=============================================================================== 02011050 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2011050: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2011054: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 2011058: c0 26 20 48 clr [ %i0 + 0x48 ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 201105c: 80 8e e0 03 btst 3, %i3 2011060: 02 80 00 09 be 2011084 <_CORE_message_queue_Initialize+0x34> 2011064: f6 26 20 4c st %i3, [ %i0 + 0x4c ] allocated_message_size += sizeof(uint32_t); 2011068: 96 06 e0 04 add %i3, 4, %o3 allocated_message_size &= ~(sizeof(uint32_t) - 1); 201106c: 96 0a ff fc and %o3, -4, %o3 } if (allocated_message_size < maximum_message_size) 2011070: 80 a2 c0 1b cmp %o3, %i3 2011074: 3a 80 00 06 bcc,a 201108c <_CORE_message_queue_Initialize+0x3c> 2011078: ba 02 e0 10 add %o3, 0x10, %i5 return false; 201107c: 10 80 00 24 b 201110c <_CORE_message_queue_Initialize+0xbc> 2011080: b0 10 20 00 clr %i0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2011084: 96 10 00 1b mov %i3, %o3 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 2011088: ba 02 e0 10 add %o3, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 201108c: 90 10 20 00 clr %o0 2011090: 92 10 00 1a mov %i2, %o1 2011094: 94 10 20 00 clr %o2 2011098: 40 00 3f d3 call 2020fe4 <__muldi3> 201109c: 96 10 00 1d mov %i5, %o3 if ( x > SIZE_MAX ) 20110a0: 80 a2 20 00 cmp %o0, 0 20110a4: 34 80 00 1a bg,a 201110c <_CORE_message_queue_Initialize+0xbc> 20110a8: b0 10 20 00 clr %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 20110ac: 40 00 0b d8 call 201400c <_Workspace_Allocate> 20110b0: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 20110b4: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 20110b8: 80 a2 20 00 cmp %o0, 0 20110bc: 02 bf ff f0 be 201107c <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN 20110c0: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 20110c4: 90 06 20 60 add %i0, 0x60, %o0 20110c8: 94 10 00 1a mov %i2, %o2 20110cc: 7f ff ff d3 call 2011018 <_Chain_Initialize> 20110d0: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 20110d4: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 20110d8: c2 26 20 58 st %g1, [ %i0 + 0x58 ] */ RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority( CORE_message_queue_Attributes *the_attribute ) { return 20110dc: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 20110e0: 84 06 20 54 add %i0, 0x54, %g2 20110e4: 82 18 60 01 xor %g1, 1, %g1 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 20110e8: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 20110ec: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 20110f0: c0 26 20 54 clr [ %i0 + 0x54 ] 20110f4: 90 10 00 18 mov %i0, %o0 20110f8: 92 60 3f ff subx %g0, -1, %o1 20110fc: 94 10 20 80 mov 0x80, %o2 2011100: 96 10 20 06 mov 6, %o3 2011104: 40 00 09 99 call 2013768 <_Thread_queue_Initialize> 2011108: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 201110c: b0 0e 20 01 and %i0, 1, %i0 2011110: 81 c7 e0 08 ret 2011114: 81 e8 00 00 restore =============================================================================== 0200870c <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 200870c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2008710: 90 10 00 18 mov %i0, %o0 2008714: 40 00 07 57 call 200a470 <_Thread_queue_Dequeue> 2008718: ba 10 00 18 mov %i0, %i5 200871c: 80 a2 20 00 cmp %o0, 0 2008720: 12 80 00 0e bne 2008758 <_CORE_semaphore_Surrender+0x4c> 2008724: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2008728: 7f ff e7 e7 call 20026c4 200872c: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2008730: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 2008734: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 2008738: 80 a0 40 02 cmp %g1, %g2 200873c: 1a 80 00 05 bcc 2008750 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2008740: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2008744: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2008748: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 200874c: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2008750: 7f ff e7 e1 call 20026d4 2008754: 01 00 00 00 nop } return status; } 2008758: 81 c7 e0 08 ret 200875c: 81 e8 00 00 restore =============================================================================== 02007464 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2007464: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2007468: f8 06 21 50 ld [ %i0 + 0x150 ], %i4 option_set = (rtems_option) the_thread->Wait.option; 200746c: f6 06 20 30 ld [ %i0 + 0x30 ], %i3 _ISR_Disable( level ); 2007470: 7f ff ec 95 call 20026c4 2007474: ba 10 00 18 mov %i0, %i5 2007478: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 200747c: c4 07 00 00 ld [ %i4 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2007480: c6 07 60 24 ld [ %i5 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2007484: 82 88 c0 02 andcc %g3, %g2, %g1 2007488: 02 80 00 42 be 2007590 <_Event_Surrender+0x12c> 200748c: 09 00 80 71 sethi %hi(0x201c400), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2007490: 88 11 23 d0 or %g4, 0x3d0, %g4 ! 201c7d0 <_Per_CPU_Information> 2007494: f4 01 20 08 ld [ %g4 + 8 ], %i2 2007498: 80 a6 a0 00 cmp %i2, 0 200749c: 22 80 00 1d be,a 2007510 <_Event_Surrender+0xac> 20074a0: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 20074a4: c8 01 20 0c ld [ %g4 + 0xc ], %g4 20074a8: 80 a7 40 04 cmp %i5, %g4 20074ac: 32 80 00 19 bne,a 2007510 <_Event_Surrender+0xac> 20074b0: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 20074b4: 09 00 80 72 sethi %hi(0x201c800), %g4 20074b8: f4 01 20 30 ld [ %g4 + 0x30 ], %i2 ! 201c830 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 20074bc: 80 a6 a0 02 cmp %i2, 2 20074c0: 02 80 00 07 be 20074dc <_Event_Surrender+0x78> <== NEVER TAKEN 20074c4: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 20074c8: c8 01 20 30 ld [ %g4 + 0x30 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 20074cc: 80 a1 20 01 cmp %g4, 1 20074d0: 32 80 00 10 bne,a 2007510 <_Event_Surrender+0xac> 20074d4: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 20074d8: 80 a0 40 03 cmp %g1, %g3 20074dc: 02 80 00 04 be 20074ec <_Event_Surrender+0x88> 20074e0: 80 8e e0 02 btst 2, %i3 20074e4: 02 80 00 2b be 2007590 <_Event_Surrender+0x12c> <== NEVER TAKEN 20074e8: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 20074ec: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20074f0: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20074f4: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 20074f8: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20074fc: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2007500: 84 10 20 03 mov 3, %g2 2007504: 03 00 80 72 sethi %hi(0x201c800), %g1 2007508: c4 20 60 30 st %g2, [ %g1 + 0x30 ] ! 201c830 <_Event_Sync_state> 200750c: 30 80 00 21 b,a 2007590 <_Event_Surrender+0x12c> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2007510: 80 89 21 00 btst 0x100, %g4 2007514: 02 80 00 1f be 2007590 <_Event_Surrender+0x12c> 2007518: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 200751c: 02 80 00 04 be 200752c <_Event_Surrender+0xc8> 2007520: 80 8e e0 02 btst 2, %i3 2007524: 02 80 00 1b be 2007590 <_Event_Surrender+0x12c> <== NEVER TAKEN 2007528: 01 00 00 00 nop 200752c: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2007530: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2007534: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2007538: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 200753c: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2007540: 7f ff ec 65 call 20026d4 2007544: 90 10 00 18 mov %i0, %o0 2007548: 7f ff ec 5f call 20026c4 200754c: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2007550: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 2007554: 80 a0 60 02 cmp %g1, 2 2007558: 02 80 00 06 be 2007570 <_Event_Surrender+0x10c> 200755c: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2007560: 7f ff ec 5d call 20026d4 2007564: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007568: 10 80 00 08 b 2007588 <_Event_Surrender+0x124> 200756c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2007570: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2007574: 7f ff ec 58 call 20026d4 2007578: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 200757c: 40 00 0e 78 call 200af5c <_Watchdog_Remove> 2007580: 90 07 60 48 add %i5, 0x48, %o0 2007584: b2 16 63 f8 or %i1, 0x3f8, %i1 2007588: 40 00 0a 01 call 2009d8c <_Thread_Clear_state> 200758c: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2007590: 7f ff ec 51 call 20026d4 2007594: 81 e8 00 00 restore =============================================================================== 02007598 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2007598: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 200759c: 90 10 00 18 mov %i0, %o0 20075a0: 40 00 0a e8 call 200a140 <_Thread_Get> 20075a4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20075a8: c2 07 bf fc ld [ %fp + -4 ], %g1 20075ac: 80 a0 60 00 cmp %g1, 0 20075b0: 12 80 00 1d bne 2007624 <_Event_Timeout+0x8c> <== NEVER TAKEN 20075b4: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 20075b8: 7f ff ec 43 call 20026c4 20075bc: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20075c0: 03 00 80 71 sethi %hi(0x201c400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 20075c4: c2 00 63 dc ld [ %g1 + 0x3dc ], %g1 ! 201c7dc <_Per_CPU_Information+0xc> 20075c8: 80 a7 40 01 cmp %i5, %g1 20075cc: 12 80 00 09 bne 20075f0 <_Event_Timeout+0x58> 20075d0: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 20075d4: 03 00 80 72 sethi %hi(0x201c800), %g1 20075d8: c4 00 60 30 ld [ %g1 + 0x30 ], %g2 ! 201c830 <_Event_Sync_state> 20075dc: 80 a0 a0 01 cmp %g2, 1 20075e0: 32 80 00 05 bne,a 20075f4 <_Event_Timeout+0x5c> 20075e4: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 20075e8: 84 10 20 02 mov 2, %g2 20075ec: c4 20 60 30 st %g2, [ %g1 + 0x30 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 20075f0: 82 10 20 06 mov 6, %g1 20075f4: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 20075f8: 7f ff ec 37 call 20026d4 20075fc: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007600: 90 10 00 1d mov %i5, %o0 2007604: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007608: 40 00 09 e1 call 2009d8c <_Thread_Clear_state> 200760c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007610: 03 00 80 71 sethi %hi(0x201c400), %g1 2007614: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level> 2007618: 84 00 bf ff add %g2, -1, %g2 200761c: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] return _Thread_Dispatch_disable_level; 2007620: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1 2007624: 81 c7 e0 08 ret 2007628: 81 e8 00 00 restore =============================================================================== 0200cea8 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200cea8: 9d e3 bf 90 save %sp, -112, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200ceac: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200ceb0: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200ceb4: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200ceb8: ea 06 20 20 ld [ %i0 + 0x20 ], %l5 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200cebc: ec 06 20 10 ld [ %i0 + 0x10 ], %l6 uintptr_t const min_block_size = heap->min_block_size; 200cec0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200cec4: 80 a7 40 19 cmp %i5, %i1 200cec8: 1a 80 00 04 bcc 200ced8 <_Heap_Extend+0x30> 200cecc: e6 06 20 30 ld [ %i0 + 0x30 ], %l3 return false; 200ced0: 10 80 00 a2 b 200d158 <_Heap_Extend+0x2b0> 200ced4: b0 10 20 00 clr %i0 } extend_area_ok = _Heap_Get_first_and_last_block( 200ced8: 90 10 00 19 mov %i1, %o0 200cedc: 92 10 00 1a mov %i2, %o1 200cee0: 94 10 00 16 mov %l6, %o2 200cee4: 98 07 bf f8 add %fp, -8, %o4 200cee8: 7f ff ee a5 call 200897c <_Heap_Get_first_and_last_block> 200ceec: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200cef0: 80 8a 20 ff btst 0xff, %o0 200cef4: 02 bf ff f7 be 200ced0 <_Heap_Extend+0x28> 200cef8: a4 10 20 00 clr %l2 200cefc: b4 10 00 15 mov %l5, %i2 200cf00: a8 10 20 00 clr %l4 200cf04: b8 10 20 00 clr %i4 200cf08: a2 10 20 00 clr %l1 200cf0c: ee 06 20 18 ld [ %i0 + 0x18 ], %l7 } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; 200cf10: e0 06 80 00 ld [ %i2 ], %l0 200cf14: 92 10 00 16 mov %l6, %o1 200cf18: 82 04 3f f8 add %l0, -8, %g1 200cf1c: 90 10 00 10 mov %l0, %o0 200cf20: 40 00 2c 41 call 2018024 <.urem> 200cf24: c2 27 bf f4 st %g1, [ %fp + -12 ] uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cf28: c2 07 bf f4 ld [ %fp + -12 ], %g1 Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cf2c: 80 a5 c0 1d cmp %l7, %i5 200cf30: 1a 80 00 05 bcc 200cf44 <_Heap_Extend+0x9c> 200cf34: 90 20 40 08 sub %g1, %o0, %o0 200cf38: 80 a6 40 10 cmp %i1, %l0 200cf3c: 2a 80 00 87 bcs,a 200d158 <_Heap_Extend+0x2b0> 200cf40: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200cf44: 80 a7 40 17 cmp %i5, %l7 200cf48: 02 80 00 06 be 200cf60 <_Heap_Extend+0xb8> 200cf4c: 80 a7 40 10 cmp %i5, %l0 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200cf50: 2a 80 00 05 bcs,a 200cf64 <_Heap_Extend+0xbc> 200cf54: a8 10 00 1a mov %i2, %l4 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cf58: 10 80 00 04 b 200cf68 <_Heap_Extend+0xc0> 200cf5c: 80 a4 00 19 cmp %l0, %i1 200cf60: a2 10 00 1a mov %i2, %l1 200cf64: 80 a4 00 19 cmp %l0, %i1 200cf68: 12 80 00 05 bne 200cf7c <_Heap_Extend+0xd4> 200cf6c: 80 a4 00 19 cmp %l0, %i1 start_block->prev_size = extend_area_end; 200cf70: fa 26 80 00 st %i5, [ %i2 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200cf74: 10 80 00 04 b 200cf84 <_Heap_Extend+0xdc> 200cf78: b8 10 00 08 mov %o0, %i4 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200cf7c: 2a 80 00 02 bcs,a 200cf84 <_Heap_Extend+0xdc> 200cf80: a4 10 00 08 mov %o0, %l2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cf84: f4 02 20 04 ld [ %o0 + 4 ], %i2 200cf88: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cf8c: b4 02 00 1a add %o0, %i2, %i2 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cf90: 80 a6 80 15 cmp %i2, %l5 200cf94: 12 bf ff df bne 200cf10 <_Heap_Extend+0x68> 200cf98: ae 10 00 1a mov %i2, %l7 if ( extend_area_begin < heap->area_begin ) { 200cf9c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200cfa0: 80 a6 40 01 cmp %i1, %g1 200cfa4: 3a 80 00 04 bcc,a 200cfb4 <_Heap_Extend+0x10c> 200cfa8: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200cfac: 10 80 00 05 b 200cfc0 <_Heap_Extend+0x118> 200cfb0: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200cfb4: 80 a0 40 1d cmp %g1, %i5 200cfb8: 2a 80 00 02 bcs,a 200cfc0 <_Heap_Extend+0x118> 200cfbc: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cfc0: c4 07 bf f8 ld [ %fp + -8 ], %g2 200cfc4: c2 07 bf fc ld [ %fp + -4 ], %g1 extend_first_block->prev_size = extend_area_end; 200cfc8: fa 20 80 00 st %i5, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200cfcc: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200cfd0: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200cfd4: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200cfd8: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cfdc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 200cfe0: 80 a0 c0 02 cmp %g3, %g2 200cfe4: 08 80 00 04 bleu 200cff4 <_Heap_Extend+0x14c> 200cfe8: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200cfec: 10 80 00 06 b 200d004 <_Heap_Extend+0x15c> 200cff0: c4 26 20 20 st %g2, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200cff4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200cff8: 80 a0 80 01 cmp %g2, %g1 200cffc: 2a 80 00 02 bcs,a 200d004 <_Heap_Extend+0x15c> 200d000: c2 26 20 24 st %g1, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200d004: 80 a4 60 00 cmp %l1, 0 200d008: 02 80 00 14 be 200d058 <_Heap_Extend+0x1b0> 200d00c: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200d010: f4 06 20 10 ld [ %i0 + 0x10 ], %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200d014: 92 10 00 1a mov %i2, %o1 200d018: 40 00 2c 03 call 2018024 <.urem> 200d01c: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200d020: 80 a2 20 00 cmp %o0, 0 200d024: 02 80 00 04 be 200d034 <_Heap_Extend+0x18c> 200d028: c2 04 40 00 ld [ %l1 ], %g1 return value - remainder + alignment; 200d02c: b2 06 40 1a add %i1, %i2, %i1 200d030: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200d034: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200d038: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200d03c: 82 24 40 09 sub %l1, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200d040: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200d044: 90 10 00 18 mov %i0, %o0 200d048: 7f ff ff 8e call 200ce80 <_Heap_Free_block> 200d04c: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200d050: 10 80 00 08 b 200d070 <_Heap_Extend+0x1c8> 200d054: 80 a7 20 00 cmp %i4, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200d058: 80 a5 20 00 cmp %l4, 0 200d05c: 02 80 00 04 be 200d06c <_Heap_Extend+0x1c4> 200d060: a8 25 00 01 sub %l4, %g1, %l4 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200d064: a8 15 20 01 or %l4, 1, %l4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200d068: e8 20 60 04 st %l4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200d06c: 80 a7 20 00 cmp %i4, 0 200d070: 02 80 00 15 be 200d0c4 <_Heap_Extend+0x21c> 200d074: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d078: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200d07c: ba 27 40 1c sub %i5, %i4, %i5 200d080: 40 00 2b e9 call 2018024 <.urem> 200d084: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200d088: c4 07 20 04 ld [ %i4 + 4 ], %g2 200d08c: 90 27 40 08 sub %i5, %o0, %o0 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200d090: 82 02 00 1c add %o0, %i4, %g1 (last_block->size_and_flag - last_block_new_size) 200d094: 84 20 80 08 sub %g2, %o0, %g2 | HEAP_PREV_BLOCK_USED; 200d098: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200d09c: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d0a0: c2 07 20 04 ld [ %i4 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200d0a4: 92 10 00 1c mov %i4, %o1 200d0a8: 82 08 60 01 and %g1, 1, %g1 block->size_and_flag = size | flag; 200d0ac: 90 12 00 01 or %o0, %g1, %o0 200d0b0: d0 27 20 04 st %o0, [ %i4 + 4 ] 200d0b4: 7f ff ff 73 call 200ce80 <_Heap_Free_block> 200d0b8: 90 10 00 18 mov %i0, %o0 extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200d0bc: 10 80 00 0f b 200d0f8 <_Heap_Extend+0x250> 200d0c0: 80 a7 20 00 cmp %i4, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200d0c4: 80 a4 a0 00 cmp %l2, 0 200d0c8: 02 80 00 0b be 200d0f4 <_Heap_Extend+0x24c> 200d0cc: c6 07 bf f8 ld [ %fp + -8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d0d0: c4 04 a0 04 ld [ %l2 + 4 ], %g2 _Heap_Link_above( 200d0d4: c2 07 bf fc ld [ %fp + -4 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200d0d8: 86 20 c0 12 sub %g3, %l2, %g3 200d0dc: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200d0e0: 84 10 c0 02 or %g3, %g2, %g2 200d0e4: c4 24 a0 04 st %g2, [ %l2 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200d0e8: c4 00 60 04 ld [ %g1 + 4 ], %g2 200d0ec: 84 10 a0 01 or %g2, 1, %g2 200d0f0: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200d0f4: 80 a7 20 00 cmp %i4, 0 200d0f8: 32 80 00 09 bne,a 200d11c <_Heap_Extend+0x274> 200d0fc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200d100: 80 a4 60 00 cmp %l1, 0 200d104: 32 80 00 06 bne,a 200d11c <_Heap_Extend+0x274> 200d108: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200d10c: d2 07 bf f8 ld [ %fp + -8 ], %o1 200d110: 7f ff ff 5c call 200ce80 <_Heap_Free_block> 200d114: 90 10 00 18 mov %i0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200d118: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200d11c: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d120: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200d124: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d128: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200d12c: 84 10 c0 02 or %g3, %g2, %g2 200d130: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200d134: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 /* Statistics */ stats->size += extended_size; if ( extended_size_ptr != NULL ) 200d138: 80 a6 e0 00 cmp %i3, 0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200d13c: a6 20 40 13 sub %g1, %l3, %l3 /* Statistics */ stats->size += extended_size; 200d140: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 200d144: 82 00 40 13 add %g1, %l3, %g1 if ( extended_size_ptr != NULL ) 200d148: 02 80 00 03 be 200d154 <_Heap_Extend+0x2ac> <== NEVER TAKEN 200d14c: c2 26 20 2c st %g1, [ %i0 + 0x2c ] *extended_size_ptr = extended_size; 200d150: e6 26 c0 00 st %l3, [ %i3 ] return true; 200d154: b0 10 20 01 mov 1, %i0 } 200d158: b0 0e 20 01 and %i0, 1, %i0 200d15c: 81 c7 e0 08 ret 200d160: 81 e8 00 00 restore =============================================================================== 0200ced4 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200ced4: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200ced8: 80 a6 60 00 cmp %i1, 0 200cedc: 02 80 00 7a be 200d0c4 <_Heap_Free+0x1f0> 200cee0: 88 10 20 01 mov 1, %g4 200cee4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200cee8: 40 00 2b ab call 2017d94 <.urem> 200ceec: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200cef0: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cef4: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cef8: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cefc: 80 a2 00 1b cmp %o0, %i3 200cf00: 0a 80 00 05 bcs 200cf14 <_Heap_Free+0x40> 200cf04: 82 10 20 00 clr %g1 200cf08: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200cf0c: 80 a0 40 08 cmp %g1, %o0 200cf10: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200cf14: 80 a0 60 00 cmp %g1, 0 200cf18: 02 80 00 6b be 200d0c4 <_Heap_Free+0x1f0> 200cf1c: 88 10 20 00 clr %g4 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cf20: f8 02 20 04 ld [ %o0 + 4 ], %i4 200cf24: 84 0f 3f fe and %i4, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cf28: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cf2c: 80 a0 40 1b cmp %g1, %i3 200cf30: 0a 80 00 05 bcs 200cf44 <_Heap_Free+0x70> <== NEVER TAKEN 200cf34: 86 10 20 00 clr %g3 200cf38: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200cf3c: 80 a0 c0 01 cmp %g3, %g1 200cf40: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200cf44: 80 a0 e0 00 cmp %g3, 0 200cf48: 02 80 00 5f be 200d0c4 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cf4c: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cf50: fa 00 60 04 ld [ %g1 + 4 ], %i5 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200cf54: 80 8f 60 01 btst 1, %i5 200cf58: 22 80 00 5c be,a 200d0c8 <_Heap_Free+0x1f4> <== NEVER TAKEN 200cf5c: b0 09 20 01 and %g4, 1, %i0 <== NOT EXECUTED if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200cf60: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200cf64: 80 a0 40 04 cmp %g1, %g4 200cf68: 02 80 00 07 be 200cf84 <_Heap_Free+0xb0> 200cf6c: ba 0f 7f fe and %i5, -2, %i5 200cf70: 86 00 40 1d add %g1, %i5, %g3 200cf74: f4 00 e0 04 ld [ %g3 + 4 ], %i2 200cf78: b4 1e a0 01 xor %i2, 1, %i2 200cf7c: 10 80 00 03 b 200cf88 <_Heap_Free+0xb4> 200cf80: b4 0e a0 01 and %i2, 1, %i2 200cf84: b4 10 20 00 clr %i2 if ( !