RTEMS 4.11Annotated Report
Sat Jul 14 16:41:40 2012
02011074 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2011074: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2011078: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
201107c: c0 26 20 48 clr [ %i0 + 0x48 ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2011080: 80 8e e0 03 btst 3, %i3
2011084: 02 80 00 09 be 20110a8 <_CORE_message_queue_Initialize+0x34>
2011088: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
allocated_message_size += sizeof(uint32_t);
201108c: 96 06 e0 04 add %i3, 4, %o3
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2011090: 96 0a ff fc and %o3, -4, %o3
}
if (allocated_message_size < maximum_message_size)
2011094: 80 a2 c0 1b cmp %o3, %i3
2011098: 3a 80 00 06 bcc,a 20110b0 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN
201109c: ba 02 e0 10 add %o3, 0x10, %i5
return false;
20110a0: 10 80 00 24 b 2011130 <_CORE_message_queue_Initialize+0xbc><== NOT EXECUTED
20110a4: b0 10 20 00 clr %i0 <== NOT EXECUTED
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
20110a8: 96 10 00 1b mov %i3, %o3
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
20110ac: ba 02 e0 10 add %o3, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
20110b0: 90 10 20 00 clr %o0
20110b4: 92 10 00 1a mov %i2, %o1
20110b8: 94 10 20 00 clr %o2
20110bc: 40 00 3f cc call 2020fec <__muldi3>
20110c0: 96 10 00 1d mov %i5, %o3
if ( x > SIZE_MAX )
20110c4: 80 a2 20 00 cmp %o0, 0
20110c8: 34 80 00 1a bg,a 2011130 <_CORE_message_queue_Initialize+0xbc>
20110cc: b0 10 20 00 clr %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
20110d0: 40 00 0b d8 call 2014030 <_Workspace_Allocate>
20110d4: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
20110d8: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
20110dc: 80 a2 20 00 cmp %o0, 0
20110e0: 02 bf ff f0 be 20110a0 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN
20110e4: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
20110e8: 90 06 20 60 add %i0, 0x60, %o0
20110ec: 94 10 00 1a mov %i2, %o2
20110f0: 7f ff ff d3 call 201103c <_Chain_Initialize>
20110f4: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
20110f8: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
20110fc: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
*/
RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority(
CORE_message_queue_Attributes *the_attribute
)
{
return
2011100: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2011104: 84 06 20 54 add %i0, 0x54, %g2
2011108: 82 18 60 01 xor %g1, 1, %g1
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
201110c: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
2011110: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
2011114: c0 26 20 54 clr [ %i0 + 0x54 ]
2011118: 90 10 00 18 mov %i0, %o0
201111c: 92 60 3f ff subx %g0, -1, %o1
2011120: 94 10 20 80 mov 0x80, %o2
2011124: 96 10 20 06 mov 6, %o3
2011128: 40 00 09 99 call 201378c <_Thread_queue_Initialize>
201112c: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011130: b0 0e 20 01 and %i0, 1, %i0
2011134: 81 c7 e0 08 ret
2011138: 81 e8 00 00 restore
02008730 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2008730: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2008734: 90 10 00 18 mov %i0, %o0
2008738: 40 00 07 57 call 200a494 <_Thread_queue_Dequeue>
200873c: ba 10 00 18 mov %i0, %i5
2008740: 80 a2 20 00 cmp %o0, 0
2008744: 12 80 00 0e bne 200877c <_CORE_semaphore_Surrender+0x4c>
2008748: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
200874c: 7f ff e7 de call 20026c4 <sparc_disable_interrupts>
2008750: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2008754: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2008758: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
200875c: 80 a0 40 02 cmp %g1, %g2
2008760: 1a 80 00 05 bcc 2008774 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2008764: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2008768: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
200876c: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2008770: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2008774: 7f ff e7 d8 call 20026d4 <sparc_enable_interrupts>
2008778: 01 00 00 00 nop
}
return status;
}
200877c: 81 c7 e0 08 ret
2008780: 81 e8 00 00 restore
02007488 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2007488: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
200748c: f8 06 21 50 ld [ %i0 + 0x150 ], %i4
option_set = (rtems_option) the_thread->Wait.option;
2007490: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
_ISR_Disable( level );
2007494: 7f ff ec 8c call 20026c4 <sparc_disable_interrupts>
2007498: ba 10 00 18 mov %i0, %i5
200749c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
20074a0: c4 07 00 00 ld [ %i4 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
20074a4: c6 07 60 24 ld [ %i5 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
20074a8: 82 88 c0 02 andcc %g3, %g2, %g1
20074ac: 02 80 00 42 be 20075b4 <_Event_Surrender+0x12c>
20074b0: 09 00 80 71 sethi %hi(0x201c400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20074b4: 88 11 23 d0 or %g4, 0x3d0, %g4 ! 201c7d0 <_Per_CPU_Information>
20074b8: f4 01 20 08 ld [ %g4 + 8 ], %i2
20074bc: 80 a6 a0 00 cmp %i2, 0
20074c0: 22 80 00 1d be,a 2007534 <_Event_Surrender+0xac>
20074c4: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
20074c8: c8 01 20 0c ld [ %g4 + 0xc ], %g4
20074cc: 80 a7 40 04 cmp %i5, %g4
20074d0: 32 80 00 19 bne,a 2007534 <_Event_Surrender+0xac>
20074d4: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20074d8: 09 00 80 72 sethi %hi(0x201c800), %g4
20074dc: f4 01 20 30 ld [ %g4 + 0x30 ], %i2 ! 201c830 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
20074e0: 80 a6 a0 02 cmp %i2, 2
20074e4: 02 80 00 07 be 2007500 <_Event_Surrender+0x78> <== NEVER TAKEN
20074e8: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
20074ec: c8 01 20 30 ld [ %g4 + 0x30 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20074f0: 80 a1 20 01 cmp %g4, 1
20074f4: 32 80 00 10 bne,a 2007534 <_Event_Surrender+0xac>
20074f8: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
20074fc: 80 a0 40 03 cmp %g1, %g3
2007500: 02 80 00 04 be 2007510 <_Event_Surrender+0x88>
2007504: 80 8e e0 02 btst 2, %i3
2007508: 02 80 00 2b be 20075b4 <_Event_Surrender+0x12c> <== NEVER TAKEN
200750c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2007510: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2007514: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007518: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
200751c: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007520: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2007524: 84 10 20 03 mov 3, %g2
2007528: 03 00 80 72 sethi %hi(0x201c800), %g1
200752c: c4 20 60 30 st %g2, [ %g1 + 0x30 ] ! 201c830 <_Event_Sync_state>
2007530: 30 80 00 21 b,a 20075b4 <_Event_Surrender+0x12c>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2007534: 80 89 21 00 btst 0x100, %g4
2007538: 02 80 00 1f be 20075b4 <_Event_Surrender+0x12c>
200753c: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2007540: 02 80 00 04 be 2007550 <_Event_Surrender+0xc8>
2007544: 80 8e e0 02 btst 2, %i3
2007548: 02 80 00 1b be 20075b4 <_Event_Surrender+0x12c> <== NEVER TAKEN
200754c: 01 00 00 00 nop
2007550: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2007554: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007558: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
200755c: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007560: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2007564: 7f ff ec 5c call 20026d4 <sparc_enable_interrupts>
2007568: 90 10 00 18 mov %i0, %o0
200756c: 7f ff ec 56 call 20026c4 <sparc_disable_interrupts>
2007570: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2007574: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
2007578: 80 a0 60 02 cmp %g1, 2
200757c: 02 80 00 06 be 2007594 <_Event_Surrender+0x10c>
2007580: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2007584: 7f ff ec 54 call 20026d4 <sparc_enable_interrupts>
2007588: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
200758c: 10 80 00 08 b 20075ac <_Event_Surrender+0x124>
2007590: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2007594: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2007598: 7f ff ec 4f call 20026d4 <sparc_enable_interrupts>
200759c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
20075a0: 40 00 0e 78 call 200af80 <_Watchdog_Remove>
20075a4: 90 07 60 48 add %i5, 0x48, %o0
20075a8: b2 16 63 f8 or %i1, 0x3f8, %i1
20075ac: 40 00 0a 01 call 2009db0 <_Thread_Clear_state>
20075b0: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
20075b4: 7f ff ec 48 call 20026d4 <sparc_enable_interrupts>
20075b8: 81 e8 00 00 restore
020075bc <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
20075bc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
20075c0: 90 10 00 18 mov %i0, %o0
20075c4: 40 00 0a e8 call 200a164 <_Thread_Get>
20075c8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20075cc: c2 07 bf fc ld [ %fp + -4 ], %g1
20075d0: 80 a0 60 00 cmp %g1, 0
20075d4: 12 80 00 1d bne 2007648 <_Event_Timeout+0x8c> <== NEVER TAKEN
20075d8: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
20075dc: 7f ff ec 3a call 20026c4 <sparc_disable_interrupts>
20075e0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20075e4: 03 00 80 71 sethi %hi(0x201c400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
20075e8: c2 00 63 dc ld [ %g1 + 0x3dc ], %g1 ! 201c7dc <_Per_CPU_Information+0xc>
20075ec: 80 a7 40 01 cmp %i5, %g1
20075f0: 12 80 00 09 bne 2007614 <_Event_Timeout+0x58>
20075f4: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
20075f8: 03 00 80 72 sethi %hi(0x201c800), %g1
20075fc: c4 00 60 30 ld [ %g1 + 0x30 ], %g2 ! 201c830 <_Event_Sync_state>
2007600: 80 a0 a0 01 cmp %g2, 1
2007604: 32 80 00 05 bne,a 2007618 <_Event_Timeout+0x5c>
2007608: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
200760c: 84 10 20 02 mov 2, %g2
2007610: c4 20 60 30 st %g2, [ %g1 + 0x30 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2007614: 82 10 20 06 mov 6, %g1
2007618: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
200761c: 7f ff ec 2e call 20026d4 <sparc_enable_interrupts>
2007620: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007624: 90 10 00 1d mov %i5, %o0
2007628: 13 04 00 ff sethi %hi(0x1003fc00), %o1
200762c: 40 00 09 e1 call 2009db0 <_Thread_Clear_state>
2007630: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007634: 03 00 80 71 sethi %hi(0x201c400), %g1
2007638: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level>
200763c: 84 00 bf ff add %g2, -1, %g2
2007640: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
return _Thread_Dispatch_disable_level;
2007644: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1
2007648: 81 c7 e0 08 ret
200764c: 81 e8 00 00 restore
0200ceb0 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200ceb0: 9d e3 bf 90 save %sp, -112, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200ceb4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200ceb8: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200cebc: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200cec0: ea 06 20 20 ld [ %i0 + 0x20 ], %l5
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200cec4: ec 06 20 10 ld [ %i0 + 0x10 ], %l6
uintptr_t const min_block_size = heap->min_block_size;
200cec8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200cecc: 80 a7 40 19 cmp %i5, %i1
200ced0: 1a 80 00 04 bcc 200cee0 <_Heap_Extend+0x30>
200ced4: e6 06 20 30 ld [ %i0 + 0x30 ], %l3
return false;
200ced8: 10 80 00 a2 b 200d160 <_Heap_Extend+0x2b0>
200cedc: b0 10 20 00 clr %i0
}
extend_area_ok = _Heap_Get_first_and_last_block(
200cee0: 90 10 00 19 mov %i1, %o0
200cee4: 92 10 00 1a mov %i2, %o1
200cee8: 94 10 00 16 mov %l6, %o2
200ceec: 98 07 bf f8 add %fp, -8, %o4
200cef0: 7f ff ee ac call 20089a0 <_Heap_Get_first_and_last_block>
200cef4: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200cef8: 80 8a 20 ff btst 0xff, %o0
200cefc: 02 bf ff f7 be 200ced8 <_Heap_Extend+0x28>
200cf00: a4 10 20 00 clr %l2
200cf04: b4 10 00 15 mov %l5, %i2
200cf08: a8 10 20 00 clr %l4
200cf0c: b8 10 20 00 clr %i4
200cf10: a2 10 20 00 clr %l1
200cf14: ee 06 20 18 ld [ %i0 + 0x18 ], %l7
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
200cf18: e0 06 80 00 ld [ %i2 ], %l0
200cf1c: 92 10 00 16 mov %l6, %o1
200cf20: 82 04 3f f8 add %l0, -8, %g1
200cf24: 90 10 00 10 mov %l0, %o0
200cf28: 40 00 2c 41 call 201802c <.urem>
200cf2c: c2 27 bf f4 st %g1, [ %fp + -12 ]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cf30: c2 07 bf f4 ld [ %fp + -12 ], %g1
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cf34: 80 a5 c0 1d cmp %l7, %i5
200cf38: 1a 80 00 05 bcc 200cf4c <_Heap_Extend+0x9c>
200cf3c: 90 20 40 08 sub %g1, %o0, %o0
200cf40: 80 a6 40 10 cmp %i1, %l0
200cf44: 2a 80 00 87 bcs,a 200d160 <_Heap_Extend+0x2b0>
200cf48: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200cf4c: 80 a7 40 17 cmp %i5, %l7
200cf50: 02 80 00 06 be 200cf68 <_Heap_Extend+0xb8>
200cf54: 80 a7 40 10 cmp %i5, %l0
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200cf58: 2a 80 00 05 bcs,a 200cf6c <_Heap_Extend+0xbc>
200cf5c: a8 10 00 1a mov %i2, %l4
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cf60: 10 80 00 04 b 200cf70 <_Heap_Extend+0xc0>
200cf64: 80 a4 00 19 cmp %l0, %i1
200cf68: a2 10 00 1a mov %i2, %l1
200cf6c: 80 a4 00 19 cmp %l0, %i1
200cf70: 12 80 00 05 bne 200cf84 <_Heap_Extend+0xd4>
200cf74: 80 a4 00 19 cmp %l0, %i1
start_block->prev_size = extend_area_end;
200cf78: fa 26 80 00 st %i5, [ %i2 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200cf7c: 10 80 00 04 b 200cf8c <_Heap_Extend+0xdc>
200cf80: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200cf84: 2a 80 00 02 bcs,a 200cf8c <_Heap_Extend+0xdc>
200cf88: a4 10 00 08 mov %o0, %l2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cf8c: f4 02 20 04 ld [ %o0 + 4 ], %i2
200cf90: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cf94: b4 02 00 1a add %o0, %i2, %i2
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cf98: 80 a6 80 15 cmp %i2, %l5
200cf9c: 12 bf ff df bne 200cf18 <_Heap_Extend+0x68>
200cfa0: ae 10 00 1a mov %i2, %l7
if ( extend_area_begin < heap->area_begin ) {
200cfa4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200cfa8: 80 a6 40 01 cmp %i1, %g1
200cfac: 3a 80 00 04 bcc,a 200cfbc <_Heap_Extend+0x10c>
200cfb0: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200cfb4: 10 80 00 05 b 200cfc8 <_Heap_Extend+0x118>
200cfb8: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200cfbc: 80 a0 40 1d cmp %g1, %i5
200cfc0: 2a 80 00 02 bcs,a 200cfc8 <_Heap_Extend+0x118>
200cfc4: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cfc8: c4 07 bf f8 ld [ %fp + -8 ], %g2
200cfcc: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
200cfd0: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200cfd4: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200cfd8: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200cfdc: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200cfe0: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200cfe4: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
200cfe8: 80 a0 c0 02 cmp %g3, %g2
200cfec: 08 80 00 04 bleu 200cffc <_Heap_Extend+0x14c>
200cff0: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200cff4: 10 80 00 06 b 200d00c <_Heap_Extend+0x15c>
200cff8: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200cffc: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200d000: 80 a0 80 01 cmp %g2, %g1
200d004: 2a 80 00 02 bcs,a 200d00c <_Heap_Extend+0x15c>
200d008: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200d00c: 80 a4 60 00 cmp %l1, 0
200d010: 02 80 00 14 be 200d060 <_Heap_Extend+0x1b0>
200d014: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200d018: f4 06 20 10 ld [ %i0 + 0x10 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200d01c: 92 10 00 1a mov %i2, %o1
200d020: 40 00 2c 03 call 201802c <.urem>
200d024: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200d028: 80 a2 20 00 cmp %o0, 0
200d02c: 02 80 00 04 be 200d03c <_Heap_Extend+0x18c>
200d030: c2 04 40 00 ld [ %l1 ], %g1
return value - remainder + alignment;
200d034: b2 06 40 1a add %i1, %i2, %i1
200d038: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200d03c: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200d040: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200d044: 82 24 40 09 sub %l1, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200d048: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200d04c: 90 10 00 18 mov %i0, %o0
200d050: 7f ff ff 8e call 200ce88 <_Heap_Free_block>
200d054: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200d058: 10 80 00 08 b 200d078 <_Heap_Extend+0x1c8>
200d05c: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200d060: 80 a5 20 00 cmp %l4, 0
200d064: 02 80 00 04 be 200d074 <_Heap_Extend+0x1c4>
200d068: a8 25 00 01 sub %l4, %g1, %l4
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200d06c: a8 15 20 01 or %l4, 1, %l4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200d070: e8 20 60 04 st %l4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200d074: 80 a7 20 00 cmp %i4, 0
200d078: 02 80 00 15 be 200d0cc <_Heap_Extend+0x21c>
200d07c: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d080: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200d084: ba 27 40 1c sub %i5, %i4, %i5
200d088: 40 00 2b e9 call 201802c <.urem>
200d08c: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200d090: c4 07 20 04 ld [ %i4 + 4 ], %g2
200d094: 90 27 40 08 sub %i5, %o0, %o0
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d098: 82 02 00 1c add %o0, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
200d09c: 84 20 80 08 sub %g2, %o0, %g2
| HEAP_PREV_BLOCK_USED;
200d0a0: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d0a4: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d0a8: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200d0ac: 92 10 00 1c mov %i4, %o1
200d0b0: 82 08 60 01 and %g1, 1, %g1
block->size_and_flag = size | flag;
200d0b4: 90 12 00 01 or %o0, %g1, %o0
200d0b8: d0 27 20 04 st %o0, [ %i4 + 4 ]
200d0bc: 7f ff ff 73 call 200ce88 <_Heap_Free_block>
200d0c0: 90 10 00 18 mov %i0, %o0
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d0c4: 10 80 00 0f b 200d100 <_Heap_Extend+0x250>
200d0c8: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200d0cc: 80 a4 a0 00 cmp %l2, 0
200d0d0: 02 80 00 0b be 200d0fc <_Heap_Extend+0x24c>
200d0d4: c6 07 bf f8 ld [ %fp + -8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d0d8: c4 04 a0 04 ld [ %l2 + 4 ], %g2
_Heap_Link_above(
200d0dc: c2 07 bf fc ld [ %fp + -4 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200d0e0: 86 20 c0 12 sub %g3, %l2, %g3
200d0e4: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200d0e8: 84 10 c0 02 or %g3, %g2, %g2
200d0ec: c4 24 a0 04 st %g2, [ %l2 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200d0f0: c4 00 60 04 ld [ %g1 + 4 ], %g2
200d0f4: 84 10 a0 01 or %g2, 1, %g2
200d0f8: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d0fc: 80 a7 20 00 cmp %i4, 0
200d100: 32 80 00 09 bne,a 200d124 <_Heap_Extend+0x274>
200d104: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200d108: 80 a4 60 00 cmp %l1, 0
200d10c: 32 80 00 06 bne,a 200d124 <_Heap_Extend+0x274>
200d110: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200d114: d2 07 bf f8 ld [ %fp + -8 ], %o1
200d118: 7f ff ff 5c call 200ce88 <_Heap_Free_block>
200d11c: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200d120: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d124: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d128: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d12c: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d130: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200d134: 84 10 c0 02 or %g3, %g2, %g2
200d138: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d13c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/* Statistics */
stats->size += extended_size;
if ( extended_size_ptr != NULL )
200d140: 80 a6 e0 00 cmp %i3, 0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d144: a6 20 40 13 sub %g1, %l3, %l3
/* Statistics */
stats->size += extended_size;
200d148: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
200d14c: 82 00 40 13 add %g1, %l3, %g1
if ( extended_size_ptr != NULL )
200d150: 02 80 00 03 be 200d15c <_Heap_Extend+0x2ac> <== NEVER TAKEN
200d154: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
*extended_size_ptr = extended_size;
200d158: e6 26 c0 00 st %l3, [ %i3 ]
return true;
200d15c: b0 10 20 01 mov 1, %i0
}
200d160: b0 0e 20 01 and %i0, 1, %i0
200d164: 81 c7 e0 08 ret
200d168: 81 e8 00 00 restore
0200cedc <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200cedc: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200cee0: 80 a6 60 00 cmp %i1, 0
200cee4: 02 80 00 7a be 200d0cc <_Heap_Free+0x1f0>
200cee8: 88 10 20 01 mov 1, %g4
200ceec: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200cef0: 40 00 2b ab call 2017d9c <.urem>
200cef4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200cef8: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cefc: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cf00: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cf04: 80 a2 00 1b cmp %o0, %i3
200cf08: 0a 80 00 05 bcs 200cf1c <_Heap_Free+0x40>
200cf0c: 82 10 20 00 clr %g1
200cf10: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200cf14: 80 a0 40 08 cmp %g1, %o0
200cf18: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200cf1c: 80 a0 60 00 cmp %g1, 0
200cf20: 02 80 00 6b be 200d0cc <_Heap_Free+0x1f0>
200cf24: 88 10 20 00 clr %g4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cf28: f8 02 20 04 ld [ %o0 + 4 ], %i4
200cf2c: 84 0f 3f fe and %i4, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cf30: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cf34: 80 a0 40 1b cmp %g1, %i3
200cf38: 0a 80 00 05 bcs 200cf4c <_Heap_Free+0x70> <== NEVER TAKEN
200cf3c: 86 10 20 00 clr %g3
200cf40: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200cf44: 80 a0 c0 01 cmp %g3, %g1
200cf48: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200cf4c: 80 a0 e0 00 cmp %g3, 0
200cf50: 02 80 00 5f be 200d0cc <_Heap_Free+0x1f0> <== NEVER TAKEN
200cf54: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cf58: fa 00 60 04 ld [ %g1 + 4 ], %i5
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200cf5c: 80 8f 60 01 btst 1, %i5
200cf60: 22 80 00 5c be,a 200d0d0 <_Heap_Free+0x1f4> <== NEVER TAKEN
200cf64: b0 09 20 01 and %g4, 1, %i0 <== NOT EXECUTED
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200cf68: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200cf6c: 80 a0 40 04 cmp %g1, %g4
200cf70: 02 80 00 07 be 200cf8c <_Heap_Free+0xb0>
200cf74: ba 0f 7f fe and %i5, -2, %i5
200cf78: 86 00 40 1d add %g1, %i5, %g3
200cf7c: f4 00 e0 04 ld [ %g3 + 4 ], %i2
200cf80: b4 1e a0 01 xor %i2, 1, %i2
200cf84: 10 80 00 03 b 200cf90 <_Heap_Free+0xb4>
200cf88: b4 0e a0 01 and %i2, 1, %i2
200cf8c: b4 10 20 00 clr %i2
if ( !_Heap_Is_prev_used( block ) ) {
200cf90: 80 8f 20 01 btst 1, %i4
200cf94: 12 80 00 26 bne 200d02c <_Heap_Free+0x150>
200cf98: 80 8e a0 ff btst 0xff, %i2
uintptr_t const prev_size = block->prev_size;
200cf9c: f8 02 00 00 ld [ %o0 ], %i4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cfa0: 86 22 00 1c sub %o0, %i4, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cfa4: 80 a0 c0 1b cmp %g3, %i3
200cfa8: 0a 80 00 04 bcs 200cfb8 <_Heap_Free+0xdc> <== NEVER TAKEN
200cfac: b2 10 20 00 clr %i1
200cfb0: 80 a1 00 03 cmp %g4, %g3
200cfb4: b2 60 3f ff subx %g0, -1, %i1
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200cfb8: 80 a6 60 00 cmp %i1, 0
200cfbc: 02 80 00 44 be 200d0cc <_Heap_Free+0x1f0> <== NEVER TAKEN
200cfc0: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cfc4: f6 00 e0 04 ld [ %g3 + 4 ], %i3
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cfc8: 80 8e e0 01 btst 1, %i3
200cfcc: 02 80 00 40 be 200d0cc <_Heap_Free+0x1f0> <== NEVER TAKEN
200cfd0: 80 8e a0 ff btst 0xff, %i2
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cfd4: 22 80 00 0f be,a 200d010 <_Heap_Free+0x134>
200cfd8: b8 00 80 1c add %g2, %i4, %i4
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200cfdc: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200cfe0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
uintptr_t const size = block_size + prev_size + next_block_size;
200cfe4: ba 00 80 1d add %g2, %i5, %i5
prev->next = next;
200cfe8: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200cfec: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cff0: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cff4: b8 07 40 1c add %i5, %i4, %i4
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cff8: 82 00 7f ff add %g1, -1, %g1
200cffc: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200d000: f8 20 c0 1c st %i4, [ %g3 + %i4 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d004: 82 17 20 01 or %i4, 1, %g1
200d008: 10 80 00 27 b 200d0a4 <_Heap_Free+0x1c8>
200d00c: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d010: 88 17 20 01 or %i4, 1, %g4
200d014: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d018: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200d01c: f8 22 00 02 st %i4, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d020: 86 08 ff fe and %g3, -2, %g3
200d024: 10 80 00 20 b 200d0a4 <_Heap_Free+0x1c8>
200d028: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200d02c: 22 80 00 0d be,a 200d060 <_Heap_Free+0x184>
200d030: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200d034: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200d038: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200d03c: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200d040: c2 22 20 0c st %g1, [ %o0 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200d044: 86 07 40 02 add %i5, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200d048: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200d04c: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d050: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200d054: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d058: 10 80 00 13 b 200d0a4 <_Heap_Free+0x1c8>
200d05c: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200d060: f0 22 20 0c st %i0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200d064: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200d068: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200d06c: 86 10 a0 01 or %g2, 1, %g3
200d070: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d074: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200d078: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d07c: 86 08 ff fe and %g3, -2, %g3
200d080: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d084: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200d088: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d08c: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200d090: d0 26 20 08 st %o0, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200d094: 80 a0 c0 01 cmp %g3, %g1
200d098: 1a 80 00 03 bcc 200d0a4 <_Heap_Free+0x1c8>
200d09c: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200d0a0: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200d0a4: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
