=============================================================================== 0200fbf4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fbf4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fbf8: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fbfc: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fc00: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fc04: 80 8e e0 03 btst 3, %i3 200fc08: 02 80 00 07 be 200fc24 <_CORE_message_queue_Initialize+0x30> 200fc0c: ba 10 00 1b mov %i3, %i5 allocated_message_size += sizeof(uint32_t); 200fc10: ba 06 e0 04 add %i3, 4, %i5 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fc14: ba 0f 7f fc and %i5, -4, %i5 } if (allocated_message_size < maximum_message_size) 200fc18: 80 a7 40 1b cmp %i5, %i3 200fc1c: 0a 80 00 24 bcs 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fc20: b8 10 20 00 clr %i4 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 200fc24: ba 07 60 10 add %i5, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 200fc28: 90 10 20 00 clr %o0 200fc2c: 92 10 00 1a mov %i2, %o1 200fc30: 94 10 20 00 clr %o2 200fc34: 96 10 00 1d mov %i5, %o3 200fc38: 40 00 3e ef call 201f7f4 <__muldi3> 200fc3c: b8 10 20 00 clr %i4 if ( x > SIZE_MAX ) 200fc40: 80 a2 20 00 cmp %o0, 0 200fc44: 34 80 00 1b bg,a 200fcb0 <_CORE_message_queue_Initialize+0xbc> 200fc48: b0 0f 20 01 and %i4, 1, %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fc4c: 40 00 0c 08 call 2012c6c <_Workspace_Allocate> 200fc50: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fc54: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fc58: 80 a2 20 00 cmp %o0, 0 200fc5c: 02 80 00 14 be 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fc60: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fc64: 90 06 20 60 add %i0, 0x60, %o0 200fc68: 94 10 00 1a mov %i2, %o2 200fc6c: 40 00 13 ec call 2014c1c <_Chain_Initialize> 200fc70: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc74: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 200fc78: c2 26 20 58 st %g1, [ %i0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200fc7c: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc80: 84 06 20 54 add %i0, 0x54, %g2 200fc84: 82 18 60 01 xor %g1, 1, %g1 200fc88: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 200fc8c: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 200fc90: c0 26 20 54 clr [ %i0 + 0x54 ] 200fc94: 90 10 00 18 mov %i0, %o0 200fc98: 92 60 3f ff subx %g0, -1, %o1 200fc9c: 94 10 20 80 mov 0x80, %o2 200fca0: 96 10 20 06 mov 6, %o3 200fca4: 40 00 09 9e call 201231c <_Thread_queue_Initialize> 200fca8: b8 10 20 01 mov 1, %i4 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fcac: b0 0f 20 01 and %i4, 1, %i0 200fcb0: 81 c7 e0 08 ret 200fcb4: 81 e8 00 00 restore =============================================================================== 020072a8 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20072a8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20072ac: 90 10 00 18 mov %i0, %o0 20072b0: 40 00 07 3a call 2008f98 <_Thread_queue_Dequeue> 20072b4: ba 10 00 18 mov %i0, %i5 20072b8: 80 a2 20 00 cmp %o0, 0 20072bc: 12 80 00 0e bne 20072f4 <_CORE_semaphore_Surrender+0x4c> 20072c0: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 20072c4: 7f ff eb ae call 200217c 20072c8: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 20072cc: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 20072d0: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 20072d4: 80 a0 40 02 cmp %g1, %g2 20072d8: 1a 80 00 05 bcc 20072ec <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 20072dc: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 20072e0: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20072e4: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 20072e8: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 20072ec: 7f ff eb a8 call 200218c 20072f0: 01 00 00 00 nop } return status; } 20072f4: 81 c7 e0 08 ret 20072f8: 81 e8 00 00 restore =============================================================================== 02006028 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2006028: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 200602c: f8 06 21 58 ld [ %i0 + 0x158 ], %i4 option_set = (rtems_option) the_thread->Wait.option; 2006030: f6 06 20 30 ld [ %i0 + 0x30 ], %i3 _ISR_Disable( level ); 2006034: 7f ff f0 52 call 200217c 2006038: ba 10 00 18 mov %i0, %i5 200603c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2006040: c4 07 00 00 ld [ %i4 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2006044: c6 07 60 24 ld [ %i5 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2006048: 82 88 c0 02 andcc %g3, %g2, %g1 200604c: 02 80 00 43 be 2006158 <_Event_Surrender+0x130> 2006050: 01 00 00 00 nop /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006054: 09 00 80 6d sethi %hi(0x201b400), %g4 2006058: 88 11 23 1c or %g4, 0x31c, %g4 ! 201b71c <_Per_CPU_Information> 200605c: f2 01 20 08 ld [ %g4 + 8 ], %i1 2006060: 80 a6 60 00 cmp %i1, 0 2006064: 22 80 00 1d be,a 20060d8 <_Event_Surrender+0xb0> 2006068: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 200606c: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2006070: 80 a7 40 04 cmp %i5, %g4 2006074: 32 80 00 19 bne,a 20060d8 <_Event_Surrender+0xb0> 2006078: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200607c: 09 00 80 6d sethi %hi(0x201b400), %g4 2006080: f2 01 23 70 ld [ %g4 + 0x370 ], %i1 ! 201b770 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006084: 80 a6 60 02 cmp %i1, 2 2006088: 02 80 00 07 be 20060a4 <_Event_Surrender+0x7c> <== NEVER TAKEN 200608c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006090: c8 01 23 70 ld [ %g4 + 0x370 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006094: 80 a1 20 01 cmp %g4, 1 2006098: 32 80 00 10 bne,a 20060d8 <_Event_Surrender+0xb0> 200609c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 20060a0: 80 a0 40 03 cmp %g1, %g3 20060a4: 02 80 00 04 be 20060b4 <_Event_Surrender+0x8c> 20060a8: 80 8e e0 02 btst 2, %i3 20060ac: 02 80 00 2b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN 20060b0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 20060b4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20060b8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060bc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 20060c0: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060c4: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20060c8: 84 10 20 03 mov 3, %g2 20060cc: 03 00 80 6d sethi %hi(0x201b400), %g1 20060d0: c4 20 63 70 st %g2, [ %g1 + 0x370 ] ! 201b770 <_Event_Sync_state> 20060d4: 30 80 00 21 b,a 2006158 <_Event_Surrender+0x130> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20060d8: 80 89 21 00 btst 0x100, %g4 20060dc: 02 80 00 1f be 2006158 <_Event_Surrender+0x130> 20060e0: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20060e4: 02 80 00 04 be 20060f4 <_Event_Surrender+0xcc> 20060e8: 80 8e e0 02 btst 2, %i3 20060ec: 02 80 00 1b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN 20060f0: 01 00 00 00 nop 20060f4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 20060f8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060fc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2006100: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006104: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2006108: 7f ff f0 21 call 200218c 200610c: 90 10 00 18 mov %i0, %o0 2006110: 7f ff f0 1b call 200217c 2006114: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2006118: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 200611c: 80 a0 60 02 cmp %g1, 2 2006120: 02 80 00 06 be 2006138 <_Event_Surrender+0x110> 2006124: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2006128: 7f ff f0 19 call 200218c 200612c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006130: 10 80 00 08 b 2006150 <_Event_Surrender+0x128> 2006134: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2006138: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200613c: 7f ff f0 14 call 200218c 2006140: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 2006144: 40 00 0e 82 call 2009b4c <_Watchdog_Remove> 2006148: 90 07 60 48 add %i5, 0x48, %o0 200614c: b2 16 63 f8 or %i1, 0x3f8, %i1 2006150: 40 00 09 e0 call 20088d0 <_Thread_Clear_state> 2006154: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2006158: 7f ff f0 0d call 200218c 200615c: 81 e8 00 00 restore =============================================================================== 02006160 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2006160: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2006164: 90 10 00 18 mov %i0, %o0 2006168: 40 00 0a c8 call 2008c88 <_Thread_Get> 200616c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006170: c2 07 bf fc ld [ %fp + -4 ], %g1 2006174: 80 a0 60 00 cmp %g1, 0 2006178: 12 80 00 1d bne 20061ec <_Event_Timeout+0x8c> <== NEVER TAKEN 200617c: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006180: 7f ff ef ff call 200217c 2006184: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006188: 03 00 80 6d sethi %hi(0x201b400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200618c: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 201b728 <_Per_CPU_Information+0xc> 2006190: 80 a7 40 01 cmp %i5, %g1 2006194: 12 80 00 09 bne 20061b8 <_Event_Timeout+0x58> 2006198: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 200619c: 03 00 80 6d sethi %hi(0x201b400), %g1 20061a0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201b770 <_Event_Sync_state> 20061a4: 80 a0 a0 01 cmp %g2, 1 20061a8: 32 80 00 05 bne,a 20061bc <_Event_Timeout+0x5c> 20061ac: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 20061b0: 84 10 20 02 mov 2, %g2 20061b4: c4 20 63 70 st %g2, [ %g1 + 0x370 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 20061b8: 82 10 20 06 mov 6, %g1 20061bc: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 20061c0: 7f ff ef f3 call 200218c 20061c4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20061c8: 90 10 00 1d mov %i5, %o0 20061cc: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20061d0: 40 00 09 c0 call 20088d0 <_Thread_Clear_state> 20061d4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20061d8: 03 00 80 6d sethi %hi(0x201b400), %g1 20061dc: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level> 20061e0: 84 00 bf ff add %g2, -1, %g2 20061e4: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 20061e8: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 20061ec: 81 c7 e0 08 ret 20061f0: 81 e8 00 00 restore =============================================================================== 0200bc98 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bc98: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bc9c: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200bca0: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200bca4: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200bca8: e0 06 20 20 ld [ %i0 + 0x20 ], %l0 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200bcac: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 uintptr_t const min_block_size = heap->min_block_size; 200bcb0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200bcb4: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200bcb8: 80 a7 40 19 cmp %i5, %i1 200bcbc: 0a 80 00 9f bcs 200bf38 <_Heap_Extend+0x2a0> 200bcc0: b8 10 20 00 clr %i4 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200bcc4: 90 10 00 19 mov %i1, %o0 200bcc8: 92 10 00 1a mov %i2, %o1 200bccc: 94 10 00 11 mov %l1, %o2 200bcd0: 98 07 bf f8 add %fp, -8, %o4 200bcd4: 7f ff ed 48 call 20071f4 <_Heap_Get_first_and_last_block> 200bcd8: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200bcdc: 80 8a 20 ff btst 0xff, %o0 200bce0: 02 80 00 96 be 200bf38 <_Heap_Extend+0x2a0> 200bce4: b4 10 00 10 mov %l0, %i2 200bce8: aa 10 20 00 clr %l5 200bcec: ac 10 20 00 clr %l6 200bcf0: b8 10 20 00 clr %i4 200bcf4: a8 10 20 00 clr %l4 200bcf8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200bcfc: 80 a0 40 1d cmp %g1, %i5 200bd00: 1a 80 00 05 bcc 200bd14 <_Heap_Extend+0x7c> 200bd04: e6 06 80 00 ld [ %i2 ], %l3 200bd08: 80 a6 40 13 cmp %i1, %l3 200bd0c: 2a 80 00 8b bcs,a 200bf38 <_Heap_Extend+0x2a0> 200bd10: b8 10 20 00 clr %i4 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200bd14: 80 a7 40 01 cmp %i5, %g1 200bd18: 02 80 00 06 be 200bd30 <_Heap_Extend+0x98> 200bd1c: 80 a7 40 13 cmp %i5, %l3 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200bd20: 2a 80 00 05 bcs,a 200bd34 <_Heap_Extend+0x9c> 200bd24: ac 10 00 1a mov %i2, %l6 200bd28: 10 80 00 04 b 200bd38 <_Heap_Extend+0xa0> 200bd2c: 90 10 00 13 mov %l3, %o0 200bd30: a8 10 00 1a mov %i2, %l4 200bd34: 90 10 00 13 mov %l3, %o0 200bd38: 40 00 15 fd call 201152c <.urem> 200bd3c: 92 10 00 11 mov %l1, %o1 200bd40: ae 04 ff f8 add %l3, -8, %l7 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200bd44: 80 a4 c0 19 cmp %l3, %i1 200bd48: 12 80 00 05 bne 200bd5c <_Heap_Extend+0xc4> 200bd4c: 90 25 c0 08 sub %l7, %o0, %o0 start_block->prev_size = extend_area_end; 200bd50: fa 26 80 00 st %i5, [ %i2 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200bd54: 10 80 00 04 b 200bd64 <_Heap_Extend+0xcc> 200bd58: b8 10 00 08 mov %o0, %i4 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200bd5c: 2a 80 00 02 bcs,a 200bd64 <_Heap_Extend+0xcc> 200bd60: aa 10 00 08 mov %o0, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bd64: f4 02 20 04 ld [ %o0 + 4 ], %i2 200bd68: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd6c: b4 06 80 08 add %i2, %o0, %i2 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200bd70: 80 a6 80 10 cmp %i2, %l0 200bd74: 12 bf ff e2 bne 200bcfc <_Heap_Extend+0x64> 200bd78: 82 10 00 1a mov %i2, %g1 if ( extend_area_begin < heap->area_begin ) { 200bd7c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200bd80: 80 a6 40 01 cmp %i1, %g1 200bd84: 3a 80 00 04 bcc,a 200bd94 <_Heap_Extend+0xfc> 200bd88: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200bd8c: 10 80 00 05 b 200bda0 <_Heap_Extend+0x108> 200bd90: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200bd94: 80 a0 40 1d cmp %g1, %i5 200bd98: 2a 80 00 02 bcs,a 200bda0 <_Heap_Extend+0x108> 200bd9c: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200bda0: c4 07 bf f8 ld [ %fp + -8 ], %g2 200bda4: c2 07 bf fc ld [ %fp + -4 ], %g1 extend_first_block->prev_size = extend_area_end; 200bda8: fa 20 80 00 st %i5, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200bdac: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200bdb0: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200bdb4: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200bdb8: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200bdbc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 200bdc0: 80 a0 c0 02 cmp %g3, %g2 