26, %o0 _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200af0c: c4 20 60 04 st %g2, [ %g1 + 4 ] 200af10: c4 06 20 04 ld [ %i0 + 4 ], %g2 the_server->task_id = -1; the_server->cbs_budget_overrun = budget_overrun_callback; 200af14: f2 20 60 0c st %i1, [ %g1 + 0xc ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200af18: c4 20 60 08 st %g2, [ %g1 + 8 ] the_server->task_id = -1; 200af1c: 84 10 3f ff mov -1, %g2 200af20: c4 20 40 00 st %g2, [ %g1 ] the_server->cbs_budget_overrun = budget_overrun_callback; return SCHEDULER_CBS_OK; 200af24: 81 c7 e0 08 ret 200af28: 91 e8 20 00 restore %g0, 0, %o0 if ( params->budget <= 0 || params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; 200af2c: 81 c7 e0 08 ret 200af30: 91 e8 3f ee restore %g0, -18, %o0 *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; 200af34: 81 c7 e0 08 ret <== NOT EXECUTED 200af38: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) 200af3c: f6 07 62 08 ld [ %i5 + 0x208 ], %i3 } if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; 200af40: c2 26 80 00 st %g1, [ %i2 ] _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); 200af44: 40 00 07 9c call 200cdb4 <_Workspace_Allocate> 200af48: 90 10 20 10 mov 0x10, %o0 the_server = _Scheduler_CBS_Server_list[*server_id]; 200af4c: c2 06 80 00 ld [ %i2 ], %g1 if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) 200af50: d0 26 c0 1c st %o0, [ %i3 + %i4 ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; 200af54: c4 07 62 08 ld [ %i5 + 0x208 ], %g2 200af58: 83 28 60 02 sll %g1, 2, %g1 200af5c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( !the_server ) 200af60: 80 a0 60 00 cmp %g1, 0 200af64: 32 bf ff ea bne,a 200af0c <_Scheduler_CBS_Create_server+0x60><== ALWAYS TAKEN 200af68: c4 06 00 00 ld [ %i0 ], %g2 200af6c: 30 bf ff f2 b,a 200af34 <_Scheduler_CBS_Create_server+0x88><== NOT EXECUTED =============================================================================== 0200afe4 <_Scheduler_CBS_Detach_thread>: int _Scheduler_CBS_Detach_thread ( Scheduler_CBS_Server_id server_id, rtems_id task_id ) { 200afe4: 9d e3 bf 98 save %sp, -104, %sp Objects_Locations location; Thread_Control *the_thread; Scheduler_CBS_Per_thread *sched_info; the_thread = _Thread_Get(task_id, &location); 200afe8: 90 10 00 19 mov %i1, %o0 200afec: 40 00 03 77 call 200bdc8 <_Thread_Get> 200aff0: 92 07 bf fc add %fp, -4, %o1 /* The routine _Thread_Get may disable dispatch and not enable again. */ if ( the_thread ) { 200aff4: ba 92 20 00 orcc %o0, 0, %i5 200aff8: 02 80 00 05 be 200b00c <_Scheduler_CBS_Detach_thread+0x28> 200affc: 03 00 80 7a sethi %hi(0x201e800), %g1 _Thread_Enable_dispatch(); 200b000: 40 00 03 66 call 200bd98 <_Thread_Enable_dispatch> 200b004: 01 00 00 00 nop } if ( server_id >= _Scheduler_CBS_Maximum_servers ) 200b008: 03 00 80 7a sethi %hi(0x201e800), %g1 200b00c: c2 00 63 c0 ld [ %g1 + 0x3c0 ], %g1 ! 201ebc0 <_Scheduler_CBS_Maximum_servers> 200b010: 80 a6 00 01 cmp %i0, %g1 200b014: 1a 80 00 1b bcc 200b080 <_Scheduler_CBS_Detach_thread+0x9c> 200b018: 80 a7 60 00 cmp %i5, 0 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; if ( !the_thread ) 200b01c: 02 80 00 19 be 200b080 <_Scheduler_CBS_Detach_thread+0x9c> 200b020: 03 00 80 7e sethi %hi(0x201f800), %g1 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; /* Server is not valid. */ if ( !_Scheduler_CBS_Server_list[server_id] ) 200b024: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 201fa08 <_Scheduler_CBS_Server_list> 200b028: b1 2e 20 02 sll %i0, 2, %i0 200b02c: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200b030: 80 a0 60 00 cmp %g1, 0 200b034: 02 80 00 11 be 200b078 <_Scheduler_CBS_Detach_thread+0x94> 200b038: 01 00 00 00 nop return SCHEDULER_CBS_ERROR_NOSERVER; /* Thread and server are not attached. */ if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id ) 200b03c: c4 00 40 00 ld [ %g1 ], %g2 200b040: 80 a0 80 19 cmp %g2, %i1 200b044: 12 80 00 0f bne 200b080 <_Scheduler_CBS_Detach_thread+0x9c><== NEVER TAKEN 200b048: 84 10 3f ff mov -1, %g2 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; _Scheduler_CBS_Server_list[server_id]->task_id = -1; 200b04c: c4 20 40 00 st %g2, [ %g1 ] sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; sched_info->cbs_server = NULL; 200b050: c2 07 60 88 ld [ %i5 + 0x88 ], %g1 200b054: c0 20 60 18 clr [ %g1 + 0x18 ] the_thread->budget_algorithm = the_thread->Start.budget_algorithm; 200b058: c2 07 60 a0 ld [ %i5 + 0xa0 ], %g1 200b05c: c2 27 60 78 st %g1, [ %i5 + 0x78 ] the_thread->budget_callout = the_thread->Start.budget_callout; 200b060: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1 200b064: c2 27 60 7c st %g1, [ %i5 + 0x7c ] the_thread->is_preemptible = the_thread->Start.is_preemptible; 200b068: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1 200b06c: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ] return SCHEDULER_CBS_OK; 200b070: 81 c7 e0 08 ret 200b074: 91 e8 20 00 restore %g0, 0, %o0 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; if ( !the_thread ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; /* Server is not valid. */ if ( !_Scheduler_CBS_Server_list[server_id] ) return SCHEDULER_CBS_ERROR_NOSERVER; 200b078: 81 c7 e0 08 ret 200b07c: 91 e8 3f e7 restore %g0, -25, %o0 the_thread->budget_algorithm = the_thread->Start.budget_algorithm; the_thread->budget_callout = the_thread->Start.budget_callout; the_thread->is_preemptible = the_thread->Start.is_preemptible; return SCHEDULER_CBS_OK; } 200b080: 81 c7 e0 08 ret 200b084: 91 e8 3f ee restore %g0, -18, %o0 =============================================================================== 0200b310 <_Scheduler_CBS_Initialize>: } } int _Scheduler_CBS_Initialize(void) { 200b310: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); 200b314: 3b 00 80 7a sethi %hi(0x201e800), %i5 200b318: d0 07 63 c0 ld [ %i5 + 0x3c0 ], %o0 ! 201ebc0 <_Scheduler_CBS_Maximum_servers> } int _Scheduler_CBS_Initialize(void) { unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( 200b31c: 40 00 06 a6 call 200cdb4 <_Workspace_Allocate> 200b320: 91 2a 20 02 sll %o0, 2, %o0 200b324: 05 00 80 7e sethi %hi(0x201f800), %g2 _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) 200b328: 80 a2 20 00 cmp %o0, 0 200b32c: 02 80 00 0d be 200b360 <_Scheduler_CBS_Initialize+0x50> <== NEVER TAKEN 200b330: d0 20 a2 08 st %o0, [ %g2 + 0x208 ] return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b334: c6 07 63 c0 ld [ %i5 + 0x3c0 ], %g3 200b338: 10 80 00 05 b 200b34c <_Scheduler_CBS_Initialize+0x3c> 200b33c: 82 10 20 00 clr %g1 _Scheduler_CBS_Server_list[i] = NULL; 200b340: 89 28 60 02 sll %g1, 2, %g4 unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b344: 82 00 60 01 inc %g1 _Scheduler_CBS_Server_list[i] = NULL; 200b348: c0 27 40 04 clr [ %i5 + %g4 ] unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b34c: 80 a0 40 03 cmp %g1, %g3 200b350: 12 bf ff fc bne 200b340 <_Scheduler_CBS_Initialize+0x30> 200b354: fa 00 a2 08 ld [ %g2 + 0x208 ], %i5 _Scheduler_CBS_Server_list[i] = NULL; } return SCHEDULER_CBS_OK; 200b358: 81 c7 e0 08 ret 200b35c: 91 e8 20 00 restore %g0, 0, %o0 } 200b360: 81 c7 e0 08 ret <== NOT EXECUTED 200b364: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED =============================================================================== 02009f94 <_Scheduler_CBS_Release_job>: { Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; Scheduler_CBS_Server *serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 2009f94: c2 02 20 88 ld [ %o0 + 0x88 ], %g1 if (deadline) { 2009f98: 80 a2 60 00 cmp %o1, 0 2009f9c: 02 80 00 10 be 2009fdc <_Scheduler_CBS_Release_job+0x48> 2009fa0: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 /* Initializing or shifting deadline. */ if (serv_info) 2009fa4: 80 a0 60 00 cmp %g1, 0 2009fa8: 02 80 00 08 be 2009fc8 <_Scheduler_CBS_Release_job+0x34> 2009fac: 05 00 80 77 sethi %hi(0x201dc00), %g2 new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline) 2009fb0: d2 00 a1 5c ld [ %g2 + 0x15c ], %o1 ! 201dd5c <_Watchdog_Ticks_since_boot> 2009fb4: c4 00 60 04 ld [ %g1 + 4 ], %g2 2009fb8: 92 02 40 02 add %o1, %g2, %o1 2009fbc: 05 20 00 00 sethi %hi(0x80000000), %g2 2009fc0: 10 80 00 0a b 2009fe8 <_Scheduler_CBS_Release_job+0x54> 2009fc4: 92 2a 40 02 andn %o1, %g2, %o1 & ~SCHEDULER_EDF_PRIO_MSB; else new_priority = (_Watchdog_Ticks_since_boot + deadline) 2009fc8: c2 00 a1 5c ld [ %g2 + 0x15c ], %g1 2009fcc: 92 02 40 01 add %o1, %g1, %o1 2009fd0: 03 20 00 00 sethi %hi(0x80000000), %g1 2009fd4: 10 80 00 07 b 2009ff0 <_Scheduler_CBS_Release_job+0x5c> 2009fd8: 92 2a 40 01 andn %o1, %g1, %o1 /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; } /* Budget replenishment for the next job. */ if (serv_info) 2009fdc: 80 a0 60 00 cmp %g1, 0 2009fe0: 02 80 00 04 be 2009ff0 <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN 2009fe4: d2 02 20 ac ld [ %o0 + 0xac ], %o1 the_thread->cpu_time_budget = serv_info->parameters.budget; 2009fe8: c2 00 60 08 ld [ %g1 + 8 ], %g1 2009fec: c2 22 20 74 st %g1, [ %o0 + 0x74 ] the_thread->real_priority = new_priority; 2009ff0: d2 22 20 18 st %o1, [ %o0 + 0x18 ] _Thread_Change_priority(the_thread, new_priority, true); 2009ff4: 94 10 20 01 mov 1, %o2 2009ff8: 82 13 c0 00 mov %o7, %g1 2009ffc: 40 00 01 24 call 200a48c <_Thread_Change_priority> 200a000: 9e 10 40 00 mov %g1, %o7 =============================================================================== 0200a004 <_Scheduler_CBS_Unblock>: #include void _Scheduler_CBS_Unblock( Thread_Control *the_thread ) { 200a004: 9d e3 bf a0 save %sp, -96, %sp Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server *serv_info; Priority_Control new_priority; _Scheduler_EDF_Enqueue(the_thread); 200a008: 40 00 00 4c call 200a138 <_Scheduler_EDF_Enqueue> 200a00c: 90 10 00 18 mov %i0, %o0 /* TODO: flash critical section? */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 200a010: c2 06 20 88 ld [ %i0 + 0x88 ], %g1 200a014: fa 00 60 18 ld [ %g1 + 0x18 ], %i5 * Late unblock rule for deadline-driven tasks. The remaining time to * deadline must be sufficient to serve the remaining computation time * without increased utilization of this task. It might cause a deadline * miss of another task. */ if (serv_info) { 200a018: 80 a7 60 00 cmp %i5, 0 200a01c: 02 80 00 18 be 200a07c <_Scheduler_CBS_Unblock+0x78> 200a020: 03 00 80 77 sethi %hi(0x201dc00), %g1 time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a024: d2 07 60 04 ld [ %i5 + 4 ], %o1 */ if (serv_info) { time_t deadline = serv_info->parameters.deadline; time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - 200a028: d0 00 61 5c ld [ %g1 + 0x15c ], %o0 200a02c: f8 06 20 18 ld [ %i0 + 0x18 ], %i4 _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a030: 40 00 3b f2 call 2018ff8 <.umul> 200a034: 90 27 00 08 sub %i4, %o0, %o0 200a038: d2 06 20 74 ld [ %i0 + 0x74 ], %o1 200a03c: b6 10 00 08 mov %o0, %i3 200a040: 40 00 3b ee call 2018ff8 <.umul> 200a044: d0 07 60 08 ld [ %i5 + 8 ], %o0 200a048: 80 a6 c0 08 cmp %i3, %o0 200a04c: 24 80 00 0d ble,a 200a080 <_Scheduler_CBS_Unblock+0x7c> 200a050: 3b 00 80 77 sethi %hi(0x201dc00), %i5 /* Put late unblocked task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200a054: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200a058: 80 a7 00 09 cmp %i4, %o1 200a05c: 32 80 00 02 bne,a 200a064 <_Scheduler_CBS_Unblock+0x60> 200a060: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200a064: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a068: 80 a0 40 09 cmp %g1, %o1 200a06c: 02 80 00 04 be 200a07c <_Scheduler_CBS_Unblock+0x78> 200a070: 90 10 00 18 mov %i0, %o0 _Thread_Change_priority(the_thread, new_priority, true); 200a074: 40 00 01 06 call 200a48c <_Thread_Change_priority> 200a078: 94 10 20 01 mov 1, %o2 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, 200a07c: 3b 00 80 77 sethi %hi(0x201dc00), %i5 200a080: ba 17 62 80 or %i5, 0x280, %i5 ! 201de80 <_Per_CPU_Information> 200a084: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 200a088: 03 00 80 74 sethi %hi(0x201d000), %g1 200a08c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0 200a090: c2 00 60 94 ld [ %g1 + 0x94 ], %g1 200a094: 9f c0 40 00 call %g1 200a098: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1 200a09c: 80 a2 20 00 cmp %o0, 0 200a0a0: 04 80 00 0f ble 200a0dc <_Scheduler_CBS_Unblock+0xd8> 200a0a4: 01 00 00 00 nop _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a0a8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; 200a0ac: f0 27 60 14 st %i0, [ %i5 + 0x14 ] if ( _Thread_Executing->is_preemptible || 200a0b0: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a0b4: 80 a0 60 00 cmp %g1, 0 200a0b8: 12 80 00 06 bne 200a0d0 <_Scheduler_CBS_Unblock+0xcc> 200a0bc: 84 10 20 01 mov 1, %g2 200a0c0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a0c4: 80 a0 60 00 cmp %g1, 0 200a0c8: 12 80 00 05 bne 200a0dc <_Scheduler_CBS_Unblock+0xd8> <== ALWAYS TAKEN 200a0cc: 01 00 00 00 nop the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a0d0: 03 00 80 77 sethi %hi(0x201dc00), %g1 200a0d4: 82 10 62 80 or %g1, 0x280, %g1 ! 201de80 <_Per_CPU_Information> 200a0d8: c4 28 60 0c stb %g2, [ %g1 + 0xc ] 200a0dc: 81 c7 e0 08 ret 200a0e0: 81 e8 00 00 restore =============================================================================== 02009f64 <_Scheduler_EDF_Allocate>: #include void *_Scheduler_EDF_Allocate( Thread_Control *the_thread ) { 2009f64: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_EDF_Per_thread *schinfo; sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) ); 2009f68: 40 00 06 7f call 200b964 <_Workspace_Allocate> 2009f6c: 90 10 20 18 mov 0x18, %o0 if ( sched ) { 2009f70: 80 a2 20 00 cmp %o0, 0 2009f74: 02 80 00 05 be 2009f88 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN 2009f78: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 2009f7c: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info); schinfo->thread = the_thread; 2009f80: f0 22 00 00 st %i0, [ %o0 ] schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 2009f84: c2 22 20 14 st %g1, [ %o0 + 0x14 ] } return sched; } 2009f88: 81 c7 e0 08 ret 2009f8c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200a12c <_Scheduler_EDF_Unblock>: #include void _Scheduler_EDF_Unblock( Thread_Control *the_thread ) { 200a12c: 9d e3 bf a0 save %sp, -96, %sp _Scheduler_EDF_Enqueue(the_thread); 200a130: 7f ff ff ad call 2009fe4 <_Scheduler_EDF_Enqueue> 200a134: 90 10 00 18 mov %i0, %o0 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( 200a138: 3b 00 80 77 sethi %hi(0x201dc00), %i5 200a13c: ba 17 61 e0 or %i5, 0x1e0, %i5 ! 201dde0 <_Per_CPU_Information> 200a140: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 200a144: 03 00 80 73 sethi %hi(0x201cc00), %g1 200a148: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0 200a14c: c2 00 63 f4 ld [ %g1 + 0x3f4 ], %g1 200a150: 9f c0 40 00 call %g1 200a154: d2 06 20 14 ld [ %i0 + 0x14 ], %o1 200a158: 80 a2 20 00 cmp %o0, 0 200a15c: 16 80 00 0f bge 200a198 <_Scheduler_EDF_Unblock+0x6c> 200a160: 01 00 00 00 nop _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a164: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; 200a168: f0 27 60 14 st %i0, [ %i5 + 0x14 ] if ( _Thread_Executing->is_preemptible || 200a16c: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a170: 80 a0 60 00 cmp %g1, 0 200a174: 12 80 00 06 bne 200a18c <_Scheduler_EDF_Unblock+0x60> 200a178: 84 10 20 01 mov 1, %g2 200a17c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a180: 80 a0 60 00 cmp %g1, 0 200a184: 12 80 00 05 bne 200a198 <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN 200a188: 01 00 00 00 nop the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a18c: 03 00 80 77 sethi %hi(0x201dc00), %g1 200a190: 82 10 61 e0 or %g1, 0x1e0, %g1 ! 201dde0 <_Per_CPU_Information> 200a194: c4 28 60 0c stb %g2, [ %g1 + 0xc ] 200a198: 81 c7 e0 08 ret 200a19c: 81 e8 00 00 restore =============================================================================== 020084a0 <_TOD_Validate>: }; bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20084a0: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 20084a4: 03 00 80 6d sethi %hi(0x201b400), %g1 20084a8: d2 00 62 fc ld [ %g1 + 0x2fc ], %o1 ! 