_Heap_Is_prev_used( block ) ) { 200cf88: 80 8f 20 01 btst 1, %i4 200cf8c: 12 80 00 26 bne 200d024 <_Heap_Free+0x150> 200cf90: 80 8e a0 ff btst 0xff, %i2 uintptr_t const prev_size = block->prev_size; 200cf94: f8 02 00 00 ld [ %o0 ], %i4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cf98: 86 22 00 1c sub %o0, %i4, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cf9c: 80 a0 c0 1b cmp %g3, %i3 200cfa0: 0a 80 00 04 bcs 200cfb0 <_Heap_Free+0xdc> <== NEVER TAKEN 200cfa4: b2 10 20 00 clr %i1 200cfa8: 80 a1 00 03 cmp %g4, %g3 200cfac: b2 60 3f ff subx %g0, -1, %i1 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200cfb0: 80 a6 60 00 cmp %i1, 0 200cfb4: 02 80 00 44 be 200d0c4 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cfb8: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cfbc: f6 00 e0 04 ld [ %g3 + 4 ], %i3 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200cfc0: 80 8e e0 01 btst 1, %i3 200cfc4: 02 80 00 40 be 200d0c4 <_Heap_Free+0x1f0> <== NEVER TAKEN 200cfc8: 80 8e a0 ff btst 0xff, %i2 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200cfcc: 22 80 00 0f be,a 200d008 <_Heap_Free+0x134> 200cfd0: b8 00 80 1c add %g2, %i4, %i4 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200cfd4: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200cfd8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 uintptr_t const size = block_size + prev_size + next_block_size; 200cfdc: ba 00 80 1d add %g2, %i5, %i5 prev->next = next; 200cfe0: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200cfe4: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cfe8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200cfec: b8 07 40 1c add %i5, %i4, %i4 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cff0: 82 00 7f ff add %g1, -1, %g1 200cff4: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cff8: f8 20 c0 1c st %i4, [ %g3 + %i4 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cffc: 82 17 20 01 or %i4, 1, %g1 200d000: 10 80 00 27 b 200d09c <_Heap_Free+0x1c8> 200d004: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d008: 88 17 20 01 or %i4, 1, %g4 200d00c: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d010: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200d014: f8 22 00 02 st %i4, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d018: 86 08 ff fe and %g3, -2, %g3 200d01c: 10 80 00 20 b 200d09c <_Heap_Free+0x1c8> 200d020: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200d024: 22 80 00 0d be,a 200d058 <_Heap_Free+0x184> 200d028: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200d02c: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200d030: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200d034: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200d038: c2 22 20 0c st %g1, [ %o0 + 0xc ] uintptr_t const size = block_size + next_block_size; 200d03c: 86 07 40 02 add %i5, %g2, %g3 next->prev = new_block; prev->next = new_block; 200d040: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200d044: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d048: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200d04c: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d050: 10 80 00 13 b 200d09c <_Heap_Free+0x1c8> 200d054: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200d058: f0 22 20 0c st %i0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200d05c: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200d060: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200d064: 86 10 a0 01 or %g2, 1, %g3 200d068: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d06c: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200d070: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d074: 86 08 ff fe and %g3, -2, %g3 200d078: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200d07c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200d080: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200d084: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200d088: d0 26 20 08 st %o0, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200d08c: 80 a0 c0 01 cmp %g3, %g1 200d090: 1a 80 00 03 bcc 200d09c <_Heap_Free+0x1c8> 200d094: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200d098: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200d09c: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 200d0a0: 82 00 7f ff add %g1, -1, %g1 200d0a4: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200d0a8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200d0ac: 82 00 60 01 inc %g1 200d0b0: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200d0b4: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200d0b8: 84 00 40 02 add %g1, %g2, %g2 200d0bc: c4 26 20 30 st %g2, [ %i0 + 0x30 ] * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200d0c0: 88 10 20 01 mov 1, %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200d0c4: b0 09 20 01 and %g4, 1, %i0 200d0c8: 81 c7 e0 08 ret 200d0cc: 81 e8 00 00 restore =============================================================================== 0200a854 <_Heap_Greedy_allocate>: Heap_Block *_Heap_Greedy_allocate( Heap_Control *heap, const uintptr_t *block_sizes, size_t block_count ) { 200a854: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a858: b6 10 20 00 clr %i3 Heap_Block *_Heap_Greedy_allocate( Heap_Control *heap, const uintptr_t *block_sizes, size_t block_count ) { 200a85c: ba 10 00 18 mov %i0, %i5 Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a860: 10 80 00 11 b 200a8a4 <_Heap_Greedy_allocate+0x50> 200a864: b8 10 20 00 clr %i4 * @brief See _Heap_Allocate_aligned_with_boundary() with alignment and * boundary equals zero. */ RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size ) { return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 ); 200a868: d2 06 40 01 ld [ %i1 + %g1 ], %o1 200a86c: 90 10 00 1d mov %i5, %o0 200a870: 94 10 20 00 clr %o2 200a874: 40 00 1b 7a call 201165c <_Heap_Allocate_aligned_with_boundary> 200a878: 96 10 20 00 clr %o3 void *next = _Heap_Allocate( heap, block_sizes [i] ); if ( next != NULL ) { 200a87c: 82 92 20 00 orcc %o0, 0, %g1 200a880: 22 80 00 09 be,a 200a8a4 <_Heap_Greedy_allocate+0x50> <== NEVER TAKEN 200a884: b6 06 e0 01 inc %i3 <== NOT EXECUTED RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200a888: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 200a88c: 40 00 47 48 call 201c5ac <.urem> 200a890: b0 00 7f f8 add %g1, -8, %i0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200a894: 90 26 00 08 sub %i0, %o0, %o0 Heap_Block *next_block = _Heap_Block_of_alloc_area( (uintptr_t) next, heap->page_size ); next_block->next = allocated_blocks; 200a898: f8 22 20 08 st %i4, [ %o0 + 8 ] 200a89c: b8 10 00 08 mov %o0, %i4 Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200a8a0: b6 06 e0 01 inc %i3 200a8a4: 80 a6 c0 1a cmp %i3, %i2 200a8a8: 12 bf ff f0 bne 200a868 <_Heap_Greedy_allocate+0x14> 200a8ac: 83 2e e0 02 sll %i3, 2, %g1 200a8b0: 10 80 00 0a b 200a8d8 <_Heap_Greedy_allocate+0x84> 200a8b4: b0 10 20 00 clr %i0 allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { _Heap_Block_allocate( 200a8b8: 90 10 00 1d mov %i5, %o0 } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200a8bc: 96 0a ff fe and %o3, -2, %o3 200a8c0: 92 10 00 1b mov %i3, %o1 200a8c4: 94 06 e0 08 add %i3, 8, %o2 200a8c8: 40 00 00 cb call 200abf4 <_Heap_Block_allocate> 200a8cc: 96 02 ff f8 add %o3, -8, %o3 current, _Heap_Alloc_area_of_block( current ), _Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE ); current->next = blocks; 200a8d0: f0 26 e0 08 st %i0, [ %i3 + 8 ] 200a8d4: b0 10 00 1b mov %i3, %i0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200a8d8: f6 07 60 08 ld [ %i5 + 8 ], %i3 next_block->next = allocated_blocks; allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { 200a8dc: 80 a6 c0 1d cmp %i3, %i5 200a8e0: 32 bf ff f6 bne,a 200a8b8 <_Heap_Greedy_allocate+0x64> 200a8e4: d6 06 e0 04 ld [ %i3 + 4 ], %o3 current->next = blocks; blocks = current; } while ( allocated_blocks != NULL ) { 200a8e8: 10 80 00 07 b 200a904 <_Heap_Greedy_allocate+0xb0> 200a8ec: 80 a7 20 00 cmp %i4, 0 current = allocated_blocks; allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); 200a8f0: 92 07 20 08 add %i4, 8, %o1 200a8f4: 90 10 00 1d mov %i5, %o0 200a8f8: 40 00 1b ca call 2011820 <_Heap_Free> 200a8fc: b8 10 00 1b mov %i3, %i4 current->next = blocks; blocks = current; } while ( allocated_blocks != NULL ) { 200a900: 80 a7 20 00 cmp %i4, 0 200a904: 32 bf ff fb bne,a 200a8f0 <_Heap_Greedy_allocate+0x9c> 200a908: f6 07 20 08 ld [ %i4 + 8 ], %i3 allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); } return blocks; } 200a90c: 81 c7 e0 08 ret 200a910: 81 e8 00 00 restore =============================================================================== 0203e9b4 <_Heap_Iterate>: void _Heap_Iterate( Heap_Control *heap, Heap_Block_visitor visitor, void *visitor_arg ) { 203e9b4: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *current = heap->first_block; Heap_Block *end = heap->last_block; bool stop = false; 203e9b8: 90 10 20 00 clr %o0 Heap_Control *heap, Heap_Block_visitor visitor, void *visitor_arg ) { Heap_Block *current = heap->first_block; 203e9bc: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *end = heap->last_block; bool stop = false; while ( !stop && current != end ) { 203e9c0: 10 80 00 0a b 203e9e8 <_Heap_Iterate+0x34> 203e9c4: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 uintptr_t size = _Heap_Block_size( current ); Heap_Block *next = _Heap_Block_at( current, size ); bool used = _Heap_Is_prev_used( next ); stop = (*visitor)( current, size, used, visitor_arg ); 203e9c8: 90 10 00 01 mov %g1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 203e9cc: 92 0a 7f fe and %o1, -2, %o1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 203e9d0: ba 00 40 09 add %g1, %o1, %i5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 203e9d4: d4 07 60 04 ld [ %i5 + 4 ], %o2 203e9d8: 96 10 00 1a mov %i2, %o3 203e9dc: 9f c6 40 00 call %i1 203e9e0: 94 0a a0 01 and %o2, 1, %o2 203e9e4: 82 10 00 1d mov %i5, %g1 { Heap_Block *current = heap->first_block; Heap_Block *end = heap->last_block; bool stop = false; while ( !stop && current != end ) { 203e9e8: 80 a0 40 1c cmp %g1, %i4 203e9ec: 02 80 00 05 be 203ea00 <_Heap_Iterate+0x4c> 203e9f0: 90 1a 20 01 xor %o0, 1, %o0 203e9f4: 80 8a 20 ff btst 0xff, %o0 203e9f8: 32 bf ff f4 bne,a 203e9c8 <_Heap_Iterate+0x14> <== ALWAYS TAKEN 203e9fc: d2 00 60 04 ld [ %g1 + 4 ], %o1 203ea00: 81 c7 e0 08 ret 203ea04: 81 e8 00 00 restore =============================================================================== 0200d1f8 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 200d1f8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d1fc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200d200: 40 00 2a e5 call 2017d94 <.urem> 200d204: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200d208: c8 06 20 20 ld [ %i0 + 0x20 ], %g4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d20c: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200d210: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d214: 80 a2 00 04 cmp %o0, %g4 200d218: 0a 80 00 05 bcs 200d22c <_Heap_Size_of_alloc_area+0x34> 200d21c: 82 10 20 00 clr %g1 200d220: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200d224: 80 a0 40 08 cmp %g1, %o0 200d228: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200d22c: 80 a0 60 00 cmp %g1, 0 200d230: 02 80 00 15 be 200d284 <_Heap_Size_of_alloc_area+0x8c> 200d234: 86 10 20 00 clr %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d238: c2 02 20 04 ld [ %o0 + 4 ], %g1 200d23c: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d240: 82 02 00 01 add %o0, %g1, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d244: 80 a0 40 04 cmp %g1, %g4 200d248: 0a 80 00 05 bcs 200d25c <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 200d24c: 84 10 20 00 clr %g2 200d250: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200d254: 80 a0 80 01 cmp %g2, %g1 200d258: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 200d25c: 80 a0 a0 00 cmp %g2, 0 200d260: 02 80 00 09 be 200d284 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 200d264: 86 10 20 00 clr %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d268: c4 00 60 04 ld [ %g1 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 200d26c: 80 88 a0 01 btst 1, %g2 200d270: 02 80 00 05 be 200d284 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 200d274: 82 20 40 19 sub %g1, %i1, %g1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 200d278: 86 10 20 01 mov 1, %g3 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 200d27c: 82 00 60 04 add %g1, 4, %g1 200d280: c2 26 80 00 st %g1, [ %i2 ] return true; } 200d284: b0 08 e0 01 and %g3, 1, %i0 200d288: 81 c7 e0 08 ret 200d28c: 81 e8 00 00 restore =============================================================================== 02009844 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2009844: 9d e3 bf 80 save %sp, -128, %sp 2009848: ac 10 00 19 mov %i1, %l6 uintptr_t const page_size = heap->page_size; 200984c: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 2009850: f6 06 20 14 ld [ %i0 + 0x14 ], %i3 Heap_Block *const first_block = heap->first_block; 2009854: f2 06 20 20 ld [ %i0 + 0x20 ], %i1 Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2009858: 80 a6 a0 00 cmp %i2, 0 200985c: 02 80 00 05 be 2009870 <_Heap_Walk+0x2c> 2009860: e0 06 20 24 ld [ %i0 + 0x24 ], %l0 2009864: 3b 00 80 25 sethi %hi(0x2009400), %i5 2009868: 10 80 00 04 b 2009878 <_Heap_Walk+0x34> 200986c: ba 17 63 f4 or %i5, 0x3f4, %i5 ! 20097f4 <_Heap_Walk_print> 2009870: 3b 00 80 25 sethi %hi(0x2009400), %i5 2009874: ba 17 63 ec or %i5, 0x3ec, %i5 ! 20097ec <_Heap_Walk_print_nothing> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2009878: 05 00 80 7a sethi %hi(0x201e800), %g2 200987c: c4 00 a2 d0 ld [ %g2 + 0x2d0 ], %g2 ! 201ead0 <_System_state_Current> 2009880: 80 a0 a0 03 cmp %g2, 3 2009884: 22 80 00 04 be,a 2009894 <_Heap_Walk+0x50> 2009888: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 return true; 200988c: 10 80 01 2a b 2009d34 <_Heap_Walk+0x4f0> 2009890: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2009894: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2009898: c4 23 a0 5c st %g2, [ %sp + 0x5c ] 200989c: f2 23 a0 60 st %i1, [ %sp + 0x60 ] 20098a0: e0 23 a0 64 st %l0, [ %sp + 0x64 ] 20098a4: c4 06 20 08 ld [ %i0 + 8 ], %g2 20098a8: 90 10 00 16 mov %l6, %o0 20098ac: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 20098b0: c4 06 20 0c ld [ %i0 + 0xc ], %g2 20098b4: 92 10 20 00 clr %o1 20098b8: c4 23 a0 6c st %g2, [ %sp + 0x6c ] 20098bc: 15 00 80 6d sethi %hi(0x201b400), %o2 20098c0: 96 10 00 1c mov %i4, %o3 20098c4: 94 12 a1 f0 or %o2, 0x1f0, %o2 20098c8: 9f c7 40 00 call %i5 20098cc: 98 10 00 1b mov %i3, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 20098d0: 80 a7 20 00 cmp %i4, 0 20098d4: 12 80 00 07 bne 20098f0 <_Heap_Walk+0xac> 20098d8: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 20098dc: 15 00 80 6d sethi %hi(0x201b400), %o2 20098e0: 90 10 00 16 mov %l6, %o0 20098e4: 92 10 20 01 mov 1, %o1 20098e8: 10 80 00 37 b 20099c4 <_Heap_Walk+0x180> 20098ec: 94 12 a2 88 or %o2, 0x288, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 20098f0: 22 80 00 08 be,a 2009910 <_Heap_Walk+0xcc> 20098f4: 90 10 00 1b mov %i3, %o0 (*printer)( 20098f8: 15 00 80 6d sethi %hi(0x201b400), %o2 20098fc: 90 10 00 16 mov %l6, %o0 2009900: 92 10 20 01 mov 1, %o1 2009904: 94 12 a2 a0 or %o2, 0x2a0, %o2 2009908: 10 80 01 12 b 2009d50 <_Heap_Walk+0x50c> 200990c: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009910: 7f ff e0 9d call 2001b84 <.urem> 2009914: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2009918: 80 a2 20 00 cmp %o0, 0 200991c: 22 80 00 08 be,a 200993c <_Heap_Walk+0xf8> 2009920: 90 06 60 08 add %i1, 8, %o0 (*printer)( 2009924: 15 00 80 6d sethi %hi(0x201b400), %o2 2009928: 90 10 00 16 mov %l6, %o0 200992c: 92 10 20 01 mov 1, %o1 2009930: 94 12 a2 c0 or %o2, 0x2c0, %o2 2009934: 10 80 01 07 b 2009d50 <_Heap_Walk+0x50c> 2009938: 96 10 00 1b mov %i3, %o3 200993c: 7f ff e0 92 call 2001b84 <.urem> 2009940: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 2009944: 80 a2 20 00 cmp %o0, 0 2009948: 22 80 00 07 be,a 2009964 <_Heap_Walk+0x120> 200994c: c4 06 60 04 ld [ %i1 + 4 ], %g2 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2009950: 15 00 80 6d sethi %hi(0x201b400), %o2 2009954: 90 10 00 16 mov %l6, %o0 2009958: 92 10 20 01 mov 1, %o1 200995c: 10 80 00 fc b 2009d4c <_Heap_Walk+0x508> 2009960: 94 12 a2 e8 or %o2, 0x2e8, %o2 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2009964: 80 88 a0 01 btst 1, %g2 2009968: 32 80 00 07 bne,a 2009984 <_Heap_Walk+0x140> 200996c: f4 04 20 04 ld [ %l0 + 4 ], %i2 (*printer)( 2009970: 15 00 80 6d sethi %hi(0x201b400), %o2 2009974: 90 10 00 16 mov %l6, %o0 2009978: 92 10 20 01 mov 1, %o1 200997c: 10 80 00 12 b 20099c4 <_Heap_Walk+0x180> 2009980: 94 12 a3 20 or %o2, 0x320, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009984: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2009988: b4 04 00 1a add %l0, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200998c: c4 06 a0 04 ld [ %i2 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2009990: 80 88 a0 01 btst 1, %g2 2009994: 12 80 00 07 bne 20099b0 <_Heap_Walk+0x16c> 2009998: 80 a6 80 19 cmp %i2, %i1 (*printer)( 200999c: 15 00 80 6d sethi %hi(0x201b400), %o2 20099a0: 90 10 00 16 mov %l6, %o0 20099a4: 92 10 20 01 mov 1, %o1 20099a8: 10 80 00 07 b 20099c4 <_Heap_Walk+0x180> 20099ac: 94 12 a3 50 or %o2, 0x350, %o2 ); return false; } if ( 20099b0: 02 80 00 0a be 20099d8 <_Heap_Walk+0x194> 20099b4: 15 00 80 6d sethi %hi(0x201b400), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20099b8: 90 10 00 16 mov %l6, %o0 20099bc: 92 10 20 01 mov 1, %o1 20099c0: 94 12 a3 68 or %o2, 0x368, %o2 20099c4: 9f c7 40 00 call %i5 20099c8: b0 10 20 00 clr %i0 20099cc: b0 0e 20 ff and %i0, 0xff, %i0 20099d0: 81 c7 e0 08 ret 20099d4: 81 e8 00 00 restore int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20099d8: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 20099dc: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 20099e0: 10 80 00 30 b 2009aa0 <_Heap_Walk+0x25c> 20099e4: b2 10 00 18 mov %i0, %i1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20099e8: 80 a0 c0 0b cmp %g3, %o3 20099ec: 18 80 00 05 bgu 2009a00 <_Heap_Walk+0x1bc> 20099f0: 84 10 20 00 clr %g2 20099f4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 20099f8: 80 a0 80 0b cmp %g2, %o3 20099fc: 84 60 3f ff subx %g0, -1, %g2 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2009a00: 80 a0 a0 00 cmp %g2, 0 2009a04: 32 80 00 07 bne,a 2009a20 <_Heap_Walk+0x1dc> 2009a08: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 2009a0c: 15 00 80 6d sethi %hi(0x201b400), %o2 2009a10: 90 10 00 16 mov %l6, %o0 2009a14: 92 10 20 01 mov 1, %o1 2009a18: 10 80 00 ce b 2009d50 <_Heap_Walk+0x50c> 2009a1c: 94 12 a3 98 or %o2, 0x398, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009a20: d6 27 bf fc st %o3, [ %fp + -4 ] 2009a24: 7f ff e0 58 call 2001b84 <.urem> 2009a28: 92 10 00 11 mov %l1, %o1 ); return false; } if ( 2009a2c: 80 a2 20 00 cmp %o0, 0 2009a30: 02 80 00 07 be 2009a4c <_Heap_Walk+0x208> 2009a34: d6 07 bf fc ld [ %fp + -4 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2009a38: 15 00 80 6d sethi %hi(0x201b400), %o2 2009a3c: 90 10 00 16 mov %l6, %o0 2009a40: 92 10 20 01 mov 1, %o1 2009a44: 10 80 00 c3 b 2009d50 <_Heap_Walk+0x50c> 2009a48: 94 12 a3 b8 or %o2, 0x3b8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009a4c: c4 02 e0 04 ld [ %o3 + 4 ], %g2 2009a50: 84 08 bf fe and %g2, -2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009a54: 84 02 c0 02 add %o3, %g2, %g2 2009a58: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2009a5c: 80 88 a0 01 btst 1, %g2 2009a60: 22 80 00 07 be,a 2009a7c <_Heap_Walk+0x238> 2009a64: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 2009a68: 15 00 80 6d sethi %hi(0x201b400), %o2 2009a6c: 90 10 00 16 mov %l6, %o0 2009a70: 92 10 20 01 mov 1, %o1 2009a74: 10 80 00 b7 b 2009d50 <_Heap_Walk+0x50c> 2009a78: 94 12 a3 e8 or %o2, 0x3e8, %o2 ); return false; } if ( free_block->prev != prev_block ) { 2009a7c: 80 a3 00 19 cmp %o4, %i1 2009a80: 02 80 00 07 be 2009a9c <_Heap_Walk+0x258> 2009a84: b2 10 00 0b mov %o3, %i1 (*printer)( 2009a88: 15 00 80 6e sethi %hi(0x201b800), %o2 2009a8c: 90 10 00 16 mov %l6, %o0 2009a90: 92 10 20 01 mov 1, %o1 2009a94: 10 80 00 4d b 2009bc8 <_Heap_Walk+0x384> 2009a98: 94 12 a0 08 or %o2, 8, %o2 return false; } prev_block = free_block; free_block = free_block->next; 2009a9c: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2009aa0: 80 a2 c0 18 cmp %o3, %i0 2009aa4: 32 bf ff d1 bne,a 20099e8 <_Heap_Walk+0x1a4> 2009aa8: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009aac: 2b 00 80 6e sethi %hi(0x201b800), %l5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2009ab0: b2 10 00 1a mov %i2, %i1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009ab4: aa 15 61 08 or %l5, 0x108, %l5 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2009ab8: 23 00 80 6e sethi %hi(0x201b800), %l1 2009abc: 2f 00 80 6d sethi %hi(0x201b400), %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009ac0: e4 06 60 04 ld [ %i1 + 4 ], %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009ac4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2009ac8: 9e 1e 40 10 xor %i1, %l0, %o7 2009acc: 80 a0 00 0f cmp %g0, %o7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009ad0: a8 0c bf fe and %l2, -2, %l4 2009ad4: 9a 40 20 00 addx %g0, 0, %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2009ad8: a6 06 40 14 add %i1, %l4, %l3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009adc: a4 0c a0 01 and %l2, 1, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009ae0: 80 a3 00 13 cmp %o4, %l3 2009ae4: 18 80 00 05 bgu 2009af8 <_Heap_Walk+0x2b4> <== NEVER TAKEN 2009ae8: 9e 10 20 00 clr %o7 2009aec: de 06 20 24 ld [ %i0 + 0x24 ], %o7 2009af0: 80 a3 c0 13 cmp %o7, %l3 2009af4: 9e 60 3f ff subx %g0, -1, %o7 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 2009af8: 80 a3 e0 00 cmp %o7, 0 2009afc: 32 80 00 07 bne,a 2009b18 <_Heap_Walk+0x2d4> 2009b00: da 27 bf f8 st %o5, [ %fp + -8 ] (*printer)( 2009b04: 15 00 80 6e sethi %hi(0x201b800), %o2 2009b08: 90 10 00 16 mov %l6, %o0 2009b0c: 92 10 20 01 mov 1, %o1 2009b10: 10 80 00 2c b 2009bc0 <_Heap_Walk+0x37c> 2009b14: 94 12 a0 40 or %o2, 0x40, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009b18: 90 10 00 14 mov %l4, %o0 2009b1c: 7f ff e0 1a call 2001b84 <.urem> 2009b20: 92 10 00 1c mov %i4, %o1 2009b24: da 07 bf f8 ld [ %fp + -8 ], %o5 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2009b28: 80 a2 20 00 cmp %o0, 0 2009b2c: 02 80 00 0c be 2009b5c <_Heap_Walk+0x318> 2009b30: 9e 0b 60 ff and %o5, 0xff, %o7 2009b34: 80 a3 e0 00 cmp %o7, 0 2009b38: 02 80 00 19 be 2009b9c <_Heap_Walk+0x358> 2009b3c: 80 a6 40 13 cmp %i1, %l3 (*printer)( 2009b40: 15 00 80 6e sethi %hi(0x201b800), %o2 2009b44: 90 10 00 16 mov %l6, %o0 2009b48: 92 10 20 01 mov 1, %o1 2009b4c: 94 12 a0 70 or %o2, 0x70, %o2 2009b50: 96 10 00 19 mov %i1, %o3 2009b54: 10 80 00 1d b 2009bc8 <_Heap_Walk+0x384> 2009b58: 98 10 00 14 mov %l4, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2009b5c: 80 a3 e0 00 cmp %o7, 0 2009b60: 02 80 00 0f be 2009b9c <_Heap_Walk+0x358> 2009b64: 80 a6 40 13 cmp %i1, %l3 2009b68: 80 a5 00 1b cmp %l4, %i3 2009b6c: 1a 80 00 0c bcc 2009b9c <_Heap_Walk+0x358> 2009b70: 80 a6 40 13 cmp %i1, %l3 (*printer)( 2009b74: 90 10 00 16 mov %l6, %o0 2009b78: 92 10 20 01 mov 1, %o1 2009b7c: 15 00 80 6e sethi %hi(0x201b800), %o2 2009b80: 96 10 00 19 mov %i1, %o3 2009b84: 94 12 a0 a0 or %o2, 0xa0, %o2 2009b88: 98 10 00 14 mov %l4, %o4 2009b8c: 9f c7 40 00 call %i5 2009b90: 9a 10 00 1b mov %i3, %o5 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2009b94: 10 80 00 68 b 2009d34 <_Heap_Walk+0x4f0> 2009b98: b0 10 20 00 clr %i0 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2009b9c: 2a 80 00 10 bcs,a 2009bdc <_Heap_Walk+0x398> 2009ba0: de 04 e0 04 ld [ %l3 + 4 ], %o7 2009ba4: 80 8b 60 ff btst 0xff, %o5 2009ba8: 22 80 00 0d be,a 2009bdc <_Heap_Walk+0x398> 2009bac: de 04 e0 04 ld [ %l3 + 4 ], %o7 (*printer)( 2009bb0: 15 00 80 6e sethi %hi(0x201b800), %o2 2009bb4: 90 10 00 16 mov %l6, %o0 2009bb8: 92 10 20 01 mov 1, %o1 2009bbc: 94 12 a0 d0 or %o2, 0xd0, %o2 2009bc0: 96 10 00 19 mov %i1, %o3 2009bc4: 98 10 00 13 mov %l3, %o4 2009bc8: 9f c7 40 00 call %i5 2009bcc: b0 10 20 00 clr %i0 2009bd0: b0 0e 20 ff and %i0, 0xff, %i0 2009bd4: 81 c7 e0 08 ret 2009bd8: 81 e8 00 00 restore ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2009bdc: 80 8b e0 01 btst 1, %o7 2009be0: 12 80 00 3f bne 2009cdc <_Heap_Walk+0x498> 2009be4: 90 10 00 16 mov %l6, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2009be8: da 06 60 0c ld [ %i1 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009bec: d8 06 20 08 ld [ %i0 + 8 ], %o4 2009bf0: 80 a3 40 0c cmp %o5, %o4 2009bf4: 02 80 00 08 be 2009c14 <_Heap_Walk+0x3d0> 2009bf8: de 06 20 0c ld [ %i0 + 0xc ], %o7 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2009bfc: 80 a3 40 18 cmp %o5, %i0 2009c00: 12 80 00 07 bne 2009c1c <_Heap_Walk+0x3d8> 2009c04: 96 14 61 78 or %l1, 0x178, %o3 2009c08: 17 00 80 6d sethi %hi(0x201b400), %o3 2009c0c: 10 80 00 04 b 2009c1c <_Heap_Walk+0x3d8> 2009c10: 96 12 e1 c0 or %o3, 0x1c0, %o3 ! 201b5c0 <__log2table+0x130> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009c14: 03 00 80 6d sethi %hi(0x201b400), %g1 2009c18: 96 10 61 b0 or %g1, 0x1b0, %o3 ! 201b5b0 <__log2table+0x120> block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? 2009c1c: d8 06 60 08 ld [ %i1 + 8 ], %o4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009c20: 80 a3 00 0f cmp %o4, %o7 2009c24: 02 80 00 06 be 2009c3c <_Heap_Walk+0x3f8> 2009c28: 80 a3 00 18 cmp %o4, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2009c2c: 12 80 00 06 bne 2009c44 <_Heap_Walk+0x400> 2009c30: 9e 14 61 78 or %l1, 0x178, %o7 2009c34: 10 80 00 04 b 2009c44 <_Heap_Walk+0x400> 2009c38: 9e 15 e1 e0 or %l7, 0x1e0, %o7 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2009c3c: 03 00 80 6d sethi %hi(0x201b400), %g1 2009c40: 9e 10 61 d0 or %g1, 0x1d0, %o7 ! 201b5d0 <__log2table+0x140> 2009c44: d6 23 a0 5c st %o3, [ %sp + 0x5c ] 2009c48: d8 23 a0 60 st %o4, [ %sp + 0x60 ] 2009c4c: de 23 a0 64 st %o7, [ %sp + 0x64 ] 2009c50: 90 10 00 16 mov %l6, %o0 2009c54: 92 10 20 00 clr %o1 2009c58: 94 10 00 15 mov %l5, %o2 2009c5c: 96 10 00 19 mov %i1, %o3 2009c60: 9f c7 40 00 call %i5 2009c64: 98 10 00 14 mov %l4, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2009c68: da 04 c0 00 ld [ %l3 ], %o5 2009c6c: 80 a5 00 0d cmp %l4, %o5 2009c70: 02 80 00 0c be 2009ca0 <_Heap_Walk+0x45c> 2009c74: 80 a4 a0 00 cmp %l2, 0 (*printer)( 2009c78: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 2009c7c: 90 10 00 16 mov %l6, %o0 2009c80: 92 10 20 01 mov 1, %o1 2009c84: 15 00 80 6e sethi %hi(0x201b800), %o2 2009c88: 96 10 00 19 mov %i1, %o3 2009c8c: 94 12 a1 40 or %o2, 0x140, %o2 2009c90: 9f c7 40 00 call %i5 2009c94: 98 10 00 14 mov %l4, %o4 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2009c98: 10 bf ff ce b 2009bd0 <_Heap_Walk+0x38c> 2009c9c: b0 10 20 00 clr %i0 ); return false; } if ( !prev_used ) { 2009ca0: 32 80 00 0a bne,a 2009cc8 <_Heap_Walk+0x484> 2009ca4: c6 06 20 08 ld [ %i0 + 8 ], %g3 (*printer)( 2009ca8: 15 00 80 6e sethi %hi(0x201b800), %o2 2009cac: 90 10 00 16 mov %l6, %o0 2009cb0: 92 10 20 01 mov 1, %o1 2009cb4: 10 80 00 26 b 2009d4c <_Heap_Walk+0x508> 2009cb8: 94 12 a1 80 or %o2, 0x180, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2009cbc: 22 80 00 19 be,a 2009d20 <_Heap_Walk+0x4dc> 2009cc0: b2 10 00 13 mov %l3, %i1 return true; } free_block = free_block->next; 2009cc4: c6 00 e0 08 ld [ %g3 + 8 ], %g3 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2009cc8: 80 a0 c0 18 cmp %g3, %i0 2009ccc: 12 bf ff fc bne 2009cbc <_Heap_Walk+0x478> 2009cd0: 80 a0 c0 19 cmp %g3, %i1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2009cd4: 10 80 00 1b b 2009d40 <_Heap_Walk+0x4fc> 2009cd8: 15 00 80 6e sethi %hi(0x201b800), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2009cdc: 80 a4 a0 00 cmp %l2, 0 2009ce0: 02 80 00 09 be 2009d04 <_Heap_Walk+0x4c0> 2009ce4: 92 10 20 00 clr %o1 (*printer)( 2009ce8: 15 00 80 6e sethi %hi(0x201b800), %o2 2009cec: 96 10 00 19 mov %i1, %o3 2009cf0: 94 12 a1 b0 or %o2, 0x1b0, %o2 2009cf4: 9f c7 40 00 call %i5 2009cf8: 98 10 00 14 mov %l4, %o4 2009cfc: 10 80 00 09 b 2009d20 <_Heap_Walk+0x4dc> 2009d00: b2 10 00 13 mov %l3, %i1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2009d04: da 06 40 00 ld [ %i1 ], %o5 2009d08: 15 00 80 6e sethi %hi(0x201b800), %o2 2009d0c: 96 10 00 19 mov %i1, %o3 2009d10: 94 12 a1 c8 or %o2, 0x1c8, %o2 2009d14: 9f c7 40 00 call %i5 2009d18: 98 10 00 14 mov %l4, %o4 2009d1c: b2 10 00 13 mov %l3, %i1 block->prev_size ); } block = next_block; } while ( block != first_block ); 2009d20: 80 a4 c0 1a cmp %l3, %i2 2009d24: 32 bf ff 68 bne,a 2009ac4 <_Heap_Walk+0x280> 2009d28: e4 06 60 04 ld [ %i1 + 4 ], %l2 2009d2c: 10 80 00 02 b 2009d34 <_Heap_Walk+0x4f0> 2009d30: b0 10 20 01 mov 1, %i0 2009d34: b0 0e 20 ff and %i0, 0xff, %i0 2009d38: 81 c7 e0 08 ret 2009d3c: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2009d40: 90 10 00 16 mov %l6, %o0 2009d44: 92 10 20 01 mov 1, %o1 2009d48: 94 12 a1 f0 or %o2, 0x1f0, %o2 2009d4c: 96 10 00 19 mov %i1, %o3 2009d50: 9f c7 40 00 call %i5 2009d54: b0 10 20 00 clr %i0 2009d58: b0 0e 20 ff and %i0, 0xff, %i0 2009d5c: 81 c7 e0 08 ret 2009d60: 81 e8 00 00 restore =============================================================================== 02008ce8 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2008ce8: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2008cec: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2008cf0: 80 a0 60 00 cmp %g1, 0 2008cf4: 12 80 00 04 bne 2008d04 <_Objects_Allocate+0x1c> <== ALWAYS TAKEN 2008cf8: ba 10 00 18 mov %i0, %i5 return NULL; 2008cfc: 81 c7 e0 08 ret 2008d00: 91 e8 20 00 restore %g0, 0, %o0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2008d04: b8 06 20 20 add %i0, 0x20, %i4 2008d08: 7f ff fd 83 call 2008314 <_Chain_Get> 2008d0c: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2008d10: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2008d14: 80 a0 60 00 cmp %g1, 0 2008d18: 02 80 00 1d be 2008d8c <_Objects_Allocate+0xa4> 2008d1c: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2008d20: 80 a2 20 00 cmp %o0, 0 2008d24: 32 80 00 0a bne,a 2008d4c <_Objects_Allocate+0x64> 