200bdc4: 08 80 00 04 bleu 200bdd4 <_Heap_Extend+0x13c> 200bdc8: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200bdcc: 10 80 00 06 b 200bde4 <_Heap_Extend+0x14c> 200bdd0: c4 26 20 20 st %g2, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200bdd4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200bdd8: 80 a0 80 01 cmp %g2, %g1 200bddc: 2a 80 00 02 bcs,a 200bde4 <_Heap_Extend+0x14c> 200bde0: c2 26 20 24 st %g1, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200bde4: 80 a5 20 00 cmp %l4, 0 200bde8: 02 80 00 14 be 200be38 <_Heap_Extend+0x1a0> 200bdec: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200bdf0: f4 06 20 10 ld [ %i0 + 0x10 ], %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200bdf4: 92 10 00 1a mov %i2, %o1 200bdf8: 40 00 15 cd call 201152c <.urem> 200bdfc: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200be00: 80 a2 20 00 cmp %o0, 0 200be04: 02 80 00 04 be 200be14 <_Heap_Extend+0x17c> 200be08: c2 05 00 00 ld [ %l4 ], %g1 return value - remainder + alignment; 200be0c: b2 06 40 1a add %i1, %i2, %i1 200be10: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200be14: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200be18: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200be1c: 82 25 00 09 sub %l4, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200be20: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200be24: 90 10 00 18 mov %i0, %o0 200be28: 7f ff ff 92 call 200bc70 <_Heap_Free_block> 200be2c: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200be30: 10 80 00 08 b 200be50 <_Heap_Extend+0x1b8> 200be34: 80 a7 20 00 cmp %i4, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200be38: 80 a5 a0 00 cmp %l6, 0 200be3c: 02 80 00 04 be 200be4c <_Heap_Extend+0x1b4> 200be40: ac 25 80 01 sub %l6, %g1, %l6 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200be44: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200be48: ec 20 60 04 st %l6, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200be4c: 80 a7 20 00 cmp %i4, 0 200be50: 02 80 00 15 be 200bea4 <_Heap_Extend+0x20c> 200be54: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200be58: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200be5c: ba 27 40 1c sub %i5, %i4, %i5 200be60: 40 00 15 b3 call 201152c <.urem> 200be64: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200be68: c4 07 20 04 ld [ %i4 + 4 ], %g2 200be6c: ba 27 40 08 sub %i5, %o0, %i5 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be70: 82 07 40 1c add %i5, %i4, %g1 (last_block->size_and_flag - last_block_new_size) 200be74: 84 20 80 1d sub %g2, %i5, %g2 | HEAP_PREV_BLOCK_USED; 200be78: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be7c: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be80: c2 07 20 04 ld [ %i4 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200be84: 90 10 00 18 mov %i0, %o0 200be88: 82 08 60 01 and %g1, 1, %g1 200be8c: 92 10 00 1c mov %i4, %o1 block->size_and_flag = size | flag; 200be90: ba 17 40 01 or %i5, %g1, %i5 200be94: 7f ff ff 77 call 200bc70 <_Heap_Free_block> 200be98: fa 27 20 04 st %i5, [ %i4 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200be9c: 10 80 00 0f b 200bed8 <_Heap_Extend+0x240> 200bea0: 80 a7 20 00 cmp %i4, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200bea4: 80 a5 60 00 cmp %l5, 0 200bea8: 02 80 00 0b be 200bed4 <_Heap_Extend+0x23c> 200beac: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200beb0: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200beb4: c2 07 bf fc ld [ %fp + -4 ], %g1 200beb8: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200bebc: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200bec0: 84 10 c0 02 or %g3, %g2, %g2 200bec4: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200bec8: c4 00 60 04 ld [ %g1 + 4 ], %g2 200becc: 84 10 a0 01 or %g2, 1, %g2 200bed0: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200bed4: 80 a7 20 00 cmp %i4, 0 200bed8: 32 80 00 09 bne,a 200befc <_Heap_Extend+0x264> 200bedc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bee0: 80 a5 20 00 cmp %l4, 0 200bee4: 32 80 00 06 bne,a 200befc <_Heap_Extend+0x264> 200bee8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200beec: d2 07 bf f8 ld [ %fp + -8 ], %o1 200bef0: 7f ff ff 60 call 200bc70 <_Heap_Free_block> 200bef4: 90 10 00 18 mov %i0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200bef8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200befc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bf00: c6 00 60 04 ld [ %g1 + 4 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200bf04: 84 20 80 01 sub %g2, %g1, %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bf08: 86 08 e0 01 and %g3, 1, %g3 block->size_and_flag = size | flag; 200bf0c: 84 10 c0 02 or %g3, %g2, %g2 200bf10: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200bf14: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200bf18: b8 10 20 01 mov 1, %i4 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200bf1c: a4 20 40 12 sub %g1, %l2, %l2 /* Statistics */ stats->size += extended_size; 200bf20: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200bf24: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200bf28: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200bf2c: 02 80 00 03 be 200bf38 <_Heap_Extend+0x2a0> <== NEVER TAKEN 200bf30: c2 26 20 2c st %g1, [ %i0 + 0x2c ] 200bf34: e4 26 c0 00 st %l2, [ %i3 ] *extended_size_ptr = extended_size; return true; } 200bf38: b0 0f 20 01 and %i4, 1, %i0 200bf3c: 81 c7 e0 08 ret 200bf40: 81 e8 00 00 restore =============================================================================== 0200c0a8 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c0a8: 9d e3 bf a0 save %sp, -96, %sp * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200c0ac: 88 10 20 01 mov 1, %g4 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200c0b0: 80 a6 60 00 cmp %i1, 0 200c0b4: 02 80 00 77 be 200c290 <_Heap_Free+0x1e8> 200c0b8: 90 10 00 19 mov %i1, %o0 200c0bc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c0c0: 40 00 2b 26 call 2016d58 <.urem> 200c0c4: ba 06 7f f8 add %i1, -8, %i5 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c0c8: da 06 20 20 ld [ %i0 + 0x20 ], %o5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c0cc: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c0d0: 80 a7 40 0d cmp %i5, %o5 200c0d4: 0a 80 00 05 bcs 200c0e8 <_Heap_Free+0x40> 200c0d8: 82 10 20 00 clr %g1 200c0dc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200c0e0: 80 a0 40 1d cmp %g1, %i5 200c0e4: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200c0e8: 80 a0 60 00 cmp %g1, 0 200c0ec: 02 80 00 69 be 200c290 <_Heap_Free+0x1e8> 200c0f0: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0f4: d6 07 60 04 ld [ %i5 + 4 ], %o3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c0f8: 84 0a ff fe and %o3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c0fc: 82 00 80 1d add %g2, %i5, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c100: 80 a0 40 0d cmp %g1, %o5 200c104: 0a 80 00 05 bcs 200c118 <_Heap_Free+0x70> <== NEVER TAKEN 200c108: 86 10 20 00 clr %g3 200c10c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200c110: 80 a0 c0 01 cmp %g3, %g1 200c114: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200c118: 80 a0 e0 00 cmp %g3, 0 200c11c: 02 80 00 5d be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c120: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c124: de 00 60 04 ld [ %g1 + 4 ], %o7 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200c128: 80 8b e0 01 btst 1, %o7 200c12c: 02 80 00 59 be 200c290 <_Heap_Free+0x1e8> 200c130: 9e 0b ff fe and %o7, -2, %o7 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200c134: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c138: 80 a0 40 04 cmp %g1, %g4 200c13c: 02 80 00 07 be 200c158 <_Heap_Free+0xb0> 200c140: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c144: 86 00 40 0f add %g1, %o7, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c148: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200c14c: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c150: 80 a0 00 03 cmp %g0, %g3 200c154: 98 60 3f ff subx %g0, -1, %o4 if ( !_Heap_Is_prev_used( block ) ) { 200c158: 80 8a e0 01 btst 1, %o3 200c15c: 12 80 00 25 bne 200c1f0 <_Heap_Free+0x148> 200c160: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c164: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c168: 86 27 40 0b sub %i5, %o3, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c16c: 80 a0 c0 0d cmp %g3, %o5 200c170: 0a 80 00 04 bcs 200c180 <_Heap_Free+0xd8> <== NEVER TAKEN 200c174: 94 10 20 00 clr %o2 200c178: 80 a1 00 03 cmp %g4, %g3 200c17c: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200c180: 80 a2 a0 00 cmp %o2, 0 200c184: 02 80 00 43 be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c188: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c18c: da 00 e0 04 ld [ %g3 + 4 ], %o5 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c190: 80 8b 60 01 btst 1, %o5 200c194: 02 80 00 3f be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c198: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c19c: 02 80 00 0e be 200c1d4 <_Heap_Free+0x12c> 200c1a0: 88 00 80 0b add %g2, %o3, %g4 uintptr_t const size = block_size + prev_size + next_block_size; 200c1a4: 9e 01 00 0f add %g4, %o7, %o7 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200c1a8: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200c1ac: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200c1b0: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200c1b4: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c1b8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 200c1bc: 82 00 7f ff add %g1, -1, %g1 200c1c0: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c1c4: de 23 c0 03 st %o7, [ %o7 + %g3 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1c8: 82 13 e0 01 or %o7, 1, %g1 200c1cc: 10 80 00 27 b 200c268 <_Heap_Free+0x1c0> 200c1d0: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1d4: 9e 11 20 01 or %g4, 1, %o7 200c1d8: de 20 e0 04 st %o7, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1dc: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200c1e0: c8 20 80 1d st %g4, [ %g2 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1e4: 86 08 ff fe and %g3, -2, %g3 200c1e8: 10 80 00 20 b 200c268 <_Heap_Free+0x1c0> 200c1ec: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c1f0: 22 80 00 0d be,a 200c224 <_Heap_Free+0x17c> 200c1f4: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200c1f8: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200c1fc: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200c200: c8 27 60 08 st %g4, [ %i5 + 8 ] new_block->prev = prev; 200c204: c2 27 60 0c st %g1, [ %i5 + 0xc ] uintptr_t const size = block_size + next_block_size; 200c208: 86 03 c0 02 add %o7, %g2, %g3 next->prev = new_block; prev->next = new_block; 200c20c: fa 20 60 08 st %i5, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200c210: fa 21 20 0c st %i5, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c214: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c218: c6 20 c0 1d st %g3, [ %g3 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c21c: 10 80 00 13 b 200c268 <_Heap_Free+0x1c0> 200c220: c2 27 60 04 st %g1, [ %i5 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c224: f0 27 60 0c st %i0, [ %i5 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c228: c6 27 60 08 st %g3, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c22c: fa 20 e0 0c st %i5, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c230: 86 10 a0 01 or %g2, 1, %g3 200c234: c6 27 60 04 st %g3, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c238: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200c23c: c4 20 80 1d st %g2, [ %g2 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c240: 86 08 ff fe and %g3, -2, %g3 200c244: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c248: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200c24c: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c250: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c254: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c258: 80 a0 c0 01 cmp %g3, %g1 200c25c: 1a 80 00 03 bcc 200c268 <_Heap_Free+0x1c0> 200c260: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c264: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200c268: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200c26c: 88 10 20 01 mov 1, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c270: 82 00 7f ff add %g1, -1, %g1 200c274: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200c278: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200c27c: 82 00 60 01 inc %g1 200c280: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200c284: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200c288: 84 00 40 02 add %g1, %g2, %g2 200c28c: c4 26 20 30 st %g2, [ %i0 + 0x30 ] return( true ); } 200c290: b0 09 20 01 and %g4, 1, %i0 200c294: 81 c7 e0 08 ret 200c298: 81 e8 00 00 restore =============================================================================== 02018828 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2018828: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 201882c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2018830: 7f ff f9 4a call 2016d58 <.urem> 2018834: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2018838: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 201883c: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2018840: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018844: 80 a2 00 03 cmp %o0, %g3 2018848: 0a 80 00 05 bcs 201885c <_Heap_Size_of_alloc_area+0x34> 201884c: 84 10 20 00 clr %g2 2018850: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2018854: 80 a0 40 08 cmp %g1, %o0 2018858: 84 60 3f ff subx %g0, -1, %g2 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 201885c: 80 a0 a0 00 cmp %g2, 0 2018860: 02 80 00 15 be 20188b4 <_Heap_Size_of_alloc_area+0x8c> 2018864: 82 10 20 00 clr %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2018868: fa 02 20 04 ld [ %o0 + 4 ], %i5 201886c: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2018870: ba 07 40 08 add %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018874: 80 a7 40 03 cmp %i5, %g3 2018878: 0a 80 00 05 bcs 201888c <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 201887c: 84 10 20 00 clr %g2 2018880: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2018884: 80 a0 40 1d cmp %g1, %i5 2018888: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 201888c: 80 a0 a0 00 cmp %g2, 0 2018890: 02 80 00 09 be 20188b4 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 2018894: 82 10 20 00 clr %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2018898: c4 07 60 04 ld [ %i5 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 201889c: 80 88 a0 01 btst 1, %g2 20188a0: 02 80 00 05 be 20188b4 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 20188a4: ba 27 40 19 sub %i5, %i1, %i5 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 20188a8: 82 10 20 01 mov 1, %g1 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 20188ac: ba 07 60 04 add %i5, 4, %i5 20188b0: fa 26 80 00 st %i5, [ %i2 ] return true; } 20188b4: b0 08 60 01 and %g1, 1, %i0 20188b8: 81 c7 e0 08 ret 20188bc: 81 e8 00 00 restore =============================================================================== 020080f0 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20080f0: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080f4: 3b 00 80 20 sethi %hi(0x2008000), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20080f8: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 20080fc: e0 06 20 14 ld [ %i0 + 0x14 ], %l0 Heap_Block *const first_block = heap->first_block; 2008100: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 Heap_Block *const last_block = heap->last_block; 2008104: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008108: 80 a6 a0 00 cmp %i2, 0 200810c: 02 80 00 04 be 200811c <_Heap_Walk+0x2c> 2008110: ba 17 60 9c or %i5, 0x9c, %i5 2008114: 3b 00 80 20 sethi %hi(0x2008000), %i5 2008118: ba 17 60 a4 or %i5, 0xa4, %i5 ! 