200d0a8: 82 00 7f ff add %g1, -1, %g1
200d0ac: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200d0b0: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200d0b4: 82 00 60 01 inc %g1
200d0b8: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200d0bc: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200d0c0: 84 00 40 02 add %g1, %g2, %g2
200d0c4: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200d0c8: 88 10 20 01 mov 1, %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200d0cc: b0 09 20 01 and %g4, 1, %i0
200d0d0: 81 c7 e0 08 ret
200d0d4: 81 e8 00 00 restore
020118a4 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
20118a4: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
20118a8: 90 10 20 00 clr %o0
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
Heap_Block *current = heap->first_block;
20118ac: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
20118b0: 10 80 00 0a b 20118d8 <_Heap_Iterate+0x34>
20118b4: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
20118b8: 90 10 00 01 mov %g1, %o0
20118bc: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20118c0: ba 00 40 09 add %g1, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20118c4: d4 07 60 04 ld [ %i5 + 4 ], %o2
20118c8: 96 10 00 1a mov %i2, %o3
20118cc: 9f c6 40 00 call %i1
20118d0: 94 0a a0 01 and %o2, 1, %o2
20118d4: 82 10 00 1d mov %i5, %g1
{
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
20118d8: 80 a0 40 1c cmp %g1, %i4
20118dc: 02 80 00 05 be 20118f0 <_Heap_Iterate+0x4c>
20118e0: 90 1a 20 01 xor %o0, 1, %o0
20118e4: 80 8a 20 ff btst 0xff, %o0
20118e8: 32 bf ff f4 bne,a 20118b8 <_Heap_Iterate+0x14> <== ALWAYS TAKEN
20118ec: d2 00 60 04 ld [ %g1 + 4 ], %o1
20118f0: 81 c7 e0 08 ret
20118f4: 81 e8 00 00 restore
0200d200 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
200d200: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d204: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200d208: 40 00 2a e5 call 2017d9c <.urem>
200d20c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200d210: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d214: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200d218: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d21c: 80 a2 00 04 cmp %o0, %g4
200d220: 0a 80 00 05 bcs 200d234 <_Heap_Size_of_alloc_area+0x34>
200d224: 82 10 20 00 clr %g1
200d228: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200d22c: 80 a0 40 08 cmp %g1, %o0
200d230: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200d234: 80 a0 60 00 cmp %g1, 0
200d238: 02 80 00 15 be 200d28c <_Heap_Size_of_alloc_area+0x8c>
200d23c: 86 10 20 00 clr %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d240: c2 02 20 04 ld [ %o0 + 4 ], %g1
200d244: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d248: 82 02 00 01 add %o0, %g1, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d24c: 80 a0 40 04 cmp %g1, %g4
200d250: 0a 80 00 05 bcs 200d264 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
200d254: 84 10 20 00 clr %g2
200d258: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200d25c: 80 a0 80 01 cmp %g2, %g1
200d260: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
200d264: 80 a0 a0 00 cmp %g2, 0
200d268: 02 80 00 09 be 200d28c <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d26c: 86 10 20 00 clr %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d270: c4 00 60 04 ld [ %g1 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
200d274: 80 88 a0 01 btst 1, %g2
200d278: 02 80 00 05 be 200d28c <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d27c: 82 20 40 19 sub %g1, %i1, %g1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
200d280: 86 10 20 01 mov 1, %g3
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
200d284: 82 00 60 04 add %g1, 4, %g1
200d288: c2 26 80 00 st %g1, [ %i2 ]
return true;
}
200d28c: b0 08 e0 01 and %g3, 1, %i0
200d290: 81 c7 e0 08 ret
200d294: 81 e8 00 00 restore
02009868 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2009868: 9d e3 bf 80 save %sp, -128, %sp
200986c: ac 10 00 19 mov %i1, %l6
uintptr_t const page_size = heap->page_size;
2009870: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
2009874: f6 06 20 14 ld [ %i0 + 0x14 ], %i3
Heap_Block *const first_block = heap->first_block;
2009878: f2 06 20 20 ld [ %i0 + 0x20 ], %i1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
200987c: 80 a6 a0 00 cmp %i2, 0
2009880: 02 80 00 05 be 2009894 <_Heap_Walk+0x2c>
2009884: e0 06 20 24 ld [ %i0 + 0x24 ], %l0
2009888: 3b 00 80 26 sethi %hi(0x2009800), %i5
200988c: 10 80 00 04 b 200989c <_Heap_Walk+0x34>
2009890: ba 17 60 18 or %i5, 0x18, %i5 ! 2009818 <_Heap_Walk_print>
2009894: 3b 00 80 26 sethi %hi(0x2009800), %i5
2009898: ba 17 60 10 or %i5, 0x10, %i5 ! 2009810 <_Heap_Walk_print_nothing>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
200989c: 05 00 80 7a sethi %hi(0x201e800), %g2
20098a0: c4 00 a2 d0 ld [ %g2 + 0x2d0 ], %g2 ! 201ead0 <_System_state_Current>
20098a4: 80 a0 a0 03 cmp %g2, 3
20098a8: 22 80 00 04 be,a 20098b8 <_Heap_Walk+0x50>
20098ac: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
return true;
20098b0: 10 80 01 2a b 2009d58 <_Heap_Walk+0x4f0>
20098b4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20098b8: da 06 20 18 ld [ %i0 + 0x18 ], %o5
20098bc: c4 23 a0 5c st %g2, [ %sp + 0x5c ]
20098c0: f2 23 a0 60 st %i1, [ %sp + 0x60 ]
20098c4: e0 23 a0 64 st %l0, [ %sp + 0x64 ]
20098c8: c4 06 20 08 ld [ %i0 + 8 ], %g2
20098cc: 90 10 00 16 mov %l6, %o0
20098d0: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
20098d4: c4 06 20 0c ld [ %i0 + 0xc ], %g2
20098d8: 92 10 20 00 clr %o1
20098dc: c4 23 a0 6c st %g2, [ %sp + 0x6c ]
20098e0: 15 00 80 6d sethi %hi(0x201b400), %o2
20098e4: 96 10 00 1c mov %i4, %o3
20098e8: 94 12 a1 f0 or %o2, 0x1f0, %o2
20098ec: 9f c7 40 00 call %i5
20098f0: 98 10 00 1b mov %i3, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
20098f4: 80 a7 20 00 cmp %i4, 0
20098f8: 12 80 00 07 bne 2009914 <_Heap_Walk+0xac>
20098fc: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
2009900: 15 00 80 6d sethi %hi(0x201b400), %o2
2009904: 90 10 00 16 mov %l6, %o0
2009908: 92 10 20 01 mov 1, %o1
200990c: 10 80 00 37 b 20099e8 <_Heap_Walk+0x180>
2009910: 94 12 a2 88 or %o2, 0x288, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2009914: 22 80 00 08 be,a 2009934 <_Heap_Walk+0xcc>
2009918: 90 10 00 1b mov %i3, %o0
(*printer)(
200991c: 15 00 80 6d sethi %hi(0x201b400), %o2
2009920: 90 10 00 16 mov %l6, %o0
2009924: 92 10 20 01 mov 1, %o1
2009928: 94 12 a2 a0 or %o2, 0x2a0, %o2
200992c: 10 80 01 12 b 2009d74 <_Heap_Walk+0x50c>
2009930: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009934: 7f ff e0 94 call 2001b84 <.urem>
2009938: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
200993c: 80 a2 20 00 cmp %o0, 0
2009940: 22 80 00 08 be,a 2009960 <_Heap_Walk+0xf8>
2009944: 90 06 60 08 add %i1, 8, %o0
(*printer)(
2009948: 15 00 80 6d sethi %hi(0x201b400), %o2
200994c: 90 10 00 16 mov %l6, %o0
2009950: 92 10 20 01 mov 1, %o1
2009954: 94 12 a2 c0 or %o2, 0x2c0, %o2
2009958: 10 80 01 07 b 2009d74 <_Heap_Walk+0x50c>
200995c: 96 10 00 1b mov %i3, %o3
2009960: 7f ff e0 89 call 2001b84 <.urem>
2009964: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
2009968: 80 a2 20 00 cmp %o0, 0
200996c: 22 80 00 07 be,a 2009988 <_Heap_Walk+0x120>
2009970: c4 06 60 04 ld [ %i1 + 4 ], %g2
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2009974: 15 00 80 6d sethi %hi(0x201b400), %o2
2009978: 90 10 00 16 mov %l6, %o0
200997c: 92 10 20 01 mov 1, %o1
2009980: 10 80 00 fc b 2009d70 <_Heap_Walk+0x508>
2009984: 94 12 a2 e8 or %o2, 0x2e8, %o2
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2009988: 80 88 a0 01 btst 1, %g2
200998c: 32 80 00 07 bne,a 20099a8 <_Heap_Walk+0x140>
2009990: f4 04 20 04 ld [ %l0 + 4 ], %i2
(*printer)(
2009994: 15 00 80 6d sethi %hi(0x201b400), %o2
2009998: 90 10 00 16 mov %l6, %o0
200999c: 92 10 20 01 mov 1, %o1
20099a0: 10 80 00 12 b 20099e8 <_Heap_Walk+0x180>
20099a4: 94 12 a3 20 or %o2, 0x320, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20099a8: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20099ac: b4 04 00 1a add %l0, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20099b0: c4 06 a0 04 ld [ %i2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20099b4: 80 88 a0 01 btst 1, %g2
20099b8: 12 80 00 07 bne 20099d4 <_Heap_Walk+0x16c>
20099bc: 80 a6 80 19 cmp %i2, %i1
(*printer)(
20099c0: 15 00 80 6d sethi %hi(0x201b400), %o2
20099c4: 90 10 00 16 mov %l6, %o0
20099c8: 92 10 20 01 mov 1, %o1
20099cc: 10 80 00 07 b 20099e8 <_Heap_Walk+0x180>
20099d0: 94 12 a3 50 or %o2, 0x350, %o2
);
return false;
}
if (
20099d4: 02 80 00 0a be 20099fc <_Heap_Walk+0x194>
20099d8: 15 00 80 6d sethi %hi(0x201b400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20099dc: 90 10 00 16 mov %l6, %o0
20099e0: 92 10 20 01 mov 1, %o1
20099e4: 94 12 a3 68 or %o2, 0x368, %o2
20099e8: 9f c7 40 00 call %i5
20099ec: b0 10 20 00 clr %i0
20099f0: b0 0e 20 ff and %i0, 0xff, %i0
20099f4: 81 c7 e0 08 ret
20099f8: 81 e8 00 00 restore
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
20099fc: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2009a00: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2009a04: 10 80 00 30 b 2009ac4 <_Heap_Walk+0x25c>
2009a08: b2 10 00 18 mov %i0, %i1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009a0c: 80 a0 c0 0b cmp %g3, %o3
2009a10: 18 80 00 05 bgu 2009a24 <_Heap_Walk+0x1bc>
2009a14: 84 10 20 00 clr %g2
2009a18: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
2009a1c: 80 a0 80 0b cmp %g2, %o3
2009a20: 84 60 3f ff subx %g0, -1, %g2
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
2009a24: 80 a0 a0 00 cmp %g2, 0
2009a28: 32 80 00 07 bne,a 2009a44 <_Heap_Walk+0x1dc>
2009a2c: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
2009a30: 15 00 80 6d sethi %hi(0x201b400), %o2
2009a34: 90 10 00 16 mov %l6, %o0
2009a38: 92 10 20 01 mov 1, %o1
2009a3c: 10 80 00 ce b 2009d74 <_Heap_Walk+0x50c>
2009a40: 94 12 a3 98 or %o2, 0x398, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009a44: d6 27 bf fc st %o3, [ %fp + -4 ]
2009a48: 7f ff e0 4f call 2001b84 <.urem>
2009a4c: 92 10 00 11 mov %l1, %o1
);
return false;
}
if (
2009a50: 80 a2 20 00 cmp %o0, 0
2009a54: 02 80 00 07 be 2009a70 <_Heap_Walk+0x208>
2009a58: d6 07 bf fc ld [ %fp + -4 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2009a5c: 15 00 80 6d sethi %hi(0x201b400), %o2
2009a60: 90 10 00 16 mov %l6, %o0
2009a64: 92 10 20 01 mov 1, %o1
2009a68: 10 80 00 c3 b 2009d74 <_Heap_Walk+0x50c>
2009a6c: 94 12 a3 b8 or %o2, 0x3b8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009a70: c4 02 e0 04 ld [ %o3 + 4 ], %g2
2009a74: 84 08 bf fe and %g2, -2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009a78: 84 02 c0 02 add %o3, %g2, %g2
2009a7c: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2009a80: 80 88 a0 01 btst 1, %g2
2009a84: 22 80 00 07 be,a 2009aa0 <_Heap_Walk+0x238>
2009a88: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
2009a8c: 15 00 80 6d sethi %hi(0x201b400), %o2
2009a90: 90 10 00 16 mov %l6, %o0
2009a94: 92 10 20 01 mov 1, %o1
2009a98: 10 80 00 b7 b 2009d74 <_Heap_Walk+0x50c>
2009a9c: 94 12 a3 e8 or %o2, 0x3e8, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
2009aa0: 80 a3 00 19 cmp %o4, %i1
2009aa4: 02 80 00 07 be 2009ac0 <_Heap_Walk+0x258>
2009aa8: b2 10 00 0b mov %o3, %i1
(*printer)(
2009aac: 15 00 80 6e sethi %hi(0x201b800), %o2
2009ab0: 90 10 00 16 mov %l6, %o0
2009ab4: 92 10 20 01 mov 1, %o1
2009ab8: 10 80 00 4d b 2009bec <_Heap_Walk+0x384>
2009abc: 94 12 a0 08 or %o2, 8, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
2009ac0: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2009ac4: 80 a2 c0 18 cmp %o3, %i0
2009ac8: 32 bf ff d1 bne,a 2009a0c <_Heap_Walk+0x1a4>
2009acc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009ad0: 2b 00 80 6e sethi %hi(0x201b800), %l5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2009ad4: b2 10 00 1a mov %i2, %i1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009ad8: aa 15 61 08 or %l5, 0x108, %l5
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009adc: 23 00 80 6e sethi %hi(0x201b800), %l1
2009ae0: 2f 00 80 6d sethi %hi(0x201b400), %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009ae4: e4 06 60 04 ld [ %i1 + 4 ], %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009ae8: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2009aec: 9e 1e 40 10 xor %i1, %l0, %o7
2009af0: 80 a0 00 0f cmp %g0, %o7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009af4: a8 0c bf fe and %l2, -2, %l4
2009af8: 9a 40 20 00 addx %g0, 0, %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2009afc: a6 06 40 14 add %i1, %l4, %l3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009b00: a4 0c a0 01 and %l2, 1, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009b04: 80 a3 00 13 cmp %o4, %l3
2009b08: 18 80 00 05 bgu 2009b1c <_Heap_Walk+0x2b4> <== NEVER TAKEN
2009b0c: 9e 10 20 00 clr %o7
2009b10: de 06 20 24 ld [ %i0 + 0x24 ], %o7
2009b14: 80 a3 c0 13 cmp %o7, %l3
2009b18: 9e 60 3f ff subx %g0, -1, %o7
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
2009b1c: 80 a3 e0 00 cmp %o7, 0
2009b20: 32 80 00 07 bne,a 2009b3c <_Heap_Walk+0x2d4>
2009b24: da 27 bf f8 st %o5, [ %fp + -8 ]
(*printer)(
2009b28: 15 00 80 6e sethi %hi(0x201b800), %o2
2009b2c: 90 10 00 16 mov %l6, %o0
2009b30: 92 10 20 01 mov 1, %o1
2009b34: 10 80 00 2c b 2009be4 <_Heap_Walk+0x37c>
2009b38: 94 12 a0 40 or %o2, 0x40, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009b3c: 90 10 00 14 mov %l4, %o0
2009b40: 7f ff e0 11 call 2001b84 <.urem>
2009b44: 92 10 00 1c mov %i4, %o1
2009b48: da 07 bf f8 ld [ %fp + -8 ], %o5
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2009b4c: 80 a2 20 00 cmp %o0, 0
2009b50: 02 80 00 0c be 2009b80 <_Heap_Walk+0x318>
2009b54: 9e 0b 60 ff and %o5, 0xff, %o7
2009b58: 80 a3 e0 00 cmp %o7, 0
2009b5c: 02 80 00 19 be 2009bc0 <_Heap_Walk+0x358>
2009b60: 80 a6 40 13 cmp %i1, %l3
(*printer)(
2009b64: 15 00 80 6e sethi %hi(0x201b800), %o2
2009b68: 90 10 00 16 mov %l6, %o0
2009b6c: 92 10 20 01 mov 1, %o1
2009b70: 94 12 a0 70 or %o2, 0x70, %o2
2009b74: 96 10 00 19 mov %i1, %o3
2009b78: 10 80 00 1d b 2009bec <_Heap_Walk+0x384>
2009b7c: 98 10 00 14 mov %l4, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2009b80: 80 a3 e0 00 cmp %o7, 0
2009b84: 02 80 00 0f be 2009bc0 <_Heap_Walk+0x358>
2009b88: 80 a6 40 13 cmp %i1, %l3
2009b8c: 80 a5 00 1b cmp %l4, %i3
2009b90: 1a 80 00 0c bcc 2009bc0 <_Heap_Walk+0x358>
2009b94: 80 a6 40 13 cmp %i1, %l3
(*printer)(
2009b98: 90 10 00 16 mov %l6, %o0
2009b9c: 92 10 20 01 mov 1, %o1
2009ba0: 15 00 80 6e sethi %hi(0x201b800), %o2
2009ba4: 96 10 00 19 mov %i1, %o3
2009ba8: 94 12 a0 a0 or %o2, 0xa0, %o2
2009bac: 98 10 00 14 mov %l4, %o4
2009bb0: 9f c7 40 00 call %i5
2009bb4: 9a 10 00 1b mov %i3, %o5
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2009bb8: 10 80 00 68 b 2009d58 <_Heap_Walk+0x4f0>
2009bbc: b0 10 20 00 clr %i0
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2009bc0: 2a 80 00 10 bcs,a 2009c00 <_Heap_Walk+0x398>
2009bc4: de 04 e0 04 ld [ %l3 + 4 ], %o7
2009bc8: 80 8b 60 ff btst 0xff, %o5
2009bcc: 22 80 00 0d be,a 2009c00 <_Heap_Walk+0x398>
2009bd0: de 04 e0 04 ld [ %l3 + 4 ], %o7
(*printer)(
2009bd4: 15 00 80 6e sethi %hi(0x201b800), %o2
2009bd8: 90 10 00 16 mov %l6, %o0
2009bdc: 92 10 20 01 mov 1, %o1
2009be0: 94 12 a0 d0 or %o2, 0xd0, %o2
2009be4: 96 10 00 19 mov %i1, %o3
2009be8: 98 10 00 13 mov %l3, %o4
2009bec: 9f c7 40 00 call %i5
2009bf0: b0 10 20 00 clr %i0
2009bf4: b0 0e 20 ff and %i0, 0xff, %i0
2009bf8: 81 c7 e0 08 ret
2009bfc: 81 e8 00 00 restore
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2009c00: 80 8b e0 01 btst 1, %o7
2009c04: 12 80 00 3f bne 2009d00 <_Heap_Walk+0x498>
2009c08: 90 10 00 16 mov %l6, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2009c0c: da 06 60 0c ld [ %i1 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009c10: d8 06 20 08 ld [ %i0 + 8 ], %o4
2009c14: 80 a3 40 0c cmp %o5, %o4
2009c18: 02 80 00 08 be 2009c38 <_Heap_Walk+0x3d0>
2009c1c: de 06 20 0c ld [ %i0 + 0xc ], %o7
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2009c20: 80 a3 40 18 cmp %o5, %i0
2009c24: 12 80 00 07 bne 2009c40 <_Heap_Walk+0x3d8>
2009c28: 96 14 61 78 or %l1, 0x178, %o3
2009c2c: 17 00 80 6d sethi %hi(0x201b400), %o3
2009c30: 10 80 00 04 b 2009c40 <_Heap_Walk+0x3d8>
2009c34: 96 12 e1 c0 or %o3, 0x1c0, %o3 ! 201b5c0 <__log2table+0x130>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009c38: 03 00 80 6d sethi %hi(0x201b400), %g1
2009c3c: 96 10 61 b0 or %g1, 0x1b0, %o3 ! 201b5b0 <__log2table+0x120>
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
2009c40: d8 06 60 08 ld [ %i1 + 8 ], %o4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009c44: 80 a3 00 0f cmp %o4, %o7
2009c48: 02 80 00 06 be 2009c60 <_Heap_Walk+0x3f8>
2009c4c: 80 a3 00 18 cmp %o4, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009c50: 12 80 00 06 bne 2009c68 <_Heap_Walk+0x400>
2009c54: 9e 14 61 78 or %l1, 0x178, %o7
2009c58: 10 80 00 04 b 2009c68 <_Heap_Walk+0x400>
2009c5c: 9e 15 e1 e0 or %l7, 0x1e0, %o7
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009c60: 03 00 80 6d sethi %hi(0x201b400), %g1
2009c64: 9e 10 61 d0 or %g1, 0x1d0, %o7 ! 201b5d0 <__log2table+0x140>
2009c68: d6 23 a0 5c st %o3, [ %sp + 0x5c ]
2009c6c: d8 23 a0 60 st %o4, [ %sp + 0x60 ]
2009c70: de 23 a0 64 st %o7, [ %sp + 0x64 ]
2009c74: 90 10 00 16 mov %l6, %o0
2009c78: 92 10 20 00 clr %o1
2009c7c: 94 10 00 15 mov %l5, %o2
2009c80: 96 10 00 19 mov %i1, %o3
2009c84: 9f c7 40 00 call %i5
2009c88: 98 10 00 14 mov %l4, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2009c8c: da 04 c0 00 ld [ %l3 ], %o5
2009c90: 80 a5 00 0d cmp %l4, %o5
2009c94: 02 80 00 0c be 2009cc4 <_Heap_Walk+0x45c>
2009c98: 80 a4 a0 00 cmp %l2, 0
(*printer)(
2009c9c: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
2009ca0: 90 10 00 16 mov %l6, %o0
2009ca4: 92 10 20 01 mov 1, %o1
2009ca8: 15 00 80 6e sethi %hi(0x201b800), %o2
2009cac: 96 10 00 19 mov %i1, %o3
2009cb0: 94 12 a1 40 or %o2, 0x140, %o2
2009cb4: 9f c7 40 00 call %i5
2009cb8: 98 10 00 14 mov %l4, %o4
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2009cbc: 10 bf ff ce b 2009bf4 <_Heap_Walk+0x38c>
2009cc0: b0 10 20 00 clr %i0
);
return false;
}
if ( !prev_used ) {
2009cc4: 32 80 00 0a bne,a 2009cec <_Heap_Walk+0x484>
2009cc8: c6 06 20 08 ld [ %i0 + 8 ], %g3
(*printer)(
2009ccc: 15 00 80 6e sethi %hi(0x201b800), %o2
2009cd0: 90 10 00 16 mov %l6, %o0
2009cd4: 92 10 20 01 mov 1, %o1
2009cd8: 10 80 00 26 b 2009d70 <_Heap_Walk+0x508>
2009cdc: 94 12 a1 80 or %o2, 0x180, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2009ce0: 22 80 00 19 be,a 2009d44 <_Heap_Walk+0x4dc>
2009ce4: b2 10 00 13 mov %l3, %i1
return true;
}
free_block = free_block->next;
2009ce8: c6 00 e0 08 ld [ %g3 + 8 ], %g3
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2009cec: 80 a0 c0 18 cmp %g3, %i0
2009cf0: 12 bf ff fc bne 2009ce0 <_Heap_Walk+0x478>
2009cf4: 80 a0 c0 19 cmp %g3, %i1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009cf8: 10 80 00 1b b 2009d64 <_Heap_Walk+0x4fc>
2009cfc: 15 00 80 6e sethi %hi(0x201b800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2009d00: 80 a4 a0 00 cmp %l2, 0
2009d04: 02 80 00 09 be 2009d28 <_Heap_Walk+0x4c0>
2009d08: 92 10 20 00 clr %o1
(*printer)(
2009d0c: 15 00 80 6e sethi %hi(0x201b800), %o2
2009d10: 96 10 00 19 mov %i1, %o3
2009d14: 94 12 a1 b0 or %o2, 0x1b0, %o2
2009d18: 9f c7 40 00 call %i5
2009d1c: 98 10 00 14 mov %l4, %o4
2009d20: 10 80 00 09 b 2009d44 <_Heap_Walk+0x4dc>
2009d24: b2 10 00 13 mov %l3, %i1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009d28: da 06 40 00 ld [ %i1 ], %o5
2009d2c: 15 00 80 6e sethi %hi(0x201b800), %o2
2009d30: 96 10 00 19 mov %i1, %o3
2009d34: 94 12 a1 c8 or %o2, 0x1c8, %o2
2009d38: 9f c7 40 00 call %i5
2009d3c: 98 10 00 14 mov %l4, %o4
2009d40: b2 10 00 13 mov %l3, %i1
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2009d44: 80 a4 c0 1a cmp %l3, %i2
2009d48: 32 bf ff 68 bne,a 2009ae8 <_Heap_Walk+0x280>
2009d4c: e4 06 60 04 ld [ %i1 + 4 ], %l2
2009d50: 10 80 00 02 b 2009d58 <_Heap_Walk+0x4f0>
2009d54: b0 10 20 01 mov 1, %i0
2009d58: b0 0e 20 ff and %i0, 0xff, %i0
2009d5c: 81 c7 e0 08 ret
2009d60: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009d64: 90 10 00 16 mov %l6, %o0
2009d68: 92 10 20 01 mov 1, %o1
2009d6c: 94 12 a1 f0 or %o2, 0x1f0, %o2
2009d70: 96 10 00 19 mov %i1, %o3
2009d74: 9f c7 40 00 call %i5
2009d78: b0 10 20 00 clr %i0
2009d7c: b0 0e 20 ff and %i0, 0xff, %i0
2009d80: 81 c7 e0 08 ret
2009d84: 81 e8 00 00 restore
02008d0c <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2008d0c: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2008d10: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2008d14: 80 a0 60 00 cmp %g1, 0
2008d18: 12 80 00 04 bne 2008d28 <_Objects_Allocate+0x1c> <== ALWAYS TAKEN
2008d1c: ba 10 00 18 mov %i0, %i5
return NULL;
2008d20: 81 c7 e0 08 ret
2008d24: 91 e8 20 00 restore %g0, 0, %o0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008d28: b8 06 20 20 add %i0, 0x20, %i4
2008d2c: 7f ff fd 83 call 2008338 <_Chain_Get>
2008d30: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2008d34: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2008d38: 80 a0 60 00 cmp %g1, 0
2008d3c: 02 80 00 1d be 2008db0 <_Objects_Allocate+0xa4>
2008d40: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2008d44: 80 a2 20 00 cmp %o0, 0
2008d48: 32 80 00 0a bne,a 2008d70 <_Objects_Allocate+0x64>
2008d4c: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Objects_Extend_information( information );
2008d50: 40 00 00 21 call 2008dd4 <_Objects_Extend_information>
2008d54: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008d58: 7f ff fd 78 call 2008338 <_Chain_Get>
2008d5c: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
2008d60: b0 92 20 00 orcc %o0, 0, %i0
2008d64: 02 bf ff ef be 2008d20 <_Objects_Allocate+0x14>
2008d68: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2008d6c: c4 07 60 08 ld [ %i5 + 8 ], %g2
2008d70: d0 06 20 08 ld [ %i0 + 8 ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2008d74: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2008d78: 03 00 00 3f sethi %hi(0xfc00), %g1
2008d7c: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff <PROM_START+0xffff>
2008d80: 90 0a 00 01 and %o0, %g1, %o0
2008d84: 82 08 80 01 and %g2, %g1, %g1
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2008d88: 40 00 3b 59 call 2017aec <.udiv>
2008d8c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2008d90: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2008d94: 91 2a 20 02 sll %o0, 2, %o0
2008d98: c4 00 40 08 ld [ %g1 + %o0 ], %g2
2008d9c: 84 00 bf ff add %g2, -1, %g2
2008da0: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2008da4: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
2008da8: 82 00 7f ff add %g1, -1, %g1
2008dac: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2008db0: 81 c7 e0 08 ret
2008db4: 81 e8 00 00 restore
0200911c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
200911c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2009120: 80 a6 60 00 cmp %i1, 0
2009124: 12 80 00 04 bne 2009134 <_Objects_Get_information+0x18>
2009128: 01 00 00 00 nop
return NULL;
200912c: 81 c7 e0 08 ret
2009130: 91 e8 20 00 restore %g0, 0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2009134: 40 00 10 59 call 200d298 <_Objects_API_maximum_class>
2009138: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
200913c: 80 a2 20 00 cmp %o0, 0
2009140: 02 bf ff fb be 200912c <_Objects_Get_information+0x10>
2009144: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2009148: 18 bf ff f9 bgu 200912c <_Objects_Get_information+0x10>
200914c: 03 00 80 71 sethi %hi(0x201c400), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2009150: b1 2e 20 02 sll %i0, 2, %i0
2009154: 82 10 61 14 or %g1, 0x114, %g1
2009158: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200915c: 80 a0 60 00 cmp %g1, 0
2009160: 02 bf ff f3 be 200912c <_Objects_Get_information+0x10> <== NEVER TAKEN
2009164: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2009168: f0 00 40 19 ld [ %g1 + %i1 ], %i0
if ( !info )
200916c: 80 a6 20 00 cmp %i0, 0
2009170: 02 bf ff ef be 200912c <_Objects_Get_information+0x10> <== NEVER TAKEN
2009174: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2009178: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
200917c: 80 a0 60 00 cmp %g1, 0
2009180: 02 bf ff eb be 200912c <_Objects_Get_information+0x10>
2009184: 01 00 00 00 nop
return NULL;
#endif
return info;
}
2009188: 81 c7 e0 08 ret
200918c: 81 e8 00 00 restore
0201b3f0 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201b3f0: c2 02 20 08 ld [ %o0 + 8 ], %g1
201b3f4: 92 22 40 01 sub %o1, %g1, %o1
if ( information->maximum >= index ) {
201b3f8: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201b3fc: 92 02 60 01 inc %o1
if ( information->maximum >= index ) {
201b400: 80 a0 40 09 cmp %g1, %o1
201b404: 0a 80 00 09 bcs 201b428 <_Objects_Get_no_protection+0x38>
201b408: 93 2a 60 02 sll %o1, 2, %o1
if ( (the_object = information->local_table[ index ]) != NULL ) {
201b40c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
201b410: d0 00 40 09 ld [ %g1 + %o1 ], %o0
201b414: 80 a2 20 00 cmp %o0, 0
201b418: 02 80 00 05 be 201b42c <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
201b41c: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
201b420: 81 c3 e0 08 retl
201b424: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
201b428: 82 10 20 01 mov 1, %g1
return NULL;
201b42c: 90 10 20 00 clr %o0
}
201b430: 81 c3 e0 08 retl
201b434: c2 22 80 00 st %g1, [ %o2 ]
0200d220 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
200d220: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200d224: 80 a6 20 00 cmp %i0, 0
200d228: 12 80 00 06 bne 200d240 <_Objects_Id_to_name+0x20>
200d22c: 83 36 20 18 srl %i0, 0x18, %g1
200d230: 03 00 80 b2 sethi %hi(0x202c800), %g1
200d234: c2 00 60 cc ld [ %g1 + 0xcc ], %g1 ! 202c8cc <_Per_CPU_Information+0xc>
200d238: f0 00 60 08 ld [ %g1 + 8 ], %i0
200d23c: 83 36 20 18 srl %i0, 0x18, %g1
200d240: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200d244: 84 00 7f ff add %g1, -1, %g2
200d248: 80 a0 a0 02 cmp %g2, 2
200d24c: 08 80 00 14 bleu 200d29c <_Objects_Id_to_name+0x7c>
200d250: 83 28 60 02 sll %g1, 2, %g1
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
200d254: 81 c7 e0 08 ret
200d258: 91 e8 20 03 restore %g0, 3, %o0
if ( !_Objects_Information_table[ the_api ] )
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200d25c: 85 28 a0 02 sll %g2, 2, %g2
200d260: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200d264: 80 a2 20 00 cmp %o0, 0
200d268: 02 bf ff fb be 200d254 <_Objects_Id_to_name+0x34> <== NEVER TAKEN
200d26c: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
200d270: 7f ff ff ce call 200d1a8 <_Objects_Get>
200d274: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200d278: 80 a2 20 00 cmp %o0, 0
200d27c: 02 bf ff f6 be 200d254 <_Objects_Id_to_name+0x34>
200d280: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
200d284: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200d288: b0 10 20 00 clr %i0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200d28c: 40 00 03 b8 call 200e16c <_Thread_Enable_dispatch>
200d290: c2 26 40 00 st %g1, [ %i1 ]
200d294: 81 c7 e0 08 ret
200d298: 81 e8 00 00 restore
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200d29c: 05 00 80 b1 sethi %hi(0x202c400), %g2