2008d28: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Objects_Extend_information( information ); 2008d2c: 40 00 00 21 call 2008db0 <_Objects_Extend_information> 2008d30: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2008d34: 7f ff fd 78 call 2008314 <_Chain_Get> 2008d38: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2008d3c: b0 92 20 00 orcc %o0, 0, %i0 2008d40: 02 bf ff ef be 2008cfc <_Objects_Allocate+0x14> 2008d44: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2008d48: c4 07 60 08 ld [ %i5 + 8 ], %g2 2008d4c: d0 06 20 08 ld [ %i0 + 8 ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2008d50: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2008d54: 03 00 00 3f sethi %hi(0xfc00), %g1 2008d58: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff 2008d5c: 90 0a 00 01 and %o0, %g1, %o0 2008d60: 82 08 80 01 and %g2, %g1, %g1 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2008d64: 40 00 3b 60 call 2017ae4 <.udiv> 2008d68: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2008d6c: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2008d70: 91 2a 20 02 sll %o0, 2, %o0 2008d74: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2008d78: 84 00 bf ff add %g2, -1, %g2 2008d7c: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2008d80: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 2008d84: 82 00 7f ff add %g1, -1, %g1 2008d88: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2008d8c: 81 c7 e0 08 ret 2008d90: 81 e8 00 00 restore =============================================================================== 020090f8 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 20090f8: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 20090fc: 80 a6 60 00 cmp %i1, 0 2009100: 12 80 00 04 bne 2009110 <_Objects_Get_information+0x18> 2009104: 01 00 00 00 nop return NULL; 2009108: 81 c7 e0 08 ret 200910c: 91 e8 20 00 restore %g0, 0, %o0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2009110: 40 00 10 60 call 200d290 <_Objects_API_maximum_class> 2009114: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2009118: 80 a2 20 00 cmp %o0, 0 200911c: 02 bf ff fb be 2009108 <_Objects_Get_information+0x10> 2009120: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2009124: 18 bf ff f9 bgu 2009108 <_Objects_Get_information+0x10> 2009128: 03 00 80 71 sethi %hi(0x201c400), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 200912c: b1 2e 20 02 sll %i0, 2, %i0 2009130: 82 10 61 14 or %g1, 0x114, %g1 2009134: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2009138: 80 a0 60 00 cmp %g1, 0 200913c: 02 bf ff f3 be 2009108 <_Objects_Get_information+0x10> <== NEVER TAKEN 2009140: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2009144: f0 00 40 19 ld [ %g1 + %i1 ], %i0 if ( !info ) 2009148: 80 a6 20 00 cmp %i0, 0 200914c: 02 bf ff ef be 2009108 <_Objects_Get_information+0x10> <== NEVER TAKEN 2009150: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2009154: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2009158: 80 a0 60 00 cmp %g1, 0 200915c: 02 bf ff eb be 2009108 <_Objects_Get_information+0x10> 2009160: 01 00 00 00 nop return NULL; #endif return info; } 2009164: 81 c7 e0 08 ret 2009168: 81 e8 00 00 restore =============================================================================== 0201b3cc <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201b3cc: c2 02 20 08 ld [ %o0 + 8 ], %g1 201b3d0: 92 22 40 01 sub %o1, %g1, %o1 if ( information->maximum >= index ) { 201b3d4: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201b3d8: 92 02 60 01 inc %o1 if ( information->maximum >= index ) { 201b3dc: 80 a0 40 09 cmp %g1, %o1 201b3e0: 0a 80 00 09 bcs 201b404 <_Objects_Get_no_protection+0x38> 201b3e4: 93 2a 60 02 sll %o1, 2, %o1 if ( (the_object = information->local_table[ index ]) != NULL ) { 201b3e8: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 201b3ec: d0 00 40 09 ld [ %g1 + %o1 ], %o0 201b3f0: 80 a2 20 00 cmp %o0, 0 201b3f4: 02 80 00 05 be 201b408 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 201b3f8: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 201b3fc: 81 c3 e0 08 retl 201b400: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 201b404: 82 10 20 01 mov 1, %g1 return NULL; 201b408: 90 10 20 00 clr %o0 } 201b40c: 81 c3 e0 08 retl 201b410: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 0200d1fc <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 200d1fc: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 200d200: 80 a6 20 00 cmp %i0, 0 200d204: 12 80 00 06 bne 200d21c <_Objects_Id_to_name+0x20> 200d208: 83 36 20 18 srl %i0, 0x18, %g1 200d20c: 03 00 80 b2 sethi %hi(0x202c800), %g1 200d210: c2 00 60 bc ld [ %g1 + 0xbc ], %g1 ! 202c8bc <_Per_CPU_Information+0xc> 200d214: f0 00 60 08 ld [ %g1 + 8 ], %i0 200d218: 83 36 20 18 srl %i0, 0x18, %g1 200d21c: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 200d220: 84 00 7f ff add %g1, -1, %g2 200d224: 80 a0 a0 02 cmp %g2, 2 200d228: 08 80 00 14 bleu 200d278 <_Objects_Id_to_name+0x7c> 200d22c: 83 28 60 02 sll %g1, 2, %g1 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; 200d230: 81 c7 e0 08 ret 200d234: 91 e8 20 03 restore %g0, 3, %o0 if ( !_Objects_Information_table[ the_api ] ) return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 200d238: 85 28 a0 02 sll %g2, 2, %g2 200d23c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 200d240: 80 a2 20 00 cmp %o0, 0 200d244: 02 bf ff fb be 200d230 <_Objects_Id_to_name+0x34> <== NEVER TAKEN 200d248: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 200d24c: 7f ff ff ce call 200d184 <_Objects_Get> 200d250: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 200d254: 80 a2 20 00 cmp %o0, 0 200d258: 02 bf ff f6 be 200d230 <_Objects_Id_to_name+0x34> 200d25c: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200d260: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 200d264: b0 10 20 00 clr %i0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 200d268: 40 00 03 b8 call 200e148 <_Thread_Enable_dispatch> 200d26c: c2 26 40 00 st %g1, [ %i1 ] 200d270: 81 c7 e0 08 ret 200d274: 81 e8 00 00 restore the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200d278: 05 00 80 b1 sethi %hi(0x202c400), %g2 200d27c: 84 10 a1 b4 or %g2, 0x1b4, %g2 ! 202c5b4 <_Objects_Information_table> 200d280: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200d284: 80 a0 60 00 cmp %g1, 0 200d288: 12 bf ff ec bne 200d238 <_Objects_Id_to_name+0x3c> 200d28c: 85 36 20 1b srl %i0, 0x1b, %g2 200d290: 30 bf ff e8 b,a 200d230 <_Objects_Id_to_name+0x34> =============================================================================== 0200a2e8 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200a2e8: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 200a2ec: 80 a6 60 00 cmp %i1, 0 200a2f0: 02 80 00 69 be 200a494 <_RBTree_Extract_unprotected+0x1ac> 200a2f4: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 200a2f8: c2 06 20 08 ld [ %i0 + 8 ], %g1 200a2fc: 80 a6 40 01 cmp %i1, %g1 200a300: 32 80 00 07 bne,a 200a31c <_RBTree_Extract_unprotected+0x34> 200a304: c2 06 20 0c ld [ %i0 + 0xc ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_RIGHT ); 200a308: 90 10 00 19 mov %i1, %o0 200a30c: 40 00 01 31 call 200a7d0 <_RBTree_Next_unprotected> 200a310: 92 10 20 01 mov 1, %o1 RBTree_Node *next; next = _RBTree_Successor_unprotected(the_node); the_rbtree->first[RBT_LEFT] = next; 200a314: d0 26 20 08 st %o0, [ %i0 + 8 ] } /* Check if max needs to be updated. min=max for 1 element trees so * do not use else if here. */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 200a318: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200a31c: 80 a6 40 01 cmp %i1, %g1 200a320: 32 80 00 07 bne,a 200a33c <_RBTree_Extract_unprotected+0x54> 200a324: fa 06 60 04 ld [ %i1 + 4 ], %i5 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_LEFT ); 200a328: 90 10 00 19 mov %i1, %o0 200a32c: 40 00 01 29 call 200a7d0 <_RBTree_Next_unprotected> 200a330: 92 10 20 00 clr %o1 RBTree_Node *previous; previous = _RBTree_Predecessor_unprotected(the_node); the_rbtree->first[RBT_RIGHT] = previous; 200a334: d0 26 20 0c st %o0, [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200a338: fa 06 60 04 ld [ %i1 + 4 ], %i5 200a33c: 80 a7 60 00 cmp %i5, 0 200a340: 02 80 00 36 be 200a418 <_RBTree_Extract_unprotected+0x130> 200a344: f8 06 60 08 ld [ %i1 + 8 ], %i4 200a348: 80 a7 20 00 cmp %i4, 0 200a34c: 32 80 00 05 bne,a 200a360 <_RBTree_Extract_unprotected+0x78> 200a350: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a354: 10 80 00 35 b 200a428 <_RBTree_Extract_unprotected+0x140> 200a358: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 200a35c: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a360: 80 a0 60 00 cmp %g1, 0 200a364: 32 bf ff fe bne,a 200a35c <_RBTree_Extract_unprotected+0x74> 200a368: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 200a36c: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 200a370: 80 a7 20 00 cmp %i4, 0 200a374: 02 80 00 05 be 200a388 <_RBTree_Extract_unprotected+0xa0> 200a378: 01 00 00 00 nop leaf->parent = target->parent; 200a37c: c2 07 40 00 ld [ %i5 ], %g1 200a380: 10 80 00 04 b 200a390 <_RBTree_Extract_unprotected+0xa8> 200a384: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 200a388: 7f ff ff 73 call 200a154 <_RBTree_Extract_validate_unprotected> 200a38c: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 200a390: c4 07 40 00 ld [ %i5 ], %g2 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 200a394: c2 07 60 0c ld [ %i5 + 0xc ], %g1 dir = target != target->parent->child[0]; 200a398: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a39c: 86 1f 40 03 xor %i5, %g3, %g3 200a3a0: 80 a0 00 03 cmp %g0, %g3 200a3a4: 86 40 20 00 addx %g0, 0, %g3 target->parent->child[dir] = leaf; 200a3a8: 87 28 e0 02 sll %g3, 2, %g3 200a3ac: 84 00 80 03 add %g2, %g3, %g2 200a3b0: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200a3b4: c4 06 40 00 ld [ %i1 ], %g2 200a3b8: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a3bc: 86 1e 40 03 xor %i1, %g3, %g3 200a3c0: 80 a0 00 03 cmp %g0, %g3 200a3c4: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = target; 200a3c8: 87 28 e0 02 sll %g3, 2, %g3 200a3cc: 84 00 80 03 add %g2, %g3, %g2 200a3d0: fa 20 a0 04 st %i5, [ %g2 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 200a3d4: c4 06 60 08 ld [ %i1 + 8 ], %g2 200a3d8: c4 27 60 08 st %g2, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 200a3dc: c4 06 60 08 ld [ %i1 + 8 ], %g2 200a3e0: 80 a0 a0 00 cmp %g2, 0 200a3e4: 32 80 00 02 bne,a 200a3ec <_RBTree_Extract_unprotected+0x104><== ALWAYS TAKEN 200a3e8: fa 20 80 00 st %i5, [ %g2 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 200a3ec: c4 06 60 04 ld [ %i1 + 4 ], %g2 200a3f0: c4 27 60 04 st %g2, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 200a3f4: c4 06 60 04 ld [ %i1 + 4 ], %g2 200a3f8: 80 a0 a0 00 cmp %g2, 0 200a3fc: 32 80 00 02 bne,a 200a404 <_RBTree_Extract_unprotected+0x11c> 200a400: fa 20 80 00 st %i5, [ %g2 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200a404: c4 06 40 00 ld [ %i1 ], %g2 200a408: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 200a40c: c4 06 60 0c ld [ %i1 + 0xc ], %g2 200a410: 10 80 00 14 b 200a460 <_RBTree_Extract_unprotected+0x178> 200a414: c4 27 60 0c st %g2, [ %i5 + 0xc ] * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 200a418: 80 a7 20 00 cmp %i4, 0 200a41c: 32 80 00 04 bne,a 200a42c <_RBTree_Extract_unprotected+0x144> 200a420: c2 06 40 00 ld [ %i1 ], %g1 200a424: 30 80 00 04 b,a 200a434 <_RBTree_Extract_unprotected+0x14c> leaf->parent = the_node->parent; 200a428: c2 06 40 00 ld [ %i1 ], %g1 200a42c: 10 80 00 04 b 200a43c <_RBTree_Extract_unprotected+0x154> 200a430: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 200a434: 7f ff ff 48 call 200a154 <_RBTree_Extract_validate_unprotected> 200a438: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200a43c: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 200a440: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200a444: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a448: 86 1e 40 03 xor %i1, %g3, %g3 200a44c: 80 a0 00 03 cmp %g0, %g3 200a450: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 200a454: 87 28 e0 02 sll %g3, 2, %g3 200a458: 84 00 80 03 add %g2, %g3, %g2 200a45c: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 200a460: 80 a0 60 00 cmp %g1, 0 200a464: 32 80 00 06 bne,a 200a47c <_RBTree_Extract_unprotected+0x194> 200a468: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 200a46c: 80 a7 20 00 cmp %i4, 0 200a470: 32 80 00 02 bne,a 200a478 <_RBTree_Extract_unprotected+0x190> 200a474: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 200a478: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 200a47c: c0 26 60 08 clr [ %i1 + 8 ] 200a480: c0 26 60 04 clr [ %i1 + 4 ] 200a484: 80 a0 60 00 cmp %g1, 0 200a488: 02 80 00 03 be 200a494 <_RBTree_Extract_unprotected+0x1ac> 200a48c: c0 26 40 00 clr [ %i1 ] 200a490: c0 20 60 0c clr [ %g1 + 0xc ] 200a494: 81 c7 e0 08 ret 200a498: 81 e8 00 00 restore =============================================================================== 0200b4dc <_RBTree_Initialize>: void *starting_address, size_t number_nodes, size_t node_size, bool is_unique ) { 200b4dc: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 200b4e0: 80 a6 20 00 cmp %i0, 0 200b4e4: 02 80 00 10 be 200b524 <_RBTree_Initialize+0x48> <== NEVER TAKEN 200b4e8: 01 00 00 00 nop RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 200b4ec: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 200b4f0: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 200b4f4: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 200b4f8: c0 26 20 0c clr [ %i0 + 0xc ] the_rbtree->compare_function = compare_function; 200b4fc: f2 26 20 10 st %i1, [ %i0 + 0x10 ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b500: 10 80 00 06 b 200b518 <_RBTree_Initialize+0x3c> 200b504: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ] _RBTree_Insert_unprotected(the_rbtree, next); 200b508: 90 10 00 18 mov %i0, %o0 200b50c: 7f ff ff 2e call 200b1c4 <_RBTree_Insert_unprotected> 200b510: b4 06 80 1c add %i2, %i4, %i2 200b514: b6 06 ff ff add %i3, -1, %i3 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b518: 80 a6 e0 00 cmp %i3, 0 200b51c: 12 bf ff fb bne 200b508 <_RBTree_Initialize+0x2c> 200b520: 92 10 00 1a mov %i2, %o1 200b524: 81 c7 e0 08 ret 200b528: 81 e8 00 00 restore =============================================================================== 0200a53c <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200a53c: 9d e3 bf a0 save %sp, -96, %sp if(!the_node) return (RBTree_Node*)-1; 200a540: 80 a6 60 00 cmp %i1, 0 200a544: 02 80 00 7c be 200a734 <_RBTree_Insert_unprotected+0x1f8> 200a548: ba 10 00 18 mov %i0, %i5 RBTree_Node *iter_node = the_rbtree->root; 200a54c: f0 06 20 04 ld [ %i0 + 4 ], %i0 int compare_result; if (!iter_node) { /* special case: first node inserted */ 200a550: b6 96 20 00 orcc %i0, 0, %i3 200a554: 32 80 00 0c bne,a 200a584 <_RBTree_Insert_unprotected+0x48> 200a558: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 the_node->color = RBT_BLACK; 200a55c: c0 26 60 0c clr [ %i1 + 0xc ] the_rbtree->root = the_node; 200a560: f2 27 60 04 st %i1, [ %i5 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 200a564: f2 27 60 0c st %i1, [ %i5 + 0xc ] 200a568: f2 27 60 08 st %i1, [ %i5 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 200a56c: fa 26 40 00 st %i5, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200a570: c0 26 60 08 clr [ %i1 + 8 ] 200a574: c0 26 60 04 clr [ %i1 + 4 ] 200a578: 81 c7 e0 08 ret 200a57c: 81 e8 00 00 restore } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 200a580: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200a584: 90 10 00 19 mov %i1, %o0 200a588: 9f c0 40 00 call %g1 200a58c: 92 10 00 18 mov %i0, %o1 if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200a590: c2 0f 60 14 ldub [ %i5 + 0x14 ], %g1 200a594: 80 a0 60 00 cmp %g1, 0 200a598: 02 80 00 05 be 200a5ac <_RBTree_Insert_unprotected+0x70> 200a59c: b8 38 00 08 xnor %g0, %o0, %i4 200a5a0: 80 a2 20 00 cmp %o0, 0 200a5a4: 02 80 00 65 be 200a738 <_RBTree_Insert_unprotected+0x1fc> 200a5a8: 01 00 00 00 nop return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); 200a5ac: b9 37 20 1f srl %i4, 0x1f, %i4 if (!iter_node->child[dir]) { 200a5b0: 83 2f 20 02 sll %i4, 2, %g1 200a5b4: 82 06 00 01 add %i0, %g1, %g1 200a5b8: f0 00 60 04 ld [ %g1 + 4 ], %i0 200a5bc: 80 a6 20 00 cmp %i0, 0 200a5c0: 32 bf ff f0 bne,a 200a580 <_RBTree_Insert_unprotected+0x44> 200a5c4: b6 10 00 18 mov %i0, %i3 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200a5c8: c0 26 60 08 clr [ %i1 + 8 ] 200a5cc: c0 26 60 04 clr [ %i1 + 4 ] the_node->color = RBT_RED; 200a5d0: 84 10 20 01 mov 1, %g2 iter_node->child[dir] = the_node; 200a5d4: f2 20 60 04 st %i1, [ %g1 + 4 ] if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 200a5d8: c4 26 60 0c st %g2, [ %i1 + 0xc ] iter_node->child[dir] = the_node; the_node->parent = iter_node; 200a5dc: f6 26 40 00 st %i3, [ %i1 ] /* update min/max */ compare_result = the_rbtree->compare_function( 200a5e0: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200a5e4: b6 07 20 02 add %i4, 2, %i3 200a5e8: 85 2e e0 02 sll %i3, 2, %g2 200a5ec: d2 07 40 02 ld [ %i5 + %g2 ], %o1 200a5f0: 9f c0 40 00 call %g1 200a5f4: 90 10 00 19 mov %i1, %o0 the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || 200a5f8: 80 a7 20 00 cmp %i4, 0 200a5fc: 12 80 00 06 bne 200a614 <_RBTree_Insert_unprotected+0xd8> 200a600: 80 a2 20 00 cmp %o0, 0 200a604: 36 80 00 3c bge,a 200a6f4 <_RBTree_Insert_unprotected+0x1b8> 200a608: d0 06 40 00 ld [ %i1 ], %o0 (dir && _RBTree_Is_greater(compare_result)) ) { the_rbtree->first[dir] = the_node; 200a60c: 10 80 00 04 b 200a61c <_RBTree_Insert_unprotected+0xe0> 200a610: b7 2e e0 02 sll %i3, 2, %i3 compare_result = the_rbtree->compare_function( the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || (dir && _RBTree_Is_greater(compare_result)) ) { 200a614: 04 80 00 37 ble 200a6f0 <_RBTree_Insert_unprotected+0x1b4> 200a618: b7 2e e0 02 sll %i3, 2, %i3 the_rbtree->first[dir] = the_node; 200a61c: 10 80 00 35 b 200a6f0 <_RBTree_Insert_unprotected+0x1b4> 200a620: f2 27 40 1b st %i1, [ %i5 + %i3 ] const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; 200a624: 02 80 00 13 be 200a670 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN 200a628: 82 10 20 00 clr %g1 if(!(the_node->parent->parent->parent)) return NULL; 200a62c: c2 07 40 00 ld [ %i5 ], %g1 200a630: 80 a0 60 00 cmp %g1, 0 200a634: 02 80 00 0f be 200a670 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN 200a638: 82 10 20 00 clr %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200a63c: c2 07 60 04 ld [ %i5 + 4 ], %g1 200a640: 80 a2 00 01 cmp %o0, %g1 200a644: 22 80 00 02 be,a 200a64c <_RBTree_Insert_unprotected+0x110> 200a648: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a64c: 80 a0 60 00 cmp %g1, 0 200a650: 02 80 00 09 be 200a674 <_RBTree_Insert_unprotected+0x138> 200a654: 84 10 20 00 clr %g2 200a658: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200a65c: 80 a0 a0 01 cmp %g2, 1 200a660: 32 80 00 05 bne,a 200a674 <_RBTree_Insert_unprotected+0x138> 200a664: 84 10 20 00 clr %g2 200a668: 10 80 00 03 b 200a674 <_RBTree_Insert_unprotected+0x138> 200a66c: 84 10 20 01 mov 1, %g2 200a670: 84 10 20 00 clr %g2 <== NOT EXECUTED while (_RBTree_Is_red(_RBTree_Parent(the_node))) { u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { 200a674: 80 a0 a0 00 cmp %g2, 0 200a678: 22 80 00 08 be,a 200a698 <_RBTree_Insert_unprotected+0x15c> 200a67c: c2 07 60 04 ld [ %i5 + 4 ], %g1 the_node->parent->color = RBT_BLACK; 200a680: c0 22 20 0c clr [ %o0 + 0xc ] u->color = RBT_BLACK; 200a684: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 200a688: b2 10 00 1d mov %i5, %i1 200a68c: 82 10 20 01 mov 1, %g1 200a690: 10 80 00 18 b 200a6f0 <_RBTree_Insert_unprotected+0x1b4> 200a694: c2 27 60 0c st %g1, [ %i5 + 0xc ] the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 200a698: 82 1a 00 01 xor %o0, %g1, %g1 200a69c: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200a6a0: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 200a6a4: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200a6a8: 82 1e 40 01 xor %i1, %g1, %g1 200a6ac: 80 a0 00 01 cmp %g0, %g1 200a6b0: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 200a6b4: 80 a0 40 1c cmp %g1, %i4 200a6b8: 22 80 00 08 be,a 200a6d8 <_RBTree_Insert_unprotected+0x19c> 200a6bc: c2 06 40 00 ld [ %i1 ], %g1 _RBTree_Rotate(the_node->parent, pdir); 200a6c0: 7f ff ff 80 call 200a4c0 <_RBTree_Rotate> 200a6c4: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 200a6c8: 83 2f 20 02 sll %i4, 2, %g1 200a6cc: b2 06 40 01 add %i1, %g1, %i1 200a6d0: f2 06 60 04 ld [ %i1 + 4 ], %i1 } the_node->parent->color = RBT_BLACK; 200a6d4: c2 06 40 00 ld [ %i1 ], %g1 g->color = RBT_RED; 200a6d8: 92 10 20 01 mov 1, %o1 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 200a6dc: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 200a6e0: d2 27 60 0c st %o1, [ %i5 + 0xc ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 200a6e4: 90 10 00 1d mov %i5, %o0 200a6e8: 7f ff ff 76 call 200a4c0 <_RBTree_Rotate> 200a6ec: 92 22 40 1c sub %o1, %i4, %o1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( const RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200a6f0: d0 06 40 00 ld [ %i1 ], %o0 200a6f4: fa 02 00 00 ld [ %o0 ], %i5 200a6f8: 80 a7 60 00 cmp %i5, 0 200a6fc: 22 80 00 06 be,a 200a714 <_RBTree_Insert_unprotected+0x1d8> 200a700: 82 10 20 00 clr %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a704: c2 02 20 0c ld [ %o0 + 0xc ], %g1 200a708: 82 18 60 01 xor %g1, 1, %g1 200a70c: 80 a0 00 01 cmp %g0, %g1 200a710: 82 60 3f ff subx %g0, -1, %g1 RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 200a714: 80 a0 60 00 cmp %g1, 0 200a718: 12 bf ff c3 bne 200a624 <_RBTree_Insert_unprotected+0xe8> 200a71c: 80 a7 60 00 cmp %i5, 0 /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200a720: 12 80 00 06 bne 200a738 <_RBTree_Insert_unprotected+0x1fc> 200a724: 01 00 00 00 nop 200a728: c0 26 60 0c clr [ %i1 + 0xc ] 200a72c: 81 c7 e0 08 ret 200a730: 81 e8 00 00 restore RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { if(!the_node) return (RBTree_Node*)-1; 200a734: b0 10 3f ff mov -1, %i0 /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; } 200a738: 81 c7 e0 08 ret 200a73c: 81 e8 00 00 restore =============================================================================== 0200a770 <_RBTree_Iterate_unprotected>: const RBTree_Control *rbtree, RBTree_Direction dir, RBTree_Visitor visitor, void *visitor_arg ) { 200a770: 9d e3 bf a0 save %sp, -96, %sp RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; 200a774: b8 10 20 00 clr %i4 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200a778: 80 a0 00 19 cmp %g0, %i1 200a77c: 82 60 3f ff subx %g0, -1, %g1 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200a780: 82 00 60 02 add %g1, 2, %g1 200a784: 83 28 60 02 sll %g1, 2, %g1 while ( !stop && current != NULL ) { 200a788: 10 80 00 0a b 200a7b0 <_RBTree_Iterate_unprotected+0x40> 200a78c: fa 06 00 01 ld [ %i0 + %g1 ], %i5 stop = (*visitor)( current, dir, visitor_arg ); 200a790: 92 10 00 19 mov %i1, %o1 200a794: 9f c6 80 00 call %i2 200a798: 94 10 00 1b mov %i3, %o2 current = _RBTree_Next_unprotected( current, dir ); 200a79c: 92 10 00 19 mov %i1, %o1 RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { stop = (*visitor)( current, dir, visitor_arg ); 200a7a0: b8 10 00 08 mov %o0, %i4 current = _RBTree_Next_unprotected( current, dir ); 200a7a4: 40 00 00 0b call 200a7d0 <_RBTree_Next_unprotected> 200a7a8: 90 10 00 1d mov %i5, %o0 200a7ac: ba 10 00 08 mov %o0, %i5 { RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { 200a7b0: 80 a7 60 00 cmp %i5, 0 200a7b4: 02 80 00 05 be 200a7c8 <_RBTree_Iterate_unprotected+0x58> 200a7b8: b8 1f 20 01 xor %i4, 1, %i4 200a7bc: 80 8f 20 ff btst 0xff, %i4 200a7c0: 12 bf ff f4 bne 200a790 <_RBTree_Iterate_unprotected+0x20><== ALWAYS TAKEN 200a7c4: 90 10 00 1d mov %i5, %o0 200a7c8: 81 c7 e0 08 ret 200a7cc: 81 e8 00 00 restore =============================================================================== 0200a0d8 <_RBTree_Rotate>: RBTree_Node *the_node, RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; 200a0d8: 80 a2 20 00 cmp %o0, 0 200a0dc: 02 80 00 1c be 200a14c <_RBTree_Rotate+0x74> <== NEVER TAKEN 200a0e0: 80 a0 00 09 cmp %g0, %o1 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200a0e4: 86 60 3f ff subx %g0, -1, %g3 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200a0e8: 87 28 e0 02 sll %g3, 2, %g3 200a0ec: 86 02 00 03 add %o0, %g3, %g3 200a0f0: c2 00 e0 04 ld [ %g3 + 4 ], %g1 200a0f4: 80 a0 60 00 cmp %g1, 0 200a0f8: 02 80 00 15 be 200a14c <_RBTree_Rotate+0x74> <== NEVER TAKEN 200a0fc: 93 2a 60 02 sll %o1, 2, %o1 c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200a100: 84 00 40 09 add %g1, %o1, %g2 200a104: c8 00 a0 04 ld [ %g2 + 4 ], %g4 200a108: c8 20 e0 04 st %g4, [ %g3 + 4 ] if (c->child[dir]) 200a10c: c4 00 a0 04 ld [ %g2 + 4 ], %g2 200a110: 80 a0 a0 00 cmp %g2, 0 200a114: 32 80 00 02 bne,a 200a11c <_RBTree_Rotate+0x44> 200a118: d0 20 80 00 st %o0, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a11c: c4 02 00 00 ld [ %o0 ], %g2 the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200a120: 92 00 40 09 add %g1, %o1, %o1 200a124: d0 22 60 04 st %o0, [ %o1 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a128: c6 00 a0 04 ld [ %g2 + 4 ], %g3 c->parent = the_node->parent; 200a12c: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a130: 86 1a 00 03 xor %o0, %g3, %g3 c->parent = the_node->parent; the_node->parent = c; 200a134: c2 22 00 00 st %g1, [ %o0 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a138: 80 a0 00 03 cmp %g0, %g3 200a13c: 86 40 20 00 addx %g0, 0, %g3 200a140: 87 28 e0 02 sll %g3, 2, %g3 200a144: 86 00 80 03 add %g2, %g3, %g3 200a148: c2 20 e0 04 st %g1, [ %g3 + 4 ] 200a14c: 81 c3 e0 08 retl =============================================================================== 0200a088 <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; 200a088: 80 a2 20 00 cmp %o0, 0 200a08c: 02 80 00 10 be 200a0cc <_RBTree_Sibling+0x44> <== NEVER TAKEN 200a090: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 200a094: c4 02 00 00 ld [ %o0 ], %g2 200a098: 80 a0 a0 00 cmp %g2, 0 200a09c: 22 80 00 0d be,a 200a0d0 <_RBTree_Sibling+0x48> <== NEVER TAKEN 200a0a0: 90 10 00 01 mov %g1, %o0 <== NOT EXECUTED if(!