20080a4 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 200811c: 03 00 80 5d sethi %hi(0x2017400), %g1 2008120: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 ! 2017414 <_System_state_Current> 2008124: 80 a0 a0 03 cmp %g2, 3 2008128: 12 80 01 24 bne 20085b8 <_Heap_Walk+0x4c8> 200812c: 82 10 20 01 mov 1, %g1 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008130: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 2008134: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2008138: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200813c: f6 23 a0 60 st %i3, [ %sp + 0x60 ] 2008140: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 2008144: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008148: 90 10 00 19 mov %i1, %o0 200814c: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008150: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008154: 92 10 20 00 clr %o1 2008158: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 200815c: 15 00 80 52 sethi %hi(0x2014800), %o2 2008160: 96 10 00 1c mov %i4, %o3 2008164: 94 12 a1 c8 or %o2, 0x1c8, %o2 2008168: 9f c7 40 00 call %i5 200816c: 98 10 00 10 mov %l0, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008170: 80 a7 20 00 cmp %i4, 0 2008174: 12 80 00 07 bne 2008190 <_Heap_Walk+0xa0> 2008178: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 200817c: 15 00 80 52 sethi %hi(0x2014800), %o2 2008180: 90 10 00 19 mov %i1, %o0 2008184: 92 10 20 01 mov 1, %o1 2008188: 10 80 00 32 b 2008250 <_Heap_Walk+0x160> 200818c: 94 12 a2 60 or %o2, 0x260, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008190: 22 80 00 08 be,a 20081b0 <_Heap_Walk+0xc0> 2008194: 90 10 00 10 mov %l0, %o0 (*printer)( 2008198: 15 00 80 52 sethi %hi(0x2014800), %o2 200819c: 90 10 00 19 mov %i1, %o0 20081a0: 92 10 20 01 mov 1, %o1 20081a4: 94 12 a2 78 or %o2, 0x278, %o2 20081a8: 10 80 01 0b b 20085d4 <_Heap_Walk+0x4e4> 20081ac: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20081b0: 7f ff e6 4c call 2001ae0 <.urem> 20081b4: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 20081b8: 80 a2 20 00 cmp %o0, 0 20081bc: 22 80 00 08 be,a 20081dc <_Heap_Walk+0xec> 20081c0: 90 06 e0 08 add %i3, 8, %o0 (*printer)( 20081c4: 15 00 80 52 sethi %hi(0x2014800), %o2 20081c8: 90 10 00 19 mov %i1, %o0 20081cc: 92 10 20 01 mov 1, %o1 20081d0: 94 12 a2 98 or %o2, 0x298, %o2 20081d4: 10 80 01 00 b 20085d4 <_Heap_Walk+0x4e4> 20081d8: 96 10 00 10 mov %l0, %o3 20081dc: 7f ff e6 41 call 2001ae0 <.urem> 20081e0: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 20081e4: 80 a2 20 00 cmp %o0, 0 20081e8: 22 80 00 08 be,a 2008208 <_Heap_Walk+0x118> 20081ec: c2 06 e0 04 ld [ %i3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20081f0: 15 00 80 52 sethi %hi(0x2014800), %o2 20081f4: 90 10 00 19 mov %i1, %o0 20081f8: 92 10 20 01 mov 1, %o1 20081fc: 94 12 a2 c0 or %o2, 0x2c0, %o2 2008200: 10 80 00 f5 b 20085d4 <_Heap_Walk+0x4e4> 2008204: 96 10 00 1b mov %i3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2008208: 80 88 60 01 btst 1, %g1 200820c: 32 80 00 07 bne,a 2008228 <_Heap_Walk+0x138> 2008210: f4 04 60 04 ld [ %l1 + 4 ], %i2 (*printer)( 2008214: 15 00 80 52 sethi %hi(0x2014800), %o2 2008218: 90 10 00 19 mov %i1, %o0 200821c: 92 10 20 01 mov 1, %o1 2008220: 10 80 00 0c b 2008250 <_Heap_Walk+0x160> 2008224: 94 12 a2 f8 or %o2, 0x2f8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008228: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200822c: b4 04 40 1a add %l1, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008230: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2008234: 80 88 60 01 btst 1, %g1 2008238: 12 80 00 0a bne 2008260 <_Heap_Walk+0x170> 200823c: 80 a6 80 1b cmp %i2, %i3 (*printer)( 2008240: 15 00 80 52 sethi %hi(0x2014800), %o2 2008244: 90 10 00 19 mov %i1, %o0 2008248: 92 10 20 01 mov 1, %o1 200824c: 94 12 a3 28 or %o2, 0x328, %o2 2008250: 9f c7 40 00 call %i5 2008254: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008258: 10 80 00 d8 b 20085b8 <_Heap_Walk+0x4c8> 200825c: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( 2008260: 02 80 00 06 be 2008278 <_Heap_Walk+0x188> 2008264: 15 00 80 52 sethi %hi(0x2014800), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008268: 90 10 00 19 mov %i1, %o0 200826c: 92 10 20 01 mov 1, %o1 2008270: 10 bf ff f8 b 2008250 <_Heap_Walk+0x160> 2008274: 94 12 a3 40 or %o2, 0x340, %o2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2008278: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200827c: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008280: 10 80 00 33 b 200834c <_Heap_Walk+0x25c> 2008284: a4 10 00 18 mov %i0, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008288: 80 a0 80 0b cmp %g2, %o3 200828c: 18 80 00 05 bgu 20082a0 <_Heap_Walk+0x1b0> 2008290: 82 10 20 00 clr %g1 2008294: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2008298: 80 a0 40 0b cmp %g1, %o3 200829c: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 20082a0: 80 a0 60 00 cmp %g1, 0 20082a4: 32 80 00 07 bne,a 20082c0 <_Heap_Walk+0x1d0> 20082a8: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 20082ac: 15 00 80 52 sethi %hi(0x2014800), %o2 20082b0: 90 10 00 19 mov %i1, %o0 20082b4: 92 10 20 01 mov 1, %o1 20082b8: 10 80 00 c7 b 20085d4 <_Heap_Walk+0x4e4> 20082bc: 94 12 a3 70 or %o2, 0x370, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20082c0: d6 27 bf f8 st %o3, [ %fp + -8 ] 20082c4: 7f ff e6 07 call 2001ae0 <.urem> 20082c8: 92 10 00 13 mov %l3, %o1 ); return false; } if ( 20082cc: 80 a2 20 00 cmp %o0, 0 20082d0: 02 80 00 07 be 20082ec <_Heap_Walk+0x1fc> 20082d4: d6 07 bf f8 ld [ %fp + -8 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 20082d8: 15 00 80 52 sethi %hi(0x2014800), %o2 20082dc: 90 10 00 19 mov %i1, %o0 20082e0: 92 10 20 01 mov 1, %o1 20082e4: 10 80 00 bc b 20085d4 <_Heap_Walk+0x4e4> 20082e8: 94 12 a3 90 or %o2, 0x390, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20082ec: c2 02 e0 04 ld [ %o3 + 4 ], %g1 20082f0: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 20082f4: 82 02 c0 01 add %o3, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20082f8: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20082fc: 80 88 60 01 btst 1, %g1 2008300: 22 80 00 07 be,a 200831c <_Heap_Walk+0x22c> 2008304: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 2008308: 15 00 80 52 sethi %hi(0x2014800), %o2 200830c: 90 10 00 19 mov %i1, %o0 2008310: 92 10 20 01 mov 1, %o1 2008314: 10 80 00 b0 b 20085d4 <_Heap_Walk+0x4e4> 2008318: 94 12 a3 c0 or %o2, 0x3c0, %o2 ); return false; } if ( free_block->prev != prev_block ) { 200831c: 80 a3 00 12 cmp %o4, %l2 2008320: 22 80 00 0a be,a 2008348 <_Heap_Walk+0x258> 2008324: a4 10 00 0b mov %o3, %l2 (*printer)( 2008328: 15 00 80 52 sethi %hi(0x2014800), %o2 200832c: 90 10 00 19 mov %i1, %o0 2008330: 92 10 20 01 mov 1, %o1 2008334: 94 12 a3 e0 or %o2, 0x3e0, %o2 2008338: 9f c7 40 00 call %i5 200833c: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008340: 10 80 00 9e b 20085b8 <_Heap_Walk+0x4c8> 2008344: 82 10 20 00 clr %g1 ! 0 return false; } prev_block = free_block; free_block = free_block->next; 2008348: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 200834c: 80 a2 c0 18 cmp %o3, %i0 2008350: 32 bf ff ce bne,a 2008288 <_Heap_Walk+0x198> 2008354: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 2008358: 2d 00 80 53 sethi %hi(0x2014c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200835c: 2f 00 80 53 sethi %hi(0x2014c00), %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008360: ac 15 a1 a0 or %l6, 0x1a0, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008364: ae 15 e1 88 or %l7, 0x188, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008368: 2b 00 80 53 sethi %hi(0x2014c00), %l5 block = next_block; } while ( block != first_block ); return true; } 200836c: c2 06 a0 04 ld [ %i2 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008370: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008374: a4 08 7f fe and %g1, -2, %l2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008378: a6 04 80 1a add %l2, %i2, %l3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200837c: 80 a0 c0 13 cmp %g3, %l3 2008380: 18 80 00 05 bgu 2008394 <_Heap_Walk+0x2a4> <== NEVER TAKEN 2008384: 84 10 20 00 clr %g2 2008388: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200838c: 80 a0 80 13 cmp %g2, %l3 2008390: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 2008394: 80 a0 a0 00 cmp %g2, 0 2008398: 12 80 00 07 bne 20083b4 <_Heap_Walk+0x2c4> 200839c: 84 1e 80 11 xor %i2, %l1, %g2 (*printer)( 20083a0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083a4: 90 10 00 19 mov %i1, %o0 20083a8: 92 10 20 01 mov 1, %o1 20083ac: 10 80 00 2c b 200845c <_Heap_Walk+0x36c> 20083b0: 94 12 a0 18 or %o2, 0x18, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 20083b4: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20083b8: c2 27 bf fc st %g1, [ %fp + -4 ] 20083bc: a8 40 20 00 addx %g0, 0, %l4 20083c0: 90 10 00 12 mov %l2, %o0 20083c4: 7f ff e5 c7 call 2001ae0 <.urem> 20083c8: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 20083cc: 80 a2 20 00 cmp %o0, 0 20083d0: 02 80 00 0c be 2008400 <_Heap_Walk+0x310> 20083d4: c2 07 bf fc ld [ %fp + -4 ], %g1 20083d8: 80 8d 20 ff btst 0xff, %l4 20083dc: 02 80 00 0a be 2008404 <_Heap_Walk+0x314> 20083e0: 80 a4 80 10 cmp %l2, %l0 (*printer)( 20083e4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083e8: 90 10 00 19 mov %i1, %o0 20083ec: 92 10 20 01 mov 1, %o1 20083f0: 94 12 a0 48 or %o2, 0x48, %o2 20083f4: 96 10 00 1a mov %i2, %o3 20083f8: 10 bf ff d0 b 2008338 <_Heap_Walk+0x248> 20083fc: 98 10 00 12 mov %l2, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008400: 80 a4 80 10 cmp %l2, %l0 2008404: 1a 80 00 0d bcc 2008438 <_Heap_Walk+0x348> 2008408: 80 a4 c0 1a cmp %l3, %i2 200840c: 80 8d 20 ff btst 0xff, %l4 2008410: 02 80 00 0a be 2008438 <_Heap_Walk+0x348> <== NEVER TAKEN 2008414: 80 a4 c0 1a cmp %l3, %i2 (*printer)( 2008418: 15 00 80 53 sethi %hi(0x2014c00), %o2 200841c: 90 10 00 19 mov %i1, %o0 2008420: 92 10 20 01 mov 1, %o1 2008424: 94 12 a0 78 or %o2, 0x78, %o2 2008428: 96 10 00 1a mov %i2, %o3 200842c: 98 10 00 12 mov %l2, %o4 2008430: 10 80 00 3d b 2008524 <_Heap_Walk+0x434> 2008434: 9a 10 00 10 mov %l0, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008438: 38 80 00 0c bgu,a 2008468 <_Heap_Walk+0x378> 200843c: a8 08 60 01 and %g1, 1, %l4 2008440: 80 8d 20 ff btst 0xff, %l4 2008444: 02 80 00 09 be 2008468 <_Heap_Walk+0x378> 2008448: a8 08 60 01 and %g1, 1, %l4 (*printer)( 200844c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008450: 90 10 00 19 mov %i1, %o0 2008454: 92 10 20 01 mov 1, %o1 2008458: 94 12 a0 a8 or %o2, 0xa8, %o2 200845c: 96 10 00 1a mov %i2, %o3 2008460: 10 bf ff b6 b 2008338 <_Heap_Walk+0x248> 2008464: 98 10 00 13 mov %l3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008468: c2 04 e0 04 ld [ %l3 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200846c: 80 88 60 01 btst 1, %g1 2008470: 12 80 00 40 bne 2008570 <_Heap_Walk+0x480> 2008474: 90 10 00 19 mov %i1, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008478: da 06 a0 0c ld [ %i2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200847c: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008480: 05 00 80 52 sethi %hi(0x2014800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 2008484: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008488: 80 a3 40 01 cmp %o5, %g1 200848c: 02 80 00 07 be 20084a8 <_Heap_Walk+0x3b8> 2008490: 86 10 a1 88 or %g2, 0x188, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008494: 80 a3 40 18 cmp %o5, %i0 2008498: 12 80 00 04 bne 20084a8 <_Heap_Walk+0x3b8> 200849c: 86 15 61 50 or %l5, 0x150, %g3 20084a0: 07 00 80 52 sethi %hi(0x2014800), %g3 20084a4: 86 10 e1 98 or %g3, 0x198, %g3 ! 2014998 <_Status_Object_name_errors_to_status+0x48> block->next, block->next == last_free_block ? 20084a8: c4 06 a0 08 ld [ %i2 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20084ac: 1f 00 80 52 sethi %hi(0x2014800), %o7 20084b0: 80 a0 80 04 cmp %g2, %g4 20084b4: 02 80 00 07 be 20084d0 <_Heap_Walk+0x3e0> 20084b8: 82 13 e1 a8 or %o7, 0x1a8, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20084bc: 80 a0 80 18 cmp %g2, %i0 20084c0: 12 80 00 04 bne 20084d0 <_Heap_Walk+0x3e0> 20084c4: 82 15 61 50 or %l5, 0x150, %g1 20084c8: 03 00 80 52 sethi %hi(0x2014800), %g1 20084cc: 82 10 61 b8 or %g1, 0x1b8, %g1 ! 