200d2a0: 84 10 a1 c4 or %g2, 0x1c4, %g2 ! 202c5c4 <_Objects_Information_table>
200d2a4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200d2a8: 80 a0 60 00 cmp %g1, 0
200d2ac: 12 bf ff ec bne 200d25c <_Objects_Id_to_name+0x3c>
200d2b0: 85 36 20 1b srl %i0, 0x1b, %g2
200d2b4: 30 bf ff e8 b,a 200d254 <_Objects_Id_to_name+0x34>
0200a30c <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a30c: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200a310: 80 a6 60 00 cmp %i1, 0
200a314: 02 80 00 69 be 200a4b8 <_RBTree_Extract_unprotected+0x1ac>
200a318: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200a31c: c2 06 20 08 ld [ %i0 + 8 ], %g1
200a320: 80 a6 40 01 cmp %i1, %g1
200a324: 32 80 00 07 bne,a 200a340 <_RBTree_Extract_unprotected+0x34>
200a328: c2 06 20 0c ld [ %i0 + 0xc ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_RIGHT );
200a32c: 90 10 00 19 mov %i1, %o0
200a330: 40 00 01 31 call 200a7f4 <_RBTree_Next_unprotected>
200a334: 92 10 20 01 mov 1, %o1
RBTree_Node *next;
next = _RBTree_Successor_unprotected(the_node);
the_rbtree->first[RBT_LEFT] = next;
200a338: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200a33c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200a340: 80 a6 40 01 cmp %i1, %g1
200a344: 32 80 00 07 bne,a 200a360 <_RBTree_Extract_unprotected+0x54>
200a348: fa 06 60 04 ld [ %i1 + 4 ], %i5
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_LEFT );
200a34c: 90 10 00 19 mov %i1, %o0
200a350: 40 00 01 29 call 200a7f4 <_RBTree_Next_unprotected>
200a354: 92 10 20 00 clr %o1
RBTree_Node *previous;
previous = _RBTree_Predecessor_unprotected(the_node);
the_rbtree->first[RBT_RIGHT] = previous;
200a358: d0 26 20 0c st %o0, [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200a35c: fa 06 60 04 ld [ %i1 + 4 ], %i5
200a360: 80 a7 60 00 cmp %i5, 0
200a364: 02 80 00 36 be 200a43c <_RBTree_Extract_unprotected+0x130>
200a368: f8 06 60 08 ld [ %i1 + 8 ], %i4
200a36c: 80 a7 20 00 cmp %i4, 0
200a370: 32 80 00 05 bne,a 200a384 <_RBTree_Extract_unprotected+0x78>
200a374: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a378: 10 80 00 35 b 200a44c <_RBTree_Extract_unprotected+0x140>
200a37c: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200a380: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a384: 80 a0 60 00 cmp %g1, 0
200a388: 32 bf ff fe bne,a 200a380 <_RBTree_Extract_unprotected+0x74>
200a38c: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200a390: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200a394: 80 a7 20 00 cmp %i4, 0
200a398: 02 80 00 05 be 200a3ac <_RBTree_Extract_unprotected+0xa0>
200a39c: 01 00 00 00 nop
leaf->parent = target->parent;
200a3a0: c2 07 40 00 ld [ %i5 ], %g1
200a3a4: 10 80 00 04 b 200a3b4 <_RBTree_Extract_unprotected+0xa8>
200a3a8: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200a3ac: 7f ff ff 73 call 200a178 <_RBTree_Extract_validate_unprotected>
200a3b0: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200a3b4: c4 07 40 00 ld [ %i5 ], %g2
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200a3b8: c2 07 60 0c ld [ %i5 + 0xc ], %g1
dir = target != target->parent->child[0];
200a3bc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a3c0: 86 1f 40 03 xor %i5, %g3, %g3
200a3c4: 80 a0 00 03 cmp %g0, %g3
200a3c8: 86 40 20 00 addx %g0, 0, %g3
target->parent->child[dir] = leaf;
200a3cc: 87 28 e0 02 sll %g3, 2, %g3
200a3d0: 84 00 80 03 add %g2, %g3, %g2
200a3d4: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200a3d8: c4 06 40 00 ld [ %i1 ], %g2
200a3dc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a3e0: 86 1e 40 03 xor %i1, %g3, %g3
200a3e4: 80 a0 00 03 cmp %g0, %g3
200a3e8: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = target;
200a3ec: 87 28 e0 02 sll %g3, 2, %g3
200a3f0: 84 00 80 03 add %g2, %g3, %g2
200a3f4: fa 20 a0 04 st %i5, [ %g2 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200a3f8: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a3fc: c4 27 60 08 st %g2, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200a400: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a404: 80 a0 a0 00 cmp %g2, 0
200a408: 32 80 00 02 bne,a 200a410 <_RBTree_Extract_unprotected+0x104><== ALWAYS TAKEN
200a40c: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200a410: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a414: c4 27 60 04 st %g2, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200a418: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a41c: 80 a0 a0 00 cmp %g2, 0
200a420: 32 80 00 02 bne,a 200a428 <_RBTree_Extract_unprotected+0x11c>
200a424: fa 20 80 00 st %i5, [ %g2 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200a428: c4 06 40 00 ld [ %i1 ], %g2
200a42c: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200a430: c4 06 60 0c ld [ %i1 + 0xc ], %g2
200a434: 10 80 00 14 b 200a484 <_RBTree_Extract_unprotected+0x178>
200a438: c4 27 60 0c st %g2, [ %i5 + 0xc ]
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
200a43c: 80 a7 20 00 cmp %i4, 0
200a440: 32 80 00 04 bne,a 200a450 <_RBTree_Extract_unprotected+0x144>
200a444: c2 06 40 00 ld [ %i1 ], %g1
200a448: 30 80 00 04 b,a 200a458 <_RBTree_Extract_unprotected+0x14c>
leaf->parent = the_node->parent;
200a44c: c2 06 40 00 ld [ %i1 ], %g1
200a450: 10 80 00 04 b 200a460 <_RBTree_Extract_unprotected+0x154>
200a454: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200a458: 7f ff ff 48 call 200a178 <_RBTree_Extract_validate_unprotected>
200a45c: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a460: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200a464: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a468: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a46c: 86 1e 40 03 xor %i1, %g3, %g3
200a470: 80 a0 00 03 cmp %g0, %g3
200a474: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
200a478: 87 28 e0 02 sll %g3, 2, %g3
200a47c: 84 00 80 03 add %g2, %g3, %g2
200a480: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200a484: 80 a0 60 00 cmp %g1, 0
200a488: 32 80 00 06 bne,a 200a4a0 <_RBTree_Extract_unprotected+0x194>
200a48c: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200a490: 80 a7 20 00 cmp %i4, 0
200a494: 32 80 00 02 bne,a 200a49c <_RBTree_Extract_unprotected+0x190>
200a498: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200a49c: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200a4a0: c0 26 60 08 clr [ %i1 + 8 ]
200a4a4: c0 26 60 04 clr [ %i1 + 4 ]
200a4a8: 80 a0 60 00 cmp %g1, 0
200a4ac: 02 80 00 03 be 200a4b8 <_RBTree_Extract_unprotected+0x1ac>
200a4b0: c0 26 40 00 clr [ %i1 ]
200a4b4: c0 20 60 0c clr [ %g1 + 0xc ]
200a4b8: 81 c7 e0 08 ret
200a4bc: 81 e8 00 00 restore
0200b500 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200b500: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200b504: 80 a6 20 00 cmp %i0, 0
200b508: 02 80 00 10 be 200b548 <_RBTree_Initialize+0x48> <== NEVER TAKEN
200b50c: 01 00 00 00 nop
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200b510: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200b514: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200b518: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200b51c: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200b520: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b524: 10 80 00 06 b 200b53c <_RBTree_Initialize+0x3c>
200b528: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert_unprotected(the_rbtree, next);
200b52c: 90 10 00 18 mov %i0, %o0
200b530: 7f ff ff 2e call 200b1e8 <_RBTree_Insert_unprotected>
200b534: b4 06 80 1c add %i2, %i4, %i2
200b538: b6 06 ff ff add %i3, -1, %i3
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b53c: 80 a6 e0 00 cmp %i3, 0
200b540: 12 bf ff fb bne 200b52c <_RBTree_Initialize+0x2c>
200b544: 92 10 00 1a mov %i2, %o1
200b548: 81 c7 e0 08 ret
200b54c: 81 e8 00 00 restore
0200a560 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a560: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
200a564: 80 a6 60 00 cmp %i1, 0
200a568: 02 80 00 7c be 200a758 <_RBTree_Insert_unprotected+0x1f8>
200a56c: ba 10 00 18 mov %i0, %i5
RBTree_Node *iter_node = the_rbtree->root;
200a570: f0 06 20 04 ld [ %i0 + 4 ], %i0
int compare_result;
if (!iter_node) { /* special case: first node inserted */
200a574: b6 96 20 00 orcc %i0, 0, %i3
200a578: 32 80 00 0c bne,a 200a5a8 <_RBTree_Insert_unprotected+0x48>
200a57c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
the_node->color = RBT_BLACK;
200a580: c0 26 60 0c clr [ %i1 + 0xc ]
the_rbtree->root = the_node;
200a584: f2 27 60 04 st %i1, [ %i5 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
200a588: f2 27 60 0c st %i1, [ %i5 + 0xc ]
200a58c: f2 27 60 08 st %i1, [ %i5 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200a590: fa 26 40 00 st %i5, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a594: c0 26 60 08 clr [ %i1 + 8 ]
200a598: c0 26 60 04 clr [ %i1 + 4 ]
200a59c: 81 c7 e0 08 ret
200a5a0: 81 e8 00 00 restore
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
200a5a4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a5a8: 90 10 00 19 mov %i1, %o0
200a5ac: 9f c0 40 00 call %g1
200a5b0: 92 10 00 18 mov %i0, %o1
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200a5b4: c2 0f 60 14 ldub [ %i5 + 0x14 ], %g1
200a5b8: 80 a0 60 00 cmp %g1, 0
200a5bc: 02 80 00 05 be 200a5d0 <_RBTree_Insert_unprotected+0x70>
200a5c0: b8 38 00 08 xnor %g0, %o0, %i4
200a5c4: 80 a2 20 00 cmp %o0, 0
200a5c8: 02 80 00 65 be 200a75c <_RBTree_Insert_unprotected+0x1fc>
200a5cc: 01 00 00 00 nop
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200a5d0: b9 37 20 1f srl %i4, 0x1f, %i4
if (!iter_node->child[dir]) {
200a5d4: 83 2f 20 02 sll %i4, 2, %g1
200a5d8: 82 06 00 01 add %i0, %g1, %g1
200a5dc: f0 00 60 04 ld [ %g1 + 4 ], %i0
200a5e0: 80 a6 20 00 cmp %i0, 0
200a5e4: 32 bf ff f0 bne,a 200a5a4 <_RBTree_Insert_unprotected+0x44>
200a5e8: b6 10 00 18 mov %i0, %i3
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a5ec: c0 26 60 08 clr [ %i1 + 8 ]
200a5f0: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
200a5f4: 84 10 20 01 mov 1, %g2
iter_node->child[dir] = the_node;
200a5f8: f2 20 60 04 st %i1, [ %g1 + 4 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200a5fc: c4 26 60 0c st %g2, [ %i1 + 0xc ]
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
200a600: f6 26 40 00 st %i3, [ %i1 ]
/* update min/max */
compare_result = the_rbtree->compare_function(
200a604: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a608: b6 07 20 02 add %i4, 2, %i3
200a60c: 85 2e e0 02 sll %i3, 2, %g2
200a610: d2 07 40 02 ld [ %i5 + %g2 ], %o1
200a614: 9f c0 40 00 call %g1
200a618: 90 10 00 19 mov %i1, %o0
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
200a61c: 80 a7 20 00 cmp %i4, 0
200a620: 12 80 00 06 bne 200a638 <_RBTree_Insert_unprotected+0xd8>
200a624: 80 a2 20 00 cmp %o0, 0
200a628: 36 80 00 3c bge,a 200a718 <_RBTree_Insert_unprotected+0x1b8>
200a62c: d0 06 40 00 ld [ %i1 ], %o0
(dir && _RBTree_Is_greater(compare_result)) ) {
the_rbtree->first[dir] = the_node;
200a630: 10 80 00 04 b 200a640 <_RBTree_Insert_unprotected+0xe0>
200a634: b7 2e e0 02 sll %i3, 2, %i3
compare_result = the_rbtree->compare_function(
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
(dir && _RBTree_Is_greater(compare_result)) ) {
200a638: 04 80 00 37 ble 200a714 <_RBTree_Insert_unprotected+0x1b4>
200a63c: b7 2e e0 02 sll %i3, 2, %i3
the_rbtree->first[dir] = the_node;
200a640: 10 80 00 35 b 200a714 <_RBTree_Insert_unprotected+0x1b4>
200a644: f2 27 40 1b st %i1, [ %i5 + %i3 ]
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
200a648: 02 80 00 13 be 200a694 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN
200a64c: 82 10 20 00 clr %g1
if(!(the_node->parent->parent->parent)) return NULL;
200a650: c2 07 40 00 ld [ %i5 ], %g1
200a654: 80 a0 60 00 cmp %g1, 0
200a658: 02 80 00 0f be 200a694 <_RBTree_Insert_unprotected+0x134> <== NEVER TAKEN
200a65c: 82 10 20 00 clr %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200a660: c2 07 60 04 ld [ %i5 + 4 ], %g1
200a664: 80 a2 00 01 cmp %o0, %g1
200a668: 22 80 00 02 be,a 200a670 <_RBTree_Insert_unprotected+0x110>
200a66c: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a670: 80 a0 60 00 cmp %g1, 0
200a674: 02 80 00 09 be 200a698 <_RBTree_Insert_unprotected+0x138>
200a678: 84 10 20 00 clr %g2
200a67c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200a680: 80 a0 a0 01 cmp %g2, 1
200a684: 32 80 00 05 bne,a 200a698 <_RBTree_Insert_unprotected+0x138>
200a688: 84 10 20 00 clr %g2
200a68c: 10 80 00 03 b 200a698 <_RBTree_Insert_unprotected+0x138>
200a690: 84 10 20 01 mov 1, %g2
200a694: 84 10 20 00 clr %g2 <== NOT EXECUTED
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
200a698: 80 a0 a0 00 cmp %g2, 0
200a69c: 22 80 00 08 be,a 200a6bc <_RBTree_Insert_unprotected+0x15c>
200a6a0: c2 07 60 04 ld [ %i5 + 4 ], %g1
the_node->parent->color = RBT_BLACK;
200a6a4: c0 22 20 0c clr [ %o0 + 0xc ]
u->color = RBT_BLACK;
200a6a8: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a6ac: b2 10 00 1d mov %i5, %i1
200a6b0: 82 10 20 01 mov 1, %g1
200a6b4: 10 80 00 18 b 200a714 <_RBTree_Insert_unprotected+0x1b4>
200a6b8: c2 27 60 0c st %g1, [ %i5 + 0xc ]
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
200a6bc: 82 1a 00 01 xor %o0, %g1, %g1
200a6c0: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a6c4: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
200a6c8: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a6cc: 82 1e 40 01 xor %i1, %g1, %g1
200a6d0: 80 a0 00 01 cmp %g0, %g1
200a6d4: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200a6d8: 80 a0 40 1c cmp %g1, %i4
200a6dc: 22 80 00 08 be,a 200a6fc <_RBTree_Insert_unprotected+0x19c>
200a6e0: c2 06 40 00 ld [ %i1 ], %g1
_RBTree_Rotate(the_node->parent, pdir);
200a6e4: 7f ff ff 80 call 200a4e4 <_RBTree_Rotate>
200a6e8: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
200a6ec: 83 2f 20 02 sll %i4, 2, %g1
200a6f0: b2 06 40 01 add %i1, %g1, %i1
200a6f4: f2 06 60 04 ld [ %i1 + 4 ], %i1
}
the_node->parent->color = RBT_BLACK;
200a6f8: c2 06 40 00 ld [ %i1 ], %g1
g->color = RBT_RED;
200a6fc: 92 10 20 01 mov 1, %o1
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
200a700: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a704: d2 27 60 0c st %o1, [ %i5 + 0xc ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200a708: 90 10 00 1d mov %i5, %o0
200a70c: 7f ff ff 76 call 200a4e4 <_RBTree_Rotate>
200a710: 92 22 40 1c sub %o1, %i4, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200a714: d0 06 40 00 ld [ %i1 ], %o0
200a718: fa 02 00 00 ld [ %o0 ], %i5
200a71c: 80 a7 60 00 cmp %i5, 0
200a720: 22 80 00 06 be,a 200a738 <_RBTree_Insert_unprotected+0x1d8>
200a724: 82 10 20 00 clr %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a728: c2 02 20 0c ld [ %o0 + 0xc ], %g1
200a72c: 82 18 60 01 xor %g1, 1, %g1
200a730: 80 a0 00 01 cmp %g0, %g1
200a734: 82 60 3f ff subx %g0, -1, %g1
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
200a738: 80 a0 60 00 cmp %g1, 0
200a73c: 12 bf ff c3 bne 200a648 <_RBTree_Insert_unprotected+0xe8>
200a740: 80 a7 60 00 cmp %i5, 0
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a744: 12 80 00 06 bne 200a75c <_RBTree_Insert_unprotected+0x1fc>
200a748: 01 00 00 00 nop
200a74c: c0 26 60 0c clr [ %i1 + 0xc ]
200a750: 81 c7 e0 08 ret
200a754: 81 e8 00 00 restore
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
if(!the_node) return (RBTree_Node*)-1;
200a758: b0 10 3f ff mov -1, %i0
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200a75c: 81 c7 e0 08 ret
200a760: 81 e8 00 00 restore
0200a794 <_RBTree_Iterate_unprotected>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
200a794: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
200a798: b8 10 20 00 clr %i4
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a79c: 80 a0 00 19 cmp %g0, %i1
200a7a0: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a7a4: 82 00 60 02 add %g1, 2, %g1
200a7a8: 83 28 60 02 sll %g1, 2, %g1
while ( !stop && current != NULL ) {
200a7ac: 10 80 00 0a b 200a7d4 <_RBTree_Iterate_unprotected+0x40>
200a7b0: fa 06 00 01 ld [ %i0 + %g1 ], %i5
stop = (*visitor)( current, dir, visitor_arg );
200a7b4: 92 10 00 19 mov %i1, %o1
200a7b8: 9f c6 80 00 call %i2
200a7bc: 94 10 00 1b mov %i3, %o2
current = _RBTree_Next_unprotected( current, dir );
200a7c0: 92 10 00 19 mov %i1, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200a7c4: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next_unprotected( current, dir );
200a7c8: 40 00 00 0b call 200a7f4 <_RBTree_Next_unprotected>
200a7cc: 90 10 00 1d mov %i5, %o0
200a7d0: ba 10 00 08 mov %o0, %i5
{
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200a7d4: 80 a7 60 00 cmp %i5, 0
200a7d8: 02 80 00 05 be 200a7ec <_RBTree_Iterate_unprotected+0x58>
200a7dc: b8 1f 20 01 xor %i4, 1, %i4
200a7e0: 80 8f 20 ff btst 0xff, %i4
200a7e4: 12 bf ff f4 bne 200a7b4 <_RBTree_Iterate_unprotected+0x20><== ALWAYS TAKEN
200a7e8: 90 10 00 1d mov %i5, %o0
200a7ec: 81 c7 e0 08 ret
200a7f0: 81 e8 00 00 restore
0200a0fc <_RBTree_Rotate>:
RBTree_Node *the_node,
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
200a0fc: 80 a2 20 00 cmp %o0, 0
200a100: 02 80 00 1c be 200a170 <_RBTree_Rotate+0x74> <== NEVER TAKEN
200a104: 80 a0 00 09 cmp %g0, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a108: 86 60 3f ff subx %g0, -1, %g3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a10c: 87 28 e0 02 sll %g3, 2, %g3
200a110: 86 02 00 03 add %o0, %g3, %g3
200a114: c2 00 e0 04 ld [ %g3 + 4 ], %g1
200a118: 80 a0 60 00 cmp %g1, 0
200a11c: 02 80 00 15 be 200a170 <_RBTree_Rotate+0x74> <== NEVER TAKEN
200a120: 93 2a 60 02 sll %o1, 2, %o1
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a124: 84 00 40 09 add %g1, %o1, %g2
200a128: c8 00 a0 04 ld [ %g2 + 4 ], %g4
200a12c: c8 20 e0 04 st %g4, [ %g3 + 4 ]
if (c->child[dir])
200a130: c4 00 a0 04 ld [ %g2 + 4 ], %g2
200a134: 80 a0 a0 00 cmp %g2, 0
200a138: 32 80 00 02 bne,a 200a140 <_RBTree_Rotate+0x44>
200a13c: d0 20 80 00 st %o0, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a140: c4 02 00 00 ld [ %o0 ], %g2
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200a144: 92 00 40 09 add %g1, %o1, %o1
200a148: d0 22 60 04 st %o0, [ %o1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a14c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
c->parent = the_node->parent;
200a150: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a154: 86 1a 00 03 xor %o0, %g3, %g3
c->parent = the_node->parent;
the_node->parent = c;
200a158: c2 22 00 00 st %g1, [ %o0 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a15c: 80 a0 00 03 cmp %g0, %g3
200a160: 86 40 20 00 addx %g0, 0, %g3
200a164: 87 28 e0 02 sll %g3, 2, %g3
200a168: 86 00 80 03 add %g2, %g3, %g3
200a16c: c2 20 e0 04 st %g1, [ %g3 + 4 ]
200a170: 81 c3 e0 08 retl
0200a0ac <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
200a0ac: 80 a2 20 00 cmp %o0, 0
200a0b0: 02 80 00 10 be 200a0f0 <_RBTree_Sibling+0x44> <== NEVER TAKEN
200a0b4: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
200a0b8: c4 02 00 00 ld [ %o0 ], %g2
200a0bc: 80 a0 a0 00 cmp %g2, 0
200a0c0: 22 80 00 0d be,a 200a0f4 <_RBTree_Sibling+0x48> <== NEVER TAKEN
200a0c4: 90 10 00 01 mov %g1, %o0 <== NOT EXECUTED
if(!(the_node->parent->parent)) return NULL;
200a0c8: c2 00 80 00 ld [ %g2 ], %g1
200a0cc: 80 a0 60 00 cmp %g1, 0
200a0d0: 02 80 00 08 be 200a0f0 <_RBTree_Sibling+0x44>
200a0d4: 82 10 20 00 clr %g1
if(the_node == the_node->parent->child[RBT_LEFT])
200a0d8: c2 00 a0 04 ld [ %g2 + 4 ], %g1
200a0dc: 80 a2 00 01 cmp %o0, %g1
200a0e0: 22 80 00 04 be,a 200a0f0 <_RBTree_Sibling+0x44>
200a0e4: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
200a0e8: 81 c3 e0 08 retl
200a0ec: 90 10 00 01 mov %g1, %o0
else
return the_node->parent->child[RBT_LEFT];
}
200a0f0: 90 10 00 01 mov %g1, %o0
200a0f4: 81 c3 e0 08 retl
0200c9cc <_RTEMS_tasks_Post_switch_extension>:
*/
static void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c9cc: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c9d0: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
if ( !api )
200c9d4: 80 a7 60 00 cmp %i5, 0
200c9d8: 02 80 00 1c be 200ca48 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN
200c9dc: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c9e0: 7f ff d7 39 call 20026c4 <sparc_disable_interrupts>
200c9e4: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c9e8: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
200c9ec: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200c9f0: 7f ff d7 39 call 20026d4 <sparc_enable_interrupts>
200c9f4: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200c9f8: 80 a7 20 00 cmp %i4, 0
200c9fc: 02 80 00 13 be 200ca48 <_RTEMS_tasks_Post_switch_extension+0x7c>
200ca00: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
200ca04: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca08: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200ca0c: 82 00 60 01 inc %g1
200ca10: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca14: 37 00 00 3f sethi %hi(0xfc00), %i3
200ca18: 40 00 07 53 call 200e764 <rtems_task_mode>
200ca1c: 92 16 e3 ff or %i3, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200ca20: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200ca24: 9f c0 40 00 call %g1
200ca28: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
200ca2c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca30: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200ca34: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca38: 92 16 e3 ff or %i3, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200ca3c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca40: 40 00 07 49 call 200e764 <rtems_task_mode>
200ca44: 94 07 bf fc add %fp, -4, %o2
200ca48: 81 c7 e0 08 ret
200ca4c: 81 e8 00 00 restore
02031f5c <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
2031f5c: 9d e3 bf 98 save %sp, -104, %sp
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
2031f60: f6 06 20 40 ld [ %i0 + 0x40 ], %i3
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
2031f64: 7f ff 73 38 call 200ec44 <_TOD_Get_uptime>
2031f68: 90 07 bf f8 add %fp, -8, %o0
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2031f6c: c4 1e 20 50 ldd [ %i0 + 0x50 ], %g2
_Timestamp_Subtract(
2031f70: d8 1f bf f8 ldd [ %fp + -8 ], %o4
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2031f74: 82 10 20 01 mov 1, %g1
2031f78: 86 a3 40 03 subcc %o5, %g3, %g3
2031f7c: 84 63 00 02 subx %o4, %g2, %g2
2031f80: c4 3e 40 00 std %g2, [ %i1 ]
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
2031f84: 05 00 81 82 sethi %hi(0x2060800), %g2
2031f88: 84 10 a3 e0 or %g2, 0x3e0, %g2 ! 2060be0 <_Per_CPU_Information>
2031f8c: c6 00 a0 0c ld [ %g2 + 0xc ], %g3
2031f90: 80 a6 c0 03 cmp %i3, %g3
2031f94: 12 80 00 15 bne 2031fe8 <_Rate_monotonic_Get_status+0x8c>
2031f98: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4
2031f9c: c4 18 a0 20 ldd [ %g2 + 0x20 ], %g2
2031fa0: 9a a3 40 03 subcc %o5, %g3, %o5
2031fa4: 98 63 00 02 subx %o4, %g2, %o4
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2031fa8: c4 1e 20 48 ldd [ %i0 + 0x48 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2031fac: ba 87 40 0d addcc %i5, %o5, %i5
2031fb0: b8 47 00 0c addx %i4, %o4, %i4
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2031fb4: 80 a0 80 1c cmp %g2, %i4
2031fb8: 34 80 00 0c bg,a 2031fe8 <_Rate_monotonic_Get_status+0x8c><== NEVER TAKEN
2031fbc: 82 10 20 00 clr %g1 <== NOT EXECUTED
2031fc0: 32 80 00 06 bne,a 2031fd8 <_Rate_monotonic_Get_status+0x7c>
2031fc4: 86 a7 40 03 subcc %i5, %g3, %g3
2031fc8: 80 a0 c0 1d cmp %g3, %i5
2031fcc: 18 80 00 06 bgu 2031fe4 <_Rate_monotonic_Get_status+0x88>
2031fd0: 86 a7 40 03 subcc %i5, %g3, %g3
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2031fd4: 82 10 20 01 mov 1, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2031fd8: 84 67 00 02 subx %i4, %g2, %g2
2031fdc: 10 80 00 03 b 2031fe8 <_Rate_monotonic_Get_status+0x8c>
2031fe0: c4 3e 80 00 std %g2, [ %i2 ]
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
return false;
2031fe4: 82 10 20 00 clr %g1
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
2031fe8: b0 08 60 01 and %g1, 1, %i0
2031fec: 81 c7 e0 08 ret
2031ff0: 81 e8 00 00 restore
02032354 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2032354: 9d e3 bf 98 save %sp, -104, %sp
2032358: 11 00 81 83 sethi %hi(0x2060c00), %o0
203235c: 92 10 00 18 mov %i0, %o1
2032360: 90 12 22 00 or %o0, 0x200, %o0
2032364: 7f ff 5a f3 call 2008f30 <_Objects_Get>
2032368: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
203236c: c2 07 bf fc ld [ %fp + -4 ], %g1
2032370: 80 a0 60 00 cmp %g1, 0
2032374: 12 80 00 25 bne 2032408 <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN
2032378: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
203237c: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2032380: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2032384: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2032388: 80 88 80 01 btst %g2, %g1
203238c: 22 80 00 0b be,a 20323b8 <_Rate_monotonic_Timeout+0x64>
2032390: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2032394: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2032398: c2 07 60 08 ld [ %i5 + 8 ], %g1
203239c: 80 a0 80 01 cmp %g2, %g1
20323a0: 32 80 00 06 bne,a 20323b8 <_Rate_monotonic_Timeout+0x64>
20323a4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20323a8: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20323ac: 7f ff 5d a2 call 2009a34 <_Thread_Clear_state>
20323b0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
20323b4: 30 80 00 06 b,a 20323cc <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
20323b8: 80 a0 60 01 cmp %g1, 1
20323bc: 12 80 00 0d bne 20323f0 <_Rate_monotonic_Timeout+0x9c>
20323c0: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20323c4: 82 10 20 03 mov 3, %g1
20323c8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20323cc: 7f ff ff 53 call 2032118 <_Rate_monotonic_Initiate_statistics>
20323d0: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20323d4: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20323d8: 11 00 81 82 sethi %hi(0x2060800), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20323dc: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20323e0: 90 12 22 68 or %o0, 0x268, %o0
20323e4: 7f ff 61 b0 call 200aaa4 <_Watchdog_Insert>
20323e8: 92 07 60 10 add %i5, 0x10, %o1
20323ec: 30 80 00 02 b,a 20323f4 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
20323f0: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20323f4: 03 00 81 82 sethi %hi(0x2060800), %g1
20323f8: c4 00 61 c0 ld [ %g1 + 0x1c0 ], %g2 ! 20609c0 <_Thread_Dispatch_disable_level>
20323fc: 84 00 bf ff add %g2, -1, %g2
2032400: c4 20 61 c0 st %g2, [ %g1 + 0x1c0 ]
return _Thread_Dispatch_disable_level;
2032404: c2 00 61 c0 ld [ %g1 + 0x1c0 ], %g1
2032408: 81 c7 e0 08 ret
203240c: 81 e8 00 00 restore
02031ff4 <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
2031ff4: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
2031ff8: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
2031ffc: 82 00 60 01 inc %g1
2032000: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2032004: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
2032008: 80 a0 60 04 cmp %g1, 4
203200c: 12 80 00 05 bne 2032020 <_Rate_monotonic_Update_statistics+0x2c>
2032010: 90 10 00 18 mov %i0, %o0
stats->missed_count++;
2032014: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
2032018: 82 00 60 01 inc %g1
203201c: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
/*
* Grab status for time statistics.
