RTEMS 4.11Annotated Report
Wed Apr 11 10:08:14 2012
02010af4 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010af4: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010af8: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
2010afc: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
2010b00: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010b04: 80 8e e0 03 btst 3, %i3
2010b08: 02 80 00 07 be 2010b24 <_CORE_message_queue_Initialize+0x30>
2010b0c: ba 10 00 1b mov %i3, %i5
allocated_message_size += sizeof(uint32_t);
2010b10: ba 06 e0 04 add %i3, 4, %i5
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010b14: ba 0f 7f fc and %i5, -4, %i5
}
if (allocated_message_size < maximum_message_size)
2010b18: 80 a7 40 1b cmp %i5, %i3
2010b1c: 0a 80 00 24 bcs 2010bac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
2010b20: b8 10 20 00 clr %i4
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2010b24: ba 07 60 10 add %i5, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2010b28: 90 10 20 00 clr %o0
2010b2c: 92 10 00 1a mov %i2, %o1
2010b30: 94 10 20 00 clr %o2
2010b34: 96 10 00 1d mov %i5, %o3
2010b38: 40 00 3f 8a call 2020960 <__muldi3>
2010b3c: b8 10 20 00 clr %i4
if ( x > SIZE_MAX )
2010b40: 80 a2 20 00 cmp %o0, 0
2010b44: 34 80 00 1b bg,a 2010bb0 <_CORE_message_queue_Initialize+0xbc>
2010b48: b0 0f 20 01 and %i4, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010b4c: 40 00 0b e5 call 2013ae0 <_Workspace_Allocate>
2010b50: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010b54: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010b58: 80 a2 20 00 cmp %o0, 0
2010b5c: 02 80 00 14 be 2010bac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
2010b60: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010b64: 90 06 20 60 add %i0, 0x60, %o0
2010b68: 94 10 00 1a mov %i2, %o2
2010b6c: 7f ff ff d4 call 2010abc <_Chain_Initialize>
2010b70: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010b74: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010b78: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010b7c: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010b80: 84 06 20 54 add %i0, 0x54, %g2
2010b84: 82 18 60 01 xor %g1, 1, %g1
2010b88: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
2010b8c: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
2010b90: c0 26 20 54 clr [ %i0 + 0x54 ]
2010b94: 90 10 00 18 mov %i0, %o0
2010b98: 92 60 3f ff subx %g0, -1, %o1
2010b9c: 94 10 20 80 mov 0x80, %o2
2010ba0: 96 10 20 06 mov 6, %o3
2010ba4: 40 00 09 aa call 201324c <_Thread_queue_Initialize>
2010ba8: b8 10 20 01 mov 1, %i4
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010bac: b0 0f 20 01 and %i4, 1, %i0
2010bb0: 81 c7 e0 08 ret
2010bb4: 81 e8 00 00 restore
02008694 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2008694: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2008698: 90 10 00 18 mov %i0, %o0
200869c: 40 00 07 67 call 200a438 <_Thread_queue_Dequeue>
20086a0: ba 10 00 18 mov %i0, %i5
20086a4: 80 a2 20 00 cmp %o0, 0
20086a8: 12 80 00 0e bne 20086e0 <_CORE_semaphore_Surrender+0x4c>
20086ac: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
20086b0: 7f ff e7 cf call 20025ec <sparc_disable_interrupts>
20086b4: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
20086b8: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
20086bc: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
20086c0: 80 a0 40 02 cmp %g1, %g2
20086c4: 1a 80 00 05 bcc 20086d8 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
20086c8: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
20086cc: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20086d0: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20086d4: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20086d8: 7f ff e7 c9 call 20025fc <sparc_enable_interrupts>
20086dc: 01 00 00 00 nop
}
return status;
}
20086e0: 81 c7 e0 08 ret
20086e4: 81 e8 00 00 restore
02007400 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2007400: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2007404: f8 06 21 50 ld [ %i0 + 0x150 ], %i4
option_set = (rtems_option) the_thread->Wait.option;
2007408: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
_ISR_Disable( level );
200740c: 7f ff ec 78 call 20025ec <sparc_disable_interrupts>
2007410: ba 10 00 18 mov %i0, %i5
2007414: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2007418: c4 07 00 00 ld [ %i4 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
200741c: c6 07 60 24 ld [ %i5 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2007420: 82 88 c0 02 andcc %g3, %g2, %g1
2007424: 02 80 00 43 be 2007530 <_Event_Surrender+0x130>
2007428: 01 00 00 00 nop
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
200742c: 09 00 80 72 sethi %hi(0x201c800), %g4
2007430: 88 11 20 e0 or %g4, 0xe0, %g4 ! 201c8e0 <_Per_CPU_Information>
2007434: f2 01 20 08 ld [ %g4 + 8 ], %i1
2007438: 80 a6 60 00 cmp %i1, 0
200743c: 22 80 00 1d be,a 20074b0 <_Event_Surrender+0xb0>
2007440: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
2007444: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2007448: 80 a7 40 04 cmp %i5, %g4
200744c: 32 80 00 19 bne,a 20074b0 <_Event_Surrender+0xb0>
2007450: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2007454: 09 00 80 72 sethi %hi(0x201c800), %g4
2007458: f2 01 21 40 ld [ %g4 + 0x140 ], %i1 ! 201c940 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
200745c: 80 a6 60 02 cmp %i1, 2
2007460: 02 80 00 07 be 200747c <_Event_Surrender+0x7c> <== NEVER TAKEN
2007464: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2007468: c8 01 21 40 ld [ %g4 + 0x140 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200746c: 80 a1 20 01 cmp %g4, 1
2007470: 32 80 00 10 bne,a 20074b0 <_Event_Surrender+0xb0>
2007474: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2007478: 80 a0 40 03 cmp %g1, %g3
200747c: 02 80 00 04 be 200748c <_Event_Surrender+0x8c>
2007480: 80 8e e0 02 btst 2, %i3
2007484: 02 80 00 2b be 2007530 <_Event_Surrender+0x130> <== NEVER TAKEN
2007488: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
200748c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2007490: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007494: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2007498: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200749c: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20074a0: 84 10 20 03 mov 3, %g2
20074a4: 03 00 80 72 sethi %hi(0x201c800), %g1
20074a8: c4 20 61 40 st %g2, [ %g1 + 0x140 ] ! 201c940 <_Event_Sync_state>
20074ac: 30 80 00 21 b,a 2007530 <_Event_Surrender+0x130>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20074b0: 80 89 21 00 btst 0x100, %g4
20074b4: 02 80 00 1f be 2007530 <_Event_Surrender+0x130>
20074b8: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20074bc: 02 80 00 04 be 20074cc <_Event_Surrender+0xcc>
20074c0: 80 8e e0 02 btst 2, %i3
20074c4: 02 80 00 1b be 2007530 <_Event_Surrender+0x130> <== NEVER TAKEN
20074c8: 01 00 00 00 nop
20074cc: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
20074d0: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20074d4: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
20074d8: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20074dc: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
20074e0: 7f ff ec 47 call 20025fc <sparc_enable_interrupts>
20074e4: 90 10 00 18 mov %i0, %o0
20074e8: 7f ff ec 41 call 20025ec <sparc_disable_interrupts>
20074ec: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
20074f0: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
20074f4: 80 a0 60 02 cmp %g1, 2
20074f8: 02 80 00 06 be 2007510 <_Event_Surrender+0x110>
20074fc: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2007500: 7f ff ec 3f call 20025fc <sparc_enable_interrupts>
2007504: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007508: 10 80 00 08 b 2007528 <_Event_Surrender+0x128>
200750c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2007510: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2007514: 7f ff ec 3a call 20025fc <sparc_enable_interrupts>
2007518: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
200751c: 40 00 0e 7f call 200af18 <_Watchdog_Remove>
2007520: 90 07 60 48 add %i5, 0x48, %o0
2007524: b2 16 63 f8 or %i1, 0x3f8, %i1
2007528: 40 00 0a 10 call 2009d68 <_Thread_Clear_state>
200752c: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2007530: 7f ff ec 33 call 20025fc <sparc_enable_interrupts>
2007534: 81 e8 00 00 restore
02007538 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2007538: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
200753c: 90 10 00 18 mov %i0, %o0
2007540: 40 00 0a f6 call 200a118 <_Thread_Get>
2007544: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2007548: c2 07 bf fc ld [ %fp + -4 ], %g1
200754c: 80 a0 60 00 cmp %g1, 0
2007550: 12 80 00 1d bne 20075c4 <_Event_Timeout+0x8c> <== NEVER TAKEN
2007554: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2007558: 7f ff ec 25 call 20025ec <sparc_disable_interrupts>
200755c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007560: 03 00 80 72 sethi %hi(0x201c800), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2007564: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 201c8ec <_Per_CPU_Information+0xc>
2007568: 80 a7 40 01 cmp %i5, %g1
200756c: 12 80 00 09 bne 2007590 <_Event_Timeout+0x58>
2007570: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2007574: 03 00 80 72 sethi %hi(0x201c800), %g1
2007578: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 201c940 <_Event_Sync_state>
200757c: 80 a0 a0 01 cmp %g2, 1
2007580: 32 80 00 05 bne,a 2007594 <_Event_Timeout+0x5c>
2007584: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2007588: 84 10 20 02 mov 2, %g2
200758c: c4 20 61 40 st %g2, [ %g1 + 0x140 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2007590: 82 10 20 06 mov 6, %g1
2007594: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
2007598: 7f ff ec 19 call 20025fc <sparc_enable_interrupts>
200759c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20075a0: 90 10 00 1d mov %i5, %o0
20075a4: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20075a8: 40 00 09 f0 call 2009d68 <_Thread_Clear_state>
20075ac: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20075b0: 03 00 80 71 sethi %hi(0x201c400), %g1
20075b4: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201c6b0 <_Thread_Dispatch_disable_level>
20075b8: 84 00 bf ff add %g2, -1, %g2
20075bc: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
return _Thread_Dispatch_disable_level;
20075c0: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1
20075c4: 81 c7 e0 08 ret
20075c8: 81 e8 00 00 restore
0200cecc <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200cecc: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200ced0: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200ced4: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200ced8: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200cedc: e0 06 20 20 ld [ %i0 + 0x20 ], %l0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200cee0: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
uintptr_t const min_block_size = heap->min_block_size;
200cee4: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200cee8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200ceec: 80 a7 40 19 cmp %i5, %i1
200cef0: 0a 80 00 9f bcs 200d16c <_Heap_Extend+0x2a0>
200cef4: b8 10 20 00 clr %i4
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200cef8: 90 10 00 19 mov %i1, %o0
200cefc: 92 10 00 1a mov %i2, %o1
200cf00: 94 10 00 11 mov %l1, %o2
200cf04: 98 07 bf f8 add %fp, -8, %o4
200cf08: 7f ff ee 91 call 200894c <_Heap_Get_first_and_last_block>
200cf0c: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200cf10: 80 8a 20 ff btst 0xff, %o0
200cf14: 02 80 00 96 be 200d16c <_Heap_Extend+0x2a0>
200cf18: b4 10 00 10 mov %l0, %i2
200cf1c: aa 10 20 00 clr %l5
200cf20: ac 10 20 00 clr %l6
200cf24: b8 10 20 00 clr %i4
200cf28: a8 10 20 00 clr %l4
200cf2c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cf30: 80 a0 40 1d cmp %g1, %i5
200cf34: 1a 80 00 05 bcc 200cf48 <_Heap_Extend+0x7c>
200cf38: e6 06 80 00 ld [ %i2 ], %l3
200cf3c: 80 a6 40 13 cmp %i1, %l3
200cf40: 2a 80 00 8b bcs,a 200d16c <_Heap_Extend+0x2a0>
200cf44: b8 10 20 00 clr %i4
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200cf48: 80 a7 40 01 cmp %i5, %g1
200cf4c: 02 80 00 06 be 200cf64 <_Heap_Extend+0x98>
200cf50: 80 a7 40 13 cmp %i5, %l3
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200cf54: 2a 80 00 05 bcs,a 200cf68 <_Heap_Extend+0x9c>
200cf58: ac 10 00 1a mov %i2, %l6
200cf5c: 10 80 00 04 b 200cf6c <_Heap_Extend+0xa0>
200cf60: 90 10 00 13 mov %l3, %o0
200cf64: a8 10 00 1a mov %i2, %l4
200cf68: 90 10 00 13 mov %l3, %o0
200cf6c: 40 00 2c 0d call 2017fa0 <.urem>
200cf70: 92 10 00 11 mov %l1, %o1
200cf74: ae 04 ff f8 add %l3, -8, %l7
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cf78: 80 a4 c0 19 cmp %l3, %i1
200cf7c: 12 80 00 05 bne 200cf90 <_Heap_Extend+0xc4>
200cf80: 90 25 c0 08 sub %l7, %o0, %o0
start_block->prev_size = extend_area_end;
200cf84: fa 26 80 00 st %i5, [ %i2 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200cf88: 10 80 00 04 b 200cf98 <_Heap_Extend+0xcc>
200cf8c: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200cf90: 2a 80 00 02 bcs,a 200cf98 <_Heap_Extend+0xcc>
200cf94: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cf98: f4 02 20 04 ld [ %o0 + 4 ], %i2
200cf9c: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cfa0: b4 02 00 1a add %o0, %i2, %i2
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cfa4: 80 a6 80 10 cmp %i2, %l0
200cfa8: 12 bf ff e2 bne 200cf30 <_Heap_Extend+0x64>
200cfac: 82 10 00 1a mov %i2, %g1
if ( extend_area_begin < heap->area_begin ) {
200cfb0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200cfb4: 80 a6 40 01 cmp %i1, %g1
200cfb8: 3a 80 00 04 bcc,a 200cfc8 <_Heap_Extend+0xfc>
200cfbc: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200cfc0: 10 80 00 05 b 200cfd4 <_Heap_Extend+0x108>
200cfc4: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200cfc8: 80 a0 40 1d cmp %g1, %i5
200cfcc: 2a 80 00 02 bcs,a 200cfd4 <_Heap_Extend+0x108>
200cfd0: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cfd4: c4 07 bf f8 ld [ %fp + -8 ], %g2
200cfd8: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
200cfdc: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200cfe0: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200cfe4: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200cfe8: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200cfec: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200cff0: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
200cff4: 80 a0 c0 02 cmp %g3, %g2
200cff8: 08 80 00 04 bleu 200d008 <_Heap_Extend+0x13c>
200cffc: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200d000: 10 80 00 06 b 200d018 <_Heap_Extend+0x14c>
200d004: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200d008: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200d00c: 80 a0 80 01 cmp %g2, %g1
200d010: 2a 80 00 02 bcs,a 200d018 <_Heap_Extend+0x14c>
200d014: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200d018: 80 a5 20 00 cmp %l4, 0
200d01c: 02 80 00 14 be 200d06c <_Heap_Extend+0x1a0>
200d020: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200d024: f4 06 20 10 ld [ %i0 + 0x10 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200d028: 92 10 00 1a mov %i2, %o1
200d02c: 40 00 2b dd call 2017fa0 <.urem>
200d030: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200d034: 80 a2 20 00 cmp %o0, 0
200d038: 02 80 00 04 be 200d048 <_Heap_Extend+0x17c>
200d03c: c2 05 00 00 ld [ %l4 ], %g1
return value - remainder + alignment;
200d040: b2 06 40 1a add %i1, %i2, %i1
200d044: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200d048: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200d04c: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200d050: 82 25 00 09 sub %l4, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200d054: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200d058: 90 10 00 18 mov %i0, %o0
200d05c: 7f ff ff 92 call 200cea4 <_Heap_Free_block>
200d060: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200d064: 10 80 00 08 b 200d084 <_Heap_Extend+0x1b8>
200d068: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200d06c: 80 a5 a0 00 cmp %l6, 0
200d070: 02 80 00 04 be 200d080 <_Heap_Extend+0x1b4>
200d074: ac 25 80 01 sub %l6, %g1, %l6
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200d078: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200d07c: ec 20 60 04 st %l6, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200d080: 80 a7 20 00 cmp %i4, 0
200d084: 02 80 00 15 be 200d0d8 <_Heap_Extend+0x20c>
200d088: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d08c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200d090: ba 27 40 1c sub %i5, %i4, %i5
200d094: 40 00 2b c3 call 2017fa0 <.urem>
200d098: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200d09c: c4 07 20 04 ld [ %i4 + 4 ], %g2
200d0a0: ba 27 40 08 sub %i5, %o0, %i5
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d0a4: 82 07 40 1c add %i5, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
200d0a8: 84 20 80 1d sub %g2, %i5, %g2
| HEAP_PREV_BLOCK_USED;
200d0ac: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d0b0: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d0b4: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200d0b8: 90 10 00 18 mov %i0, %o0
200d0bc: 82 08 60 01 and %g1, 1, %g1
200d0c0: 92 10 00 1c mov %i4, %o1
block->size_and_flag = size | flag;
200d0c4: ba 17 40 01 or %i5, %g1, %i5
200d0c8: 7f ff ff 77 call 200cea4 <_Heap_Free_block>
200d0cc: fa 27 20 04 st %i5, [ %i4 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d0d0: 10 80 00 0f b 200d10c <_Heap_Extend+0x240>
200d0d4: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200d0d8: 80 a5 60 00 cmp %l5, 0
200d0dc: 02 80 00 0b be 200d108 <_Heap_Extend+0x23c>
200d0e0: c6 07 bf f8 ld [ %fp + -8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d0e4: c4 05 60 04 ld [ %l5 + 4 ], %g2
_Heap_Link_above(
200d0e8: c2 07 bf fc ld [ %fp + -4 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200d0ec: 86 20 c0 15 sub %g3, %l5, %g3
200d0f0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200d0f4: 84 10 c0 02 or %g3, %g2, %g2
200d0f8: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200d0fc: c4 00 60 04 ld [ %g1 + 4 ], %g2
200d100: 84 10 a0 01 or %g2, 1, %g2
200d104: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d108: 80 a7 20 00 cmp %i4, 0
200d10c: 32 80 00 09 bne,a 200d130 <_Heap_Extend+0x264>
200d110: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200d114: 80 a5 20 00 cmp %l4, 0
200d118: 32 80 00 06 bne,a 200d130 <_Heap_Extend+0x264>
200d11c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200d120: d2 07 bf f8 ld [ %fp + -8 ], %o1
200d124: 7f ff ff 60 call 200cea4 <_Heap_Free_block>
200d128: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200d12c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d130: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d134: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d138: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d13c: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200d140: 84 10 c0 02 or %g3, %g2, %g2
200d144: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d148: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200d14c: b8 10 20 01 mov 1, %i4
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d150: a4 20 40 12 sub %g1, %l2, %l2
/* Statistics */
stats->size += extended_size;
200d154: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200d158: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200d15c: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200d160: 02 80 00 03 be 200d16c <_Heap_Extend+0x2a0> <== NEVER TAKEN
200d164: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
200d168: e4 26 c0 00 st %l2, [ %i3 ]
*extended_size_ptr = extended_size;
return true;
}
200d16c: b0 0f 20 01 and %i4, 1, %i0
200d170: 81 c7 e0 08 ret
200d174: 81 e8 00 00 restore
0200cee8 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200cee8: 9d e3 bf a0 save %sp, -96, %sp
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200ceec: 88 10 20 01 mov 1, %g4
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200cef0: 80 a6 60 00 cmp %i1, 0
200cef4: 02 80 00 78 be 200d0d4 <_Heap_Free+0x1ec>
200cef8: 90 10 00 19 mov %i1, %o0
200cefc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200cf00: 40 00 2b 84 call 2017d10 <.urem>
200cf04: ba 06 7f f8 add %i1, -8, %i5
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200cf08: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cf0c: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cf10: 80 a7 40 0c cmp %i5, %o4
200cf14: 0a 80 00 05 bcs 200cf28 <_Heap_Free+0x40>
200cf18: 82 10 20 00 clr %g1
200cf1c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200cf20: 80 a0 40 1d cmp %g1, %i5
200cf24: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200cf28: 80 a0 60 00 cmp %g1, 0
200cf2c: 02 80 00 6a be 200d0d4 <_Heap_Free+0x1ec>
200cf30: 88 10 20 00 clr %g4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cf34: da 07 60 04 ld [ %i5 + 4 ], %o5
200cf38: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cf3c: 82 07 40 02 add %i5, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cf40: 80 a0 40 0c cmp %g1, %o4
200cf44: 0a 80 00 05 bcs 200cf58 <_Heap_Free+0x70> <== NEVER TAKEN
200cf48: 86 10 20 00 clr %g3
200cf4c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200cf50: 80 a0 c0 01 cmp %g3, %g1
200cf54: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200cf58: 80 a0 e0 00 cmp %g3, 0
200cf5c: 02 80 00 5e be 200d0d4 <_Heap_Free+0x1ec> <== NEVER TAKEN
200cf60: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cf64: de 00 60 04 ld [ %g1 + 4 ], %o7
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200cf68: 80 8b e0 01 btst 1, %o7
200cf6c: 02 80 00 5a be 200d0d4 <_Heap_Free+0x1ec> <== NEVER TAKEN
200cf70: 9e 0b ff fe and %o7, -2, %o7
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200cf74: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200cf78: 80 a0 40 04 cmp %g1, %g4
200cf7c: 02 80 00 07 be 200cf98 <_Heap_Free+0xb0>
200cf80: 96 10 20 00 clr %o3
200cf84: 86 00 40 0f add %g1, %o7, %g3
200cf88: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200cf8c: 86 08 e0 01 and %g3, 1, %g3
200cf90: 80 a0 00 03 cmp %g0, %g3
200cf94: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200cf98: 80 8b 60 01 btst 1, %o5
200cf9c: 12 80 00 26 bne 200d034 <_Heap_Free+0x14c>
200cfa0: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200cfa4: da 07 40 00 ld [ %i5 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cfa8: 86 27 40 0d sub %i5, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cfac: 80 a0 c0 0c cmp %g3, %o4
200cfb0: 0a 80 00 04 bcs 200cfc0 <_Heap_Free+0xd8> <== NEVER TAKEN
200cfb4: 94 10 20 00 clr %o2
200cfb8: 80 a1 00 03 cmp %g4, %g3
200cfbc: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200cfc0: 80 a2 a0 00 cmp %o2, 0
200cfc4: 02 80 00 44 be 200d0d4 <_Heap_Free+0x1ec> <== NEVER TAKEN
200cfc8: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cfcc: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cfd0: 80 8b 20 01 btst 1, %o4
200cfd4: 02 80 00 40 be 200d0d4 <_Heap_Free+0x1ec> <== NEVER TAKEN
200cfd8: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cfdc: 22 80 00 0f be,a 200d018 <_Heap_Free+0x130>
200cfe0: 9a 00 80 0d add %g2, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200cfe4: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200cfe8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
uintptr_t const size = block_size + prev_size + next_block_size;
200cfec: 9e 00 80 0f add %g2, %o7, %o7
prev->next = next;
200cff0: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200cff4: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cff8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cffc: 9a 03 c0 0d add %o7, %o5, %o5
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200d000: 82 00 7f ff add %g1, -1, %g1
200d004: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200d008: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d00c: 82 13 60 01 or %o5, 1, %g1
200d010: 10 80 00 27 b 200d0ac <_Heap_Free+0x1c4>
200d014: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d018: 88 13 60 01 or %o5, 1, %g4
200d01c: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d020: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200d024: da 27 40 02 st %o5, [ %i5 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d028: 86 08 ff fe and %g3, -2, %g3
200d02c: 10 80 00 20 b 200d0ac <_Heap_Free+0x1c4>
200d030: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200d034: 22 80 00 0d be,a 200d068 <_Heap_Free+0x180>
200d038: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200d03c: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200d040: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200d044: c8 27 60 08 st %g4, [ %i5 + 8 ]
new_block->prev = prev;
200d048: c2 27 60 0c st %g1, [ %i5 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200d04c: 86 03 c0 02 add %o7, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200d050: fa 20 60 08 st %i5, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200d054: fa 21 20 0c st %i5, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d058: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200d05c: c6 27 40 03 st %g3, [ %i5 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d060: 10 80 00 13 b 200d0ac <_Heap_Free+0x1c4>
200d064: c2 27 60 04 st %g1, [ %i5 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200d068: f0 27 60 0c st %i0, [ %i5 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200d06c: c6 27 60 08 st %g3, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200d070: fa 20 e0 0c st %i5, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200d074: 86 10 a0 01 or %g2, 1, %g3
200d078: c6 27 60 04 st %g3, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d07c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200d080: c4 27 40 02 st %g2, [ %i5 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d084: 86 08 ff fe and %g3, -2, %g3
200d088: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d08c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200d090: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d094: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200d098: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200d09c: 80 a0 c0 01 cmp %g3, %g1
200d0a0: 1a 80 00 03 bcc 200d0ac <_Heap_Free+0x1c4>
200d0a4: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200d0a8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200d0ac: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200d0b0: 88 10 20 01 mov 1, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200d0b4: 82 00 7f ff add %g1, -1, %g1
200d0b8: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200d0bc: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200d0c0: 82 00 60 01 inc %g1
200d0c4: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200d0c8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200d0cc: 84 00 40 02 add %g1, %g2, %g2
200d0d0: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
return( true );
}
200d0d4: b0 09 20 01 and %g4, 1, %i0
200d0d8: 81 c7 e0 08 ret
200d0dc: 81 e8 00 00 restore
0203e0d0 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
203e0d0: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
203e0d4: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
Heap_Block *end = heap->last_block;
203e0d8: 10 80 00 0b b 203e104 <_Heap_Iterate+0x34>
203e0dc: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
while ( !stop && current != end ) {
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
203e0e0: 96 10 00 1a mov %i2, %o3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
203e0e4: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
203e0e8: ba 02 00 09 add %o0, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
203e0ec: d4 07 60 04 ld [ %i5 + 4 ], %o2
203e0f0: 9f c6 40 00 call %i1
203e0f4: 94 0a a0 01 and %o2, 1, %o2
{
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
203e0f8: 80 8a 20 ff btst 0xff, %o0
203e0fc: 12 80 00 05 bne 203e110 <_Heap_Iterate+0x40> <== NEVER TAKEN
203e100: 90 10 00 1d mov %i5, %o0
203e104: 80 a2 00 1c cmp %o0, %i4