20149b8 <_Status_Object_name_errors_to_status+0x68> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20084d0: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 20084d4: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 20084d8: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 20084dc: 90 10 00 19 mov %i1, %o0 20084e0: 92 10 20 00 clr %o1 20084e4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084e8: 96 10 00 1a mov %i2, %o3 20084ec: 94 12 a0 e0 or %o2, 0xe0, %o2 20084f0: 9f c7 40 00 call %i5 20084f4: 98 10 00 12 mov %l2, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20084f8: da 04 c0 00 ld [ %l3 ], %o5 20084fc: 80 a4 80 0d cmp %l2, %o5 2008500: 02 80 00 0d be 2008534 <_Heap_Walk+0x444> 2008504: 80 a5 20 00 cmp %l4, 0 (*printer)( 2008508: 15 00 80 53 sethi %hi(0x2014c00), %o2 200850c: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 2008510: 90 10 00 19 mov %i1, %o0 2008514: 92 10 20 01 mov 1, %o1 2008518: 94 12 a1 18 or %o2, 0x118, %o2 200851c: 96 10 00 1a mov %i2, %o3 2008520: 98 10 00 12 mov %l2, %o4 2008524: 9f c7 40 00 call %i5 2008528: 01 00 00 00 nop 200852c: 10 80 00 23 b 20085b8 <_Heap_Walk+0x4c8> 2008530: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( !prev_used ) { 2008534: 32 80 00 0a bne,a 200855c <_Heap_Walk+0x46c> 2008538: c2 06 20 08 ld [ %i0 + 8 ], %g1 (*printer)( 200853c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008540: 90 10 00 19 mov %i1, %o0 2008544: 92 10 20 01 mov 1, %o1 2008548: 10 80 00 22 b 20085d0 <_Heap_Walk+0x4e0> 200854c: 94 12 a1 58 or %o2, 0x158, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008550: 02 80 00 17 be 20085ac <_Heap_Walk+0x4bc> 2008554: 80 a4 c0 1b cmp %l3, %i3 return true; } free_block = free_block->next; 2008558: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 200855c: 80 a0 40 18 cmp %g1, %i0 2008560: 12 bf ff fc bne 2008550 <_Heap_Walk+0x460> 2008564: 80 a0 40 1a cmp %g1, %i2 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008568: 10 80 00 17 b 20085c4 <_Heap_Walk+0x4d4> 200856c: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008570: 80 a5 20 00 cmp %l4, 0 2008574: 02 80 00 08 be 2008594 <_Heap_Walk+0x4a4> 2008578: 92 10 20 00 clr %o1 (*printer)( 200857c: 94 10 00 17 mov %l7, %o2 2008580: 96 10 00 1a mov %i2, %o3 2008584: 9f c7 40 00 call %i5 2008588: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 200858c: 10 80 00 08 b 20085ac <_Heap_Walk+0x4bc> 2008590: 80 a4 c0 1b cmp %l3, %i3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008594: da 06 80 00 ld [ %i2 ], %o5 2008598: 94 10 00 16 mov %l6, %o2 200859c: 96 10 00 1a mov %i2, %o3 20085a0: 9f c7 40 00 call %i5 20085a4: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20085a8: 80 a4 c0 1b cmp %l3, %i3 20085ac: 12 bf ff 70 bne 200836c <_Heap_Walk+0x27c> 20085b0: b4 10 00 13 mov %l3, %i2 return true; 20085b4: 82 10 20 01 mov 1, %g1 } 20085b8: b0 08 60 01 and %g1, 1, %i0 20085bc: 81 c7 e0 08 ret 20085c0: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 20085c4: 90 10 00 19 mov %i1, %o0 20085c8: 92 10 20 01 mov 1, %o1 20085cc: 94 12 a1 c8 or %o2, 0x1c8, %o2 20085d0: 96 10 00 1a mov %i2, %o3 20085d4: 9f c7 40 00 call %i5 20085d8: 01 00 00 00 nop 20085dc: 10 bf ff f7 b 20085b8 <_Heap_Walk+0x4c8> 20085e0: 82 10 20 00 clr %g1 ! 0 =============================================================================== 020078cc <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20078cc: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20078d0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20078d4: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20078d8: 80 a0 60 00 cmp %g1, 0 20078dc: 02 80 00 20 be 200795c <_Objects_Allocate+0x90> <== NEVER TAKEN 20078e0: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20078e4: b8 07 60 20 add %i5, 0x20, %i4 20078e8: 7f ff fd 81 call 2006eec <_Chain_Get> 20078ec: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 20078f0: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 20078f4: 80 a0 60 00 cmp %g1, 0 20078f8: 02 80 00 19 be 200795c <_Objects_Allocate+0x90> 20078fc: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007900: 80 a2 20 00 cmp %o0, 0 2007904: 32 80 00 0a bne,a 200792c <_Objects_Allocate+0x60> 2007908: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 _Objects_Extend_information( information ); 200790c: 40 00 00 1d call 2007980 <_Objects_Extend_information> 2007910: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007914: 7f ff fd 76 call 2006eec <_Chain_Get> 2007918: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 200791c: b0 92 20 00 orcc %o0, 0, %i0 2007920: 02 80 00 0f be 200795c <_Objects_Allocate+0x90> 2007924: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007928: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 200792c: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007930: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 2007934: 40 00 3c 5d call 2016aa8 <.udiv> 2007938: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 200793c: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2007940: 91 2a 20 02 sll %o0, 2, %o0 2007944: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2007948: 84 00 bf ff add %g2, -1, %g2 200794c: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2007950: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 2007954: 82 00 7f ff add %g1, -1, %g1 2007958: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 200795c: 81 c7 e0 08 ret 2007960: 81 e8 00 00 restore =============================================================================== 02007cd8 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007cd8: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007cdc: 80 a6 60 00 cmp %i1, 0 2007ce0: 02 80 00 17 be 2007d3c <_Objects_Get_information+0x64> 2007ce4: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007ce8: 40 00 11 6d call 200c29c <_Objects_API_maximum_class> 2007cec: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007cf0: 80 a2 20 00 cmp %o0, 0 2007cf4: 02 80 00 12 be 2007d3c <_Objects_Get_information+0x64> 2007cf8: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007cfc: 18 80 00 10 bgu 2007d3c <_Objects_Get_information+0x64> 2007d00: 03 00 80 6d sethi %hi(0x201b400), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007d04: b1 2e 20 02 sll %i0, 2, %i0 2007d08: 82 10 60 58 or %g1, 0x58, %g1 2007d0c: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007d10: 80 a0 60 00 cmp %g1, 0 2007d14: 02 80 00 0a be 2007d3c <_Objects_Get_information+0x64> <== NEVER TAKEN 2007d18: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007d1c: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 2007d20: 80 a7 60 00 cmp %i5, 0 2007d24: 02 80 00 06 be 2007d3c <_Objects_Get_information+0x64> <== NEVER TAKEN 2007d28: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007d2c: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 2007d30: 80 a0 00 01 cmp %g0, %g1 2007d34: 82 60 20 00 subx %g0, 0, %g1 2007d38: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 2007d3c: 81 c7 e0 08 ret 2007d40: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02008828 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2008828: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 200882c: 92 96 20 00 orcc %i0, 0, %o1 2008830: 12 80 00 06 bne 2008848 <_Objects_Id_to_name+0x20> 2008834: 83 32 60 18 srl %o1, 0x18, %g1 2008838: 03 00 80 72 sethi %hi(0x201c800), %g1 200883c: c2 00 63 08 ld [ %g1 + 0x308 ], %g1 ! 201cb08 <_Per_CPU_Information+0xc> 2008840: d2 00 60 08 ld [ %g1 + 8 ], %o1 2008844: 83 32 60 18 srl %o1, 0x18, %g1 2008848: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 200884c: 84 00 7f ff add %g1, -1, %g2 2008850: 80 a0 a0 02 cmp %g2, 2 2008854: 18 80 00 12 bgu 200889c <_Objects_Id_to_name+0x74> 2008858: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200885c: 10 80 00 12 b 20088a4 <_Objects_Id_to_name+0x7c> 2008860: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008864: 85 28 a0 02 sll %g2, 2, %g2 2008868: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 200886c: 80 a2 20 00 cmp %o0, 0 2008870: 02 80 00 0b be 200889c <_Objects_Id_to_name+0x74> <== NEVER TAKEN 2008874: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008878: 7f ff ff ce call 20087b0 <_Objects_Get> 200887c: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2008880: 80 a2 20 00 cmp %o0, 0 2008884: 02 80 00 06 be 200889c <_Objects_Id_to_name+0x74> 2008888: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200888c: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2008890: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008894: 40 00 03 69 call 2009638 <_Thread_Enable_dispatch> 2008898: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 200889c: 81 c7 e0 08 ret 20088a0: 91 e8 00 1d restore %g0, %i5, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20088a4: 05 00 80 72 sethi %hi(0x201c800), %g2 20088a8: 84 10 a0 38 or %g2, 0x38, %g2 ! 201c838 <_Objects_Information_table> 20088ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20088b0: 80 a0 60 00 cmp %g1, 0 20088b4: 12 bf ff ec bne 2008864 <_Objects_Id_to_name+0x3c> 20088b8: 85 32 60 1b srl %o1, 0x1b, %g2 20088bc: 30 bf ff f8 b,a 200889c <_Objects_Id_to_name+0x74> =============================================================================== 020096ec <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 20096ec: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 20096f0: 80 a6 60 00 cmp %i1, 0 20096f4: 02 80 00 73 be 20098c0 <_RBTree_Extract_unprotected+0x1d4> 20096f8: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 20096fc: c2 06 20 08 ld [ %i0 + 8 ], %g1 2009700: 80 a6 40 01 cmp %i1, %g1 2009704: 32 80 00 0d bne,a 2009738 <_RBTree_Extract_unprotected+0x4c> 2009708: c2 06 20 0c ld [ %i0 + 0xc ], %g1 if (the_node->child[RBT_RIGHT]) 200970c: c2 06 60 08 ld [ %i1 + 8 ], %g1 2009710: 80 a0 60 00 cmp %g1, 0 2009714: 22 80 00 04 be,a 2009724 <_RBTree_Extract_unprotected+0x38> 2009718: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 200971c: 10 80 00 06 b 2009734 <_RBTree_Extract_unprotected+0x48> 2009720: c2 26 20 08 st %g1, [ %i0 + 8 ] else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2009724: 80 a6 00 01 cmp %i0, %g1 2009728: 12 80 00 03 bne 2009734 <_RBTree_Extract_unprotected+0x48> 200972c: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 2009730: c0 26 20 08 clr [ %i0 + 8 ] } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 2009734: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009738: 80 a6 40 01 cmp %i1, %g1 200973c: 12 80 00 0b bne 2009768 <_RBTree_Extract_unprotected+0x7c> 2009740: c2 06 60 04 ld [ %i1 + 4 ], %g1 if (the_node->child[RBT_LEFT]) 2009744: 80 a0 60 00 cmp %g1, 0 2009748: 22 80 00 04 be,a 2009758 <_RBTree_Extract_unprotected+0x6c> 200974c: c4 06 40 00 ld [ %i1 ], %g2 the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; 2009750: 10 80 00 06 b 2009768 <_RBTree_Extract_unprotected+0x7c> 2009754: c2 26 20 0c st %g1, [ %i0 + 0xc ] else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2009758: 80 a6 00 02 cmp %i0, %g2 200975c: 12 80 00 03 bne 2009768 <_RBTree_Extract_unprotected+0x7c> 2009760: c4 26 20 0c st %g2, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 2009764: c0 26 20 0c clr [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2009768: ba 90 60 00 orcc %g1, 0, %i5 200976c: 02 80 00 36 be 2009844 <_RBTree_Extract_unprotected+0x158> 2009770: f8 06 60 08 ld [ %i1 + 8 ], %i4 2009774: 80 a7 20 00 cmp %i4, 0 2009778: 32 80 00 05 bne,a 200978c <_RBTree_Extract_unprotected+0xa0> 200977c: c2 07 60 08 ld [ %i5 + 8 ], %g1 2009780: 10 80 00 35 b 2009854 <_RBTree_Extract_unprotected+0x168> 2009784: b8 10 00 01 mov %g1, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 2009788: c2 07 60 08 ld [ %i5 + 8 ], %g1 200978c: 80 a0 60 00 cmp %g1, 0 2009790: 32 bf ff fe bne,a 2009788 <_RBTree_Extract_unprotected+0x9c> 2009794: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 2009798: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 200979c: 80 a7 20 00 cmp %i4, 0 20097a0: 02 80 00 05 be 20097b4 <_RBTree_Extract_unprotected+0xc8> 20097a4: 01 00 00 00 nop leaf->parent = target->parent; 20097a8: c2 07 40 00 ld [ %i5 ], %g1 20097ac: 10 80 00 04 b 20097bc <_RBTree_Extract_unprotected+0xd0> 20097b0: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 20097b4: 7f ff ff 53 call 2009500 <_RBTree_Extract_validate_unprotected> 20097b8: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 20097bc: c4 07 40 00 ld [ %i5 ], %g2 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 20097c0: c2 07 60 0c ld [ %i5 + 0xc ], %g1 dir = target != target->parent->child[0]; 20097c4: c6 00 a0 04 ld [ %g2 + 4 ], %g3 20097c8: 86 1f 40 03 xor %i5, %g3, %g3 20097cc: 80 a0 00 03 cmp %g0, %g3 20097d0: 86 40 20 00 addx %g0, 0, %g3 target->parent->child[dir] = leaf; 20097d4: 87 28 e0 02 sll %g3, 2, %g3 20097d8: 84 00 80 03 add %g2, %g3, %g2 20097dc: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 20097e0: c4 06 40 00 ld [ %i1 ], %g2 20097e4: c6 00 a0 04 ld [ %g2 + 4 ], %g3 20097e8: 86 1e 40 03 xor %i1, %g3, %g3 20097ec: 80 a0 00 03 cmp %g0, %g3 20097f0: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = target; 20097f4: 87 28 e0 02 sll %g3, 2, %g3 20097f8: 84 00 80 03 add %g2, %g3, %g2 20097fc: fa 20 a0 04 st %i5, [ %g2 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2009800: c4 06 60 08 ld [ %i1 + 8 ], %g2 2009804: c4 27 60 08 st %g2, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 2009808: c4 06 60 08 ld [ %i1 + 8 ], %g2 200980c: 80 a0 a0 00 cmp %g2, 0 2009810: 32 80 00 02 bne,a 2009818 <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN 2009814: fa 20 80 00 st %i5, [ %g2 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2009818: c4 06 60 04 ld [ %i1 + 4 ], %g2 200981c: c4 27 60 04 st %g2, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 2009820: c4 06 60 04 ld [ %i1 + 4 ], %g2 2009824: 80 a0 a0 00 cmp %g2, 0 2009828: 32 80 00 02 bne,a 2009830 <_RBTree_Extract_unprotected+0x144> 200982c: fa 20 80 00 st %i5, [ %g2 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2009830: c4 06 40 00 ld [ %i1 ], %g2 2009834: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 2009838: c4 06 60 0c ld [ %i1 + 0xc ], %g2 200983c: 10 80 00 14 b 200988c <_RBTree_Extract_unprotected+0x1a0> 2009840: c4 27 60 0c st %g2, [ %i5 + 0xc ] * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 2009844: 80 a7 20 00 cmp %i4, 0 2009848: 32 80 00 04 bne,a 2009858 <_RBTree_Extract_unprotected+0x16c> 200984c: c2 06 40 00 ld [ %i1 ], %g1 2009850: 30 80 00 04 b,a 2009860 <_RBTree_Extract_unprotected+0x174> leaf->parent = the_node->parent; 2009854: c2 06 40 00 ld [ %i1 ], %g1 2009858: 10 80 00 04 b 2009868 <_RBTree_Extract_unprotected+0x17c> 200985c: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 2009860: 7f ff ff 28 call 2009500 <_RBTree_Extract_validate_unprotected> 2009864: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2009868: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 200986c: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2009870: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2009874: 86 1e 40 03 xor %i1, %g3, %g3 2009878: 80 a0 00 03 cmp %g0, %g3 200987c: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 2009880: 87 28 e0 02 sll %g3, 2, %g3 2009884: 84 00 80 03 add %g2, %g3, %g2 2009888: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 200988c: 80 a0 60 00 cmp %g1, 0 2009890: 32 80 00 06 bne,a 20098a8 <_RBTree_Extract_unprotected+0x1bc> 2009894: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 2009898: 80 a7 20 00 cmp %i4, 0 200989c: 32 80 00 02 bne,a 20098a4 <_RBTree_Extract_unprotected+0x1b8> 20098a0: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 20098a4: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 20098a8: c0 26 60 08 clr [ %i1 + 8 ] 20098ac: c0 26 60 04 clr [ %i1 + 4 ] 20098b0: 80 a0 60 00 cmp %g1, 0 20098b4: 