*/
valid_status =
2032020: 92 07 bf f8 add %fp, -8, %o1
2032024: 7f ff ff ce call 2031f5c <_Rate_monotonic_Get_status>
2032028: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
203202c: 80 8a 20 ff btst 0xff, %o0
2032030: 02 80 00 38 be 2032110 <_Rate_monotonic_Update_statistics+0x11c>
2032034: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2032038: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
203203c: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
2032040: ba 87 40 03 addcc %i5, %g3, %i5
2032044: b8 47 00 02 addx %i4, %g2, %i4
2032048: 80 a0 40 02 cmp %g1, %g2
203204c: 14 80 00 09 bg 2032070 <_Rate_monotonic_Update_statistics+0x7c>
2032050: f8 3e 20 70 std %i4, [ %i0 + 0x70 ]
2032054: 80 a0 40 02 cmp %g1, %g2
2032058: 32 80 00 08 bne,a 2032078 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN
203205c: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
2032060: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
2032064: 80 a0 40 03 cmp %g1, %g3
2032068: 28 80 00 04 bleu,a 2032078 <_Rate_monotonic_Update_statistics+0x84>
203206c: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
2032070: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
2032074: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
2032078: 80 a0 40 02 cmp %g1, %g2
203207c: 26 80 00 0a bl,a 20320a4 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
2032080: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
2032084: 80 a0 40 02 cmp %g1, %g2
2032088: 32 80 00 08 bne,a 20320a8 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
203208c: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED
2032090: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
2032094: 80 a0 40 03 cmp %g1, %g3
2032098: 3a 80 00 04 bcc,a 20320a8 <_Rate_monotonic_Update_statistics+0xb4>
203209c: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
20320a0: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
20320a4: c4 1f bf f8 ldd [ %fp + -8 ], %g2
20320a8: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
20320ac: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20320b0: ba 87 40 03 addcc %i5, %g3, %i5
20320b4: b8 47 00 02 addx %i4, %g2, %i4
20320b8: 80 a0 40 02 cmp %g1, %g2
20320bc: 14 80 00 09 bg 20320e0 <_Rate_monotonic_Update_statistics+0xec>
20320c0: f8 3e 20 88 std %i4, [ %i0 + 0x88 ]
20320c4: 80 a0 40 02 cmp %g1, %g2
20320c8: 32 80 00 08 bne,a 20320e8 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN
20320cc: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
20320d0: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
20320d4: 80 a0 40 03 cmp %g1, %g3
20320d8: 28 80 00 04 bleu,a 20320e8 <_Rate_monotonic_Update_statistics+0xf4>
20320dc: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
20320e0: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
20320e4: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
20320e8: 80 a0 40 02 cmp %g1, %g2
20320ec: 26 80 00 09 bl,a 2032110 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
20320f0: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
20320f4: 80 a0 40 02 cmp %g1, %g2
20320f8: 12 80 00 06 bne 2032110 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
20320fc: 01 00 00 00 nop
2032100: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
2032104: 80 a0 40 03 cmp %g1, %g3
2032108: 2a 80 00 02 bcs,a 2032110 <_Rate_monotonic_Update_statistics+0x11c>
203210c: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
2032110: 81 c7 e0 08 ret
2032114: 81 e8 00 00 restore
0200b478 <_Scheduler_CBS_Budget_callout>:
Scheduler_CBS_Server **_Scheduler_CBS_Server_list;
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
200b478: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200b47c: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200b480: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b484: 80 a0 40 09 cmp %g1, %o1
200b488: 32 80 00 02 bne,a 200b490 <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
200b48c: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200b490: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200b494: 80 a0 40 09 cmp %g1, %o1
200b498: 02 80 00 04 be 200b4a8 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
200b49c: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200b4a0: 40 00 01 8c call 200bad0 <_Thread_Change_priority>
200b4a4: 94 10 20 01 mov 1, %o2
/* Invoke callback function if any. */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
200b4a8: fa 06 20 88 ld [ %i0 + 0x88 ], %i5
if ( sched_info->cbs_server->cbs_budget_overrun ) {
200b4ac: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b4b0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200b4b4: 80 a0 a0 00 cmp %g2, 0
200b4b8: 02 80 00 09 be 200b4dc <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
200b4bc: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
200b4c0: d0 00 40 00 ld [ %g1 ], %o0
200b4c4: 7f ff ff d7 call 200b420 <_Scheduler_CBS_Get_server_id>
200b4c8: 92 07 bf fc add %fp, -4, %o1
sched_info->cbs_server->task_id,
&server_id
);
sched_info->cbs_server->cbs_budget_overrun( server_id );
200b4cc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b4d0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200b4d4: 9f c0 40 00 call %g1
200b4d8: d0 07 bf fc ld [ %fp + -4 ], %o0
200b4dc: 81 c7 e0 08 ret
200b4e0: 81 e8 00 00 restore
0200b080 <_Scheduler_CBS_Create_server>:
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200b080: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200b084: c2 06 20 04 ld [ %i0 + 4 ], %g1
200b088: 80 a0 60 00 cmp %g1, 0
200b08c: 04 80 00 1d ble 200b100 <_Scheduler_CBS_Create_server+0x80>
200b090: 01 00 00 00 nop
200b094: c2 06 00 00 ld [ %i0 ], %g1
200b098: 80 a0 60 00 cmp %g1, 0
200b09c: 04 80 00 19 ble 200b100 <_Scheduler_CBS_Create_server+0x80>
200b0a0: 03 00 80 7b sethi %hi(0x201ec00), %g1
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b0a4: c4 00 63 fc ld [ %g1 + 0x3fc ], %g2 ! 201effc <_Scheduler_CBS_Maximum_servers>
if ( !_Scheduler_CBS_Server_list[i] )
200b0a8: 03 00 80 7f sethi %hi(0x201fc00), %g1
200b0ac: c6 00 63 38 ld [ %g1 + 0x338 ], %g3 ! 201ff38 <_Scheduler_CBS_Server_list>
200b0b0: 10 80 00 07 b 200b0cc <_Scheduler_CBS_Create_server+0x4c>
200b0b4: 82 10 20 00 clr %g1
200b0b8: c8 00 c0 1c ld [ %g3 + %i4 ], %g4
200b0bc: 80 a1 20 00 cmp %g4, 0
200b0c0: 02 80 00 14 be 200b110 <_Scheduler_CBS_Create_server+0x90>
200b0c4: 3b 00 80 7f sethi %hi(0x201fc00), %i5
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b0c8: 82 00 60 01 inc %g1
200b0cc: 80 a0 40 02 cmp %g1, %g2
200b0d0: 12 bf ff fa bne 200b0b8 <_Scheduler_CBS_Create_server+0x38>
200b0d4: b9 28 60 02 sll %g1, 2, %i4
if ( !_Scheduler_CBS_Server_list[i] )
break;
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
200b0d8: 81 c7 e0 08 ret
200b0dc: 91 e8 3f e6 restore %g0, -26, %o0
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b0e0: c4 20 60 04 st %g2, [ %g1 + 4 ]
200b0e4: c4 06 20 04 ld [ %i0 + 4 ], %g2
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
200b0e8: f2 20 60 0c st %i1, [ %g1 + 0xc ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b0ec: c4 20 60 08 st %g2, [ %g1 + 8 ]
the_server->task_id = -1;
200b0f0: 84 10 3f ff mov -1, %g2
200b0f4: c4 20 40 00 st %g2, [ %g1 ]
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
200b0f8: 81 c7 e0 08 ret
200b0fc: 91 e8 20 00 restore %g0, 0, %o0
if ( params->budget <= 0 ||
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200b100: 81 c7 e0 08 ret
200b104: 91 e8 3f ee restore %g0, -18, %o0
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
200b108: 81 c7 e0 08 ret <== NOT EXECUTED
200b10c: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b110: f6 07 63 38 ld [ %i5 + 0x338 ], %i3
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
200b114: c2 26 80 00 st %g1, [ %i2 ]
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
200b118: 40 00 07 98 call 200cf78 <_Workspace_Allocate>
200b11c: 90 10 20 10 mov 0x10, %o0
the_server = _Scheduler_CBS_Server_list[*server_id];
200b120: c2 06 80 00 ld [ %i2 ], %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b124: d0 26 c0 1c st %o0, [ %i3 + %i4 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
200b128: c4 07 63 38 ld [ %i5 + 0x338 ], %g2
200b12c: 83 28 60 02 sll %g1, 2, %g1
200b130: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_server )
200b134: 80 a0 60 00 cmp %g1, 0
200b138: 32 bf ff ea bne,a 200b0e0 <_Scheduler_CBS_Create_server+0x60><== ALWAYS TAKEN
200b13c: c4 06 00 00 ld [ %i0 ], %g2
200b140: 30 bf ff f2 b,a 200b108 <_Scheduler_CBS_Create_server+0x88><== NOT EXECUTED
0200b1b8 <_Scheduler_CBS_Detach_thread>:
int _Scheduler_CBS_Detach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
200b1b8: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
Scheduler_CBS_Per_thread *sched_info;
the_thread = _Thread_Get(task_id, &location);
200b1bc: 90 10 00 19 mov %i1, %o0
200b1c0: 40 00 03 76 call 200bf98 <_Thread_Get>
200b1c4: 92 07 bf fc add %fp, -4, %o1
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
200b1c8: ba 92 20 00 orcc %o0, 0, %i5
200b1cc: 02 80 00 05 be 200b1e0 <_Scheduler_CBS_Detach_thread+0x28>
200b1d0: 03 00 80 7b sethi %hi(0x201ec00), %g1
_Thread_Enable_dispatch();
200b1d4: 40 00 03 64 call 200bf64 <_Thread_Enable_dispatch>
200b1d8: 01 00 00 00 nop
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
200b1dc: 03 00 80 7b sethi %hi(0x201ec00), %g1
200b1e0: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1 ! 201effc <_Scheduler_CBS_Maximum_servers>
200b1e4: 80 a6 00 01 cmp %i0, %g1
200b1e8: 1a 80 00 1b bcc 200b254 <_Scheduler_CBS_Detach_thread+0x9c>
200b1ec: 80 a7 60 00 cmp %i5, 0
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
200b1f0: 02 80 00 19 be 200b254 <_Scheduler_CBS_Detach_thread+0x9c>
200b1f4: 03 00 80 7f sethi %hi(0x201fc00), %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
200b1f8: c2 00 63 38 ld [ %g1 + 0x338 ], %g1 ! 201ff38 <_Scheduler_CBS_Server_list>
200b1fc: b1 2e 20 02 sll %i0, 2, %i0
200b200: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200b204: 80 a0 60 00 cmp %g1, 0
200b208: 02 80 00 11 be 200b24c <_Scheduler_CBS_Detach_thread+0x94>
200b20c: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
200b210: c4 00 40 00 ld [ %g1 ], %g2
200b214: 80 a0 80 19 cmp %g2, %i1
200b218: 12 80 00 0f bne 200b254 <_Scheduler_CBS_Detach_thread+0x9c><== NEVER TAKEN
200b21c: 84 10 3f ff mov -1, %g2
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
200b220: c4 20 40 00 st %g2, [ %g1 ]
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b224: c2 07 60 88 ld [ %i5 + 0x88 ], %g1
200b228: c0 20 60 18 clr [ %g1 + 0x18 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b22c: c2 07 60 a0 ld [ %i5 + 0xa0 ], %g1
200b230: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
200b234: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1
200b238: c2 27 60 7c st %g1, [ %i5 + 0x7c ]
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b23c: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1
200b240: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
return SCHEDULER_CBS_OK;
200b244: 81 c7 e0 08 ret
200b248: 91 e8 20 00 restore %g0, 0, %o0
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
return SCHEDULER_CBS_ERROR_NOSERVER;
200b24c: 81 c7 e0 08 ret
200b250: 91 e8 3f e7 restore %g0, -25, %o0
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
the_thread->is_preemptible = the_thread->Start.is_preemptible;
return SCHEDULER_CBS_OK;
}
200b254: 81 c7 e0 08 ret
200b258: 91 e8 3f ee restore %g0, -18, %o0
0200b4e4 <_Scheduler_CBS_Initialize>:
}
}
int _Scheduler_CBS_Initialize(void)
{
200b4e4: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
200b4e8: 3b 00 80 7b sethi %hi(0x201ec00), %i5
200b4ec: d0 07 63 fc ld [ %i5 + 0x3fc ], %o0 ! 201effc <_Scheduler_CBS_Maximum_servers>
}
int _Scheduler_CBS_Initialize(void)
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
200b4f0: 40 00 06 a2 call 200cf78 <_Workspace_Allocate>
200b4f4: 91 2a 20 02 sll %o0, 2, %o0
200b4f8: 05 00 80 7f sethi %hi(0x201fc00), %g2
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
200b4fc: 80 a2 20 00 cmp %o0, 0
200b500: 02 80 00 0d be 200b534 <_Scheduler_CBS_Initialize+0x50> <== NEVER TAKEN
200b504: d0 20 a3 38 st %o0, [ %g2 + 0x338 ]
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b508: c6 07 63 fc ld [ %i5 + 0x3fc ], %g3
200b50c: 10 80 00 05 b 200b520 <_Scheduler_CBS_Initialize+0x3c>
200b510: 82 10 20 00 clr %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b514: 89 28 60 02 sll %g1, 2, %g4
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b518: 82 00 60 01 inc %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b51c: c0 27 40 04 clr [ %i5 + %g4 ]
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b520: 80 a0 40 03 cmp %g1, %g3
200b524: 12 bf ff fc bne 200b514 <_Scheduler_CBS_Initialize+0x30>
200b528: fa 00 a3 38 ld [ %g2 + 0x338 ], %i5
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200b52c: 81 c7 e0 08 ret
200b530: 91 e8 20 00 restore %g0, 0, %o0
}
200b534: 81 c7 e0 08 ret <== NOT EXECUTED
200b538: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
0200a12c <_Scheduler_CBS_Release_job>:
{
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info =
(Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
Scheduler_CBS_Server *serv_info =
(Scheduler_CBS_Server *) sched_info->cbs_server;
200a12c: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
if (deadline) {
200a130: 80 a2 60 00 cmp %o1, 0
200a134: 02 80 00 10 be 200a174 <_Scheduler_CBS_Release_job+0x48>
200a138: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
/* Initializing or shifting deadline. */
if (serv_info)
200a13c: 80 a0 60 00 cmp %g1, 0
200a140: 02 80 00 08 be 200a160 <_Scheduler_CBS_Release_job+0x34>
200a144: 05 00 80 78 sethi %hi(0x201e000), %g2
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
200a148: d2 00 a2 a8 ld [ %g2 + 0x2a8 ], %o1 ! 201e2a8 <_Watchdog_Ticks_since_boot>
200a14c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a150: 92 02 40 02 add %o1, %g2, %o1
200a154: 05 20 00 00 sethi %hi(0x80000000), %g2
200a158: 10 80 00 0a b 200a180 <_Scheduler_CBS_Release_job+0x54>
200a15c: 92 2a 40 02 andn %o1, %g2, %o1
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
200a160: c2 00 a2 a8 ld [ %g2 + 0x2a8 ], %g1
200a164: 92 02 40 01 add %o1, %g1, %o1
200a168: 03 20 00 00 sethi %hi(0x80000000), %g1
200a16c: 10 80 00 07 b 200a188 <_Scheduler_CBS_Release_job+0x5c>
200a170: 92 2a 40 01 andn %o1, %g1, %o1
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
200a174: 80 a0 60 00 cmp %g1, 0
200a178: 02 80 00 04 be 200a188 <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN
200a17c: d2 02 20 ac ld [ %o0 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
200a180: c2 00 60 08 ld [ %g1 + 8 ], %g1
200a184: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
200a188: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
200a18c: 94 10 20 01 mov 1, %o2
200a190: 82 13 c0 00 mov %o7, %g1
200a194: 40 00 01 2f call 200a650 <_Thread_Change_priority>
200a198: 9e 10 40 00 mov %g1, %o7
0200a19c <_Scheduler_CBS_Unblock>:
#include <rtems/score/schedulercbs.h>
void _Scheduler_CBS_Unblock(
Thread_Control *the_thread
)
{
200a19c: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server *serv_info;
Priority_Control new_priority;
_Scheduler_EDF_Enqueue(the_thread);
200a1a0: 40 00 00 57 call 200a2fc <_Scheduler_EDF_Enqueue>
200a1a4: 90 10 00 18 mov %i0, %o0
/* TODO: flash critical section? */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server;
200a1a8: c2 06 20 88 ld [ %i0 + 0x88 ], %g1
200a1ac: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
200a1b0: 80 a7 60 00 cmp %i5, 0
200a1b4: 02 80 00 18 be 200a214 <_Scheduler_CBS_Unblock+0x78>
200a1b8: 03 00 80 78 sethi %hi(0x201e000), %g1
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a1bc: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
200a1c0: d0 00 62 a8 ld [ %g1 + 0x2a8 ], %o0
200a1c4: f8 06 20 18 ld [ %i0 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a1c8: 40 00 3c 7b call 20193b4 <.umul>
200a1cc: 90 27 00 08 sub %i4, %o0, %o0
200a1d0: d2 06 20 74 ld [ %i0 + 0x74 ], %o1
200a1d4: b6 10 00 08 mov %o0, %i3
200a1d8: 40 00 3c 77 call 20193b4 <.umul>
200a1dc: d0 07 60 08 ld [ %i5 + 8 ], %o0
200a1e0: 80 a6 c0 08 cmp %i3, %o0
200a1e4: 24 80 00 0d ble,a 200a218 <_Scheduler_CBS_Unblock+0x7c>
200a1e8: 3b 00 80 78 sethi %hi(0x201e000), %i5
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200a1ec: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200a1f0: 80 a7 00 09 cmp %i4, %o1
200a1f4: 32 80 00 02 bne,a 200a1fc <_Scheduler_CBS_Unblock+0x60>
200a1f8: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200a1fc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a200: 80 a0 40 09 cmp %g1, %o1
200a204: 02 80 00 04 be 200a214 <_Scheduler_CBS_Unblock+0x78>
200a208: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200a20c: 40 00 01 11 call 200a650 <_Thread_Change_priority>
200a210: 94 10 20 01 mov 1, %o2
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
200a214: 3b 00 80 78 sethi %hi(0x201e000), %i5
200a218: ba 17 63 d0 or %i5, 0x3d0, %i5 ! 201e3d0 <_Per_CPU_Information>
200a21c: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200a220: 03 00 80 75 sethi %hi(0x201d400), %g1
200a224: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
200a228: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
200a22c: 9f c0 40 00 call %g1
200a230: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1
200a234: 80 a2 20 00 cmp %o0, 0
200a238: 04 80 00 0f ble 200a274 <_Scheduler_CBS_Unblock+0xd8>
200a23c: 01 00 00 00 nop
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a240: c2 07 60 0c ld [ %i5 + 0xc ], %g1
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
200a244: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a248: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a24c: 80 a0 60 00 cmp %g1, 0
200a250: 12 80 00 06 bne 200a268 <_Scheduler_CBS_Unblock+0xcc>
200a254: 84 10 20 01 mov 1, %g2
200a258: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a25c: 80 a0 60 00 cmp %g1, 0
200a260: 12 80 00 05 bne 200a274 <_Scheduler_CBS_Unblock+0xd8> <== ALWAYS TAKEN
200a264: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a268: 03 00 80 78 sethi %hi(0x201e000), %g1
200a26c: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201e3d0 <_Per_CPU_Information>
200a270: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200a274: 81 c7 e0 08 ret
200a278: 81 e8 00 00 restore
0200a27c <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
200a27c: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
200a280: 40 00 06 46 call 200bb98 <_Workspace_Allocate>
200a284: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
200a288: 80 a2 20 00 cmp %o0, 0
200a28c: 02 80 00 05 be 200a2a0 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
200a290: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
200a294: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
200a298: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
200a29c: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
200a2a0: 81 c7 e0 08 ret
200a2a4: 91 e8 00 08 restore %g0, %o0, %o0
0200a2f4 <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
200a2f4: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
200a2f8: 7f ff ff ad call 200a1ac <_Scheduler_EDF_Enqueue>
200a2fc: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
200a300: 3b 00 80 78 sethi %hi(0x201e000), %i5
200a304: ba 17 63 20 or %i5, 0x320, %i5 ! 201e320 <_Per_CPU_Information>
200a308: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200a30c: 03 00 80 75 sethi %hi(0x201d400), %g1
200a310: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0
200a314: c2 00 60 50 ld [ %g1 + 0x50 ], %g1
200a318: 9f c0 40 00 call %g1
200a31c: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
200a320: 80 a2 20 00 cmp %o0, 0
200a324: 16 80 00 0f bge 200a360 <_Scheduler_EDF_Unblock+0x6c>
200a328: 01 00 00 00 nop
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a32c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
200a330: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a334: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a338: 80 a0 60 00 cmp %g1, 0
200a33c: 12 80 00 06 bne 200a354 <_Scheduler_EDF_Unblock+0x60>
200a340: 84 10 20 01 mov 1, %g2
200a344: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a348: 80 a0 60 00 cmp %g1, 0
200a34c: 12 80 00 05 bne 200a360 <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN
200a350: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a354: 03 00 80 78 sethi %hi(0x201e000), %g1
200a358: 82 10 63 20 or %g1, 0x320, %g1 ! 201e320 <_Per_CPU_Information>
200a35c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200a360: 81 c7 e0 08 ret
200a364: 81 e8 00 00 restore
020086bc <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20086bc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
20086c0: 03 00 80 77 sethi %hi(0x201dc00), %g1
20086c4: d2 00 63 5c ld [ %g1 + 0x35c ], %o1 ! 201df5c <Configuration+0x10>
20086c8: 11 00 03 d0 sethi %hi(0xf4000), %o0
20086cc: 40 00 45 21 call 2019b50 <.udiv>
20086d0: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20086d4: 80 a6 20 00 cmp %i0, 0
20086d8: 02 80 00 28 be 2008778 <_TOD_Validate+0xbc> <== NEVER TAKEN
20086dc: 84 10 20 00 clr %g2
20086e0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
20086e4: 80 a0 40 08 cmp %g1, %o0
20086e8: 3a 80 00 25 bcc,a 200877c <_TOD_Validate+0xc0>
20086ec: b0 08 a0 01 and %g2, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
20086f0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20086f4: 80 a0 60 3b cmp %g1, 0x3b
20086f8: 38 80 00 21 bgu,a 200877c <_TOD_Validate+0xc0>
20086fc: b0 08 a0 01 and %g2, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2008700: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
2008704: 80 a0 60 3b cmp %g1, 0x3b
2008708: 38 80 00 1d bgu,a 200877c <_TOD_Validate+0xc0>
200870c: b0 08 a0 01 and %g2, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2008710: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2008714: 80 a0 60 17 cmp %g1, 0x17
2008718: 38 80 00 19 bgu,a 200877c <_TOD_Validate+0xc0>
200871c: b0 08 a0 01 and %g2, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2008720: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2008724: 80 a0 60 00 cmp %g1, 0
2008728: 02 80 00 14 be 2008778 <_TOD_Validate+0xbc> <== NEVER TAKEN
200872c: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
2008730: 38 80 00 13 bgu,a 200877c <_TOD_Validate+0xc0>
2008734: b0 08 a0 01 and %g2, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008738: c8 06 00 00 ld [ %i0 ], %g4
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
200873c: 80 a1 27 c3 cmp %g4, 0x7c3
2008740: 28 80 00 0f bleu,a 200877c <_TOD_Validate+0xc0>
2008744: b0 08 a0 01 and %g2, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2008748: c6 06 20 08 ld [ %i0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
200874c: 80 a0 e0 00 cmp %g3, 0
2008750: 02 80 00 0a be 2008778 <_TOD_Validate+0xbc> <== NEVER TAKEN
2008754: 80 89 20 03 btst 3, %g4
2008758: 05 00 80 72 sethi %hi(0x201c800), %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
200875c: 12 80 00 03 bne 2008768 <_TOD_Validate+0xac>
2008760: 84 10 a3 58 or %g2, 0x358, %g2 ! 201cb58 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2008764: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2008768: 83 28 60 02 sll %g1, 2, %g1
200876c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( the_tod->day > days_in_month )
2008770: 80 a0 40 03 cmp %g1, %g3
2008774: 84 60 3f ff subx %g0, -1, %g2
return false;
return true;
}
2008778: b0 08 a0 01 and %g2, 1, %i0
200877c: 81 c7 e0 08 ret
2008780: 81 e8 00 00 restore
02009c9c <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2009c9c: 9d e3 bf a0 save %sp, -96, %sp
2009ca0: ba 10 00 18 mov %i0, %i5
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2009ca4: f0 06 20 10 ld [ %i0 + 0x10 ], %i0
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2009ca8: 40 00 03 5e call 200aa20 <_Thread_Set_transient>
2009cac: 90 10 00 1d mov %i5, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2009cb0: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2009cb4: 80 a0 40 19 cmp %g1, %i1
2009cb8: 02 80 00 04 be 2009cc8 <_Thread_Change_priority+0x2c>
2009cbc: 90 10 00 1d mov %i5, %o0
_Thread_Set_priority( the_thread, new_priority );
2009cc0: 40 00 03 3f call 200a9bc <_Thread_Set_priority>
2009cc4: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2009cc8: 7f ff e2 7f call 20026c4 <sparc_disable_interrupts>
2009ccc: 01 00 00 00 nop
2009cd0: b6 10 00 08 mov %o0, %i3
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2009cd4: f8 07 60 10 ld [ %i5 + 0x10 ], %i4
if ( state != STATES_TRANSIENT ) {
2009cd8: 80 a7 20 04 cmp %i4, 4
2009cdc: 02 80 00 10 be 2009d1c <_Thread_Change_priority+0x80>
2009ce0: 82 0e 20 04 and %i0, 4, %g1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2009ce4: 80 a0 60 00 cmp %g1, 0
2009ce8: 12 80 00 03 bne 2009cf4 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2009cec: 82 0f 3f fb and %i4, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009cf0: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2009cf4: 7f ff e2 78 call 20026d4 <sparc_enable_interrupts>
2009cf8: 90 10 00 1b mov %i3, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2009cfc: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009d00: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2009d04: 80 8f 00 01 btst %i4, %g1
2009d08: 02 80 00 28 be 2009da8 <_Thread_Change_priority+0x10c>
2009d0c: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2009d10: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2009d14: 40 00 02 fc call 200a904 <_Thread_queue_Requeue>
2009d18: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2009d1c: 80 a0 60 00 cmp %g1, 0
2009d20: 12 80 00 0b bne 2009d4c <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2009d24: 03 00 80 6e sethi %hi(0x201b800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009d28: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
2009d2c: 80 a6 a0 00 cmp %i2, 0
2009d30: 02 80 00 04 be 2009d40 <_Thread_Change_priority+0xa4>
2009d34: 82 10 61 30 or %g1, 0x130, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2009d38: 10 80 00 03 b 2009d44 <_Thread_Change_priority+0xa8>
2009d3c: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2009d40: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2009d44: 9f c0 40 00 call %g1
2009d48: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2009d4c: 7f ff e2 62 call 20026d4 <sparc_enable_interrupts>
2009d50: 90 10 00 1b mov %i3, %o0
2009d54: 7f ff e2 5c call 20026c4 <sparc_disable_interrupts>
2009d58: 01 00 00 00 nop
2009d5c: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2009d60: 03 00 80 6e sethi %hi(0x201b800), %g1