201b6fc 20084ac: 11 00 03 d0 sethi %hi(0xf4000), %o0 20084b0: 40 00 45 19 call 2019914 <.udiv> 20084b4: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 20084b8: 80 a6 20 00 cmp %i0, 0 20084bc: 02 80 00 28 be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN 20084c0: 84 10 20 00 clr %g2 20084c4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 20084c8: 80 a0 40 08 cmp %g1, %o0 20084cc: 3a 80 00 25 bcc,a 2008560 <_TOD_Validate+0xc0> 20084d0: b0 08 a0 01 and %g2, 1, %i0 (the_tod->ticks >= ticks_per_second) || 20084d4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20084d8: 80 a0 60 3b cmp %g1, 0x3b 20084dc: 38 80 00 21 bgu,a 2008560 <_TOD_Validate+0xc0> 20084e0: b0 08 a0 01 and %g2, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20084e4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20084e8: 80 a0 60 3b cmp %g1, 0x3b 20084ec: 38 80 00 1d bgu,a 2008560 <_TOD_Validate+0xc0> 20084f0: b0 08 a0 01 and %g2, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20084f4: c2 06 20 0c ld [ %i0 + 0xc ], %g1 20084f8: 80 a0 60 17 cmp %g1, 0x17 20084fc: 38 80 00 19 bgu,a 2008560 <_TOD_Validate+0xc0> 2008500: b0 08 a0 01 and %g2, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2008504: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2008508: 80 a0 60 00 cmp %g1, 0 200850c: 02 80 00 14 be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN 2008510: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 2008514: 38 80 00 13 bgu,a 2008560 <_TOD_Validate+0xc0> 2008518: b0 08 a0 01 and %g2, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 200851c: c8 06 00 00 ld [ %i0 ], %g4 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2008520: 80 a1 27 c3 cmp %g4, 0x7c3 2008524: 28 80 00 0f bleu,a 2008560 <_TOD_Validate+0xc0> 2008528: b0 08 a0 01 and %g2, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 200852c: c6 06 20 08 ld [ %i0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2008530: 80 a0 e0 00 cmp %g3, 0 2008534: 02 80 00 0a be 200855c <_TOD_Validate+0xbc> <== NEVER TAKEN 2008538: 80 89 20 03 btst 3, %g4 200853c: 05 00 80 72 sethi %hi(0x201c800), %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2008540: 12 80 00 03 bne 200854c <_TOD_Validate+0xac> 2008544: 84 10 a0 f0 or %g2, 0xf0, %g2 ! 201c8f0 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 2008548: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 200854c: 83 28 60 02 sll %g1, 2, %g1 2008550: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( the_tod->day > days_in_month ) 2008554: 80 a0 40 03 cmp %g1, %g3 2008558: 84 60 3f ff subx %g0, -1, %g2 return false; return true; } 200855c: b0 08 a0 01 and %g2, 1, %i0 2008560: 81 c7 e0 08 ret 2008564: 81 e8 00 00 restore =============================================================================== 02009aec <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2009aec: 9d e3 bf a0 save %sp, -96, %sp 2009af0: ba 10 00 18 mov %i0, %i5 States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2009af4: f0 06 20 10 ld [ %i0 + 0x10 ], %i0 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2009af8: 40 00 03 6c call 200a8a8 <_Thread_Set_transient> 2009afc: 90 10 00 1d mov %i5, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2009b00: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2009b04: 80 a0 40 19 cmp %g1, %i1 2009b08: 02 80 00 04 be 2009b18 <_Thread_Change_priority+0x2c> 2009b0c: 90 10 00 1d mov %i5, %o0 _Thread_Set_priority( the_thread, new_priority ); 2009b10: 40 00 03 4d call 200a844 <_Thread_Set_priority> 2009b14: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2009b18: 7f ff e2 ab call 20025c4 2009b1c: 01 00 00 00 nop 2009b20: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2009b24: f8 07 60 10 ld [ %i5 + 0x10 ], %i4 if ( state != STATES_TRANSIENT ) { 2009b28: 80 a7 20 04 cmp %i4, 4 2009b2c: 02 80 00 10 be 2009b6c <_Thread_Change_priority+0x80> 2009b30: 82 0e 20 04 and %i0, 4, %g1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2009b34: 80 a0 60 00 cmp %g1, 0 2009b38: 12 80 00 03 bne 2009b44 <_Thread_Change_priority+0x58> <== NEVER TAKEN 2009b3c: 82 0f 3f fb and %i4, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2009b40: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2009b44: 7f ff e2 a4 call 20025d4 2009b48: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2009b4c: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009b50: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2009b54: 80 8f 00 01 btst %i4, %g1 2009b58: 02 80 00 27 be 2009bf4 <_Thread_Change_priority+0x108> 2009b5c: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2009b60: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2009b64: 40 00 03 0b call 200a790 <_Thread_queue_Requeue> 2009b68: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2009b6c: 80 a0 60 00 cmp %g1, 0 2009b70: 12 80 00 0b bne 2009b9c <_Thread_Change_priority+0xb0> <== NEVER TAKEN 2009b74: 03 00 80 6d sethi %hi(0x201b400), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2009b78: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 2009b7c: 80 a6 a0 00 cmp %i2, 0 2009b80: 02 80 00 04 be 2009b90 <_Thread_Change_priority+0xa4> 2009b84: 82 10 60 e4 or %g1, 0xe4, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2009b88: 10 80 00 03 b 2009b94 <_Thread_Change_priority+0xa8> 2009b8c: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2009b90: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2009b94: 9f c0 40 00 call %g1 2009b98: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2009b9c: 7f ff e2 8e call 20025d4 2009ba0: 90 10 00 1b mov %i3, %o0 2009ba4: 7f ff e2 88 call 20025c4 2009ba8: 01 00 00 00 nop 2009bac: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2009bb0: 03 00 80 6d sethi %hi(0x201b400), %g1 2009bb4: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 201b4ec <_Scheduler+0x8> 2009bb8: 9f c0 40 00 call %g1 2009bbc: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2009bc0: 03 00 80 70 sethi %hi(0x201c000), %g1 2009bc4: 82 10 62 90 or %g1, 0x290, %g1 ! 201c290 <_Per_CPU_Information> * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2009bc8: c4 18 60 10 ldd [ %g1 + 0x10 ], %g2 2009bcc: 80 a0 80 03 cmp %g2, %g3 2009bd0: 02 80 00 07 be 2009bec <_Thread_Change_priority+0x100> 2009bd4: 01 00 00 00 nop 2009bd8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 2009bdc: 80 a0 a0 00 cmp %g2, 0 2009be0: 02 80 00 03 be 2009bec <_Thread_Change_priority+0x100> 2009be4: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2009be8: c4 28 60 0c stb %g2, [ %g1 + 0xc ] _ISR_Enable( level ); 2009bec: 7f ff e2 7a call 20025d4 2009bf0: 81 e8 00 00 restore 2009bf4: 81 c7 e0 08 ret 2009bf8: 81 e8 00 00 restore =============================================================================== 02009ddc <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009ddc: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009de0: 90 10 00 18 mov %i0, %o0 2009de4: 40 00 00 80 call 2009fe4 <_Thread_Get> 2009de8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009dec: c2 07 bf fc ld [ %fp + -4 ], %g1 2009df0: 80 a0 60 00 cmp %g1, 0 2009df4: 12 80 00 08 bne 2009e14 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 2009df8: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2009dfc: 7f ff ff 80 call 2009bfc <_Thread_Clear_state> 2009e00: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2009e04: 03 00 80 70 sethi %hi(0x201c000), %g1 2009e08: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level> --level; 2009e0c: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 2009e10: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 2009e14: 81 c7 e0 08 ret 2009e18: 81 e8 00 00 restore =============================================================================== 02009e1c <_Thread_Dispatch>: #if defined(RTEMS_SMP) #include #endif void _Thread_Dispatch( void ) { 2009e1c: 9d e3 bf 98 save %sp, -104, %sp #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2009e20: 35 00 80 70 sethi %hi(0x201c000), %i2 2009e24: 82 16 a2 90 or %i2, 0x290, %g1 ! 201c290 <_Per_CPU_Information> _ISR_Disable( level ); 2009e28: 7f ff e1 e7 call 20025c4 2009e2c: f6 00 60 10 ld [ %g1 + 0x10 ], %i3 */ static inline void _TOD_Get_uptime( Timestamp_Control *time ) { _TOD_Get_with_nanoseconds( time, &_TOD.uptime ); 2009e30: 21 00 80 6f sethi %hi(0x201bc00), %l0 { const Chain_Control *chain = &_User_extensions_Switches_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 2009e34: 27 00 80 6d sethi %hi(0x201b400), %l3 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 2009e38: 33 00 80 70 sethi %hi(0x201c000), %i1 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2009e3c: 31 00 80 6f sethi %hi(0x201bc00), %i0 2009e40: a0 14 23 d0 or %l0, 0x3d0, %l0 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2009e44: 23 00 80 70 sethi %hi(0x201c000), %l1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2009e48: 25 00 80 6d sethi %hi(0x201b400), %l2 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009e4c: 10 80 00 4b b 2009f78 <_Thread_Dispatch+0x15c> 2009e50: a6 14 e2 bc or %l3, 0x2bc, %l3 2009e54: 84 10 20 01 mov 1, %g2 2009e58: c4 26 60 80 st %g2, [ %i1 + 0x80 ] heir = _Thread_Heir; #ifndef RTEMS_SMP _Thread_Dispatch_set_disable_level( 1 ); #endif _Thread_Dispatch_necessary = false; 2009e5c: c0 28 60 0c clrb [ %g1 + 0xc ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2009e60: 80 a5 00 1b cmp %l4, %i3 2009e64: 12 80 00 0a bne 2009e8c <_Thread_Dispatch+0x70> 2009e68: e8 20 60 10 st %l4, [ %g1 + 0x10 ] 2009e6c: 03 00 80 70 sethi %hi(0x201c000), %g1 2009e70: c0 20 60 80 clr [ %g1 + 0x80 ] ! 201c080 <_Thread_Dispatch_disable_level> post_switch: #ifndef RTEMS_SMP _Thread_Dispatch_set_disable_level( 0 ); #endif _ISR_Enable( level ); 2009e74: 7f ff e1 d8 call 20025d4 2009e78: 39 00 80 70 sethi %hi(0x201c000), %i4 2009e7c: 03 00 80 70 sethi %hi(0x201c000), %g1 2009e80: fa 00 60 f4 ld [ %g1 + 0xf4 ], %i5 ! 201c0f4 <_API_extensions_Post_switch_list> { const Chain_Control *chain = &_API_extensions_Post_switch_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 2009e84: 10 80 00 47 b 2009fa0 <_Thread_Dispatch+0x184> 2009e88: b8 17 20 f8 or %i4, 0xf8, %i4 */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2009e8c: c2 05 20 78 ld [ %l4 + 0x78 ], %g1 2009e90: 80 a0 60 01 cmp %g1, 1 2009e94: 12 80 00 03 bne 2009ea0 <_Thread_Dispatch+0x84> 2009e98: c2 06 23 e0 ld [ %i0 + 0x3e0 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2009e9c: c2 25 20 74 st %g1, [ %l4 + 0x74 ] _ISR_Enable( level ); 2009ea0: 7f ff e1 cd call 20025d4 2009ea4: 01 00 00 00 nop 2009ea8: 90 07 bf f8 add %fp, -8, %o0 2009eac: 7f ff f9 c4 call 20085bc <_TOD_Get_with_nanoseconds> 2009eb0: 92 10 00 10 mov %l0, %o1 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2009eb4: c4 1f bf f8 ldd [ %fp + -8 ], %g2 2009eb8: 82 16 a2 90 or %i2, 0x290, %g1 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 2009ebc: f8 18 60 20 ldd [ %g1 + 0x20 ], %i4 2009ec0: 96 a0 c0 1d subcc %g3, %i5, %o3 2009ec4: 94 60 80 1c subx %g2, %i4, %o2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 2009ec8: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4 2009ecc: 9a 87 40 0b addcc %i5, %o3, %o5 2009ed0: 98 47 00 0a addx %i4, %o2, %o4 2009ed4: d8 3e e0 80 std %o4, [ %i3 + 0x80 ] &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2009ed8: c4 38 60 20 std %g2, [ %g1 + 0x20 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2009edc: c2 04 60 f0 ld [ %l1 + 0xf0 ], %g1 2009ee0: 80 a0 60 00 cmp %g1, 0 2009ee4: 22 80 00 0c be,a 2009f14 <_Thread_Dispatch+0xf8> <== NEVER TAKEN 2009ee8: fa 04 a2 b8 ld [ %l2 + 0x2b8 ], %i5 <== NOT EXECUTED executing->libc_reent = *_Thread_libc_reent; 2009eec: c4 00 40 00 ld [ %g1 ], %g2 2009ef0: c4 26 e1 4c st %g2, [ %i3 + 0x14c ] *_Thread_libc_reent = heir->libc_reent; 2009ef4: c4 05 21 4c ld [ %l4 + 0x14c ], %g2 2009ef8: c4 20 40 00 st %g2, [ %g1 ] 2009efc: 10 80 00 06 b 2009f14 <_Thread_Dispatch+0xf8> 2009f00: fa 04 a2 b8 ld [ %l2 + 0x2b8 ], %i5 const User_extensions_Switch_control *extension = (const User_extensions_Switch_control *) node; (*extension->thread_switch)( executing, heir ); 2009f04: 90 10 00 1b mov %i3, %o0 2009f08: 9f c0 40 00 call %g1 2009f0c: 92 10 00 14 mov %l4, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next( const Chain_Node *the_node ) { return the_node->next; 2009f10: fa 07 40 00 ld [ %i5 ], %i5 { const Chain_Control *chain = &_User_extensions_Switches_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 2009f14: 80 a7 40 13 cmp %i5, %l3 2009f18: 32 bf ff fb bne,a 2009f04 <_Thread_Dispatch+0xe8> 2009f1c: c2 07 60 08 ld [ %i5 + 8 ], %g1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2009f20: 90 06 e0 c0 add %i3, 0xc0, %o0 2009f24: 40 00 04 81 call 200b128 <_CPU_Context_switch> 2009f28: 92 05 20 c0 add %l4, 0xc0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2009f2c: c2 06 e1 48 ld [ %i3 + 0x148 ], %g1 2009f30: 80 a0 60 00 cmp %g1, 0 2009f34: 02 80 00 0e be 2009f6c <_Thread_Dispatch+0x150> 2009f38: 03 00 80 70 sethi %hi(0x201c000), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 2009f3c: d0 00 60 ec ld [ %g1 + 0xec ], %o0 ! 201c0ec <_Thread_Allocated_fp> 2009f40: 80 a6 c0 08 cmp %i3, %o0 2009f44: 02 80 00 0a be 2009f6c <_Thread_Dispatch+0x150> 2009f48: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2009f4c: 02 80 00 04 be 2009f5c <_Thread_Dispatch+0x140> 2009f50: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2009f54: 40 00 04 3b call 200b040 <_CPU_Context_save_fp> 2009f58: 90 02 21 48 add %o0, 0x148, %o0 _Context_Restore_fp( &executing->fp_context ); 2009f5c: 40 00 04 56 call 200b0b4 <_CPU_Context_restore_fp> 2009f60: 90 06 e1 48 add %i3, 0x148, %o0 _Thread_Allocated_fp = executing; 2009f64: 03 00 80 70 sethi %hi(0x201c000), %g1 2009f68: f6 20 60 ec st %i3, [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp> if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2009f6c: 82 16 a2 90 or %i2, 0x290, %g1 _ISR_Disable( level ); 2009f70: 7f ff e1 95 call 20025c4 2009f74: f6 00 60 10 ld [ %g1 + 0x10 ], %i3 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009f78: 82 16 a2 90 or %i2, 0x290, %g1 2009f7c: c4 08 60 0c ldub [ %g1 + 0xc ], %g2 2009f80: 80 a0 a0 00 cmp %g2, 0 2009f84: 32 bf ff b4 bne,a 2009e54 <_Thread_Dispatch+0x38> 2009f88: e8 00 60 14 ld [ %g1 + 0x14 ], %l4 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 2009f8c: 10 bf ff b9 b 2009e70 <_Thread_Dispatch+0x54> 2009f90: 03 00 80 70 sethi %hi(0x201c000), %g1 const API_extensions_Post_switch_control *post_switch = (const API_extensions_Post_switch_control *) node; (*post_switch->hook)( executing ); 2009f94: 9f c0 40 00 call %g1 2009f98: 90 10 00 1b mov %i3, %o0 2009f9c: fa 07 40 00 ld [ %i5 ], %i5 { const Chain_Control *chain = &_API_extensions_Post_switch_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 2009fa0: 80 a7 40 1c cmp %i5, %i4 2009fa4: 32 bf ff fc bne,a 2009f94 <_Thread_Dispatch+0x178> 2009fa8: c2 07 60 08 ld [ %i5 + 8 ], %g1 #ifdef RTEMS_SMP _Thread_Unnest_dispatch(); #endif _API_extensions_Run_post_switch( executing ); } 2009fac: 81 c7 e0 08 ret 2009fb0: 81 e8 00 00 restore =============================================================================== 0200e6f4 <_Thread_Handler>: #define INIT_NAME __main #define EXECUTE_GLOBAL_CONSTRUCTORS #endif void _Thread_Handler( void ) { 200e6f4: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static bool doneConstructors; bool doCons; #endif executing = _Thread_Executing; 200e6f8: 03 00 80 70 sethi %hi(0x201c000), %g1 200e6fc: fa 00 62 a0 ld [ %g1 + 0x2a0 ], %i5 ! 201c2a0 <_Per_CPU_Information+0x10> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e700: 3f 00 80 39 sethi %hi(0x200e400), %i7 200e704: be 17 e2 f4 or %i7, 0x2f4, %i7 ! 200e6f4 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e708: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0 _ISR_Set_level(level); 200e70c: 7f ff cf b2 call 20025d4 200e710: 91 2a 20 08 sll %o0, 8, %o0 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200e714: 03 00 80 6f sethi %hi(0x201bc00), %g1 doneConstructors = true; 200e718: 84 10 20 01 mov 1, %g2 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200e71c: f8 08 61 78 ldub [ %g1 + 0x178 ], %i4 doneConstructors = true; 200e720: c4 28 61 78 stb %g2, [ %g1 + 0x178 ] #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e724: c2 07 61 48 ld [ %i5 + 0x148 ], %g1 200e728: 80 a0 60 00 cmp %g1, 0 200e72c: 02 80 00 0c be 200e75c <_Thread_Handler+0x68> 200e730: 03 00 80 70 sethi %hi(0x201c000), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e734: d0 00 60 ec ld [ %g1 + 0xec ], %o0 ! 