02 80 00 03 be 20098c0 <_RBTree_Extract_unprotected+0x1d4> 20098b8: c0 26 40 00 clr [ %i1 ] 20098bc: c0 20 60 0c clr [ %g1 + 0xc ] 20098c0: 81 c7 e0 08 ret 20098c4: 81 e8 00 00 restore =============================================================================== 02009500 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2009500: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 2009504: fa 06 00 00 ld [ %i0 ], %i5 if(!parent->parent) return; 2009508: c2 07 40 00 ld [ %i5 ], %g1 200950c: 80 a0 60 00 cmp %g1, 0 2009510: 02 80 00 6e be 20096c8 <_RBTree_Extract_validate_unprotected+0x1c8> 2009514: 90 10 00 18 mov %i0, %o0 sibling = _RBTree_Sibling(the_node); 2009518: 7f ff ff ca call 2009440 <_RBTree_Sibling> 200951c: b4 10 20 01 mov 1, %i2 /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2009520: 10 80 00 5d b 2009694 <_RBTree_Extract_validate_unprotected+0x194> 2009524: c2 06 20 0c ld [ %i0 + 0xc ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009528: 22 80 00 15 be,a 200957c <_RBTree_Extract_validate_unprotected+0x7c><== NEVER TAKEN 200952c: c4 02 20 08 ld [ %o0 + 8 ], %g2 <== NOT EXECUTED 2009530: c2 02 20 0c ld [ %o0 + 0xc ], %g1 2009534: 80 a0 60 01 cmp %g1, 1 2009538: 32 80 00 11 bne,a 200957c <_RBTree_Extract_validate_unprotected+0x7c> 200953c: c4 02 20 08 ld [ %o0 + 8 ], %g2 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2009540: c2 27 60 0c st %g1, [ %i5 + 0xc ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2009544: c2 07 60 04 ld [ %i5 + 4 ], %g1 * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; 2009548: c0 22 20 0c clr [ %o0 + 0xc ] dir = the_node != parent->child[0]; 200954c: 82 1e 00 01 xor %i0, %g1, %g1 2009550: 80 a0 00 01 cmp %g0, %g1 _RBTree_Rotate(parent, dir); 2009554: 90 10 00 1d mov %i5, %o0 * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2009558: b8 40 20 00 addx %g0, 0, %i4 _RBTree_Rotate(parent, dir); 200955c: 7f ff ff ca call 2009484 <_RBTree_Rotate> 2009560: 92 10 00 1c mov %i4, %o1 sibling = parent->child[!dir]; 2009564: 80 a0 00 1c cmp %g0, %i4 2009568: 82 60 3f ff subx %g0, -1, %g1 200956c: 83 28 60 02 sll %g1, 2, %g1 2009570: 82 07 40 01 add %i5, %g1, %g1 2009574: d0 00 60 04 ld [ %g1 + 4 ], %o0 } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2009578: c4 02 20 08 ld [ %o0 + 8 ], %g2 200957c: 80 a0 a0 00 cmp %g2, 0 2009580: 02 80 00 06 be 2009598 <_RBTree_Extract_validate_unprotected+0x98> 2009584: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2009588: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 200958c: 82 18 60 01 xor %g1, 1, %g1 2009590: 80 a0 00 01 cmp %g0, %g1 2009594: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2009598: 80 a0 60 00 cmp %g1, 0 200959c: 32 80 00 14 bne,a 20095ec <_RBTree_Extract_validate_unprotected+0xec> 20095a0: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 20095a4: c4 02 20 04 ld [ %o0 + 4 ], %g2 20095a8: 80 a0 a0 00 cmp %g2, 0 20095ac: 02 80 00 07 be 20095c8 <_RBTree_Extract_validate_unprotected+0xc8> 20095b0: 80 a0 60 00 cmp %g1, 0 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 20095b4: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 20095b8: 82 18 60 01 xor %g1, 1, %g1 20095bc: 80 a0 00 01 cmp %g0, %g1 20095c0: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 20095c4: 80 a0 60 00 cmp %g1, 0 20095c8: 32 80 00 09 bne,a 20095ec <_RBTree_Extract_validate_unprotected+0xec> 20095cc: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 20095d0: f4 22 20 0c st %i2, [ %o0 + 0xc ] 20095d4: c2 07 60 0c ld [ %i5 + 0xc ], %g1 20095d8: 80 a0 60 01 cmp %g1, 1 20095dc: 32 80 00 3d bne,a 20096d0 <_RBTree_Extract_validate_unprotected+0x1d0> 20095e0: f8 07 40 00 ld [ %i5 ], %i4 if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; 20095e4: 10 80 00 33 b 20096b0 <_RBTree_Extract_validate_unprotected+0x1b0> 20095e8: c0 27 60 0c clr [ %i5 + 0xc ] * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 20095ec: 82 1e 00 01 xor %i0, %g1, %g1 20095f0: 80 a0 00 01 cmp %g0, %g1 20095f4: b8 40 20 00 addx %g0, 0, %i4 if (!_RBTree_Is_red(sibling->child[!dir])) { 20095f8: 80 a0 00 1c cmp %g0, %i4 20095fc: b6 60 3f ff subx %g0, -1, %i3 2009600: 83 2e e0 02 sll %i3, 2, %g1 2009604: 82 02 00 01 add %o0, %g1, %g1 2009608: c4 00 60 04 ld [ %g1 + 4 ], %g2 200960c: 80 a0 a0 00 cmp %g2, 0 2009610: 02 80 00 06 be 2009628 <_RBTree_Extract_validate_unprotected+0x128> 2009614: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2009618: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 200961c: 82 18 60 01 xor %g1, 1, %g1 2009620: 80 a0 00 01 cmp %g0, %g1 2009624: 82 60 3f ff subx %g0, -1, %g1 * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { 2009628: 80 a0 60 00 cmp %g1, 0 200962c: 32 80 00 0e bne,a 2009664 <_RBTree_Extract_validate_unprotected+0x164> 2009630: c2 07 60 0c ld [ %i5 + 0xc ], %g1 sibling->color = RBT_RED; 2009634: 82 10 20 01 mov 1, %g1 2009638: c2 22 20 0c st %g1, [ %o0 + 0xc ] sibling->child[dir]->color = RBT_BLACK; 200963c: 83 2f 20 02 sll %i4, 2, %g1 2009640: 82 02 00 01 add %o0, %g1, %g1 2009644: c2 00 60 04 ld [ %g1 + 4 ], %g1 _RBTree_Rotate(sibling, !dir); 2009648: 92 1f 20 01 xor %i4, 1, %o1 200964c: 7f ff ff 8e call 2009484 <_RBTree_Rotate> 2009650: c0 20 60 0c clr [ %g1 + 0xc ] sibling = parent->child[!dir]; 2009654: 83 2e e0 02 sll %i3, 2, %g1 2009658: 82 07 40 01 add %i5, %g1, %g1 200965c: d0 00 60 04 ld [ %g1 + 4 ], %o0 } sibling->color = parent->color; 2009660: c2 07 60 0c ld [ %i5 + 0xc ], %g1 parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2009664: b7 2e e0 02 sll %i3, 2, %i3 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; 2009668: c2 22 20 0c st %g1, [ %o0 + 0xc ] parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 200966c: 90 02 00 1b add %o0, %i3, %o0 2009670: c2 02 20 04 ld [ %o0 + 4 ], %g1 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; parent->color = RBT_BLACK; 2009674: c0 27 60 0c clr [ %i5 + 0xc ] sibling->child[!dir]->color = RBT_BLACK; 2009678: c0 20 60 0c clr [ %g1 + 0xc ] _RBTree_Rotate(parent, dir); 200967c: 90 10 00 1d mov %i5, %o0 2009680: 7f ff ff 81 call 2009484 <_RBTree_Rotate> 2009684: 92 10 00 1c mov %i4, %o1 break; /* done */ 2009688: 10 80 00 0b b 20096b4 <_RBTree_Extract_validate_unprotected+0x1b4> 200968c: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2009690: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009694: 80 a0 60 01 cmp %g1, 1 2009698: 22 80 00 07 be,a 20096b4 <_RBTree_Extract_validate_unprotected+0x1b4> 200969c: c2 06 00 00 ld [ %i0 ], %g1 20096a0: c2 07 40 00 ld [ %i5 ], %g1 20096a4: 80 a0 60 00 cmp %g1, 0 20096a8: 12 bf ff a0 bne 2009528 <_RBTree_Extract_validate_unprotected+0x28> 20096ac: 80 a2 20 00 cmp %o0, 0 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 20096b0: c2 06 00 00 ld [ %i0 ], %g1 20096b4: c2 00 40 00 ld [ %g1 ], %g1 20096b8: 80 a0 60 00 cmp %g1, 0 20096bc: 12 80 00 0a bne 20096e4 <_RBTree_Extract_validate_unprotected+0x1e4> 20096c0: 01 00 00 00 nop 20096c4: c0 26 20 0c clr [ %i0 + 0xc ] 20096c8: 81 c7 e0 08 ret 20096cc: 81 e8 00 00 restore parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; sibling = _RBTree_Sibling(the_node); 20096d0: 90 10 00 1d mov %i5, %o0 20096d4: 7f ff ff 5b call 2009440 <_RBTree_Sibling> 20096d8: b0 10 00 1d mov %i5, %i0 20096dc: 10 bf ff ed b 2009690 <_RBTree_Extract_validate_unprotected+0x190> 20096e0: ba 10 00 1c mov %i4, %i5 20096e4: 81 c7 e0 08 ret 20096e8: 81 e8 00 00 restore =============================================================================== 02009c48 <_RBTree_Initialize>: void *starting_address, size_t number_nodes, size_t node_size, bool is_unique ) { 2009c48: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 2009c4c: 80 a6 20 00 cmp %i0, 0 2009c50: 02 80 00 10 be 2009c90 <_RBTree_Initialize+0x48> <== NEVER TAKEN 2009c54: 01 00 00 00 nop RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 2009c58: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 2009c5c: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 2009c60: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 2009c64: c0 26 20 0c clr [ %i0 + 0xc ] the_rbtree->compare_function = compare_function; 2009c68: f2 26 20 10 st %i1, [ %i0 + 0x10 ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 2009c6c: 10 80 00 06 b 2009c84 <_RBTree_Initialize+0x3c> 2009c70: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ] _RBTree_Insert(the_rbtree, next); 2009c74: 90 10 00 18 mov %i0, %o0 2009c78: 7f ff ff ef call 2009c34 <_RBTree_Insert> 2009c7c: b4 06 80 1c add %i2, %i4, %i2 * node_size - size of node in bytes * * Output parameters: NONE */ void _RBTree_Initialize( 2009c80: b6 06 ff ff add %i3, -1, %i3 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 2009c84: 80 a6 e0 00 cmp %i3, 0 2009c88: 12 bf ff fb bne 2009c74 <_RBTree_Initialize+0x2c> 2009c8c: 92 10 00 1a mov %i2, %o1 2009c90: 81 c7 e0 08 ret 2009c94: 81 e8 00 00 restore =============================================================================== 0200299c <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; 200299c: 80 a2 20 00 cmp %o0, 0 20029a0: 02 80 00 0e be 20029d8 <_RBTree_Sibling+0x3c> 20029a4: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 20029a8: c4 02 00 00 ld [ %o0 ], %g2 20029ac: 80 a0 a0 00 cmp %g2, 0 20029b0: 02 80 00 0a be 20029d8 <_RBTree_Sibling+0x3c> <== NEVER TAKEN 20029b4: 01 00 00 00 nop if(!(the_node->parent->parent)) return NULL; 20029b8: c6 00 80 00 ld [ %g2 ], %g3 20029bc: 80 a0 e0 00 cmp %g3, 0 20029c0: 02 80 00 06 be 20029d8 <_RBTree_Sibling+0x3c> 20029c4: 01 00 00 00 nop if(the_node == the_node->parent->child[RBT_LEFT]) 20029c8: c2 00 a0 04 ld [ %g2 + 4 ], %g1 20029cc: 80 a2 00 01 cmp %o0, %g1 20029d0: 22 80 00 02 be,a 20029d8 <_RBTree_Sibling+0x3c> 20029d4: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; else return the_node->parent->child[RBT_LEFT]; } 20029d8: 81 c3 e0 08 retl 20029dc: 90 10 00 01 mov %g1, %o0 =============================================================================== 02009a70 <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 2009a70: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 2009a74: 10 80 00 1f b 2009af0 <_RBTree_Validate_insert_unprotected+0x80> 2009a78: b6 10 20 01 mov 1, %i3 ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2009a7c: 80 a0 60 00 cmp %g1, 0 2009a80: 02 80 00 27 be 2009b1c <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN 2009a84: c2 07 60 04 ld [ %i5 + 4 ], %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2009a88: 80 a2 00 01 cmp %o0, %g1 2009a8c: 22 80 00 02 be,a 2009a94 <_RBTree_Validate_insert_unprotected+0x24> 2009a90: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009a94: 80 a0 60 00 cmp %g1, 0 2009a98: 22 80 00 21 be,a 2009b1c <_RBTree_Validate_insert_unprotected+0xac> 2009a9c: c2 07 60 04 ld [ %i5 + 4 ], %g1 2009aa0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2009aa4: 80 a0 a0 01 cmp %g2, 1 2009aa8: 32 80 00 1d bne,a 2009b1c <_RBTree_Validate_insert_unprotected+0xac> 2009aac: c2 07 60 04 ld [ %i5 + 4 ], %g1 u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; 2009ab0: c0 22 20 0c clr [ %o0 + 0xc ] u->color = RBT_BLACK; 2009ab4: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 2009ab8: c4 27 60 0c st %g2, [ %i5 + 0xc ] 2009abc: 10 80 00 0d b 2009af0 <_RBTree_Validate_insert_unprotected+0x80> 2009ac0: b0 10 00 1d mov %i5, %i0 RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); 2009ac4: 7f ff ff cc call 20099f4 <_RBTree_Rotate> 2009ac8: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 2009acc: 83 2f 20 02 sll %i4, 2, %g1 2009ad0: b0 06 00 01 add %i0, %g1, %i0 2009ad4: f0 06 20 04 ld [ %i0 + 4 ], %i0 } the_node->parent->color = RBT_BLACK; 2009ad8: c2 06 00 00 ld [ %i0 ], %g1 g->color = RBT_RED; /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2009adc: 90 10 00 1d mov %i5, %o0 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2009ae0: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 2009ae4: f6 27 60 0c st %i3, [ %i5 + 0xc ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2009ae8: 7f ff ff c3 call 20099f4 <_RBTree_Rotate> 2009aec: 92 26 c0 1c sub %i3, %i4, %o1 ISR_Level level; _ISR_Disable( level ); return _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 2009af0: d0 06 00 00 ld [ %i0 ], %o0 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2009af4: fa 02 00 00 ld [ %o0 ], %i5 2009af8: 80 a7 60 00 cmp %i5, 0 2009afc: 22 80 00 14 be,a 2009b4c <_RBTree_Validate_insert_unprotected+0xdc> 2009b00: c0 26 20 0c clr [ %i0 + 0xc ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009b04: c2 02 20 0c ld [ %o0 + 0xc ], %g1 2009b08: 80 a0 60 01 cmp %g1, 1 2009b0c: 12 80 00 10 bne 2009b4c <_RBTree_Validate_insert_unprotected+0xdc> 2009b10: 01 00 00 00 nop ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2009b14: 10 bf ff da b 2009a7c <_RBTree_Validate_insert_unprotected+0xc> 2009b18: c2 07 40 00 ld [ %i5 ], %g1 u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 2009b1c: 82 1a 00 01 xor %o0, %g1, %g1 2009b20: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2009b24: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 2009b28: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2009b2c: 82 1e 00 01 xor %i0, %g1, %g1 2009b30: 80 a0 00 01 cmp %g0, %g1 2009b34: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 2009b38: 80 a0 40 1c cmp %g1, %i4 2009b3c: 12 bf ff e2 bne 2009ac4 <_RBTree_Validate_insert_unprotected+0x54> 2009b40: 01 00 00 00 nop _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2009b44: 10 bf ff e6 b 2009adc <_RBTree_Validate_insert_unprotected+0x6c> 2009b48: c2 06 00 00 ld [ %i0 ], %g1 2009b4c: 81 c7 e0 08 ret 2009b50: 81 e8 00 00 restore =============================================================================== 0200ba94 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200ba94: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200ba98: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200ba9c: 80 a7 60 00 cmp %i5, 0 200baa0: 02 80 00 1c be 200bb10 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN 200baa4: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200baa8: 7f ff d9 b5 call 200217c 200baac: 01 00 00 00 nop signal_set = asr->signals_posted; 200bab0: f6 07 60 14 ld [ %i5 + 0x14 ], %i3 asr->signals_posted = 0; 200bab4: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200bab8: 7f ff d9 b5 call 200218c 200babc: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200bac0: 80 a6 e0 00 cmp %i3, 0 200bac4: 02 80 00 13 be 200bb10 <_RTEMS_tasks_Post_switch_extension+0x7c> 200bac8: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 200bacc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bad0: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200bad4: 82 00 60 01 inc %g1 200bad8: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200badc: 39 00 00 3f sethi %hi(0xfc00), %i4 