2009d64: c2 00 61 38 ld [ %g1 + 0x138 ], %g1 ! 201b938 <_Scheduler+0x8>
2009d68: 9f c0 40 00 call %g1
2009d6c: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2009d70: 03 00 80 71 sethi %hi(0x201c400), %g1
2009d74: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information>
2009d78: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2009d7c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009d80: 80 a0 80 03 cmp %g2, %g3
2009d84: 02 80 00 07 be 2009da0 <_Thread_Change_priority+0x104>
2009d88: 01 00 00 00 nop
2009d8c: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
2009d90: 80 a0 a0 00 cmp %g2, 0
2009d94: 02 80 00 03 be 2009da0 <_Thread_Change_priority+0x104>
2009d98: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2009d9c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2009da0: 7f ff e2 4d call 20026d4 <sparc_enable_interrupts>
2009da4: 81 e8 00 00 restore
2009da8: 81 c7 e0 08 ret
2009dac: 81 e8 00 00 restore
02009f9c <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009f9c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009fa0: 90 10 00 18 mov %i0, %o0
2009fa4: 40 00 00 70 call 200a164 <_Thread_Get>
2009fa8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009fac: c2 07 bf fc ld [ %fp + -4 ], %g1
2009fb0: 80 a0 60 00 cmp %g1, 0
2009fb4: 12 80 00 09 bne 2009fd8 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
2009fb8: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2009fbc: 7f ff ff 7d call 2009db0 <_Thread_Clear_state>
2009fc0: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009fc4: 03 00 80 71 sethi %hi(0x201c400), %g1
2009fc8: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level>
2009fcc: 84 00 bf ff add %g2, -1, %g2
2009fd0: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
return _Thread_Dispatch_disable_level;
2009fd4: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1
2009fd8: 81 c7 e0 08 ret
2009fdc: 81 e8 00 00 restore
02009fe0 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2009fe0: 9d e3 bf 98 save %sp, -104, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2009fe4: 03 00 80 71 sethi %hi(0x201c400), %g1
2009fe8: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level>
2009fec: 84 00 a0 01 inc %g2
2009ff0: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
return _Thread_Dispatch_disable_level;
2009ff4: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2009ff8: 21 00 80 71 sethi %hi(0x201c400), %l0
2009ffc: 82 14 23 d0 or %l0, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information>
_ISR_Disable( level );
200a000: 7f ff e1 b1 call 20026c4 <sparc_disable_interrupts>
200a004: f2 00 60 0c ld [ %g1 + 0xc ], %i1
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a008: 25 00 80 71 sethi %hi(0x201c400), %l2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200a00c: 27 00 80 71 sethi %hi(0x201c400), %l3
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
200a010: 10 80 00 42 b 200a118 <_Thread_Dispatch+0x138>
200a014: 23 00 80 71 sethi %hi(0x201c400), %l1
heir = _Thread_Heir;
_Thread_Dispatch_necessary = false;
200a018: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200a01c: 80 a6 00 19 cmp %i0, %i1
200a020: 12 80 00 0d bne 200a054 <_Thread_Dispatch+0x74>
200a024: f0 20 60 0c st %i0, [ %g1 + 0xc ]
_ISR_Disable( level );
}
post_switch:
_ISR_Enable( level );
200a028: 7f ff e1 ab call 20026d4 <sparc_enable_interrupts>
200a02c: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a030: 03 00 80 71 sethi %hi(0x201c400), %g1
200a034: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level>
200a038: 84 00 bf ff add %g2, -1, %g2
200a03c: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
return _Thread_Dispatch_disable_level;
200a040: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1
_Thread_Unnest_dispatch();
_API_extensions_Run_postswitch();
200a044: 7f ff f8 68 call 20081e4 <_API_extensions_Run_postswitch>
200a048: 01 00 00 00 nop
200a04c: 81 c7 e0 08 ret
200a050: 81 e8 00 00 restore
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
200a054: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
200a058: 80 a0 60 01 cmp %g1, 1
200a05c: 12 80 00 03 bne 200a068 <_Thread_Dispatch+0x88>
200a060: c2 04 a1 10 ld [ %l2 + 0x110 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a064: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
200a068: 7f ff e1 9b call 20026d4 <sparc_enable_interrupts>
200a06c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
200a070: 40 00 0b 17 call 200cccc <_TOD_Get_uptime>
200a074: 90 07 bf f8 add %fp, -8, %o0
_Timestamp_Subtract(
200a078: c4 1f bf f8 ldd [ %fp + -8 ], %g2
200a07c: 82 14 23 d0 or %l0, 0x3d0, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a080: f8 18 60 20 ldd [ %g1 + 0x20 ], %i4
200a084: b6 a0 c0 1d subcc %g3, %i5, %i3
200a088: b4 60 80 1c subx %g2, %i4, %i2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a08c: f8 1e 60 80 ldd [ %i1 + 0x80 ], %i4
200a090: ba 87 40 1b addcc %i5, %i3, %i5
200a094: b8 47 00 1a addx %i4, %i2, %i4
200a098: f8 3e 60 80 std %i4, [ %i1 + 0x80 ]
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
200a09c: c4 38 60 20 std %g2, [ %g1 + 0x20 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200a0a0: c2 04 e2 2c ld [ %l3 + 0x22c ], %g1
200a0a4: 80 a0 60 00 cmp %g1, 0
200a0a8: 02 80 00 06 be 200a0c0 <_Thread_Dispatch+0xe0> <== NEVER TAKEN
200a0ac: 90 10 00 19 mov %i1, %o0
executing->libc_reent = *_Thread_libc_reent;
200a0b0: c4 00 40 00 ld [ %g1 ], %g2
200a0b4: c4 26 61 4c st %g2, [ %i1 + 0x14c ]
*_Thread_libc_reent = heir->libc_reent;
200a0b8: c4 06 21 4c ld [ %i0 + 0x14c ], %g2
200a0bc: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
200a0c0: 40 00 03 49 call 200ade4 <_User_extensions_Thread_switch>
200a0c4: 92 10 00 18 mov %i0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
200a0c8: 90 06 60 c0 add %i1, 0xc0, %o0
200a0cc: 40 00 04 74 call 200b29c <_CPU_Context_switch>
200a0d0: 92 06 20 c0 add %i0, 0xc0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200a0d4: c2 06 61 48 ld [ %i1 + 0x148 ], %g1
200a0d8: 80 a0 60 00 cmp %g1, 0
200a0dc: 02 80 00 0c be 200a10c <_Thread_Dispatch+0x12c>
200a0e0: d0 04 62 28 ld [ %l1 + 0x228 ], %o0
200a0e4: 80 a6 40 08 cmp %i1, %o0
200a0e8: 02 80 00 09 be 200a10c <_Thread_Dispatch+0x12c>
200a0ec: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200a0f0: 02 80 00 04 be 200a100 <_Thread_Dispatch+0x120>
200a0f4: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200a0f8: 40 00 04 2f call 200b1b4 <_CPU_Context_save_fp>
200a0fc: 90 02 21 48 add %o0, 0x148, %o0
_Context_Restore_fp( &executing->fp_context );
200a100: 40 00 04 4a call 200b228 <_CPU_Context_restore_fp>
200a104: 90 06 61 48 add %i1, 0x148, %o0
_Thread_Allocated_fp = executing;
200a108: f2 24 62 28 st %i1, [ %l1 + 0x228 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
200a10c: 82 14 23 d0 or %l0, 0x3d0, %g1
_ISR_Disable( level );
200a110: 7f ff e1 6d call 20026c4 <sparc_disable_interrupts>
200a114: f2 00 60 0c ld [ %g1 + 0xc ], %i1
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
200a118: 82 14 23 d0 or %l0, 0x3d0, %g1
200a11c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
200a120: 80 a0 a0 00 cmp %g2, 0
200a124: 32 bf ff bd bne,a 200a018 <_Thread_Dispatch+0x38>
200a128: f0 00 60 10 ld [ %g1 + 0x10 ], %i0
200a12c: 30 bf ff bf b,a 200a028 <_Thread_Dispatch+0x48>
0200eaa8 <_Thread_Handler>:
* Input parameters: NONE
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200eaa8: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200eaac: 03 00 80 71 sethi %hi(0x201c400), %g1
200eab0: fa 00 63 dc ld [ %g1 + 0x3dc ], %i5 ! 201c7dc <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200eab4: 3f 00 80 3a sethi %hi(0x200e800), %i7
200eab8: be 17 e2 a8 or %i7, 0x2a8, %i7 ! 200eaa8 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200eabc: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level(level);
200eac0: 7f ff cf 05 call 20026d4 <sparc_enable_interrupts>
200eac4: 91 2a 20 08 sll %o0, 8, %o0
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200eac8: 03 00 80 70 sethi %hi(0x201c000), %g1
doneConstructors = true;
200eacc: 84 10 20 01 mov 1, %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200ead0: f8 08 61 b0 ldub [ %g1 + 0x1b0 ], %i4
doneConstructors = true;
200ead4: c4 28 61 b0 stb %g2, [ %g1 + 0x1b0 ]
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200ead8: c2 07 61 48 ld [ %i5 + 0x148 ], %g1
200eadc: 80 a0 60 00 cmp %g1, 0
200eae0: 02 80 00 0c be 200eb10 <_Thread_Handler+0x68>
200eae4: 03 00 80 71 sethi %hi(0x201c400), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200eae8: d0 00 62 28 ld [ %g1 + 0x228 ], %o0 ! 201c628 <_Thread_Allocated_fp>
200eaec: 80 a7 40 08 cmp %i5, %o0
200eaf0: 02 80 00 08 be 200eb10 <_Thread_Handler+0x68>
200eaf4: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200eaf8: 22 80 00 06 be,a 200eb10 <_Thread_Handler+0x68>
200eafc: fa 20 62 28 st %i5, [ %g1 + 0x228 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200eb00: 7f ff f1 ad call 200b1b4 <_CPU_Context_save_fp>
200eb04: 90 02 21 48 add %o0, 0x148, %o0
_Thread_Allocated_fp = executing;
200eb08: 03 00 80 71 sethi %hi(0x201c400), %g1
200eb0c: fa 20 62 28 st %i5, [ %g1 + 0x228 ] ! 201c628 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200eb10: 7f ff f0 40 call 200ac10 <_User_extensions_Thread_begin>
200eb14: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200eb18: 7f ff ed 86 call 200a130 <_Thread_Enable_dispatch>
200eb1c: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200eb20: 80 8f 20 ff btst 0xff, %i4
200eb24: 32 80 00 05 bne,a 200eb38 <_Thread_Handler+0x90>
200eb28: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
INIT_NAME ();
200eb2c: 40 00 33 31 call 201b7f0 <_init>
200eb30: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200eb34: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200eb38: 80 a0 60 00 cmp %g1, 0
200eb3c: 12 80 00 06 bne 200eb54 <_Thread_Handler+0xac> <== NEVER TAKEN
200eb40: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200eb44: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
200eb48: 9f c0 40 00 call %g1
200eb4c: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200eb50: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200eb54: 7f ff f0 40 call 200ac54 <_User_extensions_Thread_exitted>
200eb58: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200eb5c: 90 10 20 00 clr %o0
200eb60: 92 10 20 01 mov 1, %o1
200eb64: 7f ff e8 3e call 2008c5c <_Internal_error_Occurred>
200eb68: 94 10 20 05 mov 5, %o2
0200a3e4 <_Thread_Handler_initialization>:
*
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
200a3e4: 9d e3 bf 98 save %sp, -104, %sp
uint32_t ticks_per_timeslice =
200a3e8: 03 00 80 6e sethi %hi(0x201b800), %g1
200a3ec: 82 10 60 3c or %g1, 0x3c, %g1 ! 201b83c <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a3f0: c6 00 60 2c ld [ %g1 + 0x2c ], %g3
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice =
200a3f4: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
rtems_configuration_get_ticks_per_timeslice();
uint32_t maximum_extensions =
200a3f8: f8 00 60 0c ld [ %g1 + 0xc ], %i4
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a3fc: 80 a0 e0 00 cmp %g3, 0
200a400: 02 80 00 06 be 200a418 <_Thread_Handler_initialization+0x34>
200a404: c4 00 60 28 ld [ %g1 + 0x28 ], %g2
200a408: c6 00 60 30 ld [ %g1 + 0x30 ], %g3
200a40c: 80 a0 e0 00 cmp %g3, 0
200a410: 12 80 00 06 bne 200a428 <_Thread_Handler_initialization+0x44><== ALWAYS TAKEN
200a414: 80 a0 a0 00 cmp %g2, 0
rtems_configuration_get_stack_free_hook() == NULL)
_Internal_error_Occurred(
200a418: 90 10 20 00 clr %o0
200a41c: 92 10 20 01 mov 1, %o1
200a420: 7f ff fa 0f call 2008c5c <_Internal_error_Occurred>
200a424: 94 10 20 0e mov 0xe, %o2
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
200a428: 22 80 00 05 be,a 200a43c <_Thread_Handler_initialization+0x58>
200a42c: 03 00 80 71 sethi %hi(0x201c400), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
200a430: 9f c0 80 00 call %g2
200a434: d0 00 60 08 ld [ %g1 + 8 ], %o0 ! 201c408 <bsp_interrupt_handler_table+0xfc>
_Thread_Dispatch_necessary = false;
200a438: 03 00 80 71 sethi %hi(0x201c400), %g1
200a43c: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information>
200a440: c0 28 60 18 clrb [ %g1 + 0x18 ]
_Thread_Executing = NULL;
200a444: c0 20 60 0c clr [ %g1 + 0xc ]
_Thread_Heir = NULL;
200a448: c0 20 60 10 clr [ %g1 + 0x10 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Thread_Allocated_fp = NULL;
200a44c: 03 00 80 71 sethi %hi(0x201c400), %g1
200a450: c0 20 62 28 clr [ %g1 + 0x228 ] ! 201c628 <_Thread_Allocated_fp>
#endif
_Thread_Maximum_extensions = maximum_extensions;
200a454: 03 00 80 71 sethi %hi(0x201c400), %g1
200a458: f8 20 62 30 st %i4, [ %g1 + 0x230 ] ! 201c630 <_Thread_Maximum_extensions>
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
200a45c: 03 00 80 71 sethi %hi(0x201c400), %g1
200a460: fa 20 61 10 st %i5, [ %g1 + 0x110 ] ! 201c510 <_Thread_Ticks_per_timeslice>
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
200a464: 82 10 20 08 mov 8, %g1
200a468: 11 00 80 71 sethi %hi(0x201c400), %o0
200a46c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200a470: 90 12 22 b0 or %o0, 0x2b0, %o0
200a474: 92 10 20 01 mov 1, %o1
200a478: 94 10 20 01 mov 1, %o2
200a47c: 96 10 20 01 mov 1, %o3
200a480: 98 10 21 60 mov 0x160, %o4
200a484: 7f ff fb 7e call 200927c <_Objects_Initialize_information>
200a488: 9a 10 20 00 clr %o5
200a48c: 81 c7 e0 08 ret
200a490: 81 e8 00 00 restore
0200a218 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200a218: 9d e3 bf a0 save %sp, -96, %sp
200a21c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
200a220: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200a224: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200a228: c0 26 61 50 clr [ %i1 + 0x150 ]
200a22c: c0 26 61 54 clr [ %i1 + 0x154 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
200a230: c0 26 61 4c clr [ %i1 + 0x14c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200a234: 90 10 00 19 mov %i1, %o0
200a238: 40 00 02 09 call 200aa5c <_Thread_Stack_Allocate>
200a23c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
200a240: 80 a2 00 1b cmp %o0, %i3
200a244: 0a 80 00 64 bcs 200a3d4 <_Thread_Initialize+0x1bc>
200a248: 80 a2 20 00 cmp %o0, 0
200a24c: 02 80 00 62 be 200a3d4 <_Thread_Initialize+0x1bc> <== NEVER TAKEN
200a250: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a254: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
200a258: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a25c: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
200a260: 02 80 00 07 be 200a27c <_Thread_Initialize+0x64>
200a264: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200a268: 40 00 03 b7 call 200b144 <_Workspace_Allocate>
200a26c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
200a270: b6 92 20 00 orcc %o0, 0, %i3
200a274: 22 80 00 49 be,a 200a398 <_Thread_Initialize+0x180>
200a278: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a27c: 03 00 80 71 sethi %hi(0x201c400), %g1
200a280: d0 00 62 30 ld [ %g1 + 0x230 ], %o0 ! 201c630 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
200a284: f6 26 61 48 st %i3, [ %i1 + 0x148 ]
the_thread->Start.fp_context = fp_area;
200a288: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200a28c: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
200a290: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200a294: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
200a298: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a29c: 80 a2 20 00 cmp %o0, 0
200a2a0: 02 80 00 08 be 200a2c0 <_Thread_Initialize+0xa8>
200a2a4: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
200a2a8: 90 02 20 01 inc %o0
200a2ac: 40 00 03 a6 call 200b144 <_Workspace_Allocate>
200a2b0: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
200a2b4: b8 92 20 00 orcc %o0, 0, %i4
200a2b8: 22 80 00 39 be,a 200a39c <_Thread_Initialize+0x184>
200a2bc: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
200a2c0: 80 a7 20 00 cmp %i4, 0
200a2c4: 12 80 00 17 bne 200a320 <_Thread_Initialize+0x108>
200a2c8: f8 26 61 58 st %i4, [ %i1 + 0x158 ]
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a2cc: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200a2d0: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ]
the_thread->Start.budget_algorithm = budget_algorithm;
200a2d4: c2 26 60 a0 st %g1, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
200a2d8: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
200a2dc: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
200a2e0: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a2e4: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
200a2e8: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a2ec: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
the_thread->current_state = STATES_DORMANT;
200a2f0: 82 10 20 01 mov 1, %g1
200a2f4: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
200a2f8: 03 00 80 6e sethi %hi(0x201b800), %g1
200a2fc: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 201b948 <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
200a300: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200a304: fa 26 60 ac st %i5, [ %i1 + 0xac ]
200a308: 9f c0 40 00 call %g1
200a30c: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
200a310: b4 92 20 00 orcc %o0, 0, %i2
200a314: 12 80 00 0f bne 200a350 <_Thread_Initialize+0x138>
200a318: 90 10 00 19 mov %i1, %o0
200a31c: 30 80 00 20 b,a 200a39c <_Thread_Initialize+0x184>
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a320: 03 00 80 71 sethi %hi(0x201c400), %g1
200a324: c4 00 62 30 ld [ %g1 + 0x230 ], %g2 ! 201c630 <_Thread_Maximum_extensions>
200a328: 10 80 00 05 b 200a33c <_Thread_Initialize+0x124>
200a32c: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
200a330: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a334: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
200a338: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a33c: 80 a0 40 02 cmp %g1, %g2
200a340: 28 bf ff fc bleu,a 200a330 <_Thread_Initialize+0x118>
200a344: c8 06 61 58 ld [ %i1 + 0x158 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a348: 10 bf ff e2 b 200a2d0 <_Thread_Initialize+0xb8>
200a34c: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
goto failed;
_Thread_Set_priority( the_thread, priority );
200a350: 40 00 01 9b call 200a9bc <_Thread_Set_priority>
200a354: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a358: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200a35c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
200a360: c0 26 60 80 clr [ %i1 + 0x80 ]
200a364: c0 26 60 84 clr [ %i1 + 0x84 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a368: 83 28 60 02 sll %g1, 2, %g1
200a36c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200a370: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
200a374: 90 10 00 19 mov %i1, %o0
200a378: 40 00 02 5a call 200ace0 <_User_extensions_Thread_create>
200a37c: b0 10 20 01 mov 1, %i0
if ( extension_status )
200a380: 80 8a 20 ff btst 0xff, %o0
200a384: 02 80 00 06 be 200a39c <_Thread_Initialize+0x184>
200a388: 01 00 00 00 nop
200a38c: b0 0e 20 01 and %i0, 1, %i0
200a390: 81 c7 e0 08 ret
200a394: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200a398: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
200a39c: 40 00 03 72 call 200b164 <_Workspace_Free>
200a3a0: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
200a3a4: 40 00 03 70 call 200b164 <_Workspace_Free>
200a3a8: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
200a3ac: 40 00 03 6e call 200b164 <_Workspace_Free>
200a3b0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
_Workspace_Free( extensions_area );
200a3b4: 40 00 03 6c call 200b164 <_Workspace_Free>
200a3b8: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
200a3bc: 40 00 03 6a call 200b164 <_Workspace_Free>
200a3c0: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200a3c4: 40 00 03 68 call 200b164 <_Workspace_Free>
200a3c8: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
200a3cc: 40 00 01 b4 call 200aa9c <_Thread_Stack_Free>
200a3d0: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
200a3d4: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
200a3d8: b0 0e 20 01 and %i0, 1, %i0
200a3dc: 81 c7 e0 08 ret
200a3e0: 81 e8 00 00 restore
0200a904 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200a904: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200a908: 80 a6 20 00 cmp %i0, 0
200a90c: 02 80 00 19 be 200a970 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a910: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200a914: fa 06 20 34 ld [ %i0 + 0x34 ], %i5
200a918: 80 a7 60 01 cmp %i5, 1
200a91c: 12 80 00 15 bne 200a970 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a920: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
200a924: 7f ff df 68 call 20026c4 <sparc_disable_interrupts>
200a928: 01 00 00 00 nop
200a92c: b8 10 00 08 mov %o0, %i4
200a930: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200a934: 03 00 00 ef sethi %hi(0x3bc00), %g1
200a938: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
200a93c: 80 88 80 01 btst %g2, %g1
200a940: 02 80 00 0a be 200a968 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
200a944: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200a948: 92 10 00 19 mov %i1, %o1
200a94c: 94 10 20 01 mov 1, %o2
200a950: 40 00 0a ba call 200d438 <_Thread_queue_Extract_priority_helper>
200a954: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200a958: 90 10 00 18 mov %i0, %o0
200a95c: 92 10 00 19 mov %i1, %o1
200a960: 7f ff ff 50 call 200a6a0 <_Thread_queue_Enqueue_priority>
200a964: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
200a968: 7f ff df 5b call 20026d4 <sparc_enable_interrupts>
200a96c: 90 10 00 1c mov %i4, %o0
200a970: 81 c7 e0 08 ret
200a974: 81 e8 00 00 restore
0200a978 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200a978: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200a97c: 90 10 00 18 mov %i0, %o0
200a980: 7f ff fd f9 call 200a164 <_Thread_Get>
200a984: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a988: c2 07 bf fc ld [ %fp + -4 ], %g1
200a98c: 80 a0 60 00 cmp %g1, 0
200a990: 12 80 00 09 bne 200a9b4 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
200a994: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200a998: 40 00 0a df call 200d514 <_Thread_queue_Process_timeout>
200a99c: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a9a0: 03 00 80 71 sethi %hi(0x201c400), %g1
200a9a4: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Thread_Dispatch_disable_level>
200a9a8: 84 00 bf ff add %g2, -1, %g2
200a9ac: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
return _Thread_Dispatch_disable_level;
200a9b0: c2 00 61 b0 ld [ %g1 + 0x1b0 ], %g1
200a9b4: 81 c7 e0 08 ret
200a9b8: 81 e8 00 00 restore
02018c9c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2018c9c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2018ca0: 27 00 80 ed sethi %hi(0x203b400), %l3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2018ca4: a4 07 bf e8 add %fp, -24, %l2
2018ca8: aa 07 bf ec add %fp, -20, %l5
2018cac: b8 07 bf f4 add %fp, -12, %i4
2018cb0: b2 07 bf f8 add %fp, -8, %i1
2018cb4: ea 27 bf e8 st %l5, [ %fp + -24 ]
head->previous = NULL;
2018cb8: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2018cbc: e4 27 bf f0 st %l2, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2018cc0: f2 27 bf f4 st %i1, [ %fp + -12 ]
head->previous = NULL;
2018cc4: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2018cc8: f8 27 bf fc st %i4, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018ccc: b4 06 20 30 add %i0, 0x30, %i2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2018cd0: 29 00 80 ed sethi %hi(0x203b400), %l4
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018cd4: b6 06 20 68 add %i0, 0x68, %i3
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018cd8: a2 06 20 08 add %i0, 8, %l1
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2018cdc: a0 06 20 40 add %i0, 0x40, %l0
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2018ce0: e4 26 20 78 st %l2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2018ce4: c2 04 e3 b8 ld [ %l3 + 0x3b8 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2018ce8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018cec: 90 10 00 1a mov %i2, %o0
2018cf0: 92 20 40 09 sub %g1, %o1, %o1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2018cf4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018cf8: 40 00 11 35 call 201d1cc <_Watchdog_Adjust_to_chain>
2018cfc: 94 10 00 1c mov %i4, %o2
2018d00: d0 1d 22 08 ldd [ %l4 + 0x208 ], %o0
2018d04: 94 10 20 00 clr %o2
2018d08: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018d0c: 40 00 4b 7b call 202baf8 <__divdi3>
2018d10: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2018d14: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2018d18: 80 a2 40 0a cmp %o1, %o2
2018d1c: 08 80 00 07 bleu 2018d38 <_Timer_server_Body+0x9c>
2018d20: ba 10 00 09 mov %o1, %i5
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018d24: 92 22 40 0a sub %o1, %o2, %o1
2018d28: 90 10 00 1b mov %i3, %o0
2018d2c: 40 00 11 28 call 201d1cc <_Watchdog_Adjust_to_chain>
2018d30: 94 10 00 1c mov %i4, %o2
2018d34: 30 80 00 06 b,a 2018d4c <_Timer_server_Body+0xb0>
} else if ( snapshot < last_snapshot ) {
2018d38: 1a 80 00 05 bcc 2018d4c <_Timer_server_Body+0xb0>
2018d3c: 90 10 00 1b mov %i3, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018d40: 92 10 20 01 mov 1, %o1
2018d44: 40 00 10 fa call 201d12c <_Watchdog_Adjust>
2018d48: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
2018d4c: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2018d50: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018d54: 40 00 02 70 call 2019714 <_Chain_Get>
2018d58: 01 00 00 00 nop
if ( timer == NULL ) {
2018d5c: 92 92 20 00 orcc %o0, 0, %o1
2018d60: 02 80 00 0c be 2018d90 <_Timer_server_Body+0xf4>
2018d64: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2018d68: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2018d6c: 80 a0 60 01 cmp %g1, 1
2018d70: 02 80 00 05 be 2018d84 <_Timer_server_Body+0xe8>
2018d74: 90 10 00 1a mov %i2, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2018d78: 80 a0 60 03 cmp %g1, 3
2018d7c: 12 bf ff f5 bne 2018d50 <_Timer_server_Body+0xb4> <== NEVER TAKEN
2018d80: 90 10 00 1b mov %i3, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018d84: 40 00 11 44 call 201d294 <_Watchdog_Insert>
2018d88: 92 02 60 10 add %o1, 0x10, %o1
2018d8c: 30 bf ff f1 b,a 2018d50 <_Timer_server_Body+0xb4>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2018d90: 7f ff de 98 call 20107f0 <sparc_disable_interrupts>