201c0ec <_Thread_Allocated_fp> 200e738: 80 a7 40 08 cmp %i5, %o0 200e73c: 02 80 00 08 be 200e75c <_Thread_Handler+0x68> 200e740: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e744: 22 80 00 06 be,a 200e75c <_Thread_Handler+0x68> 200e748: fa 20 60 ec st %i5, [ %g1 + 0xec ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e74c: 7f ff f2 3d call 200b040 <_CPU_Context_save_fp> 200e750: 90 02 21 48 add %o0, 0x148, %o0 _Thread_Allocated_fp = executing; 200e754: 03 00 80 70 sethi %hi(0x201c000), %g1 200e758: fa 20 60 ec st %i5, [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp> ); } static inline void _User_extensions_Thread_begin( Thread_Control *executing ) { _User_extensions_Iterate( 200e75c: 90 10 00 1d mov %i5, %o0 200e760: 13 00 80 2a sethi %hi(0x200a800), %o1 200e764: 7f ff f0 ea call 200ab0c <_User_extensions_Iterate> 200e768: 92 12 62 98 or %o1, 0x298, %o1 ! 200aa98 <_User_extensions_Thread_begin_visitor> _User_extensions_Thread_begin( executing ); /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e76c: 7f ff ee 12 call 2009fb4 <_Thread_Enable_dispatch> 200e770: 01 00 00 00 nop /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { 200e774: 80 8f 20 ff btst 0xff, %i4 200e778: 32 80 00 05 bne,a 200e78c <_Thread_Handler+0x98> 200e77c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 INIT_NAME (); 200e780: 40 00 33 26 call 201b418 <_init> 200e784: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e788: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200e78c: 80 a0 60 00 cmp %g1, 0 200e790: 12 80 00 07 bne 200e7ac <_Thread_Handler+0xb8> <== NEVER TAKEN 200e794: 90 10 00 1d mov %i5, %o0 executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e798: c2 07 60 8c ld [ %i5 + 0x8c ], %g1 200e79c: 9f c0 40 00 call %g1 200e7a0: d0 07 60 98 ld [ %i5 + 0x98 ], %o0 #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e7a4: d0 27 60 28 st %o0, [ %i5 + 0x28 ] } } static inline void _User_extensions_Thread_exitted( Thread_Control *executing ) { _User_extensions_Iterate( 200e7a8: 90 10 00 1d mov %i5, %o0 200e7ac: 13 00 80 2a sethi %hi(0x200a800), %o1 200e7b0: 7f ff f0 d7 call 200ab0c <_User_extensions_Iterate> 200e7b4: 92 12 62 bc or %o1, 0x2bc, %o1 ! 200aabc <_User_extensions_Thread_exitted_visitor> * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); _Internal_error_Occurred( 200e7b8: 90 10 20 00 clr %o0 200e7bc: 92 10 20 01 mov 1, %o1 200e7c0: 7f ff e8 b3 call 2008a8c <_Internal_error_Occurred> 200e7c4: 94 10 20 05 mov 5, %o2 =============================================================================== 0200a270 <_Thread_Handler_initialization>: #if defined(RTEMS_SMP) #include #endif void _Thread_Handler_initialization(void) { 200a270: 9d e3 bf 98 save %sp, -104, %sp uint32_t ticks_per_timeslice = 200a274: 03 00 80 65 sethi %hi(0x2019400), %g1 200a278: 82 10 60 78 or %g1, 0x78, %g1 ! 2019478 #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a27c: c6 00 60 28 ld [ %g1 + 0x28 ], %g3 #include #endif void _Thread_Handler_initialization(void) { uint32_t ticks_per_timeslice = 200a280: fa 00 60 14 ld [ %g1 + 0x14 ], %i5 rtems_configuration_get_ticks_per_timeslice(); uint32_t maximum_extensions = 200a284: f8 00 60 08 ld [ %g1 + 8 ], %i4 #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a288: 80 a0 e0 00 cmp %g3, 0 200a28c: 02 80 00 06 be 200a2a4 <_Thread_Handler_initialization+0x34><== NEVER TAKEN 200a290: c4 00 60 24 ld [ %g1 + 0x24 ], %g2 200a294: c6 00 60 2c ld [ %g1 + 0x2c ], %g3 200a298: 80 a0 e0 00 cmp %g3, 0 200a29c: 12 80 00 06 bne 200a2b4 <_Thread_Handler_initialization+0x44> 200a2a0: 80 a0 a0 00 cmp %g2, 0 rtems_configuration_get_stack_free_hook() == NULL) _Internal_error_Occurred( 200a2a4: 90 10 20 00 clr %o0 200a2a8: 92 10 20 01 mov 1, %o1 200a2ac: 7f ff f9 f8 call 2008a8c <_Internal_error_Occurred> 200a2b0: 94 10 20 0e mov 0xe, %o2 INTERNAL_ERROR_CORE, true, INTERNAL_ERROR_BAD_STACK_HOOK ); if ( stack_allocate_init_hook != NULL ) 200a2b4: 22 80 00 05 be,a 200a2c8 <_Thread_Handler_initialization+0x58> 200a2b8: 03 00 80 70 sethi %hi(0x201c000), %g1 (*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() ); 200a2bc: 9f c0 80 00 call %g2 200a2c0: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 201c004 <_Thread_BSP_context+0xc> _Thread_Dispatch_necessary = false; 200a2c4: 03 00 80 70 sethi %hi(0x201c000), %g1 200a2c8: 82 10 62 90 or %g1, 0x290, %g1 ! 201c290 <_Per_CPU_Information> 200a2cc: c0 28 60 0c clrb [ %g1 + 0xc ] _Thread_Executing = NULL; 200a2d0: c0 20 60 10 clr [ %g1 + 0x10 ] _Thread_Heir = NULL; 200a2d4: c0 20 60 14 clr [ %g1 + 0x14 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Thread_Allocated_fp = NULL; 200a2d8: 03 00 80 70 sethi %hi(0x201c000), %g1 200a2dc: c0 20 60 ec clr [ %g1 + 0xec ] ! 201c0ec <_Thread_Allocated_fp> #endif _Thread_Maximum_extensions = maximum_extensions; 200a2e0: 03 00 80 70 sethi %hi(0x201c000), %g1 200a2e4: f8 20 61 00 st %i4, [ %g1 + 0x100 ] ! 201c100 <_Thread_Maximum_extensions> _Thread_Ticks_per_timeslice = ticks_per_timeslice; 200a2e8: 03 00 80 6f sethi %hi(0x201bc00), %g1 200a2ec: fa 20 63 e0 st %i5, [ %g1 + 0x3e0 ] ! 201bfe0 <_Thread_Ticks_per_timeslice> #if defined(RTEMS_MULTIPROCESSING) if ( _System_state_Is_multiprocessing ) maximum_internal_threads += 1; #endif _Objects_Initialize_information( 200a2f0: 82 10 20 08 mov 8, %g1 200a2f4: 11 00 80 70 sethi %hi(0x201c000), %o0 200a2f8: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200a2fc: 90 12 21 74 or %o0, 0x174, %o0 200a300: 92 10 20 01 mov 1, %o1 200a304: 94 10 20 01 mov 1, %o2 200a308: 96 10 20 01 mov 1, %o3 200a30c: 98 10 21 60 mov 0x160, %o4 200a310: 7f ff fb 6f call 20090cc <_Objects_Initialize_information> 200a314: 9a 10 20 00 clr %o5 200a318: 81 c7 e0 08 ret 200a31c: 81 e8 00 00 restore =============================================================================== 0200a094 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 200a094: 9d e3 bf 98 save %sp, -104, %sp 200a098: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 200a09c: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 200a0a0: e2 00 40 00 ld [ %g1 ], %l1 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 200a0a4: c0 26 61 50 clr [ %i1 + 0x150 ] 200a0a8: c0 26 61 54 clr [ %i1 + 0x154 ] extensions_area = NULL; the_thread->libc_reent = NULL; 200a0ac: c0 26 61 4c clr [ %i1 + 0x14c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 200a0b0: 90 10 00 19 mov %i1, %o0 200a0b4: 40 00 02 0c call 200a8e4 <_Thread_Stack_Allocate> 200a0b8: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 200a0bc: 80 a2 00 1b cmp %o0, %i3 200a0c0: 0a 80 00 68 bcs 200a260 <_Thread_Initialize+0x1cc> 200a0c4: 80 a2 20 00 cmp %o0, 0 200a0c8: 02 80 00 66 be 200a260 <_Thread_Initialize+0x1cc> <== NEVER TAKEN 200a0cc: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a0d0: c2 06 60 bc ld [ %i1 + 0xbc ], %g1 the_stack->size = size; 200a0d4: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a0d8: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 200a0dc: 02 80 00 07 be 200a0f8 <_Thread_Initialize+0x64> 200a0e0: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 200a0e4: 40 00 03 bb call 200afd0 <_Workspace_Allocate> 200a0e8: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 200a0ec: b6 92 20 00 orcc %o0, 0, %i3 200a0f0: 22 80 00 4d be,a 200a224 <_Thread_Initialize+0x190> 200a0f4: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a0f8: 03 00 80 70 sethi %hi(0x201c000), %g1 200a0fc: d0 00 61 00 ld [ %g1 + 0x100 ], %o0 ! 201c100 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 200a100: f6 26 61 48 st %i3, [ %i1 + 0x148 ] the_thread->Start.fp_context = fp_area; 200a104: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200a108: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 200a10c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 200a110: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 200a114: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a118: 80 a2 20 00 cmp %o0, 0 200a11c: 02 80 00 08 be 200a13c <_Thread_Initialize+0xa8> 200a120: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 200a124: 90 02 20 01 inc %o0 200a128: 40 00 03 aa call 200afd0 <_Workspace_Allocate> 200a12c: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 200a130: b8 92 20 00 orcc %o0, 0, %i4 200a134: 22 80 00 3d be,a 200a228 <_Thread_Initialize+0x194> 200a138: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 200a13c: 80 a7 20 00 cmp %i4, 0 200a140: 12 80 00 17 bne 200a19c <_Thread_Initialize+0x108> 200a144: f8 26 61 58 st %i4, [ %i1 + 0x158 ] /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a148: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 200a14c: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ] the_thread->Start.budget_algorithm = budget_algorithm; 200a150: c2 26 60 a0 st %g1, [ %i1 + 0xa0 ] the_thread->Start.budget_callout = budget_callout; 200a154: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 200a158: a0 10 20 01 mov 1, %l0 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 200a15c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a160: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; 200a164: e0 26 60 10 st %l0, [ %i1 + 0x10 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a168: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 200a16c: 03 00 80 6d sethi %hi(0x201b400), %g1 200a170: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 201b4fc <_Scheduler+0x18> the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 200a174: c0 26 60 44 clr [ %i1 + 0x44 ] the_thread->resource_count = 0; 200a178: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 200a17c: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 200a180: fa 26 60 ac st %i5, [ %i1 + 0xac ] 200a184: 9f c0 40 00 call %g1 200a188: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 200a18c: b4 92 20 00 orcc %o0, 0, %i2 200a190: 12 80 00 0f bne 200a1cc <_Thread_Initialize+0x138> 200a194: 90 10 00 19 mov %i1, %o0 200a198: 30 80 00 24 b,a 200a228 <_Thread_Initialize+0x194> * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a19c: 03 00 80 70 sethi %hi(0x201c000), %g1 200a1a0: c4 00 61 00 ld [ %g1 + 0x100 ], %g2 ! 201c100 <_Thread_Maximum_extensions> 200a1a4: 10 80 00 05 b 200a1b8 <_Thread_Initialize+0x124> 200a1a8: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 200a1ac: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a1b0: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 200a1b4: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a1b8: 80 a0 40 02 cmp %g1, %g2 200a1bc: 28 bf ff fc bleu,a 200a1ac <_Thread_Initialize+0x118> 200a1c0: c8 06 61 58 ld [ %i1 + 0x158 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a1c4: 10 bf ff e2 b 200a14c <_Thread_Initialize+0xb8> 200a1c8: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; sched =_Scheduler_Allocate( the_thread ); if ( !sched ) goto failed; _Thread_Set_priority( the_thread, priority ); 200a1cc: 40 00 01 9e call 200a844 <_Thread_Set_priority> 200a1d0: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a1d4: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200a1d8: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 static inline void _Timestamp64_implementation_Set_to_zero( Timestamp64_Control *_time ) { *_time = 0; 200a1dc: c0 26 60 80 clr [ %i1 + 0x80 ] 200a1e0: c0 26 60 84 clr [ %i1 + 0x84 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a1e4: 83 28 60 02 sll %g1, 2, %g1 200a1e8: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200a1ec: e2 26 60 0c st %l1, [ %i1 + 0xc ] * @{ */ static inline bool _User_extensions_Thread_create( Thread_Control *created ) { User_extensions_Thread_create_context ctx = { created, true }; 200a1f0: f2 27 bf f8 st %i1, [ %fp + -8 ] 200a1f4: e0 2f bf fc stb %l0, [ %fp + -4 ] _User_extensions_Iterate( &ctx, _User_extensions_Thread_create_visitor ); 200a1f8: 90 07 bf f8 add %fp, -8, %o0 200a1fc: 13 00 80 2a sethi %hi(0x200a800), %o1 200a200: 40 00 02 43 call 200ab0c <_User_extensions_Iterate> 200a204: 92 12 61 e8 or %o1, 0x1e8, %o1 ! 200a9e8 <_User_extensions_Thread_create_visitor> * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) 200a208: c2 0f bf fc ldub [ %fp + -4 ], %g1 200a20c: 80 a0 60 00 cmp %g1, 0 200a210: 02 80 00 06 be 200a228 <_Thread_Initialize+0x194> 200a214: b0 10 20 01 mov 1, %i0 200a218: b0 0e 20 01 and %i0, 1, %i0 200a21c: 81 c7 e0 08 ret 200a220: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 200a224: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 200a228: 40 00 03 72 call 200aff0 <_Workspace_Free> 200a22c: d0 06 61 4c ld [ %i1 + 0x14c ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 200a230: 40 00 03 70 call 200aff0 <_Workspace_Free> 200a234: d0 06 61 50 ld [ %i1 + 0x150 ], %o0 200a238: 40 00 03 6e call 200aff0 <_Workspace_Free> 200a23c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 _Workspace_Free( extensions_area ); 200a240: 40 00 03 6c call 200aff0 <_Workspace_Free> 200a244: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 200a248: 40 00 03 6a call 200aff0 <_Workspace_Free> 200a24c: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 200a250: 40 00 03 68 call 200aff0 <_Workspace_Free> 200a254: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 200a258: 40 00 01 b3 call 200a924 <_Thread_Stack_Free> 200a25c: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 200a260: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 200a264: b0 0e 20 01 and %i0, 1, %i0 200a268: 81 c7 e0 08 ret 200a26c: 81 e8 00 00 restore =============================================================================== 0200a790 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 200a790: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 200a794: 80 a6 20 00 cmp %i0, 0 200a798: 02 80 00 19 be 200a7fc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 200a79c: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 200a7a0: fa 06 20 34 ld [ %i0 + 0x34 ], %i5 200a7a4: 80 a7 60 01 cmp %i5, 1 200a7a8: 12 80 00 15 bne 200a7fc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 200a7ac: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 200a7b0: 7f ff df 85 call 20025c4 200a7b4: 01 00 00 00 nop 200a7b8: b8 10 00 08 mov %o0, %i4 200a7bc: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 200a7c0: 03 00 00 ef sethi %hi(0x3bc00), %g1 200a7c4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 200a7c8: 80 88 80 01 btst %g2, %g1 200a7cc: 02 80 00 0a be 200a7f4 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 200a7d0: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 200a7d4: 92 10 00 19 mov %i1, %o1 200a7d8: 94 10 20 01 mov 1, %o2 200a7dc: 40 00 0a 8a call 200d204 <_Thread_queue_Extract_priority_helper> 200a7e0: fa 26 20 30 st %i5, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 200a7e4: 90 10 00 18 mov %i0, %o0 200a7e8: 92 10 00 19 mov %i1, %o1 200a7ec: 7f ff ff 50 call 200a52c <_Thread_queue_Enqueue_priority> 200a7f0: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 200a7f4: 7f ff df 78 call 20025d4 200a7f8: 90 10 00 1c mov %i4, %o0 200a7fc: 81 c7 e0 08 ret 200a800: 81 e8 00 00 restore =============================================================================== 0200a804 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 200a804: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200a808: 90 10 00 18 mov %i0, %o0 200a80c: 7f ff fd f6 call 2009fe4 <_Thread_Get> 200a810: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200a814: c2 07 bf fc ld [ %fp + -4 ], %g1 200a818: 80 a0 60 00 cmp %g1, 0 200a81c: 12 80 00 08 bne 200a83c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 200a820: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 200a824: 40 00 0a af call 200d2e0 <_Thread_queue_Process_timeout> 200a828: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 200a82c: 03 00 80 70 sethi %hi(0x201c000), %g1 200a830: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201c080 <_Thread_Dispatch_disable_level> --level; 200a834: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 200a838: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 200a83c: 81 c7 e0 08 ret 200a840: 81 e8 00 00 restore =============================================================================== 020189dc <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20189dc: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20189e0: 27 00 80 ec sethi %hi(0x203b000), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20189e4: a4 07 bf e8 add %fp, -24, %l2 20189e8: aa 07 bf ec add %fp, -20, %l5 20189ec: b8 07 bf f4 add %fp, -12, %i4 20189f0: b2 07 bf f8 add %fp, -8, %i1 20189f4: ea 27 bf e8 st %l5, [ %fp + -24 ] head->previous = NULL; 20189f8: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20189fc: e4 27 bf f0 st %l2, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2018a00: f2 27 bf f4 st %i1, [ %fp + -12 ] head->previous = NULL; 2018a04: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2018a08: f8 27 bf fc st %i4, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018a0c: b4 06 20 30 add %i0, 0x30, %i2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2018a10: 29 00 80 ec sethi %hi(0x203b000), %l4 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2018a14: b6 06 20 68 add %i0, 0x68, %i3 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018a18: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2018a1c: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2018a20: e4 26 20 78 st %l2, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2018a24: c2 04 e3 ec ld [ %l3 + 0x3ec ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2018a28: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018a2c: 90 10 00 1a mov %i2, %o0 2018a30: 92 20 40 09 sub %g1, %o1, %o1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2018a34: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018a38: 40 00 11 6c call 201cfe8 <_Watchdog_Adjust_to_chain> 2018a3c: 94 10 00 1c mov %i4, %o2 2018a40: d0 1d 22 48 ldd [ %l4 + 0x248 ], %o0 2018a44: 94 10 20 00 clr %o2 2018a48: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018a4c: 40 00 4b 86 call 202b864 <__divdi3> 2018a50: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2018a54: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2018a58: 80 a2 40 0a cmp %o1, %o2 2018a5c: 08 80 00 07 bleu 2018a78 <_Timer_server_Body+0x9c> 2018a60: ba 10 00 09 mov %o1, %i5 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018a64: 92 22 40 0a sub %o1, %o2, %o1 2018a68: 90 10 00 1b mov %i3, %o0 2018a6c: 40 00 11 5f call 201cfe8 <_Watchdog_Adjust_to_chain> 2018a70: 94 10 00 1c mov %i4, %o2 2018a74: 30 80 00 06 b,a 2018a8c <_Timer_server_Body+0xb0> } else if ( snapshot < last_snapshot ) { 2018a78: 1a 80 00 05 bcc 2018a8c <_Timer_server_Body+0xb0> 2018a7c: 90 10 00 1b mov %i3, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2018a80: 92 10 20 01 mov 1, %o1 2018a84: 40 00 11 31 call 201cf48 <_Watchdog_Adjust> 2018a88: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 2018a8c: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2018a90: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2018a94: 40 00 02 d8 call 20195f4 <_Chain_Get> 2018a98: 01 00 00 00 nop if ( timer == NULL ) { 2018a9c: 92 92 20 00 orcc %o0, 0, %o1 2018aa0: 02 80 00 0c be 2018ad0 <_Timer_server_Body+0xf4> 2018aa4: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2018aa8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2018aac: 80 a0 60 01 cmp %g1, 1 2018ab0: 02 80 00 05 be 2018ac4 <_Timer_server_Body+0xe8> 2018ab4: 90 10 00 1a mov %i2, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2018ab8: 80 a0 60 03 cmp %g1, 3 2018abc: 12 bf ff f5 bne 2018a90 <_Timer_server_Body+0xb4> <== NEVER TAKEN 2018ac0: 90 10 00 1b mov %i3, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2018ac4: 40 00 11 73 call 201d090 <_Watchdog_Insert> 2018ac8: 92 02 60 10 add %o1, 0x10, %o1 2018acc: 30 bf ff f1 b,a 2018a90 <_Timer_server_Body+0xb4> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2018ad0: 7f ff df 18 call 2010730 2018ad4: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2018ad8: c2 07 bf e8 ld [ %fp + -24 ], %g1 2018adc: 80 a0 40 15 cmp %g1, %l5 2018ae0: 12 80 00 0a bne 2018b08 <_Timer_server_Body+0x12c> <== NEVER TAKEN 2018ae4: 01 00 00 00 nop ts->insert_chain = NULL; 2018ae8: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2018aec: 7f ff df 15 call 2010740 2018af0: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2018af4: c2 07 bf f4 ld [ %fp + -12 ], %g1 2018af8: 80 a0 40 19 cmp %g1, %i1 2018afc: 12 80 00 06 bne 2018b14 <_Timer_server_Body+0x138> 2018b00: 01 00 00 00 nop 2018b04: 30 80 00 18 b,a 2018b64 <_Timer_server_Body+0x188> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2018b08: 7f ff df 0e call 2010740 <== NOT EXECUTED 2018b0c: 01 00 00 00 nop <== NOT EXECUTED 2018b10: 30 bf ff c5 b,a 2018a24 <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2018b14: 7f ff df 07 call 2010730 2018b18: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018b1c: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2018b20: 80 a7 40 19 cmp %i5, %i1 2018b24: 02 80 00 0d be 2018b58 <_Timer_server_Body+0x17c> 2018b28: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 2018b2c: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 2018b30: f8 20 60 04 st %i4, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2018b34: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 2018b38: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 2018b3c: 7f ff df 01 call 2010740 2018b40: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2018b44: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 2018b48: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 2018b4c: 9f c0 40 00 call %g1 2018b50: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 2018b54: 30 bf ff f0 b,a 2018b14 <_Timer_server_Body+0x138> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2018b58: 7f ff de fa call 2010740 2018b5c: 01 00 00 00 nop 2018b60: 30 bf ff b0 b,a 2018a20 <_Timer_server_Body+0x44> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2018b64: c0 2e 20 7c clrb [ %i0 + 0x7c ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2018b68: 03 00 80 ec sethi %hi(0x203b000), %g1 2018b6c: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level> ++level; 2018b70: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 2018b74: c4 20 63 00 st %g2, [ %g1 + 0x300 ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2018b78: d0 06 00 00 ld [ %i0 ], %o0 2018b7c: 40 00 10 09 call 201cba0 <_Thread_Set_state> 2018b80: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2018b84: 7f ff ff 6e call 201893c <_Timer_server_Reset_interval_system_watchdog> 2018b88: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2018b8c: 7f ff ff 80 call 201898c <_Timer_server_Reset_tod_system_watchdog> 2018b90: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2018b94: 40 00 0d b2 call 201c25c <_Thread_Enable_dispatch> 2018b98: 01 00 00 00 nop ts->active = true; 2018b9c: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018ba0: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2018ba4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018ba8: 40 00 11 92 call 201d1f0 <_Watchdog_Remove> 2018bac: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2018bb0: 40 00 11 90 call 201d1f0 <_Watchdog_Remove> 2018bb4: 90 10 00 10 mov %l0, %o0 2018bb8: 30 bf ff 9a b,a 2018a20 <_Timer_server_Body+0x44> =============================================================================== 02018bbc <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2018bbc: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2018bc0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2018bc4: 80 a0 60 00 cmp %g1, 0 2018bc8: 12 80 00 51 bne 2018d0c <_Timer_server_Schedule_operation_method+0x150> 2018bcc: ba 10 00 19 mov %i1, %i5 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2018bd0: 03 00 80 ec sethi %hi(0x203b000), %g1 2018bd4: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level> ++level; 2018bd8: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 2018bdc: c4 20 63 00 st %g2, [ %g1 + 0x300 ] * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2018be0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2018be4: 80 a0 60 01 cmp %g1, 1 2018be8: 12 80 00 1f bne 2018c64 <_Timer_server_Schedule_operation_method+0xa8> 2018bec: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2018bf0: 7f ff de d0 call 2010730 2018bf4: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2018bf8: 03 00 80 ec sethi %hi(0x203b000), %g1 2018bfc: c4 00 63 ec ld [ %g1 + 0x3ec ], %g2 ! 203b3ec <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018c00: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2018c04: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2018c08: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2018c0c: 80 a0 40 03 cmp %g1, %g3 2018c10: 02 80 00 08 be 2018c30 <_Timer_server_Schedule_operation_method+0x74> 2018c14: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2018c18: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 if (delta_interval > delta) { 2018c1c: 80 a7 00 04 cmp %i4, %g4 2018c20: 08 80 00 03 bleu 2018c2c <_Timer_server_Schedule_operation_method+0x70> 2018c24: 86 10 20 00 clr %g3 delta_interval -= delta; 2018c28: 86 27 00 04 sub %i4, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2018c2c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2018c30: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2018c34: 7f ff de c3 call 2010740 2018c38: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2018c3c: 90 06 20 30 add %i0, 0x30, %o0 2018c40: 40 00 11 14 call 201d090 <_Watchdog_Insert> 2018c44: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018c48: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2018c4c: 80 a0 60 00 cmp %g1, 0 2018c50: 12 80 00 2d bne 2018d04 <_Timer_server_Schedule_operation_method+0x148> 2018c54: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2018c58: 7f ff ff 39 call 201893c <_Timer_server_Reset_interval_system_watchdog> 2018c5c: 90 10 00 18 mov %i0, %o0 2018c60: 30 80 00 29 b,a 2018d04 <_Timer_server_Schedule_operation_method+0x148> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2018c64: 12 80 00 28 bne 2018d04 <_Timer_server_Schedule_operation_method+0x148> 2018c68: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2018c6c: 7f ff de b1 call 2010730 2018c70: 01 00 00 00 nop 2018c74: b8 10 00 08 mov %o0, %i4 2018c78: 03 00 80 ec sethi %hi(0x203b000), %g1 2018c7c: d0 18 62 48 ldd [ %g1 + 0x248 ], %o0 ! 203b248 <_TOD> 2018c80: 94 10 20 00 clr %o2 2018c84: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018c88: 40 00 4a f7 call 202b864 <__divdi3> 2018c8c: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018c90: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2018c94: c4 06 20 74 ld [ %i0 + 0x74 ], %g2 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2018c98: 86 06 20 6c add %i0, 0x6c, %g3 if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2018c9c: 80 a0 40 03 cmp %g1, %g3 2018ca0: 02 80 00 0d be 2018cd4 <_Timer_server_Schedule_operation_method+0x118> 2018ca4: 80 a2 40 02 cmp %o1, %g2 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2018ca8: 08 80 00 08 bleu 2018cc8 <_Timer_server_Schedule_operation_method+0x10c> 2018cac: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2018cb0: 88 22 40 02 sub %o1, %g2, %g4 if (delta_interval > delta) { 2018cb4: 80 a0 c0 04 cmp %g3, %g4 2018cb8: 08 80 00 06 bleu 2018cd0 <_Timer_server_Schedule_operation_method+0x114><== NEVER TAKEN 2018cbc: 84 10 20 00 clr %g2 delta_interval -= delta; 2018cc0: 10 80 00 04 b 2018cd0 <_Timer_server_Schedule_operation_method+0x114> 2018cc4: 84 20 c0 04 sub %g3, %g4, %g2 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2018cc8: 84 00 c0 02 add %g3, %g2, %g2 delta_interval += delta; 2018ccc: 84 20 80 09 sub %g2, %o1, %g2 } first_watchdog->delta_interval = delta_interval; 2018cd0: c4 20 60 10 st %g2, [ %g1 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2018cd4: d2 26 20 74 st %o1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2018cd8: 7f ff de 9a call 2010740 2018cdc: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2018ce0: 90 06 20 68 add %i0, 0x68, %o0 2018ce4: 40 00 10 eb call 201d090 <_Watchdog_Insert> 2018ce8: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018cec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2018cf0: 80 a0 60 00 cmp %g1, 0 2018cf4: 12 80 00 04 bne 2018d04 <_Timer_server_Schedule_operation_method+0x148> 2018cf8: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2018cfc: 7f ff ff 24 call 201898c <_Timer_server_Reset_tod_system_watchdog> 2018d00: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2018d04: 40 00 0d 56 call 201c25c <_Thread_Enable_dispatch> 2018d08: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2018d0c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2018d10: 40 00 02 2d call 20195c4 <_Chain_Append> 2018d14: 81 e8 00 00 restore =============================================================================== 0200c2dc <_Timestamp64_Divide>: const Timestamp64_Control *_lhs, const Timestamp64_Control *_rhs, uint32_t *_ival_percentage, uint32_t *_fval_percentage ) { 200c2dc: 9d e3 bf a0 save %sp, -96, %sp Timestamp64_Control answer; if ( *_rhs == 0 ) { 200c2e0: d4 1e 40 00 ldd [ %i1 ], %o2 200c2e4: 80 92 80 0b orcc %o2, %o3, %g0 200c2e8: 32 80 00 06 bne,a 200c300 <_Timestamp64_Divide+0x24> <== ALWAYS TAKEN 200c2ec: d8 1e 00 00 ldd [ %i0 ], %o4 *_ival_percentage = 0; 200c2f0: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED *_fval_percentage = 0; 200c2f4: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED return; 200c2f8: 81 c7 e0 08 ret <== NOT EXECUTED 200c2fc: 81 e8 00 00 restore <== NOT EXECUTED * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200c300: 83 2b 20 02 sll %o4, 2, %g1 200c304: 87 2b 60 02 sll %o5, 2, %g3 200c308: 89 33 60 1e srl %o5, 0x1e, %g4 200c30c: bb 28 e0 05 sll %g3, 5, %i5 200c310: 84 11 00 01 or %g4, %g1, %g2 200c314: 83 30 e0 1b srl %g3, 0x1b, %g1 200c318: b9 28 a0 05 sll %g2, 5, %i4 200c31c: 86 a7 40 03 subcc %i5, %g3, %g3 200c320: b8 10 40 1c or %g1, %i4, %i4 200c324: 84 67 00 02 subx %i4, %g2, %g2 200c328: b2 80 c0 0d addcc %g3, %o5, %i1 200c32c: b0 40 80 0c addx %g2, %o4, %i0 200c330: 83 36 60 1e srl %i1, 0x1e, %g1 200c334: 87 2e 60 02 sll %i1, 2, %g3 200c338: 85 2e 20 02 sll %i0, 2, %g2 200c33c: 84 10 40 02 or %g1, %g2, %g2 200c340: ba 86 40 03 addcc %i1, %g3, %i5 200c344: b8 46 00 02 addx %i0, %g2, %i4 200c348: 83 37 60 1e srl %i5, 0x1e, %g1 200c34c: 87 2f 60 02 sll %i5, 2, %g3 200c350: 85 2f 20 02 sll %i4, 2, %g2 200c354: 84 10 40 02 or %g1, %g2, %g2 200c358: 92 87 40 03 addcc %i5, %g3, %o1 200c35c: 90 47 00 02 addx %i4, %g2, %o0 200c360: 87 32 60 1b srl %o1, 0x1b, %g3 200c364: 85 2a 20 05 sll %o0, 5, %g2 200c368: 83 2a 60 05 sll %o1, 5, %g1 200c36c: 90 10 c0 02 or %g3, %g2, %o0 200c370: 40 00 36 c1 call 2019e74 <__divdi3> 200c374: 92 10 00 01 mov %g1, %o1 *_ival_percentage = answer / 1000; 200c378: 94 10 20 00 clr %o2 * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200c37c: b8 10 00 08 mov %o0, %i4 200c380: ba 10 00 09 mov %o1, %i5 *_ival_percentage = answer / 1000; 200c384: 40 00 36 bc call 2019e74 <__divdi3> 200c388: 96 10 23 e8 mov 0x3e8, %o3 *_fval_percentage = answer % 1000; 200c38c: 90 10 00 1c mov %i4, %o0 * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; *_ival_percentage = answer / 1000; 200c390: d2 26 80 00 st %o1, [ %i2 ] *_fval_percentage = answer % 1000; 200c394: 94 10 20 00 clr %o2 200c398: 92 10 00 1d mov %i5, %o1 200c39c: 40 00 37 a1 call 201a220 <__moddi3> 200c3a0: 96 10 23 e8 mov 0x3e8, %o3 200c3a4: d2 26 c0 00 st %o1, [ %i3 ] 200c3a8: 81 c7 e0 08 ret 200c3ac: 81 e8 00 00 restore =============================================================================== 0200abcc <_User_extensions_Handler_initialization>: } } void _User_extensions_Handler_initialization(void) { 200abcc: 9d e3 bf 98 save %sp, -104, %sp uint32_t number_of_initial_extensions = 200abd0: 03 00 80 65 sethi %hi(0x2019400), %g1 200abd4: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1 ! 