203e108: 32 bf ff f6 bne,a 203e0e0 <_Heap_Iterate+0x10>
203e10c: d2 02 20 04 ld [ %o0 + 4 ], %o1
203e110: 81 c7 e0 08 ret
203e114: 81 e8 00 00 restore
0200d200 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
200d200: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d204: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200d208: 40 00 2a c2 call 2017d10 <.urem>
200d20c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200d210: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d214: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200d218: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d21c: 80 a2 00 03 cmp %o0, %g3
200d220: 0a 80 00 05 bcs 200d234 <_Heap_Size_of_alloc_area+0x34>
200d224: 84 10 20 00 clr %g2
200d228: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200d22c: 80 a0 40 08 cmp %g1, %o0
200d230: 84 60 3f ff subx %g0, -1, %g2
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200d234: 80 a0 a0 00 cmp %g2, 0
200d238: 02 80 00 15 be 200d28c <_Heap_Size_of_alloc_area+0x8c>
200d23c: 82 10 20 00 clr %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d240: fa 02 20 04 ld [ %o0 + 4 ], %i5
200d244: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d248: ba 02 00 1d add %o0, %i5, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d24c: 80 a7 40 03 cmp %i5, %g3
200d250: 0a 80 00 05 bcs 200d264 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
200d254: 84 10 20 00 clr %g2
200d258: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200d25c: 80 a0 40 1d cmp %g1, %i5
200d260: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
200d264: 80 a0 a0 00 cmp %g2, 0
200d268: 02 80 00 09 be 200d28c <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d26c: 82 10 20 00 clr %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d270: c4 07 60 04 ld [ %i5 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
200d274: 80 88 a0 01 btst 1, %g2
200d278: 02 80 00 05 be 200d28c <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
200d27c: ba 27 40 19 sub %i5, %i1, %i5
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
200d280: 82 10 20 01 mov 1, %g1
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
200d284: ba 07 60 04 add %i5, 4, %i5
200d288: fa 26 80 00 st %i5, [ %i2 ]
return true;
}
200d28c: b0 08 60 01 and %g1, 1, %i0
200d290: 81 c7 e0 08 ret
200d294: 81 e8 00 00 restore
02009808 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2009808: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
200980c: 3b 00 80 25 sethi %hi(0x2009400), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
2009810: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
2009814: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
2009818: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
Heap_Block *const last_block = heap->last_block;
200981c: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009820: 80 a6 a0 00 cmp %i2, 0
2009824: 02 80 00 04 be 2009834 <_Heap_Walk+0x2c>
2009828: ba 17 63 b4 or %i5, 0x3b4, %i5
200982c: 3b 00 80 25 sethi %hi(0x2009400), %i5
2009830: ba 17 63 bc or %i5, 0x3bc, %i5 ! 20097bc <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009834: 03 00 80 7a sethi %hi(0x201e800), %g1
2009838: c4 00 63 d8 ld [ %g1 + 0x3d8 ], %g2 ! 201ebd8 <_System_state_Current>
200983c: 80 a0 a0 03 cmp %g2, 3
2009840: 12 80 01 24 bne 2009cd0 <_Heap_Walk+0x4c8>
2009844: 82 10 20 01 mov 1, %g1
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2009848: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
200984c: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2009850: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2009854: f6 23 a0 60 st %i3, [ %sp + 0x60 ]
2009858: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
200985c: c2 06 20 08 ld [ %i0 + 8 ], %g1
2009860: 90 10 00 19 mov %i1, %o0
2009864: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2009868: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200986c: 92 10 20 00 clr %o1
2009870: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2009874: 15 00 80 6d sethi %hi(0x201b400), %o2
2009878: 96 10 00 1c mov %i4, %o3
200987c: 94 12 a2 f0 or %o2, 0x2f0, %o2
2009880: 9f c7 40 00 call %i5
2009884: 98 10 00 10 mov %l0, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2009888: 80 a7 20 00 cmp %i4, 0
200988c: 12 80 00 07 bne 20098a8 <_Heap_Walk+0xa0>
2009890: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
2009894: 15 00 80 6d sethi %hi(0x201b400), %o2
2009898: 90 10 00 19 mov %i1, %o0
200989c: 92 10 20 01 mov 1, %o1
20098a0: 10 80 00 32 b 2009968 <_Heap_Walk+0x160>
20098a4: 94 12 a3 88 or %o2, 0x388, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
20098a8: 22 80 00 08 be,a 20098c8 <_Heap_Walk+0xc0>
20098ac: 90 10 00 10 mov %l0, %o0
(*printer)(
20098b0: 15 00 80 6d sethi %hi(0x201b400), %o2
20098b4: 90 10 00 19 mov %i1, %o0
20098b8: 92 10 20 01 mov 1, %o1
20098bc: 94 12 a3 a0 or %o2, 0x3a0, %o2
20098c0: 10 80 01 0b b 2009cec <_Heap_Walk+0x4e4>
20098c4: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20098c8: 7f ff e0 86 call 2001ae0 <.urem>
20098cc: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
20098d0: 80 a2 20 00 cmp %o0, 0
20098d4: 22 80 00 08 be,a 20098f4 <_Heap_Walk+0xec>
20098d8: 90 06 e0 08 add %i3, 8, %o0
(*printer)(
20098dc: 15 00 80 6d sethi %hi(0x201b400), %o2
20098e0: 90 10 00 19 mov %i1, %o0
20098e4: 92 10 20 01 mov 1, %o1
20098e8: 94 12 a3 c0 or %o2, 0x3c0, %o2
20098ec: 10 80 01 00 b 2009cec <_Heap_Walk+0x4e4>
20098f0: 96 10 00 10 mov %l0, %o3
20098f4: 7f ff e0 7b call 2001ae0 <.urem>
20098f8: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
20098fc: 80 a2 20 00 cmp %o0, 0
2009900: 22 80 00 08 be,a 2009920 <_Heap_Walk+0x118>
2009904: c2 06 e0 04 ld [ %i3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2009908: 15 00 80 6d sethi %hi(0x201b400), %o2
200990c: 90 10 00 19 mov %i1, %o0
2009910: 92 10 20 01 mov 1, %o1
2009914: 94 12 a3 e8 or %o2, 0x3e8, %o2
2009918: 10 80 00 f5 b 2009cec <_Heap_Walk+0x4e4>
200991c: 96 10 00 1b mov %i3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2009920: 80 88 60 01 btst 1, %g1
2009924: 32 80 00 07 bne,a 2009940 <_Heap_Walk+0x138>
2009928: f4 04 60 04 ld [ %l1 + 4 ], %i2
(*printer)(
200992c: 15 00 80 6e sethi %hi(0x201b800), %o2
2009930: 90 10 00 19 mov %i1, %o0
2009934: 92 10 20 01 mov 1, %o1
2009938: 10 80 00 0c b 2009968 <_Heap_Walk+0x160>
200993c: 94 12 a0 20 or %o2, 0x20, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009940: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2009944: b4 04 40 1a add %l1, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009948: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
200994c: 80 88 60 01 btst 1, %g1
2009950: 12 80 00 0a bne 2009978 <_Heap_Walk+0x170>
2009954: 80 a6 80 1b cmp %i2, %i3
(*printer)(
2009958: 15 00 80 6e sethi %hi(0x201b800), %o2
200995c: 90 10 00 19 mov %i1, %o0
2009960: 92 10 20 01 mov 1, %o1
2009964: 94 12 a0 50 or %o2, 0x50, %o2
2009968: 9f c7 40 00 call %i5
200996c: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009970: 10 80 00 d8 b 2009cd0 <_Heap_Walk+0x4c8>
2009974: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if (
2009978: 02 80 00 06 be 2009990 <_Heap_Walk+0x188>
200997c: 15 00 80 6e sethi %hi(0x201b800), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2009980: 90 10 00 19 mov %i1, %o0
2009984: 92 10 20 01 mov 1, %o1
2009988: 10 bf ff f8 b 2009968 <_Heap_Walk+0x160>
200998c: 94 12 a0 68 or %o2, 0x68, %o2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2009990: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2009994: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2009998: 10 80 00 33 b 2009a64 <_Heap_Walk+0x25c>
200999c: a4 10 00 18 mov %i0, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20099a0: 80 a0 80 0b cmp %g2, %o3
20099a4: 18 80 00 05 bgu 20099b8 <_Heap_Walk+0x1b0>
20099a8: 82 10 20 00 clr %g1
20099ac: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20099b0: 80 a0 40 0b cmp %g1, %o3
20099b4: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
20099b8: 80 a0 60 00 cmp %g1, 0
20099bc: 32 80 00 07 bne,a 20099d8 <_Heap_Walk+0x1d0>
20099c0: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
20099c4: 15 00 80 6e sethi %hi(0x201b800), %o2
20099c8: 90 10 00 19 mov %i1, %o0
20099cc: 92 10 20 01 mov 1, %o1
20099d0: 10 80 00 c7 b 2009cec <_Heap_Walk+0x4e4>
20099d4: 94 12 a0 98 or %o2, 0x98, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20099d8: d6 27 bf f8 st %o3, [ %fp + -8 ]
20099dc: 7f ff e0 41 call 2001ae0 <.urem>
20099e0: 92 10 00 13 mov %l3, %o1
);
return false;
}
if (
20099e4: 80 a2 20 00 cmp %o0, 0
20099e8: 02 80 00 07 be 2009a04 <_Heap_Walk+0x1fc>
20099ec: d6 07 bf f8 ld [ %fp + -8 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
20099f0: 15 00 80 6e sethi %hi(0x201b800), %o2
20099f4: 90 10 00 19 mov %i1, %o0
20099f8: 92 10 20 01 mov 1, %o1
20099fc: 10 80 00 bc b 2009cec <_Heap_Walk+0x4e4>
2009a00: 94 12 a0 b8 or %o2, 0xb8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009a04: c2 02 e0 04 ld [ %o3 + 4 ], %g1
2009a08: 82 08 7f fe and %g1, -2, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009a0c: 82 02 c0 01 add %o3, %g1, %g1
2009a10: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2009a14: 80 88 60 01 btst 1, %g1
2009a18: 22 80 00 07 be,a 2009a34 <_Heap_Walk+0x22c>
2009a1c: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
2009a20: 15 00 80 6e sethi %hi(0x201b800), %o2
2009a24: 90 10 00 19 mov %i1, %o0
2009a28: 92 10 20 01 mov 1, %o1
2009a2c: 10 80 00 b0 b 2009cec <_Heap_Walk+0x4e4>
2009a30: 94 12 a0 e8 or %o2, 0xe8, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
2009a34: 80 a3 00 12 cmp %o4, %l2
2009a38: 22 80 00 0a be,a 2009a60 <_Heap_Walk+0x258>
2009a3c: a4 10 00 0b mov %o3, %l2
(*printer)(
2009a40: 15 00 80 6e sethi %hi(0x201b800), %o2
2009a44: 90 10 00 19 mov %i1, %o0
2009a48: 92 10 20 01 mov 1, %o1
2009a4c: 94 12 a1 08 or %o2, 0x108, %o2
2009a50: 9f c7 40 00 call %i5
2009a54: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009a58: 10 80 00 9e b 2009cd0 <_Heap_Walk+0x4c8>
2009a5c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
return false;
}
prev_block = free_block;
free_block = free_block->next;
2009a60: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2009a64: 80 a2 c0 18 cmp %o3, %i0
2009a68: 32 bf ff ce bne,a 20099a0 <_Heap_Walk+0x198>
2009a6c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
2009a70: 2d 00 80 6e sethi %hi(0x201b800), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2009a74: 2f 00 80 6e sethi %hi(0x201b800), %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009a78: ac 15 a2 c8 or %l6, 0x2c8, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2009a7c: ae 15 e2 b0 or %l7, 0x2b0, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009a80: 2b 00 80 6e sethi %hi(0x201b800), %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009a84: c2 06 a0 04 ld [ %i2 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009a88: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009a8c: a4 08 7f fe and %g1, -2, %l2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2009a90: a6 06 80 12 add %i2, %l2, %l3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009a94: 80 a0 c0 13 cmp %g3, %l3
2009a98: 18 80 00 05 bgu 2009aac <_Heap_Walk+0x2a4> <== NEVER TAKEN
2009a9c: 84 10 20 00 clr %g2
2009aa0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
2009aa4: 80 a0 80 13 cmp %g2, %l3
2009aa8: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
2009aac: 80 a0 a0 00 cmp %g2, 0
2009ab0: 12 80 00 07 bne 2009acc <_Heap_Walk+0x2c4>
2009ab4: 84 1e 80 11 xor %i2, %l1, %g2
(*printer)(
2009ab8: 15 00 80 6e sethi %hi(0x201b800), %o2
2009abc: 90 10 00 19 mov %i1, %o0
2009ac0: 92 10 20 01 mov 1, %o1
2009ac4: 10 80 00 2c b 2009b74 <_Heap_Walk+0x36c>
2009ac8: 94 12 a1 40 or %o2, 0x140, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2009acc: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009ad0: c2 27 bf fc st %g1, [ %fp + -4 ]
2009ad4: a8 40 20 00 addx %g0, 0, %l4
2009ad8: 90 10 00 12 mov %l2, %o0
2009adc: 7f ff e0 01 call 2001ae0 <.urem>
2009ae0: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2009ae4: 80 a2 20 00 cmp %o0, 0
2009ae8: 02 80 00 0c be 2009b18 <_Heap_Walk+0x310>
2009aec: c2 07 bf fc ld [ %fp + -4 ], %g1
2009af0: 80 8d 20 ff btst 0xff, %l4
2009af4: 02 80 00 0a be 2009b1c <_Heap_Walk+0x314>
2009af8: 80 a4 80 10 cmp %l2, %l0
(*printer)(
2009afc: 15 00 80 6e sethi %hi(0x201b800), %o2
2009b00: 90 10 00 19 mov %i1, %o0
2009b04: 92 10 20 01 mov 1, %o1
2009b08: 94 12 a1 70 or %o2, 0x170, %o2
2009b0c: 96 10 00 1a mov %i2, %o3
2009b10: 10 bf ff d0 b 2009a50 <_Heap_Walk+0x248>
2009b14: 98 10 00 12 mov %l2, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2009b18: 80 a4 80 10 cmp %l2, %l0
2009b1c: 1a 80 00 0d bcc 2009b50 <_Heap_Walk+0x348>
2009b20: 80 a4 c0 1a cmp %l3, %i2
2009b24: 80 8d 20 ff btst 0xff, %l4
2009b28: 02 80 00 0a be 2009b50 <_Heap_Walk+0x348> <== NEVER TAKEN
2009b2c: 80 a4 c0 1a cmp %l3, %i2
(*printer)(
2009b30: 15 00 80 6e sethi %hi(0x201b800), %o2
2009b34: 90 10 00 19 mov %i1, %o0
2009b38: 92 10 20 01 mov 1, %o1
2009b3c: 94 12 a1 a0 or %o2, 0x1a0, %o2
2009b40: 96 10 00 1a mov %i2, %o3
2009b44: 98 10 00 12 mov %l2, %o4
2009b48: 10 80 00 3d b 2009c3c <_Heap_Walk+0x434>
2009b4c: 9a 10 00 10 mov %l0, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2009b50: 38 80 00 0c bgu,a 2009b80 <_Heap_Walk+0x378>
2009b54: a8 08 60 01 and %g1, 1, %l4
2009b58: 80 8d 20 ff btst 0xff, %l4
2009b5c: 02 80 00 09 be 2009b80 <_Heap_Walk+0x378>
2009b60: a8 08 60 01 and %g1, 1, %l4
(*printer)(
2009b64: 15 00 80 6e sethi %hi(0x201b800), %o2
2009b68: 90 10 00 19 mov %i1, %o0
2009b6c: 92 10 20 01 mov 1, %o1
2009b70: 94 12 a1 d0 or %o2, 0x1d0, %o2
2009b74: 96 10 00 1a mov %i2, %o3
2009b78: 10 bf ff b6 b 2009a50 <_Heap_Walk+0x248>
2009b7c: 98 10 00 13 mov %l3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009b80: c2 04 e0 04 ld [ %l3 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2009b84: 80 88 60 01 btst 1, %g1
2009b88: 12 80 00 40 bne 2009c88 <_Heap_Walk+0x480>
2009b8c: 90 10 00 19 mov %i1, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2009b90: da 06 a0 0c ld [ %i2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009b94: c2 06 20 08 ld [ %i0 + 8 ], %g1
2009b98: 05 00 80 6d sethi %hi(0x201b400), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
2009b9c: c8 06 20 0c ld [ %i0 + 0xc ], %g4
2009ba0: 80 a3 40 01 cmp %o5, %g1
2009ba4: 02 80 00 07 be 2009bc0 <_Heap_Walk+0x3b8>
2009ba8: 86 10 a2 b0 or %g2, 0x2b0, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2009bac: 80 a3 40 18 cmp %o5, %i0
2009bb0: 12 80 00 04 bne 2009bc0 <_Heap_Walk+0x3b8>
2009bb4: 86 15 62 78 or %l5, 0x278, %g3
2009bb8: 07 00 80 6d sethi %hi(0x201b400), %g3
2009bbc: 86 10 e2 c0 or %g3, 0x2c0, %g3 ! 201b6c0 <__log2table+0x130>
block->next,
block->next == last_free_block ?
2009bc0: c4 06 a0 08 ld [ %i2 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009bc4: 1f 00 80 6d sethi %hi(0x201b400), %o7
2009bc8: 80 a0 80 04 cmp %g2, %g4
2009bcc: 02 80 00 07 be 2009be8 <_Heap_Walk+0x3e0>
2009bd0: 82 13 e2 d0 or %o7, 0x2d0, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009bd4: 80 a0 80 18 cmp %g2, %i0
2009bd8: 12 80 00 04 bne 2009be8 <_Heap_Walk+0x3e0>
2009bdc: 82 15 62 78 or %l5, 0x278, %g1
2009be0: 03 00 80 6d sethi %hi(0x201b400), %g1
2009be4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 201b6e0 <__log2table+0x150>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2009be8: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2009bec: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2009bf0: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
2009bf4: 90 10 00 19 mov %i1, %o0
2009bf8: 92 10 20 00 clr %o1
2009bfc: 15 00 80 6e sethi %hi(0x201b800), %o2
2009c00: 96 10 00 1a mov %i2, %o3
2009c04: 94 12 a2 08 or %o2, 0x208, %o2
2009c08: 9f c7 40 00 call %i5
2009c0c: 98 10 00 12 mov %l2, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2009c10: da 04 c0 00 ld [ %l3 ], %o5
2009c14: 80 a4 80 0d cmp %l2, %o5
2009c18: 02 80 00 0d be 2009c4c <_Heap_Walk+0x444>
2009c1c: 80 a5 20 00 cmp %l4, 0
(*printer)(
2009c20: 15 00 80 6e sethi %hi(0x201b800), %o2
2009c24: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
2009c28: 90 10 00 19 mov %i1, %o0
2009c2c: 92 10 20 01 mov 1, %o1
2009c30: 94 12 a2 40 or %o2, 0x240, %o2
2009c34: 96 10 00 1a mov %i2, %o3
2009c38: 98 10 00 12 mov %l2, %o4
2009c3c: 9f c7 40 00 call %i5
2009c40: 01 00 00 00 nop
2009c44: 10 80 00 23 b 2009cd0 <_Heap_Walk+0x4c8>
2009c48: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if ( !prev_used ) {
2009c4c: 32 80 00 0a bne,a 2009c74 <_Heap_Walk+0x46c>
2009c50: c2 06 20 08 ld [ %i0 + 8 ], %g1
(*printer)(
2009c54: 15 00 80 6e sethi %hi(0x201b800), %o2
2009c58: 90 10 00 19 mov %i1, %o0
2009c5c: 92 10 20 01 mov 1, %o1
2009c60: 10 80 00 22 b 2009ce8 <_Heap_Walk+0x4e0>
2009c64: 94 12 a2 80 or %o2, 0x280, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2009c68: 02 80 00 17 be 2009cc4 <_Heap_Walk+0x4bc>
2009c6c: 80 a4 c0 1b cmp %l3, %i3
return true;
}
free_block = free_block->next;
2009c70: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2009c74: 80 a0 40 18 cmp %g1, %i0
2009c78: 12 bf ff fc bne 2009c68 <_Heap_Walk+0x460>
2009c7c: 80 a0 40 1a cmp %g1, %i2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009c80: 10 80 00 17 b 2009cdc <_Heap_Walk+0x4d4>
2009c84: 15 00 80 6e sethi %hi(0x201b800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2009c88: 80 a5 20 00 cmp %l4, 0
2009c8c: 02 80 00 08 be 2009cac <_Heap_Walk+0x4a4>
2009c90: 92 10 20 00 clr %o1
(*printer)(
2009c94: 94 10 00 17 mov %l7, %o2
2009c98: 96 10 00 1a mov %i2, %o3
2009c9c: 9f c7 40 00 call %i5
2009ca0: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2009ca4: 10 80 00 08 b 2009cc4 <_Heap_Walk+0x4bc>
2009ca8: 80 a4 c0 1b cmp %l3, %i3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009cac: da 06 80 00 ld [ %i2 ], %o5
2009cb0: 94 10 00 16 mov %l6, %o2
2009cb4: 96 10 00 1a mov %i2, %o3
2009cb8: 9f c7 40 00 call %i5
2009cbc: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2009cc0: 80 a4 c0 1b cmp %l3, %i3
2009cc4: 12 bf ff 70 bne 2009a84 <_Heap_Walk+0x27c>
2009cc8: b4 10 00 13 mov %l3, %i2
return true;
2009ccc: 82 10 20 01 mov 1, %g1
}
2009cd0: b0 08 60 01 and %g1, 1, %i0
2009cd4: 81 c7 e0 08 ret
2009cd8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2009cdc: 90 10 00 19 mov %i1, %o0
2009ce0: 92 10 20 01 mov 1, %o1
2009ce4: 94 12 a2 f0 or %o2, 0x2f0, %o2
2009ce8: 96 10 00 1a mov %i2, %o3
2009cec: 9f c7 40 00 call %i5
2009cf0: 01 00 00 00 nop
2009cf4: 10 bf ff f7 b 2009cd0 <_Heap_Walk+0x4c8>
2009cf8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
02008cac <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2008cac: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2008cb0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2008cb4: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2008cb8: 80 a0 60 00 cmp %g1, 0
2008cbc: 02 80 00 20 be 2008d3c <_Objects_Allocate+0x90> <== NEVER TAKEN
2008cc0: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008cc4: b8 07 60 20 add %i5, 0x20, %i4
2008cc8: 7f ff fd 76 call 20082a0 <_Chain_Get>
2008ccc: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2008cd0: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2008cd4: 80 a0 60 00 cmp %g1, 0
2008cd8: 02 80 00 19 be 2008d3c <_Objects_Allocate+0x90>
2008cdc: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2008ce0: 80 a2 20 00 cmp %o0, 0
2008ce4: 32 80 00 0a bne,a 2008d0c <_Objects_Allocate+0x60>
2008ce8: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
_Objects_Extend_information( information );
2008cec: 40 00 00 1d call 2008d60 <_Objects_Extend_information>
2008cf0: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2008cf4: 7f ff fd 6b call 20082a0 <_Chain_Get>
2008cf8: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
2008cfc: b0 92 20 00 orcc %o0, 0, %i0
2008d00: 02 80 00 0f be 2008d3c <_Objects_Allocate+0x90>
2008d04: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2008d08: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
2008d0c: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2008d10: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
2008d14: 40 00 3b 53 call 2017a60 <.udiv>
2008d18: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2008d1c: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2008d20: 91 2a 20 02 sll %o0, 2, %o0
2008d24: c4 00 40 08 ld [ %g1 + %o0 ], %g2
2008d28: 84 00 bf ff add %g2, -1, %g2
2008d2c: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2008d30: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
2008d34: 82 00 7f ff add %g1, -1, %g1
2008d38: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2008d3c: 81 c7 e0 08 ret
2008d40: 81 e8 00 00 restore
020090b8 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
20090b8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
20090bc: 80 a6 60 00 cmp %i1, 0
20090c0: 02 80 00 17 be 200911c <_Objects_Get_information+0x64>
20090c4: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
20090c8: 40 00 10 74 call 200d298 <_Objects_API_maximum_class>
20090cc: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
20090d0: 80 a2 20 00 cmp %o0, 0
20090d4: 02 80 00 12 be 200911c <_Objects_Get_information+0x64>
20090d8: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20090dc: 18 80 00 10 bgu 200911c <_Objects_Get_information+0x64>
20090e0: 03 00 80 71 sethi %hi(0x201c400), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20090e4: b1 2e 20 02 sll %i0, 2, %i0
20090e8: 82 10 62 18 or %g1, 0x218, %g1
20090ec: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20090f0: 80 a0 60 00 cmp %g1, 0
20090f4: 02 80 00 0a be 200911c <_Objects_Get_information+0x64> <== NEVER TAKEN
20090f8: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20090fc: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
2009100: 80 a7 60 00 cmp %i5, 0
2009104: 02 80 00 06 be 200911c <_Objects_Get_information+0x64> <== NEVER TAKEN
2009108: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
200910c: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
2009110: 80 a0 00 01 cmp %g0, %g1
2009114: 82 60 20 00 subx %g0, 0, %g1
2009118: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
200911c: 81 c7 e0 08 ret
2009120: 91 e8 00 1d restore %g0, %i5, %o0
0200d134 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
200d134: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200d138: 92 96 20 00 orcc %i0, 0, %o1
200d13c: 12 80 00 06 bne 200d154 <_Objects_Id_to_name+0x20>
200d140: 83 32 60 18 srl %o1, 0x18, %g1
200d144: 03 00 80 b2 sethi %hi(0x202c800), %g1
200d148: c2 00 61 5c ld [ %g1 + 0x15c ], %g1 ! 202c95c <_Per_CPU_Information+0xc>
200d14c: d2 00 60 08 ld [ %g1 + 8 ], %o1
200d150: 83 32 60 18 srl %o1, 0x18, %g1
200d154: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200d158: 84 00 7f ff add %g1, -1, %g2
200d15c: 80 a0 a0 02 cmp %g2, 2
200d160: 18 80 00 12 bgu 200d1a8 <_Objects_Id_to_name+0x74>
200d164: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200d168: 10 80 00 12 b 200d1b0 <_Objects_Id_to_name+0x7c>
200d16c: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200d170: 85 28 a0 02 sll %g2, 2, %g2
200d174: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200d178: 80 a2 20 00 cmp %o0, 0
200d17c: 02 80 00 0b be 200d1a8 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
200d180: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
200d184: 7f ff ff ce call 200d0bc <_Objects_Get>
200d188: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200d18c: 80 a2 20 00 cmp %o0, 0
200d190: 02 80 00 06 be 200d1a8 <_Objects_Id_to_name+0x74>
200d194: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
200d198: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200d19c: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200d1a0: 40 00 03 c0 call 200e0a0 <_Thread_Enable_dispatch>
200d1a4: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
200d1a8: 81 c7 e0 08 ret
200d1ac: 91 e8 00 1d restore %g0, %i5, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200d1b0: 05 00 80 b1 sethi %hi(0x202c400), %g2
200d1b4: 84 10 a2 48 or %g2, 0x248, %g2 ! 202c648 <_Objects_Information_table>
200d1b8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200d1bc: 80 a0 60 00 cmp %g1, 0
200d1c0: 12 bf ff ec bne 200d170 <_Objects_Id_to_name+0x3c>
200d1c4: 85 32 60 1b srl %o1, 0x1b, %g2
200d1c8: 30 bf ff f8 b,a 200d1a8 <_Objects_Id_to_name+0x74>
0200a290 <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a290: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200a294: 80 a6 60 00 cmp %i1, 0
200a298: 02 80 00 73 be 200a464 <_RBTree_Extract_unprotected+0x1d4>
200a29c: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200a2a0: c2 06 20 08 ld [ %i0 + 8 ], %g1
200a2a4: 80 a6 40 01 cmp %i1, %g1
200a2a8: 32 80 00 0d bne,a 200a2dc <_RBTree_Extract_unprotected+0x4c>
200a2ac: c2 06 20 0c ld [ %i0 + 0xc ], %g1
if (the_node->child[RBT_RIGHT])
200a2b0: c2 06 60 08 ld [ %i1 + 8 ], %g1
200a2b4: 80 a0 60 00 cmp %g1, 0
200a2b8: 22 80 00 04 be,a 200a2c8 <_RBTree_Extract_unprotected+0x38>
200a2bc: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
200a2c0: 10 80 00 06 b 200a2d8 <_RBTree_Extract_unprotected+0x48>
200a2c4: c2 26 20 08 st %g1, [ %i0 + 8 ]
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
200a2c8: 80 a6 00 01 cmp %i0, %g1
200a2cc: 12 80 00 03 bne 200a2d8 <_RBTree_Extract_unprotected+0x48>
200a2d0: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
200a2d4: c0 26 20 08 clr [ %i0 + 8 ]
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200a2d8: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200a2dc: 80 a6 40 01 cmp %i1, %g1
200a2e0: 12 80 00 0b bne 200a30c <_RBTree_Extract_unprotected+0x7c>
200a2e4: c2 06 60 04 ld [ %i1 + 4 ], %g1
if (the_node->child[RBT_LEFT])
200a2e8: 80 a0 60 00 cmp %g1, 0
200a2ec: 22 80 00 04 be,a 200a2fc <_RBTree_Extract_unprotected+0x6c>
200a2f0: c4 06 40 00 ld [ %i1 ], %g2
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
200a2f4: 10 80 00 06 b 200a30c <_RBTree_Extract_unprotected+0x7c>
200a2f8: c2 26 20 0c st %g1, [ %i0 + 0xc ]
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
200a2fc: 80 a6 00 02 cmp %i0, %g2
200a300: 12 80 00 03 bne 200a30c <_RBTree_Extract_unprotected+0x7c>
200a304: c4 26 20 0c st %g2, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
200a308: c0 26 20 0c clr [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200a30c: ba 90 60 00 orcc %g1, 0, %i5
200a310: 02 80 00 36 be 200a3e8 <_RBTree_Extract_unprotected+0x158>
200a314: f8 06 60 08 ld [ %i1 + 8 ], %i4
200a318: 80 a7 20 00 cmp %i4, 0
200a31c: 32 80 00 05 bne,a 200a330 <_RBTree_Extract_unprotected+0xa0>
200a320: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a324: 10 80 00 35 b 200a3f8 <_RBTree_Extract_unprotected+0x168>
200a328: b8 10 00 01 mov %g1, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200a32c: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a330: 80 a0 60 00 cmp %g1, 0
200a334: 32 bf ff fe bne,a 200a32c <_RBTree_Extract_unprotected+0x9c>
200a338: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200a33c: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200a340: 80 a7 20 00 cmp %i4, 0
200a344: 02 80 00 05 be 200a358 <_RBTree_Extract_unprotected+0xc8>
200a348: 01 00 00 00 nop
leaf->parent = target->parent;
200a34c: c2 07 40 00 ld [ %i5 ], %g1
200a350: 10 80 00 04 b 200a360 <_RBTree_Extract_unprotected+0xd0>
200a354: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200a358: 7f ff ff 55 call 200a0ac <_RBTree_Extract_validate_unprotected>
200a35c: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200a360: c4 07 40 00 ld [ %i5 ], %g2
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200a364: c2 07 60 0c ld [ %i5 + 0xc ], %g1
dir = target != target->parent->child[0];
200a368: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a36c: 86 1f 40 03 xor %i5, %g3, %g3
200a370: 80 a0 00 03 cmp %g0, %g3
200a374: 86 40 20 00 addx %g0, 0, %g3
target->parent->child[dir] = leaf;
200a378: 87 28 e0 02 sll %g3, 2, %g3
200a37c: 84 00 80 03 add %g2, %g3, %g2
200a380: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200a384: c4 06 40 00 ld [ %i1 ], %g2
200a388: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a38c: 86 1e 40 03 xor %i1, %g3, %g3
200a390: 80 a0 00 03 cmp %g0, %g3
200a394: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = target;
200a398: 87 28 e0 02 sll %g3, 2, %g3
200a39c: 84 00 80 03 add %g2, %g3, %g2