(the_node->parent->parent)) return NULL; 200a0a4: c2 00 80 00 ld [ %g2 ], %g1 200a0a8: 80 a0 60 00 cmp %g1, 0 200a0ac: 02 80 00 08 be 200a0cc <_RBTree_Sibling+0x44> 200a0b0: 82 10 20 00 clr %g1 if(the_node == the_node->parent->child[RBT_LEFT]) 200a0b4: c2 00 a0 04 ld [ %g2 + 4 ], %g1 200a0b8: 80 a2 00 01 cmp %o0, %g1 200a0bc: 22 80 00 04 be,a 200a0cc <_RBTree_Sibling+0x44> 200a0c0: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; 200a0c4: 81 c3 e0 08 retl 200a0c8: 90 10 00 01 mov %g1, %o0 else return the_node->parent->child[RBT_LEFT]; } 200a0cc: 90 10 00 01 mov %g1, %o0 200a0d0: 81 c3 e0 08 retl =============================================================================== 0200c9c4 <_RTEMS_tasks_Post_switch_extension>: */ static void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c9c4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c9c8: fa 06 21 50 ld [ %i0 + 0x150 ], %i5 if ( !api ) 200c9cc: 80 a7 60 00 cmp %i5, 0 200c9d0: 02 80 00 1c be 200ca40 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN 200c9d4: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c9d8: 7f ff d7 3b call 20026c4 200c9dc: 01 00 00 00 nop signal_set = asr->signals_posted; 200c9e0: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 200c9e4: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200c9e8: 7f ff d7 3b call 20026d4 200c9ec: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c9f0: 80 a7 20 00 cmp %i4, 0 200c9f4: 02 80 00 13 be 200ca40 <_RTEMS_tasks_Post_switch_extension+0x7c> 200c9f8: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 200c9fc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ca00: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200ca04: 82 00 60 01 inc %g1 200ca08: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ca0c: 37 00 00 3f sethi %hi(0xfc00), %i3 200ca10: 40 00 07 53 call 200e75c 200ca14: 92 16 e3 ff or %i3, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200ca18: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200ca1c: 9f c0 40 00 call %g1 200ca20: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 200ca24: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ca28: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200ca2c: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ca30: 92 16 e3 ff or %i3, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200ca34: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ca38: 40 00 07 49 call 200e75c 200ca3c: 94 07 bf fc add %fp, -4, %o2 200ca40: 81 c7 e0 08 ret 200ca44: 81 e8 00 00 restore =============================================================================== 0203e2b4 <_Rate_monotonic_Get_status>: bool _Rate_monotonic_Get_status( Rate_monotonic_Control *the_period, Rate_monotonic_Period_time_t *wall_since_last_period, Thread_CPU_usage_t *cpu_since_last_period ) { 203e2b4: 9d e3 bf 98 save %sp, -104, %sp #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ Timestamp_Control uptime; #endif Thread_Control *owning_thread = the_period->owner; 203e2b8: f6 06 20 40 ld [ %i0 + 0x40 ], %i3 /* * Determine elapsed wall time since period initiated. */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _TOD_Get_uptime( &uptime ); 203e2bc: 7f ff b1 dc call 202aa2c <_TOD_Get_uptime> 203e2c0: 90 07 bf f8 add %fp, -8, %o0 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 203e2c4: c4 1e 20 50 ldd [ %i0 + 0x50 ], %g2 _Timestamp_Subtract( 203e2c8: d8 1f bf f8 ldd [ %fp + -8 ], %o4 if (used < the_period->cpu_usage_period_initiated) return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; 203e2cc: 82 10 20 01 mov 1, %g1 203e2d0: 86 a3 40 03 subcc %o5, %g3, %g3 203e2d4: 84 63 00 02 subx %o4, %g2, %g2 203e2d8: c4 3e 40 00 std %g2, [ %i1 ] * Determine cpu usage since period initiated. */ used = owning_thread->cpu_time_used; #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ if (owning_thread == _Thread_Executing) { 203e2dc: 05 00 81 b8 sethi %hi(0x206e000), %g2 203e2e0: 84 10 a3 10 or %g2, 0x310, %g2 ! 206e310 <_Per_CPU_Information> 203e2e4: c6 00 a0 0c ld [ %g2 + 0xc ], %g3 203e2e8: 80 a6 c0 03 cmp %i3, %g3 203e2ec: 12 80 00 15 bne 203e340 <_Rate_monotonic_Get_status+0x8c> 203e2f0: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4 203e2f4: c4 18 a0 20 ldd [ %g2 + 0x20 ], %g2 203e2f8: 9a a3 40 03 subcc %o5, %g3, %o5 203e2fc: 98 63 00 02 subx %o4, %g2, %o4 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 203e300: c4 1e 20 48 ldd [ %i0 + 0x48 ], %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 203e304: ba 87 40 0d addcc %i5, %o5, %i5 203e308: b8 47 00 0c addx %i4, %o4, %i4 /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) 203e30c: 80 a0 80 1c cmp %g2, %i4 203e310: 34 80 00 0c bg,a 203e340 <_Rate_monotonic_Get_status+0x8c><== NEVER TAKEN 203e314: 82 10 20 00 clr %g1 <== NOT EXECUTED 203e318: 32 80 00 06 bne,a 203e330 <_Rate_monotonic_Get_status+0x7c> 203e31c: 86 a7 40 03 subcc %i5, %g3, %g3 203e320: 80 a0 c0 1d cmp %g3, %i5 203e324: 18 80 00 06 bgu 203e33c <_Rate_monotonic_Get_status+0x88> 203e328: 86 a7 40 03 subcc %i5, %g3, %g3 if (used < the_period->cpu_usage_period_initiated) return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; 203e32c: 82 10 20 01 mov 1, %g1 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 203e330: 84 67 00 02 subx %i4, %g2, %g2 203e334: 10 80 00 03 b 203e340 <_Rate_monotonic_Get_status+0x8c> 203e338: c4 3e 80 00 std %g2, [ %i2 ] /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) return false; 203e33c: 82 10 20 00 clr %g1 return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; } 203e340: b0 08 60 01 and %g1, 1, %i0 203e344: 81 c7 e0 08 ret 203e348: 81 e8 00 00 restore =============================================================================== 0203e6ac <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 203e6ac: 9d e3 bf 98 save %sp, -104, %sp 203e6b0: 11 00 81 b9 sethi %hi(0x206e400), %o0 203e6b4: 92 10 00 18 mov %i0, %o1 203e6b8: 90 12 21 e0 or %o0, 0x1e0, %o0 203e6bc: 7f ff 42 c8 call 200f1dc <_Objects_Get> 203e6c0: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 203e6c4: c2 07 bf fc ld [ %fp + -4 ], %g1 203e6c8: 80 a0 60 00 cmp %g1, 0 203e6cc: 12 80 00 25 bne 203e760 <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN 203e6d0: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 203e6d4: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 203e6d8: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 203e6dc: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 203e6e0: 80 88 80 01 btst %g2, %g1 203e6e4: 22 80 00 0b be,a 203e710 <_Rate_monotonic_Timeout+0x64> 203e6e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 203e6ec: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 203e6f0: c2 07 60 08 ld [ %i5 + 8 ], %g1 203e6f4: 80 a0 80 01 cmp %g2, %g1 203e6f8: 32 80 00 06 bne,a 203e710 <_Rate_monotonic_Timeout+0x64> 203e6fc: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 203e700: 13 04 00 ff sethi %hi(0x1003fc00), %o1 203e704: 7f ff 45 83 call 200fd10 <_Thread_Clear_state> 203e708: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 203e70c: 30 80 00 06 b,a 203e724 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 203e710: 80 a0 60 01 cmp %g1, 1 203e714: 12 80 00 0d bne 203e748 <_Rate_monotonic_Timeout+0x9c> 203e718: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 203e71c: 82 10 20 03 mov 3, %g1 203e720: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 203e724: 7f ff ff 53 call 203e470 <_Rate_monotonic_Initiate_statistics> 203e728: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 203e72c: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203e730: 11 00 81 b8 sethi %hi(0x206e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 203e734: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203e738: 90 12 21 98 or %o0, 0x198, %o0 203e73c: 7f ff 49 91 call 2010d80 <_Watchdog_Insert> 203e740: 92 07 60 10 add %i5, 0x10, %o1 203e744: 30 80 00 02 b,a 203e74c <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 203e748: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 203e74c: 03 00 81 b8 sethi %hi(0x206e000), %g1 203e750: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 206e0f0 <_Thread_Dispatch_disable_level> 203e754: 84 00 bf ff add %g2, -1, %g2 203e758: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 203e75c: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 203e760: 81 c7 e0 08 ret 203e764: 81 e8 00 00 restore =============================================================================== 0203e34c <_Rate_monotonic_Update_statistics>: } static void _Rate_monotonic_Update_statistics( Rate_monotonic_Control *the_period ) { 203e34c: 9d e3 bf 90 save %sp, -112, %sp /* * Update the counts. */ stats = &the_period->Statistics; stats->count++; 203e350: c2 06 20 58 ld [ %i0 + 0x58 ], %g1 203e354: 82 00 60 01 inc %g1 203e358: c2 26 20 58 st %g1, [ %i0 + 0x58 ] if ( the_period->state == RATE_MONOTONIC_EXPIRED ) 203e35c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 203e360: 80 a0 60 04 cmp %g1, 4 203e364: 12 80 00 05 bne 203e378 <_Rate_monotonic_Update_statistics+0x2c> 203e368: 90 10 00 18 mov %i0, %o0 stats->missed_count++; 203e36c: c2 06 20 5c ld [ %i0 + 0x5c ], %g1 203e370: 82 00 60 01 inc %g1 203e374: c2 26 20 5c st %g1, [ %i0 + 0x5c ] /* * Grab status for time statistics. */ valid_status = 203e378: 92 07 bf f8 add %fp, -8, %o1 203e37c: 7f ff ff ce call 203e2b4 <_Rate_monotonic_Get_status> 203e380: 94 07 bf f0 add %fp, -16, %o2 _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) 203e384: 80 8a 20 ff btst 0xff, %o0 203e388: 02 80 00 38 be 203e468 <_Rate_monotonic_Update_statistics+0x11c> 203e38c: c4 1f bf f0 ldd [ %fp + -16 ], %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 203e390: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4 * Update CPU time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_cpu_time, &executed ); if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) ) 203e394: c2 06 20 60 ld [ %i0 + 0x60 ], %g1 203e398: ba 87 40 03 addcc %i5, %g3, %i5 203e39c: b8 47 00 02 addx %i4, %g2, %i4 203e3a0: 80 a0 40 02 cmp %g1, %g2 203e3a4: 14 80 00 09 bg 203e3c8 <_Rate_monotonic_Update_statistics+0x7c> 203e3a8: f8 3e 20 70 std %i4, [ %i0 + 0x70 ] 203e3ac: 80 a0 40 02 cmp %g1, %g2 203e3b0: 32 80 00 08 bne,a 203e3d0 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN 203e3b4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED 203e3b8: c2 06 20 64 ld [ %i0 + 0x64 ], %g1 203e3bc: 80 a0 40 03 cmp %g1, %g3 203e3c0: 28 80 00 04 bleu,a 203e3d0 <_Rate_monotonic_Update_statistics+0x84> 203e3c4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 stats->min_cpu_time = executed; 203e3c8: c4 3e 20 60 std %g2, [ %i0 + 0x60 ] if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) ) 203e3cc: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 203e3d0: 80 a0 40 02 cmp %g1, %g2 203e3d4: 26 80 00 0a bl,a 203e3fc <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN 203e3d8: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED 203e3dc: 80 a0 40 02 cmp %g1, %g2 203e3e0: 32 80 00 08 bne,a 203e400 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN 203e3e4: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED 203e3e8: c2 06 20 6c ld [ %i0 + 0x6c ], %g1 203e3ec: 80 a0 40 03 cmp %g1, %g3 203e3f0: 3a 80 00 04 bcc,a 203e400 <_Rate_monotonic_Update_statistics+0xb4> 203e3f4: c4 1f bf f8 ldd [ %fp + -8 ], %g2 stats->max_cpu_time = executed; 203e3f8: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] /* * Update Wall time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_wall_time, &since_last_period ); 203e3fc: c4 1f bf f8 ldd [ %fp + -8 ], %g2 203e400: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4 if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) ) 203e404: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 203e408: ba 87 40 03 addcc %i5, %g3, %i5 203e40c: b8 47 00 02 addx %i4, %g2, %i4 203e410: 80 a0 40 02 cmp %g1, %g2 203e414: 14 80 00 09 bg 203e438 <_Rate_monotonic_Update_statistics+0xec> 203e418: f8 3e 20 88 std %i4, [ %i0 + 0x88 ] 203e41c: 80 a0 40 02 cmp %g1, %g2 203e420: 32 80 00 08 bne,a 203e440 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN 203e424: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED 203e428: c2 06 20 7c ld [ %i0 + 0x7c ], %g1 203e42c: 80 a0 40 03 cmp %g1, %g3 203e430: 28 80 00 04 bleu,a 203e440 <_Rate_monotonic_Update_statistics+0xf4> 203e434: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 stats->min_wall_time = since_last_period; 203e438: c4 3e 20 78 std %g2, [ %i0 + 0x78 ] if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) ) 203e43c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 203e440: 80 a0 40 02 cmp %g1, %g2 203e444: 26 80 00 09 bl,a 203e468 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN 203e448: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED 203e44c: 80 a0 40 02 cmp %g1, %g2 203e450: 12 80 00 06 bne 203e468 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN 203e454: 01 00 00 00 nop 203e458: c2 06 20 84 ld [ %i0 + 0x84 ], %g1 203e45c: 80 a0 40 03 cmp %g1, %g3 203e460: 2a 80 00 02 bcs,a 203e468 <_Rate_monotonic_Update_statistics+0x11c> 203e464: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] 203e468: 81 c7 e0 08 ret 203e46c: 81 e8 00 00 restore =============================================================================== 0200a108 <_Scheduler_CBS_Allocate>: #include void *_Scheduler_CBS_Allocate( Thread_Control *the_thread ) { 200a108: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_CBS_Per_thread *schinfo; sched = _Workspace_Allocate(sizeof(Scheduler_CBS_Per_thread)); 200a10c: 40 00 06 9b call 200bb78 <_Workspace_Allocate> 200a110: 90 10 20 1c mov 0x1c, %o0 if ( sched ) { 200a114: 80 a2 20 00 cmp %o0, 0 200a118: 02 80 00 06 be 200a130 <_Scheduler_CBS_Allocate+0x28> <== NEVER TAKEN 200a11c: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 200a120: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_CBS_Per_thread *)(the_thread->scheduler_info); schinfo->edf_per_thread.thread = the_thread; 200a124: f0 22 00 00 st %i0, [ %o0 ] schinfo->edf_per_thread.queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 200a128: c2 22 20 14 st %g1, [ %o0 + 0x14 ] schinfo->cbs_server = NULL; 200a12c: c0 22 20 18 clr [ %o0 + 0x18 ] } return sched; } 200a130: 81 c7 e0 08 ret 200a134: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200b484 <_Scheduler_CBS_Budget_callout>: Scheduler_CBS_Server **_Scheduler_CBS_Server_list; void _Scheduler_CBS_Budget_callout( Thread_Control *the_thread ) { 200b484: 9d e3 bf 98 save %sp, -104, %sp Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server_id server_id; /* Put violating task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200b488: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200b48c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200b490: 80 a0 40 09 cmp %g1, %o1 200b494: 32 80 00 02 bne,a 200b49c <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN 200b498: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200b49c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200b4a0: 80 a0 40 09 cmp %g1, %o1 200b4a4: 02 80 00 04 be 200b4b4 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN 200b4a8: 90 10 00 18 mov %i0, %o0 _Thread_Change_priority(the_thread, new_priority, true); 200b4ac: 40 00 01 81 call 200bab0 <_Thread_Change_priority> 200b4b0: 94 10 20 01 mov 1, %o2 /* Invoke callback function if any. */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; 200b4b4: fa 06 20 88 ld [ %i0 + 0x88 ], %i5 if ( sched_info->cbs_server->cbs_budget_overrun ) { 200b4b8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b4bc: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200b4c0: 80 a0 a0 00 cmp %g2, 0 200b4c4: 02 80 00 09 be 200b4e8 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN 200b4c8: 01 00 00 00 nop _Scheduler_CBS_Get_server_id( 200b4cc: d0 00 40 00 ld [ %g1 ], %o0 200b4d0: 7f ff ff d7 call 200b42c <_Scheduler_CBS_Get_server_id> 200b4d4: 92 07 bf fc add %fp, -4, %o1 sched_info->cbs_server->task_id, &server_id ); sched_info->cbs_server->cbs_budget_overrun( server_id ); 200b4d8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b4dc: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200b4e0: 9f c0 40 00 call %g1 200b4e4: d0 07 bf fc ld [ %fp + -4 ], %o0 200b4e8: 81 c7 e0 08 ret 200b4ec: 81 e8 00 00 restore =============================================================================== 0200b08c <_Scheduler_CBS_Create_server>: int _Scheduler_CBS_Create_server ( Scheduler_CBS_Parameters *params, Scheduler_CBS_Budget_overrun budget_overrun_callback, rtems_id *server_id ) { 200b08c: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; Scheduler_CBS_Server *the_server; if ( params->budget <= 0 || 200b090: c2 06 20 04 ld [ %i0 + 4 ], %g1 200b094: 80 a0 60 00 cmp %g1, 0 200b098: 04 80 00 1d ble 200b10c <_Scheduler_CBS_Create_server+0x80> 200b09c: 01 00 00 00 nop 200b0a0: c2 06 00 00 ld [ %i0 ], %g1 200b0a4: 80 a0 60 00 cmp %g1, 0 200b0a8: 04 80 00 19 ble 200b10c <_Scheduler_CBS_Create_server+0x80> 200b0ac: 03 00 80 7b sethi %hi(0x201ec00), %g1 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b0b0: c4 00 63 fc ld [ %g1 + 0x3fc ], %g2 ! 201effc <_Scheduler_CBS_Maximum_servers> if ( !_Scheduler_CBS_Server_list[i] ) 200b0b4: 03 00 80 7f sethi %hi(0x201fc00), %g1 200b0b8: c6 00 63 38 ld [ %g1 + 0x338 ], %g3 ! 201ff38 <_Scheduler_CBS_Server_list> 200b0bc: 10 80 00 07 b 200b0d8 <_Scheduler_CBS_Create_server+0x4c> 200b0c0: 82 10 20 00 clr %g1 200b0c4: c8 00 c0 1c ld [ %g3 + %i4 ], %g4 200b0c8: 80 a1 20 00 cmp %g4, 0 200b0cc: 02 80 00 14 be 200b11c <_Scheduler_CBS_Create_server+0x90> 200b0d0: 3b 00 80 7f sethi %hi(0x201fc00), %i5 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b0d4: 82 00 60 01 inc %g1 200b0d8: 80 a0 40 02 cmp %g1, %g2 200b0dc: 12 bf ff fa bne 200b0c4 <_Scheduler_CBS_Create_server+0x38> 200b0e0: b9 28 60 02 sll %g1, 2, %i4 if ( !_Scheduler_CBS_Server_list[i] ) break; } if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; 200b0e4: 81 c7 e0 08 ret 200b0e8: 91 e8 3f e6 restore %g0, -26, %o0 _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200b0ec: c4 20 60 04 st %g2, [ %g1 + 4 ] 200b0f0: c4 06 20 04 ld [ %i0 + 4 ], %g2 the_server->task_id = -1; the_server->cbs_budget_overrun = budget_overrun_callback; 200b0f4: f2 20 60 0c st %i1, [ %g1 + 0xc ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200b0f8: c4 20 60 08 st %g2, [ %g1 + 8 ] the_server->task_id = -1; 200b0fc: 84 10 3f ff mov -1, %g2 200b100: c4 20 40 00 st %g2, [ %g1 ] the_server->cbs_budget_overrun = budget_overrun_callback; return SCHEDULER_CBS_OK; 200b104: 81 c7 e0 08 ret 200b108: 91 e8 20 00 restore %g0, 0, %o0 if ( params->budget <= 0 || params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; 200b10c: 81 c7 e0 08 ret 200b110: 91 e8 3f ee restore %g0, -18, %o0 *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; 200b114: 81 c7 e0 08 ret <== NOT EXECUTED 200b118: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) 200b11c: f6 07 63 38 ld [ %i5 + 0x338 ], %i3 } if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; 200b120: c2 26 80 00 st %g1, [ %i2 ] _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); 200b124: 40 00 07 8d call 200cf58 <_Workspace_Allocate> 200b128: 90 10 20 10 mov 0x10, %o0 the_server = _Scheduler_CBS_Server_list[*server_id]; 200b12c: c2 06 80 00 ld [ %i2 ], %g1 if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) 200b130: d0 26 c0 1c st %o0, [ %i3 + %i4 ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; 200b134: c4 07 63 38 ld [ %i5 + 0x338 ], %g2 200b138: 83 28 60 02 sll %g1, 2, %g1 200b13c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( !the_server ) 200b140: 80 a0 60 00 cmp %g1, 0 200b144: 32 bf ff ea bne,a 200b0ec <_Scheduler_CBS_Create_server+0x60><== ALWAYS TAKEN 200b148: c4 06 00 00 ld [ %i0 ], %g2 200b14c: 30 bf ff f2 b,a 200b114 <_Scheduler_CBS_Create_server+0x88><== NOT EXECUTED =============================================================================== 0200b1c4 <_Scheduler_CBS_Detach_thread>: int _Scheduler_CBS_Detach_thread ( Scheduler_CBS_Server_id server_id, rtems_id task_id ) { 200b1c4: 9d e3 bf 98 save %sp, -104, %sp Objects_Locations location; Thread_Control *the_thread; Scheduler_CBS_Per_thread *sched_info; the_thread = _Thread_Get(task_id, &location); 200b1c8: 90 10 00 19 mov %i1, %o0 200b1cc: 40 00 03 6b call 200bf78 <_Thread_Get> 200b1d0: 92 07 bf fc add %fp, -4, %o1 /* The routine _Thread_Get may disable dispatch and not enable again. */ if ( the_thread ) { 200b1d4: ba 92 20 00 orcc %o0, 0, %i5 200b1d8: 02 80 00 05 be 200b1ec <_Scheduler_CBS_Detach_thread+0x28> 200b1dc: 03 00 80 7b sethi %hi(0x201ec00), %g1 _Thread_Enable_dispatch(); 200b1e0: 40 00 03 59 call 200bf44 <_Thread_Enable_dispatch> 200b1e4: 01 00 00 00 nop } if ( server_id >= _Scheduler_CBS_Maximum_servers ) 200b1e8: 03 00 80 7b sethi %hi(0x201ec00), %g1 200b1ec: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1 ! 201effc <_Scheduler_CBS_Maximum_servers> 200b1f0: 80 a6 00 01 cmp %i0, %g1 200b1f4: 1a 80 00 1b bcc 200b260 <_Scheduler_CBS_Detach_thread+0x9c> 200b1f8: 80 a7 60 00 cmp %i5, 0 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; if ( !the_thread ) 200b1fc: 02 80 00 19 be 200b260 <_Scheduler_CBS_Detach_thread+0x9c> 200b200: 03 00 80 7f sethi %hi(0x201fc00), %g1 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; /* Server is not valid. */ if ( !_Scheduler_CBS_Server_list[server_id] ) 200b204: c2 00 63 38 ld [ %g1 + 0x338 ], %g1 ! 201ff38 <_Scheduler_CBS_Server_list> 200b208: b1 2e 20 02 sll %i0, 2, %i0 200b20c: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200b210: 80 a0 60 00 cmp %g1, 0 200b214: 02 80 00 11 be 200b258 <_Scheduler_CBS_Detach_thread+0x94> 200b218: 01 00 00 00 nop return SCHEDULER_CBS_ERROR_NOSERVER; /* Thread and server are not attached. */ if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id ) 200b21c: c4 00 40 00 ld [ %g1 ], %g2 200b220: 80 a0 80 19 cmp %g2, %i1 200b224: 12 80 00 0f bne 200b260 <_Scheduler_CBS_Detach_thread+0x9c><== NEVER TAKEN 200b228: 84 10 3f ff mov -1, %g2 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; _Scheduler_CBS_Server_list[server_id]->task_id = -1; 200b22c: c4 20 40 00 st %g2, [ %g1 ] sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; sched_info->cbs_server = NULL; 200b230: c2 07 60 88 ld [ %i5 + 0x88 ], %g1 200b234: c0 20 60 18 clr [ %g1 + 0x18 ] the_thread->budget_algorithm = the_thread->Start.budget_algorithm; 200b238: c2 07 60 a0 ld [ %i5 + 0xa0 ], %g1 200b23c: c2 27 60 78 st %g1, [ %i5 + 0x78 ] the_thread->budget_callout = the_thread->Start.budget_callout; 200b240: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1 200b244: c2 27 60 7c st %g1, [ %i5 + 0x7c ] the_thread->is_preemptible = the_thread->Start.is_preemptible; 200b248: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1 200b24c: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ] return SCHEDULER_CBS_OK; 200b250: 81 c7 e0 08 ret 200b254: 91 e8 20 00 restore %g0, 0, %o0 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; if ( !the_thread ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; /* Server is not valid. */ if ( !_Scheduler_CBS_Server_list[server_id] ) return SCHEDULER_CBS_ERROR_NOSERVER; 200b258: 81 c7 e0 08 ret 200b25c: 91 e8 3f e7 restore %g0, -25, %o0 the_thread->budget_algorithm = the_thread->Start.budget_algorithm; the_thread->budget_callout = the_thread->Start.budget_callout; the_thread->is_preemptible = the_thread->Start.is_preemptible; return SCHEDULER_CBS_OK; } 200b260: 81 c7 e0 08 ret 200b264: 91 e8 3f ee restore %g0, -18, %o0 =============================================================================== 0200b4f0 <_Scheduler_CBS_Initialize>: } } int _Scheduler_CBS_Initialize(void) { 200b4f0: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); 200b4f4: 3b 00 80 7b sethi %hi(0x201ec00), %i5 200b4f8: d0 07 63 fc ld [ %i5 + 0x3fc ], %o0 ! 201effc <_Scheduler_CBS_Maximum_servers> } int _Scheduler_CBS_Initialize(void) { unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( 200b4fc: 40 00 06 97 call 200cf58 <_Workspace_Allocate> 200b500: 91 2a 20 02 sll %o0, 2, %o0 200b504: 05 00 80 7f sethi %hi(0x201fc00), %g2 _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) 200b508: 80 a2 20 00 cmp %o0, 0 200b50c: 02 80 00 0d be 200b540 <_Scheduler_CBS_Initialize+0x50> <== NEVER TAKEN 200b510: d0 20 a3 38 st %o0, [ %g2 + 0x338 ] return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b514: c6 07 63 fc ld [ %i5 + 0x3fc ], %g3 200b518: 10 80 00 05 b 200b52c <_Scheduler_CBS_Initialize+0x3c> 200b51c: 82 10 20 00 clr %g1 _Scheduler_CBS_Server_list[i] = NULL; 200b520: 89 28 60 02 sll %g1, 2, %g4 unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b524: 82 00 60 01 inc %g1 _Scheduler_CBS_Server_list[i] = NULL; 200b528: c0 27 40 04 clr [ %i5 + %g4 ] unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b52c: 80 a0 40 03 cmp %g1, %g3 200b530: 12 bf ff fc bne 200b520 <_Scheduler_CBS_Initialize+0x30> 200b534: fa 00 a3 38 ld [ %g2 + 0x338 ], %i5 _Scheduler_CBS_Server_list[i] = NULL; } return SCHEDULER_CBS_OK; 200b538: 81 c7 e0 08 ret 200b53c: 91 e8 20 00 restore %g0, 0, %o0 } 200b540: 81 c7 e0 08 ret <== NOT EXECUTED 200b544: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED =============================================================================== 0200a138 <_Scheduler_CBS_Release_job>: { Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; Scheduler_CBS_Server *serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 200a138: c2 02 20 88 ld [ %o0 + 0x88 ], %g1 if (deadline) { 200a13c: 80 a2 60 00 cmp %o1, 0 200a140: 02 80 00 10 be 200a180 <_Scheduler_CBS_Release_job+0x48> 200a144: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 /* Initializing or shifting deadline. */ if (serv_info) 200a148: 80 a0 60 00 cmp %g1, 0 200a14c: 02 80 00 08 be 200a16c <_Scheduler_CBS_Release_job+0x34> 200a150: 05 00 80 78 sethi %hi(0x201e000), %g2 new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline) 200a154: d2 00 a2 a8 ld [ %g2 + 0x2a8 ], %o1 ! 