200bae0: 40 00 07 3b call 200d7cc 200bae4: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200bae8: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200baec: 9f c0 40 00 call %g1 200baf0: 90 10 00 1b mov %i3, %o0 asr->nest_level -= 1; 200baf4: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200baf8: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200bafc: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bb00: 92 17 23 ff or %i4, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200bb04: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bb08: 40 00 07 31 call 200d7cc 200bb0c: 94 07 bf fc add %fp, -4, %o2 200bb10: 81 c7 e0 08 ret 200bb14: 81 e8 00 00 restore =============================================================================== 020076f4 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 20076f4: 9d e3 bf 98 save %sp, -104, %sp 20076f8: 11 00 80 74 sethi %hi(0x201d000), %o0 20076fc: 92 10 00 18 mov %i0, %o1 2007700: 90 12 22 24 or %o0, 0x224, %o0 2007704: 40 00 07 c4 call 2009614 <_Objects_Get> 2007708: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 200770c: c2 07 bf fc ld [ %fp + -4 ], %g1 2007710: 80 a0 60 00 cmp %g1, 0 2007714: 12 80 00 25 bne 20077a8 <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN 2007718: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 200771c: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007720: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007724: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007728: 80 88 80 01 btst %g2, %g1 200772c: 22 80 00 0b be,a 2007758 <_Rate_monotonic_Timeout+0x64> 2007730: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007734: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007738: c2 07 60 08 ld [ %i5 + 8 ], %g1 200773c: 80 a0 80 01 cmp %g2, %g1 2007740: 32 80 00 06 bne,a 2007758 <_Rate_monotonic_Timeout+0x64> 2007744: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007748: 13 04 00 ff sethi %hi(0x1003fc00), %o1 200774c: 40 00 0a 78 call 200a12c <_Thread_Clear_state> 2007750: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007754: 30 80 00 06 b,a 200776c <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007758: 80 a0 60 01 cmp %g1, 1 200775c: 12 80 00 0d bne 2007790 <_Rate_monotonic_Timeout+0x9c> 2007760: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007764: 82 10 20 03 mov 3, %g1 2007768: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 200776c: 7f ff fe 65 call 2007100 <_Rate_monotonic_Initiate_statistics> 2007770: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007774: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007778: 11 00 80 75 sethi %hi(0x201d400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200777c: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007780: 90 12 20 4c or %o0, 0x4c, %o0 2007784: 40 00 0f 11 call 200b3c8 <_Watchdog_Insert> 2007788: 92 07 60 10 add %i5, 0x10, %o1 200778c: 30 80 00 02 b,a 2007794 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007790: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007794: 03 00 80 74 sethi %hi(0x201d000), %g1 2007798: c4 00 63 90 ld [ %g1 + 0x390 ], %g2 ! 201d390 <_Thread_Dispatch_disable_level> 200779c: 84 00 bf ff add %g2, -1, %g2 20077a0: c4 20 63 90 st %g2, [ %g1 + 0x390 ] return _Thread_Dispatch_disable_level; 20077a4: c2 00 63 90 ld [ %g1 + 0x390 ], %g1 20077a8: 81 c7 e0 08 ret 20077ac: 81 e8 00 00 restore =============================================================================== 02007160 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007160: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007164: 03 00 80 73 sethi %hi(0x201cc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007168: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200716c: 80 a6 20 00 cmp %i0, 0 2007170: 02 80 00 2b be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 2007174: d2 00 63 78 ld [ %g1 + 0x378 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007178: 11 00 03 d0 sethi %hi(0xf4000), %o0 200717c: 40 00 46 72 call 2018b44 <.udiv> 2007180: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007184: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007188: 80 a0 40 08 cmp %g1, %o0 200718c: 3a 80 00 25 bcc,a 2007220 <_TOD_Validate+0xc0> 2007190: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2007194: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007198: 80 a0 60 3b cmp %g1, 0x3b 200719c: 38 80 00 21 bgu,a 2007220 <_TOD_Validate+0xc0> 20071a0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20071a4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20071a8: 80 a0 60 3b cmp %g1, 0x3b 20071ac: 38 80 00 1d bgu,a 2007220 <_TOD_Validate+0xc0> 20071b0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20071b4: c2 06 20 0c ld [ %i0 + 0xc ], %g1 20071b8: 80 a0 60 17 cmp %g1, 0x17 20071bc: 38 80 00 19 bgu,a 2007220 <_TOD_Validate+0xc0> 20071c0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20071c4: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 20071c8: 80 a0 60 00 cmp %g1, 0 20071cc: 02 80 00 14 be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 20071d0: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20071d4: 38 80 00 13 bgu,a 2007220 <_TOD_Validate+0xc0> 20071d8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071dc: c6 06 00 00 ld [ %i0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20071e0: 80 a0 e7 c3 cmp %g3, 0x7c3 20071e4: 28 80 00 0f bleu,a 2007220 <_TOD_Validate+0xc0> 20071e8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20071ec: c4 06 20 08 ld [ %i0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071f0: 80 a0 a0 00 cmp %g2, 0 20071f4: 02 80 00 0a be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 20071f8: 80 88 e0 03 btst 3, %g3 20071fc: 07 00 80 6f sethi %hi(0x201bc00), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007200: 12 80 00 03 bne 200720c <_TOD_Validate+0xac> 2007204: 86 10 e0 88 or %g3, 0x88, %g3 ! 201bc88 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 2007208: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 200720c: 83 28 60 02 sll %g1, 2, %g1 2007210: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 2007214: 80 a0 40 02 cmp %g1, %g2 2007218: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 200721c: b0 0f 60 01 and %i5, 1, %i0 2007220: 81 c7 e0 08 ret 2007224: 81 e8 00 00 restore =============================================================================== 020087b8 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 20087b8: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 20087bc: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 20087c0: 40 00 03 59 call 2009524 <_Thread_Set_transient> 20087c4: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 20087c8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20087cc: 80 a0 40 19 cmp %g1, %i1 20087d0: 02 80 00 05 be 20087e4 <_Thread_Change_priority+0x2c> 20087d4: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 20087d8: 90 10 00 18 mov %i0, %o0 20087dc: 40 00 03 39 call 20094c0 <_Thread_Set_priority> 20087e0: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 20087e4: 7f ff e6 66 call 200217c 20087e8: 01 00 00 00 nop 20087ec: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 20087f0: f2 07 60 10 ld [ %i5 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 20087f4: 80 a6 60 04 cmp %i1, 4 20087f8: 02 80 00 10 be 2008838 <_Thread_Change_priority+0x80> 20087fc: b8 0f 20 04 and %i4, 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008800: 80 a7 20 00 cmp %i4, 0 2008804: 12 80 00 03 bne 2008810 <_Thread_Change_priority+0x58> <== NEVER TAKEN 2008808: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200880c: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2008810: 7f ff e6 5f call 200218c 2008814: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008818: 03 00 00 ef sethi %hi(0x3bc00), %g1 200881c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008820: 80 8e 40 01 btst %i1, %g1 2008824: 02 80 00 29 be 20088c8 <_Thread_Change_priority+0x110> 2008828: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 200882c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2008830: 40 00 02 f6 call 2009408 <_Thread_queue_Requeue> 2008834: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008838: 80 a7 20 00 cmp %i4, 0 200883c: 12 80 00 0b bne 2008868 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 2008840: 03 00 80 6a sethi %hi(0x201a800), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008844: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 2008848: 80 a6 a0 00 cmp %i2, 0 200884c: 02 80 00 04 be 200885c <_Thread_Change_priority+0xa4> 2008850: 82 10 60 e4 or %g1, 0xe4, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2008854: 10 80 00 03 b 2008860 <_Thread_Change_priority+0xa8> 2008858: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 200885c: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2008860: 9f c0 40 00 call %g1 2008864: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008868: 7f ff e6 49 call 200218c 200886c: 90 10 00 1b mov %i3, %o0 2008870: 7f ff e6 43 call 200217c 2008874: 01 00 00 00 nop 2008878: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 200887c: 03 00 80 6a sethi %hi(0x201a800), %g1 2008880: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 201a8ec <_Scheduler+0x8> 2008884: 9f c0 40 00 call %g1 2008888: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 200888c: 03 00 80 6d sethi %hi(0x201b400), %g1 2008890: 82 10 63 1c or %g1, 0x31c, %g1 ! 201b71c <_Per_CPU_Information> 2008894: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008898: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200889c: 80 a0 80 03 cmp %g2, %g3 20088a0: 02 80 00 08 be 20088c0 <_Thread_Change_priority+0x108> 20088a4: 01 00 00 00 nop 20088a8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20088ac: 80 a0 a0 00 cmp %g2, 0 20088b0: 02 80 00 04 be 20088c0 <_Thread_Change_priority+0x108> 20088b4: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 20088b8: 84 10 20 01 mov 1, %g2 ! 1 20088bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 20088c0: 7f ff e6 33 call 200218c 20088c4: 81 e8 00 00 restore 20088c8: 81 c7 e0 08 ret 20088cc: 81 e8 00 00 restore =============================================================================== 02008abc <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008abc: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008ac0: 90 10 00 18 mov %i0, %o0 2008ac4: 40 00 00 71 call 2008c88 <_Thread_Get> 2008ac8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008acc: c2 07 bf fc ld [ %fp + -4 ], %g1 2008ad0: 80 a0 60 00 cmp %g1, 0 2008ad4: 12 80 00 09 bne 2008af8 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2008ad8: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008adc: 7f ff ff 7d call 20088d0 <_Thread_Clear_state> 2008ae0: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2008ae4: 03 00 80 6d sethi %hi(0x201b400), %g1 2008ae8: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level> 2008aec: 84 00 bf ff add %g2, -1, %g2 2008af0: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 2008af4: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 2008af8: 81 c7 e0 08 ret 2008afc: 81 e8 00 00 restore =============================================================================== 02008b00 <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008b00: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2008b04: 03 00 80 6d sethi %hi(0x201b400), %g1 2008b08: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level> 2008b0c: 84 00 a0 01 inc %g2 2008b10: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 2008b14: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2008b18: 33 00 80 6d sethi %hi(0x201b400), %i1 2008b1c: b4 16 63 1c or %i1, 0x31c, %i2 ! 201b71c <_Per_CPU_Information> _ISR_Disable( level ); 2008b20: 7f ff e5 97 call 200217c 2008b24: fa 06 a0 0c ld [ %i2 + 0xc ], %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008b28: 21 00 80 6d sethi %hi(0x201b400), %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008b2c: b4 06 a0 1c add %i2, 0x1c, %i2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b30: 31 00 80 6d sethi %hi(0x201b400), %i0 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008b34: 10 80 00 38 b 2008c14 <_Thread_Dispatch+0x114> 2008b38: 37 00 80 6d sethi %hi(0x201b400), %i3 heir = _Thread_Heir; _Thread_Dispatch_necessary = false; 2008b3c: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008b40: 80 a7 00 1d cmp %i4, %i5 2008b44: 02 80 00 39 be 2008c28 <_Thread_Dispatch+0x128> 2008b48: f8 20 60 0c st %i4, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008b4c: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 2008b50: 80 a0 60 01 cmp %g1, 1 2008b54: 12 80 00 03 bne 2008b60 <_Thread_Dispatch+0x60> 2008b58: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008b5c: c2 27 20 78 st %g1, [ %i4 + 0x78 ] _ISR_Enable( level ); 2008b60: 7f ff e5 8b call 200218c 2008b64: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008b68: 40 00 0c c4 call 200be78 <_TOD_Get_uptime> 2008b6c: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 2008b70: 90 10 00 1a mov %i2, %o0 2008b74: 92 07 bf f0 add %fp, -16, %o1 2008b78: 40 00 02 de call 20096f0 <_Timespec_Subtract> 2008b7c: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008b80: 90 07 60 84 add %i5, 0x84, %o0 2008b84: 40 00 02 c2 call 200968c <_Timespec_Add_to> 2008b88: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 2008b8c: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b90: c2 06 21 78 ld [ %i0 + 0x178 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008b94: c4 26 80 00 st %g2, [ %i2 ] 2008b98: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b9c: 80 a0 60 00 cmp %g1, 0 2008ba0: 02 80 00 06 be 2008bb8 <_Thread_Dispatch+0xb8> <== NEVER TAKEN 2008ba4: c4 26 a0 04 st %g2, [ %i2 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008ba8: c4 00 40 00 ld [ %g1 ], %g2 2008bac: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008bb0: c4 07 21 54 ld [ %i4 + 0x154 ], %g2 2008bb4: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008bb8: 90 10 00 1d mov %i5, %o0 2008bbc: 40 00 03 7b call 20099a8 <_User_extensions_Thread_switch> 2008bc0: 92 10 00 1c mov %i4, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008bc4: 90 07 60 c8 add %i5, 0xc8, %o0 2008bc8: 40 00 04 a1 call 2009e4c <_CPU_Context_switch> 2008bcc: 92 07 20 c8 add %i4, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008bd0: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2008bd4: 80 a0 60 00 cmp %g1, 0 2008bd8: 02 80 00 0c be 2008c08 <_Thread_Dispatch+0x108> 2008bdc: d0 06 e1 74 ld [ %i3 + 0x174 ], %o0 2008be0: 80 a7 40 08 cmp %i5, %o0 2008be4: 02 80 00 09 be 2008c08 <_Thread_Dispatch+0x108> 2008be8: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008bec: 02 80 00 04 be 2008bfc <_Thread_Dispatch+0xfc> 2008bf0: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008bf4: 40 00 04 5c call 2009d64 <_CPU_Context_save_fp> 2008bf8: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008bfc: 40 00 04 77 call 2009dd8 <_CPU_Context_restore_fp> 2008c00: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2008c04: fa 26 e1 74 st %i5, [ %i3 + 0x174 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2008c08: 82 16 63 1c or %i1, 0x31c, %g1 _ISR_Disable( level ); 2008c0c: 7f ff e5 5c call 200217c 2008c10: fa 00 60 0c ld [ %g1 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008c14: 82 16 63 1c or %i1, 0x31c, %g1 2008c18: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008c1c: 80 a0 a0 00 cmp %g2, 0 2008c20: 32 bf ff c7 bne,a 2008b3c <_Thread_Dispatch+0x3c> 2008c24: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 _ISR_Disable( level ); } post_switch: _ISR_Enable( level ); 2008c28: 7f ff e5 59 call 200218c 2008c2c: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2008c30: 03 00 80 6d sethi %hi(0x201b400), %g1 2008c34: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level> 2008c38: 84 00 bf ff add %g2, -1, %g2 2008c3c: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 2008c40: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 _Thread_Unnest_dispatch(); _API_extensions_Run_postswitch(); 2008c44: 7f ff f8 4d call 2006d78 <_API_extensions_Run_postswitch> 2008c48: 01 00 00 00 nop } 2008c4c: 81 c7 e0 08 ret 2008c50: 81 e8 00 00 restore =============================================================================== 0200dafc <_Thread_Handler>: * Input parameters: NONE * * Output parameters: NONE */ void _Thread_Handler( void ) { 200dafc: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static bool doneConstructors; bool doCons; #endif executing = _Thread_Executing; 200db00: 03 00 80 6d sethi %hi(0x201b400), %g1 200db04: fa 00 63 28 ld [ %g1 + 0x328 ], %i5 ! 