20194b8 rtems_configuration_get_number_of_initial_extensions(); if ( number_of_initial_extensions > 0 ) { 200abd8: 80 a0 60 00 cmp %g1, 0 200abdc: 02 80 00 0a be 200ac04 <_User_extensions_Handler_initialization+0x38><== NEVER TAKEN 200abe0: 91 28 60 02 sll %g1, 2, %o0 User_extensions_Switch_control *initial_extension_switch_controls = _Workspace_Allocate_or_fatal_error( number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) 200abe4: 83 28 60 04 sll %g1, 4, %g1 { uint32_t number_of_initial_extensions = rtems_configuration_get_number_of_initial_extensions(); if ( number_of_initial_extensions > 0 ) { User_extensions_Switch_control *initial_extension_switch_controls = 200abe8: 40 00 01 08 call 200b008 <_Workspace_Allocate_or_fatal_error> 200abec: 90 20 40 08 sub %g1, %o0, %o0 number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) ); User_extensions_Switch_context ctx = { initial_extension_switch_controls }; _User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor ); 200abf0: 13 00 80 2a sethi %hi(0x200a800), %o1 User_extensions_Switch_control *initial_extension_switch_controls = _Workspace_Allocate_or_fatal_error( number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) ); User_extensions_Switch_context ctx = { initial_extension_switch_controls }; 200abf4: d0 27 bf fc st %o0, [ %fp + -4 ] _User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor ); 200abf8: 92 12 63 88 or %o1, 0x388, %o1 200abfc: 7f ff ff c4 call 200ab0c <_User_extensions_Iterate> 200ac00: 90 07 bf fc add %fp, -4, %o0 200ac04: 81 c7 e0 08 ret 200ac08: 81 e8 00 00 restore =============================================================================== 0200c614 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200c614: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200c618: 7f ff db 7d call 200340c 200c61c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200c620: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200c624: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200c628: 80 a0 40 1c cmp %g1, %i4 200c62c: 02 80 00 20 be 200c6ac <_Watchdog_Adjust+0x98> 200c630: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200c634: 02 80 00 1b be 200c6a0 <_Watchdog_Adjust+0x8c> 200c638: b6 10 20 01 mov 1, %i3 200c63c: 80 a6 60 01 cmp %i1, 1 200c640: 12 80 00 1b bne 200c6ac <_Watchdog_Adjust+0x98> <== NEVER TAKEN 200c644: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200c648: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200c64c: 10 80 00 07 b 200c668 <_Watchdog_Adjust+0x54> 200c650: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200c654: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200c658: 80 a6 80 02 cmp %i2, %g2 200c65c: 3a 80 00 05 bcc,a 200c670 <_Watchdog_Adjust+0x5c> 200c660: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200c664: b4 20 80 1a sub %g2, %i2, %i2 break; 200c668: 10 80 00 11 b 200c6ac <_Watchdog_Adjust+0x98> 200c66c: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200c670: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200c674: 7f ff db 6a call 200341c 200c678: 01 00 00 00 nop _Watchdog_Tickle( header ); 200c67c: 40 00 00 90 call 200c8bc <_Watchdog_Tickle> 200c680: 90 10 00 18 mov %i0, %o0 _ISR_Disable( level ); 200c684: 7f ff db 62 call 200340c 200c688: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200c68c: c2 06 00 00 ld [ %i0 ], %g1 200c690: 80 a0 40 1c cmp %g1, %i4 200c694: 12 80 00 04 bne 200c6a4 <_Watchdog_Adjust+0x90> 200c698: 80 a6 a0 00 cmp %i2, 0 200c69c: 30 80 00 04 b,a 200c6ac <_Watchdog_Adjust+0x98> switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200c6a0: 80 a6 a0 00 cmp %i2, 0 200c6a4: 32 bf ff ec bne,a 200c654 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200c6a8: c2 06 00 00 ld [ %i0 ], %g1 } break; } } _ISR_Enable( level ); 200c6ac: 7f ff db 5c call 200341c 200c6b0: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200ad6c <_Watchdog_Remove>: #include Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200ad6c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200ad70: 7f ff de 15 call 20025c4 200ad74: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 200ad78: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 200ad7c: 80 a6 20 01 cmp %i0, 1 200ad80: 22 80 00 1e be,a 200adf8 <_Watchdog_Remove+0x8c> 200ad84: c0 27 60 08 clr [ %i5 + 8 ] 200ad88: 0a 80 00 1d bcs 200adfc <_Watchdog_Remove+0x90> 200ad8c: 03 00 80 70 sethi %hi(0x201c000), %g1 200ad90: 80 a6 20 03 cmp %i0, 3 200ad94: 18 80 00 1a bgu 200adfc <_Watchdog_Remove+0x90> <== NEVER TAKEN 200ad98: 01 00 00 00 nop RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next( Watchdog_Control *the_watchdog ) { return ( (Watchdog_Control *) the_watchdog->Node.next ); 200ad9c: 10 80 00 02 b 200ada4 <_Watchdog_Remove+0x38> 200ada0: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200ada4: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200ada8: c4 00 40 00 ld [ %g1 ], %g2 200adac: 80 a0 a0 00 cmp %g2, 0 200adb0: 02 80 00 07 be 200adcc <_Watchdog_Remove+0x60> 200adb4: 05 00 80 70 sethi %hi(0x201c000), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200adb8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200adbc: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 200adc0: 84 00 c0 02 add %g3, %g2, %g2 200adc4: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200adc8: 05 00 80 70 sethi %hi(0x201c000), %g2 200adcc: c4 00 a1 68 ld [ %g2 + 0x168 ], %g2 ! 201c168 <_Watchdog_Sync_count> 200add0: 80 a0 a0 00 cmp %g2, 0 200add4: 22 80 00 07 be,a 200adf0 <_Watchdog_Remove+0x84> 200add8: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200addc: 05 00 80 70 sethi %hi(0x201c000), %g2 200ade0: c6 00 a2 98 ld [ %g2 + 0x298 ], %g3 ! 201c298 <_Per_CPU_Information+0x8> 200ade4: 05 00 80 70 sethi %hi(0x201c000), %g2 200ade8: c6 20 a1 08 st %g3, [ %g2 + 0x108 ] ! 201c108 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200adec: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 200adf0: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200adf4: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200adf8: 03 00 80 70 sethi %hi(0x201c000), %g1 200adfc: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201c16c <_Watchdog_Ticks_since_boot> 200ae00: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 200ae04: 7f ff dd f4 call 20025d4 200ae08: 01 00 00 00 nop return( previous_state ); } 200ae0c: 81 c7 e0 08 ret 200ae10: 81 e8 00 00 restore =============================================================================== 0200bfc0 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200bfc0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200bfc4: 7f ff db ef call 2002f80 200bfc8: b8 10 00 18 mov %i0, %i4 200bfcc: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200bfd0: 11 00 80 70 sethi %hi(0x201c000), %o0 200bfd4: 94 10 00 19 mov %i1, %o2 200bfd8: 90 12 21 68 or %o0, 0x168, %o0 200bfdc: 7f ff e3 72 call 2004da4 200bfe0: 92 10 00 1c mov %i4, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bfe4: fa 06 40 00 ld [ %i1 ], %i5 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200bfe8: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200bfec: 80 a7 40 19 cmp %i5, %i1 200bff0: 12 80 00 04 bne 200c000 <_Watchdog_Report_chain+0x40> 200bff4: 92 10 00 1d mov %i5, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200bff8: 10 80 00 0d b 200c02c <_Watchdog_Report_chain+0x6c> 200bffc: 11 00 80 70 sethi %hi(0x201c000), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200c000: 40 00 00 0f call 200c03c <_Watchdog_Report> 200c004: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200c008: fa 07 40 00 ld [ %i5 ], %i5 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200c00c: 80 a7 40 19 cmp %i5, %i1 200c010: 12 bf ff fc bne 200c000 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200c014: 92 10 00 1d mov %i5, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200c018: 11 00 80 70 sethi %hi(0x201c000), %o0 200c01c: 92 10 00 1c mov %i4, %o1 200c020: 7f ff e3 61 call 2004da4 200c024: 90 12 21 80 or %o0, 0x180, %o0 200c028: 30 80 00 03 b,a 200c034 <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200c02c: 7f ff e3 5e call 2004da4 200c030: 90 12 21 90 or %o0, 0x190, %o0 } _ISR_Enable( level ); 200c034: 7f ff db d7 call 2002f90 200c038: 81 e8 00 00 restore =============================================================================== 0200ae14 <_Watchdog_Tickle>: #include void _Watchdog_Tickle( Chain_Control *header ) { 200ae14: 9d e3 bf a0 save %sp, -96, %sp * See the comment in watchdoginsert.c and watchdogadjust.c * about why it's safe not to declare header a pointer to * volatile data - till, 2003/7 */ _ISR_Disable( level ); 200ae18: 7f ff dd eb call 20025c4 200ae1c: b8 10 00 18 mov %i0, %i4 200ae20: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200ae24: fa 07 00 00 ld [ %i4 ], %i5 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ae28: b6 07 20 04 add %i4, 4, %i3 if ( _Chain_Is_empty( header ) ) 200ae2c: 80 a7 40 1b cmp %i5, %i3 200ae30: 02 80 00 1f be 200aeac <_Watchdog_Tickle+0x98> 200ae34: 01 00 00 00 nop * to be inserted has already had its delta_interval adjusted to 0, and * so is added to the head of the chain with a delta_interval of 0. * * Steven Johnson - 12/2005 (gcc-3.2.3 -O3 on powerpc) */ if (the_watchdog->delta_interval != 0) { 200ae38: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200ae3c: 80 a0 60 00 cmp %g1, 0 200ae40: 02 80 00 06 be 200ae58 <_Watchdog_Tickle+0x44> <== NEVER TAKEN 200ae44: 82 00 7f ff add %g1, -1, %g1 the_watchdog->delta_interval--; 200ae48: c2 27 60 10 st %g1, [ %i5 + 0x10 ] if ( the_watchdog->delta_interval != 0 ) 200ae4c: 80 a0 60 00 cmp %g1, 0 200ae50: 12 80 00 17 bne 200aeac <_Watchdog_Tickle+0x98> 200ae54: 01 00 00 00 nop goto leave; } do { watchdog_state = _Watchdog_Remove( the_watchdog ); 200ae58: 7f ff ff c5 call 200ad6c <_Watchdog_Remove> 200ae5c: 90 10 00 1d mov %i5, %o0 200ae60: b4 10 00 08 mov %o0, %i2 _ISR_Enable( level ); 200ae64: 7f ff dd dc call 20025d4 200ae68: 90 10 00 18 mov %i0, %o0 switch( watchdog_state ) { 200ae6c: 80 a6 a0 02 cmp %i2, 2 200ae70: 12 80 00 06 bne 200ae88 <_Watchdog_Tickle+0x74> 200ae74: 01 00 00 00 nop case WATCHDOG_ACTIVE: (*the_watchdog->routine)( 200ae78: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200ae7c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 200ae80: 9f c0 40 00 call %g1 200ae84: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 case WATCHDOG_REMOVE_IT: break; } _ISR_Disable( level ); 200ae88: 7f ff dd cf call 20025c4 200ae8c: 01 00 00 00 nop 200ae90: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200ae94: fa 07 00 00 ld [ %i4 ], %i5 the_watchdog = _Watchdog_First( header ); } while ( !_Chain_Is_empty( header ) && (the_watchdog->delta_interval == 0) ); 200ae98: 80 a7 40 1b cmp %i5, %i3 200ae9c: 02 80 00 04 be 200aeac <_Watchdog_Tickle+0x98> 200aea0: 01 00 00 00 nop } _ISR_Disable( level ); the_watchdog = _Watchdog_First( header ); } while ( !_Chain_Is_empty( header ) && 200aea4: 10 bf ff ea b 200ae4c <_Watchdog_Tickle+0x38> 200aea8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 (the_watchdog->delta_interval == 0) ); leave: _ISR_Enable(level); 200aeac: 7f ff dd ca call 20025d4 200aeb0: 81 e8 00 00 restore =============================================================================== 0200aeb4 <_Workspace_Handler_initialization>: void _Workspace_Handler_initialization( Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { 200aeb4: 9d e3 bf a0 save %sp, -96, %sp Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; uintptr_t remaining = rtems_configuration_get_work_space_size(); 200aeb8: 05 00 80 65 sethi %hi(0x2019400), %g2 200aebc: 82 10 a0 78 or %g2, 0x78, %g1 ! 2019478 200aec0: c6 08 60 32 ldub [ %g1 + 0x32 ], %g3 200aec4: fa 00 a0 78 ld [ %g2 + 0x78 ], %i5 200aec8: 80 a0 e0 00 cmp %g3, 0 200aecc: 12 80 00 03 bne 200aed8 <_Workspace_Handler_initialization+0x24> 200aed0: 84 10 20 00 clr %g2 200aed4: c4 00 60 04 ld [ %g1 + 4 ], %g2 Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; 200aed8: 21 00 80 22 sethi %hi(0x2008800), %l0 } else { size = 0; } } space_available = (*init_or_extend)( 200aedc: 27 00 80 70 sethi %hi(0x201c000), %l3 size_t area_count, Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; uintptr_t remaining = rtems_configuration_get_work_space_size(); 200aee0: ba 00 80 1d add %g2, %i5, %i5 bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200aee4: b6 10 20 00 clr %i3 Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; 200aee8: a0 14 20 40 or %l0, 0x40, %l0 size_t i; for (i = 0; i < area_count; ++i) { Heap_Area *area = &areas [i]; if ( do_zero ) { 200aeec: e2 08 60 30 ldub [ %g1 + 0x30 ], %l1 if ( area->size > overhead ) { uintptr_t space_available; uintptr_t size; if ( unified ) { 200aef0: e4 08 60 31 ldub [ %g1 + 0x31 ], %l2 bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200aef4: 10 80 00 2c b 200afa4 <_Workspace_Handler_initialization+0xf0> 200aef8: a6 14 e0 90 or %l3, 0x90, %l3 Heap_Area *area = &areas [i]; if ( do_zero ) { 200aefc: 22 80 00 07 be,a 200af18 <_Workspace_Handler_initialization+0x64> 200af00: f8 06 20 04 ld [ %i0 + 4 ], %i4 memset( area->begin, 0, area->size ); 200af04: d0 06 00 00 ld [ %i0 ], %o0 200af08: d4 06 20 04 ld [ %i0 + 4 ], %o2 200af0c: 40 00 10 fd call 200f300 200af10: 92 10 20 00 clr %o1 } if ( area->size > overhead ) { 200af14: f8 06 20 04 ld [ %i0 + 4 ], %i4 200af18: 80 a7 20 16 cmp %i4, 0x16 200af1c: 28 80 00 21 bleu,a 200afa0 <_Workspace_Handler_initialization+0xec> 200af20: b6 06 e0 01 inc %i3 uintptr_t space_available; uintptr_t size; if ( unified ) { 200af24: 80 a4 a0 00 cmp %l2, 0 200af28: 32 80 00 0c bne,a 200af58 <_Workspace_Handler_initialization+0xa4> 200af2c: d2 06 00 00 ld [ %i0 ], %o1 size = area->size; } else { if ( remaining > 0 ) { 200af30: 80 a7 60 00 cmp %i5, 0 200af34: 22 80 00 08 be,a 200af54 <_Workspace_Handler_initialization+0xa0><== NEVER TAKEN 200af38: b8 10 20 00 clr %i4 <== NOT EXECUTED size = remaining < area->size - overhead ? 200af3c: 82 07 3f ea add %i4, -22, %g1 remaining + overhead : area->size; 200af40: 80 a7 40 01 cmp %i5, %g1 200af44: 2a 80 00 04 bcs,a 200af54 <_Workspace_Handler_initialization+0xa0><== ALWAYS TAKEN 200af48: b8 07 60 16 add %i5, 0x16, %i4 } else { size = 0; } } space_available = (*init_or_extend)( 200af4c: 10 80 00 03 b 200af58 <_Workspace_Handler_initialization+0xa4><== NOT EXECUTED 200af50: d2 06 00 00 ld [ %i0 ], %o1 <== NOT EXECUTED 200af54: d2 06 00 00 ld [ %i0 ], %o1 200af58: 94 10 00 1c mov %i4, %o2 200af5c: 90 10 00 13 mov %l3, %o0 200af60: 9f c4 00 00 call %l0 200af64: 96 10 20 08 mov 8, %o3 area->begin, size, page_size ); area->begin = (char *) area->begin + size; 200af68: c2 06 00 00 ld [ %i0 ], %g1 area->size -= size; if ( space_available < remaining ) { 200af6c: 80 a2 00 1d cmp %o0, %i5 area->begin, size, page_size ); area->begin = (char *) area->begin + size; 200af70: 82 00 40 1c add %g1, %i4, %g1 200af74: c2 26 00 00 st %g1, [ %i0 ] area->size -= size; 200af78: c2 06 20 04 ld [ %i0 + 4 ], %g1 200af7c: b8 20 40 1c sub %g1, %i4, %i4 if ( space_available < remaining ) { 200af80: 1a 80 00 05 bcc 200af94 <_Workspace_Handler_initialization+0xe0><== ALWAYS TAKEN 200af84: f8 26 20 04 st %i4, [ %i0 + 4 ] remaining -= space_available; 200af88: ba 27 40 08 sub %i5, %o0, %i5 <== NOT EXECUTED } else { remaining = 0; } init_or_extend = extend; 200af8c: 10 80 00 04 b 200af9c <_Workspace_Handler_initialization+0xe8><== NOT EXECUTED 200af90: a0 10 00 1a mov %i2, %l0 <== NOT EXECUTED 200af94: a0 10 00 1a mov %i2, %l0 area->size -= size; if ( space_available < remaining ) { remaining -= space_available; } else { remaining = 0; 200af98: ba 10 20 00 clr %i5 bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200af9c: b6 06 e0 01 inc %i3 200afa0: b0 06 20 08 add %i0, 8, %i0 200afa4: 80 a6 c0 19 cmp %i3, %i1 200afa8: 12 bf ff d5 bne 200aefc <_Workspace_Handler_initialization+0x48> 200afac: 80 a4 60 00 cmp %l1, 0 init_or_extend = extend; } } if ( remaining > 0 ) { 200afb0: 80 a7 60 00 cmp %i5, 0 200afb4: 02 80 00 05 be 200afc8 <_Workspace_Handler_initialization+0x114> 200afb8: 90 10 20 00 clr %o0 _Internal_error_Occurred( 200afbc: 92 10 20 01 mov 1, %o1 200afc0: 7f ff f6 b3 call 2008a8c <_Internal_error_Occurred> 200afc4: 94 10 20 02 mov 2, %o2 200afc8: 81 c7 e0 08 ret 200afcc: 81 e8 00 00 restore =============================================================================== 0200adc0 <_Workspace_String_duplicate>: char *_Workspace_String_duplicate( const char *string, size_t len ) { 200adc0: 9d e3 bf a0 save %sp, -96, %sp char *dup = _Workspace_Allocate(len + 1); 200adc4: 7f ff ff e3 call 200ad50 <_Workspace_Allocate> 200adc8: 90 06 60 01 add %i1, 1, %o0 if (dup != NULL) { 200adcc: ba 92 20 00 orcc %o0, 0, %i5 200add0: 02 80 00 05 be 200ade4 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN 200add4: 92 10 00 18 mov %i0, %o1 dup [len] = '\0'; 200add8: c0 2f 40 19 clrb [ %i5 + %i1 ] memcpy(dup, string, len); 200addc: 40 00 11 03 call 200f1e8 200ade0: 94 10 00 19 mov %i1, %o2 } return dup; } 200ade4: 81 c7 e0 08 ret 200ade8: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02008338 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2008338: 9d e3 bf 98 save %sp, -104, %sp 200833c: 30 80 00 08 b,a 200835c while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2008340: 92 10 20 00 clr %o1 2008344: 94 10 00 1a mov %i2, %o2 2008348: 7f ff fc fb call 2007734 200834c: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2008350: 80 a2 20 00 cmp %o0, 0 2008354: 32 80 00 09 bne,a 2008378 <== ALWAYS TAKEN 2008358: fa 26 c0 00 st %i5, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 200835c: 40 00 01 79 call 2008940 <_Chain_Get> 2008360: 90 10 00 18 mov %i0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2008364: ba 92 20 00 orcc %o0, 0, %i5 2008368: 02 bf ff f6 be 2008340 200836c: 90 10 00 19 mov %i1, %o0 2008370: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2008374: fa 26 c0 00 st %i5, [ %i3 ] return sc; } 2008378: 81 c7 e0 08 ret 200837c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 020107dc : rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) { 20107dc: 9d e3 bf 98 save %sp, -104, %sp rtems_status_code sc; if ( event_out != NULL ) { 20107e0: 80 a6 e0 00 cmp %i3, 0 20107e4: 02 80 00 1e be 201085c <== NEVER TAKEN 20107e8: 82 10 20 09 mov 9, %g1 Thread_Control *executing = _Thread_Executing; 20107ec: 03 00 80 81 sethi %hi(0x2020400), %g1 20107f0: fa 00 62 d0 ld [ %g1 + 0x2d0 ], %i5 ! 