200a3a0: fa 20 a0 04 st %i5, [ %g2 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200a3a4: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a3a8: c4 27 60 08 st %g2, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200a3ac: c4 06 60 08 ld [ %i1 + 8 ], %g2
200a3b0: 80 a0 a0 00 cmp %g2, 0
200a3b4: 32 80 00 02 bne,a 200a3bc <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN
200a3b8: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200a3bc: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a3c0: c4 27 60 04 st %g2, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200a3c4: c4 06 60 04 ld [ %i1 + 4 ], %g2
200a3c8: 80 a0 a0 00 cmp %g2, 0
200a3cc: 32 80 00 02 bne,a 200a3d4 <_RBTree_Extract_unprotected+0x144>
200a3d0: fa 20 80 00 st %i5, [ %g2 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200a3d4: c4 06 40 00 ld [ %i1 ], %g2
200a3d8: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200a3dc: c4 06 60 0c ld [ %i1 + 0xc ], %g2
200a3e0: 10 80 00 14 b 200a430 <_RBTree_Extract_unprotected+0x1a0>
200a3e4: c4 27 60 0c st %g2, [ %i5 + 0xc ]
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
200a3e8: 80 a7 20 00 cmp %i4, 0
200a3ec: 32 80 00 04 bne,a 200a3fc <_RBTree_Extract_unprotected+0x16c>
200a3f0: c2 06 40 00 ld [ %i1 ], %g1
200a3f4: 30 80 00 04 b,a 200a404 <_RBTree_Extract_unprotected+0x174>
leaf->parent = the_node->parent;
200a3f8: c2 06 40 00 ld [ %i1 ], %g1
200a3fc: 10 80 00 04 b 200a40c <_RBTree_Extract_unprotected+0x17c>
200a400: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200a404: 7f ff ff 2a call 200a0ac <_RBTree_Extract_validate_unprotected>
200a408: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a40c: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200a410: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200a414: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a418: 86 1e 40 03 xor %i1, %g3, %g3
200a41c: 80 a0 00 03 cmp %g0, %g3
200a420: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
200a424: 87 28 e0 02 sll %g3, 2, %g3
200a428: 84 00 80 03 add %g2, %g3, %g2
200a42c: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200a430: 80 a0 60 00 cmp %g1, 0
200a434: 32 80 00 06 bne,a 200a44c <_RBTree_Extract_unprotected+0x1bc>
200a438: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200a43c: 80 a7 20 00 cmp %i4, 0
200a440: 32 80 00 02 bne,a 200a448 <_RBTree_Extract_unprotected+0x1b8>
200a444: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200a448: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200a44c: c0 26 60 08 clr [ %i1 + 8 ]
200a450: c0 26 60 04 clr [ %i1 + 4 ]
200a454: 80 a0 60 00 cmp %g1, 0
200a458: 02 80 00 03 be 200a464 <_RBTree_Extract_unprotected+0x1d4>
200a45c: c0 26 40 00 clr [ %i1 ]
200a460: c0 20 60 0c clr [ %g1 + 0xc ]
200a464: 81 c7 e0 08 ret
200a468: 81 e8 00 00 restore
0200a0ac <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
static void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
200a0ac: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
200a0b0: fa 06 00 00 ld [ %i0 ], %i5
if(!parent->parent) return;
200a0b4: c2 07 40 00 ld [ %i5 ], %g1
200a0b8: 80 a0 60 00 cmp %g1, 0
200a0bc: 02 80 00 6c be 200a26c <_RBTree_Extract_validate_unprotected+0x1c0>
200a0c0: 90 10 00 18 mov %i0, %o0
sibling = _RBTree_Sibling(the_node);
200a0c4: 7f ff ff ca call 2009fec <_RBTree_Sibling>
200a0c8: b6 10 20 01 mov 1, %i3
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
200a0cc: 10 80 00 5b b 200a238 <_RBTree_Extract_validate_unprotected+0x18c>
200a0d0: c2 06 20 0c ld [ %i0 + 0xc ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a0d4: 22 80 00 14 be,a 200a124 <_RBTree_Extract_validate_unprotected+0x78><== NEVER TAKEN
200a0d8: c4 02 20 08 ld [ %o0 + 8 ], %g2 <== NOT EXECUTED
200a0dc: c2 02 20 0c ld [ %o0 + 0xc ], %g1
200a0e0: 80 a0 60 01 cmp %g1, 1
200a0e4: 32 80 00 10 bne,a 200a124 <_RBTree_Extract_validate_unprotected+0x78>
200a0e8: c4 02 20 08 ld [ %o0 + 8 ], %g2
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
200a0ec: c2 27 60 0c st %g1, [ %i5 + 0xc ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200a0f0: c2 07 60 04 ld [ %i5 + 4 ], %g1
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
200a0f4: c0 22 20 0c clr [ %o0 + 0xc ]
dir = the_node != parent->child[0];
200a0f8: 82 1e 00 01 xor %i0, %g1, %g1
200a0fc: 80 a0 00 01 cmp %g0, %g1
_RBTree_Rotate(parent, dir);
200a100: 90 10 00 1d mov %i5, %o0
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200a104: b8 40 20 00 addx %g0, 0, %i4
_RBTree_Rotate(parent, dir);
200a108: 7f ff ff ca call 200a030 <_RBTree_Rotate>
200a10c: 92 10 00 1c mov %i4, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a110: b8 1f 20 01 xor %i4, 1, %i4
sibling = parent->child[_RBTree_Opposite_direction(dir)];
200a114: b9 2f 20 02 sll %i4, 2, %i4
200a118: b8 07 40 1c add %i5, %i4, %i4
200a11c: d0 07 20 04 ld [ %i4 + 4 ], %o0
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200a120: c4 02 20 08 ld [ %o0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a124: 80 a0 a0 00 cmp %g2, 0
200a128: 02 80 00 06 be 200a140 <_RBTree_Extract_validate_unprotected+0x94>
200a12c: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
static void _RBTree_Extract_validate_unprotected(
200a130: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
200a134: 82 18 60 01 xor %g1, 1, %g1
200a138: 80 a0 00 01 cmp %g0, %g1
200a13c: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200a140: 80 a0 60 00 cmp %g1, 0
200a144: 32 80 00 14 bne,a 200a194 <_RBTree_Extract_validate_unprotected+0xe8>
200a148: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
200a14c: c4 02 20 04 ld [ %o0 + 4 ], %g2
200a150: 80 a0 a0 00 cmp %g2, 0
200a154: 02 80 00 07 be 200a170 <_RBTree_Extract_validate_unprotected+0xc4>
200a158: 80 a0 60 00 cmp %g1, 0
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
static void _RBTree_Extract_validate_unprotected(
200a15c: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
200a160: 82 18 60 01 xor %g1, 1, %g1
200a164: 80 a0 00 01 cmp %g0, %g1
200a168: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200a16c: 80 a0 60 00 cmp %g1, 0
200a170: 32 80 00 09 bne,a 200a194 <_RBTree_Extract_validate_unprotected+0xe8>
200a174: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
200a178: f6 22 20 0c st %i3, [ %o0 + 0xc ]
200a17c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200a180: 80 a0 60 01 cmp %g1, 1
200a184: 32 80 00 3c bne,a 200a274 <_RBTree_Extract_validate_unprotected+0x1c8>
200a188: f4 07 40 00 ld [ %i5 ], %i2
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
200a18c: 10 80 00 32 b 200a254 <_RBTree_Extract_validate_unprotected+0x1a8>
200a190: c0 27 60 0c clr [ %i5 + 0xc ]
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
200a194: 82 1e 00 01 xor %i0, %g1, %g1
200a198: 80 a0 00 01 cmp %g0, %g1
200a19c: b6 40 20 00 addx %g0, 0, %i3
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a1a0: b8 1e e0 01 xor %i3, 1, %i4
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
200a1a4: 83 2f 20 02 sll %i4, 2, %g1
200a1a8: 82 02 00 01 add %o0, %g1, %g1
200a1ac: c4 00 60 04 ld [ %g1 + 4 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a1b0: 80 a0 a0 00 cmp %g2, 0
200a1b4: 02 80 00 06 be 200a1cc <_RBTree_Extract_validate_unprotected+0x120>
200a1b8: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
static void _RBTree_Extract_validate_unprotected(
200a1bc: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
200a1c0: 82 18 60 01 xor %g1, 1, %g1
200a1c4: 80 a0 00 01 cmp %g0, %g1
200a1c8: 82 60 3f ff subx %g0, -1, %g1
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
200a1cc: 80 a0 60 00 cmp %g1, 0
200a1d0: 32 80 00 0e bne,a 200a208 <_RBTree_Extract_validate_unprotected+0x15c>
200a1d4: c2 07 60 0c ld [ %i5 + 0xc ], %g1
sibling->color = RBT_RED;
200a1d8: 82 10 20 01 mov 1, %g1
200a1dc: c2 22 20 0c st %g1, [ %o0 + 0xc ]
sibling->child[dir]->color = RBT_BLACK;
200a1e0: 83 2e e0 02 sll %i3, 2, %g1
200a1e4: 82 02 00 01 add %o0, %g1, %g1
200a1e8: c2 00 60 04 ld [ %g1 + 4 ], %g1
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
200a1ec: 92 10 00 1c mov %i4, %o1
200a1f0: 7f ff ff 90 call 200a030 <_RBTree_Rotate>
200a1f4: c0 20 60 0c clr [ %g1 + 0xc ]
sibling = parent->child[_RBTree_Opposite_direction(dir)];
200a1f8: 83 2f 20 02 sll %i4, 2, %g1
200a1fc: 82 07 40 01 add %i5, %g1, %g1
200a200: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
sibling->color = parent->color;
200a204: c2 07 60 0c ld [ %i5 + 0xc ], %g1
parent->color = RBT_BLACK;
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
200a208: b9 2f 20 02 sll %i4, 2, %i4
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
200a20c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
parent->color = RBT_BLACK;
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
200a210: 90 02 00 1c add %o0, %i4, %o0
200a214: c2 02 20 04 ld [ %o0 + 4 ], %g1
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
parent->color = RBT_BLACK;
200a218: c0 27 60 0c clr [ %i5 + 0xc ]
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
200a21c: c0 20 60 0c clr [ %g1 + 0xc ]
_RBTree_Rotate(parent, dir);
200a220: 90 10 00 1d mov %i5, %o0
200a224: 7f ff ff 83 call 200a030 <_RBTree_Rotate>
200a228: 92 10 00 1b mov %i3, %o1
break; /* done */
200a22c: 10 80 00 0b b 200a258 <_RBTree_Extract_validate_unprotected+0x1ac>
200a230: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
200a234: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200a238: 80 a0 60 01 cmp %g1, 1
200a23c: 22 80 00 07 be,a 200a258 <_RBTree_Extract_validate_unprotected+0x1ac>
200a240: c2 06 00 00 ld [ %i0 ], %g1
200a244: c2 07 40 00 ld [ %i5 ], %g1
200a248: 80 a0 60 00 cmp %g1, 0
200a24c: 12 bf ff a2 bne 200a0d4 <_RBTree_Extract_validate_unprotected+0x28>
200a250: 80 a2 20 00 cmp %o0, 0
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a254: c2 06 00 00 ld [ %i0 ], %g1
200a258: c2 00 40 00 ld [ %g1 ], %g1
200a25c: 80 a0 60 00 cmp %g1, 0
200a260: 12 80 00 0a bne 200a288 <_RBTree_Extract_validate_unprotected+0x1dc>
200a264: 01 00 00 00 nop
200a268: c0 26 20 0c clr [ %i0 + 0xc ]
200a26c: 81 c7 e0 08 ret
200a270: 81 e8 00 00 restore
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
sibling = _RBTree_Sibling(the_node);
200a274: 90 10 00 1d mov %i5, %o0
200a278: 7f ff ff 5d call 2009fec <_RBTree_Sibling>
200a27c: b0 10 00 1d mov %i5, %i0
200a280: 10 bf ff ed b 200a234 <_RBTree_Extract_validate_unprotected+0x188>
200a284: ba 10 00 1a mov %i2, %i5
200a288: 81 c7 e0 08 ret
200a28c: 81 e8 00 00 restore
0200b44c <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200b44c: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200b450: 80 a6 20 00 cmp %i0, 0
200b454: 02 80 00 10 be 200b494 <_RBTree_Initialize+0x48> <== NEVER TAKEN
200b458: 01 00 00 00 nop
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200b45c: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200b460: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200b464: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200b468: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200b46c: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b470: 10 80 00 06 b 200b488 <_RBTree_Initialize+0x3c>
200b474: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert(the_rbtree, next);
200b478: 90 10 00 18 mov %i0, %o0
200b47c: 7f ff ff ba call 200b364 <_RBTree_Insert>
200b480: b4 06 80 1c add %i2, %i4, %i2
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _RBTree_Initialize(
200b484: b6 06 ff ff add %i3, -1, %i3
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b488: 80 a6 e0 00 cmp %i3, 0
200b48c: 12 bf ff fb bne 200b478 <_RBTree_Initialize+0x2c>
200b490: 92 10 00 1a mov %i2, %o1
200b494: 81 c7 e0 08 ret
200b498: 81 e8 00 00 restore
0200a50c <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a50c: 9d e3 bf a0 save %sp, -96, %sp
200a510: ba 10 00 18 mov %i0, %i5
if(!the_node) return (RBTree_Node*)-1;
200a514: 80 a6 60 00 cmp %i1, 0
200a518: 02 80 00 0d be 200a54c <_RBTree_Insert_unprotected+0x40>
200a51c: b0 10 3f ff mov -1, %i0
RBTree_Node *iter_node = the_rbtree->root;
200a520: f0 07 60 04 ld [ %i5 + 4 ], %i0
int compare_result;
if (!iter_node) { /* special case: first node inserted */
200a524: b8 96 20 00 orcc %i0, 0, %i4
200a528: 32 80 00 22 bne,a 200a5b0 <_RBTree_Insert_unprotected+0xa4>
200a52c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
the_node->color = RBT_BLACK;
200a530: c0 26 60 0c clr [ %i1 + 0xc ]
the_rbtree->root = the_node;
200a534: f2 27 60 04 st %i1, [ %i5 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
200a538: f2 27 60 0c st %i1, [ %i5 + 0xc ]
200a53c: f2 27 60 08 st %i1, [ %i5 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200a540: fa 26 40 00 st %i5, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a544: c0 26 60 08 clr [ %i1 + 8 ]
200a548: c0 26 60 04 clr [ %i1 + 4 ]
200a54c: 81 c7 e0 08 ret
200a550: 81 e8 00 00 restore
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200a554: 02 bf ff fe be 200a54c <_RBTree_Insert_unprotected+0x40>
200a558: 82 38 00 08 xnor %g0, %o0, %g1
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200a55c: 83 30 60 1f srl %g1, 0x1f, %g1
if (!iter_node->child[dir]) {
200a560: 85 28 60 02 sll %g1, 2, %g2
200a564: 84 06 00 02 add %i0, %g2, %g2
200a568: f0 00 a0 04 ld [ %g2 + 4 ], %i0
200a56c: 80 a6 20 00 cmp %i0, 0
200a570: 32 80 00 0f bne,a 200a5ac <_RBTree_Insert_unprotected+0xa0>
200a574: b8 10 00 18 mov %i0, %i4
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200a578: c0 26 60 08 clr [ %i1 + 8 ]
200a57c: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
200a580: f2 20 a0 04 st %i1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a584: 82 00 60 02 add %g1, 2, %g1
200a588: 83 28 60 02 sll %g1, 2, %g1
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
200a58c: c4 07 40 01 ld [ %i5 + %g1 ], %g2
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200a590: 86 10 20 01 mov 1, %g3
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
200a594: f8 26 40 00 st %i4, [ %i1 ]
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
200a598: 80 a7 00 02 cmp %i4, %g2
200a59c: 12 80 00 2d bne 200a650 <_RBTree_Insert_unprotected+0x144>
200a5a0: c6 26 60 0c st %g3, [ %i1 + 0xc ]
the_rbtree->first[dir] = the_node;
200a5a4: 10 80 00 2b b 200a650 <_RBTree_Insert_unprotected+0x144>
200a5a8: f2 27 40 01 st %i1, [ %i5 + %g1 ]
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
200a5ac: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a5b0: 90 10 00 19 mov %i1, %o0
200a5b4: 9f c0 40 00 call %g1
200a5b8: 92 10 00 18 mov %i0, %o1
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200a5bc: c2 0f 60 14 ldub [ %i5 + 0x14 ], %g1
200a5c0: 80 a0 60 00 cmp %g1, 0
200a5c4: 12 bf ff e4 bne 200a554 <_RBTree_Insert_unprotected+0x48>
200a5c8: 80 a2 20 00 cmp %o0, 0
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200a5cc: 10 bf ff e4 b 200a55c <_RBTree_Insert_unprotected+0x50>
200a5d0: 82 38 00 08 xnor %g0, %o0, %g1
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
200a5d4: 80 a0 60 00 cmp %g1, 0
200a5d8: 02 80 00 2c be 200a688 <_RBTree_Insert_unprotected+0x17c> <== NEVER TAKEN
200a5dc: c2 07 60 04 ld [ %i5 + 4 ], %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200a5e0: 80 a2 00 01 cmp %o0, %g1
200a5e4: 22 80 00 02 be,a 200a5ec <_RBTree_Insert_unprotected+0xe0>
200a5e8: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a5ec: 80 a0 60 00 cmp %g1, 0
200a5f0: 22 80 00 26 be,a 200a688 <_RBTree_Insert_unprotected+0x17c>
200a5f4: c2 07 60 04 ld [ %i5 + 4 ], %g1
200a5f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200a5fc: 80 a0 a0 01 cmp %g2, 1
200a600: 32 80 00 22 bne,a 200a688 <_RBTree_Insert_unprotected+0x17c>
200a604: c2 07 60 04 ld [ %i5 + 4 ], %g1
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
200a608: c0 22 20 0c clr [ %o0 + 0xc ]
u->color = RBT_BLACK;
200a60c: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a610: c4 27 60 0c st %g2, [ %i5 + 0xc ]
200a614: 10 80 00 10 b 200a654 <_RBTree_Insert_unprotected+0x148>
200a618: b2 10 00 1d mov %i5, %i1
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
200a61c: 7f ff ff 9d call 200a490 <_RBTree_Rotate>
200a620: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
200a624: 83 2f 20 02 sll %i4, 2, %g1
200a628: b2 06 40 01 add %i1, %g1, %i1
200a62c: f2 06 60 04 ld [ %i1 + 4 ], %i1
}
the_node->parent->color = RBT_BLACK;
200a630: c2 06 40 00 ld [ %i1 ], %g1
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200a634: 90 10 00 1d mov %i5, %o0
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
200a638: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
200a63c: f6 27 60 0c st %i3, [ %i5 + 0xc ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200a640: 7f ff ff 94 call 200a490 <_RBTree_Rotate>
200a644: 92 26 c0 1c sub %i3, %i4, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200a648: 10 80 00 04 b 200a658 <_RBTree_Insert_unprotected+0x14c>
200a64c: d0 06 40 00 ld [ %i1 ], %o0
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
g->color = RBT_RED;
200a650: b6 10 20 01 mov 1, %i3
200a654: d0 06 40 00 ld [ %i1 ], %o0
200a658: fa 02 00 00 ld [ %o0 ], %i5
200a65c: 80 a7 60 00 cmp %i5, 0
200a660: 22 bf ff bb be,a 200a54c <_RBTree_Insert_unprotected+0x40>
200a664: c0 26 60 0c clr [ %i1 + 0xc ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a668: c2 02 20 0c ld [ %o0 + 0xc ], %g1
200a66c: 80 a0 60 01 cmp %g1, 1
200a670: 12 80 00 04 bne 200a680 <_RBTree_Insert_unprotected+0x174>
200a674: 01 00 00 00 nop
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
200a678: 10 bf ff d7 b 200a5d4 <_RBTree_Insert_unprotected+0xc8>
200a67c: c2 07 40 00 ld [ %i5 ], %g1
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200a680: 81 c7 e0 08 ret
200a684: 81 e8 00 00 restore
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
200a688: 82 1a 00 01 xor %o0, %g1, %g1
200a68c: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a690: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
200a694: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200a698: 82 1e 40 01 xor %i1, %g1, %g1
200a69c: 80 a0 00 01 cmp %g0, %g1
200a6a0: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200a6a4: 80 a0 40 1c cmp %g1, %i4
200a6a8: 12 bf ff dd bne 200a61c <_RBTree_Insert_unprotected+0x110>
200a6ac: 01 00 00 00 nop
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
200a6b0: 10 bf ff e1 b 200a634 <_RBTree_Insert_unprotected+0x128>
200a6b4: c2 06 40 00 ld [ %i1 ], %g1
0200a6cc <_RBTree_Iterate_unprotected>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
200a6cc: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a6d0: 80 a0 00 19 cmp %g0, %i1
200a6d4: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200a6d8: 82 00 60 02 add %g1, 2, %g1
200a6dc: 83 28 60 02 sll %g1, 2, %g1
200a6e0: 10 80 00 0d b 200a714 <_RBTree_Iterate_unprotected+0x48>
200a6e4: fa 06 00 01 ld [ %i0 + %g1 ], %i5
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200a6e8: 92 10 00 19 mov %i1, %o1
200a6ec: 9f c6 80 00 call %i2
200a6f0: 94 10 00 1b mov %i3, %o2
current = _RBTree_Next_unprotected( rbtree, current, dir );
200a6f4: 92 10 00 1d mov %i5, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200a6f8: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next_unprotected( rbtree, current, dir );
200a6fc: 94 10 00 19 mov %i1, %o2
200a700: 40 00 00 0a call 200a728 <_RBTree_Next_unprotected>
200a704: 90 10 00 18 mov %i0, %o0
{
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200a708: 80 8f 20 ff btst 0xff, %i4
200a70c: 12 80 00 05 bne 200a720 <_RBTree_Iterate_unprotected+0x54><== NEVER TAKEN
200a710: ba 10 00 08 mov %o0, %i5
200a714: 80 a7 60 00 cmp %i5, 0
200a718: 12 bf ff f4 bne 200a6e8 <_RBTree_Iterate_unprotected+0x1c>
200a71c: 90 10 00 1d mov %i5, %o0
200a720: 81 c7 e0 08 ret
200a724: 81 e8 00 00 restore
02009fec <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
2009fec: 80 a2 20 00 cmp %o0, 0
2009ff0: 02 80 00 0e be 200a028 <_RBTree_Sibling+0x3c>
2009ff4: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
2009ff8: c4 02 00 00 ld [ %o0 ], %g2
2009ffc: 80 a0 a0 00 cmp %g2, 0
200a000: 02 80 00 0a be 200a028 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
200a004: 01 00 00 00 nop
if(!(the_node->parent->parent)) return NULL;
200a008: c6 00 80 00 ld [ %g2 ], %g3
200a00c: 80 a0 e0 00 cmp %g3, 0
200a010: 02 80 00 06 be 200a028 <_RBTree_Sibling+0x3c>
200a014: 01 00 00 00 nop
if(the_node == the_node->parent->child[RBT_LEFT])
200a018: c2 00 a0 04 ld [ %g2 + 4 ], %g1
200a01c: 80 a2 00 01 cmp %o0, %g1
200a020: 22 80 00 02 be,a 200a028 <_RBTree_Sibling+0x3c>
200a024: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
else
return the_node->parent->child[RBT_LEFT];
}
200a028: 81 c3 e0 08 retl
200a02c: 90 10 00 01 mov %g1, %o0
0200c9dc <_RTEMS_tasks_Post_switch_extension>:
*/
static void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c9dc: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c9e0: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
if ( !api )
200c9e4: 80 a7 60 00 cmp %i5, 0
200c9e8: 02 80 00 1c be 200ca58 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN
200c9ec: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c9f0: 7f ff d6 ff call 20025ec <sparc_disable_interrupts>
200c9f4: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c9f8: f6 07 60 14 ld [ %i5 + 0x14 ], %i3
asr->signals_posted = 0;
200c9fc: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200ca00: 7f ff d6 ff call 20025fc <sparc_enable_interrupts>
200ca04: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200ca08: 80 a6 e0 00 cmp %i3, 0
200ca0c: 02 80 00 13 be 200ca58 <_RTEMS_tasks_Post_switch_extension+0x7c>
200ca10: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
200ca14: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca18: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200ca1c: 82 00 60 01 inc %g1
200ca20: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca24: 39 00 00 3f sethi %hi(0xfc00), %i4
200ca28: 40 00 06 e9 call 200e5cc <rtems_task_mode>
200ca2c: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200ca30: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200ca34: 9f c0 40 00 call %g1
200ca38: 90 10 00 1b mov %i3, %o0
asr->nest_level -= 1;
200ca3c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca40: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200ca44: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca48: 92 17 23 ff or %i4, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200ca4c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ca50: 40 00 06 df call 200e5cc <rtems_task_mode>
200ca54: 94 07 bf fc add %fp, -4, %o2
200ca58: 81 c7 e0 08 ret
200ca5c: 81 e8 00 00 restore
0203d9e4 <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
203d9e4: 9d e3 bf 98 save %sp, -104, %sp
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
203d9e8: fa 06 20 40 ld [ %i0 + 0x40 ], %i5
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
203d9ec: 7f ff b2 8b call 202a418 <_TOD_Get_uptime>
203d9f0: 90 07 bf f8 add %fp, -8, %o0
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
203d9f4: c4 1e 20 50 ldd [ %i0 + 0x50 ], %g2
_Timestamp_Subtract(
203d9f8: d8 1f bf f8 ldd [ %fp + -8 ], %o4
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
203d9fc: 82 10 20 01 mov 1, %g1
203da00: 86 a3 40 03 subcc %o5, %g3, %g3
203da04: 84 63 00 02 subx %o4, %g2, %g2
203da08: c4 3e 40 00 std %g2, [ %i1 ]
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
203da0c: 05 00 81 b7 sethi %hi(0x206dc00), %g2
203da10: 84 10 a2 70 or %g2, 0x270, %g2 ! 206de70 <_Per_CPU_Information>
203da14: c6 00 a0 0c ld [ %g2 + 0xc ], %g3
203da18: 80 a7 40 03 cmp %i5, %g3
203da1c: 12 80 00 15 bne 203da70 <_Rate_monotonic_Get_status+0x8c>
203da20: d4 1f 60 80 ldd [ %i5 + 0x80 ], %o2
203da24: c4 18 a0 20 ldd [ %g2 + 0x20 ], %g2
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
203da28: f0 1e 20 48 ldd [ %i0 + 0x48 ], %i0
203da2c: 86 a3 40 03 subcc %o5, %g3, %g3
203da30: 84 63 00 02 subx %o4, %g2, %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
203da34: 96 82 c0 03 addcc %o3, %g3, %o3
203da38: 94 42 80 02 addx %o2, %g2, %o2
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
203da3c: 80 a6 00 0a cmp %i0, %o2
203da40: 34 80 00 0c bg,a 203da70 <_Rate_monotonic_Get_status+0x8c><== NEVER TAKEN
203da44: 82 10 20 00 clr %g1 <== NOT EXECUTED
203da48: 32 80 00 06 bne,a 203da60 <_Rate_monotonic_Get_status+0x7c>
203da4c: 96 a2 c0 19 subcc %o3, %i1, %o3
203da50: 80 a6 40 0b cmp %i1, %o3
203da54: 18 80 00 06 bgu 203da6c <_Rate_monotonic_Get_status+0x88>
203da58: 96 a2 c0 19 subcc %o3, %i1, %o3
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
203da5c: 82 10 20 01 mov 1, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
203da60: 94 62 80 18 subx %o2, %i0, %o2
203da64: 10 80 00 03 b 203da70 <_Rate_monotonic_Get_status+0x8c>
203da68: d4 3e 80 00 std %o2, [ %i2 ]
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
return false;
203da6c: 82 10 20 00 clr %g1
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
203da70: b0 08 60 01 and %g1, 1, %i0
203da74: 81 c7 e0 08 ret
203da78: 81 e8 00 00 restore
0203dddc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
203dddc: 9d e3 bf 98 save %sp, -104, %sp
203dde0: 11 00 81 b8 sethi %hi(0x206e000), %o0
203dde4: 92 10 00 18 mov %i0, %o1
203dde8: 90 12 21 40 or %o0, 0x140, %o0
203ddec: 7f ff 44 38 call 200eecc <_Objects_Get>
203ddf0: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
203ddf4: c2 07 bf fc ld [ %fp + -4 ], %g1
203ddf8: 80 a0 60 00 cmp %g1, 0
203ddfc: 12 80 00 25 bne 203de90 <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN
203de00: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
203de04: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
203de08: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
203de0c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
203de10: 80 88 80 01 btst %g2, %g1
203de14: 22 80 00 0b be,a 203de40 <_Rate_monotonic_Timeout+0x64>
203de18: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
203de1c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
203de20: c2 07 60 08 ld [ %i5 + 8 ], %g1
203de24: 80 a0 80 01 cmp %g2, %g1
203de28: 32 80 00 06 bne,a 203de40 <_Rate_monotonic_Timeout+0x64>
203de2c: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
203de30: 13 04 00 ff sethi %hi(0x1003fc00), %o1
203de34: 7f ff 46 fb call 200fa20 <_Thread_Clear_state>
203de38: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
203de3c: 30 80 00 06 b,a 203de54 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
203de40: 80 a0 60 01 cmp %g1, 1
203de44: 12 80 00 0d bne 203de78 <_Rate_monotonic_Timeout+0x9c>
203de48: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
203de4c: 82 10 20 03 mov 3, %g1
203de50: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
203de54: 7f ff ff 53 call 203dba0 <_Rate_monotonic_Initiate_statistics>
203de58: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203de5c: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203de60: 11 00 81 b7 sethi %hi(0x206dc00), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203de64: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203de68: 90 12 21 00 or %o0, 0x100, %o0
203de6c: 7f ff 4a ff call 2010a68 <_Watchdog_Insert>
203de70: 92 07 60 10 add %i5, 0x10, %o1
203de74: 30 80 00 02 b,a 203de7c <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
203de78: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
203de7c: 03 00 81 b7 sethi %hi(0x206dc00), %g1
203de80: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 206dc40 <_Thread_Dispatch_disable_level>
203de84: 84 00 bf ff add %g2, -1, %g2
203de88: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
return _Thread_Dispatch_disable_level;
203de8c: c2 00 60 40 ld [ %g1 + 0x40 ], %g1
203de90: 81 c7 e0 08 ret
203de94: 81 e8 00 00 restore
0203da7c <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
203da7c: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
203da80: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
203da84: 82 00 60 01 inc %g1
203da88: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
203da8c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
203da90: 80 a0 60 04 cmp %g1, 4
203da94: 12 80 00 05 bne 203daa8 <_Rate_monotonic_Update_statistics+0x2c>
203da98: 90 10 00 18 mov %i0, %o0
stats->missed_count++;
203da9c: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
203daa0: 82 00 60 01 inc %g1
203daa4: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
/*
* Grab status for time statistics.