201e2a8 <_Watchdog_Ticks_since_boot> 200a158: c4 00 60 04 ld [ %g1 + 4 ], %g2 200a15c: 92 02 40 02 add %o1, %g2, %o1 200a160: 05 20 00 00 sethi %hi(0x80000000), %g2 200a164: 10 80 00 0a b 200a18c <_Scheduler_CBS_Release_job+0x54> 200a168: 92 2a 40 02 andn %o1, %g2, %o1 & ~SCHEDULER_EDF_PRIO_MSB; else new_priority = (_Watchdog_Ticks_since_boot + deadline) 200a16c: c2 00 a2 a8 ld [ %g2 + 0x2a8 ], %g1 200a170: 92 02 40 01 add %o1, %g1, %o1 200a174: 03 20 00 00 sethi %hi(0x80000000), %g1 200a178: 10 80 00 07 b 200a194 <_Scheduler_CBS_Release_job+0x5c> 200a17c: 92 2a 40 01 andn %o1, %g1, %o1 /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; } /* Budget replenishment for the next job. */ if (serv_info) 200a180: 80 a0 60 00 cmp %g1, 0 200a184: 02 80 00 04 be 200a194 <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN 200a188: d2 02 20 ac ld [ %o0 + 0xac ], %o1 the_thread->cpu_time_budget = serv_info->parameters.budget; 200a18c: c2 00 60 08 ld [ %g1 + 8 ], %g1 200a190: c2 22 20 74 st %g1, [ %o0 + 0x74 ] the_thread->real_priority = new_priority; 200a194: d2 22 20 18 st %o1, [ %o0 + 0x18 ] _Thread_Change_priority(the_thread, new_priority, true); 200a198: 94 10 20 01 mov 1, %o2 200a19c: 82 13 c0 00 mov %o7, %g1 200a1a0: 40 00 01 24 call 200a630 <_Thread_Change_priority> 200a1a4: 9e 10 40 00 mov %g1, %o7 =============================================================================== 0200a1a8 <_Scheduler_CBS_Unblock>: #include void _Scheduler_CBS_Unblock( Thread_Control *the_thread ) { 200a1a8: 9d e3 bf a0 save %sp, -96, %sp Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server *serv_info; Priority_Control new_priority; _Scheduler_EDF_Enqueue(the_thread); 200a1ac: 40 00 00 4c call 200a2dc <_Scheduler_EDF_Enqueue> 200a1b0: 90 10 00 18 mov %i0, %o0 /* TODO: flash critical section? */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 200a1b4: c2 06 20 88 ld [ %i0 + 0x88 ], %g1 200a1b8: fa 00 60 18 ld [ %g1 + 0x18 ], %i5 * Late unblock rule for deadline-driven tasks. The remaining time to * deadline must be sufficient to serve the remaining computation time * without increased utilization of this task. It might cause a deadline * miss of another task. */ if (serv_info) { 200a1bc: 80 a7 60 00 cmp %i5, 0 200a1c0: 02 80 00 18 be 200a220 <_Scheduler_CBS_Unblock+0x78> 200a1c4: 03 00 80 78 sethi %hi(0x201e000), %g1 time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a1c8: d2 07 60 04 ld [ %i5 + 4 ], %o1 */ if (serv_info) { time_t deadline = serv_info->parameters.deadline; time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - 200a1cc: d0 00 62 a8 ld [ %g1 + 0x2a8 ], %o0 200a1d0: f8 06 20 18 ld [ %i0 + 0x18 ], %i4 _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a1d4: 40 00 3c 77 call 20193b0 <.umul> 200a1d8: 90 27 00 08 sub %i4, %o0, %o0 200a1dc: d2 06 20 74 ld [ %i0 + 0x74 ], %o1 200a1e0: b6 10 00 08 mov %o0, %i3 200a1e4: 40 00 3c 73 call 20193b0 <.umul> 200a1e8: d0 07 60 08 ld [ %i5 + 8 ], %o0 200a1ec: 80 a6 c0 08 cmp %i3, %o0 200a1f0: 24 80 00 0d ble,a 200a224 <_Scheduler_CBS_Unblock+0x7c> 200a1f4: 3b 00 80 78 sethi %hi(0x201e000), %i5 /* Put late unblocked task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200a1f8: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200a1fc: 80 a7 00 09 cmp %i4, %o1 200a200: 32 80 00 02 bne,a 200a208 <_Scheduler_CBS_Unblock+0x60> 200a204: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200a208: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a20c: 80 a0 40 09 cmp %g1, %o1 200a210: 02 80 00 04 be 200a220 <_Scheduler_CBS_Unblock+0x78> 200a214: 90 10 00 18 mov %i0, %o0 _Thread_Change_priority(the_thread, new_priority, true); 200a218: 40 00 01 06 call 200a630 <_Thread_Change_priority> 200a21c: 94 10 20 01 mov 1, %o2 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, 200a220: 3b 00 80 78 sethi %hi(0x201e000), %i5 200a224: ba 17 63 d0 or %i5, 0x3d0, %i5 ! 201e3d0 <_Per_CPU_Information> 200a228: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 200a22c: 03 00 80 75 sethi %hi(0x201d400), %g1 200a230: d0 06 20 14 ld [ %i0 + 0x14 ], %o0 200a234: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 200a238: 9f c0 40 00 call %g1 200a23c: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1 200a240: 80 a2 20 00 cmp %o0, 0 200a244: 04 80 00 0f ble 200a280 <_Scheduler_CBS_Unblock+0xd8> 200a248: 01 00 00 00 nop _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a24c: c2 07 60 0c ld [ %i5 + 0xc ], %g1 * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; 200a250: f0 27 60 10 st %i0, [ %i5 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200a254: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a258: 80 a0 60 00 cmp %g1, 0 200a25c: 12 80 00 06 bne 200a274 <_Scheduler_CBS_Unblock+0xcc> 200a260: 84 10 20 01 mov 1, %g2 200a264: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a268: 80 a0 60 00 cmp %g1, 0 200a26c: 12 80 00 05 bne 200a280 <_Scheduler_CBS_Unblock+0xd8> <== ALWAYS TAKEN 200a270: 01 00 00 00 nop the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a274: 03 00 80 78 sethi %hi(0x201e000), %g1 200a278: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201e3d0 <_Per_CPU_Information> 200a27c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200a280: 81 c7 e0 08 ret 200a284: 81 e8 00 00 restore =============================================================================== 0200a108 <_Scheduler_EDF_Allocate>: #include void *_Scheduler_EDF_Allocate( Thread_Control *the_thread ) { 200a108: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_EDF_Per_thread *schinfo; sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) ); 200a10c: 40 00 06 70 call 200bacc <_Workspace_Allocate> 200a110: 90 10 20 18 mov 0x18, %o0 if ( sched ) { 200a114: 80 a2 20 00 cmp %o0, 0 200a118: 02 80 00 05 be 200a12c <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN 200a11c: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 200a120: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info); schinfo->thread = the_thread; 200a124: f0 22 00 00 st %i0, [ %o0 ] schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 200a128: c2 22 20 14 st %g1, [ %o0 + 0x14 ] } return sched; } 200a12c: 81 c7 e0 08 ret 200a130: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200a2d0 <_Scheduler_EDF_Unblock>: #include void _Scheduler_EDF_Unblock( Thread_Control *the_thread ) { 200a2d0: 9d e3 bf a0 save %sp, -96, %sp _Scheduler_EDF_Enqueue(the_thread); 200a2d4: 7f ff ff ad call 200a188 <_Scheduler_EDF_Enqueue> 200a2d8: 90 10 00 18 mov %i0, %o0 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( 200a2dc: 3b 00 80 78 sethi %hi(0x201e000), %i5 200a2e0: ba 17 63 10 or %i5, 0x310, %i5 ! 201e310 <_Per_CPU_Information> 200a2e4: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 200a2e8: 03 00 80 75 sethi %hi(0x201d400), %g1 200a2ec: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0 200a2f0: c2 00 60 40 ld [ %g1 + 0x40 ], %g1 200a2f4: 9f c0 40 00 call %g1 200a2f8: d2 06 20 14 ld [ %i0 + 0x14 ], %o1 200a2fc: 80 a2 20 00 cmp %o0, 0 200a300: 16 80 00 0f bge 200a33c <_Scheduler_EDF_Unblock+0x6c> 200a304: 01 00 00 00 nop _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a308: c2 07 60 0c ld [ %i5 + 0xc ], %g1 * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; 200a30c: f0 27 60 10 st %i0, [ %i5 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200a310: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a314: 80 a0 60 00 cmp %g1, 0 200a318: 12 80 00 06 bne 200a330 <_Scheduler_EDF_Unblock+0x60> 200a31c: 84 10 20 01 mov 1, %g2 200a320: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a324: 80 a0 60 00 cmp %g1, 0 200a328: 12 80 00 05 bne 200a33c <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN 200a32c: 01 00 00 00 nop the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a330: 03 00 80 78 sethi %hi(0x201e000), %g1 200a334: 82 10 63 10 or %g1, 0x310, %g1 ! 201e310 <_Per_CPU_Information> 200a338: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200a33c: 81 c7 e0 08 ret 200a340: 81 e8 00 00 restore =============================================================================== 02008698 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2008698: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 200869c: 03 00 80 77 sethi %hi(0x201dc00), %g1 20086a0: d2 00 63 5c ld [ %g1 + 0x35c ], %o1 ! 201df5c 20086a4: 11 00 03 d0 sethi %hi(0xf4000), %o0 20086a8: 40 00 45 28 call 2019b48 <.udiv> 20086ac: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 20086b0: 80 a6 20 00 cmp %i0, 0 20086b4: 02 80 00 28 be 2008754 <_TOD_Validate+0xbc> <== NEVER TAKEN 20086b8: 84 10 20 00 clr %g2 20086bc: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 20086c0: 80 a0 40 08 cmp %g1, %o0 20086c4: 3a 80 00 25 bcc,a 2008758 <_TOD_Validate+0xc0> 20086c8: b0 08 a0 01 and %g2, 1, %i0 (the_tod->ticks >= ticks_per_second) || 20086cc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20086d0: 80 a0 60 3b cmp %g1, 0x3b 20086d4: 38 80 00 21 bgu,a 2008758 <_TOD_Validate+0xc0> 20086d8: b0 08 a0 01 and %g2, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20086dc: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20086e0: 80 a0 60 3b cmp %g1, 0x3b 20086e4: 38 80 00 1d bgu,a 2008758 <_TOD_Validate+0xc0> 20086e8: b0 08 a0 01 and %g2, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20086ec: c2 06 20 0c ld [ %i0 + 0xc ], %g1 20086f0: 80 a0 60 17 cmp %g1, 0x17 20086f4: 38 80 00 19 bgu,a 2008758 <_TOD_Validate+0xc0> 20086f8: b0 08 a0 01 and %g2, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20086fc: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2008700: 80 a0 60 00 cmp %g1, 0 2008704: 02 80 00 14 be 2008754 <_TOD_Validate+0xbc> <== NEVER TAKEN 2008708: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200870c: 38 80 00 13 bgu,a 2008758 <_TOD_Validate+0xc0> 2008710: b0 08 a0 01 and %g2, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2008714: c8 06 00 00 ld [ %i0 ], %g4 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2008718: 80 a1 27 c3 cmp %g4, 0x7c3 200871c: 28 80 00 0f bleu,a 2008758 <_TOD_Validate+0xc0> 2008720: b0 08 a0 01 and %g2, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2008724: c6 06 20 08 ld [ %i0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2008728: 80 a0 e0 00 cmp %g3, 0 200872c: 02 80 00 0a be 2008754 <_TOD_Validate+0xbc> <== NEVER TAKEN 2008730: 80 89 20 03 btst 3, %g4 2008734: 05 00 80 72 sethi %hi(0x201c800), %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2008738: 12 80 00 03 bne 2008744 <_TOD_Validate+0xac> 200873c: 84 10 a3 58 or %g2, 0x358, %g2 ! 201cb58 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 2008740: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 2008744: 83 28 60 02 sll %g1, 2, %g1 2008748: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( the_tod->day > days_in_month ) 200874c: 80 a0 40 03 cmp %g1, %g3 2008750: 84 60 3f ff subx %g0, -1, %g2 return false; return true; } 2008754: b0 08 a0 01 and %g2, 1, %i0 2008758: 81 c7 e0 08 ret 200875c: 81 e8 00 00 restore =============================================================================== 02009c78 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2009c78: 9d e3 bf a0 save %sp, -96, %sp 2009c7c: ba 10 00 18 mov %i0, %i5 States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2009c80: f0 06 20 10 ld [ %i0 + 0x10 ], %i0 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2009c84: 40 00 03 5e call 200a9fc <_Thread_Set_transient> 2009c88: 90 10 00 1d mov %i5, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2009c8c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2009c90: 80 a0 40 19 cmp %g1, %i1 2009c94: 02 80 00 04 be 2009ca4 <_Thread_Change_priority+0x2c> 2009c98: 90 10 00 1d mov %i5, %o0 _Thread_Set_priority( the_thread, new_priority ); 2009c9c: 40 00 03 3f call 200a998 <_Thread_Set_priority> 2009ca0: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2009ca4: 7f ff e2 88 call 20026c4 2009ca8: 01 00 00 00 nop 2009cac: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2009cb0: f8 07 60 10 ld [ %i5 + 0x10 ], %i4 if ( state != STATES_TRANSIENT ) { 2009cb4: 80 a7 20 04 cmp %i4, 4 2009cb8: 02 80 00 10 be 2009cf8 <_Thread_Change_priority+0x80> 2009cbc: 82 0e 20 04 and %i0, 4, %g1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2009cc0: 80 a0 60 00 cmp %g1, 0 2009cc4: 12 80 00 03 bne 2009cd0 <_Thread_Change_priority+0x58> <== NEVER TAKEN 2009cc8: 82 0f 3f fb and %i4, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2009ccc: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2009cd0: 7f ff e2 81 call 20026d4 2009cd4: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2009cd8: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009cdc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2009ce0: 80 8f 00 01 btst %i4, %g1 2009ce4: 02 80 00 28 be 2009d84 <_Thread_Change_priority+0x10c> 2009ce8: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2009cec: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2009cf0: 40 00 02 fc call 200a8e0 <_Thread_queue_Requeue> 2009cf4: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2009cf8: 80 a0 60 00 cmp %g1, 0 2009cfc: 12 80 00 0b bne 2009d28 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 2009d00: 03 00 80 6e sethi %hi(0x201b800), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2009d04: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 2009d08: 80 a6 a0 00 cmp %i2, 0 2009d0c: 02 80 00 04 be 2009d1c <_Thread_Change_priority+0xa4> 2009d10: 82 10 61 30 or %g1, 0x130, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2009d14: 10 80 00 03 b 2009d20 <_Thread_Change_priority+0xa8> 2009d18: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2009d1c: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2009d20: 9f c0 40 00 call %g1 2009d24: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2009d28: 7f ff e2 6b call 20026d4 2009d2c: 90 10 00 1b mov %i3, %o0 2009d30: 7f ff e2 65 call 20026c4 2009d34: 01 00 00 00 nop 2009d38: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2009d3c: 03 00 80 6e sethi %hi(0x201b800), %g1 2009d40: c2 00 61 38 ld [ %g1 + 0x138 ], %g1 ! 201b938 <_Scheduler+0x8> 2009d44: 9f c0 40 00 call %g1 2009d48: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2009d4c: 03 00 80 71 sethi %hi(0x201c400), %g1 2009d50: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information> 2009d54: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2009d58: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009d5c: 80 a0 80 03 cmp %g2, %g3 2009d60: 02 80 00 07 be 2009d7c <_Thread_Change_priority+0x104> 2009d64: 01 00 00 00 nop 2009d68: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 2009d6c: 80 a0 a0 00 cmp %g2, 0 2009d70: 02 80 00 03 be 2009d7c <_Thread_Change_priority+0x104> 2009d74: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2009d78: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2009d7c: 7f ff e2 56 call 20026d4 2009d80: 81 e8 00 00 restore 2009d84: 81 c7 e0 08 ret 2009d88: 81 e8 00 00 restore =============================================================================== 02009f78 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009f78: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009f7c: 90 10 00 18 mov %i0, %o0 2009f80: 40 00 00 70 call 200a140 <_Thread_Get> 2009f84: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009f88: c2 07 bf fc ld [ %fp + -4 ], %g1 2009f8c: 80 a0 60 00 cmp %g1, 0 2009f90: 12 80 00 09 bne 2009fb4 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2009f94: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2009f98: 7f ff ff 7d call 2009d8c <_Thread_Clear_state> 2009f9c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009fa0: 03 00 80 71 sethi %hi(0x201c400), %g1 2009fa4: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level> 2009fa8: 84 00 bf ff add %g2, -1, %g2 2009fac: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] return _Thread_Dispatch_disable_level; 2009fb0: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1 2009fb4: 81 c7 e0 08 ret 2009fb8: 81 e8 00 00 restore =============================================================================== 02009fbc <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2009fbc: 9d e3 bf 98 save %sp, -104, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2009fc0: 03 00 80 71 sethi %hi(0x201c400), %g1 2009fc4: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level> 2009fc8: 84 00 a0 01 inc %g2 2009fcc: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] return _Thread_Dispatch_disable_level; 2009fd0: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2009fd4: 21 00 80 71 sethi %hi(0x201c400), %l0 2009fd8: 82 14 23 d0 or %l0, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information> _ISR_Disable( level ); 2009fdc: 7f ff e1 ba call 20026c4 2009fe0: f2 00 60 0c ld [ %g1 + 0xc ], %i1 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2009fe4: 25 00 80 71 sethi %hi(0x201c400), %l2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2009fe8: 27 00 80 71 sethi %hi(0x201c400), %l3 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009fec: 10 80 00 42 b 200a0f4 <_Thread_Dispatch+0x138> 2009ff0: 23 00 80 71 sethi %hi(0x201c400), %l1 heir = _Thread_Heir; _Thread_Dispatch_necessary = false; 2009ff4: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2009ff8: 80 a6 00 19 cmp %i0, %i1 2009ffc: 12 80 00 0d bne 200a030 <_Thread_Dispatch+0x74> 200a000: f0 20 60 0c st %i0, [ %g1 + 0xc ] _ISR_Disable( level ); } post_switch: _ISR_Enable( level ); 200a004: 7f ff e1 b4 call 20026d4 200a008: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 200a00c: 03 00 80 71 sethi %hi(0x201c400), %g1 200a010: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level> 200a014: 84 00 bf ff add %g2, -1, %g2 200a018: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] return _Thread_Dispatch_disable_level; 200a01c: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1 _Thread_Unnest_dispatch(); _API_extensions_Run_postswitch(); 200a020: 7f ff f8 68 call 20081c0 <_API_extensions_Run_postswitch> 200a024: 01 00 00 00 nop 200a028: 81 c7 e0 08 ret 200a02c: 81 e8 00 00 restore */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 200a030: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 200a034: 80 a0 60 01 cmp %g1, 1 200a038: 12 80 00 03 bne 200a044 <_Thread_Dispatch+0x88> 200a03c: c2 04 a1 10 ld [ %l2 + 0x110 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 200a040: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 200a044: 7f ff e1 a4 call 20026d4 200a048: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 200a04c: 40 00 0b 1e call 200ccc4 <_TOD_Get_uptime> 200a050: 90 07 bf f8 add %fp, -8, %o0 _Timestamp_Subtract( 200a054: c4 1f bf f8 ldd [ %fp + -8 ], %g2 200a058: 82 14 23 d0 or %l0, 0x3d0, %g1 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 200a05c: f8 18 60 20 ldd [ %g1 + 0x20 ], %i4 200a060: b6 a0 c0 1d subcc %g3, %i5, %i3 200a064: b4 60 80 1c subx %g2, %i4, %i2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 200a068: f8 1e 60 80 ldd [ %i1 + 0x80 ], %i4 200a06c: ba 87 40 1b addcc %i5, %i3, %i5 200a070: b8 47 00 1a addx %i4, %i2, %i4 200a074: f8 3e 60 80 std %i4, [ %i1 + 0x80 ] &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 200a078: c4 38 60 20 std %g2, [ %g1 + 0x20 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 200a07c: c2 04 e2 2c ld [ %l3 + 0x22c ], %g1 200a080: 80 a0 60 00 cmp %g1, 0 200a084: 02 80 00 06 be 200a09c <_Thread_Dispatch+0xe0> <== NEVER TAKEN 200a088: 90 10 00 19 mov %i1, %o0 executing->libc_reent = *_Thread_libc_reent; 200a08c: c4 00 40 00 ld [ %g1 ], %g2 200a090: c4 26 61 4c st %g2, [ %i1 + 0x14c ] *_Thread_libc_reent = heir->libc_reent; 200a094: c4 06 21 4c ld [ %i0 + 0x14c ], %g2 200a098: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 200a09c: 40 00 03 49 call 200adc0 <_User_extensions_Thread_switch> 200a0a0: 92 10 00 18 mov %i0, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 200a0a4: 90 06 60 c0 add %i1, 0xc0, %o0 200a0a8: 40 00 04 74 call 200b278 <_CPU_Context_switch> 200a0ac: 92 06 20 c0 add %i0, 0xc0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200a0b0: c2 06 61 48 ld [ %i1 + 0x148 ], %g1 200a0b4: 80 a0 60 00 cmp %g1, 0 200a0b8: 02 80 00 0c be 200a0e8 <_Thread_Dispatch+0x12c> 200a0bc: d0 04 62 28 ld [ %l1 + 0x228 ], %o0 200a0c0: 80 a6 40 08 cmp %i1, %o0 200a0c4: 02 80 00 09 be 200a0e8 <_Thread_Dispatch+0x12c> 200a0c8: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200a0cc: 02 80 00 04 be 200a0dc <_Thread_Dispatch+0x120> 200a0d0: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200a0d4: 40 00 04 2f call 200b190 <_CPU_Context_save_fp> 200a0d8: 90 02 21 48 add %o0, 0x148, %o0 _Context_Restore_fp( &executing->fp_context ); 200a0dc: 40 00 04 4a call 200b204 <_CPU_Context_restore_fp> 200a0e0: 90 06 61 48 add %i1, 0x148, %o0 _Thread_Allocated_fp = executing; 200a0e4: f2 24 62 28 st %i1, [ %l1 + 0x228 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 200a0e8: 82 14 23 d0 or %l0, 0x3d0, %g1 _ISR_Disable( level ); 200a0ec: 7f ff e1 76 call 20026c4 200a0f0: f2 00 60 0c ld [ %g1 + 0xc ], %i1 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 200a0f4: 82 14 23 d0 or %l0, 0x3d0, %g1 200a0f8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 200a0fc: 80 a0 a0 00 cmp %g2, 0 200a100: 32 bf ff bd bne,a 2009ff4 <_Thread_Dispatch+0x38> 200a104: f0 00 60 10 ld [ %g1 + 0x10 ], %i0 200a108: 30 bf ff bf b,a 200a004 <_Thread_Dispatch+0x48> =============================================================================== 0200eaa0 <_Thread_Handler>: * Input parameters: NONE * * Output parameters: NONE */ void _Thread_Handler( void ) { 200eaa0: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static bool doneConstructors; bool doCons; #endif executing = _Thread_Executing; 200eaa4: 03 00 80 71 sethi %hi(0x201c400), %g1 200eaa8: fa 00 63 dc ld [ %g1 + 0x3dc ], %i5 ! 201c7dc <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200eaac: 3f 00 80 3a sethi %hi(0x200e800), %i7 200eab0: be 17 e2 a0 or %i7, 0x2a0, %i7 ! 200eaa0 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200eab4: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0 _ISR_Set_level(level); 200eab8: 7f ff cf 07 call 20026d4 200eabc: 91 2a 20 08 sll %o0, 8, %o0 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200eac0: 03 00 80 70 sethi %hi(0x201c000), %g1 doneConstructors = true; 200eac4: 84 10 20 01 mov 1, %g2 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200eac8: f8 08 61 b0 ldub [ %g1 + 0x1b0 ], %i4 doneConstructors = true; 200eacc: c4 28 61 b0 stb %g2, [ %g1 + 0x1b0 ] #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200ead0: c2 07 61 48 ld [ %i5 + 0x148 ], %g1 200ead4: 80 a0 60 00 cmp %g1, 0 200ead8: 02 80 00 0c be 200eb08 <_Thread_Handler+0x68> 200eadc: 03 00 80 71 sethi %hi(0x201c400), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200eae0: d0 00 62 28 ld [ %g1 + 0x228 ], %o0 ! 201c628 <_Thread_Allocated_fp> 200eae4: 80 a7 40 08 cmp %i5, %o0 200eae8: 02 80 00 08 be 200eb08 <_Thread_Handler+0x68> 200eaec: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200eaf0: 22 80 00 06 be,a 200eb08 <_Thread_Handler+0x68> 200eaf4: fa 20 62 28 st %i5, [ %g1 + 0x228 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200eaf8: 7f ff f1 a6 call 200b190 <_CPU_Context_save_fp> 200eafc: 90 02 21 48 add %o0, 0x148, %o0 _Thread_Allocated_fp = executing; 200eb00: 03 00 80 71 sethi %hi(0x201c400), %g1 200eb04: fa 20 62 28 st %i5, [ %g1 + 0x228 ] ! 201c628 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200eb08: 7f ff f0 39 call 200abec <_User_extensions_Thread_begin> 200eb0c: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200eb10: 7f ff ed 7f call 200a10c <_Thread_Enable_dispatch> 200eb14: 01 00 00 00 nop /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { 200eb18: 80 8f 20 ff btst 0xff, %i4 200eb1c: 32 80 00 05 bne,a 200eb30 <_Thread_Handler+0x90> 200eb20: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 INIT_NAME (); 200eb24: 40 00 33 33 call 201b7f0 <_init> 200eb28: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200eb2c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200eb30: 80 a0 60 00 cmp %g1, 0 200eb34: 12 80 00 06 bne 200eb4c <_Thread_Handler+0xac> <== NEVER TAKEN 200eb38: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200eb3c: c2 07 60 8c ld [ %i5 + 0x8c ], %g1 200eb40: 9f c0 40 00 call %g1 200eb44: d0 07 60 98 ld [ %i5 + 0x98 ], %o0 #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200eb48: d0 27 60 28 st %o0, [ %i5 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200eb4c: 7f ff f0 39 call 200ac30 <_User_extensions_Thread_exitted> 200eb50: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200eb54: 90 10 20 00 clr %o0 200eb58: 92 10 20 01 mov 1, %o1 200eb5c: 7f ff e8 37 call 2008c38 <_Internal_error_Occurred> 200eb60: 94 10 20 05 mov 5, %o2 =============================================================================== 0200a3c0 <_Thread_Handler_initialization>: * * Output parameters: NONE */ void _Thread_Handler_initialization(void) { 200a3c0: 9d e3 bf 98 save %sp, -104, %sp uint32_t ticks_per_timeslice = 200a3c4: 03 00 80 6e sethi %hi(0x201b800), %g1 200a3c8: 82 10 60 3c or %g1, 0x3c, %g1 ! 201b83c #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a3cc: c6 00 60 2c ld [ %g1 + 0x2c ], %g3 * Output parameters: NONE */ void _Thread_Handler_initialization(void) { uint32_t ticks_per_timeslice = 200a3d0: fa 00 60 18 ld [ %g1 + 0x18 ], %i5 rtems_configuration_get_ticks_per_timeslice(); uint32_t maximum_extensions = 200a3d4: f8 00 60 0c ld [ %g1 + 0xc ], %i4 #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a3d8: 80 a0 e0 00 cmp %g3, 0 200a3dc: 02 80 00 06 be 200a3f4 <_Thread_Handler_initialization+0x34> 200a3e0: c4 00 60 28 ld [ %g1 + 0x28 ], %g2 200a3e4: c6 00 60 30 ld [ %g1 + 0x30 ], %g3 200a3e8: 80 a0 e0 00 cmp %g3, 0 200a3ec: 12 80 00 06 bne 200a404 <_Thread_Handler_initialization+0x44><== ALWAYS TAKEN 200a3f0: 80 a0 a0 00 cmp %g2, 0 rtems_configuration_get_stack_free_hook() == NULL) _Internal_error_Occurred( 200a3f4: 90 10 20 00 clr %o0 200a3f8: 92 10 20 01 mov 1, %o1 200a3fc: 7f ff fa 0f call 2008c38 <_Internal_error_Occurred> 200a400: 94 10 20 0e mov 0xe, %o2 INTERNAL_ERROR_CORE, true, INTERNAL_ERROR_BAD_STACK_HOOK ); if ( stack_allocate_init_hook != NULL ) 200a404: 22 80 00 05 be,a 200a418 <_Thread_Handler_initialization+0x58> 200a408: 03 00 80 71 sethi %hi(0x201c400), %g1 (*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() ); 200a40c: 9f c0 80 00 call %g2 200a410: d0 00 60 08 ld [ %g1 + 8 ], %o0 ! 201c408 _Thread_Dispatch_necessary = false; 200a414: 03 00 80 71 sethi %hi(0x201c400), %g1 200a418: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information> 200a41c: c0 28 60 18 clrb [ %g1 + 0x18 ] _Thread_Executing = NULL; 200a420: c0 20 60 0c clr [ %g1 + 0xc ] _Thread_Heir = NULL; 200a424: c0 20 60 10 clr [ %g1 + 0x10 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Thread_Allocated_fp = NULL; 200a428: 03 00 80 71 sethi %hi(0x201c400), %g1 200a42c: c0 20 62 28 clr [ %g1 + 0x228 ] ! 201c628 <_Thread_Allocated_fp> #endif _Thread_Maximum_extensions = maximum_extensions; 200a430: 03 00 80 71 sethi %hi(0x201c400), %g1 200a434: f8 20 62 30 st %i4, [ %g1 + 0x230 ] ! 201c630 <_Thread_Maximum_extensions> _Thread_Ticks_per_timeslice = ticks_per_timeslice; 200a438: 03 00 80 71 sethi %hi(0x201c400), %g1 200a43c: fa 20 61 10 st %i5, [ %g1 + 0x110 ] ! 201c510 <_Thread_Ticks_per_timeslice> #if defined(RTEMS_MULTIPROCESSING) if ( _System_state_Is_multiprocessing ) maximum_internal_threads += 1; #endif _Objects_Initialize_information( 200a440: 82 10 20 08 mov 8, %g1 200a444: 11 00 80 71 sethi %hi(0x201c400), %o0 200a448: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200a44c: 90 12 22 b0 or %o0, 0x2b0, %o0 200a450: 92 10 20 01 mov 1, %o1 200a454: 94 10 20 01 mov 1, %o2 200a458: 96 10 20 01 mov 1, %o3 200a45c: 98 10 21 60 mov 0x160, %o4 200a460: 7f ff fb 7e call 2009258 <_Objects_Initialize_information> 200a464: 9a 10 20 00 clr %o5 200a468: 81 c7 e0 08 ret 200a46c: 81 e8 00 00 restore =============================================================================== 0200a1f4 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 200a1f4: 9d e3 bf a0 save %sp, -96, %sp 200a1f8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 200a1fc: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 200a200: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 200a204: c0 26 61 50 clr [ %i1 + 0x150 ] 200a208: c0 26 61 54 clr [ %i1 + 0x154 ] extensions_area = NULL; the_thread->libc_reent = NULL; 200a20c: c0 26 61 4c clr [ %i1 + 0x14c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 200a210: 90 10 00 19 mov %i1, %o0 200a214: 40 00 02 09 call 200aa38 <_Thread_Stack_Allocate> 200a218: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 200a21c: 80 a2 00 1b cmp %o0, %i3 200a220: 0a 80 00 64 bcs 200a3b0 <_Thread_Initialize+0x1bc> 200a224: 80 a2 20 00 cmp %o0, 0 200a228: 02 80 00 62 be 200a3b0 <_Thread_Initialize+0x1bc> <== NEVER TAKEN 200a22c: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a230: c2 06 60 bc ld [ %i1 + 0xbc ], %g1 the_stack->size = size; 200a234: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a238: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 200a23c: 02 80 00 07 be 200a258 <_Thread_Initialize+0x64> 200a240: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 200a244: 40 00 03 b7 call 200b120 <_Workspace_Allocate> 200a248: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 200a24c: b6 92 20 00 orcc %o0, 0, %i3 200a250: 22 80 00 49 be,a 200a374 <_Thread_Initialize+0x180> 200a254: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a258: 03 00 80 71 sethi %hi(0x201c400), %g1 200a25c: d0 00 62 30 ld [ %g1 + 0x230 ], %o0 ! 