20206d0 <_Per_CPU_Information+0x10> RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ]; Event_Control *event = &api->System_event; if ( !_Event_sets_Is_empty( event_in ) ) { 20107f4: 80 a6 20 00 cmp %i0, 0 20107f8: 02 80 00 16 be 2010850 <== NEVER TAKEN 20107fc: da 07 61 50 ld [ %i5 + 0x150 ], %o5 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2010800: 03 00 80 81 sethi %hi(0x2020400), %g1 2010804: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 20204b0 <_Thread_Dispatch_disable_level> ++level; 2010808: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 201080c: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ] _Thread_Disable_dispatch(); _Event_Seize( 2010810: 03 00 80 81 sethi %hi(0x2020400), %g1 2010814: 82 10 63 20 or %g1, 0x320, %g1 ! 2020720 <_System_event_Sync_state> 2010818: 90 10 00 18 mov %i0, %o0 201081c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2010820: 92 10 00 19 mov %i1, %o1 2010824: 03 00 01 00 sethi %hi(0x40000), %g1 2010828: 94 10 00 1a mov %i2, %o2 201082c: 96 10 00 1b mov %i3, %o3 2010830: 98 10 00 1d mov %i5, %o4 2010834: 9a 03 60 04 add %o5, 4, %o5 2010838: 7f ff df 42 call 2008540 <_Event_Seize> 201083c: c2 23 a0 60 st %g1, [ %sp + 0x60 ] executing, event, &_System_event_Sync_state, STATES_WAITING_FOR_SYSTEM_EVENT ); _Thread_Enable_dispatch(); 2010840: 7f ff ea 9c call 200b2b0 <_Thread_Enable_dispatch> 2010844: 01 00 00 00 nop sc = executing->Wait.return_code; 2010848: 10 80 00 05 b 201085c 201084c: c2 07 60 34 ld [ %i5 + 0x34 ], %g1 } else { *event_out = event->pending_events; 2010850: c2 03 60 04 ld [ %o5 + 4 ], %g1 <== NOT EXECUTED 2010854: c2 26 c0 00 st %g1, [ %i3 ] <== NOT EXECUTED sc = RTEMS_SUCCESSFUL; 2010858: 82 10 20 00 clr %g1 <== NOT EXECUTED } else { sc = RTEMS_INVALID_ADDRESS; } return sc; } 201085c: 81 c7 e0 08 ret 2010860: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200789c : rtems_status_code rtems_event_system_send( rtems_id id, rtems_event_set event_in ) { 200789c: 9d e3 bf 98 save %sp, -104, %sp rtems_status_code sc; Thread_Control *thread; Objects_Locations location; RTEMS_API_Control *api; thread = _Thread_Get( id, &location ); 20078a0: 90 10 00 18 mov %i0, %o0 20078a4: 40 00 09 d0 call 2009fe4 <_Thread_Get> 20078a8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20078ac: c4 07 bf fc ld [ %fp + -4 ], %g2 20078b0: 80 a0 a0 00 cmp %g2, 0 20078b4: 12 80 00 0d bne 20078e8 <== NEVER TAKEN 20078b8: 92 10 00 19 mov %i1, %o1 case OBJECTS_LOCAL: api = thread->API_Extensions[ THREAD_API_RTEMS ]; _Event_Surrender( 20078bc: d4 02 21 50 ld [ %o0 + 0x150 ], %o2 20078c0: 94 02 a0 04 add %o2, 4, %o2 20078c4: 19 00 01 00 sethi %hi(0x40000), %o4 20078c8: 17 00 80 70 sethi %hi(0x201c000), %o3 20078cc: 96 12 e2 f0 or %o3, 0x2f0, %o3 ! 201c2f0 <_System_event_Sync_state> 20078d0: 7f ff fe 64 call 2007260 <_Event_Surrender> 20078d4: b0 10 20 00 clr %i0 event_in, &api->System_event, &_System_event_Sync_state, STATES_WAITING_FOR_SYSTEM_EVENT ); _Thread_Enable_dispatch(); 20078d8: 40 00 09 b7 call 2009fb4 <_Thread_Enable_dispatch> 20078dc: 01 00 00 00 nop sc = RTEMS_SUCCESSFUL; break; 20078e0: 81 c7 e0 08 ret 20078e4: 81 e8 00 00 restore sc = RTEMS_INVALID_ID; break; } return sc; } 20078e8: 81 c7 e0 08 ret <== NOT EXECUTED 20078ec: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED =============================================================================== 0200a358 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 200a358: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 200a35c: ba 10 20 01 mov 1, %i5 200a360: 80 a6 20 00 cmp %i0, 0 200a364: 02 80 00 0c be 200a394 <== NEVER TAKEN 200a368: 35 00 80 7b sethi %hi(0x201ec00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 200a36c: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200a370: 84 16 a0 44 or %i2, 0x44, %g2 200a374: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200a378: 80 a0 60 00 cmp %g1, 0 200a37c: 32 80 00 08 bne,a 200a39c 200a380: f6 00 60 04 ld [ %g1 + 4 ], %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200a384: ba 07 60 01 inc %i5 200a388: 80 a7 60 04 cmp %i5, 4 200a38c: 12 bf ff f9 bne 200a370 200a390: 83 2f 60 02 sll %i5, 2, %g1 200a394: 81 c7 e0 08 ret 200a398: 81 e8 00 00 restore if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) 200a39c: 80 a6 e0 00 cmp %i3, 0 200a3a0: 02 bf ff f9 be 200a384 200a3a4: b8 10 20 01 mov 1, %i4 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a3a8: 10 80 00 0a b 200a3d0 200a3ac: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 the_thread = (Thread_Control *)information->local_table[ i ]; 200a3b0: 83 2f 20 02 sll %i4, 2, %g1 200a3b4: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 200a3b8: 80 a2 20 00 cmp %o0, 0 200a3bc: 02 80 00 04 be 200a3cc 200a3c0: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 200a3c4: 9f c6 00 00 call %i0 200a3c8: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a3cc: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 200a3d0: 80 a7 00 01 cmp %i4, %g1 200a3d4: 28 bf ff f7 bleu,a 200a3b0 200a3d8: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200a3dc: 10 bf ff eb b 200a388 200a3e0: ba 07 60 01 inc %i5 =============================================================================== 02016148 : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2016148: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 201614c: 80 a6 20 00 cmp %i0, 0 2016150: 02 80 00 38 be 2016230 2016154: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 2016158: 80 a6 60 00 cmp %i1, 0 201615c: 02 80 00 35 be 2016230 2016160: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2016164: 80 a7 60 00 cmp %i5, 0 2016168: 02 80 00 32 be 2016230 <== NEVER TAKEN 201616c: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2016170: 02 80 00 30 be 2016230 2016174: 82 10 20 08 mov 8, %g1 2016178: 80 a6 a0 00 cmp %i2, 0 201617c: 02 80 00 2d be 2016230 2016180: 80 a6 80 1b cmp %i2, %i3 2016184: 0a 80 00 2b bcs 2016230 2016188: 80 8e e0 07 btst 7, %i3 201618c: 12 80 00 29 bne 2016230 2016190: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2016194: 12 80 00 27 bne 2016230 2016198: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 201619c: 03 00 80 ec sethi %hi(0x203b000), %g1 20161a0: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 203b300 <_Thread_Dispatch_disable_level> ++level; 20161a4: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 20161a8: c4 20 63 00 st %g2, [ %g1 + 0x300 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20161ac: 23 00 80 ec sethi %hi(0x203b000), %l1 20161b0: 40 00 12 fc call 201ada0 <_Objects_Allocate> 20161b4: 90 14 60 fc or %l1, 0xfc, %o0 ! 203b0fc <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 20161b8: a0 92 20 00 orcc %o0, 0, %l0 20161bc: 32 80 00 06 bne,a 20161d4 20161c0: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 20161c4: 40 00 18 26 call 201c25c <_Thread_Enable_dispatch> 20161c8: 01 00 00 00 nop return RTEMS_TOO_MANY; 20161cc: 10 80 00 19 b 2016230 20161d0: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 20161d4: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 20161d8: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 20161dc: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 20161e0: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 20161e4: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 20161e8: 40 00 54 15 call 202b23c <.udiv> 20161ec: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20161f0: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 20161f4: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20161f8: 96 10 00 1b mov %i3, %o3 20161fc: b8 04 20 24 add %l0, 0x24, %i4 2016200: 40 00 0d 0c call 2019630 <_Chain_Initialize> 2016204: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2016208: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 201620c: a2 14 60 fc or %l1, 0xfc, %l1 2016210: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2016214: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2016218: 85 28 a0 02 sll %g2, 2, %g2 201621c: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2016220: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2016224: 40 00 18 0e call 201c25c <_Thread_Enable_dispatch> 2016228: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 201622c: 82 10 20 00 clr %g1 } 2016230: 81 c7 e0 08 ret 2016234: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02016364 : rtems_status_code rtems_partition_return_buffer( rtems_id id, void *buffer ) { 2016364: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get ( Objects_Id id, Objects_Locations *location ) { return (Partition_Control *) 2016368: 11 00 80 ec sethi %hi(0x203b000), %o0 201636c: 92 10 00 18 mov %i0, %o1 2016370: 90 12 20 fc or %o0, 0xfc, %o0 2016374: 40 00 13 e3 call 201b300 <_Objects_Get> 2016378: 94 07 bf fc add %fp, -4, %o2 register Partition_Control *the_partition; Objects_Locations location; the_partition = _Partition_Get( id, &location ); switch ( location ) { 201637c: c2 07 bf fc ld [ %fp + -4 ], %g1 2016380: 80 a0 60 00 cmp %g1, 0 2016384: 12 80 00 21 bne 2016408 2016388: ba 10 00 08 mov %o0, %i5 ) { void *starting; void *ending; starting = the_partition->starting_address; 201638c: d0 02 20 10 ld [ %o0 + 0x10 ], %o0 2016390: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2016394: 82 02 00 01 add %o0, %g1, %g1 ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 2016398: 80 a6 40 01 cmp %i1, %g1 201639c: 18 80 00 0b bgu 20163c8 <== NEVER TAKEN 20163a0: 82 10 20 00 clr %g1 20163a4: 80 a6 40 08 cmp %i1, %o0 20163a8: 0a 80 00 09 bcs 20163cc 20163ac: 80 a0 60 00 cmp %g1, 0 offset = (uint32_t) _Addresses_Subtract( the_buffer, the_partition->starting_address ); return ((offset % the_partition->buffer_size) == 0); 20163b0: d2 07 60 18 ld [ %i5 + 0x18 ], %o1 20163b4: 40 00 54 4e call 202b4ec <.urem> 20163b8: 90 26 40 08 sub %i1, %o0, %o0 starting = the_partition->starting_address; ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 20163bc: 80 a0 00 08 cmp %g0, %o0 20163c0: 10 80 00 02 b 20163c8 20163c4: 82 60 3f ff subx %g0, -1, %g1 case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { 20163c8: 80 a0 60 00 cmp %g1, 0 20163cc: 02 80 00 0b be 20163f8 20163d0: 90 07 60 24 add %i5, 0x24, %o0 RTEMS_INLINE_ROUTINE void _Partition_Free_buffer ( Partition_Control *the_partition, Chain_Node *the_buffer ) { _Chain_Append( &the_partition->Memory, the_buffer ); 20163d4: 40 00 0c 7c call 20195c4 <_Chain_Append> 20163d8: 92 10 00 19 mov %i1, %o1 _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 20163dc: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 20163e0: b0 10 20 00 clr %i0 switch ( location ) { case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 20163e4: 82 00 7f ff add %g1, -1, %g1 _Thread_Enable_dispatch(); 20163e8: 40 00 17 9d call 201c25c <_Thread_Enable_dispatch> 20163ec: c2 27 60 20 st %g1, [ %i5 + 0x20 ] 20163f0: 81 c7 e0 08 ret 20163f4: 81 e8 00 00 restore return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 20163f8: 40 00 17 99 call 201c25c <_Thread_Enable_dispatch> 20163fc: b0 10 20 09 mov 9, %i0 2016400: 81 c7 e0 08 ret 2016404: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016408: 81 c7 e0 08 ret 201640c: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 020322d8 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 20322d8: 9d e3 bf 98 save %sp, -104, %sp 20322dc: 11 00 81 83 sethi %hi(0x2060c00), %o0 20322e0: 92 10 00 18 mov %i0, %o1 20322e4: 90 12 22 c4 or %o0, 0x2c4, %o0 20322e8: 7f ff 5a a7 call 2008d84 <_Objects_Get> 20322ec: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20322f0: c2 07 bf fc ld [ %fp + -4 ], %g1 20322f4: 80 a0 60 00 cmp %g1, 0 20322f8: 12 80 00 6a bne 20324a0 20322fc: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2032300: 37 00 81 83 sethi %hi(0x2060c00), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2032304: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 2032308: b6 16 e0 a0 or %i3, 0xa0, %i3 203230c: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1 2032310: 80 a0 80 01 cmp %g2, %g1 2032314: 02 80 00 06 be 203232c 2032318: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 203231c: 7f ff 5e 47 call 2009c38 <_Thread_Enable_dispatch> 2032320: b0 10 20 17 mov 0x17, %i0 2032324: 81 c7 e0 08 ret 2032328: 81 e8 00 00 restore return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 203232c: 12 80 00 0d bne 2032360 2032330: 01 00 00 00 nop switch ( the_period->state ) { 2032334: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2032338: 80 a0 60 04 cmp %g1, 4 203233c: 18 80 00 05 bgu 2032350 <== NEVER TAKEN 2032340: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2032344: 05 00 81 6a sethi %hi(0x205a800), %g2 2032348: 84 10 a0 58 or %g2, 0x58, %g2 ! 205a858 203234c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 2032350: 7f ff 5e 3a call 2009c38 <_Thread_Enable_dispatch> 2032354: 01 00 00 00 nop 2032358: 81 c7 e0 08 ret 203235c: 81 e8 00 00 restore return( return_value ); } _ISR_Disable( level ); 2032360: 7f ff 3f fc call 2002350 2032364: 01 00 00 00 nop 2032368: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 203236c: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 2032370: 80 a7 20 00 cmp %i4, 0 2032374: 12 80 00 15 bne 20323c8 2032378: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 203237c: 7f ff 3f f9 call 2002360 2032380: 01 00 00 00 nop the_period->next_length = length; /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2032384: 90 10 00 1d mov %i5, %o0 2032388: 7f ff ff b8 call 2032268 <_Rate_monotonic_Initiate_statistics> 203238c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] the_period->state = RATE_MONOTONIC_ACTIVE; 2032390: 82 10 20 02 mov 2, %g1 2032394: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2032398: 03 00 80 c9 sethi %hi(0x2032400), %g1 203239c: 82 10 60 ac or %g1, 0xac, %g1 ! 20324ac <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20323a0: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 20323a4: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 20323a8: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 20323ac: c0 27 60 34 clr [ %i5 + 0x34 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20323b0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20323b4: 11 00 81 82 sethi %hi(0x2060800), %o0 20323b8: 92 07 60 10 add %i5, 0x10, %o1 20323bc: 7f ff 61 35 call 200a890 <_Watchdog_Insert> 20323c0: 90 12 23 2c or %o0, 0x32c, %o0 20323c4: 30 80 00 1b b,a 2032430 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20323c8: 12 80 00 1e bne 2032440 20323cc: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20323d0: 7f ff ff 5d call 2032144 <_Rate_monotonic_Update_statistics> 20323d4: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20323d8: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 20323dc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20323e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 20323e4: 7f ff 3f df call 2002360 20323e8: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 20323ec: d0 06 e0 10 ld [ %i3 + 0x10 ], %o0 20323f0: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20323f4: 13 00 00 10 sethi %hi(0x4000), %o1 20323f8: 7f ff 60 3c call 200a4e8 <_Thread_Set_state> 20323fc: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2032400: 7f ff 3f d4 call 2002350 2032404: 01 00 00 00 nop local_state = the_period->state; 2032408: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 203240c: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 2032410: 7f ff 3f d4 call 2002360 2032414: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2032418: 80 a6 a0 03 cmp %i2, 3 203241c: 12 80 00 05 bne 2032430 2032420: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2032424: d0 06 e0 10 ld [ %i3 + 0x10 ], %o0 2032428: 7f ff 5d 16 call 2009880 <_Thread_Clear_state> 203242c: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 2032430: 7f ff 5e 02 call 2009c38 <_Thread_Enable_dispatch> 2032434: b0 10 20 00 clr %i0 2032438: 81 c7 e0 08 ret 203243c: 81 e8 00 00 restore return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 2032440: 12 bf ff b9 bne 2032324 <== NEVER TAKEN 2032444: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2032448: 7f ff ff 3f call 2032144 <_Rate_monotonic_Update_statistics> 203244c: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 2032450: 7f ff 3f c4 call 2002360 2032454: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2032458: 82 10 20 02 mov 2, %g1 203245c: 92 07 60 10 add %i5, 0x10, %o1 2032460: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 2032464: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2032468: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203246c: 11 00 81 82 sethi %hi(0x2060800), %o0 2032470: 7f ff 61 08 call 200a890 <_Watchdog_Insert> 2032474: 90 12 23 2c or %o0, 0x32c, %o0 ! 