*/
valid_status =
203daa8: 92 07 bf f8 add %fp, -8, %o1
203daac: 7f ff ff ce call 203d9e4 <_Rate_monotonic_Get_status>
203dab0: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
203dab4: 80 8a 20 ff btst 0xff, %o0
203dab8: 02 80 00 38 be 203db98 <_Rate_monotonic_Update_statistics+0x11c>
203dabc: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
203dac0: d8 1e 20 70 ldd [ %i0 + 0x70 ], %o4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
203dac4: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
203dac8: 9a 83 40 03 addcc %o5, %g3, %o5
203dacc: 98 43 00 02 addx %o4, %g2, %o4
203dad0: 80 a0 40 02 cmp %g1, %g2
203dad4: 14 80 00 09 bg 203daf8 <_Rate_monotonic_Update_statistics+0x7c>
203dad8: d8 3e 20 70 std %o4, [ %i0 + 0x70 ]
203dadc: 80 a0 40 02 cmp %g1, %g2
203dae0: 32 80 00 08 bne,a 203db00 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN
203dae4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
203dae8: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
203daec: 80 a0 40 03 cmp %g1, %g3
203daf0: 28 80 00 04 bleu,a 203db00 <_Rate_monotonic_Update_statistics+0x84>
203daf4: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
203daf8: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
203dafc: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
203db00: 80 a0 40 02 cmp %g1, %g2
203db04: 26 80 00 0a bl,a 203db2c <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
203db08: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
203db0c: 80 a0 40 02 cmp %g1, %g2
203db10: 32 80 00 08 bne,a 203db30 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
203db14: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED
203db18: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
203db1c: 80 a0 40 03 cmp %g1, %g3
203db20: 3a 80 00 04 bcc,a 203db30 <_Rate_monotonic_Update_statistics+0xb4>
203db24: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
203db28: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
203db2c: c4 1f bf f8 ldd [ %fp + -8 ], %g2
203db30: d8 1e 20 88 ldd [ %i0 + 0x88 ], %o4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
203db34: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
203db38: 9a 83 40 03 addcc %o5, %g3, %o5
203db3c: 98 43 00 02 addx %o4, %g2, %o4
203db40: 80 a0 40 02 cmp %g1, %g2
203db44: 14 80 00 09 bg 203db68 <_Rate_monotonic_Update_statistics+0xec>
203db48: d8 3e 20 88 std %o4, [ %i0 + 0x88 ]
203db4c: 80 a0 40 02 cmp %g1, %g2
203db50: 32 80 00 08 bne,a 203db70 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN
203db54: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
203db58: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
203db5c: 80 a0 40 03 cmp %g1, %g3
203db60: 28 80 00 04 bleu,a 203db70 <_Rate_monotonic_Update_statistics+0xf4>
203db64: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
203db68: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
203db6c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
203db70: 80 a0 40 02 cmp %g1, %g2
203db74: 26 80 00 09 bl,a 203db98 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
203db78: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
203db7c: 80 a0 40 02 cmp %g1, %g2
203db80: 12 80 00 06 bne 203db98 <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
203db84: 01 00 00 00 nop
203db88: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
203db8c: 80 a0 40 03 cmp %g1, %g3
203db90: 2a 80 00 02 bcs,a 203db98 <_Rate_monotonic_Update_statistics+0x11c>
203db94: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
203db98: 81 c7 e0 08 ret
203db9c: 81 e8 00 00 restore
0200b448 <_Scheduler_CBS_Budget_callout>:
Scheduler_CBS_Server **_Scheduler_CBS_Server_list;
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
200b448: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200b44c: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200b450: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b454: 80 a0 40 09 cmp %g1, %o1
200b458: 32 80 00 02 bne,a 200b460 <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
200b45c: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200b460: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200b464: 80 a0 40 09 cmp %g1, %o1
200b468: 02 80 00 04 be 200b478 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
200b46c: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200b470: 40 00 01 8e call 200baa8 <_Thread_Change_priority>
200b474: 94 10 20 01 mov 1, %o2
/* Invoke callback function if any. */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
200b478: f0 06 20 88 ld [ %i0 + 0x88 ], %i0
if ( sched_info->cbs_server->cbs_budget_overrun ) {
200b47c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b480: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200b484: 80 a0 a0 00 cmp %g2, 0
200b488: 02 80 00 09 be 200b4ac <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
200b48c: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
200b490: d0 00 40 00 ld [ %g1 ], %o0
200b494: 7f ff ff d7 call 200b3f0 <_Scheduler_CBS_Get_server_id>
200b498: 92 07 bf fc add %fp, -4, %o1
sched_info->cbs_server->task_id,
&server_id
);
sched_info->cbs_server->cbs_budget_overrun( server_id );
200b49c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b4a0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200b4a4: 9f c0 40 00 call %g1
200b4a8: d0 07 bf fc ld [ %fp + -4 ], %o0
200b4ac: 81 c7 e0 08 ret
200b4b0: 81 e8 00 00 restore
0200b064 <_Scheduler_CBS_Create_server>:
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200b064: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200b068: c2 06 20 04 ld [ %i0 + 4 ], %g1
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200b06c: ba 10 00 18 mov %i0, %i5
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200b070: 80 a0 60 00 cmp %g1, 0
200b074: 04 80 00 1c ble 200b0e4 <_Scheduler_CBS_Create_server+0x80>
200b078: b0 10 3f ee mov -18, %i0
200b07c: c2 07 40 00 ld [ %i5 ], %g1
200b080: 80 a0 60 00 cmp %g1, 0
200b084: 04 80 00 18 ble 200b0e4 <_Scheduler_CBS_Create_server+0x80>
200b088: 03 00 80 7c sethi %hi(0x201f000), %g1
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b08c: c6 00 60 78 ld [ %g1 + 0x78 ], %g3 ! 201f078 <_Scheduler_CBS_Maximum_servers>
if ( !_Scheduler_CBS_Server_list[i] )
200b090: 03 00 80 7f sethi %hi(0x201fc00), %g1
200b094: c4 00 63 c8 ld [ %g1 + 0x3c8 ], %g2 ! 201ffc8 <_Scheduler_CBS_Server_list>
200b098: 10 80 00 15 b 200b0ec <_Scheduler_CBS_Create_server+0x88>
200b09c: 82 10 20 00 clr %g1
200b0a0: c8 00 80 1b ld [ %g2 + %i3 ], %g4
200b0a4: 80 a1 20 00 cmp %g4, 0
200b0a8: 32 80 00 11 bne,a 200b0ec <_Scheduler_CBS_Create_server+0x88>
200b0ac: 82 00 60 01 inc %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b0b0: 39 00 80 7f sethi %hi(0x201fc00), %i4
200b0b4: f0 07 23 c8 ld [ %i4 + 0x3c8 ], %i0 ! 201ffc8 <_Scheduler_CBS_Server_list>
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
200b0b8: c2 26 80 00 st %g1, [ %i2 ]
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
200b0bc: 40 00 07 9d call 200cf30 <_Workspace_Allocate>
200b0c0: 90 10 20 10 mov 0x10, %o0
the_server = _Scheduler_CBS_Server_list[*server_id];
200b0c4: c2 06 80 00 ld [ %i2 ], %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b0c8: d0 26 00 1b st %o0, [ %i0 + %i3 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
200b0cc: c4 07 23 c8 ld [ %i4 + 0x3c8 ], %g2
200b0d0: 83 28 60 02 sll %g1, 2, %g1
200b0d4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_server )
200b0d8: 80 a0 60 00 cmp %g1, 0
200b0dc: 12 80 00 09 bne 200b100 <_Scheduler_CBS_Create_server+0x9c><== ALWAYS TAKEN
200b0e0: b0 10 3f ef mov -17, %i0
200b0e4: 81 c7 e0 08 ret
200b0e8: 81 e8 00 00 restore
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b0ec: 80 a0 40 03 cmp %g1, %g3
200b0f0: 12 bf ff ec bne 200b0a0 <_Scheduler_CBS_Create_server+0x3c>
200b0f4: b7 28 60 02 sll %g1, 2, %i3
if ( !_Scheduler_CBS_Server_list[i] )
break;
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
200b0f8: 81 c7 e0 08 ret
200b0fc: 91 e8 3f e6 restore %g0, -26, %o0
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b100: c4 07 40 00 ld [ %i5 ], %g2
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
200b104: b0 10 20 00 clr %i0
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b108: c4 20 60 04 st %g2, [ %g1 + 4 ]
200b10c: c4 07 60 04 ld [ %i5 + 4 ], %g2
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
200b110: f2 20 60 0c st %i1, [ %g1 + 0xc ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b114: c4 20 60 08 st %g2, [ %g1 + 8 ]
the_server->task_id = -1;
200b118: 84 10 3f ff mov -1, %g2
200b11c: c4 20 40 00 st %g2, [ %g1 ]
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
}
200b120: 81 c7 e0 08 ret
200b124: 81 e8 00 00 restore
0200b19c <_Scheduler_CBS_Detach_thread>:
int _Scheduler_CBS_Detach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
200b19c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
Scheduler_CBS_Per_thread *sched_info;
the_thread = _Thread_Get(task_id, &location);
200b1a0: 90 10 00 19 mov %i1, %o0
200b1a4: 40 00 03 73 call 200bf70 <_Thread_Get>
200b1a8: 92 07 bf fc add %fp, -4, %o1
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
200b1ac: ba 92 20 00 orcc %o0, 0, %i5
200b1b0: 22 80 00 05 be,a 200b1c4 <_Scheduler_CBS_Detach_thread+0x28>
200b1b4: 03 00 80 7c sethi %hi(0x201f000), %g1
_Thread_Enable_dispatch();
200b1b8: 40 00 03 61 call 200bf3c <_Thread_Enable_dispatch>
200b1bc: 01 00 00 00 nop
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
200b1c0: 03 00 80 7c sethi %hi(0x201f000), %g1
200b1c4: c4 00 60 78 ld [ %g1 + 0x78 ], %g2 ! 201f078 <_Scheduler_CBS_Maximum_servers>
200b1c8: 80 a6 00 02 cmp %i0, %g2
200b1cc: 1a 80 00 1b bcc 200b238 <_Scheduler_CBS_Detach_thread+0x9c>
200b1d0: 82 10 3f ee mov -18, %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
200b1d4: 80 a7 60 00 cmp %i5, 0
200b1d8: 02 80 00 18 be 200b238 <_Scheduler_CBS_Detach_thread+0x9c>
200b1dc: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
200b1e0: 03 00 80 7f sethi %hi(0x201fc00), %g1
200b1e4: c2 00 63 c8 ld [ %g1 + 0x3c8 ], %g1 ! 201ffc8 <_Scheduler_CBS_Server_list>
200b1e8: b1 2e 20 02 sll %i0, 2, %i0
200b1ec: c4 00 40 18 ld [ %g1 + %i0 ], %g2
200b1f0: 80 a0 a0 00 cmp %g2, 0
200b1f4: 02 80 00 11 be 200b238 <_Scheduler_CBS_Detach_thread+0x9c>
200b1f8: 82 10 3f e7 mov -25, %g1
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
200b1fc: c6 00 80 00 ld [ %g2 ], %g3
200b200: 80 a0 c0 19 cmp %g3, %i1
200b204: 12 80 00 0d bne 200b238 <_Scheduler_CBS_Detach_thread+0x9c><== NEVER TAKEN
200b208: 82 10 3f ee mov -18, %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
200b20c: 82 10 3f ff mov -1, %g1
200b210: c2 20 80 00 st %g1, [ %g2 ]
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b214: c2 07 60 88 ld [ %i5 + 0x88 ], %g1
200b218: c0 20 60 18 clr [ %g1 + 0x18 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b21c: c2 07 60 a0 ld [ %i5 + 0xa0 ], %g1
200b220: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
200b224: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1
200b228: c2 27 60 7c st %g1, [ %i5 + 0x7c ]
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b22c: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1
200b230: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
return SCHEDULER_CBS_OK;
200b234: 82 10 20 00 clr %g1
}
200b238: 81 c7 e0 08 ret
200b23c: 91 e8 00 01 restore %g0, %g1, %o0
0200b4b4 <_Scheduler_CBS_Initialize>:
}
}
int _Scheduler_CBS_Initialize(void)
{
200b4b4: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
200b4b8: 3b 00 80 7c sethi %hi(0x201f000), %i5
200b4bc: d0 07 60 78 ld [ %i5 + 0x78 ], %o0 ! 201f078 <_Scheduler_CBS_Maximum_servers>
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
200b4c0: b0 10 3f ef mov -17, %i0
}
int _Scheduler_CBS_Initialize(void)
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
200b4c4: 40 00 06 9b call 200cf30 <_Workspace_Allocate>
200b4c8: 91 2a 20 02 sll %o0, 2, %o0
200b4cc: 05 00 80 7f sethi %hi(0x201fc00), %g2
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
200b4d0: 80 a2 20 00 cmp %o0, 0
200b4d4: 02 80 00 0c be 200b504 <_Scheduler_CBS_Initialize+0x50> <== NEVER TAKEN
200b4d8: d0 20 a3 c8 st %o0, [ %g2 + 0x3c8 ]
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b4dc: c6 07 60 78 ld [ %i5 + 0x78 ], %g3
200b4e0: 10 80 00 05 b 200b4f4 <_Scheduler_CBS_Initialize+0x40>
200b4e4: 82 10 20 00 clr %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b4e8: 89 28 60 02 sll %g1, 2, %g4
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b4ec: 82 00 60 01 inc %g1
_Scheduler_CBS_Server_list[i] = NULL;
200b4f0: c0 27 40 04 clr [ %i5 + %g4 ]
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b4f4: 80 a0 40 03 cmp %g1, %g3
200b4f8: 12 bf ff fc bne 200b4e8 <_Scheduler_CBS_Initialize+0x34>
200b4fc: fa 00 a3 c8 ld [ %g2 + 0x3c8 ], %i5
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200b500: b0 10 20 00 clr %i0
}
200b504: 81 c7 e0 08 ret
200b508: 81 e8 00 00 restore
0200a0b0 <_Scheduler_CBS_Release_job>:
{
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info =
(Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
Scheduler_CBS_Server *serv_info =
(Scheduler_CBS_Server *) sched_info->cbs_server;
200a0b0: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
if (deadline) {
200a0b4: 80 a2 60 00 cmp %o1, 0
200a0b8: 02 80 00 10 be 200a0f8 <_Scheduler_CBS_Release_job+0x48>
200a0bc: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
/* Initializing or shifting deadline. */
if (serv_info)
200a0c0: 80 a0 60 00 cmp %g1, 0
200a0c4: 02 80 00 08 be 200a0e4 <_Scheduler_CBS_Release_job+0x34>
200a0c8: 05 00 80 78 sethi %hi(0x201e000), %g2
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
200a0cc: d2 00 a2 e0 ld [ %g2 + 0x2e0 ], %o1 ! 201e2e0 <_Watchdog_Ticks_since_boot>
200a0d0: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a0d4: 92 02 40 02 add %o1, %g2, %o1
200a0d8: 05 20 00 00 sethi %hi(0x80000000), %g2
200a0dc: 10 80 00 0a b 200a104 <_Scheduler_CBS_Release_job+0x54>
200a0e0: 92 2a 40 02 andn %o1, %g2, %o1
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
200a0e4: c2 00 a2 e0 ld [ %g2 + 0x2e0 ], %g1
200a0e8: 92 02 40 01 add %o1, %g1, %o1
200a0ec: 03 20 00 00 sethi %hi(0x80000000), %g1
200a0f0: 10 80 00 07 b 200a10c <_Scheduler_CBS_Release_job+0x5c>
200a0f4: 92 2a 40 01 andn %o1, %g1, %o1
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
200a0f8: 80 a0 60 00 cmp %g1, 0
200a0fc: 02 80 00 04 be 200a10c <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN
200a100: d2 02 20 ac ld [ %o0 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
200a104: c2 00 60 08 ld [ %g1 + 8 ], %g1
200a108: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
200a10c: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
200a110: 94 10 20 01 mov 1, %o2
200a114: 82 13 c0 00 mov %o7, %g1
200a118: 40 00 01 33 call 200a5e4 <_Thread_Change_priority>
200a11c: 9e 10 40 00 mov %g1, %o7
0200a120 <_Scheduler_CBS_Unblock>:
#include <rtems/score/schedulercbs.h>
void _Scheduler_CBS_Unblock(
Thread_Control *the_thread
)
{
200a120: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server *serv_info;
Priority_Control new_priority;
_Scheduler_EDF_Enqueue(the_thread);
200a124: 40 00 00 57 call 200a280 <_Scheduler_EDF_Enqueue>
200a128: 90 10 00 18 mov %i0, %o0
/* TODO: flash critical section? */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server;
200a12c: c2 06 20 88 ld [ %i0 + 0x88 ], %g1
200a130: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
200a134: 80 a7 60 00 cmp %i5, 0
200a138: 02 80 00 18 be 200a198 <_Scheduler_CBS_Unblock+0x78>
200a13c: 03 00 80 78 sethi %hi(0x201e000), %g1
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a140: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
200a144: d0 00 62 e0 ld [ %g1 + 0x2e0 ], %o0
200a148: f8 06 20 18 ld [ %i0 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a14c: 40 00 3c 39 call 2019230 <.umul>
200a150: 90 27 00 08 sub %i4, %o0, %o0
200a154: d2 06 20 74 ld [ %i0 + 0x74 ], %o1
200a158: b6 10 00 08 mov %o0, %i3
200a15c: 40 00 3c 35 call 2019230 <.umul>
200a160: d0 07 60 08 ld [ %i5 + 8 ], %o0
200a164: 80 a6 c0 08 cmp %i3, %o0
200a168: 24 80 00 0d ble,a 200a19c <_Scheduler_CBS_Unblock+0x7c>
200a16c: 3b 00 80 79 sethi %hi(0x201e400), %i5
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200a170: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200a174: 80 a7 00 09 cmp %i4, %o1
200a178: 32 80 00 02 bne,a 200a180 <_Scheduler_CBS_Unblock+0x60>
200a17c: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200a180: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a184: 80 a0 40 09 cmp %g1, %o1
200a188: 02 80 00 04 be 200a198 <_Scheduler_CBS_Unblock+0x78>
200a18c: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200a190: 40 00 01 15 call 200a5e4 <_Thread_Change_priority>
200a194: 94 10 20 01 mov 1, %o2
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
200a198: 3b 00 80 79 sethi %hi(0x201e400), %i5
200a19c: ba 17 60 00 mov %i5, %i5 ! 201e400 <_Per_CPU_Information>
200a1a0: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200a1a4: 03 00 80 75 sethi %hi(0x201d400), %g1
200a1a8: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
200a1ac: c2 00 61 0c ld [ %g1 + 0x10c ], %g1
200a1b0: 9f c0 40 00 call %g1
200a1b4: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1
200a1b8: 80 a2 20 00 cmp %o0, 0
200a1bc: 04 80 00 0f ble 200a1f8 <_Scheduler_CBS_Unblock+0xd8>
200a1c0: 01 00 00 00 nop
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a1c4: c2 07 60 0c ld [ %i5 + 0xc ], %g1
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
200a1c8: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a1cc: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a1d0: 80 a0 60 00 cmp %g1, 0
200a1d4: 12 80 00 06 bne 200a1ec <_Scheduler_CBS_Unblock+0xcc>
200a1d8: 84 10 20 01 mov 1, %g2
200a1dc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a1e0: 80 a0 60 00 cmp %g1, 0
200a1e4: 12 80 00 05 bne 200a1f8 <_Scheduler_CBS_Unblock+0xd8> <== ALWAYS TAKEN
200a1e8: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a1ec: 03 00 80 79 sethi %hi(0x201e400), %g1
200a1f0: 82 10 60 00 mov %g1, %g1 ! 201e400 <_Per_CPU_Information>
200a1f4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200a1f8: 81 c7 e0 08 ret
200a1fc: 81 e8 00 00 restore
0200a200 <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
200a200: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
200a204: 40 00 06 41 call 200bb08 <_Workspace_Allocate>
200a208: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
200a20c: 80 a2 20 00 cmp %o0, 0
200a210: 02 80 00 05 be 200a224 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
200a214: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
200a218: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
200a21c: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
200a220: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
200a224: 81 c7 e0 08 ret
200a228: 91 e8 00 08 restore %g0, %o0, %o0
0200a288 <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
200a288: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
200a28c: 7f ff ff a9 call 200a130 <_Scheduler_EDF_Enqueue>
200a290: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
200a294: 3b 00 80 78 sethi %hi(0x201e000), %i5
200a298: ba 17 63 60 or %i5, 0x360, %i5 ! 201e360 <_Per_CPU_Information>
200a29c: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200a2a0: 03 00 80 75 sethi %hi(0x201d400), %g1
200a2a4: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0
200a2a8: c2 00 60 6c ld [ %g1 + 0x6c ], %g1
200a2ac: 9f c0 40 00 call %g1
200a2b0: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
200a2b4: 80 a2 20 00 cmp %o0, 0
200a2b8: 16 80 00 0f bge 200a2f4 <_Scheduler_EDF_Unblock+0x6c>
200a2bc: 01 00 00 00 nop
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a2c0: c2 07 60 0c ld [ %i5 + 0xc ], %g1
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
200a2c4: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a2c8: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a2cc: 80 a0 60 00 cmp %g1, 0
200a2d0: 12 80 00 06 bne 200a2e8 <_Scheduler_EDF_Unblock+0x60>
200a2d4: 84 10 20 01 mov 1, %g2
200a2d8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a2dc: 80 a0 60 00 cmp %g1, 0
200a2e0: 12 80 00 05 bne 200a2f4 <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN
200a2e4: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a2e8: 03 00 80 78 sethi %hi(0x201e000), %g1
200a2ec: 82 10 63 60 or %g1, 0x360, %g1 ! 201e360 <_Per_CPU_Information>
200a2f0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200a2f4: 81 c7 e0 08 ret
200a2f8: 81 e8 00 00 restore
02008760 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
2008760: 9d e3 bf a0 save %sp, -96, %sp
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2008764: 03 00 80 6e sethi %hi(0x201b800), %g1
2008768: c2 00 61 5c ld [ %g1 + 0x15c ], %g1 ! 201b95c <Configuration+0x10>
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
*_time += *_add;
if ( ((*_time) / 1000000000L) != _start ) {
200876c: 94 10 20 00 clr %o2
2008770: 85 28 60 02 sll %g1, 2, %g2
2008774: 91 28 60 07 sll %g1, 7, %o0
2008778: 90 22 00 02 sub %o0, %g2, %o0
200877c: 90 02 00 01 add %o0, %g1, %o0
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2008780: 03 00 80 71 sethi %hi(0x201c400), %g1
2008784: c4 00 63 c0 ld [ %g1 + 0x3c0 ], %g2 ! 201c7c0 <_Watchdog_Ticks_since_boot>
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2008788: 91 2a 20 03 sll %o0, 3, %o0
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200878c: 84 00 a0 01 inc %g2
2008790: c4 20 63 c0 st %g2, [ %g1 + 0x3c0 ]
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2008794: 03 00 80 71 sethi %hi(0x201c400), %g1
2008798: c4 18 63 30 ldd [ %g1 + 0x330 ], %g2 ! 201c730 <_TOD_Uptime>
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
200879c: 92 10 00 08 mov %o0, %o1
20087a0: 90 10 20 00 clr %o0
20087a4: 86 80 c0 09 addcc %g3, %o1, %g3
20087a8: 84 40 80 08 addx %g2, %o0, %g2
20087ac: c4 38 63 30 std %g2, [ %g1 + 0x330 ]
static inline uint32_t _Timestamp64_Add_to_at_tick(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
20087b0: 03 00 80 71 sethi %hi(0x201c400), %g1
20087b4: f8 18 63 40 ldd [ %g1 + 0x340 ], %i4 ! 201c740 <_TOD_Now>
*_time += *_add;
if ( ((*_time) / 1000000000L) != _start ) {
20087b8: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
*_time += *_add;
20087bc: 92 87 40 09 addcc %i5, %o1, %o1
if ( ((*_time) / 1000000000L) != _start ) {
20087c0: 96 12 e2 00 or %o3, 0x200, %o3
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
*_time += *_add;
20087c4: 90 47 00 08 addx %i4, %o0, %o0
if ( ((*_time) / 1000000000L) != _start ) {
20087c8: 40 00 3d fe call 2017fc0 <__divdi3>
20087cc: d0 38 63 40 std %o0, [ %g1 + 0x340 ]
static inline uint32_t _Timestamp64_Add_to_at_tick(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
20087d0: 94 10 20 00 clr %o2
*_time += *_add;
if ( ((*_time) / 1000000000L) != _start ) {
20087d4: b4 10 00 08 mov %o0, %i2
20087d8: b6 10 00 09 mov %o1, %i3
static inline uint32_t _Timestamp64_Add_to_at_tick(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
Timestamp64_Control _start = *_time / 1000000000L;
20087dc: 90 10 00 1c mov %i4, %o0
20087e0: 92 10 00 1d mov %i5, %o1
20087e4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
20087e8: 40 00 3d f6 call 2017fc0 <__divdi3>
20087ec: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
_Timestamp_Add_to( &_TOD_Uptime, &tick );
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
while ( seconds ) {
20087f0: 80 a6 80 08 cmp %i2, %o0
20087f4: 12 80 00 05 bne 2008808 <_TOD_Tickle_ticks+0xa8> <== NEVER TAKEN
20087f8: 31 00 80 71 sethi %hi(0x201c400), %i0
20087fc: 80 a6 c0 09 cmp %i3, %o1
2008800: 02 80 00 04 be 2008810 <_TOD_Tickle_ticks+0xb0>
2008804: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
2008808: 40 00 09 ed call 200afbc <_Watchdog_Tickle>
200880c: 91 ee 23 64 restore %i0, 0x364, %o0
2008810: 81 c7 e0 08 ret
2008814: 81 e8 00 00 restore
02008670 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2008670: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2008674: 03 00 80 78 sethi %hi(0x201e000), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
2008678: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200867c: 80 a6 20 00 cmp %i0, 0
2008680: 02 80 00 2b be 200872c <_TOD_Validate+0xbc> <== NEVER TAKEN
2008684: d2 00 60 ac ld [ %g1 + 0xac ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2008688: 11 00 03 d0 sethi %hi(0xf4000), %o0
200868c: 40 00 45 19 call 2019af0 <.udiv>
2008690: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2008694: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2008698: 80 a0 40 08 cmp %g1, %o0
200869c: 3a 80 00 25 bcc,a 2008730 <_TOD_Validate+0xc0>
20086a0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
20086a4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20086a8: 80 a0 60 3b cmp %g1, 0x3b
20086ac: 38 80 00 21 bgu,a 2008730 <_TOD_Validate+0xc0>
20086b0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20086b4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
20086b8: 80 a0 60 3b cmp %g1, 0x3b
20086bc: 38 80 00 1d bgu,a 2008730 <_TOD_Validate+0xc0>
20086c0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20086c4: c2 06 20 0c ld [ %i0 + 0xc ], %g1
20086c8: 80 a0 60 17 cmp %g1, 0x17
20086cc: 38 80 00 19 bgu,a 2008730 <_TOD_Validate+0xc0>
20086d0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20086d4: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
20086d8: 80 a0 60 00 cmp %g1, 0
20086dc: 02 80 00 14 be 200872c <_TOD_Validate+0xbc> <== NEVER TAKEN
20086e0: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20086e4: 38 80 00 13 bgu,a 2008730 <_TOD_Validate+0xc0>
20086e8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20086ec: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20086f0: 80 a0 e7 c3 cmp %g3, 0x7c3
20086f4: 28 80 00 0f bleu,a 2008730 <_TOD_Validate+0xc0>
20086f8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20086fc: c4 06 20 08 ld [ %i0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008700: 80 a0 a0 00 cmp %g2, 0
2008704: 02 80 00 0a be 200872c <_TOD_Validate+0xbc> <== NEVER TAKEN
2008708: 80 88 e0 03 btst 3, %g3
200870c: 07 00 80 73 sethi %hi(0x201cc00), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2008710: 12 80 00 03 bne 200871c <_TOD_Validate+0xac>
2008714: 86 10 e0 a8 or %g3, 0xa8, %g3 ! 201cca8 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2008718: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
200871c: 83 28 60 02 sll %g1, 2, %g1
2008720: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2008724: 80 a0 40 02 cmp %g1, %g2
2008728: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
200872c: b0 0f 60 01 and %i5, 1, %i0
2008730: 81 c7 e0 08 ret
2008734: 81 e8 00 00 restore
02009c50 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2009c50: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2009c54: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2009c58: 40 00 03 5b call 200a9c4 <_Thread_Set_transient>
2009c5c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2009c60: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2009c64: 80 a0 40 19 cmp %g1, %i1
2009c68: 02 80 00 05 be 2009c7c <_Thread_Change_priority+0x2c>
2009c6c: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
2009c70: 90 10 00 18 mov %i0, %o0
2009c74: 40 00 03 3b call 200a960 <_Thread_Set_priority>