2018d94: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2018d98: c2 07 bf e8 ld [ %fp + -24 ], %g1
2018d9c: 80 a0 40 15 cmp %g1, %l5
2018da0: 12 80 00 0a bne 2018dc8 <_Timer_server_Body+0x12c> <== NEVER TAKEN
2018da4: 01 00 00 00 nop
ts->insert_chain = NULL;
2018da8: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2018dac: 7f ff de 95 call 2010800 <sparc_enable_interrupts>
2018db0: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2018db4: c2 07 bf f4 ld [ %fp + -12 ], %g1
2018db8: 80 a0 40 19 cmp %g1, %i1
2018dbc: 12 80 00 06 bne 2018dd4 <_Timer_server_Body+0x138>
2018dc0: 01 00 00 00 nop
2018dc4: 30 80 00 18 b,a 2018e24 <_Timer_server_Body+0x188>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2018dc8: 7f ff de 8e call 2010800 <sparc_enable_interrupts> <== NOT EXECUTED
2018dcc: 01 00 00 00 nop <== NOT EXECUTED
2018dd0: 30 bf ff c5 b,a 2018ce4 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2018dd4: 7f ff de 87 call 20107f0 <sparc_disable_interrupts>
2018dd8: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018ddc: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2018de0: 80 a7 40 19 cmp %i5, %i1
2018de4: 02 80 00 0d be 2018e18 <_Timer_server_Body+0x17c>
2018de8: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2018dec: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
2018df0: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2018df4: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2018df8: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
2018dfc: 7f ff de 81 call 2010800 <sparc_enable_interrupts>
2018e00: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2018e04: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
2018e08: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
2018e0c: 9f c0 40 00 call %g1
2018e10: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
}
2018e14: 30 bf ff f0 b,a 2018dd4 <_Timer_server_Body+0x138>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2018e18: 7f ff de 7a call 2010800 <sparc_enable_interrupts>
2018e1c: 01 00 00 00 nop
2018e20: 30 bf ff b0 b,a 2018ce0 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2018e24: c0 2e 20 7c clrb [ %i0 + 0x7c ]
2018e28: 7f ff ff 19 call 2018a8c <_Thread_Dispatch_increment_disable_level>
2018e2c: 01 00 00 00 nop
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2018e30: d0 06 00 00 ld [ %i0 ], %o0
2018e34: 40 00 0f 9a call 201cc9c <_Thread_Set_state>
2018e38: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2018e3c: 7f ff ff 1b call 2018aa8 <_Timer_server_Reset_interval_system_watchdog>
2018e40: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2018e44: 7f ff ff 2d call 2018af8 <_Timer_server_Reset_tod_system_watchdog>
2018e48: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2018e4c: 40 00 0d 46 call 201c364 <_Thread_Enable_dispatch>
2018e50: 01 00 00 00 nop
ts->active = true;
2018e54: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018e58: 90 10 00 11 mov %l1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2018e5c: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018e60: 40 00 11 65 call 201d3f4 <_Watchdog_Remove>
2018e64: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2018e68: 40 00 11 63 call 201d3f4 <_Watchdog_Remove>
2018e6c: 90 10 00 10 mov %l0, %o0
2018e70: 30 bf ff 9c b,a 2018ce0 <_Timer_server_Body+0x44>
02018b48 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2018b48: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2018b4c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2018b50: 80 a0 60 00 cmp %g1, 0
2018b54: 12 80 00 4f bne 2018c90 <_Timer_server_Schedule_operation_method+0x148>
2018b58: ba 10 00 19 mov %i1, %i5
#if defined ( __THREAD_DO_NOT_INLINE_DISABLE_DISPATCH__ )
void _Thread_Disable_dispatch( void );
#else
RTEMS_INLINE_ROUTINE void _Thread_Disable_dispatch( void )
{
_Thread_Dispatch_increment_disable_level();
2018b5c: 7f ff ff cc call 2018a8c <_Thread_Dispatch_increment_disable_level>
2018b60: 01 00 00 00 nop
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2018b64: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2018b68: 80 a0 60 01 cmp %g1, 1
2018b6c: 12 80 00 1f bne 2018be8 <_Timer_server_Schedule_operation_method+0xa0>
2018b70: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018b74: 7f ff df 1f call 20107f0 <sparc_disable_interrupts>
2018b78: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2018b7c: 03 00 80 ed sethi %hi(0x203b400), %g1
2018b80: c4 00 63 b8 ld [ %g1 + 0x3b8 ], %g2 ! 203b7b8 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018b84: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2018b88: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018b8c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2018b90: 80 a0 40 03 cmp %g1, %g3
2018b94: 02 80 00 08 be 2018bb4 <_Timer_server_Schedule_operation_method+0x6c>
2018b98: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2018b9c: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
2018ba0: 80 a7 00 04 cmp %i4, %g4
2018ba4: 08 80 00 03 bleu 2018bb0 <_Timer_server_Schedule_operation_method+0x68>
2018ba8: 86 10 20 00 clr %g3
delta_interval -= delta;
2018bac: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2018bb0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2018bb4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2018bb8: 7f ff df 12 call 2010800 <sparc_enable_interrupts>
2018bbc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2018bc0: 90 06 20 30 add %i0, 0x30, %o0
2018bc4: 40 00 11 b4 call 201d294 <_Watchdog_Insert>
2018bc8: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018bcc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018bd0: 80 a0 60 00 cmp %g1, 0
2018bd4: 12 80 00 2d bne 2018c88 <_Timer_server_Schedule_operation_method+0x140>
2018bd8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2018bdc: 7f ff ff b3 call 2018aa8 <_Timer_server_Reset_interval_system_watchdog>
2018be0: 90 10 00 18 mov %i0, %o0
2018be4: 30 80 00 29 b,a 2018c88 <_Timer_server_Schedule_operation_method+0x140>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2018be8: 12 80 00 28 bne 2018c88 <_Timer_server_Schedule_operation_method+0x140>
2018bec: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018bf0: 7f ff df 00 call 20107f0 <sparc_disable_interrupts>
2018bf4: 01 00 00 00 nop
2018bf8: b8 10 00 08 mov %o0, %i4
2018bfc: 03 00 80 ed sethi %hi(0x203b400), %g1
2018c00: d0 18 62 08 ldd [ %g1 + 0x208 ], %o0 ! 203b608 <_TOD>
2018c04: 94 10 20 00 clr %o2
2018c08: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018c0c: 40 00 4b bb call 202baf8 <__divdi3>
2018c10: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018c14: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2018c18: c4 06 20 74 ld [ %i0 + 0x74 ], %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018c1c: 86 06 20 6c add %i0, 0x6c, %g3
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2018c20: 80 a0 40 03 cmp %g1, %g3
2018c24: 02 80 00 0d be 2018c58 <_Timer_server_Schedule_operation_method+0x110>
2018c28: 80 a2 40 02 cmp %o1, %g2
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2018c2c: 08 80 00 08 bleu 2018c4c <_Timer_server_Schedule_operation_method+0x104>
2018c30: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2018c34: 88 22 40 02 sub %o1, %g2, %g4
if (delta_interval > delta) {
2018c38: 80 a0 c0 04 cmp %g3, %g4
2018c3c: 08 80 00 06 bleu 2018c54 <_Timer_server_Schedule_operation_method+0x10c><== NEVER TAKEN
2018c40: 84 10 20 00 clr %g2
delta_interval -= delta;
2018c44: 10 80 00 04 b 2018c54 <_Timer_server_Schedule_operation_method+0x10c>
2018c48: 84 20 c0 04 sub %g3, %g4, %g2
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2018c4c: 84 00 c0 02 add %g3, %g2, %g2
delta_interval += delta;
2018c50: 84 20 80 09 sub %g2, %o1, %g2
}
first_watchdog->delta_interval = delta_interval;
2018c54: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2018c58: d2 26 20 74 st %o1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2018c5c: 7f ff de e9 call 2010800 <sparc_enable_interrupts>
2018c60: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018c64: 90 06 20 68 add %i0, 0x68, %o0
2018c68: 40 00 11 8b call 201d294 <_Watchdog_Insert>
2018c6c: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018c70: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018c74: 80 a0 60 00 cmp %g1, 0
2018c78: 12 80 00 04 bne 2018c88 <_Timer_server_Schedule_operation_method+0x140>
2018c7c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2018c80: 7f ff ff 9e call 2018af8 <_Timer_server_Reset_tod_system_watchdog>
2018c84: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2018c88: 40 00 0d b7 call 201c364 <_Thread_Enable_dispatch>
2018c8c: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2018c90: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2018c94: 40 00 02 94 call 20196e4 <_Chain_Append>
2018c98: 81 e8 00 00 restore
0200a4e4 <_Timespec_Divide>:
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200a4e4: 9d e3 bf a0 save %sp, -96, %sp
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a4e8: c6 06 40 00 ld [ %i1 ], %g3
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200a4ec: 88 10 00 19 mov %i1, %g4
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a4f0: 85 38 e0 1f sra %g3, 0x1f, %g2
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a4f4: de 06 00 00 ld [ %i0 ], %o7
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a4f8: b3 28 a0 03 sll %g2, 3, %i1
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
200a4fc: c2 06 20 04 ld [ %i0 + 4 ], %g1
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a500: b1 30 e0 1d srl %g3, 0x1d, %i0
200a504: bb 28 e0 03 sll %g3, 3, %i5
200a508: b8 16 00 19 or %i0, %i1, %i4
200a50c: 9b 37 60 1b srl %i5, 0x1b, %o5
200a510: b1 2f 20 05 sll %i4, 5, %i0
200a514: b3 2f 60 05 sll %i5, 5, %i1
200a518: b0 13 40 18 or %o5, %i0, %i0
200a51c: ba a6 40 1d subcc %i1, %i5, %i5
200a520: b8 66 00 1c subx %i0, %i4, %i4
200a524: 9b 37 60 1a srl %i5, 0x1a, %o5
200a528: b1 2f 20 06 sll %i4, 6, %i0
200a52c: b3 2f 60 06 sll %i5, 6, %i1
200a530: b0 13 40 18 or %o5, %i0, %i0
200a534: b2 a6 40 1d subcc %i1, %i5, %i1
200a538: b0 66 00 1c subx %i0, %i4, %i0
200a53c: 86 86 40 03 addcc %i1, %g3, %g3
200a540: 84 46 00 02 addx %i0, %g2, %g2
200a544: bb 30 e0 1e srl %g3, 0x1e, %i5
200a548: b1 28 a0 02 sll %g2, 2, %i0
200a54c: b3 28 e0 02 sll %g3, 2, %i1
200a550: b0 17 40 18 or %i5, %i0, %i0
200a554: 86 80 c0 19 addcc %g3, %i1, %g3
200a558: 84 40 80 18 addx %g2, %i0, %g2
200a55c: bb 30 e0 1e srl %g3, 0x1e, %i5
200a560: b1 28 a0 02 sll %g2, 2, %i0
200a564: b3 28 e0 02 sll %g3, 2, %i1
200a568: b0 17 40 18 or %i5, %i0, %i0
200a56c: b2 80 c0 19 addcc %g3, %i1, %i1
right += rhs->tv_nsec;
200a570: d6 01 20 04 ld [ %g4 + 4 ], %o3
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a574: b0 40 80 18 addx %g2, %i0, %i0
200a578: 85 36 60 1e srl %i1, 0x1e, %g2
200a57c: bb 2e 60 02 sll %i1, 2, %i5
200a580: b9 2e 20 02 sll %i0, 2, %i4
200a584: 86 86 40 1d addcc %i1, %i5, %g3
200a588: b8 10 80 1c or %g2, %i4, %i4
200a58c: 84 46 00 1c addx %i0, %i4, %g2
right += rhs->tv_nsec;
200a590: 95 3a e0 1f sra %o3, 0x1f, %o2
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a594: b3 30 e0 17 srl %g3, 0x17, %i1
200a598: b9 28 a0 09 sll %g2, 9, %i4
200a59c: bb 28 e0 09 sll %g3, 9, %i5
200a5a0: 84 16 40 1c or %i1, %i4, %g2
right += rhs->tv_nsec;
200a5a4: 96 87 40 0b addcc %i5, %o3, %o3
200a5a8: 94 40 80 0a addx %g2, %o2, %o2
if ( right == 0 ) {
200a5ac: 80 92 80 0b orcc %o2, %o3, %g0
200a5b0: 32 80 00 06 bne,a 200a5c8 <_Timespec_Divide+0xe4> <== NEVER TAKEN
200a5b4: b9 3b e0 1f sra %o7, 0x1f, %i4 <== NOT EXECUTED
*ival_percentage = 0;
200a5b8: c0 26 80 00 clr [ %i2 ]
*fval_percentage = 0;
200a5bc: c0 26 c0 00 clr [ %i3 ]
return;
200a5c0: 81 c7 e0 08 ret
200a5c4: 81 e8 00 00 restore
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a5c8: 85 2f 20 03 sll %i4, 3, %g2 <== NOT EXECUTED
200a5cc: b3 2b e0 03 sll %o7, 3, %i1 <== NOT EXECUTED
200a5d0: 87 33 e0 1d srl %o7, 0x1d, %g3 <== NOT EXECUTED
200a5d4: b0 10 c0 02 or %g3, %g2, %i0 <== NOT EXECUTED
200a5d8: 85 36 60 1b srl %i1, 0x1b, %g2 <== NOT EXECUTED
200a5dc: 99 2e 20 05 sll %i0, 5, %o4 <== NOT EXECUTED
200a5e0: 9b 2e 60 05 sll %i1, 5, %o5 <== NOT EXECUTED
200a5e4: 98 10 80 0c or %g2, %o4, %o4 <== NOT EXECUTED
200a5e8: b2 a3 40 19 subcc %o5, %i1, %i1 <== NOT EXECUTED
200a5ec: 85 36 60 1a srl %i1, 0x1a, %g2 <== NOT EXECUTED
200a5f0: b0 63 00 18 subx %o4, %i0, %i0 <== NOT EXECUTED
200a5f4: 9b 2e 60 06 sll %i1, 6, %o5 <== NOT EXECUTED
200a5f8: 99 2e 20 06 sll %i0, 6, %o4 <== NOT EXECUTED
200a5fc: 9a a3 40 19 subcc %o5, %i1, %o5 <== NOT EXECUTED
200a600: 98 10 80 0c or %g2, %o4, %o4 <== NOT EXECUTED
200a604: 98 63 00 18 subx %o4, %i0, %o4 <== NOT EXECUTED
200a608: ba 83 40 0f addcc %o5, %o7, %i5 <== NOT EXECUTED
200a60c: 85 37 60 1e srl %i5, 0x1e, %g2 <== NOT EXECUTED
200a610: b8 43 00 1c addx %o4, %i4, %i4 <== NOT EXECUTED
200a614: 9b 2f 60 02 sll %i5, 2, %o5 <== NOT EXECUTED
200a618: 99 2f 20 02 sll %i4, 2, %o4 <== NOT EXECUTED
200a61c: ba 87 40 0d addcc %i5, %o5, %i5 <== NOT EXECUTED
200a620: 98 10 80 0c or %g2, %o4, %o4 <== NOT EXECUTED
200a624: 85 37 60 1e srl %i5, 0x1e, %g2 <== NOT EXECUTED
200a628: b8 47 00 0c addx %i4, %o4, %i4 <== NOT EXECUTED
200a62c: 9b 2f 60 02 sll %i5, 2, %o5 <== NOT EXECUTED
200a630: 99 2f 20 02 sll %i4, 2, %o4 <== NOT EXECUTED
200a634: 9a 87 40 0d addcc %i5, %o5, %o5 <== NOT EXECUTED
200a638: 98 10 80 0c or %g2, %o4, %o4 <== NOT EXECUTED
200a63c: 85 33 60 1e srl %o5, 0x1e, %g2 <== NOT EXECUTED
200a640: 98 47 00 0c addx %i4, %o4, %o4 <== NOT EXECUTED
200a644: b3 2b 60 02 sll %o5, 2, %i1 <== NOT EXECUTED
200a648: b1 2b 20 02 sll %o4, 2, %i0 <== NOT EXECUTED
200a64c: 86 83 40 19 addcc %o5, %i1, %g3 <== NOT EXECUTED
200a650: b0 10 80 18 or %g2, %i0, %i0 <== NOT EXECUTED
200a654: 84 43 00 18 addx %o4, %i0, %g2 <== NOT EXECUTED
200a658: 89 28 e0 09 sll %g3, 9, %g4 <== NOT EXECUTED
200a65c: b9 30 e0 17 srl %g3, 0x17, %i4 <== NOT EXECUTED
left += lhs->tv_nsec;
200a660: 92 81 00 01 addcc %g4, %g1, %o1 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a664: bb 28 a0 09 sll %g2, 9, %i5 <== NOT EXECUTED
left += lhs->tv_nsec;
200a668: 91 38 60 1f sra %g1, 0x1f, %o0 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a66c: 84 17 00 1d or %i4, %i5, %g2 <== NOT EXECUTED
left += lhs->tv_nsec;
200a670: 90 40 80 08 addx %g2, %o0, %o0 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200a674: 83 2a 20 02 sll %o0, 2, %g1 <== NOT EXECUTED
200a678: bb 2a 60 02 sll %o1, 2, %i5 <== NOT EXECUTED
200a67c: 85 32 60 1e srl %o1, 0x1e, %g2 <== NOT EXECUTED
200a680: b8 10 80 01 or %g2, %g1, %i4 <== NOT EXECUTED
200a684: 83 37 60 1b srl %i5, 0x1b, %g1 <== NOT EXECUTED
200a688: 9b 2f 60 05 sll %i5, 5, %o5 <== NOT EXECUTED
200a68c: 99 2f 20 05 sll %i4, 5, %o4 <== NOT EXECUTED
200a690: ba a3 40 1d subcc %o5, %i5, %i5 <== NOT EXECUTED
200a694: 98 10 40 0c or %g1, %o4, %o4 <== NOT EXECUTED
200a698: b8 63 00 1c subx %o4, %i4, %i4 <== NOT EXECUTED
200a69c: 92 87 40 09 addcc %i5, %o1, %o1 <== NOT EXECUTED
200a6a0: 83 32 60 1e srl %o1, 0x1e, %g1 <== NOT EXECUTED
200a6a4: 90 47 00 08 addx %i4, %o0, %o0 <== NOT EXECUTED
200a6a8: b3 2a 60 02 sll %o1, 2, %i1 <== NOT EXECUTED
200a6ac: b1 2a 20 02 sll %o0, 2, %i0 <== NOT EXECUTED
200a6b0: 92 82 40 19 addcc %o1, %i1, %o1 <== NOT EXECUTED
200a6b4: b0 10 40 18 or %g1, %i0, %i0 <== NOT EXECUTED
200a6b8: 83 32 60 1e srl %o1, 0x1e, %g1 <== NOT EXECUTED
200a6bc: 90 42 00 18 addx %o0, %i0, %o0 <== NOT EXECUTED
200a6c0: b3 2a 60 02 sll %o1, 2, %i1 <== NOT EXECUTED
200a6c4: b1 2a 20 02 sll %o0, 2, %i0 <== NOT EXECUTED
200a6c8: 92 82 40 19 addcc %o1, %i1, %o1 <== NOT EXECUTED
200a6cc: b0 10 40 18 or %g1, %i0, %i0 <== NOT EXECUTED
200a6d0: 87 32 60 1b srl %o1, 0x1b, %g3 <== NOT EXECUTED
200a6d4: 90 42 00 18 addx %o0, %i0, %o0 <== NOT EXECUTED
200a6d8: 83 2a 60 05 sll %o1, 5, %g1 <== NOT EXECUTED
200a6dc: 85 2a 20 05 sll %o0, 5, %g2 <== NOT EXECUTED
200a6e0: 92 10 00 01 mov %g1, %o1 <== NOT EXECUTED
200a6e4: 40 00 37 27 call 2018380 <__udivdi3> <== NOT EXECUTED
200a6e8: 90 10 c0 02 or %g3, %g2, %o0 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200a6ec: 94 10 20 00 clr %o2 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200a6f0: b8 10 00 08 mov %o0, %i4 <== NOT EXECUTED
200a6f4: ba 10 00 09 mov %o1, %i5 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200a6f8: 40 00 37 22 call 2018380 <__udivdi3> <== NOT EXECUTED
200a6fc: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
*fval_percentage = answer % 1000;
200a700: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
*ival_percentage = answer / 1000;
200a704: d2 26 80 00 st %o1, [ %i2 ] <== NOT EXECUTED
*fval_percentage = answer % 1000;
200a708: 94 10 20 00 clr %o2 <== NOT EXECUTED
200a70c: 92 10 00 1d mov %i5, %o1 <== NOT EXECUTED
200a710: 40 00 37 f0 call 20186d0 <__umoddi3> <== NOT EXECUTED
200a714: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
200a718: d2 26 c0 00 st %o1, [ %i3 ] <== NOT EXECUTED
200a71c: 81 c7 e0 08 ret <== NOT EXECUTED
200a720: 81 e8 00 00 restore <== NOT EXECUTED
0200a724 <_Timespec_Less_than>:
bool _Timespec_Less_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec < rhs->tv_sec )
200a724: c6 02 00 00 ld [ %o0 ], %g3
200a728: c4 02 40 00 ld [ %o1 ], %g2
200a72c: 80 a0 c0 02 cmp %g3, %g2
200a730: 06 80 00 0b bl 200a75c <_Timespec_Less_than+0x38> <== NEVER TAKEN
200a734: 82 10 20 01 mov 1, %g1
return true;
if ( lhs->tv_sec > rhs->tv_sec )
200a738: 80 a0 c0 02 cmp %g3, %g2
200a73c: 14 80 00 08 bg 200a75c <_Timespec_Less_than+0x38>
200a740: 82 10 20 00 clr %g1
return false;
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec < rhs->tv_nsec )
200a744: c6 02 20 04 ld [ %o0 + 4 ], %g3
200a748: c4 02 60 04 ld [ %o1 + 4 ], %g2
200a74c: 80 a0 c0 02 cmp %g3, %g2
200a750: 06 80 00 03 bl 200a75c <_Timespec_Less_than+0x38> <== NEVER TAKEN
200a754: 82 10 20 01 mov 1, %g1
200a758: 82 10 20 00 clr %g1
return true;
return false;
}
200a75c: 81 c3 e0 08 retl
200a760: 90 08 60 01 and %g1, 1, %o0
0200b934 <_Timespec_Subtract>:
const struct timespec *end,
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
200b934: c4 02 60 04 ld [ %o1 + 4 ], %g2
200b938: c2 02 20 04 ld [ %o0 + 4 ], %g1
200b93c: c8 02 40 00 ld [ %o1 ], %g4
200b940: c6 02 00 00 ld [ %o0 ], %g3
200b944: 80 a0 80 01 cmp %g2, %g1
200b948: 16 80 00 08 bge 200b968 <_Timespec_Subtract+0x34> <== ALWAYS TAKEN
200b94c: 86 21 00 03 sub %g4, %g3, %g3
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200b950: 86 00 ff ff add %g3, -1, %g3 <== NOT EXECUTED
200b954: c6 22 80 00 st %g3, [ %o2 ] <== NOT EXECUTED
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
200b958: 07 0e e6 b2 sethi %hi(0x3b9ac800), %g3 <== NOT EXECUTED
200b95c: 86 10 e2 00 or %g3, 0x200, %g3 ! 3b9aca00 <RAM_END+0x395aca00><== NOT EXECUTED
200b960: 10 80 00 03 b 200b96c <_Timespec_Subtract+0x38> <== NOT EXECUTED
200b964: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED
} else {
result->tv_sec = end->tv_sec - start->tv_sec;
200b968: c6 22 80 00 st %g3, [ %o2 ]
result->tv_nsec = end->tv_nsec - start->tv_nsec;
200b96c: 82 20 80 01 sub %g2, %g1, %g1
200b970: 81 c3 e0 08 retl
200b974: c2 22 a0 04 st %g1, [ %o2 + 4 ]
0200c4a4 <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200c4a4: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200c4a8: d4 1e 40 00 ldd [ %i1 ], %o2
200c4ac: 80 92 80 0b orcc %o2, %o3, %g0
200c4b0: 32 80 00 06 bne,a 200c4c8 <_Timestamp64_Divide+0x24> <== ALWAYS TAKEN
200c4b4: f8 1e 00 00 ldd [ %i0 ], %i4
*_ival_percentage = 0;
200c4b8: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
*_fval_percentage = 0;
200c4bc: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
200c4c0: 81 c7 e0 08 ret <== NOT EXECUTED
200c4c4: 81 e8 00 00 restore <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c4c8: 83 2f 20 02 sll %i4, 2, %g1
200c4cc: 89 37 60 1e srl %i5, 0x1e, %g4
200c4d0: 87 2f 60 02 sll %i5, 2, %g3
200c4d4: 84 11 00 01 or %g4, %g1, %g2
200c4d8: 83 30 e0 1b srl %g3, 0x1b, %g1
200c4dc: b1 28 a0 05 sll %g2, 5, %i0
200c4e0: b3 28 e0 05 sll %g3, 5, %i1
200c4e4: b0 10 40 18 or %g1, %i0, %i0
200c4e8: 92 a6 40 03 subcc %i1, %g3, %o1
200c4ec: 90 66 00 02 subx %i0, %g2, %o0
200c4f0: 92 82 40 1d addcc %o1, %i5, %o1
200c4f4: 83 32 60 1e srl %o1, 0x1e, %g1
200c4f8: 90 42 00 1c addx %o0, %i4, %o0
200c4fc: bb 2a 60 02 sll %o1, 2, %i5
200c500: b9 2a 20 02 sll %o0, 2, %i4
200c504: 92 82 40 1d addcc %o1, %i5, %o1
200c508: b8 10 40 1c or %g1, %i4, %i4
200c50c: 83 32 60 1e srl %o1, 0x1e, %g1
200c510: 90 42 00 1c addx %o0, %i4, %o0
200c514: bb 2a 60 02 sll %o1, 2, %i5
200c518: b9 2a 20 02 sll %o0, 2, %i4
200c51c: 92 82 40 1d addcc %o1, %i5, %o1
200c520: b8 10 40 1c or %g1, %i4, %i4
200c524: 87 32 60 1b srl %o1, 0x1b, %g3
200c528: 90 42 00 1c addx %o0, %i4, %o0
200c52c: 83 2a 60 05 sll %o1, 5, %g1
200c530: 85 2a 20 05 sll %o0, 5, %g2
200c534: 92 10 00 01 mov %g1, %o1
200c538: 40 00 36 de call 201a0b0 <__divdi3>
200c53c: 90 10 c0 02 or %g3, %g2, %o0
*_ival_percentage = answer / 1000;
200c540: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c544: b8 10 00 08 mov %o0, %i4
200c548: ba 10 00 09 mov %o1, %i5
*_ival_percentage = answer / 1000;
200c54c: 40 00 36 d9 call 201a0b0 <__divdi3>
200c550: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
200c554: 90 10 00 1c mov %i4, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
200c558: d2 26 80 00 st %o1, [ %i2 ]
*_fval_percentage = answer % 1000;
200c55c: 94 10 20 00 clr %o2
200c560: 92 10 00 1d mov %i5, %o1
200c564: 40 00 37 be call 201a45c <__moddi3>
200c568: 96 10 23 e8 mov 0x3e8, %o3
200c56c: d2 26 c0 00 st %o1, [ %i3 ]
200c570: 81 c7 e0 08 ret
200c574: 81 e8 00 00 restore
0200ab58 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
200ab58: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200ab5c: 03 00 80 6e sethi %hi(0x201b800), %g1
200ab60: 82 10 60 3c or %g1, 0x3c, %g1 ! 201b83c <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab64: 05 00 80 71 sethi %hi(0x201c400), %g2
initial_extensions = Configuration.User_extension_table;
200ab68: f4 00 60 48 ld [ %g1 + 0x48 ], %i2
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200ab6c: f8 00 60 44 ld [ %g1 + 0x44 ], %i4
200ab70: 82 10 a3 88 or %g2, 0x388, %g1
200ab74: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200ab78: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
200ab7c: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab80: c6 20 a3 88 st %g3, [ %g2 + 0x388 ]
200ab84: 05 00 80 71 sethi %hi(0x201c400), %g2
200ab88: 82 10 a1 b4 or %g2, 0x1b4, %g1 ! 201c5b4 <_User_extensions_Switches_list>
200ab8c: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200ab90: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab94: c6 20 a1 b4 st %g3, [ %g2 + 0x1b4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200ab98: 80 a6 a0 00 cmp %i2, 0
200ab9c: 02 80 00 1b be 200ac08 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
200aba0: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
200aba4: 83 2f 20 02 sll %i4, 2, %g1
200aba8: b7 2f 20 04 sll %i4, 4, %i3
200abac: b6 26 c0 01 sub %i3, %g1, %i3
200abb0: b6 06 c0 1c add %i3, %i4, %i3
200abb4: b7 2e e0 02 sll %i3, 2, %i3
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200abb8: 40 00 01 71 call 200b17c <_Workspace_Allocate_or_fatal_error>
200abbc: 90 10 00 1b mov %i3, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200abc0: 94 10 00 1b mov %i3, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200abc4: ba 10 00 08 mov %o0, %i5
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200abc8: 92 10 20 00 clr %o1
200abcc: 40 00 12 ac call 200f67c <memset>
200abd0: b6 10 20 00 clr %i3
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200abd4: 10 80 00 0b b 200ac00 <_User_extensions_Handler_initialization+0xa8>
200abd8: 80 a6 c0 1c cmp %i3, %i4
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
200abdc: 90 07 60 14 add %i5, 0x14, %o0
200abe0: 92 06 80 09 add %i2, %o1, %o1
200abe4: 40 00 12 69 call 200f588 <memcpy>
200abe8: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
200abec: 90 10 00 1d mov %i5, %o0
200abf0: 40 00 0a 6d call 200d5a4 <_User_extensions_Add_set>
200abf4: b6 06 e0 01 inc %i3
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
200abf8: ba 07 60 34 add %i5, 0x34, %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200abfc: 80 a6 c0 1c cmp %i3, %i4
200ac00: 12 bf ff f7 bne 200abdc <_User_extensions_Handler_initialization+0x84>
200ac04: 93 2e e0 05 sll %i3, 5, %o1
200ac08: 81 c7 e0 08 ret
200ac0c: 81 e8 00 00 restore
0200c880 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200c880: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200c884: 7f ff db 22 call 200350c <sparc_disable_interrupts>
200c888: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c88c: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c890: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200c894: 80 a0 40 1c cmp %g1, %i4
200c898: 02 80 00 20 be 200c918 <_Watchdog_Adjust+0x98>
200c89c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200c8a0: 02 80 00 1b be 200c90c <_Watchdog_Adjust+0x8c>
200c8a4: b6 10 20 01 mov 1, %i3
200c8a8: 80 a6 60 01 cmp %i1, 1
200c8ac: 12 80 00 1b bne 200c918 <_Watchdog_Adjust+0x98> <== NEVER TAKEN
200c8b0: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200c8b4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c8b8: 10 80 00 07 b 200c8d4 <_Watchdog_Adjust+0x54>
200c8bc: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200c8c0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c8c4: 80 a6 80 02 cmp %i2, %g2
200c8c8: 3a 80 00 05 bcc,a 200c8dc <_Watchdog_Adjust+0x5c>
200c8cc: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200c8d0: b4 20 80 1a sub %g2, %i2, %i2
break;
200c8d4: 10 80 00 11 b 200c918 <_Watchdog_Adjust+0x98>
200c8d8: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200c8dc: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200c8e0: 7f ff db 0f call 200351c <sparc_enable_interrupts>
200c8e4: 01 00 00 00 nop
_Watchdog_Tickle( header );
200c8e8: 40 00 00 90 call 200cb28 <_Watchdog_Tickle>
200c8ec: 90 10 00 18 mov %i0, %o0
_ISR_Disable( level );
200c8f0: 7f ff db 07 call 200350c <sparc_disable_interrupts>
200c8f4: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200c8f8: c2 06 00 00 ld [ %i0 ], %g1
200c8fc: 80 a0 40 1c cmp %g1, %i4
200c900: 12 80 00 04 bne 200c910 <_Watchdog_Adjust+0x90>
200c904: 80 a6 a0 00 cmp %i2, 0
200c908: 30 80 00 04 b,a 200c918 <_Watchdog_Adjust+0x98>
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200c90c: 80 a6 a0 00 cmp %i2, 0
200c910: 32 bf ff ec bne,a 200c8c0 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200c914: c2 06 00 00 ld [ %i0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200c918: 7f ff db 01 call 200351c <sparc_enable_interrupts>
200c91c: 91 e8 00 08 restore %g0, %o0, %o0