2060b2c <_Watchdog_Ticks_chain> 2032478: d0 07 60 40 ld [ %i5 + 0x40 ], %o0 203247c: d2 07 60 3c ld [ %i5 + 0x3c ], %o1 2032480: 03 00 81 71 sethi %hi(0x205c400), %g1 2032484: c2 00 63 c4 ld [ %g1 + 0x3c4 ], %g1 ! 205c7c4 <_Scheduler+0x34> 2032488: 9f c0 40 00 call %g1 203248c: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Scheduler_Release_job(the_period->owner, the_period->next_length); _Thread_Enable_dispatch(); 2032490: 7f ff 5d ea call 2009c38 <_Thread_Enable_dispatch> 2032494: 01 00 00 00 nop 2032498: 81 c7 e0 08 ret 203249c: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20324a0: b0 10 20 04 mov 4, %i0 } 20324a4: 81 c7 e0 08 ret 20324a8: 81 e8 00 00 restore =============================================================================== 020255c8 : void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20255c8: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20255cc: 80 a6 60 00 cmp %i1, 0 20255d0: 02 80 00 75 be 20257a4 <== NEVER TAKEN 20255d4: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20255d8: 13 00 81 5e sethi %hi(0x2057800), %o1 20255dc: 9f c6 40 00 call %i1 20255e0: 92 12 62 b0 or %o1, 0x2b0, %o1 ! 2057ab0 <_TOD_Days_per_month+0x68> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 20255e4: 90 10 00 18 mov %i0, %o0 20255e8: 13 00 81 5e sethi %hi(0x2057800), %o1 20255ec: 9f c6 40 00 call %i1 20255f0: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 2057ad0 <_TOD_Days_per_month+0x88> (*print)( context, "--- Wall times are in seconds ---\n" ); 20255f4: 90 10 00 18 mov %i0, %o0 20255f8: 13 00 81 5e sethi %hi(0x2057800), %o1 20255fc: 9f c6 40 00 call %i1 2025600: 92 12 62 f8 or %o1, 0x2f8, %o1 ! 2057af8 <_TOD_Days_per_month+0xb0> Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2025604: 90 10 00 18 mov %i0, %o0 2025608: 13 00 81 5e sethi %hi(0x2057800), %o1 202560c: 9f c6 40 00 call %i1 2025610: 92 12 63 20 or %o1, 0x320, %o1 ! 2057b20 <_TOD_Days_per_month+0xd8> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2025614: 90 10 00 18 mov %i0, %o0 2025618: 13 00 81 5e sethi %hi(0x2057800), %o1 202561c: 9f c6 40 00 call %i1 2025620: 92 12 63 70 or %o1, 0x370, %o1 ! 2057b70 <_TOD_Days_per_month+0x128> /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2025624: 03 00 81 83 sethi %hi(0x2060c00), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2025628: 39 00 81 5e sethi %hi(0x2057800), %i4 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 202562c: 37 00 81 5e sethi %hi(0x2057800), %i3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2025630: 35 00 81 5e sethi %hi(0x2057800), %i2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2025634: 21 00 81 64 sethi %hi(0x2059000), %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2025638: fa 00 62 cc ld [ %g1 + 0x2cc ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 202563c: b8 17 23 c0 or %i4, 0x3c0, %i4 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2025640: b6 16 e3 d8 or %i3, 0x3d8, %i3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2025644: b4 16 a3 f8 or %i2, 0x3f8, %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2025648: 10 80 00 52 b 2025790 202564c: a0 14 20 80 or %l0, 0x80, %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2025650: 40 00 31 df call 2031dcc 2025654: 92 07 bf c8 add %fp, -56, %o1 if ( status != RTEMS_SUCCESSFUL ) 2025658: 80 a2 20 00 cmp %o0, 0 202565c: 32 80 00 4d bne,a 2025790 2025660: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2025664: 92 07 bf b0 add %fp, -80, %o1 2025668: 40 00 32 4a call 2031f90 202566c: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2025670: d0 07 bf b0 ld [ %fp + -80 ], %o0 2025674: 92 10 20 05 mov 5, %o1 2025678: 7f ff a3 e0 call 200e5f8 202567c: 94 07 bf a0 add %fp, -96, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2025680: d8 1f bf c8 ldd [ %fp + -56 ], %o4 2025684: 92 10 00 1c mov %i4, %o1 2025688: 90 10 00 18 mov %i0, %o0 202568c: 94 10 00 1d mov %i5, %o2 2025690: 9f c6 40 00 call %i1 2025694: 96 07 bf a0 add %fp, -96, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2025698: d2 07 bf c8 ld [ %fp + -56 ], %o1 202569c: 80 a2 60 00 cmp %o1, 0 20256a0: 12 80 00 07 bne 20256bc 20256a4: 94 07 bf a8 add %fp, -88, %o2 (*print)( context, "\n" ); 20256a8: 90 10 00 18 mov %i0, %o0 20256ac: 9f c6 40 00 call %i1 20256b0: 92 10 00 10 mov %l0, %o1 continue; 20256b4: 10 80 00 37 b 2025790 20256b8: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20256bc: 40 00 02 ad call 2026170 <_Timespec_Divide_by_integer> 20256c0: 90 07 bf e0 add %fp, -32, %o0 (*print)( context, 20256c4: d0 07 bf d4 ld [ %fp + -44 ], %o0 20256c8: 40 00 a6 aa call 204f170 <.div> 20256cc: 92 10 23 e8 mov 0x3e8, %o1 20256d0: a6 10 00 08 mov %o0, %l3 20256d4: d0 07 bf dc ld [ %fp + -36 ], %o0 20256d8: 40 00 a6 a6 call 204f170 <.div> 20256dc: 92 10 23 e8 mov 0x3e8, %o1 20256e0: c2 07 bf a8 ld [ %fp + -88 ], %g1 20256e4: a2 10 00 08 mov %o0, %l1 20256e8: d0 07 bf ac ld [ %fp + -84 ], %o0 20256ec: e8 07 bf d0 ld [ %fp + -48 ], %l4 20256f0: e4 07 bf d8 ld [ %fp + -40 ], %l2 20256f4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20256f8: 40 00 a6 9e call 204f170 <.div> 20256fc: 92 10 23 e8 mov 0x3e8, %o1 2025700: 96 10 00 13 mov %l3, %o3 2025704: 98 10 00 12 mov %l2, %o4 2025708: 9a 10 00 11 mov %l1, %o5 202570c: 94 10 00 14 mov %l4, %o2 2025710: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2025714: 92 10 00 1b mov %i3, %o1 2025718: 9f c6 40 00 call %i1 202571c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2025720: d2 07 bf c8 ld [ %fp + -56 ], %o1 2025724: 94 07 bf a8 add %fp, -88, %o2 2025728: 40 00 02 92 call 2026170 <_Timespec_Divide_by_integer> 202572c: 90 07 bf f8 add %fp, -8, %o0 (*print)( context, 2025730: d0 07 bf ec ld [ %fp + -20 ], %o0 2025734: 40 00 a6 8f call 204f170 <.div> 2025738: 92 10 23 e8 mov 0x3e8, %o1 202573c: a6 10 00 08 mov %o0, %l3 2025740: d0 07 bf f4 ld [ %fp + -12 ], %o0 2025744: 40 00 a6 8b call 204f170 <.div> 2025748: 92 10 23 e8 mov 0x3e8, %o1 202574c: c2 07 bf a8 ld [ %fp + -88 ], %g1 2025750: a2 10 00 08 mov %o0, %l1 2025754: d0 07 bf ac ld [ %fp + -84 ], %o0 2025758: e8 07 bf e8 ld [ %fp + -24 ], %l4 202575c: e4 07 bf f0 ld [ %fp + -16 ], %l2 2025760: 92 10 23 e8 mov 0x3e8, %o1 2025764: 40 00 a6 83 call 204f170 <.div> 2025768: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 202576c: 92 10 00 1a mov %i2, %o1 2025770: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2025774: 94 10 00 14 mov %l4, %o2 2025778: 90 10 00 18 mov %i0, %o0 202577c: 96 10 00 13 mov %l3, %o3 2025780: 98 10 00 12 mov %l2, %o4 2025784: 9f c6 40 00 call %i1 2025788: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 202578c: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 2025790: 03 00 81 83 sethi %hi(0x2060c00), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2025794: c2 00 62 d0 ld [ %g1 + 0x2d0 ], %g1 ! 2060ed0 <_Rate_monotonic_Information+0xc> 2025798: 80 a7 40 01 cmp %i5, %g1 202579c: 08 bf ff ad bleu 2025650 20257a0: 90 10 00 1d mov %i5, %o0 20257a4: 81 c7 e0 08 ret 20257a8: 81 e8 00 00 restore =============================================================================== 02008834 : return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { 2008834: 9d e3 bf a0 save %sp, -96, %sp void *ptr = NULL; rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; 2008838: fa 06 20 30 ld [ %i0 + 0x30 ], %i5 #include static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; 200883c: 90 10 00 19 mov %i1, %o0 2008840: 92 10 00 1d mov %i5, %o1 2008844: 40 00 41 31 call 2018d08 <.urem> 2008848: b6 10 00 19 mov %i1, %i3 if (excess > 0) { 200884c: 80 a2 20 00 cmp %o0, 0 2008850: 02 80 00 05 be 2008864 <== ALWAYS TAKEN 2008854: 80 a6 c0 19 cmp %i3, %i1 value += alignment - excess; 2008858: b6 06 40 1d add %i1, %i5, %i3 <== NOT EXECUTED 200885c: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { 2008860: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED 2008864: 0a 80 00 04 bcs 2008874 <== NEVER TAKEN 2008868: 80 a6 60 00 cmp %i1, 0 200886c: 32 80 00 04 bne,a 200887c 2008870: c2 06 00 00 ld [ %i0 ], %g1 return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { void *ptr = NULL; 2008874: 81 c7 e0 08 ret 2008878: 91 e8 20 00 restore %g0, 0, %o0 rtems_chain_control *free_chain, size_t size ) { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); 200887c: 84 06 20 04 add %i0, 4, %g2 rtems_rbheap_chunk *big_enough = NULL; 2008880: 10 80 00 06 b 2008898 2008884: ba 10 20 00 clr %i5 while (current != tail && big_enough == NULL) { rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current; if (free_chunk->size >= size) { 2008888: 80 a0 c0 1b cmp %g3, %i3 200888c: ba 40 3f ff addx %g0, -1, %i5 2008890: ba 08 40 1d and %g1, %i5, %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Next( Chain_Node *the_node ) { return the_node->next; 2008894: c2 00 40 00 ld [ %g1 ], %g1 { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); rtems_rbheap_chunk *big_enough = NULL; while (current != tail && big_enough == NULL) { 2008898: 80 a7 60 00 cmp %i5, 0 200889c: 12 80 00 04 bne 20088ac 20088a0: 80 a0 40 02 cmp %g1, %g2 20088a4: 32 bf ff f9 bne,a 2008888 20088a8: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size); if (free_chunk != NULL) { 20088ac: 80 a7 60 00 cmp %i5, 0 20088b0: 02 bf ff f1 be 2008874 20088b4: 01 00 00 00 nop uintptr_t free_size = free_chunk->size; 20088b8: f4 07 60 1c ld [ %i5 + 0x1c ], %i2 if (free_size > aligned_size) { 20088bc: 80 a6 80 1b cmp %i2, %i3 20088c0: 28 80 00 14 bleu,a 2008910 20088c4: c4 07 40 00 ld [ %i5 ], %g2 rtems_rbheap_chunk *new_chunk = get_chunk(control); 20088c8: 7f ff ff 80 call 20086c8 20088cc: 90 10 00 18 mov %i0, %o0 if (new_chunk != NULL) { 20088d0: b8 92 20 00 orcc %o0, 0, %i4 20088d4: 02 bf ff e8 be 2008874 <== NEVER TAKEN 20088d8: b4 26 80 1b sub %i2, %i3, %i2 uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 20088dc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 rtems_rbheap_chunk *new_chunk = get_chunk(control); if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; 20088e0: f4 27 60 1c st %i2, [ %i5 + 0x1c ] new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; 20088e4: f6 27 20 1c st %i3, [ %i4 + 0x1c ] if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 20088e8: b4 06 80 01 add %i2, %g1, %i2 */ RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain( Chain_Node *node ) { node->next = node->previous = NULL; 20088ec: c0 27 20 04 clr [ %i4 + 4 ] 20088f0: f4 27 20 18 st %i2, [ %i4 + 0x18 ] 20088f4: c0 27 00 00 clr [ %i4 ] static void insert_into_tree( rtems_rbtree_control *tree, rtems_rbheap_chunk *chunk ) { _RBTree_Insert_unprotected(tree, &chunk->tree_node); 20088f8: 90 06 20 18 add %i0, 0x18, %o0 20088fc: 40 00 06 ad call 200a3b0 <_RBTree_Insert_unprotected> 2008900: 92 07 20 08 add %i4, 8, %o1 free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; rtems_chain_set_off_chain(&new_chunk->chain_node); insert_into_tree(chunk_tree, new_chunk); ptr = (void *) new_chunk->begin; 2008904: f0 07 20 18 ld [ %i4 + 0x18 ], %i0 2008908: 81 c7 e0 08 ret 200890c: 81 e8 00 00 restore { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2008910: c2 07 60 04 ld [ %i5 + 4 ], %g1 } } else { rtems_chain_extract_unprotected(&free_chunk->chain_node); rtems_chain_set_off_chain(&free_chunk->chain_node); ptr = (void *) free_chunk->begin; 2008914: f0 07 60 18 ld [ %i5 + 0x18 ], %i0 next->previous = previous; 2008918: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 200891c: c4 20 40 00 st %g2, [ %g1 ] */ RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain( Chain_Node *node ) { node->next = node->previous = NULL; 2008920: c0 27 60 04 clr [ %i5 + 4 ] 2008924: c0 27 40 00 clr [ %i5 ] } } } return ptr; } 2008928: 81 c7 e0 08 ret 200892c: 81 e8 00 00 restore =============================================================================== 02008a60 : /* Do nothing */ } void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control) { 2008a60: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk)); 2008a64: 7f ff ed 79 call 2004048 <== NOT EXECUTED 2008a68: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED if (chunk != NULL) { 2008a6c: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED 2008a70: 02 80 00 07 be 2008a8c <== NOT EXECUTED 2008a74: 82 06 20 0c add %i0, 0xc, %g1 <== NOT EXECUTED Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008a78: c2 22 20 04 st %g1, [ %o0 + 4 ] <== NOT EXECUTED before_node = after_node->next; 2008a7c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED after_node->next = the_node; 2008a80: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED the_node->next = before_node; 2008a84: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED before_node->previous = the_node; 2008a88: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED 2008a8c: 81 c7 e0 08 ret <== NOT EXECUTED 2008a90: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 02008930 : _RBTree_Extract_unprotected(chunk_tree, &b->tree_node); } } rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr) { 2008930: 9d e3 bf 80 save %sp, -128, %sp 2008934: b6 10 00 18 mov %i0, %i3 rtems_status_code sc = RTEMS_SUCCESSFUL; if (ptr != NULL) { 2008938: 80 a6 60 00 cmp %i1, 0 200893c: 02 80 00 45 be 2008a50 2008940: b0 10 20 00 clr %i0 #define NULL_PAGE rtems_rbheap_chunk_of_node(NULL) static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key) { rtems_rbheap_chunk chunk = { .begin = key }; 2008944: 90 07 bf e0 add %fp, -32, %o0 2008948: 92 10 20 00 clr %o1 200894c: 94 10 20 20 mov 0x20, %o2 2008950: 40 00 1f 31 call 2010614 2008954: b4 06 e0 18 add %i3, 0x18, %i2 RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; 2008958: ba 10 20 00 clr %i5 200895c: f2 27 bf f8 st %i1, [ %fp + -8 ] RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 2008960: 10 80 00 12 b 20089a8 2008964: f8 06 e0 1c ld [ %i3 + 0x1c ], %i4 RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 2008968: 90 07 bf e8 add %fp, -24, %o0 200896c: 9f c0 40 00 call %g1 2008970: 92 10 00 1c mov %i4, %o1 if ( _RBTree_Is_equal( compare_result ) ) { 2008974: 80 a2 20 00 cmp %o0, 0 2008978: 12 80 00 07 bne 2008994 200897c: 83 3a 20 1f sra %o0, 0x1f, %g1 found = iter_node; if ( the_rbtree->is_unique ) 2008980: c2 0e a0 14 ldub [ %i2 + 0x14 ], %g1 2008984: 80 a0 60 00 cmp %g1, 0 2008988: 12 80 00 0c bne 20089b8 <== ALWAYS TAKEN 200898c: ba 10 00 1c mov %i4, %i5 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 2008990: 83 3a 20 1f sra %o0, 0x1f, %g1 <== NOT EXECUTED 2008994: 90 20 40 08 sub %g1, %o0, %o0 2008998: 91 32 20 1f srl %o0, 0x1f, %o0 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 200899c: 91 2a 20 02 sll %o0, 2, %o0 20089a0: b8 07 00 08 add %i4, %o0, %i4 20089a4: f8 07 20 04 ld [ %i4 + 4 ], %i4 ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { 20089a8: 80 a7 20 00 cmp %i4, 0 20089ac: 32 bf ff ef bne,a 2008968 20089b0: c2 06 a0 10 ld [ %i2 + 0x10 ], %g1 20089b4: b8 10 00 1d mov %i5, %i4 return rtems_rbheap_chunk_of_node( 20089b8: ba 07 3f f8 add %i4, -8, %i5 if (ptr != NULL) { rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr); if (chunk != NULL_PAGE) { 20089bc: 80 a7 7f f8 cmp %i5, -8 20089c0: 02 80 00 24 be 2008a50 20089c4: b0 10 20 04 mov 4, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 20089c8: c4 07 3f f8 ld [ %i4 + -8 ], %g2 20089cc: 80 a0 a0 00 cmp %g2, 0 20089d0: 12 80 00 05 bne 20089e4 20089d4: 82 10 20 00 clr %g1 20089d8: c2 07 60 04 ld [ %i5 + 4 ], %g1 20089dc: 80 a0 00 01 cmp %g0, %g1 20089e0: 82 60 3f ff subx %g0, -1, %g1 if (!rtems_rbheap_is_chunk_free(chunk)) { 