2009c78: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2009c7c: 7f ff e2 5c call 20025ec <sparc_disable_interrupts>
2009c80: 01 00 00 00 nop
2009c84: b6 10 00 08 mov %o0, %i3
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2009c88: f2 07 60 10 ld [ %i5 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2009c8c: 80 a6 60 04 cmp %i1, 4
2009c90: 02 80 00 10 be 2009cd0 <_Thread_Change_priority+0x80>
2009c94: b8 0f 20 04 and %i4, 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2009c98: 80 a7 20 00 cmp %i4, 0
2009c9c: 12 80 00 03 bne 2009ca8 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2009ca0: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009ca4: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2009ca8: 7f ff e2 55 call 20025fc <sparc_enable_interrupts>
2009cac: 90 10 00 1b mov %i3, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2009cb0: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009cb4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2009cb8: 80 8e 40 01 btst %i1, %g1
2009cbc: 02 80 00 29 be 2009d60 <_Thread_Change_priority+0x110>
2009cc0: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2009cc4: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2009cc8: 40 00 02 f8 call 200a8a8 <_Thread_queue_Requeue>
2009ccc: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2009cd0: 80 a7 20 00 cmp %i4, 0
2009cd4: 12 80 00 0b bne 2009d00 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2009cd8: 03 00 80 6e sethi %hi(0x201b800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2009cdc: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
2009ce0: 80 a6 a0 00 cmp %i2, 0
2009ce4: 02 80 00 04 be 2009cf4 <_Thread_Change_priority+0xa4>
2009ce8: 82 10 62 3c or %g1, 0x23c, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2009cec: 10 80 00 03 b 2009cf8 <_Thread_Change_priority+0xa8>
2009cf0: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2009cf4: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2009cf8: 9f c0 40 00 call %g1
2009cfc: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2009d00: 7f ff e2 3f call 20025fc <sparc_enable_interrupts>
2009d04: 90 10 00 1b mov %i3, %o0
2009d08: 7f ff e2 39 call 20025ec <sparc_disable_interrupts>
2009d0c: 01 00 00 00 nop
2009d10: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2009d14: 03 00 80 6e sethi %hi(0x201b800), %g1
2009d18: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 201ba44 <_Scheduler+0x8>
2009d1c: 9f c0 40 00 call %g1
2009d20: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2009d24: 03 00 80 72 sethi %hi(0x201c800), %g1
2009d28: 82 10 60 e0 or %g1, 0xe0, %g1 ! 201c8e0 <_Per_CPU_Information>
2009d2c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2009d30: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009d34: 80 a0 80 03 cmp %g2, %g3
2009d38: 02 80 00 08 be 2009d58 <_Thread_Change_priority+0x108>
2009d3c: 01 00 00 00 nop
2009d40: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
2009d44: 80 a0 a0 00 cmp %g2, 0
2009d48: 02 80 00 04 be 2009d58 <_Thread_Change_priority+0x108>
2009d4c: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2009d50: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
2009d54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2009d58: 7f ff e2 29 call 20025fc <sparc_enable_interrupts>
2009d5c: 81 e8 00 00 restore
2009d60: 81 c7 e0 08 ret
2009d64: 81 e8 00 00 restore
02009f54 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009f54: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009f58: 90 10 00 18 mov %i0, %o0
2009f5c: 40 00 00 6f call 200a118 <_Thread_Get>
2009f60: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009f64: c2 07 bf fc ld [ %fp + -4 ], %g1
2009f68: 80 a0 60 00 cmp %g1, 0
2009f6c: 12 80 00 09 bne 2009f90 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
2009f70: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2009f74: 7f ff ff 7d call 2009d68 <_Thread_Clear_state>
2009f78: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009f7c: 03 00 80 71 sethi %hi(0x201c400), %g1
2009f80: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201c6b0 <_Thread_Dispatch_disable_level>
2009f84: 84 00 bf ff add %g2, -1, %g2
2009f88: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
return _Thread_Dispatch_disable_level;
2009f8c: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1
2009f90: 81 c7 e0 08 ret
2009f94: 81 e8 00 00 restore
02009f98 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2009f98: 9d e3 bf 98 save %sp, -104, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2009f9c: 03 00 80 71 sethi %hi(0x201c400), %g1
2009fa0: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201c6b0 <_Thread_Dispatch_disable_level>
2009fa4: 84 00 a0 01 inc %g2
2009fa8: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
return _Thread_Dispatch_disable_level;
2009fac: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2009fb0: 37 00 80 72 sethi %hi(0x201c800), %i3
2009fb4: 82 16 e0 e0 or %i3, 0xe0, %g1 ! 201c8e0 <_Per_CPU_Information>
_ISR_Disable( level );
2009fb8: 7f ff e1 8d call 20025ec <sparc_disable_interrupts>
2009fbc: fa 00 60 0c ld [ %g1 + 0xc ], %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009fc0: 35 00 80 71 sethi %hi(0x201c400), %i2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2009fc4: 31 00 80 71 sethi %hi(0x201c400), %i0
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2009fc8: 10 80 00 37 b 200a0a4 <_Thread_Dispatch+0x10c>
2009fcc: 33 00 80 71 sethi %hi(0x201c400), %i1
heir = _Thread_Heir;
_Thread_Dispatch_necessary = false;
2009fd0: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2009fd4: 80 a7 00 1d cmp %i4, %i5
2009fd8: 02 80 00 38 be 200a0b8 <_Thread_Dispatch+0x120>
2009fdc: f8 20 60 0c st %i4, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2009fe0: c2 07 20 78 ld [ %i4 + 0x78 ], %g1
2009fe4: 80 a0 60 01 cmp %g1, 1
2009fe8: 12 80 00 03 bne 2009ff4 <_Thread_Dispatch+0x5c>
2009fec: c2 06 a2 14 ld [ %i2 + 0x214 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009ff0: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
_ISR_Enable( level );
2009ff4: 7f ff e1 82 call 20025fc <sparc_enable_interrupts>
2009ff8: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2009ffc: 40 00 0b 38 call 200ccdc <_TOD_Get_uptime>
200a000: 90 07 bf f8 add %fp, -8, %o0
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a004: c4 1f 60 80 ldd [ %i5 + 0x80 ], %g2
_Timestamp_Subtract(
200a008: d4 1f bf f8 ldd [ %fp + -8 ], %o2
200a00c: 82 16 e0 e0 or %i3, 0xe0, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a010: d8 18 60 20 ldd [ %g1 + 0x20 ], %o4
200a014: 9a a2 c0 0d subcc %o3, %o5, %o5
200a018: 98 62 80 0c subx %o2, %o4, %o4
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a01c: 86 80 c0 0d addcc %g3, %o5, %g3
200a020: 84 40 80 0c addx %g2, %o4, %g2
200a024: c4 3f 60 80 std %g2, [ %i5 + 0x80 ]
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
200a028: d4 38 60 20 std %o2, [ %g1 + 0x20 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200a02c: c2 06 23 3c ld [ %i0 + 0x33c ], %g1
200a030: 80 a0 60 00 cmp %g1, 0
200a034: 02 80 00 06 be 200a04c <_Thread_Dispatch+0xb4> <== NEVER TAKEN
200a038: 90 10 00 1d mov %i5, %o0
executing->libc_reent = *_Thread_libc_reent;
200a03c: c4 00 40 00 ld [ %g1 ], %g2
200a040: c4 27 61 4c st %g2, [ %i5 + 0x14c ]
*_Thread_libc_reent = heir->libc_reent;
200a044: c4 07 21 4c ld [ %i4 + 0x14c ], %g2
200a048: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
200a04c: 40 00 03 4a call 200ad74 <_User_extensions_Thread_switch>
200a050: 92 10 00 1c mov %i4, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
200a054: 90 07 60 c0 add %i5, 0xc0, %o0
200a058: 40 00 04 76 call 200b230 <_CPU_Context_switch>
200a05c: 92 07 20 c0 add %i4, 0xc0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200a060: c2 07 61 48 ld [ %i5 + 0x148 ], %g1
200a064: 80 a0 60 00 cmp %g1, 0
200a068: 02 80 00 0c be 200a098 <_Thread_Dispatch+0x100>
200a06c: d0 06 63 38 ld [ %i1 + 0x338 ], %o0
200a070: 80 a7 40 08 cmp %i5, %o0
200a074: 02 80 00 09 be 200a098 <_Thread_Dispatch+0x100>
200a078: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200a07c: 02 80 00 04 be 200a08c <_Thread_Dispatch+0xf4>
200a080: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200a084: 40 00 04 31 call 200b148 <_CPU_Context_save_fp>
200a088: 90 02 21 48 add %o0, 0x148, %o0
_Context_Restore_fp( &executing->fp_context );
200a08c: 40 00 04 4c call 200b1bc <_CPU_Context_restore_fp>
200a090: 90 07 61 48 add %i5, 0x148, %o0
_Thread_Allocated_fp = executing;
200a094: fa 26 63 38 st %i5, [ %i1 + 0x338 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
200a098: 82 16 e0 e0 or %i3, 0xe0, %g1
_ISR_Disable( level );
200a09c: 7f ff e1 54 call 20025ec <sparc_disable_interrupts>
200a0a0: fa 00 60 0c ld [ %g1 + 0xc ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
200a0a4: 82 16 e0 e0 or %i3, 0xe0, %g1
200a0a8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
200a0ac: 80 a0 a0 00 cmp %g2, 0
200a0b0: 32 bf ff c8 bne,a 2009fd0 <_Thread_Dispatch+0x38>
200a0b4: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
_ISR_Disable( level );
}
post_switch:
_ISR_Enable( level );
200a0b8: 7f ff e1 51 call 20025fc <sparc_enable_interrupts>
200a0bc: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a0c0: 03 00 80 71 sethi %hi(0x201c400), %g1
200a0c4: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201c6b0 <_Thread_Dispatch_disable_level>
200a0c8: 84 00 bf ff add %g2, -1, %g2
200a0cc: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
return _Thread_Dispatch_disable_level;
200a0d0: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1
_Thread_Unnest_dispatch();
_API_extensions_Run_postswitch();
200a0d4: 7f ff f8 1f call 2008150 <_API_extensions_Run_postswitch>
200a0d8: 01 00 00 00 nop
}
200a0dc: 81 c7 e0 08 ret
200a0e0: 81 e8 00 00 restore
0200e8fc <_Thread_Handler>:
* Input parameters: NONE
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e8fc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200e900: 03 00 80 72 sethi %hi(0x201c800), %g1
200e904: fa 00 60 ec ld [ %g1 + 0xec ], %i5 ! 201c8ec <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e908: 3f 00 80 3a sethi %hi(0x200e800), %i7
200e90c: be 17 e0 fc or %i7, 0xfc, %i7 ! 200e8fc <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e910: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level(level);
200e914: 7f ff cf 3a call 20025fc <sparc_enable_interrupts>
200e918: 91 2a 20 08 sll %o0, 8, %o0
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e91c: 03 00 80 70 sethi %hi(0x201c000), %g1
doneConstructors = true;
200e920: 84 10 20 01 mov 1, %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e924: f8 08 62 d8 ldub [ %g1 + 0x2d8 ], %i4
doneConstructors = true;
200e928: c4 28 62 d8 stb %g2, [ %g1 + 0x2d8 ]
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e92c: c2 07 61 48 ld [ %i5 + 0x148 ], %g1
200e930: 80 a0 60 00 cmp %g1, 0
200e934: 02 80 00 0c be 200e964 <_Thread_Handler+0x68>
200e938: 03 00 80 71 sethi %hi(0x201c400), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e93c: d0 00 63 38 ld [ %g1 + 0x338 ], %o0 ! 201c738 <_Thread_Allocated_fp>
200e940: 80 a7 40 08 cmp %i5, %o0
200e944: 02 80 00 08 be 200e964 <_Thread_Handler+0x68>
200e948: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e94c: 22 80 00 06 be,a 200e964 <_Thread_Handler+0x68>
200e950: fa 20 63 38 st %i5, [ %g1 + 0x338 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e954: 7f ff f1 fd call 200b148 <_CPU_Context_save_fp>
200e958: 90 02 21 48 add %o0, 0x148, %o0
_Thread_Allocated_fp = executing;
200e95c: 03 00 80 71 sethi %hi(0x201c400), %g1
200e960: fa 20 63 38 st %i5, [ %g1 + 0x338 ] ! 201c738 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e964: 7f ff f0 95 call 200abb8 <_User_extensions_Thread_begin>
200e968: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e96c: 7f ff ed de call 200a0e4 <_Thread_Enable_dispatch>
200e970: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200e974: 80 8f 20 ff btst 0xff, %i4
200e978: 32 80 00 05 bne,a 200e98c <_Thread_Handler+0x90>
200e97c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
INIT_NAME ();
200e980: 40 00 33 e4 call 201b910 <_init>
200e984: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e988: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200e98c: 80 a0 60 00 cmp %g1, 0
200e990: 12 80 00 06 bne 200e9a8 <_Thread_Handler+0xac> <== NEVER TAKEN
200e994: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e998: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
200e99c: 9f c0 40 00 call %g1
200e9a0: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e9a4: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e9a8: 7f ff f0 95 call 200abfc <_User_extensions_Thread_exitted>
200e9ac: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200e9b0: 90 10 20 00 clr %o0
200e9b4: 92 10 20 01 mov 1, %o1
200e9b8: 7f ff e8 91 call 2008bfc <_Internal_error_Occurred>
200e9bc: 94 10 20 05 mov 5, %o2
0200a388 <_Thread_Handler_initialization>:
*
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
200a388: 9d e3 bf 98 save %sp, -104, %sp
uint32_t ticks_per_timeslice =
200a38c: 05 00 80 6e sethi %hi(0x201b800), %g2
200a390: 84 10 a1 4c or %g2, 0x14c, %g2 ! 201b94c <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a394: c6 00 a0 28 ld [ %g2 + 0x28 ], %g3
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice =
200a398: fa 00 a0 14 ld [ %g2 + 0x14 ], %i5
rtems_configuration_get_ticks_per_timeslice();
uint32_t maximum_extensions =
200a39c: f8 00 a0 0c ld [ %g2 + 0xc ], %i4
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a3a0: 80 a0 e0 00 cmp %g3, 0
200a3a4: 02 80 00 06 be 200a3bc <_Thread_Handler_initialization+0x34>
200a3a8: c2 00 a0 24 ld [ %g2 + 0x24 ], %g1
200a3ac: c6 00 a0 2c ld [ %g2 + 0x2c ], %g3
200a3b0: 80 a0 e0 00 cmp %g3, 0
200a3b4: 12 80 00 06 bne 200a3cc <_Thread_Handler_initialization+0x44><== ALWAYS TAKEN
200a3b8: 80 a0 60 00 cmp %g1, 0
rtems_configuration_get_stack_free_hook() == NULL)
_Internal_error_Occurred(
200a3bc: 90 10 20 00 clr %o0
200a3c0: 92 10 20 01 mov 1, %o1
200a3c4: 7f ff fa 0e call 2008bfc <_Internal_error_Occurred>
200a3c8: 94 10 20 0e mov 0xe, %o2
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
200a3cc: 22 80 00 05 be,a 200a3e0 <_Thread_Handler_initialization+0x58>
200a3d0: 03 00 80 72 sethi %hi(0x201c800), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
200a3d4: 9f c0 40 00 call %g1
200a3d8: d0 00 a0 08 ld [ %g2 + 8 ], %o0
_Thread_Dispatch_necessary = false;
200a3dc: 03 00 80 72 sethi %hi(0x201c800), %g1
200a3e0: 82 10 60 e0 or %g1, 0xe0, %g1 ! 201c8e0 <_Per_CPU_Information>
200a3e4: c0 28 60 18 clrb [ %g1 + 0x18 ]
_Thread_Executing = NULL;
200a3e8: c0 20 60 0c clr [ %g1 + 0xc ]
_Thread_Heir = NULL;
200a3ec: c0 20 60 10 clr [ %g1 + 0x10 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Thread_Allocated_fp = NULL;
200a3f0: 03 00 80 71 sethi %hi(0x201c400), %g1
200a3f4: c0 20 63 38 clr [ %g1 + 0x338 ] ! 201c738 <_Thread_Allocated_fp>
#endif
_Thread_Maximum_extensions = maximum_extensions;
200a3f8: 03 00 80 71 sethi %hi(0x201c400), %g1
200a3fc: f8 20 63 48 st %i4, [ %g1 + 0x348 ] ! 201c748 <_Thread_Maximum_extensions>
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
200a400: 03 00 80 71 sethi %hi(0x201c400), %g1
200a404: fa 20 62 14 st %i5, [ %g1 + 0x214 ] ! 201c614 <_Thread_Ticks_per_timeslice>
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
200a408: 82 10 20 08 mov 8, %g1
200a40c: 11 00 80 71 sethi %hi(0x201c400), %o0
200a410: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200a414: 90 12 23 c8 or %o0, 0x3c8, %o0
200a418: 92 10 20 01 mov 1, %o1
200a41c: 94 10 20 01 mov 1, %o2
200a420: 96 10 20 01 mov 1, %o3
200a424: 98 10 21 60 mov 0x160, %o4
200a428: 7f ff fb 7a call 2009210 <_Objects_Initialize_information>
200a42c: 9a 10 20 00 clr %o5
false, /* true if this is a global object class */
NULL /* Proxy extraction support callout */
#endif
);
}
200a430: 81 c7 e0 08 ret
200a434: 81 e8 00 00 restore
0200a1c8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200a1c8: 9d e3 bf a0 save %sp, -96, %sp
200a1cc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
200a1d0: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200a1d4: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200a1d8: c0 26 61 50 clr [ %i1 + 0x150 ]
200a1dc: c0 26 61 54 clr [ %i1 + 0x154 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
200a1e0: c0 26 61 4c clr [ %i1 + 0x14c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200a1e4: 90 10 00 19 mov %i1, %o0
200a1e8: 40 00 02 06 call 200aa00 <_Thread_Stack_Allocate>
200a1ec: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
200a1f0: 80 a2 00 1b cmp %o0, %i3
200a1f4: 0a 80 00 61 bcs 200a378 <_Thread_Initialize+0x1b0>
200a1f8: 80 a2 20 00 cmp %o0, 0
200a1fc: 02 80 00 5f be 200a378 <_Thread_Initialize+0x1b0> <== NEVER TAKEN
200a200: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a204: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
200a208: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a20c: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
200a210: 02 80 00 07 be 200a22c <_Thread_Initialize+0x64>
200a214: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200a218: 40 00 03 b0 call 200b0d8 <_Workspace_Allocate>
200a21c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
200a220: b6 92 20 00 orcc %o0, 0, %i3
200a224: 02 80 00 46 be 200a33c <_Thread_Initialize+0x174>
200a228: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a22c: 03 00 80 71 sethi %hi(0x201c400), %g1
200a230: d0 00 63 48 ld [ %g1 + 0x348 ], %o0 ! 201c748 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
200a234: f6 26 61 48 st %i3, [ %i1 + 0x148 ]
the_thread->Start.fp_context = fp_area;
200a238: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200a23c: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
200a240: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200a244: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
200a248: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a24c: 80 a2 20 00 cmp %o0, 0
200a250: 02 80 00 08 be 200a270 <_Thread_Initialize+0xa8>
200a254: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
200a258: 90 02 20 01 inc %o0
200a25c: 40 00 03 9f call 200b0d8 <_Workspace_Allocate>
200a260: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
200a264: b8 92 20 00 orcc %o0, 0, %i4
200a268: 22 80 00 36 be,a 200a340 <_Thread_Initialize+0x178>
200a26c: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
200a270: 80 a7 20 00 cmp %i4, 0
200a274: 02 80 00 0c be 200a2a4 <_Thread_Initialize+0xdc>
200a278: f8 26 61 58 st %i4, [ %i1 + 0x158 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a27c: 03 00 80 71 sethi %hi(0x201c400), %g1
200a280: c4 00 63 48 ld [ %g1 + 0x348 ], %g2 ! 201c748 <_Thread_Maximum_extensions>
200a284: 10 80 00 05 b 200a298 <_Thread_Initialize+0xd0>
200a288: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
200a28c: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a290: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
200a294: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a298: 80 a0 40 02 cmp %g1, %g2
200a29c: 28 bf ff fc bleu,a 200a28c <_Thread_Initialize+0xc4>
200a2a0: c8 06 61 58 ld [ %i1 + 0x158 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a2a4: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200a2a8: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ]
the_thread->Start.budget_algorithm = budget_algorithm;
200a2ac: c2 26 60 a0 st %g1, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
200a2b0: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
200a2b4: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
200a2b8: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a2bc: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
200a2c0: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a2c4: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
the_thread->current_state = STATES_DORMANT;
200a2c8: 82 10 20 01 mov 1, %g1
200a2cc: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
200a2d0: 03 00 80 6e sethi %hi(0x201b800), %g1
200a2d4: c2 00 62 54 ld [ %g1 + 0x254 ], %g1 ! 201ba54 <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
200a2d8: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200a2dc: fa 26 60 ac st %i5, [ %i1 + 0xac ]
200a2e0: 9f c0 40 00 call %g1
200a2e4: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
200a2e8: b4 92 20 00 orcc %o0, 0, %i2
200a2ec: 02 80 00 15 be 200a340 <_Thread_Initialize+0x178>
200a2f0: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
200a2f4: 40 00 01 9b call 200a960 <_Thread_Set_priority>
200a2f8: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a2fc: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200a300: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
200a304: c0 26 60 80 clr [ %i1 + 0x80 ]
200a308: c0 26 60 84 clr [ %i1 + 0x84 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a30c: 83 28 60 02 sll %g1, 2, %g1
200a310: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200a314: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
200a318: 90 10 00 19 mov %i1, %o0
200a31c: 40 00 02 59 call 200ac80 <_User_extensions_Thread_create>
200a320: b0 10 20 01 mov 1, %i0
if ( extension_status )
200a324: 80 8a 20 ff btst 0xff, %o0
200a328: 02 80 00 06 be 200a340 <_Thread_Initialize+0x178>
200a32c: 01 00 00 00 nop
200a330: b0 0e 20 01 and %i0, 1, %i0
200a334: 81 c7 e0 08 ret
200a338: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200a33c: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
200a340: 40 00 03 6e call 200b0f8 <_Workspace_Free>
200a344: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
200a348: 40 00 03 6c call 200b0f8 <_Workspace_Free>
200a34c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
200a350: 40 00 03 6a call 200b0f8 <_Workspace_Free>
200a354: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
_Workspace_Free( extensions_area );
200a358: 40 00 03 68 call 200b0f8 <_Workspace_Free>
200a35c: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
200a360: 40 00 03 66 call 200b0f8 <_Workspace_Free>
200a364: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200a368: 40 00 03 64 call 200b0f8 <_Workspace_Free>
200a36c: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
200a370: 40 00 01 b5 call 200aa44 <_Thread_Stack_Free>
200a374: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
200a378: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
200a37c: b0 0e 20 01 and %i0, 1, %i0
200a380: 81 c7 e0 08 ret
200a384: 81 e8 00 00 restore
0200a8a8 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200a8a8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200a8ac: 80 a6 20 00 cmp %i0, 0
200a8b0: 02 80 00 19 be 200a914 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a8b4: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200a8b8: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
200a8bc: 80 a7 20 01 cmp %i4, 1
200a8c0: 12 80 00 15 bne 200a914 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
200a8c4: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
200a8c8: 7f ff df 49 call 20025ec <sparc_disable_interrupts>
200a8cc: 01 00 00 00 nop
200a8d0: ba 10 00 08 mov %o0, %i5
200a8d4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200a8d8: 03 00 00 ef sethi %hi(0x3bc00), %g1
200a8dc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
200a8e0: 80 88 80 01 btst %g2, %g1
200a8e4: 02 80 00 0a be 200a90c <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
200a8e8: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200a8ec: 92 10 00 19 mov %i1, %o1
200a8f0: 94 10 20 01 mov 1, %o2
200a8f4: 40 00 0a cf call 200d430 <_Thread_queue_Extract_priority_helper>
200a8f8: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200a8fc: 90 10 00 18 mov %i0, %o0
200a900: 92 10 00 19 mov %i1, %o1
200a904: 7f ff ff 50 call 200a644 <_Thread_queue_Enqueue_priority>
200a908: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
200a90c: 7f ff df 3c call 20025fc <sparc_enable_interrupts>
200a910: 90 10 00 1d mov %i5, %o0
200a914: 81 c7 e0 08 ret
200a918: 81 e8 00 00 restore
0200a91c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200a91c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200a920: 90 10 00 18 mov %i0, %o0
200a924: 7f ff fd fd call 200a118 <_Thread_Get>
200a928: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a92c: c2 07 bf fc ld [ %fp + -4 ], %g1
200a930: 80 a0 60 00 cmp %g1, 0
200a934: 12 80 00 09 bne 200a958 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
200a938: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200a93c: 40 00 0a f4 call 200d50c <_Thread_queue_Process_timeout>
200a940: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a944: 03 00 80 71 sethi %hi(0x201c400), %g1
200a948: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201c6b0 <_Thread_Dispatch_disable_level>
200a94c: 84 00 bf ff add %g2, -1, %g2
200a950: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
return _Thread_Dispatch_disable_level;
200a954: c2 00 62 b0 ld [ %g1 + 0x2b0 ], %g1
200a958: 81 c7 e0 08 ret
200a95c: 81 e8 00 00 restore
020188e0 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20188e0: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20188e4: 25 00 80 ed sethi %hi(0x203b400), %l2
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20188e8: a6 07 bf e8 add %fp, -24, %l3
20188ec: a2 07 bf ec add %fp, -20, %l1
20188f0: b8 07 bf f4 add %fp, -12, %i4
20188f4: b6 07 bf f8 add %fp, -8, %i3
20188f8: e2 27 bf e8 st %l1, [ %fp + -24 ]
head->previous = NULL;
20188fc: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2018900: e6 27 bf f0 st %l3, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2018904: f6 27 bf f4 st %i3, [ %fp + -12 ]
head->previous = NULL;
2018908: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
201890c: f8 27 bf fc st %i4, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018910: b4 06 20 30 add %i0, 0x30, %i2
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018914: ba 06 20 68 add %i0, 0x68, %i5
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018918: a0 06 20 08 add %i0, 8, %l0
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
201891c: b2 06 20 40 add %i0, 0x40, %i1
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2018920: e6 26 20 78 st %l3, [ %i0 + 0x78 ]
2018924: 29 00 80 ed sethi %hi(0x203b400), %l4
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2018928: c2 04 a2 90 ld [ %l2 + 0x290 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201892c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018930: 90 10 00 1a mov %i2, %o0
2018934: 92 20 40 09 sub %g1, %o1, %o1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2018938: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201893c: 40 00 11 77 call 201cf18 <_Watchdog_Adjust_to_chain>
2018940: 94 10 00 1c mov %i4, %o2
2018944: d0 1d 22 10 ldd [ %l4 + 0x210 ], %o0
2018948: 94 10 20 00 clr %o2
201894c: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018950: 40 00 4b b2 call 202b818 <__divdi3>
2018954: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2018958: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201895c: 80 a2 40 0a cmp %o1, %o2
2018960: 08 80 00 07 bleu 201897c <_Timer_server_Body+0x9c>
2018964: aa 10 00 09 mov %o1, %l5
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018968: 92 22 40 0a sub %o1, %o2, %o1