0200af80 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200af80: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200af84: 7f ff dd d0 call 20026c4 <sparc_disable_interrupts>
200af88: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
200af8c: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
200af90: 80 a6 20 01 cmp %i0, 1
200af94: 22 80 00 1e be,a 200b00c <_Watchdog_Remove+0x8c>
200af98: c0 27 60 08 clr [ %i5 + 8 ]
200af9c: 0a 80 00 1d bcs 200b010 <_Watchdog_Remove+0x90>
200afa0: 03 00 80 71 sethi %hi(0x201c400), %g1
200afa4: 80 a6 20 03 cmp %i0, 3
200afa8: 18 80 00 1a bgu 200b010 <_Watchdog_Remove+0x90> <== NEVER TAKEN
200afac: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next(
Watchdog_Control *the_watchdog
)
{
return ( (Watchdog_Control *) the_watchdog->Node.next );
200afb0: 10 80 00 02 b 200afb8 <_Watchdog_Remove+0x38>
200afb4: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200afb8: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200afbc: c4 00 40 00 ld [ %g1 ], %g2
200afc0: 80 a0 a0 00 cmp %g2, 0
200afc4: 02 80 00 07 be 200afe0 <_Watchdog_Remove+0x60>
200afc8: 05 00 80 71 sethi %hi(0x201c400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200afcc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200afd0: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200afd4: 84 00 c0 02 add %g3, %g2, %g2
200afd8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200afdc: 05 00 80 71 sethi %hi(0x201c400), %g2
200afe0: c4 00 a2 a4 ld [ %g2 + 0x2a4 ], %g2 ! 201c6a4 <_Watchdog_Sync_count>
200afe4: 80 a0 a0 00 cmp %g2, 0
200afe8: 22 80 00 07 be,a 200b004 <_Watchdog_Remove+0x84>
200afec: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200aff0: 05 00 80 71 sethi %hi(0x201c400), %g2
200aff4: c6 00 a3 d8 ld [ %g2 + 0x3d8 ], %g3 ! 201c7d8 <_Per_CPU_Information+0x8>
200aff8: 05 00 80 71 sethi %hi(0x201c400), %g2
200affc: c6 20 a2 44 st %g3, [ %g2 + 0x244 ] ! 201c644 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200b000: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
200b004: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200b008: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b00c: 03 00 80 71 sethi %hi(0x201c400), %g1
200b010: c2 00 62 a8 ld [ %g1 + 0x2a8 ], %g1 ! 201c6a8 <_Watchdog_Ticks_since_boot>
200b014: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
200b018: 7f ff dd af call 20026d4 <sparc_enable_interrupts>
200b01c: 01 00 00 00 nop
return( previous_state );
}
200b020: 81 c7 e0 08 ret
200b024: 81 e8 00 00 restore
0200c1f0 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200c1f0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200c1f4: 7f ff db a3 call 2003080 <sparc_disable_interrupts>
200c1f8: b8 10 00 18 mov %i0, %i4
200c1fc: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200c200: 11 00 80 71 sethi %hi(0x201c400), %o0
200c204: 94 10 00 19 mov %i1, %o2
200c208: 90 12 21 60 or %o0, 0x160, %o0
200c20c: 7f ff e3 87 call 2005028 <printk>
200c210: 92 10 00 1c mov %i4, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c214: fa 06 40 00 ld [ %i1 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c218: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200c21c: 80 a7 40 19 cmp %i5, %i1
200c220: 12 80 00 04 bne 200c230 <_Watchdog_Report_chain+0x40>
200c224: 92 10 00 1d mov %i5, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200c228: 10 80 00 0d b 200c25c <_Watchdog_Report_chain+0x6c>
200c22c: 11 00 80 71 sethi %hi(0x201c400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200c230: 40 00 00 0f call 200c26c <_Watchdog_Report>
200c234: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200c238: fa 07 40 00 ld [ %i5 ], %i5
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200c23c: 80 a7 40 19 cmp %i5, %i1
200c240: 12 bf ff fc bne 200c230 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200c244: 92 10 00 1d mov %i5, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200c248: 11 00 80 71 sethi %hi(0x201c400), %o0
200c24c: 92 10 00 1c mov %i4, %o1
200c250: 7f ff e3 76 call 2005028 <printk>
200c254: 90 12 21 78 or %o0, 0x178, %o0
200c258: 30 80 00 03 b,a 200c264 <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200c25c: 7f ff e3 73 call 2005028 <printk>
200c260: 90 12 21 88 or %o0, 0x188, %o0
}
_ISR_Enable( level );
200c264: 7f ff db 8b call 2003090 <sparc_enable_interrupts>
200c268: 81 e8 00 00 restore
0200af40 <_Workspace_String_duplicate>:
char *_Workspace_String_duplicate(
const char *string,
size_t len
)
{
200af40: 9d e3 bf a0 save %sp, -96, %sp
char *dup = _Workspace_Allocate(len + 1);
200af44: 7f ff ff e3 call 200aed0 <_Workspace_Allocate>
200af48: 90 06 60 01 add %i1, 1, %o0
if (dup != NULL) {
200af4c: ba 92 20 00 orcc %o0, 0, %i5
200af50: 02 80 00 05 be 200af64 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN
200af54: 92 10 00 18 mov %i0, %o1
dup [len] = '\0';
200af58: c0 2f 40 19 clrb [ %i5 + %i1 ]
memcpy(dup, string, len);
200af5c: 40 00 11 82 call 200f564 <memcpy>
200af60: 94 10 00 19 mov %i1, %o2
}
return dup;
}
200af64: 81 c7 e0 08 ret
200af68: 91 e8 00 1d restore %g0, %i5, %o0
02008530 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2008530: 9d e3 bf 98 save %sp, -104, %sp
2008534: 30 80 00 08 b,a 2008554 <rtems_chain_get_with_wait+0x24>
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2008538: 92 10 20 00 clr %o1
200853c: 94 10 00 1a mov %i2, %o2
2008540: 7f ff fd 03 call 200794c <rtems_event_receive>
2008544: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2008548: 80 a2 20 00 cmp %o0, 0
200854c: 32 80 00 09 bne,a 2008570 <rtems_chain_get_with_wait+0x40><== ALWAYS TAKEN
2008550: fa 26 c0 00 st %i5, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2008554: 40 00 01 6c call 2008b04 <_Chain_Get>
2008558: 90 10 00 18 mov %i0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
200855c: ba 92 20 00 orcc %o0, 0, %i5
2008560: 02 bf ff f6 be 2008538 <rtems_chain_get_with_wait+0x8>
2008564: 90 10 00 19 mov %i1, %o0
2008568: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
200856c: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008570: 81 c7 e0 08 ret
2008574: 91 e8 00 08 restore %g0, %o0, %o0
0200a57c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200a57c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200a580: ba 10 20 01 mov 1, %i5
200a584: 80 a6 20 00 cmp %i0, 0
200a588: 02 80 00 0c be 200a5b8 <rtems_iterate_over_all_threads+0x3c><== NEVER TAKEN
200a58c: 35 00 80 7b sethi %hi(0x201ec00), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200a590: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200a594: 84 16 a3 e4 or %i2, 0x3e4, %g2
200a598: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200a59c: 80 a0 60 00 cmp %g1, 0
200a5a0: 32 80 00 08 bne,a 200a5c0 <rtems_iterate_over_all_threads+0x44>
200a5a4: f6 00 60 04 ld [ %g1 + 4 ], %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a5a8: ba 07 60 01 inc %i5
200a5ac: 80 a7 60 04 cmp %i5, 4
200a5b0: 12 bf ff f9 bne 200a594 <rtems_iterate_over_all_threads+0x18>
200a5b4: 83 2f 60 02 sll %i5, 2, %g1
200a5b8: 81 c7 e0 08 ret
200a5bc: 81 e8 00 00 restore
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
200a5c0: 80 a6 e0 00 cmp %i3, 0
200a5c4: 02 bf ff f9 be 200a5a8 <rtems_iterate_over_all_threads+0x2c>
200a5c8: b8 10 20 01 mov 1, %i4
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a5cc: 10 80 00 0a b 200a5f4 <rtems_iterate_over_all_threads+0x78>
200a5d0: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
the_thread = (Thread_Control *)information->local_table[ i ];
200a5d4: 83 2f 20 02 sll %i4, 2, %g1
200a5d8: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
200a5dc: 80 a2 20 00 cmp %o0, 0
200a5e0: 02 80 00 04 be 200a5f0 <rtems_iterate_over_all_threads+0x74>
200a5e4: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
200a5e8: 9f c6 00 00 call %i0
200a5ec: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a5f0: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
200a5f4: 80 a7 00 01 cmp %i4, %g1
200a5f8: 28 bf ff f7 bleu,a 200a5d4 <rtems_iterate_over_all_threads+0x58>
200a5fc: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a600: 10 bf ff eb b 200a5ac <rtems_iterate_over_all_threads+0x30>
200a604: ba 07 60 01 inc %i5
020162d4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
20162d4: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
20162d8: 80 a6 20 00 cmp %i0, 0
20162dc: 02 80 00 39 be 20163c0 <rtems_partition_create+0xec>
20162e0: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
20162e4: 80 a6 60 00 cmp %i1, 0
20162e8: 02 80 00 36 be 20163c0 <rtems_partition_create+0xec>
20162ec: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
20162f0: 80 a7 60 00 cmp %i5, 0
20162f4: 02 80 00 33 be 20163c0 <rtems_partition_create+0xec> <== NEVER TAKEN
20162f8: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20162fc: 02 80 00 31 be 20163c0 <rtems_partition_create+0xec>
2016300: 82 10 20 08 mov 8, %g1
2016304: 80 a6 a0 00 cmp %i2, 0
2016308: 02 80 00 2e be 20163c0 <rtems_partition_create+0xec>
201630c: 80 a6 80 1b cmp %i2, %i3
2016310: 0a 80 00 2c bcs 20163c0 <rtems_partition_create+0xec>
2016314: 80 8e e0 07 btst 7, %i3
2016318: 12 80 00 2a bne 20163c0 <rtems_partition_create+0xec>
201631c: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2016320: 12 80 00 28 bne 20163c0 <rtems_partition_create+0xec>
2016324: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2016328: 03 00 80 ed sethi %hi(0x203b400), %g1
201632c: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 203b6c0 <_Thread_Dispatch_disable_level>
2016330: 84 00 a0 01 inc %g2
2016334: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
return _Thread_Dispatch_disable_level;
2016338: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
201633c: 23 00 80 ed sethi %hi(0x203b400), %l1
2016340: 40 00 12 ee call 201aef8 <_Objects_Allocate>
2016344: 90 14 60 b4 or %l1, 0xb4, %o0 ! 203b4b4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2016348: a0 92 20 00 orcc %o0, 0, %l0
201634c: 32 80 00 06 bne,a 2016364 <rtems_partition_create+0x90>
2016350: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2016354: 40 00 18 04 call 201c364 <_Thread_Enable_dispatch>
2016358: 01 00 00 00 nop
return RTEMS_TOO_MANY;
201635c: 10 80 00 19 b 20163c0 <rtems_partition_create+0xec>
2016360: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2016364: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2016368: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
201636c: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2016370: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2016374: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2016378: 40 00 54 56 call 202b4d0 <.udiv>
201637c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2016380: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2016384: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2016388: 96 10 00 1b mov %i3, %o3
201638c: b8 04 20 24 add %l0, 0x24, %i4
2016390: 40 00 0c f0 call 2019750 <_Chain_Initialize>
2016394: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2016398: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
201639c: a2 14 60 b4 or %l1, 0xb4, %l1
20163a0: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20163a4: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20163a8: 85 28 a0 02 sll %g2, 2, %g2
20163ac: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20163b0: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
20163b4: 40 00 17 ec call 201c364 <_Thread_Enable_dispatch>
20163b8: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
20163bc: 82 10 20 00 clr %g1
}
20163c0: 81 c7 e0 08 ret
20163c4: 91 e8 00 01 restore %g0, %g1, %o0
020164f4 <rtems_partition_return_buffer>:
rtems_status_code rtems_partition_return_buffer(
rtems_id id,
void *buffer
)
{
20164f4: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Partition_Control *)
20164f8: 11 00 80 ed sethi %hi(0x203b400), %o0
20164fc: 92 10 00 18 mov %i0, %o1
2016500: 90 12 20 b4 or %o0, 0xb4, %o0
2016504: 40 00 13 cd call 201b438 <_Objects_Get>
2016508: 94 07 bf fc add %fp, -4, %o2
register Partition_Control *the_partition;
Objects_Locations location;
the_partition = _Partition_Get( id, &location );
switch ( location ) {
201650c: c2 07 bf fc ld [ %fp + -4 ], %g1
2016510: 80 a0 60 00 cmp %g1, 0
2016514: 12 80 00 21 bne 2016598 <rtems_partition_return_buffer+0xa4>
2016518: ba 10 00 08 mov %o0, %i5
)
{
void *starting;
void *ending;
starting = the_partition->starting_address;
201651c: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
2016520: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2016524: 82 02 00 01 add %o0, %g1, %g1
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
2016528: 80 a6 40 01 cmp %i1, %g1
201652c: 18 80 00 0b bgu 2016558 <rtems_partition_return_buffer+0x64><== NEVER TAKEN
2016530: 82 10 20 00 clr %g1
2016534: 80 a6 40 08 cmp %i1, %o0
2016538: 0a 80 00 09 bcs 201655c <rtems_partition_return_buffer+0x68>
201653c: 80 a0 60 00 cmp %g1, 0
offset = (uint32_t) _Addresses_Subtract(
the_buffer,
the_partition->starting_address
);
return ((offset % the_partition->buffer_size) == 0);
2016540: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
2016544: 40 00 54 8f call 202b780 <.urem>
2016548: 90 26 40 08 sub %i1, %o0, %o0
starting = the_partition->starting_address;
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
201654c: 80 a0 00 08 cmp %g0, %o0
2016550: 10 80 00 02 b 2016558 <rtems_partition_return_buffer+0x64>
2016554: 82 60 3f ff subx %g0, -1, %g1
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
2016558: 80 a0 60 00 cmp %g1, 0
201655c: 02 80 00 0b be 2016588 <rtems_partition_return_buffer+0x94>
2016560: 90 07 60 24 add %i5, 0x24, %o0
RTEMS_INLINE_ROUTINE void _Partition_Free_buffer (
Partition_Control *the_partition,
Chain_Node *the_buffer
)
{
_Chain_Append( &the_partition->Memory, the_buffer );
2016564: 40 00 0c 60 call 20196e4 <_Chain_Append>
2016568: 92 10 00 19 mov %i1, %o1
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
201656c: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2016570: b0 10 20 00 clr %i0
switch ( location ) {
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
2016574: 82 00 7f ff add %g1, -1, %g1
_Thread_Enable_dispatch();
2016578: 40 00 17 7b call 201c364 <_Thread_Enable_dispatch>
201657c: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
2016580: 81 c7 e0 08 ret
2016584: 81 e8 00 00 restore
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2016588: 40 00 17 77 call 201c364 <_Thread_Enable_dispatch>
201658c: b0 10 20 09 mov 9, %i0
2016590: 81 c7 e0 08 ret
2016594: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016598: 81 c7 e0 08 ret
201659c: 91 e8 20 04 restore %g0, 4, %o0
02032180 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2032180: 9d e3 bf 98 save %sp, -104, %sp
2032184: 11 00 81 83 sethi %hi(0x2060c00), %o0
2032188: 92 10 00 18 mov %i0, %o1
203218c: 90 12 22 00 or %o0, 0x200, %o0
2032190: 7f ff 5b 68 call 2008f30 <_Objects_Get>
2032194: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2032198: c2 07 bf fc ld [ %fp + -4 ], %g1
203219c: 80 a0 60 00 cmp %g1, 0
20321a0: 12 80 00 6a bne 2032348 <rtems_rate_monotonic_period+0x1c8>
20321a4: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20321a8: 37 00 81 82 sethi %hi(0x2060800), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
20321ac: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
20321b0: b6 16 e3 e0 or %i3, 0x3e0, %i3
20321b4: c2 06 e0 0c ld [ %i3 + 0xc ], %g1
20321b8: 80 a0 80 01 cmp %g2, %g1
20321bc: 02 80 00 06 be 20321d4 <rtems_rate_monotonic_period+0x54>
20321c0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20321c4: 7f ff 5e fc call 2009db4 <_Thread_Enable_dispatch>
20321c8: b0 10 20 17 mov 0x17, %i0
20321cc: 81 c7 e0 08 ret
20321d0: 81 e8 00 00 restore
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
20321d4: 12 80 00 0d bne 2032208 <rtems_rate_monotonic_period+0x88>
20321d8: 01 00 00 00 nop
switch ( the_period->state ) {
20321dc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20321e0: 80 a0 60 04 cmp %g1, 4
20321e4: 18 80 00 05 bgu 20321f8 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
20321e8: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20321ec: 05 00 81 69 sethi %hi(0x205a400), %g2
20321f0: 84 10 a2 40 or %g2, 0x240, %g2 ! 205a640 <CSWTCH.23>
20321f4: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20321f8: 7f ff 5e ef call 2009db4 <_Thread_Enable_dispatch>
20321fc: 01 00 00 00 nop
2032200: 81 c7 e0 08 ret
2032204: 81 e8 00 00 restore
return( return_value );
}
_ISR_Disable( level );
2032208: 7f ff 40 92 call 2002450 <sparc_disable_interrupts>
203220c: 01 00 00 00 nop
2032210: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2032214: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
2032218: 80 a7 20 00 cmp %i4, 0
203221c: 12 80 00 15 bne 2032270 <rtems_rate_monotonic_period+0xf0>
2032220: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
2032224: 7f ff 40 8f call 2002460 <sparc_enable_interrupts>
2032228: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
203222c: 90 10 00 1d mov %i5, %o0
2032230: 7f ff ff ba call 2032118 <_Rate_monotonic_Initiate_statistics>
2032234: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
2032238: 82 10 20 02 mov 2, %g1
203223c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2032240: 03 00 80 c8 sethi %hi(0x2032000), %g1
2032244: 82 10 63 54 or %g1, 0x354, %g1 ! 2032354 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2032248: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
203224c: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
2032250: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
2032254: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2032258: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203225c: 11 00 81 82 sethi %hi(0x2060800), %o0
2032260: 92 07 60 10 add %i5, 0x10, %o1
2032264: 7f ff 62 10 call 200aaa4 <_Watchdog_Insert>
2032268: 90 12 22 68 or %o0, 0x268, %o0
203226c: 30 80 00 1b b,a 20322d8 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
2032270: 12 80 00 1e bne 20322e8 <rtems_rate_monotonic_period+0x168>
2032274: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2032278: 7f ff ff 5f call 2031ff4 <_Rate_monotonic_Update_statistics>
203227c: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2032280: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2032284: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2032288: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
203228c: 7f ff 40 75 call 2002460 <sparc_enable_interrupts>
2032290: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2032294: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
2032298: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
203229c: 13 00 00 10 sethi %hi(0x4000), %o1
20322a0: 7f ff 60 f0 call 200a660 <_Thread_Set_state>
20322a4: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
20322a8: 7f ff 40 6a call 2002450 <sparc_disable_interrupts>
20322ac: 01 00 00 00 nop
local_state = the_period->state;
20322b0: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
20322b4: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
20322b8: 7f ff 40 6a call 2002460 <sparc_enable_interrupts>
20322bc: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20322c0: 80 a6 a0 03 cmp %i2, 3
20322c4: 12 80 00 05 bne 20322d8 <rtems_rate_monotonic_period+0x158>
20322c8: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20322cc: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
20322d0: 7f ff 5d d9 call 2009a34 <_Thread_Clear_state>
20322d4: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
20322d8: 7f ff 5e b7 call 2009db4 <_Thread_Enable_dispatch>
20322dc: b0 10 20 00 clr %i0
20322e0: 81 c7 e0 08 ret
20322e4: 81 e8 00 00 restore
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20322e8: 12 bf ff b9 bne 20321cc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20322ec: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20322f0: 7f ff ff 41 call 2031ff4 <_Rate_monotonic_Update_statistics>
20322f4: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20322f8: 7f ff 40 5a call 2002460 <sparc_enable_interrupts>
20322fc: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2032300: 82 10 20 02 mov 2, %g1
2032304: 92 07 60 10 add %i5, 0x10, %o1
2032308: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
203230c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2032310: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2032314: 11 00 81 82 sethi %hi(0x2060800), %o0
2032318: 7f ff 61 e3 call 200aaa4 <_Watchdog_Insert>
203231c: 90 12 22 68 or %o0, 0x268, %o0 ! 2060a68 <_Watchdog_Ticks_chain>
2032320: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
2032324: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2032328: 03 00 81 71 sethi %hi(0x205c400), %g1
203232c: c2 00 62 20 ld [ %g1 + 0x220 ], %g1 ! 205c620 <_Scheduler+0x34>
2032330: 9f c0 40 00 call %g1
2032334: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
2032338: 7f ff 5e 9f call 2009db4 <_Thread_Enable_dispatch>
203233c: 01 00 00 00 nop
2032340: 81 c7 e0 08 ret
2032344: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2032348: b0 10 20 04 mov 4, %i0
}
203234c: 81 c7 e0 08 ret
2032350: 81 e8 00 00 restore
02025384 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2025384: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2025388: 80 a6 60 00 cmp %i1, 0
202538c: 02 80 00 75 be 2025560 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
2025390: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2025394: 13 00 81 5e sethi %hi(0x2057800), %o1
2025398: 9f c6 40 00 call %i1
202539c: 92 12 60 98 or %o1, 0x98, %o1 ! 2057898 <_TOD_Days_per_month+0x68>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
20253a0: 90 10 00 18 mov %i0, %o0
20253a4: 13 00 81 5e sethi %hi(0x2057800), %o1
20253a8: 9f c6 40 00 call %i1
20253ac: 92 12 60 b8 or %o1, 0xb8, %o1 ! 20578b8 <_TOD_Days_per_month+0x88>
(*print)( context, "--- Wall times are in seconds ---\n" );
20253b0: 90 10 00 18 mov %i0, %o0
20253b4: 13 00 81 5e sethi %hi(0x2057800), %o1
20253b8: 9f c6 40 00 call %i1
20253bc: 92 12 60 e0 or %o1, 0xe0, %o1 ! 20578e0 <_TOD_Days_per_month+0xb0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
20253c0: 90 10 00 18 mov %i0, %o0
20253c4: 13 00 81 5e sethi %hi(0x2057800), %o1
20253c8: 9f c6 40 00 call %i1
20253cc: 92 12 61 08 or %o1, 0x108, %o1 ! 2057908 <_TOD_Days_per_month+0xd8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
20253d0: 90 10 00 18 mov %i0, %o0
20253d4: 13 00 81 5e sethi %hi(0x2057800), %o1
20253d8: 9f c6 40 00 call %i1
20253dc: 92 12 61 58 or %o1, 0x158, %o1 ! 2057958 <_TOD_Days_per_month+0x128>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20253e0: 03 00 81 83 sethi %hi(0x2060c00), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20253e4: 39 00 81 5e sethi %hi(0x2057800), %i4
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20253e8: 37 00 81 5e sethi %hi(0x2057800), %i3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
20253ec: 35 00 81 5e sethi %hi(0x2057800), %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
20253f0: 21 00 81 63 sethi %hi(0x2058c00), %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20253f4: fa 00 62 08 ld [ %g1 + 0x208 ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20253f8: b8 17 21 a8 or %i4, 0x1a8, %i4
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20253fc: b6 16 e1 c0 or %i3, 0x1c0, %i3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2025400: b4 16 a1 e0 or %i2, 0x1e0, %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025404: 10 80 00 52 b 202554c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2025408: a0 14 22 68 or %l0, 0x268, %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
202540c: 40 00 32 1e call 2031c84 <rtems_rate_monotonic_get_statistics>
2025410: 92 07 bf c8 add %fp, -56, %o1
if ( status != RTEMS_SUCCESSFUL )
2025414: 80 a2 20 00 cmp %o0, 0
2025418: 32 80 00 4d bne,a 202554c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
202541c: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2025420: 92 07 bf b0 add %fp, -80, %o1
2025424: 40 00 32 89 call 2031e48 <rtems_rate_monotonic_get_status>
2025428: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
202542c: d0 07 bf b0 ld [ %fp + -80 ], %o0
2025430: 92 10 20 05 mov 5, %o1
2025434: 7f ff a4 cb call 200e760 <rtems_object_get_name>
2025438: 94 07 bf a0 add %fp, -96, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
202543c: d8 1f bf c8 ldd [ %fp + -56 ], %o4
2025440: 92 10 00 1c mov %i4, %o1
2025444: 90 10 00 18 mov %i0, %o0
2025448: 94 10 00 1d mov %i5, %o2
202544c: 9f c6 40 00 call %i1
2025450: 96 07 bf a0 add %fp, -96, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2025454: d2 07 bf c8 ld [ %fp + -56 ], %o1
2025458: 80 a2 60 00 cmp %o1, 0
202545c: 12 80 00 07 bne 2025478 <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
2025460: 94 07 bf a8 add %fp, -88, %o2
(*print)( context, "\n" );
2025464: 90 10 00 18 mov %i0, %o0
2025468: 9f c6 40 00 call %i1
202546c: 92 10 00 10 mov %l0, %o1
continue;
2025470: 10 80 00 37 b 202554c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2025474: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2025478: 40 00 02 e5 call 202600c <_Timespec_Divide_by_integer>
202547c: 90 07 bf e0 add %fp, -32, %o0
(*print)( context,
2025480: d0 07 bf d4 ld [ %fp + -44 ], %o0
2025484: 40 00 a6 91 call 204eec8 <.div>
2025488: 92 10 23 e8 mov 0x3e8, %o1
202548c: a6 10 00 08 mov %o0, %l3
2025490: d0 07 bf dc ld [ %fp + -36 ], %o0
2025494: 40 00 a6 8d call 204eec8 <.div>
2025498: 92 10 23 e8 mov 0x3e8, %o1
202549c: c2 07 bf a8 ld [ %fp + -88 ], %g1
20254a0: a2 10 00 08 mov %o0, %l1
20254a4: d0 07 bf ac ld [ %fp + -84 ], %o0
20254a8: e8 07 bf d0 ld [ %fp + -48 ], %l4
20254ac: e4 07 bf d8 ld [ %fp + -40 ], %l2
20254b0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20254b4: 40 00 a6 85 call 204eec8 <.div>
20254b8: 92 10 23 e8 mov 0x3e8, %o1
20254bc: 96 10 00 13 mov %l3, %o3
20254c0: 98 10 00 12 mov %l2, %o4
20254c4: 9a 10 00 11 mov %l1, %o5
20254c8: 94 10 00 14 mov %l4, %o2
20254cc: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20254d0: 92 10 00 1b mov %i3, %o1
20254d4: 9f c6 40 00 call %i1
20254d8: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20254dc: d2 07 bf c8 ld [ %fp + -56 ], %o1
20254e0: 94 07 bf a8 add %fp, -88, %o2
20254e4: 40 00 02 ca call 202600c <_Timespec_Divide_by_integer>
20254e8: 90 07 bf f8 add %fp, -8, %o0
(*print)( context,
20254ec: d0 07 bf ec ld [ %fp + -20 ], %o0
20254f0: 40 00 a6 76 call 204eec8 <.div>
20254f4: 92 10 23 e8 mov 0x3e8, %o1
20254f8: a6 10 00 08 mov %o0, %l3
20254fc: d0 07 bf f4 ld [ %fp + -12 ], %o0
2025500: 40 00 a6 72 call 204eec8 <.div>
2025504: 92 10 23 e8 mov 0x3e8, %o1
2025508: c2 07 bf a8 ld [ %fp + -88 ], %g1