20089e4: 80 a0 60 00 cmp %g1, 0 20089e8: 02 80 00 1a be 2008a50 20089ec: b0 10 20 0e mov 0xe, %i0 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 20089f0: b8 07 60 08 add %i5, 8, %i4 20089f4: 92 10 20 00 clr %o1 20089f8: 40 00 07 13 call 200a644 <_RBTree_Next_unprotected> 20089fc: 90 10 00 1c mov %i4, %o0 2008a00: 92 10 20 01 mov 1, %o1 2008a04: b2 10 00 08 mov %o0, %i1 2008a08: 40 00 07 0f call 200a644 <_RBTree_Next_unprotected> 2008a0c: 90 10 00 1c mov %i4, %o0 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008a10: 92 10 00 1a mov %i2, %o1 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 2008a14: 96 02 3f f8 add %o0, -8, %o3 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008a18: 94 10 00 1d mov %i5, %o2 2008a1c: 7f ff ff 02 call 2008624 2008a20: 90 10 00 1b mov %i3, %o0 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008a24: c2 06 c0 00 ld [ %i3 ], %g1 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008a28: f6 27 60 04 st %i3, [ %i5 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008a2c: fa 26 c0 00 st %i5, [ %i3 ] the_node->next = before_node; 2008a30: c2 27 40 00 st %g1, [ %i5 ] before_node->previous = the_node; 2008a34: fa 20 60 04 st %i5, [ %g1 + 4 ] add_to_chain(free_chain, chunk); check_and_merge(free_chain, chunk_tree, chunk, pred); 2008a38: 90 10 00 1b mov %i3, %o0 2008a3c: 92 10 00 1a mov %i2, %o1 2008a40: 94 10 00 1d mov %i5, %o2 2008a44: 96 06 7f f8 add %i1, -8, %o3 2008a48: 7f ff fe f7 call 2008624 2008a4c: b0 10 20 00 clr %i0 sc = RTEMS_INVALID_ID; } } return sc; } 2008a50: 81 c7 e0 08 ret 2008a54: 81 e8 00 00 restore =============================================================================== 0201789c : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 201789c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20178a0: 80 a6 60 00 cmp %i1, 0 20178a4: 02 80 00 35 be 2017978 20178a8: 82 10 20 0a mov 0xa, %g1 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20178ac: 90 10 00 18 mov %i0, %o0 20178b0: 40 00 12 77 call 201c28c <_Thread_Get> 20178b4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20178b8: c2 07 bf fc ld [ %fp + -4 ], %g1 20178bc: 80 a0 60 00 cmp %g1, 0 20178c0: 12 80 00 2d bne 2017974 20178c4: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20178c8: fa 02 21 50 ld [ %o0 + 0x150 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20178cc: c2 07 60 0c ld [ %i5 + 0xc ], %g1 20178d0: 80 a0 60 00 cmp %g1, 0 20178d4: 02 80 00 24 be 2017964 20178d8: 01 00 00 00 nop if ( asr->is_enabled ) { 20178dc: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 20178e0: 80 a0 60 00 cmp %g1, 0 20178e4: 02 80 00 15 be 2017938 20178e8: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20178ec: 7f ff e3 91 call 2010730 20178f0: 01 00 00 00 nop *signal_set |= signals; 20178f4: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 20178f8: b2 10 40 19 or %g1, %i1, %i1 20178fc: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2017900: 7f ff e3 90 call 2010740 2017904: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 2017908: 03 00 80 ed sethi %hi(0x203b400), %g1 201790c: 82 10 61 20 or %g1, 0x120, %g1 ! 203b520 <_Per_CPU_Information> 2017910: c4 00 60 08 ld [ %g1 + 8 ], %g2 2017914: 80 a0 a0 00 cmp %g2, 0 2017918: 02 80 00 0f be 2017954 201791c: 01 00 00 00 nop 2017920: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 2017924: 80 a7 00 02 cmp %i4, %g2 2017928: 12 80 00 0b bne 2017954 <== NEVER TAKEN 201792c: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2017930: c4 28 60 0c stb %g2, [ %g1 + 0xc ] 2017934: 30 80 00 08 b,a 2017954 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2017938: 7f ff e3 7e call 2010730 201793c: 01 00 00 00 nop *signal_set |= signals; 2017940: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2017944: b2 10 40 19 or %g1, %i1, %i1 2017948: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 201794c: 7f ff e3 7d call 2010740 2017950: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2017954: 40 00 12 42 call 201c25c <_Thread_Enable_dispatch> 2017958: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201795c: 10 80 00 07 b 2017978 2017960: 82 10 20 00 clr %g1 ! 0 } _Thread_Enable_dispatch(); 2017964: 40 00 12 3e call 201c25c <_Thread_Enable_dispatch> 2017968: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 201796c: 10 80 00 03 b 2017978 2017970: 82 10 20 0b mov 0xb, %g1 ! b case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2017974: 82 10 20 04 mov 4, %g1 } 2017978: 81 c7 e0 08 ret 201797c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02010864 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 2010864: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 2010868: 80 a6 a0 00 cmp %i2, 0 201086c: 02 80 00 5a be 20109d4 2010870: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 2010874: 03 00 80 81 sethi %hi(0x2020400), %g1 2010878: f8 00 62 d0 ld [ %g1 + 0x2d0 ], %i4 ! 20206d0 <_Per_CPU_Information+0x10> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 201087c: c2 0f 20 70 ldub [ %i4 + 0x70 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 2010880: fa 07 21 50 ld [ %i4 + 0x150 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 2010884: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 2010888: c2 07 20 78 ld [ %i4 + 0x78 ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 201088c: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 2010890: 80 a0 60 00 cmp %g1, 0 2010894: 02 80 00 03 be 20108a0 2010898: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 201089c: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20108a0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 20108a4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 20108a8: 7f ff ef 12 call 200c4f0 <_CPU_ISR_Get_level> 20108ac: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20108b0: a1 2c 20 0a sll %l0, 0xa, %l0 20108b4: 90 14 00 08 or %l0, %o0, %o0 old_mode |= _ISR_Get_level(); 20108b8: b6 12 00 1b or %o0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 20108bc: 80 8e 61 00 btst 0x100, %i1 20108c0: 02 80 00 06 be 20108d8 20108c4: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 20108c8: 83 36 20 08 srl %i0, 8, %g1 20108cc: 82 18 60 01 xor %g1, 1, %g1 20108d0: 82 08 60 01 and %g1, 1, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 20108d4: c2 2f 20 70 stb %g1, [ %i4 + 0x70 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 20108d8: 80 8e 62 00 btst 0x200, %i1 20108dc: 02 80 00 0b be 2010908 20108e0: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 20108e4: 80 8e 22 00 btst 0x200, %i0 20108e8: 22 80 00 07 be,a 2010904 20108ec: c0 27 20 78 clr [ %i4 + 0x78 ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 20108f0: 82 10 20 01 mov 1, %g1 20108f4: c2 27 20 78 st %g1, [ %i4 + 0x78 ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 20108f8: 03 00 80 81 sethi %hi(0x2020400), %g1 20108fc: c2 00 60 10 ld [ %g1 + 0x10 ], %g1 ! 2020410 <_Thread_Ticks_per_timeslice> 2010900: c2 27 20 74 st %g1, [ %i4 + 0x74 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 2010904: 80 8e 60 0f btst 0xf, %i1 2010908: 02 80 00 06 be 2010920 201090c: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 2010910: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 2010914: 7f ff c9 42 call 2002e1c 2010918: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 201091c: 80 8e 64 00 btst 0x400, %i1 2010920: 02 80 00 14 be 2010970 2010924: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 2010928: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; 201092c: b1 36 20 0a srl %i0, 0xa, %i0 2010930: b0 1e 20 01 xor %i0, 1, %i0 2010934: b0 0e 20 01 and %i0, 1, %i0 if ( is_asr_enabled != asr->is_enabled ) { 2010938: 80 a6 00 01 cmp %i0, %g1 201093c: 22 80 00 0e be,a 2010974 2010940: 03 00 80 81 sethi %hi(0x2020400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 2010944: 7f ff c9 32 call 2002e0c 2010948: f0 2f 60 08 stb %i0, [ %i5 + 8 ] _signals = information->signals_pending; 201094c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 2010950: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 2010954: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 2010958: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 201095c: 7f ff c9 30 call 2002e1c 2010960: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 2010964: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2010968: 80 a0 00 01 cmp %g0, %g1 201096c: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 2010970: 03 00 80 81 sethi %hi(0x2020400), %g1 2010974: c4 00 62 bc ld [ %g1 + 0x2bc ], %g2 ! 20206bc <_System_state_Current> 2010978: 80 a0 a0 03 cmp %g2, 3 201097c: 12 80 00 16 bne 20109d4 2010980: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 2010984: 07 00 80 81 sethi %hi(0x2020400), %g3 if ( are_signals_pending || 2010988: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 201098c: 86 10 e2 c0 or %g3, 0x2c0, %g3 if ( are_signals_pending || 2010990: 12 80 00 0a bne 20109b8 2010994: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2010998: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 201099c: 80 a0 80 03 cmp %g2, %g3 20109a0: 02 80 00 0d be 20109d4 20109a4: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 20109a8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 20109ac: 80 a0 a0 00 cmp %g2, 0 20109b0: 02 80 00 09 be 20109d4 <== NEVER TAKEN 20109b4: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 20109b8: 84 10 20 01 mov 1, %g2 ! 1 20109bc: 03 00 80 81 sethi %hi(0x2020400), %g1 20109c0: 82 10 62 c0 or %g1, 0x2c0, %g1 ! 20206c0 <_Per_CPU_Information> 20109c4: c4 28 60 0c stb %g2, [ %g1 + 0xc ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 20109c8: 40 00 02 67 call 2011364 <_Thread_Dispatch> 20109cc: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 20109d0: 82 10 20 00 clr %g1 ! 0 } 20109d4: 81 c7 e0 08 ret 20109d8: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200bdf0 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200bdf0: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200bdf4: 80 a6 60 00 cmp %i1, 0 200bdf8: 02 80 00 08 be 200be18 200bdfc: 80 a6 a0 00 cmp %i2, 0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200be00: 03 00 80 7e sethi %hi(0x201f800), %g1 200be04: c4 08 62 ac ldub [ %g1 + 0x2ac ], %g2 ! 201faac 200be08: 80 a6 40 02 cmp %i1, %g2 200be0c: 18 80 00 1e bgu 200be84 200be10: 82 10 20 13 mov 0x13, %g1 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200be14: 80 a6 a0 00 cmp %i2, 0 200be18: 02 80 00 1b be 200be84 200be1c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200be20: 90 10 00 18 mov %i0, %o0 200be24: 40 00 09 7f call 200e420 <_Thread_Get> 200be28: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200be2c: c2 07 bf fc ld [ %fp + -4 ], %g1 200be30: 80 a0 60 00 cmp %g1, 0 200be34: 12 80 00 14 bne 200be84 200be38: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200be3c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200be40: 80 a6 60 00 cmp %i1, 0 200be44: 02 80 00 0d be 200be78 200be48: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200be4c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200be50: 80 a0 60 00 cmp %g1, 0 200be54: 02 80 00 06 be 200be6c 200be58: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200be5c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200be60: 80 a0 40 19 cmp %g1, %i1 200be64: 08 80 00 05 bleu 200be78 <== ALWAYS TAKEN 200be68: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200be6c: 92 10 00 19 mov %i1, %o1 200be70: 40 00 08 2e call 200df28 <_Thread_Change_priority> 200be74: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200be78: 40 00 09 5e call 200e3f0 <_Thread_Enable_dispatch> 200be7c: 01 00 00 00 nop 200be80: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200be84: 81 c7 e0 08 ret 200be88: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02018324 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2018324: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2018328: 11 00 80 ed sethi %hi(0x203b400), %o0 201832c: 92 10 00 18 mov %i0, %o1 2018330: 90 12 21 c8 or %o0, 0x1c8, %o0 2018334: 40 00 0b f3 call 201b300 <_Objects_Get> 2018338: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 201833c: c2 07 bf fc ld [ %fp + -4 ], %g1 2018340: 80 a0 60 00 cmp %g1, 0 2018344: 12 80 00 0c bne 2018374 2018348: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 201834c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2018350: 80 a0 60 04 cmp %g1, 4 2018354: 02 80 00 04 be 2018364 <== NEVER TAKEN 2018358: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 201835c: 40 00 13 a5 call 201d1f0 <_Watchdog_Remove> 2018360: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2018364: 40 00 0f be call 201c25c <_Thread_Enable_dispatch> 2018368: b0 10 20 00 clr %i0 201836c: 81 c7 e0 08 ret 2018370: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2018374: 81 c7 e0 08 ret 2018378: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02018834 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2018834: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2018838: 03 00 80 ed sethi %hi(0x203b400), %g1 201883c: f8 00 62 08 ld [ %g1 + 0x208 ], %i4 ! 203b608 <_Timer_server> if ( !timer_server ) 2018840: 80 a7 20 00 cmp %i4, 0 2018844: 02 80 00 3c be 2018934 2018848: 82 10 20 0e mov 0xe, %g1 return RTEMS_INCORRECT_STATE; if ( !_TOD.is_set ) 201884c: 21 00 80 ec sethi %hi(0x203b000), %l0 2018850: 82 14 22 48 or %l0, 0x248, %g1 ! 203b248 <_TOD> 2018854: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2 2018858: 80 a0 a0 00 cmp %g2, 0 201885c: 02 80 00 36 be 2018934 <== NEVER TAKEN 2018860: 82 10 20 0b mov 0xb, %g1 return RTEMS_NOT_DEFINED; if ( !routine ) 2018864: 80 a6 a0 00 cmp %i2, 0 2018868: 02 80 00 33 be 2018934 201886c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2018870: 7f ff f3 7f call 201566c <_TOD_Validate> 2018874: 90 10 00 19 mov %i1, %o0 2018878: 80 8a 20 ff btst 0xff, %o0 201887c: 02 80 00 2e be 2018934 2018880: 82 10 20 14 mov 0x14, %g1 return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2018884: 7f ff f3 40 call 2015584 <_TOD_To_seconds> 2018888: 90 10 00 19 mov %i1, %o0 201888c: b2 10 00 08 mov %o0, %i1 2018890: d0 1c 22 48 ldd [ %l0 + 0x248 ], %o0 2018894: 94 10 20 00 clr %o2 2018898: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 201889c: 40 00 4b f2 call 202b864 <__divdi3> 20188a0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 if ( seconds <= _TOD_Seconds_since_epoch() ) 20188a4: 80 a6 40 09 cmp %i1, %o1 20188a8: 08 80 00 23 bleu 2018934 20188ac: 82 10 20 14 mov 0x14, %g1 20188b0: 11 00 80 ed sethi %hi(0x203b400), %o0 20188b4: 92 10 00 18 mov %i0, %o1 20188b8: 90 12 21 c8 or %o0, 0x1c8, %o0 20188bc: 40 00 0a 91 call 201b300 <_Objects_Get> 20188c0: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20188c4: c2 07 bf fc ld [ %fp + -4 ], %g1 20188c8: 80 a0 60 00 cmp %g1, 0 20188cc: 12 80 00 19 bne 2018930 20188d0: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20188d4: 40 00 12 47 call 201d1f0 <_Watchdog_Remove> 20188d8: 90 02 20 10 add %o0, 0x10, %o0 20188dc: d0 1c 22 48 ldd [ %l0 + 0x248 ], %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20188e0: 82 10 20 03 mov 3, %g1 20188e4: 94 10 20 00 clr %o2 20188e8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20188ec: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 20188f0: f4 27 60 2c st %i2, [ %i5 + 0x2c ] the_watchdog->id = id; 20188f4: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 20188f8: f6 27 60 34 st %i3, [ %i5 + 0x34 ] 20188fc: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018900: 40 00 4b d9 call 202b864 <__divdi3> 2018904: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); (*timer_server->schedule_operation)( timer_server, the_timer ); 2018908: c2 07 20 04 ld [ %i4 + 4 ], %g1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201890c: 92 26 40 09 sub %i1, %o1, %o1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2018910: 90 10 00 1c mov %i4, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2018914: d2 27 60 1c st %o1, [ %i5 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2018918: 9f c0 40 00 call %g1 201891c: 92 10 00 1d mov %i5, %o1 _Thread_Enable_dispatch(); 2018920: 40 00 0e 4f call 201c25c <_Thread_Enable_dispatch> 2018924: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2018928: 10 80 00 03 b 2018934 201892c: 82 10 20 00 clr %g1 ! 0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2018930: 82 10 20 04 mov 4, %g1 } 2018934: 81 c7 e0 08 ret 2018938: 91 e8 00 01 restore %g0, %g1, %o0