201896c: 90 10 00 1d mov %i5, %o0
2018970: 40 00 11 6a call 201cf18 <_Watchdog_Adjust_to_chain>
2018974: 94 10 00 1c mov %i4, %o2
2018978: 30 80 00 06 b,a 2018990 <_Timer_server_Body+0xb0>
} else if ( snapshot < last_snapshot ) {
201897c: 1a 80 00 05 bcc 2018990 <_Timer_server_Body+0xb0>
2018980: 90 10 00 1d mov %i5, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018984: 92 10 20 01 mov 1, %o1
2018988: 40 00 11 3d call 201ce7c <_Watchdog_Adjust>
201898c: 94 22 80 15 sub %o2, %l5, %o2
}
watchdogs->last_snapshot = snapshot;
2018990: ea 26 20 74 st %l5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2018994: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018998: 40 00 02 bf call 2019494 <_Chain_Get>
201899c: 01 00 00 00 nop
if ( timer == NULL ) {
20189a0: 92 92 20 00 orcc %o0, 0, %o1
20189a4: 02 80 00 0c be 20189d4 <_Timer_server_Body+0xf4>
20189a8: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20189ac: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
20189b0: 80 a0 60 01 cmp %g1, 1
20189b4: 02 80 00 05 be 20189c8 <_Timer_server_Body+0xe8>
20189b8: 90 10 00 1a mov %i2, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20189bc: 80 a0 60 03 cmp %g1, 3
20189c0: 12 bf ff f5 bne 2018994 <_Timer_server_Body+0xb4> <== NEVER TAKEN
20189c4: 90 10 00 1d mov %i5, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20189c8: 40 00 11 86 call 201cfe0 <_Watchdog_Insert>
20189cc: 92 02 60 10 add %o1, 0x10, %o1
20189d0: 30 bf ff f1 b,a 2018994 <_Timer_server_Body+0xb4>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
20189d4: 7f ff de df call 2010550 <sparc_disable_interrupts>
20189d8: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
20189dc: c2 07 bf e8 ld [ %fp + -24 ], %g1
20189e0: 80 a0 40 11 cmp %g1, %l1
20189e4: 12 80 00 0a bne 2018a0c <_Timer_server_Body+0x12c> <== NEVER TAKEN
20189e8: 01 00 00 00 nop
ts->insert_chain = NULL;
20189ec: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
20189f0: 7f ff de dc call 2010560 <sparc_enable_interrupts>
20189f4: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
20189f8: c2 07 bf f4 ld [ %fp + -12 ], %g1
20189fc: 80 a0 40 1b cmp %g1, %i3
2018a00: 12 80 00 06 bne 2018a18 <_Timer_server_Body+0x138>
2018a04: 01 00 00 00 nop
2018a08: 30 80 00 18 b,a 2018a68 <_Timer_server_Body+0x188>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2018a0c: 7f ff de d5 call 2010560 <sparc_enable_interrupts> <== NOT EXECUTED
2018a10: 01 00 00 00 nop <== NOT EXECUTED
2018a14: 30 bf ff c5 b,a 2018928 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2018a18: 7f ff de ce call 2010550 <sparc_disable_interrupts>
2018a1c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018a20: e8 07 bf f4 ld [ %fp + -12 ], %l4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2018a24: 80 a5 00 1b cmp %l4, %i3
2018a28: 02 80 00 0d be 2018a5c <_Timer_server_Body+0x17c>
2018a2c: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2018a30: c2 05 00 00 ld [ %l4 ], %g1
head->next = new_first;
new_first->previous = head;
2018a34: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2018a38: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2018a3c: c0 25 20 08 clr [ %l4 + 8 ]
_ISR_Enable( level );
2018a40: 7f ff de c8 call 2010560 <sparc_enable_interrupts>
2018a44: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2018a48: c2 05 20 1c ld [ %l4 + 0x1c ], %g1
2018a4c: d0 05 20 20 ld [ %l4 + 0x20 ], %o0
2018a50: 9f c0 40 00 call %g1
2018a54: d2 05 20 24 ld [ %l4 + 0x24 ], %o1
}
2018a58: 30 bf ff f0 b,a 2018a18 <_Timer_server_Body+0x138>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2018a5c: 7f ff de c1 call 2010560 <sparc_enable_interrupts>
2018a60: 01 00 00 00 nop
2018a64: 30 bf ff af b,a 2018920 <_Timer_server_Body+0x40>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2018a68: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
2018a6c: 7f ff ff 6e call 2018824 <_Thread_Disable_dispatch>
2018a70: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2018a74: d0 06 00 00 ld [ %i0 ], %o0
2018a78: 40 00 0f e2 call 201ca00 <_Thread_Set_state>
2018a7c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2018a80: 7f ff ff 70 call 2018840 <_Timer_server_Reset_interval_system_watchdog>
2018a84: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2018a88: 7f ff ff 82 call 2018890 <_Timer_server_Reset_tod_system_watchdog>
2018a8c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2018a90: 40 00 0d 92 call 201c0d8 <_Thread_Enable_dispatch>
2018a94: 01 00 00 00 nop
ts->active = true;
2018a98: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018a9c: 90 10 00 10 mov %l0, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2018aa0: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018aa4: 40 00 11 a9 call 201d148 <_Watchdog_Remove>
2018aa8: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2018aac: 40 00 11 a7 call 201d148 <_Watchdog_Remove>
2018ab0: 90 10 00 19 mov %i1, %o0
2018ab4: 30 bf ff 9b b,a 2018920 <_Timer_server_Body+0x40>
02018ab8 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2018ab8: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2018abc: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2018ac0: 80 a0 60 00 cmp %g1, 0
2018ac4: 12 80 00 4e bne 2018bfc <_Timer_server_Schedule_operation_method+0x144>
2018ac8: ba 10 00 19 mov %i1, %i5
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2018acc: 7f ff ff 56 call 2018824 <_Thread_Disable_dispatch>
2018ad0: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2018ad4: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2018ad8: 80 a0 60 01 cmp %g1, 1
2018adc: 12 80 00 1f bne 2018b58 <_Timer_server_Schedule_operation_method+0xa0>
2018ae0: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018ae4: 7f ff de 9b call 2010550 <sparc_disable_interrupts>
2018ae8: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2018aec: 03 00 80 ed sethi %hi(0x203b400), %g1
2018af0: c4 00 62 90 ld [ %g1 + 0x290 ], %g2 ! 203b690 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018af4: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2018af8: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018afc: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2018b00: 80 a0 40 03 cmp %g1, %g3
2018b04: 02 80 00 08 be 2018b24 <_Timer_server_Schedule_operation_method+0x6c>
2018b08: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2018b0c: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
2018b10: 80 a7 00 04 cmp %i4, %g4
2018b14: 08 80 00 03 bleu 2018b20 <_Timer_server_Schedule_operation_method+0x68>
2018b18: 86 10 20 00 clr %g3
delta_interval -= delta;
2018b1c: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2018b20: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2018b24: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2018b28: 7f ff de 8e call 2010560 <sparc_enable_interrupts>
2018b2c: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2018b30: 90 06 20 30 add %i0, 0x30, %o0
2018b34: 40 00 11 2b call 201cfe0 <_Watchdog_Insert>
2018b38: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018b3c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018b40: 80 a0 60 00 cmp %g1, 0
2018b44: 12 80 00 2c bne 2018bf4 <_Timer_server_Schedule_operation_method+0x13c>
2018b48: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2018b4c: 7f ff ff 3d call 2018840 <_Timer_server_Reset_interval_system_watchdog>
2018b50: 90 10 00 18 mov %i0, %o0
2018b54: 30 80 00 28 b,a 2018bf4 <_Timer_server_Schedule_operation_method+0x13c>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2018b58: 12 80 00 27 bne 2018bf4 <_Timer_server_Schedule_operation_method+0x13c>
2018b5c: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018b60: 7f ff de 7c call 2010550 <sparc_disable_interrupts>
2018b64: 01 00 00 00 nop
2018b68: b8 10 00 08 mov %o0, %i4
2018b6c: 03 00 80 ed sethi %hi(0x203b400), %g1
2018b70: d0 18 62 10 ldd [ %g1 + 0x210 ], %o0 ! 203b610 <_TOD_Now>
2018b74: 94 10 20 00 clr %o2
2018b78: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018b7c: 40 00 4b 27 call 202b818 <__divdi3>
2018b80: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018b84: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2018b88: c8 06 20 74 ld [ %i0 + 0x74 ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018b8c: 84 06 20 6c add %i0, 0x6c, %g2
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2018b90: 80 a0 40 02 cmp %g1, %g2
2018b94: 02 80 00 0c be 2018bc4 <_Timer_server_Schedule_operation_method+0x10c>
2018b98: 80 a2 40 04 cmp %o1, %g4
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2018b9c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2018ba0: 84 00 c0 04 add %g3, %g4, %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2018ba4: 08 80 00 07 bleu 2018bc0 <_Timer_server_Schedule_operation_method+0x108>
2018ba8: 84 20 80 09 sub %g2, %o1, %g2
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2018bac: 88 22 40 04 sub %o1, %g4, %g4
if (delta_interval > delta) {
2018bb0: 80 a0 c0 04 cmp %g3, %g4
2018bb4: 08 80 00 03 bleu 2018bc0 <_Timer_server_Schedule_operation_method+0x108><== NEVER TAKEN
2018bb8: 84 10 20 00 clr %g2
delta_interval -= delta;
2018bbc: 84 20 c0 04 sub %g3, %g4, %g2
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2018bc0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2018bc4: d2 26 20 74 st %o1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2018bc8: 7f ff de 66 call 2010560 <sparc_enable_interrupts>
2018bcc: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018bd0: 90 06 20 68 add %i0, 0x68, %o0
2018bd4: 40 00 11 03 call 201cfe0 <_Watchdog_Insert>
2018bd8: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018bdc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018be0: 80 a0 60 00 cmp %g1, 0
2018be4: 12 80 00 04 bne 2018bf4 <_Timer_server_Schedule_operation_method+0x13c>
2018be8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2018bec: 7f ff ff 29 call 2018890 <_Timer_server_Reset_tod_system_watchdog>
2018bf0: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2018bf4: 40 00 0d 39 call 201c0d8 <_Thread_Enable_dispatch>
2018bf8: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2018bfc: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2018c00: 40 00 02 1a call 2019468 <_Chain_Append>
2018c04: 81 e8 00 00 restore
0200a46c <_Timespec_Divide>:
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200a46c: 9d e3 bf a0 save %sp, -96, %sp
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a470: d6 06 40 00 ld [ %i1 ], %o3
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200a474: a0 10 00 1a mov %i2, %l0
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a478: 95 3a e0 1f sra %o3, 0x1f, %o2
200a47c: b9 2a a0 03 sll %o2, 3, %i4
200a480: 87 2a e0 03 sll %o3, 3, %g3
200a484: b5 32 e0 1d srl %o3, 0x1d, %i2
200a488: 9b 28 e0 05 sll %g3, 5, %o5
200a48c: 84 16 80 1c or %i2, %i4, %g2
200a490: b9 30 e0 1b srl %g3, 0x1b, %i4
200a494: 99 28 a0 05 sll %g2, 5, %o4
200a498: 86 a3 40 03 subcc %o5, %g3, %g3
200a49c: 98 17 00 0c or %i4, %o4, %o4
200a4a0: 84 63 00 02 subx %o4, %g2, %g2
200a4a4: b9 30 e0 1a srl %g3, 0x1a, %i4
200a4a8: 99 28 a0 06 sll %g2, 6, %o4
200a4ac: 9b 28 e0 06 sll %g3, 6, %o5
200a4b0: 98 17 00 0c or %i4, %o4, %o4
200a4b4: 9a a3 40 03 subcc %o5, %g3, %o5
200a4b8: 98 63 00 02 subx %o4, %g2, %o4
200a4bc: 96 83 40 0b addcc %o5, %o3, %o3
200a4c0: 85 32 e0 1e srl %o3, 0x1e, %g2
200a4c4: 94 43 00 0a addx %o4, %o2, %o2
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200a4c8: a2 10 00 1b mov %i3, %l1
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a4cc: b5 2a a0 02 sll %o2, 2, %i2
200a4d0: b7 2a e0 02 sll %o3, 2, %i3
200a4d4: b4 10 80 1a or %g2, %i2, %i2
200a4d8: 96 82 c0 1b addcc %o3, %i3, %o3
200a4dc: 94 42 80 1a addx %o2, %i2, %o2
200a4e0: 85 32 e0 1e srl %o3, 0x1e, %g2
200a4e4: b9 2a a0 02 sll %o2, 2, %i4
200a4e8: bb 2a e0 02 sll %o3, 2, %i5
200a4ec: b8 10 80 1c or %g2, %i4, %i4
200a4f0: 96 82 c0 1d addcc %o3, %i5, %o3
200a4f4: 94 42 80 1c addx %o2, %i4, %o2
200a4f8: 85 32 e0 1e srl %o3, 0x1e, %g2
200a4fc: b9 2a a0 02 sll %o2, 2, %i4
200a500: bb 2a e0 02 sll %o3, 2, %i5
200a504: b8 10 80 1c or %g2, %i4, %i4
200a508: 96 82 c0 1d addcc %o3, %i5, %o3
200a50c: 94 42 80 1c addx %o2, %i4, %o2
200a510: 87 2a a0 09 sll %o2, 9, %g3
200a514: b9 32 e0 17 srl %o3, 0x17, %i4
200a518: 94 17 00 03 or %i4, %g3, %o2
right += rhs->tv_nsec;
200a51c: c6 06 60 04 ld [ %i1 + 4 ], %g3
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a520: 85 2a e0 09 sll %o3, 9, %g2
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a524: c2 06 00 00 ld [ %i0 ], %g1
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a528: 96 10 00 02 mov %g2, %o3
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
200a52c: c8 06 20 04 ld [ %i0 + 4 ], %g4
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
right += rhs->tv_nsec;
200a530: b2 82 c0 03 addcc %o3, %g3, %i1
200a534: 85 38 e0 1f sra %g3, 0x1f, %g2
200a538: b0 42 80 02 addx %o2, %g2, %i0
if ( right == 0 ) {
200a53c: 80 96 00 19 orcc %i0, %i1, %g0
200a540: 32 80 00 06 bne,a 200a558 <_Timespec_Divide+0xec> <== NEVER TAKEN
200a544: 96 10 00 01 mov %g1, %o3 <== NOT EXECUTED
*ival_percentage = 0;
200a548: c0 24 00 00 clr [ %l0 ]
*fval_percentage = 0;
200a54c: c0 24 40 00 clr [ %l1 ]
return;
200a550: 81 c7 e0 08 ret
200a554: 81 e8 00 00 restore
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a558: 95 38 60 1f sra %g1, 0x1f, %o2 <== NOT EXECUTED
200a55c: b9 30 60 1d srl %g1, 0x1d, %i4 <== NOT EXECUTED
200a560: 83 2a a0 03 sll %o2, 3, %g1 <== NOT EXECUTED
200a564: 87 2a e0 03 sll %o3, 3, %g3 <== NOT EXECUTED
200a568: 84 17 00 01 or %i4, %g1, %g2 <== NOT EXECUTED
200a56c: 83 30 e0 1b srl %g3, 0x1b, %g1 <== NOT EXECUTED
200a570: 99 28 a0 05 sll %g2, 5, %o4 <== NOT EXECUTED
200a574: 9b 28 e0 05 sll %g3, 5, %o5 <== NOT EXECUTED
200a578: 98 10 40 0c or %g1, %o4, %o4 <== NOT EXECUTED
200a57c: 9a a3 40 03 subcc %o5, %g3, %o5 <== NOT EXECUTED
200a580: 83 33 60 1a srl %o5, 0x1a, %g1 <== NOT EXECUTED
200a584: 98 63 00 02 subx %o4, %g2, %o4 <== NOT EXECUTED
200a588: 87 2b 60 06 sll %o5, 6, %g3 <== NOT EXECUTED
200a58c: 85 2b 20 06 sll %o4, 6, %g2 <== NOT EXECUTED
200a590: 92 a0 c0 0d subcc %g3, %o5, %o1 <== NOT EXECUTED
200a594: 84 10 40 02 or %g1, %g2, %g2 <== NOT EXECUTED
200a598: 90 60 80 0c subx %g2, %o4, %o0 <== NOT EXECUTED
200a59c: 92 82 40 0b addcc %o1, %o3, %o1 <== NOT EXECUTED
200a5a0: 83 32 60 1e srl %o1, 0x1e, %g1 <== NOT EXECUTED
200a5a4: 90 42 00 0a addx %o0, %o2, %o0 <== NOT EXECUTED
200a5a8: b7 2a 60 02 sll %o1, 2, %i3 <== NOT EXECUTED
200a5ac: b5 2a 20 02 sll %o0, 2, %i2 <== NOT EXECUTED
200a5b0: 92 82 40 1b addcc %o1, %i3, %o1 <== NOT EXECUTED
200a5b4: b4 10 40 1a or %g1, %i2, %i2 <== NOT EXECUTED
200a5b8: 83 32 60 1e srl %o1, 0x1e, %g1 <== NOT EXECUTED
200a5bc: 90 42 00 1a addx %o0, %i2, %o0 <== NOT EXECUTED
200a5c0: bb 2a 60 02 sll %o1, 2, %i5 <== NOT EXECUTED
200a5c4: b9 2a 20 02 sll %o0, 2, %i4 <== NOT EXECUTED
200a5c8: 92 82 40 1d addcc %o1, %i5, %o1 <== NOT EXECUTED
200a5cc: b8 10 40 1c or %g1, %i4, %i4 <== NOT EXECUTED
200a5d0: 83 32 60 1e srl %o1, 0x1e, %g1 <== NOT EXECUTED
200a5d4: 90 42 00 1c addx %o0, %i4, %o0 <== NOT EXECUTED
200a5d8: bb 2a 60 02 sll %o1, 2, %i5 <== NOT EXECUTED
200a5dc: b9 2a 20 02 sll %o0, 2, %i4 <== NOT EXECUTED
200a5e0: 92 82 40 1d addcc %o1, %i5, %o1 <== NOT EXECUTED
200a5e4: b8 10 40 1c or %g1, %i4, %i4 <== NOT EXECUTED
200a5e8: 83 2a 60 09 sll %o1, 9, %g1 <== NOT EXECUTED
200a5ec: 90 42 00 1c addx %o0, %i4, %o0 <== NOT EXECUTED
left += lhs->tv_nsec;
200a5f0: 95 39 20 1f sra %g4, 0x1f, %o2 <== NOT EXECUTED
200a5f4: 96 80 40 04 addcc %g1, %g4, %o3 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200a5f8: 87 32 60 17 srl %o1, 0x17, %g3 <== NOT EXECUTED
200a5fc: 85 2a 20 09 sll %o0, 9, %g2 <== NOT EXECUTED
200a600: 90 10 c0 02 or %g3, %g2, %o0 <== NOT EXECUTED
left += lhs->tv_nsec;
200a604: 94 42 00 0a addx %o0, %o2, %o2 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200a608: 83 2a a0 02 sll %o2, 2, %g1 <== NOT EXECUTED
200a60c: 9b 2a e0 02 sll %o3, 2, %o5 <== NOT EXECUTED
200a610: 85 32 e0 1e srl %o3, 0x1e, %g2 <== NOT EXECUTED
200a614: 98 10 80 01 or %g2, %g1, %o4 <== NOT EXECUTED
200a618: 83 33 60 1b srl %o5, 0x1b, %g1 <== NOT EXECUTED
200a61c: 85 2b 20 05 sll %o4, 5, %g2 <== NOT EXECUTED
200a620: 87 2b 60 05 sll %o5, 5, %g3 <== NOT EXECUTED
200a624: 84 10 40 02 or %g1, %g2, %g2 <== NOT EXECUTED
200a628: 86 a0 c0 0d subcc %g3, %o5, %g3 <== NOT EXECUTED
200a62c: 84 60 80 0c subx %g2, %o4, %g2 <== NOT EXECUTED
200a630: 96 80 c0 0b addcc %g3, %o3, %o3 <== NOT EXECUTED
200a634: 83 32 e0 1e srl %o3, 0x1e, %g1 <== NOT EXECUTED
200a638: 94 40 80 0a addx %g2, %o2, %o2 <== NOT EXECUTED
200a63c: bb 2a e0 02 sll %o3, 2, %i5 <== NOT EXECUTED
200a640: b9 2a a0 02 sll %o2, 2, %i4 <== NOT EXECUTED
200a644: ba 82 c0 1d addcc %o3, %i5, %i5 <== NOT EXECUTED
200a648: b8 10 40 1c or %g1, %i4, %i4 <== NOT EXECUTED
200a64c: 83 37 60 1e srl %i5, 0x1e, %g1 <== NOT EXECUTED
200a650: b8 42 80 1c addx %o2, %i4, %i4 <== NOT EXECUTED
200a654: 93 2f 60 02 sll %i5, 2, %o1 <== NOT EXECUTED
200a658: 91 2f 20 02 sll %i4, 2, %o0 <== NOT EXECUTED
200a65c: 92 87 40 09 addcc %i5, %o1, %o1 <== NOT EXECUTED
200a660: 90 10 40 08 or %g1, %o0, %o0 <== NOT EXECUTED
200a664: 87 32 60 1b srl %o1, 0x1b, %g3 <== NOT EXECUTED
200a668: 90 47 00 08 addx %i4, %o0, %o0 <== NOT EXECUTED
200a66c: 83 2a 60 05 sll %o1, 5, %g1 <== NOT EXECUTED
200a670: 85 2a 20 05 sll %o0, 5, %g2 <== NOT EXECUTED
200a674: 92 10 00 01 mov %g1, %o1 <== NOT EXECUTED
200a678: 90 10 c0 02 or %g3, %g2, %o0 <== NOT EXECUTED
200a67c: 94 10 00 18 mov %i0, %o2 <== NOT EXECUTED
200a680: 40 00 37 12 call 20182c8 <__udivdi3> <== NOT EXECUTED
200a684: 96 10 00 19 mov %i1, %o3 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200a688: 94 10 20 00 clr %o2 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200a68c: b4 10 00 08 mov %o0, %i2 <== NOT EXECUTED
200a690: b8 10 00 09 mov %o1, %i4 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200a694: 40 00 37 0d call 20182c8 <__udivdi3> <== NOT EXECUTED
200a698: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
*fval_percentage = answer % 1000;
200a69c: 90 10 00 1a mov %i2, %o0 <== NOT EXECUTED
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
*ival_percentage = answer / 1000;
200a6a0: d2 24 00 00 st %o1, [ %l0 ] <== NOT EXECUTED
*fval_percentage = answer % 1000;
200a6a4: 94 10 20 00 clr %o2 <== NOT EXECUTED
200a6a8: 92 10 00 1c mov %i4, %o1 <== NOT EXECUTED
200a6ac: 40 00 37 dc call 201861c <__umoddi3> <== NOT EXECUTED
200a6b0: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
200a6b4: d2 24 40 00 st %o1, [ %l1 ] <== NOT EXECUTED
200a6b8: 81 c7 e0 08 ret <== NOT EXECUTED
200a6bc: 81 e8 00 00 restore <== NOT EXECUTED
0200a6c0 <_Timespec_Less_than>:
bool _Timespec_Less_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec < rhs->tv_sec )
200a6c0: c6 02 00 00 ld [ %o0 ], %g3
200a6c4: c4 02 40 00 ld [ %o1 ], %g2
200a6c8: 80 a0 c0 02 cmp %g3, %g2
200a6cc: 06 80 00 0b bl 200a6f8 <_Timespec_Less_than+0x38> <== NEVER TAKEN
200a6d0: 82 10 20 01 mov 1, %g1
return true;
if ( lhs->tv_sec > rhs->tv_sec )
200a6d4: 80 a0 c0 02 cmp %g3, %g2
200a6d8: 14 80 00 08 bg 200a6f8 <_Timespec_Less_than+0x38>
200a6dc: 82 10 20 00 clr %g1
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Less_than(
200a6e0: c6 02 20 04 ld [ %o0 + 4 ], %g3
200a6e4: c4 02 60 04 ld [ %o1 + 4 ], %g2
200a6e8: 80 a0 c0 02 cmp %g3, %g2
200a6ec: 06 80 00 03 bl 200a6f8 <_Timespec_Less_than+0x38> <== NEVER TAKEN
200a6f0: 82 10 20 01 mov 1, %g1
200a6f4: 82 10 20 00 clr %g1
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec < rhs->tv_nsec )
return true;
return false;
}
200a6f8: 81 c3 e0 08 retl
200a6fc: 90 08 60 01 and %g1, 1, %o0
0200b8b4 <_Timespec_Subtract>:
const struct timespec *end,
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
200b8b4: c4 02 60 04 ld [ %o1 + 4 ], %g2
200b8b8: c2 02 20 04 ld [ %o0 + 4 ], %g1
200b8bc: c8 02 40 00 ld [ %o1 ], %g4
200b8c0: c6 02 00 00 ld [ %o0 ], %g3
200b8c4: 80 a0 80 01 cmp %g2, %g1
200b8c8: 16 80 00 08 bge 200b8e8 <_Timespec_Subtract+0x34> <== ALWAYS TAKEN
200b8cc: 86 21 00 03 sub %g4, %g3, %g3
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200b8d0: 86 00 ff ff add %g3, -1, %g3 <== NOT EXECUTED
200b8d4: c6 22 80 00 st %g3, [ %o2 ] <== NOT EXECUTED
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
200b8d8: 07 0e e6 b2 sethi %hi(0x3b9ac800), %g3 <== NOT EXECUTED
200b8dc: 86 10 e2 00 or %g3, 0x200, %g3 ! 3b9aca00 <RAM_END+0x395aca00><== NOT EXECUTED
200b8e0: 10 80 00 03 b 200b8ec <_Timespec_Subtract+0x38> <== NOT EXECUTED
200b8e4: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED
} else {
result->tv_sec = end->tv_sec - start->tv_sec;
200b8e8: c6 22 80 00 st %g3, [ %o2 ]
result->tv_nsec = end->tv_nsec - start->tv_nsec;
200b8ec: 82 20 80 01 sub %g2, %g1, %g1
200b8f0: 81 c3 e0 08 retl
200b8f4: c2 22 a0 04 st %g1, [ %o2 + 4 ]
0200c45c <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200c45c: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200c460: d4 1e 40 00 ldd [ %i1 ], %o2
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200c464: a2 10 00 1a mov %i2, %l1
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200c468: 80 92 80 0b orcc %o2, %o3, %g0
200c46c: 12 80 00 06 bne 200c484 <_Timestamp64_Divide+0x28> <== ALWAYS TAKEN
200c470: a0 10 00 1b mov %i3, %l0
*_ival_percentage = 0;
200c474: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
*_fval_percentage = 0;
200c478: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
200c47c: 81 c7 e0 08 ret <== NOT EXECUTED
200c480: 81 e8 00 00 restore <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c484: d0 1e 00 00 ldd [ %i0 ], %o0
200c488: 83 2a 20 02 sll %o0, 2, %g1
200c48c: 89 32 60 1e srl %o1, 0x1e, %g4
200c490: 87 2a 60 02 sll %o1, 2, %g3
200c494: 84 11 00 01 or %g4, %g1, %g2
200c498: 83 30 e0 1b srl %g3, 0x1b, %g1
200c49c: 9b 28 e0 05 sll %g3, 5, %o5
200c4a0: 99 28 a0 05 sll %g2, 5, %o4
200c4a4: 86 a3 40 03 subcc %o5, %g3, %g3
200c4a8: 98 10 40 0c or %g1, %o4, %o4
200c4ac: 84 63 00 02 subx %o4, %g2, %g2
200c4b0: 92 80 c0 09 addcc %g3, %o1, %o1
200c4b4: 83 32 60 1e srl %o1, 0x1e, %g1
200c4b8: 90 40 80 08 addx %g2, %o0, %o0
200c4bc: b7 2a 60 02 sll %o1, 2, %i3
200c4c0: b5 2a 20 02 sll %o0, 2, %i2
200c4c4: b6 82 40 1b addcc %o1, %i3, %i3
200c4c8: b4 10 40 1a or %g1, %i2, %i2
200c4cc: 83 36 e0 1e srl %i3, 0x1e, %g1
200c4d0: b4 42 00 1a addx %o0, %i2, %i2
200c4d4: bb 2e e0 02 sll %i3, 2, %i5
200c4d8: b9 2e a0 02 sll %i2, 2, %i4
200c4dc: 92 86 c0 1d addcc %i3, %i5, %o1
200c4e0: b8 10 40 1c or %g1, %i4, %i4
200c4e4: 87 32 60 1b srl %o1, 0x1b, %g3
200c4e8: 90 46 80 1c addx %i2, %i4, %o0
200c4ec: 83 2a 60 05 sll %o1, 5, %g1
200c4f0: 85 2a 20 05 sll %o0, 5, %g2
200c4f4: 92 10 00 01 mov %g1, %o1
200c4f8: 40 00 36 d6 call 201a050 <__divdi3>
200c4fc: 90 10 c0 02 or %g3, %g2, %o0
*_ival_percentage = answer / 1000;
200c500: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200c504: b4 10 00 08 mov %o0, %i2
200c508: b8 10 00 09 mov %o1, %i4
*_ival_percentage = answer / 1000;
200c50c: 40 00 36 d1 call 201a050 <__divdi3>
200c510: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
200c514: 90 10 00 1a mov %i2, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
200c518: d2 24 40 00 st %o1, [ %l1 ]
*_fval_percentage = answer % 1000;
200c51c: 94 10 20 00 clr %o2
200c520: 92 10 00 1c mov %i4, %o1
200c524: 40 00 37 b1 call 201a3e8 <__moddi3>
200c528: 96 10 23 e8 mov 0x3e8, %o3
200c52c: d2 24 00 00 st %o1, [ %l0 ]
200c530: 81 c7 e0 08 ret
200c534: 81 e8 00 00 restore
0200ab00 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
200ab00: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200ab04: 03 00 80 6e sethi %hi(0x201b800), %g1
200ab08: 82 10 61 4c or %g1, 0x14c, %g1 ! 201b94c <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab0c: 05 00 80 72 sethi %hi(0x201c800), %g2
initial_extensions = Configuration.User_extension_table;
200ab10: f4 00 60 44 ld [ %g1 + 0x44 ], %i2
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200ab14: f6 00 60 40 ld [ %g1 + 0x40 ], %i3
200ab18: 82 10 a0 98 or %g2, 0x98, %g1
200ab1c: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200ab20: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
200ab24: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab28: c6 20 a0 98 st %g3, [ %g2 + 0x98 ]
200ab2c: 05 00 80 71 sethi %hi(0x201c400), %g2
200ab30: 82 10 a2 b4 or %g2, 0x2b4, %g1 ! 201c6b4 <_User_extensions_Switches_list>
200ab34: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200ab38: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200ab3c: c6 20 a2 b4 st %g3, [ %g2 + 0x2b4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200ab40: 80 a6 a0 00 cmp %i2, 0
200ab44: 02 80 00 1b be 200abb0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
200ab48: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
200ab4c: 83 2e e0 02 sll %i3, 2, %g1
200ab50: bb 2e e0 04 sll %i3, 4, %i5
200ab54: ba 27 40 01 sub %i5, %g1, %i5
200ab58: ba 07 40 1b add %i5, %i3, %i5
200ab5c: bb 2f 60 02 sll %i5, 2, %i5
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200ab60: 40 00 01 6c call 200b110 <_Workspace_Allocate_or_fatal_error>
200ab64: 90 10 00 1d mov %i5, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200ab68: 94 10 00 1d mov %i5, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200ab6c: b8 10 00 08 mov %o0, %i4
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200ab70: 92 10 20 00 clr %o1
200ab74: 40 00 12 6b call 200f520 <memset>
200ab78: ba 10 20 00 clr %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200ab7c: 10 80 00 0b b 200aba8 <_User_extensions_Handler_initialization+0xa8>
200ab80: 80 a7 40 1b cmp %i5, %i3
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
200ab84: 90 07 20 14 add %i4, 0x14, %o0
200ab88: 92 06 80 09 add %i2, %o1, %o1
200ab8c: 40 00 12 29 call 200f430 <memcpy>
200ab90: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
200ab94: 90 10 00 1c mov %i4, %o0
200ab98: 40 00 0a 81 call 200d59c <_User_extensions_Add_set>
200ab9c: ba 07 60 01 inc %i5
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
200aba0: b8 07 20 34 add %i4, 0x34, %i4
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200aba4: 80 a7 40 1b cmp %i5, %i3
200aba8: 12 bf ff f7 bne 200ab84 <_User_extensions_Handler_initialization+0x84>
200abac: 93 2f 60 05 sll %i5, 5, %o1
200abb0: 81 c7 e0 08 ret
200abb4: 81 e8 00 00 restore
0200c828 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200c828: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200c82c: 7f ff db 0f call 2003468 <sparc_disable_interrupts>
200c830: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c834: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c838: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200c83c: 80 a0 40 1c cmp %g1, %i4
200c840: 02 80 00 1f be 200c8bc <_Watchdog_Adjust+0x94>
200c844: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200c848: 02 80 00 1a be 200c8b0 <_Watchdog_Adjust+0x88>
200c84c: b6 10 20 01 mov 1, %i3
200c850: 80 a6 60 01 cmp %i1, 1
200c854: 12 80 00 1a bne 200c8bc <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200c858: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200c85c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c860: 10 80 00 07 b 200c87c <_Watchdog_Adjust+0x54>