202550c: a2 10 00 08 mov %o0, %l1
2025510: d0 07 bf ac ld [ %fp + -84 ], %o0
2025514: e8 07 bf e8 ld [ %fp + -24 ], %l4
2025518: e4 07 bf f0 ld [ %fp + -16 ], %l2
202551c: 92 10 23 e8 mov 0x3e8, %o1
2025520: 40 00 a6 6a call 204eec8 <.div>
2025524: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2025528: 92 10 00 1a mov %i2, %o1
202552c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2025530: 94 10 00 14 mov %l4, %o2
2025534: 90 10 00 18 mov %i0, %o0
2025538: 96 10 00 13 mov %l3, %o3
202553c: 98 10 00 12 mov %l2, %o4
2025540: 9f c6 40 00 call %i1
2025544: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2025548: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
202554c: 03 00 81 83 sethi %hi(0x2060c00), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2025550: c2 00 62 0c ld [ %g1 + 0x20c ], %g1 ! 2060e0c <_Rate_monotonic_Information+0xc>
2025554: 80 a7 40 01 cmp %i5, %g1
2025558: 08 bf ff ad bleu 202540c <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
202555c: 90 10 00 1d mov %i5, %o0
2025560: 81 c7 e0 08 ret
2025564: 81 e8 00 00 restore
02008a18 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
2008a18: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
2008a1c: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008a20: 90 10 00 19 mov %i1, %o0
2008a24: 92 10 00 1d mov %i5, %o1
2008a28: 40 00 41 a2 call 20190b0 <.urem>
2008a2c: b6 10 00 19 mov %i1, %i3
if (excess > 0) {
2008a30: 80 a2 20 00 cmp %o0, 0
2008a34: 02 80 00 05 be 2008a48 <rtems_rbheap_allocate+0x30> <== ALWAYS TAKEN
2008a38: 80 a6 c0 19 cmp %i3, %i1
value += alignment - excess;
2008a3c: b6 06 40 1d add %i1, %i5, %i3 <== NOT EXECUTED
2008a40: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
2008a44: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED
2008a48: 0a 80 00 04 bcs 2008a58 <rtems_rbheap_allocate+0x40> <== NEVER TAKEN
2008a4c: 80 a6 60 00 cmp %i1, 0
2008a50: 32 80 00 04 bne,a 2008a60 <rtems_rbheap_allocate+0x48>
2008a54: c2 06 00 00 ld [ %i0 ], %g1
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
2008a58: 81 c7 e0 08 ret
2008a5c: 91 e8 20 00 restore %g0, 0, %o0
rtems_chain_control *free_chain,
size_t size
)
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
2008a60: 84 06 20 04 add %i0, 4, %g2
rtems_rbheap_chunk *big_enough = NULL;
2008a64: 10 80 00 06 b 2008a7c <rtems_rbheap_allocate+0x64>
2008a68: ba 10 20 00 clr %i5
while (current != tail && big_enough == NULL) {
rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current;
if (free_chunk->size >= size) {
2008a6c: 80 a0 c0 1b cmp %g3, %i3
2008a70: ba 40 3f ff addx %g0, -1, %i5
2008a74: ba 08 40 1d and %g1, %i5, %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Next(
Chain_Node *the_node
)
{
return the_node->next;
2008a78: c2 00 40 00 ld [ %g1 ], %g1
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2008a7c: 80 a7 60 00 cmp %i5, 0
2008a80: 12 80 00 04 bne 2008a90 <rtems_rbheap_allocate+0x78>
2008a84: 80 a0 40 02 cmp %g1, %g2
2008a88: 32 bf ff f9 bne,a 2008a6c <rtems_rbheap_allocate+0x54>
2008a8c: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size);
if (free_chunk != NULL) {
2008a90: 80 a7 60 00 cmp %i5, 0
2008a94: 02 bf ff f1 be 2008a58 <rtems_rbheap_allocate+0x40>
2008a98: 01 00 00 00 nop
uintptr_t free_size = free_chunk->size;
2008a9c: f4 07 60 1c ld [ %i5 + 0x1c ], %i2
if (free_size > aligned_size) {
2008aa0: 80 a6 80 1b cmp %i2, %i3
2008aa4: 28 80 00 14 bleu,a 2008af4 <rtems_rbheap_allocate+0xdc>
2008aa8: c4 07 40 00 ld [ %i5 ], %g2
rtems_rbheap_chunk *new_chunk = get_chunk(control);
2008aac: 7f ff ff 80 call 20088ac <get_chunk>
2008ab0: 90 10 00 18 mov %i0, %o0
if (new_chunk != NULL) {
2008ab4: b8 92 20 00 orcc %o0, 0, %i4
2008ab8: 02 bf ff e8 be 2008a58 <rtems_rbheap_allocate+0x40> <== NEVER TAKEN
2008abc: b4 26 80 1b sub %i2, %i3, %i2
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
2008ac0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
rtems_rbheap_chunk *new_chunk = get_chunk(control);
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
2008ac4: f4 27 60 1c st %i2, [ %i5 + 0x1c ]
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
2008ac8: f6 27 20 1c st %i3, [ %i4 + 0x1c ]
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
2008acc: b4 06 80 01 add %i2, %g1, %i2
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
2008ad0: c0 27 20 04 clr [ %i4 + 4 ]
2008ad4: f4 27 20 18 st %i2, [ %i4 + 0x18 ]
2008ad8: c0 27 00 00 clr [ %i4 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
2008adc: 90 06 20 18 add %i0, 0x18, %o0
2008ae0: 40 00 06 a0 call 200a560 <_RBTree_Insert_unprotected>
2008ae4: 92 07 20 08 add %i4, 8, %o1
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
rtems_chain_set_off_chain(&new_chunk->chain_node);
insert_into_tree(chunk_tree, new_chunk);
ptr = (void *) new_chunk->begin;
2008ae8: f0 07 20 18 ld [ %i4 + 0x18 ], %i0
2008aec: 81 c7 e0 08 ret
2008af0: 81 e8 00 00 restore
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2008af4: c2 07 60 04 ld [ %i5 + 4 ], %g1
}
} else {
rtems_chain_extract_unprotected(&free_chunk->chain_node);
rtems_chain_set_off_chain(&free_chunk->chain_node);
ptr = (void *) free_chunk->begin;
2008af8: f0 07 60 18 ld [ %i5 + 0x18 ], %i0
next->previous = previous;
2008afc: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2008b00: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
2008b04: c0 27 60 04 clr [ %i5 + 4 ]
2008b08: c0 27 40 00 clr [ %i5 ]
}
}
}
return ptr;
}
2008b0c: 81 c7 e0 08 ret
2008b10: 81 e8 00 00 restore
02008c44 <rtems_rbheap_extend_descriptors_with_malloc>:
/* Do nothing */
}
void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control)
{
2008c44: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk));
2008c48: 7f ff ed a0 call 20042c8 <malloc> <== NOT EXECUTED
2008c4c: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED
if (chunk != NULL) {
2008c50: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED
2008c54: 02 80 00 07 be 2008c70 <rtems_rbheap_extend_descriptors_with_malloc+0x2c><== NOT EXECUTED
2008c58: 82 06 20 0c add %i0, 0xc, %g1 <== NOT EXECUTED
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008c5c: c2 22 20 04 st %g1, [ %o0 + 4 ] <== NOT EXECUTED
before_node = after_node->next;
2008c60: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED
after_node->next = the_node;
2008c64: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED
the_node->next = before_node;
2008c68: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED
before_node->previous = the_node;
2008c6c: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED
2008c70: 81 c7 e0 08 ret <== NOT EXECUTED
2008c74: 81 e8 00 00 restore <== NOT EXECUTED
02008b14 <rtems_rbheap_free>:
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
2008b14: 9d e3 bf 80 save %sp, -128, %sp
2008b18: b6 10 00 18 mov %i0, %i3
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (ptr != NULL) {
2008b1c: 80 a6 60 00 cmp %i1, 0
2008b20: 02 80 00 45 be 2008c34 <rtems_rbheap_free+0x120>
2008b24: b0 10 20 00 clr %i0
#define NULL_PAGE rtems_rbheap_chunk_of_node(NULL)
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
2008b28: 90 07 bf e0 add %fp, -32, %o0
2008b2c: 92 10 20 00 clr %o1
2008b30: 94 10 20 20 mov 0x20, %o2
2008b34: 40 00 1f 97 call 2010990 <memset>
2008b38: b4 06 e0 18 add %i3, 0x18, %i2
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
2008b3c: ba 10 20 00 clr %i5
2008b40: f2 27 bf f8 st %i1, [ %fp + -8 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
2008b44: 10 80 00 12 b 2008b8c <rtems_rbheap_free+0x78>
2008b48: f8 06 e0 1c ld [ %i3 + 0x1c ], %i4
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
2008b4c: 90 07 bf e8 add %fp, -24, %o0
2008b50: 9f c0 40 00 call %g1
2008b54: 92 10 00 1c mov %i4, %o1
if ( _RBTree_Is_equal( compare_result ) ) {
2008b58: 80 a2 20 00 cmp %o0, 0
2008b5c: 12 80 00 07 bne 2008b78 <rtems_rbheap_free+0x64>
2008b60: 83 3a 20 1f sra %o0, 0x1f, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2008b64: c2 0e a0 14 ldub [ %i2 + 0x14 ], %g1
2008b68: 80 a0 60 00 cmp %g1, 0
2008b6c: 12 80 00 0c bne 2008b9c <rtems_rbheap_free+0x88> <== ALWAYS TAKEN
2008b70: ba 10 00 1c mov %i4, %i5
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
2008b74: 83 3a 20 1f sra %o0, 0x1f, %g1 <== NOT EXECUTED
2008b78: 90 20 40 08 sub %g1, %o0, %o0
2008b7c: 91 32 20 1f srl %o0, 0x1f, %o0
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
2008b80: 91 2a 20 02 sll %o0, 2, %o0
2008b84: b8 07 00 08 add %i4, %o0, %i4
2008b88: f8 07 20 04 ld [ %i4 + 4 ], %i4
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2008b8c: 80 a7 20 00 cmp %i4, 0
2008b90: 32 bf ff ef bne,a 2008b4c <rtems_rbheap_free+0x38>
2008b94: c2 06 a0 10 ld [ %i2 + 0x10 ], %g1
2008b98: b8 10 00 1d mov %i5, %i4
return rtems_rbheap_chunk_of_node(
2008b9c: ba 07 3f f8 add %i4, -8, %i5
if (ptr != NULL) {
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr);
if (chunk != NULL_PAGE) {
2008ba0: 80 a7 7f f8 cmp %i5, -8
2008ba4: 02 80 00 24 be 2008c34 <rtems_rbheap_free+0x120>
2008ba8: b0 10 20 04 mov 4, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008bac: c4 07 3f f8 ld [ %i4 + -8 ], %g2
2008bb0: 80 a0 a0 00 cmp %g2, 0
2008bb4: 12 80 00 05 bne 2008bc8 <rtems_rbheap_free+0xb4>
2008bb8: 82 10 20 00 clr %g1
2008bbc: c2 07 60 04 ld [ %i5 + 4 ], %g1
2008bc0: 80 a0 00 01 cmp %g0, %g1
2008bc4: 82 60 3f ff subx %g0, -1, %g1
if (!rtems_rbheap_is_chunk_free(chunk)) {
2008bc8: 80 a0 60 00 cmp %g1, 0
2008bcc: 02 80 00 1a be 2008c34 <rtems_rbheap_free+0x120>
2008bd0: b0 10 20 0e mov 0xe, %i0
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2008bd4: b8 07 60 08 add %i5, 8, %i4
2008bd8: 92 10 20 00 clr %o1
2008bdc: 40 00 07 06 call 200a7f4 <_RBTree_Next_unprotected>
2008be0: 90 10 00 1c mov %i4, %o0
2008be4: 92 10 20 01 mov 1, %o1
2008be8: b2 10 00 08 mov %o0, %i1
2008bec: 40 00 07 02 call 200a7f4 <_RBTree_Next_unprotected>
2008bf0: 90 10 00 1c mov %i4, %o0
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008bf4: 92 10 00 1a mov %i2, %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2008bf8: 96 02 3f f8 add %o0, -8, %o3
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008bfc: 94 10 00 1d mov %i5, %o2
2008c00: 7f ff ff 02 call 2008808 <check_and_merge>
2008c04: 90 10 00 1b mov %i3, %o0
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008c08: c2 06 c0 00 ld [ %i3 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008c0c: f6 27 60 04 st %i3, [ %i5 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008c10: fa 26 c0 00 st %i5, [ %i3 ]
the_node->next = before_node;
2008c14: c2 27 40 00 st %g1, [ %i5 ]
before_node->previous = the_node;
2008c18: fa 20 60 04 st %i5, [ %g1 + 4 ]
add_to_chain(free_chain, chunk);
check_and_merge(free_chain, chunk_tree, chunk, pred);
2008c1c: 90 10 00 1b mov %i3, %o0
2008c20: 92 10 00 1a mov %i2, %o1
2008c24: 94 10 00 1d mov %i5, %o2
2008c28: 96 06 7f f8 add %i1, -8, %o3
2008c2c: 7f ff fe f7 call 2008808 <check_and_merge>
2008c30: b0 10 20 00 clr %i0
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
2008c34: 81 c7 e0 08 ret
2008c38: 81 e8 00 00 restore
02017a34 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2017a34: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
2017a38: 80 a6 60 00 cmp %i1, 0
2017a3c: 02 80 00 35 be 2017b10 <rtems_signal_send+0xdc>
2017a40: 82 10 20 0a mov 0xa, %g1
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2017a44: 90 10 00 18 mov %i0, %o0
2017a48: 40 00 12 54 call 201c398 <_Thread_Get>
2017a4c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2017a50: c2 07 bf fc ld [ %fp + -4 ], %g1
2017a54: 80 a0 60 00 cmp %g1, 0
2017a58: 12 80 00 2d bne 2017b0c <rtems_signal_send+0xd8>
2017a5c: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2017a60: fa 02 21 50 ld [ %o0 + 0x150 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2017a64: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2017a68: 80 a0 60 00 cmp %g1, 0
2017a6c: 02 80 00 24 be 2017afc <rtems_signal_send+0xc8>
2017a70: 01 00 00 00 nop
if ( asr->is_enabled ) {
2017a74: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2017a78: 80 a0 60 00 cmp %g1, 0
2017a7c: 02 80 00 15 be 2017ad0 <rtems_signal_send+0x9c>
2017a80: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2017a84: 7f ff e3 5b call 20107f0 <sparc_disable_interrupts>
2017a88: 01 00 00 00 nop
*signal_set |= signals;
2017a8c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2017a90: b2 10 40 19 or %g1, %i1, %i1
2017a94: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2017a98: 7f ff e3 5a call 2010800 <sparc_enable_interrupts>
2017a9c: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2017aa0: 03 00 80 ee sethi %hi(0x203b800), %g1
2017aa4: 82 10 60 f0 or %g1, 0xf0, %g1 ! 203b8f0 <_Per_CPU_Information>
2017aa8: c4 00 60 08 ld [ %g1 + 8 ], %g2
2017aac: 80 a0 a0 00 cmp %g2, 0
2017ab0: 02 80 00 0f be 2017aec <rtems_signal_send+0xb8>
2017ab4: 01 00 00 00 nop
2017ab8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2017abc: 80 a7 00 02 cmp %i4, %g2
2017ac0: 12 80 00 0b bne 2017aec <rtems_signal_send+0xb8> <== NEVER TAKEN
2017ac4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2017ac8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2017acc: 30 80 00 08 b,a 2017aec <rtems_signal_send+0xb8>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2017ad0: 7f ff e3 48 call 20107f0 <sparc_disable_interrupts>
2017ad4: 01 00 00 00 nop
*signal_set |= signals;
2017ad8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2017adc: b2 10 40 19 or %g1, %i1, %i1
2017ae0: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
2017ae4: 7f ff e3 47 call 2010800 <sparc_enable_interrupts>
2017ae8: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2017aec: 40 00 12 1e call 201c364 <_Thread_Enable_dispatch>
2017af0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2017af4: 10 80 00 07 b 2017b10 <rtems_signal_send+0xdc>
2017af8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
_Thread_Enable_dispatch();
2017afc: 40 00 12 1a call 201c364 <_Thread_Enable_dispatch>
2017b00: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2017b04: 10 80 00 03 b 2017b10 <rtems_signal_send+0xdc>
2017b08: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2017b0c: 82 10 20 04 mov 4, %g1
}
2017b10: 81 c7 e0 08 ret
2017b14: 91 e8 00 01 restore %g0, %g1, %o0
0200e764 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e764: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e768: 80 a6 a0 00 cmp %i2, 0
200e76c: 02 80 00 5a be 200e8d4 <rtems_task_mode+0x170>
200e770: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e774: 03 00 80 71 sethi %hi(0x201c400), %g1
200e778: f8 00 63 dc ld [ %g1 + 0x3dc ], %i4 ! 201c7dc <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e77c: c2 0f 20 70 ldub [ %i4 + 0x70 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e780: fa 07 21 50 ld [ %i4 + 0x150 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e784: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e788: c2 07 20 78 ld [ %i4 + 0x78 ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e78c: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e790: 80 a0 60 00 cmp %g1, 0
200e794: 02 80 00 03 be 200e7a0 <rtems_task_mode+0x3c>
200e798: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e79c: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e7a0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
200e7a4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e7a8: 7f ff f3 18 call 200b408 <_CPU_ISR_Get_level>
200e7ac: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e7b0: a1 2c 20 0a sll %l0, 0xa, %l0
200e7b4: 90 14 00 08 or %l0, %o0, %o0
old_mode |= _ISR_Get_level();
200e7b8: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e7bc: 80 8e 61 00 btst 0x100, %i1
200e7c0: 02 80 00 06 be 200e7d8 <rtems_task_mode+0x74>
200e7c4: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e7c8: 83 36 20 08 srl %i0, 8, %g1
200e7cc: 82 18 60 01 xor %g1, 1, %g1
200e7d0: 82 08 60 01 and %g1, 1, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e7d4: c2 2f 20 70 stb %g1, [ %i4 + 0x70 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e7d8: 80 8e 62 00 btst 0x200, %i1
200e7dc: 02 80 00 0b be 200e808 <rtems_task_mode+0xa4>
200e7e0: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200e7e4: 80 8e 22 00 btst 0x200, %i0
200e7e8: 22 80 00 07 be,a 200e804 <rtems_task_mode+0xa0>
200e7ec: c0 27 20 78 clr [ %i4 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e7f0: 82 10 20 01 mov 1, %g1
200e7f4: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e7f8: 03 00 80 71 sethi %hi(0x201c400), %g1
200e7fc: c2 00 61 10 ld [ %g1 + 0x110 ], %g1 ! 201c510 <_Thread_Ticks_per_timeslice>
200e800: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e804: 80 8e 60 0f btst 0xf, %i1
200e808: 02 80 00 06 be 200e820 <rtems_task_mode+0xbc>
200e80c: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e810: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e814: 7f ff cf b0 call 20026d4 <sparc_enable_interrupts>
200e818: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e81c: 80 8e 64 00 btst 0x400, %i1
200e820: 02 80 00 14 be 200e870 <rtems_task_mode+0x10c>
200e824: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e828: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
200e82c: b1 36 20 0a srl %i0, 0xa, %i0
200e830: b0 1e 20 01 xor %i0, 1, %i0
200e834: b0 0e 20 01 and %i0, 1, %i0
if ( is_asr_enabled != asr->is_enabled ) {
200e838: 80 a6 00 01 cmp %i0, %g1
200e83c: 22 80 00 0e be,a 200e874 <rtems_task_mode+0x110>
200e840: 03 00 80 71 sethi %hi(0x201c400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e844: 7f ff cf a0 call 20026c4 <sparc_disable_interrupts>
200e848: f0 2f 60 08 stb %i0, [ %i5 + 8 ]
_signals = information->signals_pending;
200e84c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200e850: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
200e854: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e858: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e85c: 7f ff cf 9e call 20026d4 <sparc_enable_interrupts>
200e860: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e864: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200e868: 80 a0 00 01 cmp %g0, %g1
200e86c: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200e870: 03 00 80 71 sethi %hi(0x201c400), %g1
200e874: c4 00 62 f0 ld [ %g1 + 0x2f0 ], %g2 ! 201c6f0 <_System_state_Current>
200e878: 80 a0 a0 03 cmp %g2, 3
200e87c: 12 80 00 16 bne 200e8d4 <rtems_task_mode+0x170>
200e880: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200e884: 07 00 80 71 sethi %hi(0x201c400), %g3
if ( are_signals_pending ||
200e888: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200e88c: 86 10 e3 d0 or %g3, 0x3d0, %g3
if ( are_signals_pending ||
200e890: 12 80 00 0a bne 200e8b8 <rtems_task_mode+0x154>
200e894: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200e898: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200e89c: 80 a0 80 03 cmp %g2, %g3
200e8a0: 02 80 00 0d be 200e8d4 <rtems_task_mode+0x170>
200e8a4: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e8a8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
200e8ac: 80 a0 a0 00 cmp %g2, 0
200e8b0: 02 80 00 09 be 200e8d4 <rtems_task_mode+0x170> <== NEVER TAKEN
200e8b4: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e8b8: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200e8bc: 03 00 80 71 sethi %hi(0x201c400), %g1
200e8c0: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 201c7d0 <_Per_CPU_Information>
200e8c4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e8c8: 7f ff ed c6 call 2009fe0 <_Thread_Dispatch>
200e8cc: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e8d0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e8d4: 81 c7 e0 08 ret
200e8d8: 91 e8 00 01 restore %g0, %g1, %o0
0200bf54 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200bf54: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200bf58: 80 a6 60 00 cmp %i1, 0
200bf5c: 02 80 00 08 be 200bf7c <rtems_task_set_priority+0x28>
200bf60: 80 a6 a0 00 cmp %i2, 0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200bf64: 03 00 80 7f sethi %hi(0x201fc00), %g1
200bf68: c4 08 60 d8 ldub [ %g1 + 0xd8 ], %g2 ! 201fcd8 <rtems_maximum_priority>
200bf6c: 80 a6 40 02 cmp %i1, %g2
200bf70: 18 80 00 1e bgu 200bfe8 <rtems_task_set_priority+0x94>
200bf74: 82 10 20 13 mov 0x13, %g1
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200bf78: 80 a6 a0 00 cmp %i2, 0
200bf7c: 02 80 00 1b be 200bfe8 <rtems_task_set_priority+0x94>
200bf80: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200bf84: 90 10 00 18 mov %i0, %o0
200bf88: 40 00 09 63 call 200e514 <_Thread_Get>
200bf8c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200bf90: c2 07 bf fc ld [ %fp + -4 ], %g1
200bf94: 80 a0 60 00 cmp %g1, 0
200bf98: 12 80 00 14 bne 200bfe8 <rtems_task_set_priority+0x94>
200bf9c: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200bfa0: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200bfa4: 80 a6 60 00 cmp %i1, 0
200bfa8: 02 80 00 0d be 200bfdc <rtems_task_set_priority+0x88>
200bfac: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200bfb0: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200bfb4: 80 a0 60 00 cmp %g1, 0
200bfb8: 02 80 00 06 be 200bfd0 <rtems_task_set_priority+0x7c>
200bfbc: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200bfc0: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200bfc4: 80 a0 40 19 cmp %g1, %i1
200bfc8: 08 80 00 05 bleu 200bfdc <rtems_task_set_priority+0x88> <== ALWAYS TAKEN
200bfcc: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200bfd0: 92 10 00 19 mov %i1, %o1
200bfd4: 40 00 08 1e call 200e04c <_Thread_Change_priority>
200bfd8: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200bfdc: 40 00 09 41 call 200e4e0 <_Thread_Enable_dispatch>
200bfe0: 01 00 00 00 nop
200bfe4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200bfe8: 81 c7 e0 08 ret
200bfec: 91 e8 00 01 restore %g0, %g1, %o0
02018470 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2018470: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2018474: 11 00 80 ee sethi %hi(0x203b800), %o0
2018478: 92 10 00 18 mov %i0, %o1
201847c: 90 12 21 94 or %o0, 0x194, %o0
2018480: 40 00 0b ee call 201b438 <_Objects_Get>
2018484: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2018488: c2 07 bf fc ld [ %fp + -4 ], %g1
201848c: 80 a0 60 00 cmp %g1, 0
2018490: 12 80 00 0c bne 20184c0 <rtems_timer_cancel+0x50>
2018494: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2018498: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
201849c: 80 a0 60 04 cmp %g1, 4
20184a0: 02 80 00 04 be 20184b0 <rtems_timer_cancel+0x40> <== NEVER TAKEN
20184a4: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
20184a8: 40 00 13 d3 call 201d3f4 <_Watchdog_Remove>
20184ac: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
20184b0: 40 00 0f ad call 201c364 <_Thread_Enable_dispatch>
20184b4: b0 10 20 00 clr %i0
20184b8: 81 c7 e0 08 ret
20184bc: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20184c0: 81 c7 e0 08 ret
20184c4: 91 e8 20 04 restore %g0, 4, %o0
02018984 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2018984: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2018988: 03 00 80 ee sethi %hi(0x203b800), %g1
201898c: f8 00 61 d4 ld [ %g1 + 0x1d4 ], %i4 ! 203b9d4 <_Timer_server>
if ( !timer_server )
2018990: 80 a7 20 00 cmp %i4, 0
2018994: 02 80 00 3c be 2018a84 <rtems_timer_server_fire_when+0x100>
2018998: 82 10 20 0e mov 0xe, %g1
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
201899c: 21 00 80 ed sethi %hi(0x203b400), %l0
20189a0: 82 14 22 08 or %l0, 0x208, %g1 ! 203b608 <_TOD>
20189a4: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2
20189a8: 80 a0 a0 00 cmp %g2, 0
20189ac: 02 80 00 36 be 2018a84 <rtems_timer_server_fire_when+0x100><== NEVER TAKEN
20189b0: 82 10 20 0b mov 0xb, %g1
return RTEMS_NOT_DEFINED;
if ( !routine )
20189b4: 80 a6 a0 00 cmp %i2, 0
20189b8: 02 80 00 33 be 2018a84 <rtems_timer_server_fire_when+0x100>
20189bc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
20189c0: 7f ff f3 82 call 20157c8 <_TOD_Validate>
20189c4: 90 10 00 19 mov %i1, %o0
20189c8: 80 8a 20 ff btst 0xff, %o0
20189cc: 02 80 00 2e be 2018a84 <rtems_timer_server_fire_when+0x100>
20189d0: 82 10 20 14 mov 0x14, %g1
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
20189d4: 7f ff f3 43 call 20156e0 <_TOD_To_seconds>
20189d8: 90 10 00 19 mov %i1, %o0
20189dc: b2 10 00 08 mov %o0, %i1
20189e0: d0 1c 22 08 ldd [ %l0 + 0x208 ], %o0
20189e4: 94 10 20 00 clr %o2
20189e8: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
20189ec: 40 00 4c 43 call 202baf8 <__divdi3>
20189f0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
if ( seconds <= _TOD_Seconds_since_epoch() )
20189f4: 80 a6 40 09 cmp %i1, %o1
20189f8: 08 80 00 23 bleu 2018a84 <rtems_timer_server_fire_when+0x100>
20189fc: 82 10 20 14 mov 0x14, %g1
2018a00: 11 00 80 ee sethi %hi(0x203b800), %o0
2018a04: 92 10 00 18 mov %i0, %o1
2018a08: 90 12 21 94 or %o0, 0x194, %o0
2018a0c: 40 00 0a 8b call 201b438 <_Objects_Get>
2018a10: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2018a14: c2 07 bf fc ld [ %fp + -4 ], %g1
2018a18: 80 a0 60 00 cmp %g1, 0
2018a1c: 12 80 00 19 bne 2018a80 <rtems_timer_server_fire_when+0xfc>
2018a20: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2018a24: 40 00 12 74 call 201d3f4 <_Watchdog_Remove>
2018a28: 90 02 20 10 add %o0, 0x10, %o0
2018a2c: d0 1c 22 08 ldd [ %l0 + 0x208 ], %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2018a30: 82 10 20 03 mov 3, %g1
2018a34: 94 10 20 00 clr %o2
2018a38: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2018a3c: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
2018a40: f4 27 60 2c st %i2, [ %i5 + 0x2c ]
the_watchdog->id = id;
2018a44: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
2018a48: f6 27 60 34 st %i3, [ %i5 + 0x34 ]
2018a4c: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018a50: 40 00 4c 2a call 202baf8 <__divdi3>
2018a54: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
2018a58: c2 07 20 04 ld [ %i4 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2018a5c: 92 26 40 09 sub %i1, %o1, %o1
(*timer_server->schedule_operation)( timer_server, the_timer );
2018a60: 90 10 00 1c mov %i4, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2018a64: d2 27 60 1c st %o1, [ %i5 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2018a68: 9f c0 40 00 call %g1
2018a6c: 92 10 00 1d mov %i5, %o1
_Thread_Enable_dispatch();
2018a70: 40 00 0e 3d call 201c364 <_Thread_Enable_dispatch>
2018a74: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2018a78: 10 80 00 03 b 2018a84 <rtems_timer_server_fire_when+0x100>
2018a7c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2018a80: 82 10 20 04 mov 4, %g1
}
2018a84: 81 c7 e0 08 ret
2018a88: 91 e8 00 01 restore %g0, %g1, %o0