201c630 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 200a260: f6 26 61 48 st %i3, [ %i1 + 0x148 ] the_thread->Start.fp_context = fp_area; 200a264: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200a268: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 200a26c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 200a270: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 200a274: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a278: 80 a2 20 00 cmp %o0, 0 200a27c: 02 80 00 08 be 200a29c <_Thread_Initialize+0xa8> 200a280: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 200a284: 90 02 20 01 inc %o0 200a288: 40 00 03 a6 call 200b120 <_Workspace_Allocate> 200a28c: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 200a290: b8 92 20 00 orcc %o0, 0, %i4 200a294: 22 80 00 39 be,a 200a378 <_Thread_Initialize+0x184> 200a298: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 200a29c: 80 a7 20 00 cmp %i4, 0 200a2a0: 12 80 00 17 bne 200a2fc <_Thread_Initialize+0x108> 200a2a4: f8 26 61 58 st %i4, [ %i1 + 0x158 ] /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a2a8: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 200a2ac: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ] the_thread->Start.budget_algorithm = budget_algorithm; 200a2b0: c2 26 60 a0 st %g1, [ %i1 + 0xa0 ] the_thread->Start.budget_callout = budget_callout; 200a2b4: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 200a2b8: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 200a2bc: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a2c0: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 200a2c4: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a2c8: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] the_thread->current_state = STATES_DORMANT; 200a2cc: 82 10 20 01 mov 1, %g1 200a2d0: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 200a2d4: 03 00 80 6e sethi %hi(0x201b800), %g1 200a2d8: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 201b948 <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 200a2dc: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 200a2e0: fa 26 60 ac st %i5, [ %i1 + 0xac ] 200a2e4: 9f c0 40 00 call %g1 200a2e8: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 200a2ec: b4 92 20 00 orcc %o0, 0, %i2 200a2f0: 12 80 00 0f bne 200a32c <_Thread_Initialize+0x138> 200a2f4: 90 10 00 19 mov %i1, %o0 200a2f8: 30 80 00 20 b,a 200a378 <_Thread_Initialize+0x184> * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a2fc: 03 00 80 71 sethi %hi(0x201c400), %g1 200a300: c4 00 62 30 ld [ %g1 + 0x230 ], %g2 ! 201c630 <_Thread_Maximum_extensions> 200a304: 10 80 00 05 b 200a318 <_Thread_Initialize+0x124> 200a308: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 200a30c: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a310: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 200a314: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a318: 80 a0 40 02 cmp %g1, %g2 200a31c: 28 bf ff fc bleu,a 200a30c <_Thread_Initialize+0x118> 200a320: c8 06 61 58 ld [ %i1 + 0x158 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a324: 10 bf ff e2 b 200a2ac <_Thread_Initialize+0xb8> 200a328: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; sched =_Scheduler_Allocate( the_thread ); if ( !sched ) goto failed; _Thread_Set_priority( the_thread, priority ); 200a32c: 40 00 01 9b call 200a998 <_Thread_Set_priority> 200a330: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a334: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200a338: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 static inline void _Timestamp64_implementation_Set_to_zero( Timestamp64_Control *_time ) { *_time = 0; 200a33c: c0 26 60 80 clr [ %i1 + 0x80 ] 200a340: c0 26 60 84 clr [ %i1 + 0x84 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a344: 83 28 60 02 sll %g1, 2, %g1 200a348: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200a34c: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 200a350: 90 10 00 19 mov %i1, %o0 200a354: 40 00 02 5a call 200acbc <_User_extensions_Thread_create> 200a358: b0 10 20 01 mov 1, %i0 if ( extension_status ) 200a35c: 80 8a 20 ff btst 0xff, %o0 200a360: 02 80 00 06 be 200a378 <_Thread_Initialize+0x184> 200a364: 01 00 00 00 nop 200a368: b0 0e 20 01 and %i0, 1, %i0 200a36c: 81 c7 e0 08 ret 200a370: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 200a374: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 200a378: 40 00 03 72 call 200b140 <_Workspace_Free> 200a37c: d0 06 61 4c ld [ %i1 + 0x14c ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 200a380: 40 00 03 70 call 200b140 <_Workspace_Free> 200a384: d0 06 61 50 ld [ %i1 + 0x150 ], %o0 200a388: 40 00 03 6e call 200b140 <_Workspace_Free> 200a38c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 _Workspace_Free( extensions_area ); 200a390: 40 00 03 6c call 200b140 <_Workspace_Free> 200a394: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 200a398: 40 00 03 6a call 200b140 <_Workspace_Free> 200a39c: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 200a3a0: 40 00 03 68 call 200b140 <_Workspace_Free> 200a3a4: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 200a3a8: 40 00 01 b4 call 200aa78 <_Thread_Stack_Free> 200a3ac: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 200a3b0: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 200a3b4: b0 0e 20 01 and %i0, 1, %i0 200a3b8: 81 c7 e0 08 ret 200a3bc: 81 e8 00 00 restore =============================================================================== 0200a8e0 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 200a8e0: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 200a8e4: 80 a6 20 00 cmp %i0, 0 200a8e8: 02 80 00 19 be 200a94c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 200a8ec: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 200a8f0: fa 06 20 34 ld [ %i0 + 0x34 ], %i5 200a8f4: 80 a7 60 01 cmp %i5, 1 200a8f8: 12 80 00 15 bne 200a94c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 200a8fc: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 200a900: 7f ff df 71 call 20026c4 200a904: 01 00 00 00 nop 200a908: b8 10 00 08 mov %o0, %i4 200a90c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 200a910: 03 00 00 ef sethi %hi(0x3bc00), %g1 200a914: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 200a918: 80 88 80 01 btst %g2, %g1 200a91c: 02 80 00 0a be 200a944 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 200a920: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 200a924: 92 10 00 19 mov %i1, %o1 200a928: 94 10 20 01 mov 1, %o2 200a92c: 40 00 0a c1 call 200d430 <_Thread_queue_Extract_priority_helper> 200a930: fa 26 20 30 st %i5, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 200a934: 90 10 00 18 mov %i0, %o0 200a938: 92 10 00 19 mov %i1, %o1 200a93c: 7f ff ff 50 call 200a67c <_Thread_queue_Enqueue_priority> 200a940: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 200a944: 7f ff df 64 call 20026d4 200a948: 90 10 00 1c mov %i4, %o0 200a94c: 81 c7 e0 08 ret 200a950: 81 e8 00 00 restore =============================================================================== 0200a954 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 200a954: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200a958: 90 10 00 18 mov %i0, %o0 200a95c: 7f ff fd f9 call 200a140 <_Thread_Get> 200a960: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200a964: c2 07 bf fc ld [ %fp + -4 ], %g1 200a968: 80 a0 60 00 cmp %g1, 0 200a96c: 12 80 00 09 bne 200a990 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 200a970: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 200a974: 40 00 0a e6 call 200d50c <_Thread_queue_Process_timeout> 200a978: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 200a97c: 03 00 80 71 sethi %hi(0x201c400), %g1 200a980: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level> 200a984: 84 00 bf ff add %g2, -1, %g2 200a988: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] return _Thread_Dispatch_disable_level; 200a98c: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1 200a990: 81 c7 e0 08 ret 200a994: 81 e8 00 00 restore =============================================================================== 02018c78 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 2018c78: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2018c7c: 27 00 80 ed sethi %hi(0x203b400), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2018c80: a4 07 bf e8 add %fp, -24, %l2 2018c84: aa 07 bf ec add %fp, -20, %l5 2018c88: b8 07 bf f4 add %fp, -12, %i4 2018c8c: b2 07 bf f8 add %fp, -8, %i1 2018c90: ea 27 bf e8 st %l5, [ %fp + -24 ] head->previous = NULL; 2018c94: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 2018c98: e4 27 bf f0 st %l2, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2018c9c: f2 27 bf f4 st %i1, [ %fp + -12 ] head->previous = NULL; 2018ca0: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2018ca4: f8 27 bf fc st %i4, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018ca8: b4 06 20 30 add %i0, 0x30, %i2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2018cac: 29 00 80 ed sethi %hi(0x203b400), %l4 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2018cb0: b6 06 20 68 add %i0, 0x68, %i3 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018cb4: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2018cb8: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2018cbc: e4 26 20 78 st %l2, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2018cc0: c2 04 e3 a8 ld [ %l3 + 0x3a8 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2018cc4: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018cc8: 90 10 00 1a mov %i2, %o0 2018ccc: 92 20 40 09 sub %g1, %o1, %o1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2018cd0: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018cd4: 40 00 11 35 call 201d1a8 <_Watchdog_Adjust_to_chain> 2018cd8: 94 10 00 1c mov %i4, %o2 2018cdc: d0 1d 21 f8 ldd [ %l4 + 0x1f8 ], %o0 2018ce0: 94 10 20 00 clr %o2 2018ce4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018ce8: 40 00 4b 82 call 202baf0 <__divdi3> 2018cec: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2018cf0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2018cf4: 80 a2 40 0a cmp %o1, %o2 2018cf8: 08 80 00 07 bleu 2018d14 <_Timer_server_Body+0x9c> 2018cfc: ba 10 00 09 mov %o1, %i5 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018d00: 92 22 40 0a sub %o1, %o2, %o1 2018d04: 90 10 00 1b mov %i3, %o0 2018d08: 40 00 11 28 call 201d1a8 <_Watchdog_Adjust_to_chain> 2018d0c: 94 10 00 1c mov %i4, %o2 2018d10: 30 80 00 06 b,a 2018d28 <_Timer_server_Body+0xb0> } else if ( snapshot < last_snapshot ) { 2018d14: 1a 80 00 05 bcc 2018d28 <_Timer_server_Body+0xb0> 2018d18: 90 10 00 1b mov %i3, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2018d1c: 92 10 20 01 mov 1, %o1 2018d20: 40 00 10 fa call 201d108 <_Watchdog_Adjust> 2018d24: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 2018d28: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2018d2c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2018d30: 40 00 02 70 call 20196f0 <_Chain_Get> 2018d34: 01 00 00 00 nop if ( timer == NULL ) { 2018d38: 92 92 20 00 orcc %o0, 0, %o1 2018d3c: 02 80 00 0c be 2018d6c <_Timer_server_Body+0xf4> 2018d40: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2018d44: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2018d48: 80 a0 60 01 cmp %g1, 1 2018d4c: 02 80 00 05 be 2018d60 <_Timer_server_Body+0xe8> 2018d50: 90 10 00 1a mov %i2, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2018d54: 80 a0 60 03 cmp %g1, 3 2018d58: 12 bf ff f5 bne 2018d2c <_Timer_server_Body+0xb4> <== NEVER TAKEN 2018d5c: 90 10 00 1b mov %i3, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2018d60: 40 00 11 44 call 201d270 <_Watchdog_Insert> 2018d64: 92 02 60 10 add %o1, 0x10, %o1 2018d68: 30 bf ff f1 b,a 2018d2c <_Timer_server_Body+0xb4> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2018d6c: 7f ff de a1 call 20107f0 2018d70: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2018d74: c2 07 bf e8 ld [ %fp + -24 ], %g1 2018d78: 80 a0 40 15 cmp %g1, %l5 2018d7c: 12 80 00 0a bne 2018da4 <_Timer_server_Body+0x12c> <== NEVER TAKEN 2018d80: 01 00 00 00 nop ts->insert_chain = NULL; 2018d84: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2018d88: 7f ff de 9e call 2010800 2018d8c: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2018d90: c2 07 bf f4 ld [ %fp + -12 ], %g1 2018d94: 80 a0 40 19 cmp %g1, %i1 2018d98: 12 80 00 06 bne 2018db0 <_Timer_server_Body+0x138> 2018d9c: 01 00 00 00 nop 2018da0: 30 80 00 18 b,a 2018e00 <_Timer_server_Body+0x188> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2018da4: 7f ff de 97 call 2010800 <== NOT EXECUTED 2018da8: 01 00 00 00 nop <== NOT EXECUTED 2018dac: 30 bf ff c5 b,a 2018cc0 <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2018db0: 7f ff de 90 call 20107f0 2018db4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018db8: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2018dbc: 80 a7 40 19 cmp %i5, %i1 2018dc0: 02 80 00 0d be 2018df4 <_Timer_server_Body+0x17c> 2018dc4: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 2018dc8: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 2018dcc: f8 20 60 04 st %i4, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2018dd0: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 2018dd4: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 2018dd8: 7f ff de 8a call 2010800 2018ddc: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2018de0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 2018de4: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 2018de8: 9f c0 40 00 call %g1 2018dec: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 2018df0: 30 bf ff f0 b,a 2018db0 <_Timer_server_Body+0x138> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2018df4: 7f ff de 83 call 2010800 2018df8: 01 00 00 00 nop 2018dfc: 30 bf ff b0 b,a 2018cbc <_Timer_server_Body+0x44> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2018e00: c0 2e 20 7c clrb [ %i0 + 0x7c ] 2018e04: 7f ff ff 19 call 2018a68 <_Thread_Dispatch_increment_disable_level> 2018e08: 01 00 00 00 nop /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2018e0c: d0 06 00 00 ld [ %i0 ], %o0 2018e10: 40 00 0f 9a call 201cc78 <_Thread_Set_state> 2018e14: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2018e18: 7f ff ff 1b call 2018a84 <_Timer_server_Reset_interval_system_watchdog> 2018e1c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2018e20: 7f ff ff 2d call 2018ad4 <_Timer_server_Reset_tod_system_watchdog> 2018e24: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2018e28: 40 00 0d 46 call 201c340 <_Thread_Enable_dispatch> 2018e2c: 01 00 00 00 nop ts->active = true; 2018e30: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018e34: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2018e38: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2018e3c: 40 00 11 65 call 201d3d0 <_Watchdog_Remove> 2018e40: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2018e44: 40 00 11 63 call 201d3d0 <_Watchdog_Remove> 2018e48: 90 10 00 10 mov %l0, %o0 2018e4c: 30 bf ff 9c b,a 2018cbc <_Timer_server_Body+0x44> =============================================================================== 02018b24 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2018b24: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2018b28: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2018b2c: 80 a0 60 00 cmp %g1, 0 2018b30: 12 80 00 4f bne 2018c6c <_Timer_server_Schedule_operation_method+0x148> 2018b34: ba 10 00 19 mov %i1, %i5 #if defined ( __THREAD_DO_NOT_INLINE_DISABLE_DISPATCH__ ) void _Thread_Disable_dispatch( void ); #else RTEMS_INLINE_ROUTINE void _Thread_Disable_dispatch( void ) { _Thread_Dispatch_increment_disable_level(); 2018b38: 7f ff ff cc call 2018a68 <_Thread_Dispatch_increment_disable_level> 2018b3c: 01 00 00 00 nop * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2018b40: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2018b44: 80 a0 60 01 cmp %g1, 1 2018b48: 12 80 00 1f bne 2018bc4 <_Timer_server_Schedule_operation_method+0xa0> 2018b4c: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2018b50: 7f ff df 28 call 20107f0 2018b54: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2018b58: 03 00 80 ed sethi %hi(0x203b400), %g1 2018b5c: c4 00 63 a8 ld [ %g1 + 0x3a8 ], %g2 ! 203b7a8 <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018b60: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2018b64: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2018b68: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2018b6c: 80 a0 40 03 cmp %g1, %g3 2018b70: 02 80 00 08 be 2018b90 <_Timer_server_Schedule_operation_method+0x6c> 2018b74: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2018b78: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 if (delta_interval > delta) { 2018b7c: 80 a7 00 04 cmp %i4, %g4 2018b80: 08 80 00 03 bleu 2018b8c <_Timer_server_Schedule_operation_method+0x68> 2018b84: 86 10 20 00 clr %g3 delta_interval -= delta; 2018b88: 86 27 00 04 sub %i4, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2018b8c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2018b90: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2018b94: 7f ff df 1b call 2010800 2018b98: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2018b9c: 90 06 20 30 add %i0, 0x30, %o0 2018ba0: 40 00 11 b4 call 201d270 <_Watchdog_Insert> 2018ba4: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018ba8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2018bac: 80 a0 60 00 cmp %g1, 0 2018bb0: 12 80 00 2d bne 2018c64 <_Timer_server_Schedule_operation_method+0x140> 2018bb4: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2018bb8: 7f ff ff b3 call 2018a84 <_Timer_server_Reset_interval_system_watchdog> 2018bbc: 90 10 00 18 mov %i0, %o0 2018bc0: 30 80 00 29 b,a 2018c64 <_Timer_server_Schedule_operation_method+0x140> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2018bc4: 12 80 00 28 bne 2018c64 <_Timer_server_Schedule_operation_method+0x140> 2018bc8: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2018bcc: 7f ff df 09 call 20107f0 2018bd0: 01 00 00 00 nop 2018bd4: b8 10 00 08 mov %o0, %i4 2018bd8: 03 00 80 ed sethi %hi(0x203b400), %g1 2018bdc: d0 18 61 f8 ldd [ %g1 + 0x1f8 ], %o0 ! 203b5f8 <_TOD> 2018be0: 94 10 20 00 clr %o2 2018be4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018be8: 40 00 4b c2 call 202baf0 <__divdi3> 2018bec: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018bf0: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2018bf4: c4 06 20 74 ld [ %i0 + 0x74 ], %g2 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2018bf8: 86 06 20 6c add %i0, 0x6c, %g3 if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2018bfc: 80 a0 40 03 cmp %g1, %g3 2018c00: 02 80 00 0d be 2018c34 <_Timer_server_Schedule_operation_method+0x110> 2018c04: 80 a2 40 02 cmp %o1, %g2 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2018c08: 08 80 00 08 bleu 2018c28 <_Timer_server_Schedule_operation_method+0x104> 2018c0c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2018c10: 88 22 40 02 sub %o1, %g2, %g4 if (delta_interval > delta) { 2018c14: 80 a0 c0 04 cmp %g3, %g4 2018c18: 08 80 00 06 bleu 2018c30 <_Timer_server_Schedule_operation_method+0x10c><== NEVER TAKEN 2018c1c: 84 10 20 00 clr %g2 delta_interval -= delta; 2018c20: 10 80 00 04 b 2018c30 <_Timer_server_Schedule_operation_method+0x10c> 2018c24: 84 20 c0 04 sub %g3, %g4, %g2 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2018c28: 84 00 c0 02 add %g3, %g2, %g2 delta_interval += delta; 2018c2c: 84 20 80 09 sub %g2, %o1, %g2 } first_watchdog->delta_interval = delta_interval; 2018c30: c4 20 60 10 st %g2, [ %g1 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2018c34: d2 26 20 74 st %o1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2018c38: 7f ff de f2 call 2010800 2018c3c: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2018c40: 90 06 20 68 add %i0, 0x68, %o0 2018c44: 40 00 11 8b call 201d270 <_Watchdog_Insert> 2018c48: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018c4c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2018c50: 80 a0 60 00 cmp %g1, 0 2018c54: 12 80 00 04 bne 2018c64 <_Timer_server_Schedule_operation_method+0x140> 2018c58: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2018c5c: 7f ff ff 9e call 2018ad4 <_Timer_server_Reset_tod_system_watchdog> 2018c60: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2018c64: 40 00 0d b7 call 201c340 <_Thread_Enable_dispatch> 2018c68: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2018c6c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2018c70: 40 00 02 94 call 20196c0 <_Chain_Append> 2018c74: 81 e8 00 00 restore =============================================================================== 0200c480 <_Timestamp64_Divide>: const Timestamp64_Control *_lhs, const Timestamp64_Control *_rhs, uint32_t *_ival_percentage, uint32_t *_fval_percentage ) { 200c480: 9d e3 bf a0 save %sp, -96, %sp Timestamp64_Control answer; if ( *_rhs == 0 ) { 200c484: d4 1e 40 00 ldd [ %i1 ], %o2 200c488: 80 92 80 0b orcc %o2, %o3, %g0 200c48c: 32 80 00 06 bne,a 200c4a4 <_Timestamp64_Divide+0x24> <== ALWAYS TAKEN 200c490: f8 1e 00 00 ldd [ %i0 ], %i4 *_ival_percentage = 0; 200c494: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED *_fval_percentage = 0; 200c498: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED return; 200c49c: 81 c7 e0 08 ret <== NOT EXECUTED 200c4a0: 81 e8 00 00 restore <== NOT EXECUTED * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200c4a4: 83 2f 20 02 sll %i4, 2, %g1 200c4a8: 89 37 60 1e srl %i5, 0x1e, %g4 200c4ac: 87 2f 60 02 sll %i5, 2, %g3 200c4b0: 84 11 00 01 or %g4, %g1, %g2 200c4b4: 83 30 e0 1b srl %g3, 0x1b, %g1 200c4b8: b1 28 a0 05 sll %g2, 5, %i0 200c4bc: b3 28 e0 05 sll %g3, 5, %i1 200c4c0: b0 10 40 18 or %g1, %i0, %i0 200c4c4: 92 a6 40 03 subcc %i1, %g3, %o1 200c4c8: 90 66 00 02 subx %i0, %g2, %o0 200c4cc: 92 82 40 1d addcc %o1, %i5, %o1 200c4d0: 83 32 60 1e srl %o1, 0x1e, %g1 200c4d4: 90 42 00 1c addx %o0, %i4, %o0 200c4d8: bb 2a 60 02 sll %o1, 2, %i5 200c4dc: b9 2a 20 02 sll %o0, 2, %i4 200c4e0: 92 82 40 1d addcc %o1, %i5, %o1 200c4e4: b8 10 40 1c or %g1, %i4, %i4 200c4e8: 83 32 60 1e srl %o1, 0x1e, %g1 200c4ec: 90 42 00 1c addx %o0, %i4, %o0 200c4f0: bb 2a 60 02 sll %o1, 2, %i5 200c4f4: b9 2a 20 02 sll %o0, 2, %i4 200c4f8: 92 82 40 1d addcc %o1, %i5, %o1 200c4fc: b8 10 40 1c or %g1, %i4, %i4 200c500: 87 32 60 1b srl %o1, 0x1b, %g3 200c504: 90 42 00 1c addx %o0, %i4, %o0 200c508: 83 2a 60 05 sll %o1, 5, %g1 200c50c: 85 2a 20 05 sll %o0, 5, %g2 200c510: 92 10 00 01 mov %g1, %o1 200c514: 40 00 36 e5 call 201a0a8 <__divdi3> 200c518: 90 10 c0 02 or %g3, %g2, %o0 *_ival_percentage = answer / 1000; 200c51c: 94 10 20 00 clr %o2 * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200c520: b8 10 00 08 mov %o0, %i4 200c524: ba 10 00 09 mov %o1, %i5 *_ival_percentage = answer / 1000; 200c528: 40 00 36 e0 call 201a0a8 <__divdi3> 200c52c: 96 10 23 e8 mov 0x3e8, %o3 *_fval_percentage = answer % 1000; 200c530: 90 10 00 1c mov %i4, %o0 * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; *_ival_percentage = answer / 1000; 200c534: d2 26 80 00 st %o1, [ %i2 ] *_fval_percentage = answer % 1000; 200c538: 94 10 20 00 clr %o2 200c53c: 92 10 00 1d mov %i5, %o1 200c540: 40 00 37 c5 call 201a454 <__moddi3> 200c544: 96 10 23 e8 mov 0x3e8, %o3 200c548: d2 26 c0 00 st %o1, [ %i3 ] 200c54c: 81 c7 e0 08 ret 200c550: 81 e8 00 00 restore =============================================================================== 0200ab34 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 200ab34: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 200ab38: 03 00 80 6e sethi %hi(0x201b800), %g1 200ab3c: 82 10 60 3c or %g1, 0x3c, %g1 ! 201b83c ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200ab40: 05 00 80 71 sethi %hi(0x201c400), %g2 initial_extensions = Configuration.User_extension_table; 200ab44: f4 00 60 48 ld [ %g1 + 0x48 ], %i2 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 200ab48: f8 00 60 44 ld [ %g1 + 0x44 ], %i4 200ab4c: 82 10 a3 88 or %g2, 0x388, %g1 200ab50: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 200ab54: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 200ab58: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200ab5c: c6 20 a3 88 st %g3, [ %g2 + 0x388 ] 200ab60: 05 00 80 71 sethi %hi(0x201c400), %g2 200ab64: 82 10 a1 b4 or %g2, 0x1b4, %g1 ! 