200c864: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200c868: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c86c: 80 a6 80 02 cmp %i2, %g2
200c870: 3a 80 00 05 bcc,a 200c884 <_Watchdog_Adjust+0x5c>
200c874: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200c878: b4 20 80 1a sub %g2, %i2, %i2
break;
200c87c: 10 80 00 10 b 200c8bc <_Watchdog_Adjust+0x94>
200c880: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200c884: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200c888: 7f ff da fc call 2003478 <sparc_enable_interrupts>
200c88c: 01 00 00 00 nop
_Watchdog_Tickle( header );
200c890: 40 00 00 90 call 200cad0 <_Watchdog_Tickle>
200c894: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200c898: 7f ff da f4 call 2003468 <sparc_disable_interrupts>
200c89c: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200c8a0: c2 07 40 00 ld [ %i5 ], %g1
200c8a4: 80 a0 40 1c cmp %g1, %i4
200c8a8: 02 80 00 05 be 200c8bc <_Watchdog_Adjust+0x94>
200c8ac: 01 00 00 00 nop
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200c8b0: 80 a6 a0 00 cmp %i2, 0
200c8b4: 32 bf ff ed bne,a 200c868 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200c8b8: c2 07 40 00 ld [ %i5 ], %g1
}
break;
}
}
_ISR_Enable( level );
200c8bc: 7f ff da ef call 2003478 <sparc_enable_interrupts>
200c8c0: 91 e8 00 08 restore %g0, %o0, %o0
0200af18 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200af18: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200af1c: 7f ff dd b4 call 20025ec <sparc_disable_interrupts>
200af20: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
200af24: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
200af28: 80 a6 20 01 cmp %i0, 1
200af2c: 22 80 00 1d be,a 200afa0 <_Watchdog_Remove+0x88>
200af30: c0 27 60 08 clr [ %i5 + 8 ]
200af34: 0a 80 00 1c bcs 200afa4 <_Watchdog_Remove+0x8c>
200af38: 03 00 80 71 sethi %hi(0x201c400), %g1
200af3c: 80 a6 20 03 cmp %i0, 3
200af40: 18 80 00 19 bgu 200afa4 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
200af44: 01 00 00 00 nop
200af48: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200af4c: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200af50: c4 00 40 00 ld [ %g1 ], %g2
200af54: 80 a0 a0 00 cmp %g2, 0
200af58: 02 80 00 07 be 200af74 <_Watchdog_Remove+0x5c>
200af5c: 05 00 80 71 sethi %hi(0x201c400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200af60: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200af64: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
200af68: 84 00 c0 02 add %g3, %g2, %g2
200af6c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200af70: 05 00 80 71 sethi %hi(0x201c400), %g2
200af74: c4 00 a3 bc ld [ %g2 + 0x3bc ], %g2 ! 201c7bc <_Watchdog_Sync_count>
200af78: 80 a0 a0 00 cmp %g2, 0
200af7c: 22 80 00 07 be,a 200af98 <_Watchdog_Remove+0x80>
200af80: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200af84: 05 00 80 72 sethi %hi(0x201c800), %g2
200af88: c6 00 a0 e8 ld [ %g2 + 0xe8 ], %g3 ! 201c8e8 <_Per_CPU_Information+0x8>
200af8c: 05 00 80 71 sethi %hi(0x201c400), %g2
200af90: c6 20 a3 5c st %g3, [ %g2 + 0x35c ] ! 201c75c <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200af94: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
200af98: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200af9c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200afa0: 03 00 80 71 sethi %hi(0x201c400), %g1
200afa4: c2 00 63 c0 ld [ %g1 + 0x3c0 ], %g1 ! 201c7c0 <_Watchdog_Ticks_since_boot>
200afa8: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
200afac: 7f ff dd 94 call 20025fc <sparc_enable_interrupts>
200afb0: 01 00 00 00 nop
return( previous_state );
}
200afb4: 81 c7 e0 08 ret
200afb8: 81 e8 00 00 restore
0200c170 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200c170: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200c174: 7f ff db 8d call 2002fa8 <sparc_disable_interrupts>
200c178: ba 10 00 18 mov %i0, %i5
200c17c: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200c180: 11 00 80 71 sethi %hi(0x201c400), %o0
200c184: 94 10 00 19 mov %i1, %o2
200c188: 90 12 22 80 or %o0, 0x280, %o0
200c18c: 7f ff e3 74 call 2004f5c <printk>
200c190: 92 10 00 1d mov %i5, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c194: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c198: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200c19c: 80 a7 00 19 cmp %i4, %i1
200c1a0: 12 80 00 04 bne 200c1b0 <_Watchdog_Report_chain+0x40>
200c1a4: 92 10 00 1c mov %i4, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200c1a8: 10 80 00 0d b 200c1dc <_Watchdog_Report_chain+0x6c>
200c1ac: 11 00 80 71 sethi %hi(0x201c400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200c1b0: 40 00 00 0f call 200c1ec <_Watchdog_Report>
200c1b4: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200c1b8: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200c1bc: 80 a7 00 19 cmp %i4, %i1
200c1c0: 12 bf ff fc bne 200c1b0 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200c1c4: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200c1c8: 11 00 80 71 sethi %hi(0x201c400), %o0
200c1cc: 92 10 00 1d mov %i5, %o1
200c1d0: 7f ff e3 63 call 2004f5c <printk>
200c1d4: 90 12 22 98 or %o0, 0x298, %o0
200c1d8: 30 80 00 03 b,a 200c1e4 <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200c1dc: 7f ff e3 60 call 2004f5c <printk>
200c1e0: 90 12 22 a8 or %o0, 0x2a8, %o0
}
_ISR_Enable( level );
200c1e4: 7f ff db 75 call 2002fb8 <sparc_enable_interrupts>
200c1e8: 81 e8 00 00 restore
0200aeb0 <_Workspace_String_duplicate>:
char *_Workspace_String_duplicate(
const char *string,
size_t len
)
{
200aeb0: 9d e3 bf a0 save %sp, -96, %sp
char *dup = _Workspace_Allocate(len + 1);
200aeb4: 7f ff ff e3 call 200ae40 <_Workspace_Allocate>
200aeb8: 90 06 60 01 add %i1, 1, %o0
if (dup != NULL) {
200aebc: ba 92 20 00 orcc %o0, 0, %i5
200aec0: 02 80 00 05 be 200aed4 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN
200aec4: 92 10 00 18 mov %i0, %o1
dup [len] = '\0';
200aec8: c0 2f 40 19 clrb [ %i5 + %i1 ]
memcpy(dup, string, len);
200aecc: 40 00 11 43 call 200f3d8 <memcpy>
200aed0: 94 10 00 19 mov %i1, %o2
}
return dup;
}
200aed4: 81 c7 e0 08 ret
200aed8: 91 e8 00 1d restore %g0, %i5, %o0
020084a8 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
20084a8: 9d e3 bf 98 save %sp, -104, %sp
20084ac: 10 80 00 09 b 20084d0 <rtems_chain_get_with_wait+0x28>
20084b0: ba 10 00 18 mov %i0, %i5
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
20084b4: 92 10 20 00 clr %o1
20084b8: 94 10 00 1a mov %i2, %o2
20084bc: 7f ff fd 03 call 20078c8 <rtems_event_receive>
20084c0: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
20084c4: 80 a2 20 00 cmp %o0, 0
20084c8: 32 80 00 09 bne,a 20084ec <rtems_chain_get_with_wait+0x44><== ALWAYS TAKEN
20084cc: f8 26 c0 00 st %i4, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
20084d0: 40 00 01 6b call 2008a7c <_Chain_Get>
20084d4: 90 10 00 1d mov %i5, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20084d8: b8 92 20 00 orcc %o0, 0, %i4
20084dc: 02 bf ff f6 be 20084b4 <rtems_chain_get_with_wait+0xc>
20084e0: 90 10 00 19 mov %i1, %o0
20084e4: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
20084e8: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
20084ec: 81 c7 e0 08 ret
20084f0: 91 e8 00 08 restore %g0, %o0, %o0
0200a53c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200a53c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200a540: 80 a6 20 00 cmp %i0, 0
200a544: 02 80 00 1e be 200a5bc <rtems_iterate_over_all_threads+0x80><== NEVER TAKEN
200a548: ba 10 20 01 mov 1, %i5
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200a54c: 35 00 80 7c sethi %hi(0x201f000), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200a550: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200a554: 84 16 a1 38 or %i2, 0x138, %g2
200a558: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200a55c: 80 a0 60 00 cmp %g1, 0
200a560: 22 80 00 14 be,a 200a5b0 <rtems_iterate_over_all_threads+0x74>
200a564: ba 07 60 01 inc %i5
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
200a568: f6 00 60 04 ld [ %g1 + 4 ], %i3
if ( !information )
200a56c: 80 a6 e0 00 cmp %i3, 0
200a570: 12 80 00 0b bne 200a59c <rtems_iterate_over_all_threads+0x60>
200a574: b8 10 20 01 mov 1, %i4
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a578: 10 80 00 0e b 200a5b0 <rtems_iterate_over_all_threads+0x74>
200a57c: ba 07 60 01 inc %i5
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
the_thread = (Thread_Control *)information->local_table[ i ];
200a580: 83 2f 20 02 sll %i4, 2, %g1
200a584: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
200a588: 80 a2 20 00 cmp %o0, 0
200a58c: 02 80 00 04 be 200a59c <rtems_iterate_over_all_threads+0x60>
200a590: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
200a594: 9f c6 00 00 call %i0
200a598: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a59c: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
200a5a0: 80 a7 00 01 cmp %i4, %g1
200a5a4: 28 bf ff f7 bleu,a 200a580 <rtems_iterate_over_all_threads+0x44>
200a5a8: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a5ac: ba 07 60 01 inc %i5
200a5b0: 80 a7 60 04 cmp %i5, 4
200a5b4: 12 bf ff e8 bne 200a554 <rtems_iterate_over_all_threads+0x18>
200a5b8: 83 2f 60 02 sll %i5, 2, %g1
200a5bc: 81 c7 e0 08 ret
200a5c0: 81 e8 00 00 restore
02016098 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2016098: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
201609c: 80 a6 20 00 cmp %i0, 0
20160a0: 02 80 00 39 be 2016184 <rtems_partition_create+0xec>
20160a4: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
20160a8: 80 a6 60 00 cmp %i1, 0
20160ac: 02 80 00 36 be 2016184 <rtems_partition_create+0xec>
20160b0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
20160b4: 80 a7 60 00 cmp %i5, 0
20160b8: 02 80 00 33 be 2016184 <rtems_partition_create+0xec> <== NEVER TAKEN
20160bc: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20160c0: 02 80 00 31 be 2016184 <rtems_partition_create+0xec>
20160c4: 82 10 20 08 mov 8, %g1
20160c8: 80 a6 a0 00 cmp %i2, 0
20160cc: 02 80 00 2e be 2016184 <rtems_partition_create+0xec>
20160d0: 80 a6 80 1b cmp %i2, %i3
20160d4: 0a 80 00 2c bcs 2016184 <rtems_partition_create+0xec>
20160d8: 80 8e e0 07 btst 7, %i3
20160dc: 12 80 00 2a bne 2016184 <rtems_partition_create+0xec>
20160e0: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
20160e4: 12 80 00 28 bne 2016184 <rtems_partition_create+0xec>
20160e8: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20160ec: 03 00 80 ed sethi %hi(0x203b400), %g1
20160f0: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 203b580 <_Thread_Dispatch_disable_level>
20160f4: 84 00 a0 01 inc %g2
20160f8: c4 20 61 80 st %g2, [ %g1 + 0x180 ]
return _Thread_Dispatch_disable_level;
20160fc: c2 00 61 80 ld [ %g1 + 0x180 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2016100: 23 00 80 ec sethi %hi(0x203b000), %l1
2016104: 40 00 12 d7 call 201ac60 <_Objects_Allocate>
2016108: 90 14 63 94 or %l1, 0x394, %o0 ! 203b394 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
201610c: a0 92 20 00 orcc %o0, 0, %l0
2016110: 32 80 00 06 bne,a 2016128 <rtems_partition_create+0x90>
2016114: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2016118: 40 00 17 f0 call 201c0d8 <_Thread_Enable_dispatch>
201611c: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2016120: 10 80 00 19 b 2016184 <rtems_partition_create+0xec>
2016124: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2016128: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
201612c: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2016130: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2016134: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2016138: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
201613c: 40 00 54 2d call 202b1f0 <.udiv>
2016140: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2016144: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2016148: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
201614c: 96 10 00 1b mov %i3, %o3
2016150: b8 04 20 24 add %l0, 0x24, %i4
2016154: 40 00 0c df call 20194d0 <_Chain_Initialize>
2016158: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
201615c: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2016160: a2 14 63 94 or %l1, 0x394, %l1
2016164: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2016168: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
201616c: 85 28 a0 02 sll %g2, 2, %g2
2016170: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2016174: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2016178: 40 00 17 d8 call 201c0d8 <_Thread_Enable_dispatch>
201617c: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2016180: 82 10 20 00 clr %g1
}
2016184: 81 c7 e0 08 ret
2016188: 91 e8 00 01 restore %g0, %g1, %o0
0203dc08 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
203dc08: 9d e3 bf 98 save %sp, -104, %sp
203dc0c: 11 00 81 b8 sethi %hi(0x206e000), %o0
203dc10: 92 10 00 18 mov %i0, %o1
203dc14: 90 12 21 40 or %o0, 0x140, %o0
203dc18: 7f ff 44 ad call 200eecc <_Objects_Get>
203dc1c: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
203dc20: c2 07 bf fc ld [ %fp + -4 ], %g1
203dc24: 80 a0 60 00 cmp %g1, 0
203dc28: 12 80 00 6a bne 203ddd0 <rtems_rate_monotonic_period+0x1c8>
203dc2c: ba 10 00 08 mov %o0, %i5
203dc30: 37 00 81 b7 sethi %hi(0x206dc00), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
203dc34: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
203dc38: b6 16 e2 70 or %i3, 0x270, %i3
203dc3c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1
203dc40: 80 a0 80 01 cmp %g2, %g1
203dc44: 02 80 00 06 be 203dc5c <rtems_rate_monotonic_period+0x54>
203dc48: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
203dc4c: 7f ff 48 54 call 200fd9c <_Thread_Enable_dispatch>
203dc50: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
203dc54: 81 c7 e0 08 ret
203dc58: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
203dc5c: 12 80 00 0d bne 203dc90 <rtems_rate_monotonic_period+0x88>
203dc60: 01 00 00 00 nop
switch ( the_period->state ) {
203dc64: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
203dc68: 80 a0 60 04 cmp %g1, 4
203dc6c: 18 80 00 05 bgu 203dc80 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
203dc70: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
203dc74: 05 00 81 9f sethi %hi(0x2067c00), %g2
203dc78: 84 10 a0 90 or %g2, 0x90, %g2 ! 2067c90 <CSWTCH.11>
203dc7c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
203dc80: 7f ff 48 47 call 200fd9c <_Thread_Enable_dispatch>
203dc84: 01 00 00 00 nop
return( return_value );
203dc88: 81 c7 e0 08 ret
203dc8c: 81 e8 00 00 restore
}
_ISR_Disable( level );
203dc90: 7f ff 18 b4 call 2003f60 <sparc_disable_interrupts>
203dc94: 01 00 00 00 nop
203dc98: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
203dc9c: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
203dca0: 80 a7 20 00 cmp %i4, 0
203dca4: 12 80 00 15 bne 203dcf8 <rtems_rate_monotonic_period+0xf0>
203dca8: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
203dcac: 7f ff 18 b1 call 2003f70 <sparc_enable_interrupts>
203dcb0: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
203dcb4: 90 10 00 1d mov %i5, %o0
203dcb8: 7f ff ff ba call 203dba0 <_Rate_monotonic_Initiate_statistics>
203dcbc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
203dcc0: 82 10 20 02 mov 2, %g1
203dcc4: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
203dcc8: 03 00 80 f7 sethi %hi(0x203dc00), %g1
203dccc: 82 10 61 dc or %g1, 0x1dc, %g1 ! 203dddc <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
203dcd0: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
203dcd4: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
203dcd8: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
203dcdc: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203dce0: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203dce4: 11 00 81 b7 sethi %hi(0x206dc00), %o0
203dce8: 92 07 60 10 add %i5, 0x10, %o1
203dcec: 7f ff 4b 5f call 2010a68 <_Watchdog_Insert>
203dcf0: 90 12 21 00 or %o0, 0x100, %o0
203dcf4: 30 80 00 1b b,a 203dd60 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
203dcf8: 12 80 00 1e bne 203dd70 <rtems_rate_monotonic_period+0x168>
203dcfc: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
203dd00: 7f ff ff 5f call 203da7c <_Rate_monotonic_Update_statistics>
203dd04: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
203dd08: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
203dd0c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
203dd10: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
203dd14: 7f ff 18 97 call 2003f70 <sparc_enable_interrupts>
203dd18: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
203dd1c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
203dd20: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
203dd24: 13 00 00 10 sethi %hi(0x4000), %o1
203dd28: 7f ff 4a 44 call 2010638 <_Thread_Set_state>
203dd2c: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
203dd30: 7f ff 18 8c call 2003f60 <sparc_disable_interrupts>
203dd34: 01 00 00 00 nop
local_state = the_period->state;
203dd38: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
203dd3c: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
203dd40: 7f ff 18 8c call 2003f70 <sparc_enable_interrupts>
203dd44: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
203dd48: 80 a6 a0 03 cmp %i2, 3
203dd4c: 12 80 00 05 bne 203dd60 <rtems_rate_monotonic_period+0x158>
203dd50: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
203dd54: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
203dd58: 7f ff 47 32 call 200fa20 <_Thread_Clear_state>
203dd5c: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
203dd60: 7f ff 48 0f call 200fd9c <_Thread_Enable_dispatch>
203dd64: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
203dd68: 81 c7 e0 08 ret
203dd6c: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
203dd70: 12 bf ff b9 bne 203dc54 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
203dd74: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
203dd78: 7f ff ff 41 call 203da7c <_Rate_monotonic_Update_statistics>
203dd7c: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
203dd80: 7f ff 18 7c call 2003f70 <sparc_enable_interrupts>
203dd84: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
203dd88: 82 10 20 02 mov 2, %g1
203dd8c: 92 07 60 10 add %i5, 0x10, %o1
203dd90: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
203dd94: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203dd98: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203dd9c: 11 00 81 b7 sethi %hi(0x206dc00), %o0
203dda0: 7f ff 4b 32 call 2010a68 <_Watchdog_Insert>
203dda4: 90 12 21 00 or %o0, 0x100, %o0 ! 206dd00 <_Watchdog_Ticks_chain>
203dda8: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
203ddac: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
203ddb0: 03 00 81 a6 sethi %hi(0x2069800), %g1
203ddb4: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 20699a4 <_Scheduler+0x34>
203ddb8: 9f c0 40 00 call %g1
203ddbc: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
203ddc0: 7f ff 47 f7 call 200fd9c <_Thread_Enable_dispatch>
203ddc4: 01 00 00 00 nop
return RTEMS_TIMEOUT;
203ddc8: 81 c7 e0 08 ret
203ddcc: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
203ddd0: b0 10 20 04 mov 4, %i0
}
203ddd4: 81 c7 e0 08 ret
203ddd8: 81 e8 00 00 restore
02029a5c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2029a5c: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2029a60: 80 a6 60 00 cmp %i1, 0
2029a64: 02 80 00 75 be 2029c38 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
2029a68: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2029a6c: 13 00 81 8b sethi %hi(0x2062c00), %o1
2029a70: 9f c6 40 00 call %i1
2029a74: 92 12 60 b0 or %o1, 0xb0, %o1 ! 2062cb0 <_TOD_Days_per_month+0x68>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2029a78: 90 10 00 18 mov %i0, %o0
2029a7c: 13 00 81 8b sethi %hi(0x2062c00), %o1
2029a80: 9f c6 40 00 call %i1
2029a84: 92 12 60 d0 or %o1, 0xd0, %o1 ! 2062cd0 <_TOD_Days_per_month+0x88>
(*print)( context, "--- Wall times are in seconds ---\n" );
2029a88: 90 10 00 18 mov %i0, %o0
2029a8c: 13 00 81 8b sethi %hi(0x2062c00), %o1
2029a90: 9f c6 40 00 call %i1
2029a94: 92 12 60 f8 or %o1, 0xf8, %o1 ! 2062cf8 <_TOD_Days_per_month+0xb0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2029a98: 90 10 00 18 mov %i0, %o0
2029a9c: 13 00 81 8b sethi %hi(0x2062c00), %o1
2029aa0: 9f c6 40 00 call %i1
2029aa4: 92 12 61 20 or %o1, 0x120, %o1 ! 2062d20 <_TOD_Days_per_month+0xd8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2029aa8: 90 10 00 18 mov %i0, %o0
2029aac: 13 00 81 8b sethi %hi(0x2062c00), %o1
2029ab0: 9f c6 40 00 call %i1
2029ab4: 92 12 61 70 or %o1, 0x170, %o1 ! 2062d70 <_TOD_Days_per_month+0x128>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029ab8: 03 00 81 b8 sethi %hi(0x206e000), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2029abc: 21 00 81 8b sethi %hi(0x2062c00), %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2029ac0: 35 00 81 8b sethi %hi(0x2062c00), %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2029ac4: 37 00 81 8b sethi %hi(0x2062c00), %i3
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2029ac8: 39 00 81 90 sethi %hi(0x2064000), %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029acc: fa 00 61 48 ld [ %g1 + 0x148 ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2029ad0: a0 14 21 c0 or %l0, 0x1c0, %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2029ad4: b4 16 a1 d8 or %i2, 0x1d8, %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2029ad8: b6 16 e1 f8 or %i3, 0x1f8, %i3
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029adc: 10 80 00 52 b 2029c24 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2029ae0: b8 17 22 90 or %i4, 0x290, %i4
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2029ae4: 40 00 4f 0c call 203d714 <rtems_rate_monotonic_get_statistics>
2029ae8: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
2029aec: 80 a2 20 00 cmp %o0, 0
2029af0: 32 80 00 4d bne,a 2029c24 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2029af4: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2029af8: 92 07 bf d8 add %fp, -40, %o1
2029afc: 40 00 4f 76 call 203d8d4 <rtems_rate_monotonic_get_status>
2029b00: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2029b04: d0 07 bf d8 ld [ %fp + -40 ], %o0
2029b08: 92 10 20 05 mov 5, %o1
2029b0c: 7f ff 8c d5 call 200ce60 <rtems_object_get_name>
2029b10: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2029b14: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2029b18: 92 10 00 10 mov %l0, %o1
2029b1c: 90 10 00 18 mov %i0, %o0
2029b20: 94 10 00 1d mov %i5, %o2
2029b24: 9f c6 40 00 call %i1
2029b28: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2029b2c: d2 07 bf a0 ld [ %fp + -96 ], %o1
2029b30: 80 a2 60 00 cmp %o1, 0
2029b34: 12 80 00 07 bne 2029b50 <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
2029b38: 94 07 bf f0 add %fp, -16, %o2
(*print)( context, "\n" );
2029b3c: 90 10 00 18 mov %i0, %o0
2029b40: 9f c6 40 00 call %i1
2029b44: 92 10 00 1c mov %i4, %o1
continue;
2029b48: 10 80 00 37 b 2029c24 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2029b4c: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2029b50: 40 00 04 f0 call 202af10 <_Timespec_Divide_by_integer>
2029b54: 90 07 bf b8 add %fp, -72, %o0
(*print)( context,
2029b58: d0 07 bf ac ld [ %fp + -84 ], %o0
2029b5c: 40 00 c2 b7 call 205a638 <.div>
2029b60: 92 10 23 e8 mov 0x3e8, %o1
2029b64: a6 10 00 08 mov %o0, %l3
2029b68: d0 07 bf b4 ld [ %fp + -76 ], %o0
2029b6c: 40 00 c2 b3 call 205a638 <.div>
2029b70: 92 10 23 e8 mov 0x3e8, %o1
2029b74: c2 07 bf f0 ld [ %fp + -16 ], %g1
2029b78: a2 10 00 08 mov %o0, %l1
2029b7c: d0 07 bf f4 ld [ %fp + -12 ], %o0
2029b80: e8 07 bf a8 ld [ %fp + -88 ], %l4
2029b84: e4 07 bf b0 ld [ %fp + -80 ], %l2
2029b88: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2029b8c: 40 00 c2 ab call 205a638 <.div>
2029b90: 92 10 23 e8 mov 0x3e8, %o1
2029b94: 96 10 00 13 mov %l3, %o3
2029b98: 98 10 00 12 mov %l2, %o4
2029b9c: 9a 10 00 11 mov %l1, %o5
2029ba0: 94 10 00 14 mov %l4, %o2
2029ba4: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2029ba8: 92 10 00 1a mov %i2, %o1
2029bac: 9f c6 40 00 call %i1
2029bb0: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2029bb4: d2 07 bf a0 ld [ %fp + -96 ], %o1
2029bb8: 94 07 bf f0 add %fp, -16, %o2
2029bbc: 40 00 04 d5 call 202af10 <_Timespec_Divide_by_integer>
2029bc0: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
2029bc4: d0 07 bf c4 ld [ %fp + -60 ], %o0
2029bc8: 40 00 c2 9c call 205a638 <.div>
2029bcc: 92 10 23 e8 mov 0x3e8, %o1
2029bd0: a6 10 00 08 mov %o0, %l3
2029bd4: d0 07 bf cc ld [ %fp + -52 ], %o0
2029bd8: 40 00 c2 98 call 205a638 <.div>
2029bdc: 92 10 23 e8 mov 0x3e8, %o1
2029be0: c2 07 bf f0 ld [ %fp + -16 ], %g1
2029be4: a2 10 00 08 mov %o0, %l1
2029be8: d0 07 bf f4 ld [ %fp + -12 ], %o0
2029bec: e8 07 bf c0 ld [ %fp + -64 ], %l4
2029bf0: e4 07 bf c8 ld [ %fp + -56 ], %l2
2029bf4: 92 10 23 e8 mov 0x3e8, %o1
2029bf8: 40 00 c2 90 call 205a638 <.div>
2029bfc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2029c00: 92 10 00 1b mov %i3, %o1
2029c04: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2029c08: 94 10 00 14 mov %l4, %o2
2029c0c: 90 10 00 18 mov %i0, %o0
2029c10: 96 10 00 13 mov %l3, %o3
2029c14: 98 10 00 12 mov %l2, %o4
2029c18: 9f c6 40 00 call %i1
2029c1c: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2029c20: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
2029c24: 03 00 81 b8 sethi %hi(0x206e000), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029c28: c2 00 61 4c ld [ %g1 + 0x14c ], %g1 ! 206e14c <_Rate_monotonic_Information+0xc>
2029c2c: 80 a7 40 01 cmp %i5, %g1
2029c30: 08 bf ff ad bleu 2029ae4 <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
2029c34: 90 10 00 1d mov %i5, %o0
2029c38: 81 c7 e0 08 ret
2029c3c: 81 e8 00 00 restore
020088f0 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
20088f0: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chain;
rtems_rbtree_control *page_tree = &control->page_tree;
uintptr_t page_alignment = control->page_alignment;
20088f4: f8 06 20 30 ld [ %i0 + 0x30 ], %i4
#include <stdlib.h>
static uintptr_t align_up(uintptr_t page_alignment, uintptr_t value)
{
uintptr_t excess = value % page_alignment;
20088f8: 90 10 00 19 mov %i1, %o0
20088fc: 92 10 00 1c mov %i4, %o1
2008900: 40 00 41 ac call 2018fb0 <.urem>
2008904: ba 10 00 18 mov %i0, %i5
if (excess > 0) {
2008908: 80 a2 20 00 cmp %o0, 0
200890c: 02 80 00 04 be 200891c <rtems_rbheap_allocate+0x2c> <== ALWAYS TAKEN
2008910: b6 10 00 19 mov %i1, %i3
value += page_alignment - excess;
2008914: b8 06 40 1c add %i1, %i4, %i4 <== NOT EXECUTED
2008918: b6 27 00 08 sub %i4, %o0, %i3 <== NOT EXECUTED
rtems_chain_control *free_chain = &control->free_chain;
rtems_rbtree_control *page_tree = &control->page_tree;
uintptr_t page_alignment = control->page_alignment;
uintptr_t aligned_size = align_up(page_alignment, size);
if (size > 0 && size <= aligned_size) {
200891c: 80 a6 c0 19 cmp %i3, %i1
2008920: 0a 80 00 31 bcs 20089e4 <rtems_rbheap_allocate+0xf4> <== NEVER TAKEN
2008924: 80 a6 60 00 cmp %i1, 0
2008928: 02 80 00 2f be 20089e4 <rtems_rbheap_allocate+0xf4>
200892c: 84 07 60 04 add %i5, 4, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2008930: c2 07 40 00 ld [ %i5 ], %g1