201c5b4 <_User_extensions_Switches_list> 200ab68: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 200ab6c: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200ab70: c6 20 a1 b4 st %g3, [ %g2 + 0x1b4 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 200ab74: 80 a6 a0 00 cmp %i2, 0 200ab78: 02 80 00 1b be 200abe4 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 200ab7c: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 200ab80: 83 2f 20 02 sll %i4, 2, %g1 200ab84: b7 2f 20 04 sll %i4, 4, %i3 200ab88: b6 26 c0 01 sub %i3, %g1, %i3 200ab8c: b6 06 c0 1c add %i3, %i4, %i3 200ab90: b7 2e e0 02 sll %i3, 2, %i3 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 200ab94: 40 00 01 71 call 200b158 <_Workspace_Allocate_or_fatal_error> 200ab98: 90 10 00 1b mov %i3, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 200ab9c: 94 10 00 1b mov %i3, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 200aba0: ba 10 00 08 mov %o0, %i5 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 200aba4: 92 10 20 00 clr %o1 200aba8: 40 00 12 b3 call 200f674 200abac: b6 10 20 00 clr %i3 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200abb0: 10 80 00 0b b 200abdc <_User_extensions_Handler_initialization+0xa8> 200abb4: 80 a6 c0 1c cmp %i3, %i4 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 200abb8: 90 07 60 14 add %i5, 0x14, %o0 200abbc: 92 06 80 09 add %i2, %o1, %o1 200abc0: 40 00 12 70 call 200f580 200abc4: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 200abc8: 90 10 00 1d mov %i5, %o0 200abcc: 40 00 0a 74 call 200d59c <_User_extensions_Add_set> 200abd0: b6 06 e0 01 inc %i3 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 200abd4: ba 07 60 34 add %i5, 0x34, %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200abd8: 80 a6 c0 1c cmp %i3, %i4 200abdc: 12 bf ff f7 bne 200abb8 <_User_extensions_Handler_initialization+0x84> 200abe0: 93 2e e0 05 sll %i3, 5, %o1 200abe4: 81 c7 e0 08 ret 200abe8: 81 e8 00 00 restore =============================================================================== 0200c85c <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200c85c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200c860: 7f ff db 2b call 200350c 200c864: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200c868: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200c86c: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200c870: 80 a0 40 1c cmp %g1, %i4 200c874: 02 80 00 20 be 200c8f4 <_Watchdog_Adjust+0x98> 200c878: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200c87c: 02 80 00 1b be 200c8e8 <_Watchdog_Adjust+0x8c> 200c880: b6 10 20 01 mov 1, %i3 200c884: 80 a6 60 01 cmp %i1, 1 200c888: 12 80 00 1b bne 200c8f4 <_Watchdog_Adjust+0x98> <== NEVER TAKEN 200c88c: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200c890: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200c894: 10 80 00 07 b 200c8b0 <_Watchdog_Adjust+0x54> 200c898: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200c89c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200c8a0: 80 a6 80 02 cmp %i2, %g2 200c8a4: 3a 80 00 05 bcc,a 200c8b8 <_Watchdog_Adjust+0x5c> 200c8a8: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200c8ac: b4 20 80 1a sub %g2, %i2, %i2 break; 200c8b0: 10 80 00 11 b 200c8f4 <_Watchdog_Adjust+0x98> 200c8b4: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200c8b8: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200c8bc: 7f ff db 18 call 200351c 200c8c0: 01 00 00 00 nop _Watchdog_Tickle( header ); 200c8c4: 40 00 00 90 call 200cb04 <_Watchdog_Tickle> 200c8c8: 90 10 00 18 mov %i0, %o0 _ISR_Disable( level ); 200c8cc: 7f ff db 10 call 200350c 200c8d0: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200c8d4: c2 06 00 00 ld [ %i0 ], %g1 200c8d8: 80 a0 40 1c cmp %g1, %i4 200c8dc: 12 80 00 04 bne 200c8ec <_Watchdog_Adjust+0x90> 200c8e0: 80 a6 a0 00 cmp %i2, 0 200c8e4: 30 80 00 04 b,a 200c8f4 <_Watchdog_Adjust+0x98> switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200c8e8: 80 a6 a0 00 cmp %i2, 0 200c8ec: 32 bf ff ec bne,a 200c89c <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200c8f0: c2 06 00 00 ld [ %i0 ], %g1 } break; } } _ISR_Enable( level ); 200c8f4: 7f ff db 0a call 200351c 200c8f8: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200af5c <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200af5c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200af60: 7f ff dd d9 call 20026c4 200af64: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 200af68: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 200af6c: 80 a6 20 01 cmp %i0, 1 200af70: 22 80 00 1e be,a 200afe8 <_Watchdog_Remove+0x8c> 200af74: c0 27 60 08 clr [ %i5 + 8 ] 200af78: 0a 80 00 1d bcs 200afec <_Watchdog_Remove+0x90> 200af7c: 03 00 80 71 sethi %hi(0x201c400), %g1 200af80: 80 a6 20 03 cmp %i0, 3 200af84: 18 80 00 1a bgu 200afec <_Watchdog_Remove+0x90> <== NEVER TAKEN 200af88: 01 00 00 00 nop RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next( Watchdog_Control *the_watchdog ) { return ( (Watchdog_Control *) the_watchdog->Node.next ); 200af8c: 10 80 00 02 b 200af94 <_Watchdog_Remove+0x38> 200af90: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200af94: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200af98: c4 00 40 00 ld [ %g1 ], %g2 200af9c: 80 a0 a0 00 cmp %g2, 0 200afa0: 02 80 00 07 be 200afbc <_Watchdog_Remove+0x60> 200afa4: 05 00 80 71 sethi %hi(0x201c400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200afa8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200afac: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 200afb0: 84 00 c0 02 add %g3, %g2, %g2 200afb4: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200afb8: 05 00 80 71 sethi %hi(0x201c400), %g2 200afbc: c4 00 a2 a4 ld [ %g2 + 0x2a4 ], %g2 ! 201c6a4 <_Watchdog_Sync_count> 200afc0: 80 a0 a0 00 cmp %g2, 0 200afc4: 22 80 00 07 be,a 200afe0 <_Watchdog_Remove+0x84> 200afc8: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200afcc: 05 00 80 71 sethi %hi(0x201c400), %g2 200afd0: c6 00 a3 d8 ld [ %g2 + 0x3d8 ], %g3 ! 201c7d8 <_Per_CPU_Information+0x8> 200afd4: 05 00 80 71 sethi %hi(0x201c400), %g2 200afd8: c6 20 a2 44 st %g3, [ %g2 + 0x244 ] ! 201c644 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200afdc: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 200afe0: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200afe4: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200afe8: 03 00 80 71 sethi %hi(0x201c400), %g1 200afec: c2 00 62 a8 ld [ %g1 + 0x2a8 ], %g1 ! 201c6a8 <_Watchdog_Ticks_since_boot> 200aff0: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 200aff4: 7f ff dd b8 call 20026d4 200aff8: 01 00 00 00 nop return( previous_state ); } 200affc: 81 c7 e0 08 ret 200b000: 81 e8 00 00 restore =============================================================================== 0200c1cc <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200c1cc: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200c1d0: 7f ff db ac call 2003080 200c1d4: b8 10 00 18 mov %i0, %i4 200c1d8: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200c1dc: 11 00 80 71 sethi %hi(0x201c400), %o0 200c1e0: 94 10 00 19 mov %i1, %o2 200c1e4: 90 12 21 50 or %o0, 0x150, %o0 200c1e8: 7f ff e3 90 call 2005028 200c1ec: 92 10 00 1c mov %i4, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200c1f0: fa 06 40 00 ld [ %i1 ], %i5 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200c1f4: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200c1f8: 80 a7 40 19 cmp %i5, %i1 200c1fc: 12 80 00 04 bne 200c20c <_Watchdog_Report_chain+0x40> 200c200: 92 10 00 1d mov %i5, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200c204: 10 80 00 0d b 200c238 <_Watchdog_Report_chain+0x6c> 200c208: 11 00 80 71 sethi %hi(0x201c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200c20c: 40 00 00 0f call 200c248 <_Watchdog_Report> 200c210: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200c214: fa 07 40 00 ld [ %i5 ], %i5 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200c218: 80 a7 40 19 cmp %i5, %i1 200c21c: 12 bf ff fc bne 200c20c <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200c220: 92 10 00 1d mov %i5, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200c224: 11 00 80 71 sethi %hi(0x201c400), %o0 200c228: 92 10 00 1c mov %i4, %o1 200c22c: 7f ff e3 7f call 2005028 200c230: 90 12 21 68 or %o0, 0x168, %o0 200c234: 30 80 00 03 b,a 200c240 <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200c238: 7f ff e3 7c call 2005028 200c23c: 90 12 21 78 or %o0, 0x178, %o0 } _ISR_Enable( level ); 200c240: 7f ff db 94 call 2003090 200c244: 81 e8 00 00 restore =============================================================================== 0200af1c <_Workspace_String_duplicate>: char *_Workspace_String_duplicate( const char *string, size_t len ) { 200af1c: 9d e3 bf a0 save %sp, -96, %sp char *dup = _Workspace_Allocate(len + 1); 200af20: 7f ff ff e3 call 200aeac <_Workspace_Allocate> 200af24: 90 06 60 01 add %i1, 1, %o0 if (dup != NULL) { 200af28: ba 92 20 00 orcc %o0, 0, %i5 200af2c: 02 80 00 05 be 200af40 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN 200af30: 92 10 00 18 mov %i0, %o1 dup [len] = '\0'; 200af34: c0 2f 40 19 clrb [ %i5 + %i1 ] memcpy(dup, string, len); 200af38: 40 00 11 89 call 200f55c 200af3c: 94 10 00 19 mov %i1, %o2 } return dup; } 200af40: 81 c7 e0 08 ret 200af44: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 0200850c : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 200850c: 9d e3 bf 98 save %sp, -104, %sp 2008510: 30 80 00 08 b,a 2008530 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2008514: 92 10 20 00 clr %o1 2008518: 94 10 00 1a mov %i2, %o2 200851c: 7f ff fd 03 call 2007928 2008520: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2008524: 80 a2 20 00 cmp %o0, 0 2008528: 32 80 00 09 bne,a 200854c <== ALWAYS TAKEN 200852c: fa 26 c0 00 st %i5, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2008530: 40 00 01 6c call 2008ae0 <_Chain_Get> 2008534: 90 10 00 18 mov %i0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2008538: ba 92 20 00 orcc %o0, 0, %i5 200853c: 02 bf ff f6 be 2008514 2008540: 90 10 00 19 mov %i1, %o0 2008544: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2008548: fa 26 c0 00 st %i5, [ %i3 ] return sc; } 200854c: 81 c7 e0 08 ret 2008550: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200a558 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 200a558: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 200a55c: ba 10 20 01 mov 1, %i5 200a560: 80 a6 20 00 cmp %i0, 0 200a564: 02 80 00 0c be 200a594 <== NEVER TAKEN 200a568: 35 00 80 7b sethi %hi(0x201ec00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 200a56c: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200a570: 84 16 a3 e4 or %i2, 0x3e4, %g2 200a574: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200a578: 80 a0 60 00 cmp %g1, 0 200a57c: 32 80 00 08 bne,a 200a59c 200a580: f6 00 60 04 ld [ %g1 + 4 ], %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200a584: ba 07 60 01 inc %i5 200a588: 80 a7 60 04 cmp %i5, 4 200a58c: 12 bf ff f9 bne 200a570 200a590: 83 2f 60 02 sll %i5, 2, %g1 200a594: 81 c7 e0 08 ret 200a598: 81 e8 00 00 restore if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) 200a59c: 80 a6 e0 00 cmp %i3, 0 200a5a0: 02 bf ff f9 be 200a584 200a5a4: b8 10 20 01 mov 1, %i4 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a5a8: 10 80 00 0a b 200a5d0 200a5ac: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 the_thread = (Thread_Control *)information->local_table[ i ]; 200a5b0: 83 2f 20 02 sll %i4, 2, %g1 200a5b4: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 200a5b8: 80 a2 20 00 cmp %o0, 0 200a5bc: 02 80 00 04 be 200a5cc 200a5c0: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 200a5c4: 9f c6 00 00 call %i0 200a5c8: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a5cc: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 200a5d0: 80 a7 00 01 cmp %i4, %g1 200a5d4: 28 bf ff f7 bleu,a 200a5b0 200a5d8: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200a5dc: 10 bf ff eb b 200a588 200a5e0: ba 07 60 01 inc %i5 =============================================================================== 020162b0 : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 20162b0: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 20162b4: 80 a6 20 00 cmp %i0, 0 20162b8: 02 80 00 39 be 201639c 20162bc: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 20162c0: 80 a6 60 00 cmp %i1, 0 20162c4: 02 80 00 36 be 201639c 20162c8: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 20162cc: 80 a7 60 00 cmp %i5, 0 20162d0: 02 80 00 33 be 201639c <== NEVER TAKEN 20162d4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20162d8: 02 80 00 31 be 201639c 20162dc: 82 10 20 08 mov 8, %g1 20162e0: 80 a6 a0 00 cmp %i2, 0 20162e4: 02 80 00 2e be 201639c 20162e8: 80 a6 80 1b cmp %i2, %i3 20162ec: 0a 80 00 2c bcs 201639c 20162f0: 80 8e e0 07 btst 7, %i3 20162f4: 12 80 00 2a bne 201639c 20162f8: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20162fc: 12 80 00 28 bne 201639c 2016300: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2016304: 03 00 80 ed sethi %hi(0x203b400), %g1 2016308: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 203b6b0 <_Thread_Dispatch_disable_level> 201630c: 84 00 a0 01 inc %g2 2016310: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ] return _Thread_Dispatch_disable_level; 2016314: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2016318: 23 00 80 ed sethi %hi(0x203b400), %l1 201631c: 40 00 12 ee call 201aed4 <_Objects_Allocate> 2016320: 90 14 60 a4 or %l1, 0xa4, %o0 ! 203b4a4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2016324: a0 92 20 00 orcc %o0, 0, %l0 2016328: 32 80 00 06 bne,a 2016340 201632c: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2016330: 40 00 18 04 call 201c340 <_Thread_Enable_dispatch> 2016334: 01 00 00 00 nop return RTEMS_TOO_MANY; 2016338: 10 80 00 19 b 201639c 201633c: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2016340: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2016344: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2016348: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 201634c: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2016350: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2016354: 40 00 54 5d call 202b4c8 <.udiv> 2016358: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 201635c: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2016360: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2016364: 96 10 00 1b mov %i3, %o3 2016368: b8 04 20 24 add %l0, 0x24, %i4 201636c: 40 00 0c f0 call 201972c <_Chain_Initialize> 2016370: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2016374: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2016378: a2 14 60 a4 or %l1, 0xa4, %l1 201637c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2016380: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2016384: 85 28 a0 02 sll %g2, 2, %g2 2016388: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 201638c: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2016390: 40 00 17 ec call 201c340 <_Thread_Enable_dispatch> 2016394: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2016398: 82 10 20 00 clr %g1 } 201639c: 81 c7 e0 08 ret 20163a0: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 020164d0 : rtems_status_code rtems_partition_return_buffer( rtems_id id, void *buffer ) { 20164d0: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get ( Objects_Id id, Objects_Locations *location ) { return (Partition_Control *) 20164d4: 11 00 80 ed sethi %hi(0x203b400), %o0 20164d8: 92 10 00 18 mov %i0, %o1 20164dc: 90 12 20 a4 or %o0, 0xa4, %o0 20164e0: 40 00 13 cd call 201b414 <_Objects_Get> 20164e4: 94 07 bf fc add %fp, -4, %o2 register Partition_Control *the_partition; Objects_Locations location; the_partition = _Partition_Get( id, &location ); switch ( location ) { 20164e8: c2 07 bf fc ld [ %fp + -4 ], %g1 20164ec: 80 a0 60 00 cmp %g1, 0 20164f0: 12 80 00 21 bne 2016574 20164f4: ba 10 00 08 mov %o0, %i5 ) { void *starting; void *ending; starting = the_partition->starting_address; 20164f8: d0 02 20 10 ld [ %o0 + 0x10 ], %o0 20164fc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2016500: 82 02 00 01 add %o0, %g1, %g1 ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 2016504: 80 a6 40 01 cmp %i1, %g1 2016508: 18 80 00 0b bgu 2016534 <== NEVER TAKEN 201650c: 82 10 20 00 clr %g1 2016510: 80 a6 40 08 cmp %i1, %o0 2016514: 0a 80 00 09 bcs 2016538 2016518: 80 a0 60 00 cmp %g1, 0 offset = (uint32_t) _Addresses_Subtract( the_buffer, the_partition->starting_address ); return ((offset % the_partition->buffer_size) == 0); 201651c: d2 07 60 18 ld [ %i5 + 0x18 ], %o1 2016520: 40 00 54 96 call 202b778 <.urem> 2016524: 90 26 40 08 sub %i1, %o0, %o0 starting = the_partition->starting_address; ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 2016528: 80 a0 00 08 cmp %g0, %o0 201652c: 10 80 00 02 b 2016534 2016530: 82 60 3f ff subx %g0, -1, %g1 case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { 2016534: 80 a0 60 00 cmp %g1, 0 2016538: 02 80 00 0b be 2016564 201653c: 90 07 60 24 add %i5, 0x24, %o0 RTEMS_INLINE_ROUTINE void _Partition_Free_buffer ( Partition_Control *the_partition, Chain_Node *the_buffer ) { _Chain_Append( &the_partition->Memory, the_buffer ); 2016540: 40 00 0c 60 call 20196c0 <_Chain_Append> 2016544: 92 10 00 19 mov %i1, %o1 _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 2016548: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 201654c: b0 10 20 00 clr %i0 switch ( location ) { case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 2016550: 82 00 7f ff add %g1, -1, %g1 _Thread_Enable_dispatch(); 2016554: 40 00 17 7b call 201c340 <_Thread_Enable_dispatch> 2016558: c2 27 60 20 st %g1, [ %i5 + 0x20 ] 201655c: 81 c7 e0 08 ret 2016560: 81 e8 00 00 restore return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 2016564: 40 00 17 77 call 201c340 <_Thread_Enable_dispatch> 2016568: b0 10 20 09 mov 9, %i0 201656c: 81 c7 e0 08 ret 2016570: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016574: 81 c7 e0 08 ret 2016578: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 0203e4d8 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 203e4d8: 9d e3 bf 98 save %sp, -104, %sp 203e4dc: 11 00 81 b9 sethi %hi(0x206e400), %o0 203e4e0: 92 10 00 18 mov %i0, %o1 203e4e4: 90 12 21 e0 or %o0, 0x1e0, %o0 203e4e8: 7f ff 43 3d call 200f1dc <_Objects_Get> 203e4ec: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 203e4f0: c2 07 bf fc ld [ %fp + -4 ], %g1 203e4f4: 80 a0 60 00 cmp %g1, 0 203e4f8: 12 80 00 6a bne 203e6a0 203e4fc: ba 10 00 08 mov %o0, %i5 203e500: 37 00 81 b8 sethi %hi(0x206e000), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 203e504: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 203e508: b6 16 e3 10 or %i3, 0x310, %i3 203e50c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1 203e510: 80 a0 80 01 cmp %g2, %g1 203e514: 02 80 00 06 be 203e52c 203e518: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 203e51c: 7f ff 46 dd call 2010090 <_Thread_Enable_dispatch> 203e520: b0 10 20 17 mov 0x17, %i0 203e524: 81 c7 e0 08 ret 203e528: 81 e8 00 00 restore return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 203e52c: 12 80 00 0d bne 203e560 203e530: 01 00 00 00 nop switch ( the_period->state ) { 203e534: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 203e538: 80 a0 60 04 cmp %g1, 4 203e53c: 18 80 00 05 bgu 203e550 <== NEVER TAKEN 203e540: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 203e544: 05 00 81 a0 sethi %hi(0x2068000), %g2 203e548: 84 10 a0 a0 or %g2, 0xa0, %g2 ! 20680a0 203e54c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 203e550: 7f ff 46 d0 call 2010090 <_Thread_Enable_dispatch> 203e554: 01 00 00 00 nop 203e558: 81 c7 e0 08 ret 203e55c: 81 e8 00 00 restore return( return_value ); } _ISR_Disable( level ); 203e560: 7f ff 16 b4 call 2004030 203e564: 01 00 00 00 nop 203e568: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 203e56c: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 203e570: 80 a7 20 00 cmp %i4, 0 203e574: 12 80 00 15 bne 203e5c8 203e578: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 203e57c: 7f ff 16 b1 call 2004040 203e580: 01 00 00 00 nop the_period->next_length = length; /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 203e584: 90 10 00 1d mov %i5, %o0 203e588: 7f ff ff ba call 203e470 <_Rate_monotonic_Initiate_statistics> 203e58c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] the_period->state = RATE_MONOTONIC_ACTIVE; 203e590: 82 10 20 02 mov 2, %g1 203e594: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 203e598: 03 00 80 f9 sethi %hi(0x203e400), %g1 203e59c: 82 10 62 ac or %g1, 0x2ac, %g1 ! 203e6ac <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 203e5a0: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 203e5a4: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 203e5a8: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 203e5ac: c0 27 60 34 clr [ %i5 + 0x34 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 203e5b0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203e5b4: 11 00 81 b8 sethi %hi(0x206e000), %o0 203e5b8: 92 07 60 10 add %i5, 0x10, %o1 203e5bc: 7f ff 49 f1 call 2010d80 <_Watchdog_Insert> 203e5c0: 90 12 21 98 or %o0, 0x198, %o0 203e5c4: 30 80 00 1b b,a 203e630 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 203e5c8: 12 80 00 1e bne 203e640 203e5cc: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 203e5d0: 7f ff ff 5f call 203e34c <_Rate_monotonic_Update_statistics> 203e5d4: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 203e5d8: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 203e5dc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 203e5e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 203e5e4: 7f ff 16 97 call 2004040 203e5e8: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 203e5ec: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 203e5f0: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 203e5f4: 13 00 00 10 sethi %hi(0x4000), %o1 203e5f8: 7f ff 48 d1 call 201093c <_Thread_Set_state> 203e5fc: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 203e600: 7f ff 16 8c call 2004030 203e604: 01 00 00 00 nop local_state = the_period->state; 203e608: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 203e60c: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 203e610: 7f ff 16 8c call 2004040 203e614: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 203e618: 80 a6 a0 03 cmp %i2, 3 203e61c: 12 80 00 05 bne 203e630 203e620: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 203e624: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 203e628: 7f ff 45 ba call 200fd10 <_Thread_Clear_state> 203e62c: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 203e630: 7f ff 46 98 call 2010090 <_Thread_Enable_dispatch> 203e634: b0 10 20 00 clr %i0 203e638: 81 c7 e0 08 ret 203e63c: 81 e8 00 00 restore return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 203e640: 12 bf ff b9 bne 203e524 <== NEVER TAKEN 203e644: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 203e648: 7f ff ff 41 call 203e34c <_Rate_monotonic_Update_statistics> 203e64c: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 203e650: 7f ff 16 7c call 2004040 203e654: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 203e658: 82 10 20 02 mov 2, %g1 203e65c: 92 07 60 10 add %i5, 0x10, %o1 203e660: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 203e664: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 203e668: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203e66c: 11 00 81 b8 sethi %hi(0x206e000), %o0 203e670: 7f ff 49 c4 call 2010d80 <_Watchdog_Insert> 203e674: 90 12 21 98 or %o0, 0x198, %o0 ! 206e198 <_Watchdog_Ticks_chain> 203e678: d0 07 60 40 ld [ %i5 + 0x40 ], %o0 203e67c: d2 07 60 3c ld [ %i5 + 0x3c ], %o1 203e680: 03 00 81 a7 sethi %hi(0x2069c00), %g1 203e684: c2 00 62 2c ld [ %g1 + 0x22c ], %g1 ! 2069e2c <_Scheduler+0x34> 203e688: 9f c0 40 00 call %g1 203e68c: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Scheduler_Release_job(the_period->owner, the_period->next_length); _Thread_Enable_dispatch(); 203e690: 7f ff 46 80 call 2010090 <_Thread_Enable_dispatch> 203e694: 01 00 00 00 nop 203e698: 81 c7 e0 08 ret 203e69c: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 203e6a0: b0 10 20 04 mov 4, %i0 } 203e6a4: 81 c7 e0 08 ret 203e6a8: 81 e8 00 00 restore =============================================================================== 0202a04c : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 202a04c: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 202a050: 80 a6 60 00 cmp %i1, 0 202a054: 02 80 00 75 be 202a228 <== NEVER TAKEN 202a058: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 202a05c: 13 00 81 8c sethi %hi(0x2063000), %o1 202a060: 9f c6 40 00 call %i1 202a064: 92 12 61 28 or %o1, 0x128, %o1 ! 2063128 <_TOD_Days_per_month+0x68> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 202a068: 90 10 00 18 mov %i0, %o0 202a06c: 13 00 81 8c sethi %hi(0x2063000), %o1 202a070: 9f c6 40 00 call %i1 202a074: 92 12 61 48 or %o1, 0x148, %o1 ! 2063148 <_TOD_Days_per_month+0x88> (*print)( context, "--- Wall times are in seconds ---\n" ); 202a078: 90 10 00 18 mov %i0, %o0 202a07c: 13 00 81 8c sethi %hi(0x2063000), %o1 202a080: 9f c6 40 00 call %i1 202a084: 92 12 61 70 or %o1, 0x170, %o1 ! 2063170 <_TOD_Days_per_month+0xb0> Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 202a088: 90 10 00 18 mov %i0, %o0 202a08c: 13 00 81 8c sethi %hi(0x2063000), %o1 202a090: 9f c6 40 00 call %i1 202a094: 92 12 61 98 or %o1, 0x198, %o1 ! 2063198 <_TOD_Days_per_month+0xd8> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 202a098: 90 10 00 18 mov %i0, %o0 202a09c: 13 00 81 8c sethi %hi(0x2063000), %o1 202a0a0: 9f c6 40 00 call %i1 202a0a4: 92 12 61 e8 or %o1, 0x1e8, %o1 ! 20631e8 <_TOD_Days_per_month+0x128> /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202a0a8: 03 00 81 b9 sethi %hi(0x206e400), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 202a0ac: 39 00 81 8c sethi %hi(0x2063000), %i4 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 202a0b0: 37 00 81 8c sethi %hi(0x2063000), %i3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 202a0b4: 35 00 81 8c sethi %hi(0x2063000), %i2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 202a0b8: 21 00 81 91 sethi %hi(0x2064400), %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202a0bc: fa 00 61 e8 ld [ %g1 + 0x1e8 ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 202a0c0: b8 17 22 38 or %i4, 0x238, %i4 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 202a0c4: b6 16 e2 50 or %i3, 0x250, %i3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 202a0c8: b4 16 a2 70 or %i2, 0x270, %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202a0cc: 10 80 00 52 b 202a214 202a0d0: a0 14 23 08 or %l0, 0x308, %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 202a0d4: 40 00 4f c2 call 203dfdc 202a0d8: 92 07 bf c8 add %fp, -56, %o1 if ( status != RTEMS_SUCCESSFUL ) 202a0dc: 80 a2 20 00 cmp %o0, 0 202a0e0: 32 80 00 4d bne,a 202a214 202a0e4: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 202a0e8: 92 07 bf b0 add %fp, -80, %o1 202a0ec: 40 00 50 2d call 203e1a0 202a0f0: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 202a0f4: d0 07 bf b0 ld [ %fp + -80 ], %o0 202a0f8: 92 10 20 05 mov 5, %o1 202a0fc: 7f ff 8c 33 call 200d1c8 202a100: 94 07 bf a0 add %fp, -96, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 202a104: d8 1f bf c8 ldd [ %fp + -56 ], %o4 202a108: 92 10 00 1c mov %i4, %o1 202a10c: 90 10 00 18 mov %i0, %o0 202a110: 94 10 00 1d mov %i5, %o2 202a114: 9f c6 40 00 call %i1 202a118: 96 07 bf a0 add %fp, -96, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 202a11c: d2 07 bf c8 ld [ %fp + -56 ], %o1 202a120: 80 a2 60 00 cmp %o1, 0 202a124: 12 80 00 07 bne 202a140 202a128: 94 07 bf a8 add %fp, -88, %o2 (*print)( context, "\n" ); 202a12c: 90 10 00 18 mov %i0, %o0 202a130: 9f c6 40 00 call %i1 202a134: 92 10 00 10 mov %l0, %o1 continue; 202a138: 10 80 00 37 b 202a214 202a13c: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 202a140: 40 00 05 08 call 202b560 <_Timespec_Divide_by_integer> 202a144: 90 07 bf e0 add %fp, -32, %o0 (*print)( context, 202a148: d0 07 bf d4 ld [ %fp + -44 ], %o0 202a14c: 40 00 c1 89 call 205a770 <.div> 202a150: 92 10 23 e8 mov 0x3e8, %o1 202a154: a6 10 00 08 mov %o0, %l3 202a158: d0 07 bf dc ld [ %fp + -36 ], %o0 202a15c: 40 00 c1 85 call 205a770 <.div> 202a160: 92 10 23 e8 mov 0x3e8, %o1 202a164: c2 07 bf a8 ld [ %fp + -88 ], %g1 202a168: a2 10 00 08 mov %o0, %l1 202a16c: d0 07 bf ac ld [ %fp + -84 ], %o0 202a170: e8 07 bf d0 ld [ %fp + -48 ], %l4 202a174: e4 07 bf d8 ld [ %fp + -40 ], %l2 202a178: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 202a17c: 40 00 c1 7d call 205a770 <.div> 202a180: 92 10 23 e8 mov 0x3e8, %o1 202a184: 96 10 00 13 mov %l3, %o3 202a188: 98 10 00 12 mov %l2, %o4 202a18c: 9a 10 00 11 mov %l1, %o5 202a190: 94 10 00 14 mov %l4, %o2 202a194: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 202a198: 92 10 00 1b mov %i3, %o1 202a19c: 9f c6 40 00 call %i1 202a1a0: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 202a1a4: d2 07 bf c8 ld [ %fp + -56 ], %o1 202a1a8: 94 07 bf a8 add %fp, -88, %o2 202a1ac: 40 00 04 ed call 202b560 <_Timespec_Divide_by_integer> 202a1b0: 90 07 bf f8 add %fp, -8, %o0 (*print)( context, 202a1b4: d0 07 bf ec ld [ %fp + -20 ], %o0 202a1b8: 40 00 c1 6e call 205a770 <.div> 202a1bc: 92 10 23 e8 mov 0x3e8, %o1 202a1c0: a6 10 00 08 mov %o0, %l3 202a1c4: d0 07 bf f4 ld [ %fp + -12 ], %o0 202a1c8: 40 00 c1 6a call 205a770 <.div> 202a1cc: 92 10 23 e8 mov 0x3e8, %o1 202a1d0: c2 07 bf a8 ld [ %fp + -88 ], %g1 202a1d4: a2 10 00 08 mov %o0, %l1 202a1d8: d0 07 bf ac ld [ %fp + -84 ], %o0 202a1dc: e8 07 bf e8 ld [ %fp + -24 ], %l4 202a1e0: e4 07 bf f0 ld [ %fp + -16 ], %l2 202a1e4: 92 10 23 e8 mov 0x3e8, %o1 202a1e8: 40 00 c1 62 call 205a770 <.div> 202a1ec: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 202a1f0: 92 10 00 1a mov %i2, %o1 202a1f4: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 202a1f8: 94 10 00 14 mov %l4, %o2 202a1fc: 90 10 00 18 mov %i0, %o0 202a200: 96 10 00 13 mov %l3, %o3 202a204: 98 10 00 12 mov %l2, %o4 202a208: 9f c6 40 00 call %i1 202a20c: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 202a210: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 202a214: 03 00 81 b9 sethi %hi(0x206e400), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202a218: c2 00 61 ec ld [ %g1 + 0x1ec ], %g1 ! 206e5ec <_Rate_monotonic_Information+0xc> 202a21c: 80 a7 40 01 cmp %i5, %g1 202a220: 08 bf ff ad bleu 202a0d4 202a224: 90 10 00 1d mov %i5, %o0 202a228: 81 c7 e0 08 ret 202a22c: 81 e8 00 00 restore =============================================================================== 020089f4 : return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { 20089f4: 9d e3 bf a0 save %sp, -96, %sp void *ptr = NULL; rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; 20089f8: fa 06 20 30 ld [ %i0 + 0x30 ], %i5 #include static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; 20089fc: 90 10 00 19 mov %i1, %o0 2008a00: 92 10 00 1d mov %i5, %o1 2008a04: 40 00 41 a9 call 20190a8 <.urem> 2008a08: b6 10 00 19 mov %i1, %i3 if (excess > 0) { 2008a0c: 80 a2 20 00 cmp %o0, 0 2008a10: 02 80 00 05 be 2008a24 <== ALWAYS TAKEN 2008a14: 80 a6 c0 19 cmp %i3, %i1 value += alignment - excess; 2008a18: b6 06 40 1d add %i1, %i5, %i3 <== NOT EXECUTED 2008a1c: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { 2008a20: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED 2008a24: 0a 80 00 04 bcs 2008a34 <== NEVER TAKEN 2008a28: 80 a6 60 00 cmp %i1, 0 2008a2c: 32 80 00 04 bne,a 2008a3c 2008a30: c2 06 00 00 ld [ %i0 ], %g1 return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { void *ptr = NULL; 2008a34: 81 c7 e0 08 ret 2008a38: 91 e8 20 00 restore %g0, 0, %o0 rtems_chain_control *free_chain, size_t size ) { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); 2008a3c: 84 06 20 04 add %i0, 4, %g2 rtems_rbheap_chunk *big_enough = NULL; 2008a40: 10 80 00 06 b 2008a58 2008a44: ba 10 20 00 clr %i5 while (current != tail && big_enough == NULL) { rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current; if (free_chunk->size >= size) { 2008a48: 80 a0 c0 1b cmp %g3, %i3 2008a4c: ba 40 3f ff addx %g0, -1, %i5 2008a50: ba 08 40 1d and %g1, %i5, %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Next( Chain_Node *the_node ) { return the_node->next; 2008a54: c2 00 40 00 ld [ %g1 ], %g1 { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); rtems_rbheap_chunk *big_enough = NULL; while (current != tail && big_enough == NULL) { 2008a58: 80 a7 60 00 cmp %i5, 0 2008a5c: 12 80 00 04 bne 2008a6c 2008a60: 80 a0 40 02 cmp %g1, %g2 2008a64: 32 bf ff f9 bne,a 2008a48 2008a68: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size); if (free_chunk != NULL) { 2008a6c: 80 a7 60 00 cmp %i5, 0 2008a70: 02 bf ff f1 be 2008a34 2008a74: 01 00 00 00 nop uintptr_t free_size = free_chunk->size; 2008a78: f4 07 60 1c ld [ %i5 + 0x1c ], %i2 if (free_size > aligned_size) { 2008a7c: 80 a6 80 1b cmp %i2, %i3 2008a80: 28 80 00 14 bleu,a 2008ad0 2008a84: c4 07 40 00 ld [ %i5 ], %g2 rtems_rbheap_chunk *new_chunk = get_chunk(control); 2008a88: 7f ff ff 80 call 2008888 2008a8c: 90 10 00 18 mov %i0, %o0 if (new_chunk != NULL) { 2008a90: b8 92 20 00 orcc %o0, 0, %i4 2008a94: 02 bf ff e8 be 2008a34 <== NEVER TAKEN 2008a98: b4 26 80 1b sub %i2, %i3, %i2 uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 2008a9c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 rtems_rbheap_chunk *new_chunk = get_chunk(control); if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; 2008aa0: f4 27 60 1c st %i2, [ %i5 + 0x1c ] new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; 2008aa4: f6 27 20 1c st %i3, [ %i4 + 0x1c ] if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 2008aa8: b4 06 80 01 add %i2, %g1, %i2 */ RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain( Chain_Node *node ) { node->next = node->previous = NULL; 2008aac: c0 27 20 04 clr [ %i4 + 4 ] 2008ab0: f4 27 20 18 st %i2, [ %i4 + 0x18 ] 2008ab4: c0 27 00 00 clr [ %i4 ] static void insert_into_tree( rtems_rbtree_control *tree, rtems_rbheap_chunk *chunk ) { _RBTree_Insert_unprotected(tree, &chunk->tree_node); 2008ab8: 90 06 20 18 add %i0, 0x18, %o0 2008abc: 40 00 06 a0 call 200a53c <_RBTree_Insert_unprotected> 2008ac0: 92 07 20 08 add %i4, 8, %o1 free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; rtems_chain_set_off_chain(&new_chunk->chain_node); insert_into_tree(chunk_tree, new_chunk); ptr = (void *) new_chunk->begin; 2008ac4: f0 07 20 18 ld [ %i4 + 0x18 ], %i0 2008ac8: 81 c7 e0 08 ret 2008acc: 81 e8 00 00 restore { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2008ad0: c2 07 60 04 ld [ %i5 + 4 ], %g1 } } else { rtems_chain_extract_unprotected(&free_chunk->chain_node); rtems_chain_set_off_chain(&free_chunk->chain_node); ptr = (void *) free_chunk->begin; 2008ad4: f0 07 60 18 ld [ %i5 + 0x18 ], %i0 next->previous = previous; 2008ad8: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2008adc: c4 20 40 00 st %g2, [ %g1 ] */ RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain( Chain_Node *node ) { node->next = node->previous = NULL; 2008ae0: c0 27 60 04 clr [ %i5 + 4 ] 2008ae4: c0 27 40 00 clr [ %i5 ] } } } return ptr; } 2008ae8: 81 c7 e0 08 ret 2008aec: 81 e8 00 00 restore =============================================================================== 02008c20 : /* Do nothing */ } void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control) { 2008c20: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk)); 2008c24: 7f ff ed a9 call 20042c8 <== NOT EXECUTED 2008c28: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED if (chunk != NULL) { 2008c2c: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED 2008c30: 02 80 00 07 be 2008c4c <== NOT EXECUTED 2008c34: 82 06 20 0c add %i0, 0xc, %g1 <== NOT EXECUTED Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008c38: c2 22 20 04 st %g1, [ %o0 + 4 ] <== NOT EXECUTED before_node = after_node->next; 2008c3c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED after_node->next = the_node; 2008c40: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED the_node->next = before_node; 2008c44: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED before_node->previous = the_node; 2008c48: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED 2008c4c: 81 c7 e0 08 ret <== NOT EXECUTED 2008c50: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 02008af0 : _RBTree_Extract_unprotected(chunk_tree, &b->tree_node); } } rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr) { 2008af0: 9d e3 bf 80 save %sp, -128, %sp 2008af4: b6 10 00 18 mov %i0, %i3 rtems_status_code sc = RTEMS_SUCCESSFUL; if (ptr != NULL) { 2008af8: 80 a6 60 00 cmp %i1, 0 2008afc: 02 80 00 45 be 2008c10 2008b00: b0 10 20 00 clr %i0 #define NULL_PAGE rtems_rbheap_chunk_of_node(NULL) static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key) { rtems_rbheap_chunk chunk = { .begin = key }; 2008b04: 90 07 bf e0 add %fp, -32, %o0 2008b08: 92 10 20 00 clr %o1 2008b0c: 94 10 20 20 mov 0x20, %o2 2008b10: 40 00 1f 9e call 2010988 2008b14: b4 06 e0 18 add %i3, 0x18, %i2 RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; 2008b18: ba 10 20 00 clr %i5 2008b1c: f2 27 bf f8 st %i1, [ %fp + -8 ] RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 2008b20: 10 80 00 12 b 2008b68 2008b24: f8 06 e0 1c ld [ %i3 + 0x1c ], %i4 RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 2008b28: 90 07 bf e8 add %fp, -24, %o0 2008b2c: 9f c0 40 00 call %g1 2008b30: 92 10 00 1c mov %i4, %o1 if ( _RBTree_Is_equal( compare_result ) ) { 2008b34: 80 a2 20 00 cmp %o0, 0 2008b38: 12 80 00 07 bne 2008b54 2008b3c: 83 3a 20 1f sra %o0, 0x1f, %g1 found = iter_node; if ( the_rbtree->is_unique ) 2008b40: c2 0e a0 14 ldub [ %i2 + 0x14 ], %g1 2008b44: 80 a0 60 00 cmp %g1, 0 2008b48: 12 80 00 0c bne 2008b78 <== ALWAYS TAKEN 2008b4c: ba 10 00 1c mov %i4, %i5 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 2008b50: 83 3a 20 1f sra %o0, 0x1f, %g1 <== NOT EXECUTED 2008b54: 90 20 40 08 sub %g1, %o0, %o0 2008b58: 91 32 20 1f srl %o0, 0x1f, %o0 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 2008b5c: 91 2a 20 02 sll %o0, 2, %o0 2008b60: b8 07 00 08 add %i4, %o0, %i4 2008b64: f8 07 20 04 ld [ %i4 + 4 ], %i4 ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { 2008b68: 80 a7 20 00 cmp %i4, 0 2008b6c: 32 bf ff ef bne,a 2008b28 2008b70: c2 06 a0 10 ld [ %i2 + 0x10 ], %g1 2008b74: b8 10 00 1d mov %i5, %i4 return rtems_rbheap_chunk_of_node( 2008b78: ba 07 3f f8 add %i4, -8, %i5 if (ptr != NULL) { rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr); if (chunk != NULL_PAGE) { 2008b7c: 80 a7 7f f8 cmp %i5, -8 2008b80: 02 80 00 24 be 2008c10 2008b84: b0 10 20 04 mov 4, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 2008b88: c4 07 3f f8 ld [ %i4 + -8 ], %g2 2008b8c: 80 a0 a0 00 cmp %g2, 0 2008b90: 12 80 00 05 bne 2008ba4 2008b94: 82 10 20 00 clr %g1 2008b98: c2 07 60 04 ld [ %i5 + 4 ], %g1 2008b9c: 80 a0 00 01 cmp %g0, %g1 2008ba0: 82 60 3f ff subx %g0, -1, %g1 if (!rtems_rbheap_is_chunk_free(chunk)) { 2008ba4: 80 a0 60 00 cmp %g1, 0 2008ba8: 02 80 00 1a be 2008c10 2008bac: b0 10 20 0e mov 0xe, %i0 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 2008bb0: b8 07 60 08 add %i5, 8, %i4 2008bb4: 92 10 20 00 clr %o1 2008bb8: 40 00 07 06 call 200a7d0 <_RBTree_Next_unprotected> 2008bbc: 90 10 00 1c mov %i4, %o0 2008bc0: 92 10 20 01 mov 1, %o1 2008bc4: b2 10 00 08 mov %o0, %i1 2008bc8: 40 00 07 02 call 200a7d0 <_RBTree_Next_unprotected> 2008bcc: 90 10 00 1c mov %i4, %o0 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008bd0: 92 10 00 1a mov %i2, %o1 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 2008bd4: 96 02 3f f8 add %o0, -8, %o3 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008bd8: 94 10 00 1d mov %i5, %o2 2008bdc: 7f ff ff 02 call 20087e4 2008be0: 90 10 00 1b mov %i3, %o0 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008be4: c2 06 c0 00 ld [ %i3 ], %g1 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008be8: f6 27 60 04 st %i3, [ %i5 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008bec: fa 26 c0 00 st %i5, [ %i3 ] the_node->next = before_node; 2008bf0: c2 27 40 00 st %g1, [ %i5 ] before_node->previous = the_node; 2008bf4: fa 20 60 04 st %i5, [ %g1 + 4 ] add_to_chain(free_chain, chunk); check_and_merge(free_chain, chunk_tree, chunk, pred); 2008bf8: 90 10 00 1b mov %i3, %o0 2008bfc: 92 10 00 1a mov %i2, %o1 2008c00: 94 10 00 1d mov %i5, %o2 2008c04: 96 06 7f f8 add %i1, -8, %o3 2008c08: 7f ff fe f7 call 20087e4 2008c0c: b0 10 20 00 clr %i0 sc = RTEMS_INVALID_ID; } } return sc; } 2008c10: 81 c7 e0 08 ret 2008c14: 81 e8 00 00 restore =============================================================================== 02017a10 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2017a10: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2017a14: 80 a6 60 00 cmp %i1, 0 2017a18: 02 80 00 35 be 2017aec 2017a1c: 82 10 20 0a mov 0xa, %g1 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2017a20: 90 10 00 18 mov %i0, %o0 2017a24: 40 00 12 54 call 201c374 <_Thread_Get> 2017a28: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2017a2c: c2 07 bf fc ld [ %fp + -4 ], %g1 2017a30: 80 a0 60 00 cmp %g1, 0 2017a34: 12 80 00 2d bne 2017ae8 2017a38: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2017a3c: fa 02 21 50 ld [ %o0 + 0x150 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2017a40: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2017a44: 80 a0 60 00 cmp %g1, 0 2017a48: 02 80 00 24 be 2017ad8 2017a4c: 01 00 00 00 nop if ( asr->is_enabled ) { 2017a50: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2017a54: 80 a0 60 00 cmp %g1, 0 2017a58: 02 80 00 15 be 2017aac 2017a5c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2017a60: 7f ff e3 64 call 20107f0 2017a64: 01 00 00 00 nop *signal_set |= signals; 2017a68: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2017a6c: b2 10 40 19 or %g1, %i1, %i1 2017a70: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2017a74: 7f ff e3 63 call 2010800 2017a78: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 2017a7c: 03 00 80 ee sethi %hi(0x203b800), %g1 2017a80: 82 10 60 e0 or %g1, 0xe0, %g1 ! 203b8e0 <_Per_CPU_Information> 2017a84: c4 00 60 08 ld [ %g1 + 8 ], %g2 2017a88: 80 a0 a0 00 cmp %g2, 0 2017a8c: 02 80 00 0f be 2017ac8 2017a90: 01 00 00 00 nop 2017a94: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2017a98: 80 a7 00 02 cmp %i4, %g2 2017a9c: 12 80 00 0b bne 2017ac8 <== NEVER TAKEN 2017aa0: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2017aa4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2017aa8: 30 80 00 08 b,a 2017ac8 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2017aac: 7f ff e3 51 call 20107f0 2017ab0: 01 00 00 00 nop *signal_set |= signals; 2017ab4: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2017ab8: b2 10 40 19 or %g1, %i1, %i1 2017abc: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2017ac0: 7f ff e3 50 call 2010800 2017ac4: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2017ac8: 40 00 12 1e call 201c340 <_Thread_Enable_dispatch> 2017acc: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2017ad0: 10 80 00 07 b 2017aec 2017ad4: 82 10 20 00 clr %g1 ! 0 } _Thread_Enable_dispatch(); 2017ad8: 40 00 12 1a call 201c340 <_Thread_Enable_dispatch> 2017adc: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2017ae0: 10 80 00 03 b 2017aec 2017ae4: 82 10 20 0b mov 0xb, %g1 ! b case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2017ae8: 82 10 20 04 mov 4, %g1 } 2017aec: 81 c7 e0 08 ret 2017af0: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200e75c : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e75c: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e760: 80 a6 a0 00 cmp %i2, 0 200e764: 02 80 00 5a be 200e8cc 200e768: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e76c: 03 00 80 71 sethi %hi(0x201c400), %g1 200e770: f8 00 63 dc ld [ %g1 + 0x3dc ], %i4 ! 201c7dc <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e774: c2 0f 20 70 ldub [ %i4 + 0x70 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e778: fa 07 21 50 ld [ %i4 + 0x150 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e77c: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e780: c2 07 20 78 ld [ %i4 + 0x78 ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e784: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e788: 80 a0 60 00 cmp %g1, 0 200e78c: 02 80 00 03 be 200e798 200e790: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e794: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e798: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 200e79c: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e7a0: 7f ff f3 11 call 200b3e4 <_CPU_ISR_Get_level> 200e7a4: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e7a8: a1 2c 20 0a sll %l0, 0xa, %l0 200e7ac: 90 14 00 08 or %l0, %o0, %o0 old_mode |= _ISR_Get_level(); 200e7b0: b6 12 00 1b or %o0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e7b4: 80 8e 61 00 btst 0x100, %i1 200e7b8: 02 80 00 06 be 200e7d0 200e7bc: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e7c0: 83 36 20 08 srl %i0, 8, %g1 200e7c4: 82 18 60 01 xor %g1, 1, %g1 200e7c8: 82 08 60 01 and %g1, 1, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e7cc: c2 2f 20 70 stb %g1, [ %i4 + 0x70 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e7d0: 80 8e 62 00 btst 0x200, %i1 200e7d4: 02 80 00 0b be 200e800 200e7d8: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200e7dc: 80 8e 22 00 btst 0x200, %i0 200e7e0: 22 80 00 07 be,a 200e7fc 200e7e4: c0 27 20 78 clr [ %i4 + 0x78 ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e7e8: 82 10 20 01 mov 1, %g1 200e7ec: c2 27 20 78 st %g1, [ %i4 + 0x78 ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e7f0: 03 00 80 71 sethi %hi(0x201c400), %g1 200e7f4: c2 00 61 10 ld [ %g1 + 0x110 ], %g1 ! 201c510 <_Thread_Ticks_per_timeslice> 200e7f8: c2 27 20 74 st %g1, [ %i4 + 0x74 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e7fc: 80 8e 60 0f btst 0xf, %i1 200e800: 02 80 00 06 be 200e818 200e804: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e808: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e80c: 7f ff cf b2 call 20026d4 200e810: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e814: 80 8e 64 00 btst 0x400, %i1 200e818: 02 80 00 14 be 200e868 200e81c: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e820: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; 200e824: b1 36 20 0a srl %i0, 0xa, %i0 200e828: b0 1e 20 01 xor %i0, 1, %i0 200e82c: b0 0e 20 01 and %i0, 1, %i0 if ( is_asr_enabled != asr->is_enabled ) { 200e830: 80 a6 00 01 cmp %i0, %g1 200e834: 22 80 00 0e be,a 200e86c 200e838: 03 00 80 71 sethi %hi(0x201c400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e83c: 7f ff cf a2 call 20026c4 200e840: f0 2f 60 08 stb %i0, [ %i5 + 8 ] _signals = information->signals_pending; 200e844: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200e848: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 200e84c: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e850: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e854: 7f ff cf a0 call 20026d4 200e858: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e85c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200e860: 80 a0 00 01 cmp %g0, %g1 200e864: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e868: 03 00 80 71 sethi %hi(0x201c400), %g1 200e86c: c4 00 62 f0 ld [ %g1 + 0x2f0 ], %g2 ! 201c6f0 <_System_state_Current> 200e870: 80 a0 a0 03 cmp %g2, 3 200e874: 12 80 00 16 bne 200e8cc 200e878: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200e87c: 07 00 80 71 sethi %hi(0x201c400), %g3 if ( are_signals_pending || 200e880: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200e884: 86 10 e3 d0 or %g3, 0x3d0, %g3 if ( are_signals_pending || 200e888: 12 80 00 0a bne 200e8b0 200e88c: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200e890: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200e894: 80 a0 80 03 cmp %g2, %g3 200e898: 02 80 00 0d be 200e8cc 200e89c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e8a0: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 200e8a4: 80 a0 a0 00 cmp %g2, 0 200e8a8: 02 80 00 09 be 200e8cc <== NEVER TAKEN 200e8ac: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e8b0: 84 10 20 01 mov 1, %g2 ! 1 200e8b4: 03 00 80 71 sethi %hi(0x201c400), %g1 200e8b8: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information> 200e8bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e8c0: 7f ff ed bf call 2009fbc <_Thread_Dispatch> 200e8c4: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e8c8: 82 10 20 00 clr %g1 ! 0 } 200e8cc: 81 c7 e0 08 ret 200e8d0: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200bf30 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200bf30: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200bf34: 80 a6 60 00 cmp %i1, 0 200bf38: 02 80 00 08 be 200bf58 200bf3c: 80 a6 a0 00 cmp %i2, 0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200bf40: 03 00 80 7f sethi %hi(0x201fc00), %g1 200bf44: c4 08 60 d8 ldub [ %g1 + 0xd8 ], %g2 ! 201fcd8 200bf48: 80 a6 40 02 cmp %i1, %g2 200bf4c: 18 80 00 1e bgu 200bfc4 200bf50: 82 10 20 13 mov 0x13, %g1 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200bf54: 80 a6 a0 00 cmp %i2, 0 200bf58: 02 80 00 1b be 200bfc4 200bf5c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200bf60: 90 10 00 18 mov %i0, %o0 200bf64: 40 00 09 63 call 200e4f0 <_Thread_Get> 200bf68: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200bf6c: c2 07 bf fc ld [ %fp + -4 ], %g1 200bf70: 80 a0 60 00 cmp %g1, 0 200bf74: 12 80 00 14 bne 200bfc4 200bf78: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200bf7c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200bf80: 80 a6 60 00 cmp %i1, 0 200bf84: 02 80 00 0d be 200bfb8 200bf88: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200bf8c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200bf90: 80 a0 60 00 cmp %g1, 0 200bf94: 02 80 00 06 be 200bfac 200bf98: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200bf9c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200bfa0: 80 a0 40 19 cmp %g1, %i1 200bfa4: 08 80 00 05 bleu 200bfb8 <== ALWAYS TAKEN 200bfa8: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200bfac: 92 10 00 19 mov %i1, %o1 200bfb0: 40 00 08 1e call 200e028 <_Thread_Change_priority> 200bfb4: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200bfb8: 40 00 09 41 call 200e4bc <_Thread_Enable_dispatch> 200bfbc: 01 00 00 00 nop 200bfc0: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200bfc4: 81 c7 e0 08 ret 200bfc8: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0201844c : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 201844c: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2018450: 11 00 80 ee sethi %hi(0x203b800), %o0 2018454: 92 10 00 18 mov %i0, %o1 2018458: 90 12 21 84 or %o0, 0x184, %o0 201845c: 40 00 0b ee call 201b414 <_Objects_Get> 2018460: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2018464: c2 07 bf fc ld [ %fp + -4 ], %g1 2018468: 80 a0 60 00 cmp %g1, 0 201846c: 12 80 00 0c bne 201849c 2018470: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2018474: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2018478: 80 a0 60 04 cmp %g1, 4 201847c: 02 80 00 04 be 201848c <== NEVER TAKEN 2018480: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2018484: 40 00 13 d3 call 201d3d0 <_Watchdog_Remove> 2018488: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 201848c: 40 00 0f ad call 201c340 <_Thread_Enable_dispatch> 2018490: b0 10 20 00 clr %i0 2018494: 81 c7 e0 08 ret 2018498: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 201849c: 81 c7 e0 08 ret 20184a0: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02018960 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2018960: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2018964: 03 00 80 ee sethi %hi(0x203b800), %g1 2018968: f8 00 61 c4 ld [ %g1 + 0x1c4 ], %i4 ! 203b9c4 <_Timer_server> if ( !timer_server ) 201896c: 80 a7 20 00 cmp %i4, 0 2018970: 02 80 00 3c be 2018a60 2018974: 82 10 20 0e mov 0xe, %g1 return RTEMS_INCORRECT_STATE; if ( !_TOD.is_set ) 2018978: 21 00 80 ed sethi %hi(0x203b400), %l0 201897c: 82 14 21 f8 or %l0, 0x1f8, %g1 ! 203b5f8 <_TOD> 2018980: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2 2018984: 80 a0 a0 00 cmp %g2, 0 2018988: 02 80 00 36 be 2018a60 <== NEVER TAKEN 201898c: 82 10 20 0b mov 0xb, %g1 return RTEMS_NOT_DEFINED; if ( !routine ) 2018990: 80 a6 a0 00 cmp %i2, 0 2018994: 02 80 00 33 be 2018a60 2018998: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 201899c: 7f ff f3 82 call 20157a4 <_TOD_Validate> 20189a0: 90 10 00 19 mov %i1, %o0 20189a4: 80 8a 20 ff btst 0xff, %o0 20189a8: 02 80 00 2e be 2018a60 20189ac: 82 10 20 14 mov 0x14, %g1 return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 20189b0: 7f ff f3 43 call 20156bc <_TOD_To_seconds> 20189b4: 90 10 00 19 mov %i1, %o0 20189b8: b2 10 00 08 mov %o0, %i1 20189bc: d0 1c 21 f8 ldd [ %l0 + 0x1f8 ], %o0 20189c0: 94 10 20 00 clr %o2 20189c4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 20189c8: 40 00 4c 4a call 202baf0 <__divdi3> 20189cc: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 if ( seconds <= _TOD_Seconds_since_epoch() ) 20189d0: 80 a6 40 09 cmp %i1, %o1 20189d4: 08 80 00 23 bleu 2018a60 20189d8: 82 10 20 14 mov 0x14, %g1 20189dc: 11 00 80 ee sethi %hi(0x203b800), %o0 20189e0: 92 10 00 18 mov %i0, %o1 20189e4: 90 12 21 84 or %o0, 0x184, %o0 20189e8: 40 00 0a 8b call 201b414 <_Objects_Get> 20189ec: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20189f0: c2 07 bf fc ld [ %fp + -4 ], %g1 20189f4: 80 a0 60 00 cmp %g1, 0 20189f8: 12 80 00 19 bne 2018a5c 20189fc: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2018a00: 40 00 12 74 call 201d3d0 <_Watchdog_Remove> 2018a04: 90 02 20 10 add %o0, 0x10, %o0 2018a08: d0 1c 21 f8 ldd [ %l0 + 0x1f8 ], %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2018a0c: 82 10 20 03 mov 3, %g1 2018a10: 94 10 20 00 clr %o2 2018a14: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2018a18: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 2018a1c: f4 27 60 2c st %i2, [ %i5 + 0x2c ] the_watchdog->id = id; 2018a20: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 2018a24: f6 27 60 34 st %i3, [ %i5 + 0x34 ] 2018a28: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2018a2c: 40 00 4c 31 call 202baf0 <__divdi3> 2018a30: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); (*timer_server->schedule_operation)( timer_server, the_timer ); 2018a34: c2 07 20 04 ld [ %i4 + 4 ], %g1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2018a38: 92 26 40 09 sub %i1, %o1, %o1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2018a3c: 90 10 00 1c mov %i4, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2018a40: d2 27 60 1c st %o1, [ %i5 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2018a44: 9f c0 40 00 call %g1 2018a48: 92 10 00 1d mov %i5, %o1 _Thread_Enable_dispatch(); 2018a4c: 40 00 0e 3d call 201c340 <_Thread_Enable_dispatch> 2018a50: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2018a54: 10 80 00 03 b 2018a60 2018a58: 82 10 20 00 clr %g1 ! 0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2018a5c: 82 10 20 04 mov 4, %g1 } 2018a60: 81 c7 e0 08 ret 2018a64: 91 e8 00 01 restore %g0, %g1, %o0