size_t size
)
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_page *big_enough = NULL;
2008934: 10 80 00 06 b 200894c <rtems_rbheap_allocate+0x5c>
2008938: b2 10 20 00 clr %i1
while (current != tail && big_enough == NULL) {
rtems_rbheap_page *free_page = (rtems_rbheap_page *) current;
if (free_page->size >= size) {
200893c: 80 a0 c0 1b cmp %g3, %i3
2008940: b2 40 3f ff addx %g0, -1, %i1
2008944: b2 08 40 19 and %g1, %i1, %i1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Next(
Chain_Node *the_node
)
{
return the_node->next;
2008948: c2 00 40 00 ld [ %g1 ], %g1
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_page *big_enough = NULL;
while (current != tail && big_enough == NULL) {
200894c: 80 a6 60 00 cmp %i1, 0
2008950: 12 80 00 04 bne 2008960 <rtems_rbheap_allocate+0x70>
2008954: 80 a0 40 02 cmp %g1, %g2
2008958: 32 bf ff f9 bne,a 200893c <rtems_rbheap_allocate+0x4c>
200895c: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
uintptr_t aligned_size = align_up(page_alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_page *free_page = search_free_page(free_chain, aligned_size);
if (free_page != NULL) {
2008960: 80 a6 60 00 cmp %i1, 0
2008964: 02 80 00 16 be 20089bc <rtems_rbheap_allocate+0xcc>
2008968: b0 10 20 00 clr %i0
uintptr_t free_size = free_page->size;
200896c: f4 06 60 1c ld [ %i1 + 0x1c ], %i2
if (free_size > aligned_size) {
2008970: 80 a6 80 1b cmp %i2, %i3
2008974: 28 80 00 14 bleu,a 20089c4 <rtems_rbheap_allocate+0xd4>
2008978: c4 06 40 00 ld [ %i1 ], %g2
rtems_rbheap_page *new_page = get_page(control);
200897c: 7f ff ff 72 call 2008744 <get_page>
2008980: 90 10 00 1d mov %i5, %o0
if (new_page != NULL) {
2008984: b8 92 20 00 orcc %o0, 0, %i4
2008988: 02 80 00 0d be 20089bc <rtems_rbheap_allocate+0xcc> <== NEVER TAKEN
200898c: b4 26 80 1b sub %i2, %i3, %i2
uintptr_t new_free_size = free_size - aligned_size;
free_page->size = new_free_size;
new_page->begin = free_page->begin + new_free_size;
2008990: c2 06 60 18 ld [ %i1 + 0x18 ], %g1
rtems_rbheap_page *new_page = get_page(control);
if (new_page != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_page->size = new_free_size;
2008994: f4 26 60 1c st %i2, [ %i1 + 0x1c ]
new_page->begin = free_page->begin + new_free_size;
new_page->size = aligned_size;
2008998: f6 27 20 1c st %i3, [ %i4 + 0x1c ]
if (new_page != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_page->size = new_free_size;
new_page->begin = free_page->begin + new_free_size;
200899c: b4 06 80 01 add %i2, %g1, %i2
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
20089a0: c0 27 20 04 clr [ %i4 + 4 ]
20089a4: f4 27 20 18 st %i2, [ %i4 + 0x18 ]
20089a8: c0 27 00 00 clr [ %i4 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_page *page
)
{
_RBTree_Insert_unprotected(tree, &page->tree_node);
20089ac: 90 07 60 18 add %i5, 0x18, %o0
20089b0: 40 00 06 d7 call 200a50c <_RBTree_Insert_unprotected>
20089b4: 92 07 20 08 add %i4, 8, %o1
free_page->size = new_free_size;
new_page->begin = free_page->begin + new_free_size;
new_page->size = aligned_size;
rtems_chain_set_off_chain(&new_page->chain_node);
insert_into_tree(page_tree, new_page);
ptr = (void *) new_page->begin;
20089b8: f0 07 20 18 ld [ %i4 + 0x18 ], %i0
20089bc: 81 c7 e0 08 ret
20089c0: 81 e8 00 00 restore
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
20089c4: c2 06 60 04 ld [ %i1 + 4 ], %g1
}
} else {
rtems_chain_extract_unprotected(&free_page->chain_node);
rtems_chain_set_off_chain(&free_page->chain_node);
ptr = (void *) free_page->begin;
20089c8: f0 06 60 18 ld [ %i1 + 0x18 ], %i0
next->previous = previous;
20089cc: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
20089d0: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
20089d4: c0 26 60 04 clr [ %i1 + 4 ]
20089d8: c0 26 40 00 clr [ %i1 ]
20089dc: 81 c7 e0 08 ret
20089e0: 81 e8 00 00 restore
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
20089e4: b0 10 20 00 clr %i0
}
}
}
return ptr;
}
20089e8: 81 c7 e0 08 ret
20089ec: 81 e8 00 00 restore
02008b84 <rtems_rbheap_extend_page_pool_with_malloc>:
void rtems_rbheap_extend_page_pool_with_malloc(rtems_rbheap_control *control)
{
2008b84: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
rtems_rbheap_page *page = malloc(sizeof(*page));
2008b88: 7f ff ed 90 call 20041c8 <malloc> <== NOT EXECUTED
2008b8c: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED
if (page != NULL) {
2008b90: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED
2008b94: 02 80 00 07 be 2008bb0 <rtems_rbheap_extend_page_pool_with_malloc+0x2c><== NOT EXECUTED
2008b98: 82 06 20 0c add %i0, 0xc, %g1 <== NOT EXECUTED
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008b9c: c2 22 20 04 st %g1, [ %o0 + 4 ] <== NOT EXECUTED
before_node = after_node->next;
2008ba0: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED
after_node->next = the_node;
2008ba4: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED
the_node->next = before_node;
2008ba8: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED
before_node->previous = the_node;
2008bac: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED
2008bb0: 81 c7 e0 08 ret <== NOT EXECUTED
2008bb4: 81 e8 00 00 restore <== NOT EXECUTED
020089f0 <rtems_rbheap_free>:
_RBTree_Extract_unprotected(page_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
20089f0: 9d e3 bf 80 save %sp, -128, %sp
#define NULL_PAGE rtems_rbheap_page_of_node(NULL)
static rtems_rbheap_page *find(rtems_rbtree_control *page_tree, uintptr_t key)
{
rtems_rbheap_page page = { .begin = key };
20089f4: 92 10 20 00 clr %o1
20089f8: 90 07 bf e0 add %fp, -32, %o0
20089fc: 94 10 20 20 mov 0x20, %o2
2008a00: 40 00 1f 70 call 20107c0 <memset>
2008a04: ba 10 00 18 mov %i0, %i5
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
2008a08: b8 10 20 00 clr %i4
2008a0c: f2 27 bf f8 st %i1, [ %fp + -8 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
2008a10: 10 80 00 12 b 2008a58 <rtems_rbheap_free+0x68>
2008a14: f6 06 20 1c ld [ %i0 + 0x1c ], %i3
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
2008a18: 90 07 bf e8 add %fp, -24, %o0
2008a1c: 9f c0 40 00 call %g1
2008a20: 92 10 00 1b mov %i3, %o1
if ( _RBTree_Is_equal( compare_result ) ) {
2008a24: 80 a2 20 00 cmp %o0, 0
2008a28: 12 80 00 07 bne 2008a44 <rtems_rbheap_free+0x54>
2008a2c: 83 3a 20 1f sra %o0, 0x1f, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2008a30: c2 0f 60 2c ldub [ %i5 + 0x2c ], %g1
2008a34: 80 a0 60 00 cmp %g1, 0
2008a38: 12 80 00 0c bne 2008a68 <rtems_rbheap_free+0x78> <== ALWAYS TAKEN
2008a3c: b8 10 00 1b mov %i3, %i4
break;
}
RBTree_Direction dir =
2008a40: 83 3a 20 1f sra %o0, 0x1f, %g1 <== NOT EXECUTED
2008a44: 90 20 40 08 sub %g1, %o0, %o0
2008a48: 91 32 20 1f srl %o0, 0x1f, %o0
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
2008a4c: 91 2a 20 02 sll %o0, 2, %o0
2008a50: b6 06 c0 08 add %i3, %o0, %i3
2008a54: f6 06 e0 04 ld [ %i3 + 4 ], %i3
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2008a58: 80 a6 e0 00 cmp %i3, 0
2008a5c: 32 bf ff ef bne,a 2008a18 <rtems_rbheap_free+0x28>
2008a60: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
2008a64: b6 10 00 1c mov %i4, %i3
return rtems_rbheap_page_of_node(
2008a68: b8 06 ff f8 add %i3, -8, %i4
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_control *free_chain = &control->free_chain;
rtems_rbtree_control *page_tree = &control->page_tree;
rtems_rbheap_page *page = find(page_tree, (uintptr_t) ptr);
if (page != NULL_PAGE) {
2008a6c: 80 a7 3f f8 cmp %i4, -8
2008a70: 02 80 00 41 be 2008b74 <rtems_rbheap_free+0x184>
2008a74: b0 10 20 04 mov 4, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008a78: c4 06 ff f8 ld [ %i3 + -8 ], %g2
2008a7c: 80 a0 a0 00 cmp %g2, 0
2008a80: 12 80 00 05 bne 2008a94 <rtems_rbheap_free+0xa4>
2008a84: 82 10 20 00 clr %g1
add_to_chain(free_chain, b);
_RBTree_Extract_unprotected(page_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
2008a88: c2 07 20 04 ld [ %i4 + 4 ], %g1
2008a8c: 80 a0 00 01 cmp %g0, %g1
2008a90: 82 60 3f ff subx %g0, -1, %g1
rtems_chain_control *free_chain = &control->free_chain;
rtems_rbtree_control *page_tree = &control->page_tree;
rtems_rbheap_page *page = find(page_tree, (uintptr_t) ptr);
if (page != NULL_PAGE) {
if (!rtems_rbheap_is_page_free(page)) {
2008a94: 80 a0 60 00 cmp %g1, 0
2008a98: 02 80 00 37 be 2008b74 <rtems_rbheap_free+0x184>
2008a9c: b0 10 20 0e mov 0xe, %i0
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_control *free_chain = &control->free_chain;
rtems_rbtree_control *page_tree = &control->page_tree;
2008aa0: b6 07 60 18 add %i5, 0x18, %i3
const rtems_rbtree_control *page_tree,
const rtems_rbheap_page *page,
RBTree_Direction dir
)
{
return rtems_rbheap_page_of_node(
2008aa4: b0 07 20 08 add %i4, 8, %i0
2008aa8: 94 10 20 00 clr %o2
2008aac: 92 10 00 18 mov %i0, %o1
2008ab0: 40 00 07 1e call 200a728 <_RBTree_Next_unprotected>
2008ab4: 90 10 00 1b mov %i3, %o0
2008ab8: 92 10 00 18 mov %i0, %o1
2008abc: b2 10 00 08 mov %o0, %i1
2008ac0: b4 02 3f f8 add %o0, -8, %i2
2008ac4: 94 10 20 01 mov 1, %o2
2008ac8: 40 00 07 18 call 200a728 <_RBTree_Next_unprotected>
2008acc: 90 10 00 1b mov %i3, %o0
2008ad0: 96 02 3f f8 add %o0, -8, %o3
rtems_rbtree_control *page_tree,
rtems_rbheap_page *a,
rtems_rbheap_page *b
)
{
if (b != NULL_PAGE && rtems_rbheap_is_page_free(b)) {
2008ad4: 80 a2 ff f8 cmp %o3, -8
2008ad8: 22 80 00 11 be,a 2008b1c <rtems_rbheap_free+0x12c>
2008adc: c2 07 40 00 ld [ %i5 ], %g1
2008ae0: c4 02 3f f8 ld [ %o0 + -8 ], %g2
2008ae4: 80 a0 a0 00 cmp %g2, 0
2008ae8: 12 80 00 05 bne 2008afc <rtems_rbheap_free+0x10c>
2008aec: 82 10 20 00 clr %g1
add_to_chain(free_chain, b);
_RBTree_Extract_unprotected(page_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
2008af0: c2 02 e0 04 ld [ %o3 + 4 ], %g1
2008af4: 80 a0 00 01 cmp %g0, %g1
2008af8: 82 60 3f ff subx %g0, -1, %g1
rtems_rbtree_control *page_tree,
rtems_rbheap_page *a,
rtems_rbheap_page *b
)
{
if (b != NULL_PAGE && rtems_rbheap_is_page_free(b)) {
2008afc: 80 a0 60 00 cmp %g1, 0
2008b00: 32 80 00 07 bne,a 2008b1c <rtems_rbheap_free+0x12c>
2008b04: c2 07 40 00 ld [ %i5 ], %g1
2008b08: 90 10 00 1d mov %i5, %o0
2008b0c: 92 10 00 1b mov %i3, %o1
2008b10: 7f ff ff 1c call 2008780 <check_and_merge.part.0>
2008b14: 94 10 00 1c mov %i4, %o2
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008b18: c2 07 40 00 ld [ %i5 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008b1c: fa 27 20 04 st %i5, [ %i4 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008b20: f8 27 40 00 st %i4, [ %i5 ]
the_node->next = before_node;
2008b24: c2 27 00 00 st %g1, [ %i4 ]
before_node->previous = the_node;
2008b28: f8 20 60 04 st %i4, [ %g1 + 4 ]
2008b2c: 80 a6 bf f8 cmp %i2, -8
2008b30: 02 80 00 11 be 2008b74 <rtems_rbheap_free+0x184>
2008b34: b0 10 20 00 clr %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008b38: c4 06 7f f8 ld [ %i1 + -8 ], %g2
2008b3c: 80 a0 a0 00 cmp %g2, 0
2008b40: 12 80 00 05 bne 2008b54 <rtems_rbheap_free+0x164>
2008b44: 82 10 20 00 clr %g1
add_to_chain(free_chain, b);
_RBTree_Extract_unprotected(page_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
2008b48: c2 06 a0 04 ld [ %i2 + 4 ], %g1
2008b4c: 80 a0 00 01 cmp %g0, %g1
2008b50: 82 60 3f ff subx %g0, -1, %g1
rtems_rbtree_control *page_tree,
rtems_rbheap_page *a,
rtems_rbheap_page *b
)
{
if (b != NULL_PAGE && rtems_rbheap_is_page_free(b)) {
2008b54: 80 a0 60 00 cmp %g1, 0
2008b58: 12 80 00 07 bne 2008b74 <rtems_rbheap_free+0x184>
2008b5c: b0 10 20 00 clr %i0
2008b60: 90 10 00 1d mov %i5, %o0
2008b64: 92 10 00 1b mov %i3, %o1
2008b68: 94 10 00 1c mov %i4, %o2
2008b6c: 7f ff ff 05 call 2008780 <check_and_merge.part.0>
2008b70: 96 10 00 1a mov %i2, %o3
} else {
sc = RTEMS_INVALID_ID;
}
return sc;
}
2008b74: 81 c7 e0 08 ret
2008b78: 81 e8 00 00 restore
020177d8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20177d8: 9d e3 bf 98 save %sp, -104, %sp
20177dc: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20177e0: 80 a6 60 00 cmp %i1, 0
20177e4: 02 80 00 2e be 201789c <rtems_signal_send+0xc4>
20177e8: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20177ec: 40 00 12 48 call 201c10c <_Thread_Get>
20177f0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20177f4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20177f8: b8 10 00 08 mov %o0, %i4
switch ( location ) {
20177fc: 80 a0 60 00 cmp %g1, 0
2017800: 12 80 00 27 bne 201789c <rtems_signal_send+0xc4>
2017804: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2017808: fa 02 21 50 ld [ %o0 + 0x150 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
201780c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2017810: 80 a0 60 00 cmp %g1, 0
2017814: 02 80 00 24 be 20178a4 <rtems_signal_send+0xcc>
2017818: 01 00 00 00 nop
if ( asr->is_enabled ) {
201781c: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2017820: 80 a0 60 00 cmp %g1, 0
2017824: 02 80 00 15 be 2017878 <rtems_signal_send+0xa0>
2017828: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201782c: 7f ff e3 49 call 2010550 <sparc_disable_interrupts>
2017830: 01 00 00 00 nop
*signal_set |= signals;
2017834: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2017838: b2 10 40 19 or %g1, %i1, %i1
201783c: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2017840: 7f ff e3 48 call 2010560 <sparc_enable_interrupts>
2017844: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2017848: 03 00 80 ed sethi %hi(0x203b400), %g1
201784c: 82 10 63 c0 or %g1, 0x3c0, %g1 ! 203b7c0 <_Per_CPU_Information>
2017850: c4 00 60 08 ld [ %g1 + 8 ], %g2
2017854: 80 a0 a0 00 cmp %g2, 0
2017858: 02 80 00 0f be 2017894 <rtems_signal_send+0xbc>
201785c: 01 00 00 00 nop
2017860: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2017864: 80 a7 00 02 cmp %i4, %g2
2017868: 12 80 00 0b bne 2017894 <rtems_signal_send+0xbc> <== NEVER TAKEN
201786c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2017870: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2017874: 30 80 00 08 b,a 2017894 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2017878: 7f ff e3 36 call 2010550 <sparc_disable_interrupts>
201787c: 01 00 00 00 nop
*signal_set |= signals;
2017880: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2017884: b2 10 40 19 or %g1, %i1, %i1
2017888: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
201788c: 7f ff e3 35 call 2010560 <sparc_enable_interrupts>
2017890: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2017894: 40 00 12 11 call 201c0d8 <_Thread_Enable_dispatch>
2017898: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
201789c: 81 c7 e0 08 ret
20178a0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
20178a4: 40 00 12 0d call 201c0d8 <_Thread_Enable_dispatch>
20178a8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
20178ac: 81 c7 e0 08 ret
20178b0: 81 e8 00 00 restore
0200e5cc <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e5cc: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e5d0: 80 a6 a0 00 cmp %i2, 0
200e5d4: 02 80 00 5a be 200e73c <rtems_task_mode+0x170>
200e5d8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e5dc: 03 00 80 72 sethi %hi(0x201c800), %g1
200e5e0: f8 00 60 ec ld [ %g1 + 0xec ], %i4 ! 201c8ec <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5e4: c2 0f 20 70 ldub [ %i4 + 0x70 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e5e8: fa 07 21 50 ld [ %i4 + 0x150 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5ec: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e5f0: c2 07 20 78 ld [ %i4 + 0x78 ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5f4: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e5f8: 80 a0 60 00 cmp %g1, 0
200e5fc: 02 80 00 03 be 200e608 <rtems_task_mode+0x3c>
200e600: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e604: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e608: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
200e60c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e610: 7f ff f3 63 call 200b39c <_CPU_ISR_Get_level>
200e614: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e618: a1 2c 20 0a sll %l0, 0xa, %l0
200e61c: a0 14 00 08 or %l0, %o0, %l0
old_mode |= _ISR_Get_level();
200e620: b6 14 00 1b or %l0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e624: 80 8e 61 00 btst 0x100, %i1
200e628: 02 80 00 06 be 200e640 <rtems_task_mode+0x74>
200e62c: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e630: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e634: 80 a0 00 01 cmp %g0, %g1
200e638: 82 60 3f ff subx %g0, -1, %g1
200e63c: c2 2f 20 70 stb %g1, [ %i4 + 0x70 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e640: 80 8e 62 00 btst 0x200, %i1
200e644: 02 80 00 0b be 200e670 <rtems_task_mode+0xa4>
200e648: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200e64c: 80 8e 22 00 btst 0x200, %i0
200e650: 22 80 00 07 be,a 200e66c <rtems_task_mode+0xa0>
200e654: c0 27 20 78 clr [ %i4 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e658: 82 10 20 01 mov 1, %g1
200e65c: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e660: 03 00 80 71 sethi %hi(0x201c400), %g1
200e664: c2 00 62 14 ld [ %g1 + 0x214 ], %g1 ! 201c614 <_Thread_Ticks_per_timeslice>
200e668: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e66c: 80 8e 60 0f btst 0xf, %i1
200e670: 02 80 00 06 be 200e688 <rtems_task_mode+0xbc>
200e674: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e678: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e67c: 7f ff cf e0 call 20025fc <sparc_enable_interrupts>
200e680: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e684: 80 8e 64 00 btst 0x400, %i1
200e688: 02 80 00 14 be 200e6d8 <rtems_task_mode+0x10c>
200e68c: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e690: c4 0f 60 08 ldub [ %i5 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200e694: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200e698: 80 a0 00 18 cmp %g0, %i0
200e69c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e6a0: 80 a0 40 02 cmp %g1, %g2
200e6a4: 22 80 00 0e be,a 200e6dc <rtems_task_mode+0x110>
200e6a8: 03 00 80 72 sethi %hi(0x201c800), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e6ac: 7f ff cf d0 call 20025ec <sparc_disable_interrupts>
200e6b0: c2 2f 60 08 stb %g1, [ %i5 + 8 ]
_signals = information->signals_pending;
200e6b4: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200e6b8: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
200e6bc: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e6c0: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e6c4: 7f ff cf ce call 20025fc <sparc_enable_interrupts>
200e6c8: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e6cc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200e6d0: 80 a0 00 01 cmp %g0, %g1
200e6d4: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200e6d8: 03 00 80 72 sethi %hi(0x201c800), %g1
200e6dc: c4 00 60 08 ld [ %g1 + 8 ], %g2 ! 201c808 <_System_state_Current>
200e6e0: 80 a0 a0 03 cmp %g2, 3
200e6e4: 12 80 00 16 bne 200e73c <rtems_task_mode+0x170>
200e6e8: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200e6ec: 07 00 80 72 sethi %hi(0x201c800), %g3
if ( are_signals_pending ||
200e6f0: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200e6f4: 86 10 e0 e0 or %g3, 0xe0, %g3
if ( are_signals_pending ||
200e6f8: 12 80 00 0a bne 200e720 <rtems_task_mode+0x154>
200e6fc: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200e700: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200e704: 80 a0 80 03 cmp %g2, %g3
200e708: 02 80 00 0d be 200e73c <rtems_task_mode+0x170>
200e70c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e710: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
200e714: 80 a0 a0 00 cmp %g2, 0
200e718: 02 80 00 09 be 200e73c <rtems_task_mode+0x170> <== NEVER TAKEN
200e71c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e720: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200e724: 03 00 80 72 sethi %hi(0x201c800), %g1
200e728: 82 10 60 e0 or %g1, 0xe0, %g1 ! 201c8e0 <_Per_CPU_Information>
200e72c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e730: 7f ff ee 1a call 2009f98 <_Thread_Dispatch>
200e734: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e738: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e73c: 81 c7 e0 08 ret
200e740: 91 e8 00 01 restore %g0, %g1, %o0
0200bac4 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200bac4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200bac8: 80 a6 60 00 cmp %i1, 0
200bacc: 02 80 00 07 be 200bae8 <rtems_task_set_priority+0x24>
200bad0: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200bad4: 03 00 80 7e sethi %hi(0x201f800), %g1
200bad8: c2 08 61 14 ldub [ %g1 + 0x114 ], %g1 ! 201f914 <rtems_maximum_priority>
200badc: 80 a6 40 01 cmp %i1, %g1
200bae0: 18 80 00 1c bgu 200bb50 <rtems_task_set_priority+0x8c>
200bae4: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200bae8: 80 a6 a0 00 cmp %i2, 0
200baec: 02 80 00 19 be 200bb50 <rtems_task_set_priority+0x8c>
200baf0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200baf4: 40 00 09 86 call 200e10c <_Thread_Get>
200baf8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200bafc: c2 07 bf fc ld [ %fp + -4 ], %g1
200bb00: 80 a0 60 00 cmp %g1, 0
200bb04: 12 80 00 13 bne 200bb50 <rtems_task_set_priority+0x8c>
200bb08: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200bb0c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200bb10: 80 a6 60 00 cmp %i1, 0
200bb14: 02 80 00 0d be 200bb48 <rtems_task_set_priority+0x84>
200bb18: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200bb1c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200bb20: 80 a0 60 00 cmp %g1, 0
200bb24: 02 80 00 06 be 200bb3c <rtems_task_set_priority+0x78>
200bb28: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200bb2c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200bb30: 80 a0 40 19 cmp %g1, %i1
200bb34: 08 80 00 05 bleu 200bb48 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200bb38: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200bb3c: 92 10 00 19 mov %i1, %o1
200bb40: 40 00 08 41 call 200dc44 <_Thread_Change_priority>
200bb44: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200bb48: 40 00 09 64 call 200e0d8 <_Thread_Enable_dispatch>
200bb4c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200bb50: 81 c7 e0 08 ret
200bb54: 81 e8 00 00 restore
02018200 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2018200: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2018204: 11 00 80 ee sethi %hi(0x203b800), %o0
2018208: 92 10 00 18 mov %i0, %o1
201820c: 90 12 20 64 or %o0, 0x64, %o0
2018210: 40 00 0b df call 201b18c <_Objects_Get>
2018214: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2018218: c2 07 bf fc ld [ %fp + -4 ], %g1
201821c: 80 a0 60 00 cmp %g1, 0
2018220: 12 80 00 0c bne 2018250 <rtems_timer_cancel+0x50>
2018224: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2018228: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
201822c: 80 a0 60 04 cmp %g1, 4
2018230: 02 80 00 04 be 2018240 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2018234: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2018238: 40 00 13 c4 call 201d148 <_Watchdog_Remove>
201823c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2018240: 40 00 0f a6 call 201c0d8 <_Thread_Enable_dispatch>
2018244: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2018248: 81 c7 e0 08 ret
201824c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2018250: 81 c7 e0 08 ret
2018254: 91 e8 20 04 restore %g0, 4, %o0
02018714 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2018714: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2018718: 03 00 80 ee sethi %hi(0x203b800), %g1
201871c: e0 00 60 a4 ld [ %g1 + 0xa4 ], %l0 ! 203b8a4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2018720: ba 10 00 18 mov %i0, %i5
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2018724: 80 a4 20 00 cmp %l0, 0
2018728: 02 80 00 3b be 2018814 <rtems_timer_server_fire_when+0x100>
201872c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2018730: 03 00 80 ed sethi %hi(0x203b400), %g1
2018734: c2 08 61 90 ldub [ %g1 + 0x190 ], %g1 ! 203b590 <_TOD_Is_set>
2018738: 80 a0 60 00 cmp %g1, 0
201873c: 02 80 00 36 be 2018814 <rtems_timer_server_fire_when+0x100><== NEVER TAKEN
2018740: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2018744: 80 a6 a0 00 cmp %i2, 0
2018748: 02 80 00 33 be 2018814 <rtems_timer_server_fire_when+0x100>
201874c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2018750: 90 10 00 19 mov %i1, %o0
2018754: 7f ff f3 8f call 2015590 <_TOD_Validate>
2018758: b0 10 20 14 mov 0x14, %i0
201875c: 80 8a 20 ff btst 0xff, %o0
2018760: 02 80 00 2f be 201881c <rtems_timer_server_fire_when+0x108>
2018764: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2018768: 7f ff f3 4f call 20154a4 <_TOD_To_seconds>
201876c: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2018770: 23 00 80 ed sethi %hi(0x203b400), %l1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2018774: b2 10 00 08 mov %o0, %i1
2018778: d0 1c 62 10 ldd [ %l1 + 0x210 ], %o0
201877c: 94 10 20 00 clr %o2
2018780: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018784: 40 00 4c 25 call 202b818 <__divdi3>
2018788: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
if ( seconds <= _TOD_Seconds_since_epoch() )
201878c: 80 a6 40 09 cmp %i1, %o1
2018790: 08 80 00 21 bleu 2018814 <rtems_timer_server_fire_when+0x100>
2018794: 11 00 80 ee sethi %hi(0x203b800), %o0
2018798: 92 10 00 1d mov %i5, %o1
201879c: 90 12 20 64 or %o0, 0x64, %o0
20187a0: 40 00 0a 7b call 201b18c <_Objects_Get>
20187a4: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20187a8: c2 07 bf fc ld [ %fp + -4 ], %g1
20187ac: b8 10 00 08 mov %o0, %i4
20187b0: 80 a0 60 00 cmp %g1, 0
20187b4: 12 80 00 18 bne 2018814 <rtems_timer_server_fire_when+0x100>
20187b8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20187bc: 40 00 12 63 call 201d148 <_Watchdog_Remove>
20187c0: 90 02 20 10 add %o0, 0x10, %o0
20187c4: d0 1c 62 10 ldd [ %l1 + 0x210 ], %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20187c8: 82 10 20 03 mov 3, %g1
20187cc: 94 10 20 00 clr %o2
20187d0: c2 27 20 38 st %g1, [ %i4 + 0x38 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20187d4: c0 27 20 18 clr [ %i4 + 0x18 ]
the_watchdog->routine = routine;
20187d8: f4 27 20 2c st %i2, [ %i4 + 0x2c ]
the_watchdog->id = id;
20187dc: fa 27 20 30 st %i5, [ %i4 + 0x30 ]
the_watchdog->user_data = user_data;
20187e0: f6 27 20 34 st %i3, [ %i4 + 0x34 ]
20187e4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
20187e8: 40 00 4c 0c call 202b818 <__divdi3>
20187ec: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
20187f0: c2 04 20 04 ld [ %l0 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20187f4: b2 26 40 09 sub %i1, %o1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
20187f8: 90 10 00 10 mov %l0, %o0
20187fc: 92 10 00 1c mov %i4, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2018800: f2 27 20 1c st %i1, [ %i4 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2018804: 9f c0 40 00 call %g1
2018808: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
201880c: 40 00 0e 33 call 201c0d8 <_Thread_Enable_dispatch>
2018810: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2018814: 81 c7 e0 08 ret
2018818: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
201881c: 81 c7 e0 08 ret
2018820: 81 e8 00 00 restore