201b728 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200db08: 3f 00 80 36 sethi %hi(0x200d800), %i7 200db0c: be 17 e2 fc or %i7, 0x2fc, %i7 ! 200dafc <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200db10: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200db14: 7f ff d1 9e call 200218c 200db18: 91 2a 20 08 sll %o0, 8, %o0 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200db1c: 03 00 80 6c sethi %hi(0x201b000), %g1 doneConstructors = true; 200db20: 84 10 20 01 mov 1, %g2 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200db24: f8 08 61 b0 ldub [ %g1 + 0x1b0 ], %i4 doneConstructors = true; 200db28: c4 28 61 b0 stb %g2, [ %g1 + 0x1b0 ] #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200db2c: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 200db30: 80 a0 60 00 cmp %g1, 0 200db34: 02 80 00 0c be 200db64 <_Thread_Handler+0x68> 200db38: 03 00 80 6d sethi %hi(0x201b400), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200db3c: d0 00 61 74 ld [ %g1 + 0x174 ], %o0 ! 201b574 <_Thread_Allocated_fp> 200db40: 80 a7 40 08 cmp %i5, %o0 200db44: 02 80 00 08 be 200db64 <_Thread_Handler+0x68> 200db48: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200db4c: 22 80 00 06 be,a 200db64 <_Thread_Handler+0x68> 200db50: fa 20 61 74 st %i5, [ %g1 + 0x174 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200db54: 7f ff f0 84 call 2009d64 <_CPU_Context_save_fp> 200db58: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200db5c: 03 00 80 6d sethi %hi(0x201b400), %g1 200db60: fa 20 61 74 st %i5, [ %g1 + 0x174 ] ! 201b574 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200db64: 7f ff ef 22 call 20097ec <_User_extensions_Thread_begin> 200db68: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200db6c: 7f ff ec 3a call 2008c54 <_Thread_Enable_dispatch> 200db70: 01 00 00 00 nop /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { 200db74: 80 8f 20 ff btst 0xff, %i4 200db78: 32 80 00 05 bne,a 200db8c <_Thread_Handler+0x90> 200db7c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 INIT_NAME (); 200db80: 40 00 33 0e call 201a7b8 <_init> 200db84: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200db88: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200db8c: 80 a0 60 00 cmp %g1, 0 200db90: 12 80 00 06 bne 200dba8 <_Thread_Handler+0xac> <== NEVER TAKEN 200db94: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200db98: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200db9c: 9f c0 40 00 call %g1 200dba0: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200dba4: d0 27 60 28 st %o0, [ %i5 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200dba8: 7f ff ef 22 call 2009830 <_User_extensions_Thread_exitted> 200dbac: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200dbb0: 90 10 20 00 clr %o0 200dbb4: 92 10 20 01 mov 1, %o1 200dbb8: 7f ff e7 19 call 200781c <_Internal_error_Occurred> 200dbbc: 94 10 20 05 mov 5, %o2 =============================================================================== 02008d38 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008d38: 9d e3 bf a0 save %sp, -96, %sp 2008d3c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008d40: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 2008d44: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008d48: c0 26 61 58 clr [ %i1 + 0x158 ] 2008d4c: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008d50: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008d54: 90 10 00 19 mov %i1, %o0 2008d58: 40 00 02 02 call 2009560 <_Thread_Stack_Allocate> 2008d5c: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008d60: 80 a2 00 1b cmp %o0, %i3 2008d64: 0a 80 00 61 bcs 2008ee8 <_Thread_Initialize+0x1b0> 2008d68: 80 a2 20 00 cmp %o0, 0 2008d6c: 02 80 00 5f be 2008ee8 <_Thread_Initialize+0x1b0> <== NEVER TAKEN 2008d70: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d74: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008d78: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d7c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008d80: 02 80 00 07 be 2008d9c <_Thread_Initialize+0x64> 2008d84: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008d88: 40 00 03 db call 2009cf4 <_Workspace_Allocate> 2008d8c: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008d90: b6 92 20 00 orcc %o0, 0, %i3 2008d94: 02 80 00 46 be 2008eac <_Thread_Initialize+0x174> 2008d98: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d9c: 03 00 80 6d sethi %hi(0x201b400), %g1 2008da0: d0 00 61 84 ld [ %g1 + 0x184 ], %o0 ! 201b584 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008da4: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008da8: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008dac: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008db0: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008db4: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 2008db8: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008dbc: 80 a2 20 00 cmp %o0, 0 2008dc0: 02 80 00 08 be 2008de0 <_Thread_Initialize+0xa8> 2008dc4: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 2008dc8: 90 02 20 01 inc %o0 2008dcc: 40 00 03 ca call 2009cf4 <_Workspace_Allocate> 2008dd0: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008dd4: b8 92 20 00 orcc %o0, 0, %i4 2008dd8: 22 80 00 36 be,a 2008eb0 <_Thread_Initialize+0x178> 2008ddc: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008de0: 80 a7 20 00 cmp %i4, 0 2008de4: 02 80 00 0c be 2008e14 <_Thread_Initialize+0xdc> 2008de8: f8 26 61 60 st %i4, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008dec: 03 00 80 6d sethi %hi(0x201b400), %g1 2008df0: c4 00 61 84 ld [ %g1 + 0x184 ], %g2 ! 201b584 <_Thread_Maximum_extensions> 2008df4: 10 80 00 05 b 2008e08 <_Thread_Initialize+0xd0> 2008df8: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 2008dfc: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008e00: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008e04: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008e08: 80 a0 40 02 cmp %g1, %g2 2008e0c: 28 bf ff fc bleu,a 2008dfc <_Thread_Initialize+0xc4> 2008e10: c8 06 61 60 ld [ %i1 + 0x160 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008e14: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008e18: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] the_thread->Start.budget_algorithm = budget_algorithm; 2008e1c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008e20: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008e24: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008e28: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008e2c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008e30: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008e34: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008e38: 82 10 20 01 mov 1, %g1 2008e3c: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008e40: 03 00 80 6a sethi %hi(0x201a800), %g1 2008e44: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 201a8fc <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 2008e48: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008e4c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008e50: 9f c0 40 00 call %g1 2008e54: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008e58: b4 92 20 00 orcc %o0, 0, %i2 2008e5c: 02 80 00 15 be 2008eb0 <_Thread_Initialize+0x178> 2008e60: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008e64: 40 00 01 97 call 20094c0 <_Thread_Set_priority> 2008e68: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e6c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008e70: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008e74: c0 26 60 84 clr [ %i1 + 0x84 ] 2008e78: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e7c: 83 28 60 02 sll %g1, 2, %g1 2008e80: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008e84: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008e88: 90 10 00 19 mov %i1, %o0 2008e8c: 40 00 02 8a call 20098b4 <_User_extensions_Thread_create> 2008e90: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008e94: 80 8a 20 ff btst 0xff, %o0 2008e98: 02 80 00 06 be 2008eb0 <_Thread_Initialize+0x178> 2008e9c: 01 00 00 00 nop 2008ea0: b0 0e 20 01 and %i0, 1, %i0 2008ea4: 81 c7 e0 08 ret 2008ea8: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2008eac: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 2008eb0: 40 00 03 99 call 2009d14 <_Workspace_Free> 2008eb4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 2008eb8: 40 00 03 97 call 2009d14 <_Workspace_Free> 2008ebc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008ec0: 40 00 03 95 call 2009d14 <_Workspace_Free> 2008ec4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 2008ec8: 40 00 03 93 call 2009d14 <_Workspace_Free> 2008ecc: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2008ed0: 40 00 03 91 call 2009d14 <_Workspace_Free> 2008ed4: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 2008ed8: 40 00 03 8f call 2009d14 <_Workspace_Free> 2008edc: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 2008ee0: 40 00 01 b7 call 20095bc <_Thread_Stack_Free> 2008ee4: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 2008ee8: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008eec: b0 0e 20 01 and %i0, 1, %i0 2008ef0: 81 c7 e0 08 ret 2008ef4: 81 e8 00 00 restore =============================================================================== 02009408 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009408: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 200940c: 80 a6 20 00 cmp %i0, 0 2009410: 02 80 00 19 be 2009474 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2009414: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009418: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 200941c: 80 a7 20 01 cmp %i4, 1 2009420: 12 80 00 15 bne 2009474 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2009424: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009428: 7f ff e3 55 call 200217c 200942c: 01 00 00 00 nop 2009430: ba 10 00 08 mov %o0, %i5 2009434: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009438: 03 00 00 ef sethi %hi(0x3bc00), %g1 200943c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2009440: 80 88 80 01 btst %g2, %g1 2009444: 02 80 00 0a be 200946c <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2009448: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 200944c: 92 10 00 19 mov %i1, %o1 2009450: 94 10 20 01 mov 1, %o2 2009454: 40 00 0b f8 call 200c434 <_Thread_queue_Extract_priority_helper> 2009458: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 200945c: 90 10 00 18 mov %i0, %o0 2009460: 92 10 00 19 mov %i1, %o1 2009464: 7f ff ff 50 call 20091a4 <_Thread_queue_Enqueue_priority> 2009468: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 200946c: 7f ff e3 48 call 200218c 2009470: 90 10 00 1d mov %i5, %o0 2009474: 81 c7 e0 08 ret 2009478: 81 e8 00 00 restore =============================================================================== 0200947c <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 200947c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009480: 90 10 00 18 mov %i0, %o0 2009484: 7f ff fe 01 call 2008c88 <_Thread_Get> 2009488: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200948c: c2 07 bf fc ld [ %fp + -4 ], %g1 2009490: 80 a0 60 00 cmp %g1, 0 2009494: 12 80 00 09 bne 20094b8 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009498: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 200949c: 40 00 0c 1d call 200c510 <_Thread_queue_Process_timeout> 20094a0: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20094a4: 03 00 80 6d sethi %hi(0x201b400), %g1 20094a8: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level> 20094ac: 84 00 bf ff add %g2, -1, %g2 20094b0: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] return _Thread_Dispatch_disable_level; 20094b4: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1 20094b8: 81 c7 e0 08 ret 20094bc: 81 e8 00 00 restore =============================================================================== 020171e4 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20171e4: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20171e8: 27 00 80 e8 sethi %hi(0x203a000), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20171ec: a8 07 bf e8 add %fp, -24, %l4 20171f0: a4 07 bf ec add %fp, -20, %l2 20171f4: b6 07 bf f4 add %fp, -12, %i3 20171f8: b4 07 bf f8 add %fp, -8, %i2 20171fc: e4 27 bf e8 st %l2, [ %fp + -24 ] head->previous = NULL; 2017200: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 2017204: e8 27 bf f0 st %l4, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017208: f4 27 bf f4 st %i2, [ %fp + -12 ] head->previous = NULL; 201720c: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2017210: f6 27 bf fc st %i3, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2017214: b2 06 20 30 add %i0, 0x30, %i1 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2017218: b8 06 20 68 add %i0, 0x68, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201721c: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2017220: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2017224: e8 26 20 78 st %l4, [ %i0 + 0x78 ] static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2017228: 2b 00 80 e8 sethi %hi(0x203a000), %l5 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 201722c: c2 04 e1 4c ld [ %l3 + 0x14c ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2017230: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2017234: 94 10 00 1b mov %i3, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2017238: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201723c: 90 10 00 19 mov %i1, %o0 2017240: 40 00 11 84 call 201b850 <_Watchdog_Adjust_to_chain> 2017244: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2017248: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 201724c: fa 05 60 cc ld [ %l5 + 0xcc ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2017250: 80 a7 40 0a cmp %i5, %o2 2017254: 08 80 00 06 bleu 201726c <_Timer_server_Body+0x88> 2017258: 92 27 40 0a sub %i5, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201725c: 90 10 00 1c mov %i4, %o0 2017260: 40 00 11 7c call 201b850 <_Watchdog_Adjust_to_chain> 2017264: 94 10 00 1b mov %i3, %o2 2017268: 30 80 00 06 b,a 2017280 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 201726c: 1a 80 00 05 bcc 2017280 <_Timer_server_Body+0x9c> 2017270: 90 10 00 1c mov %i4, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2017274: 92 10 20 01 mov 1, %o1 2017278: 40 00 11 4f call 201b7b4 <_Watchdog_Adjust> 201727c: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 2017280: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2017284: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2017288: 40 00 02 bd call 2017d7c <_Chain_Get> 201728c: 01 00 00 00 nop if ( timer == NULL ) { 2017290: 92 92 20 00 orcc %o0, 0, %o1 2017294: 02 80 00 0c be 20172c4 <_Timer_server_Body+0xe0> 2017298: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201729c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20172a0: 80 a0 60 01 cmp %g1, 1 20172a4: 02 80 00 05 be 20172b8 <_Timer_server_Body+0xd4> 20172a8: 90 10 00 19 mov %i1, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20172ac: 80 a0 60 03 cmp %g1, 3 20172b0: 12 bf ff f5 bne 2017284 <_Timer_server_Body+0xa0> <== NEVER TAKEN 20172b4: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20172b8: 40 00 11 98 call 201b918 <_Watchdog_Insert> 20172bc: 92 02 60 10 add %o1, 0x10, %o1 20172c0: 30 bf ff f1 b,a 2017284 <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20172c4: 7f ff e3 7f call 20100c0 20172c8: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 20172cc: c2 07 bf e8 ld [ %fp + -24 ], %g1 20172d0: 80 a0 40 12 cmp %g1, %l2 20172d4: 12 80 00 0a bne 20172fc <_Timer_server_Body+0x118> <== NEVER TAKEN 20172d8: 01 00 00 00 nop ts->insert_chain = NULL; 20172dc: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 20172e0: 7f ff e3 7c call 20100d0 20172e4: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 20172e8: c2 07 bf f4 ld [ %fp + -12 ], %g1 20172ec: 80 a0 40 1a cmp %g1, %i2 20172f0: 12 80 00 06 bne 2017308 <_Timer_server_Body+0x124> 20172f4: 01 00 00 00 nop 20172f8: 30 80 00 18 b,a 2017358 <_Timer_server_Body+0x174> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 20172fc: 7f ff e3 75 call 20100d0 <== NOT EXECUTED 2017300: 01 00 00 00 nop <== NOT EXECUTED 2017304: 30 bf ff ca b,a 201722c <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2017308: 7f ff e3 6e call 20100c0 201730c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017310: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2017314: 80 a7 40 1a cmp %i5, %i2 2017318: 02 80 00 0d be 201734c <_Timer_server_Body+0x168> 201731c: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 2017320: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 2017324: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2017328: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 201732c: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 2017330: 7f ff e3 68 call 20100d0 2017334: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2017338: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 201733c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 2017340: 9f c0 40 00 call %g1 2017344: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 2017348: 30 bf ff f0 b,a 2017308 <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 201734c: 7f ff e3 61 call 20100d0 2017350: 01 00 00 00 nop 2017354: 30 bf ff b4 b,a 2017224 <_Timer_server_Body+0x40> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2017358: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 201735c: 7f ff ff 73 call 2017128 <_Thread_Disable_dispatch> 2017360: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 2017364: d0 06 00 00 ld [ %i0 ], %o0 2017368: 40 00 0f 9f call 201b1e4 <_Thread_Set_state> 201736c: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2017370: 7f ff ff 75 call 2017144 <_Timer_server_Reset_interval_system_watchdog> 2017374: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2017378: 7f ff ff 87 call 2017194 <_Timer_server_Reset_tod_system_watchdog> 201737c: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2017380: 40 00 0d 53 call 201a8cc <_Thread_Enable_dispatch> 2017384: 01 00 00 00 nop ts->active = true; 2017388: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201738c: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2017390: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2017394: 40 00 11 bb call 201ba80 <_Watchdog_Remove> 2017398: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 201739c: 40 00 11 b9 call 201ba80 <_Watchdog_Remove> 20173a0: 90 10 00 10 mov %l0, %o0 20173a4: 30 bf ff a0 b,a 2017224 <_Timer_server_Body+0x40> =============================================================================== 020173a8 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 20173a8: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 20173ac: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 20173b0: 80 a0 60 00 cmp %g1, 0 20173b4: 12 80 00 49 bne 20174d8 <_Timer_server_Schedule_operation_method+0x130> 20173b8: ba 10 00 19 mov %i1, %i5 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 20173bc: 7f ff ff 5b call 2017128 <_Thread_Disable_dispatch> 20173c0: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20173c4: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 20173c8: 80 a0 60 01 cmp %g1, 1 20173cc: 12 80 00 1f bne 2017448 <_Timer_server_Schedule_operation_method+0xa0> 20173d0: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20173d4: 7f ff e3 3b call 20100c0 20173d8: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 20173dc: 03 00 80 e8 sethi %hi(0x203a000), %g1 20173e0: c4 00 61 4c ld [ %g1 + 0x14c ], %g2 ! 203a14c <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20173e4: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 20173e8: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20173ec: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 20173f0: 80 a0 40 03 cmp %g1, %g3 20173f4: 02 80 00 08 be 2017414 <_Timer_server_Schedule_operation_method+0x6c> 20173f8: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 20173fc: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 2017400: 80 a3 c0 04 cmp %o7, %g4 2017404: 08 80 00 03 bleu 2017410 <_Timer_server_Schedule_operation_method+0x68> 2017408: 86 10 20 00 clr %g3 delta_interval -= delta; 201740c: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2017410: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2017414: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2017418: 7f ff e3 2e call 20100d0 201741c: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2017420: 90 06 20 30 add %i0, 0x30, %o0 2017424: 40 00 11 3d call 201b918 <_Watchdog_Insert> 2017428: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 201742c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2017430: 80 a0 60 00 cmp %g1, 0 2017434: 12 80 00 27 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128> 2017438: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 201743c: 7f ff ff 42 call 2017144 <_Timer_server_Reset_interval_system_watchdog> 2017440: 90 10 00 18 mov %i0, %o0 2017444: 30 80 00 23 b,a 20174d0 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2017448: 12 80 00 22 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128> 201744c: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2017450: 7f ff e3 1c call 20100c0 2017454: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017458: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 201745c: de 06 20 74 ld [ %i0 + 0x74 ], %o7 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2017460: 03 00 80 e8 sethi %hi(0x203a000), %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2017464: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2017468: 80 a0 80 03 cmp %g2, %g3 201746c: 02 80 00 0d be 20174a0 <_Timer_server_Schedule_operation_method+0xf8> 2017470: c2 00 60 cc ld [ %g1 + 0xcc ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2017474: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2017478: 80 a0 40 0f cmp %g1, %o7 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 201747c: 86 01 00 0f add %g4, %o7, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2017480: 08 80 00 07 bleu 201749c <_Timer_server_Schedule_operation_method+0xf4> 2017484: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2017488: 9e 20 40 0f sub %g1, %o7, %o7 if (delta_interval > delta) { 201748c: 80 a1 00 0f cmp %g4, %o7 2017490: 08 80 00 03 bleu 201749c <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 2017494: 86 10 20 00 clr %g3 delta_interval -= delta; 2017498: 86 21 00 0f sub %g4, %o7, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 201749c: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 20174a0: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 20174a4: 7f ff e3 0b call 20100d0 20174a8: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20174ac: 90 06 20 68 add %i0, 0x68, %o0 20174b0: 40 00 11 1a call 201b918 <_Watchdog_Insert> 20174b4: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20174b8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20174bc: 80 a0 60 00 cmp %g1, 0 20174c0: 12 80 00 04 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128> 20174c4: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 20174c8: 7f ff ff 33 call 2017194 <_Timer_server_Reset_tod_system_watchdog> 20174cc: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 20174d0: 40 00 0c ff call 201a8cc <_Thread_Enable_dispatch> 20174d4: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 20174d8: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 20174dc: 40 00 02 14 call 2017d2c <_Chain_Append> 20174e0: 81 e8 00 00 restore =============================================================================== 02009734 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009734: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009738: 03 00 80 69 sethi %hi(0x201a400), %g1 200973c: 82 10 63 fc or %g1, 0x3fc, %g1 ! 201a7fc ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009740: 05 00 80 6d sethi %hi(0x201b400), %g2 initial_extensions = Configuration.User_extension_table; 2009744: f4 00 60 3c ld [ %g1 + 0x3c ], %i2 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009748: f6 00 60 38 ld [ %g1 + 0x38 ], %i3 200974c: 82 10 a2 d8 or %g2, 0x2d8, %g1 2009750: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 2009754: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009758: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200975c: c6 20 a2 d8 st %g3, [ %g2 + 0x2d8 ] 2009760: 05 00 80 6d sethi %hi(0x201b400), %g2 2009764: 82 10 a0 f4 or %g2, 0xf4, %g1 ! 201b4f4 <_User_extensions_Switches_list> 2009768: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 200976c: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009770: c6 20 a0 f4 st %g3, [ %g2 + 0xf4 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009774: 80 a6 a0 00 cmp %i2, 0 2009778: 02 80 00 1b be 20097e4 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 200977c: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009780: 83 2e e0 02 sll %i3, 2, %g1 2009784: bb 2e e0 04 sll %i3, 4, %i5 2009788: ba 27 40 01 sub %i5, %g1, %i5 200978c: ba 07 40 1b add %i5, %i3, %i5 2009790: bb 2f 60 02 sll %i5, 2, %i5 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009794: 40 00 01 66 call 2009d2c <_Workspace_Allocate_or_fatal_error> 2009798: 90 10 00 1d mov %i5, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 200979c: 94 10 00 1d mov %i5, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 20097a0: b8 10 00 08 mov %o0, %i4 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 20097a4: 92 10 20 00 clr %o1 20097a8: 40 00 13 de call 200e720 20097ac: ba 10 20 00 clr %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 20097b0: 10 80 00 0b b 20097dc <_User_extensions_Handler_initialization+0xa8> 20097b4: 80 a7 40 1b cmp %i5, %i3 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 20097b8: 90 07 20 14 add %i4, 0x14, %o0 20097bc: 92 06 80 09 add %i2, %o1, %o1 20097c0: 40 00 13 9c call 200e630 20097c4: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 20097c8: 90 10 00 1c mov %i4, %o0 20097cc: 40 00 0b 75 call 200c5a0 <_User_extensions_Add_set> 20097d0: ba 07 60 01 inc %i5 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 20097d4: b8 07 20 34 add %i4, 0x34, %i4 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 20097d8: 80 a7 40 1b cmp %i5, %i3 20097dc: 12 bf ff f7 bne 20097b8 <_User_extensions_Handler_initialization+0x84> 20097e0: 93 2f 60 05 sll %i5, 5, %o1 20097e4: 81 c7 e0 08 ret 20097e8: 81 e8 00 00 restore =============================================================================== 0200b4a4 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b4a4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b4a8: 7f ff de d4 call 2002ff8 200b4ac: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b4b0: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b4b4: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b4b8: 80 a0 40 1c cmp %g1, %i4 200b4bc: 02 80 00 1f be 200b538 <_Watchdog_Adjust+0x94> 200b4c0: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b4c4: 02 80 00 1a be 200b52c <_Watchdog_Adjust+0x88> 200b4c8: b6 10 20 01 mov 1, %i3 200b4cc: 80 a6 60 01 cmp %i1, 1 200b4d0: 12 80 00 1a bne 200b538 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b4d4: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b4d8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b4dc: 10 80 00 07 b 200b4f8 <_Watchdog_Adjust+0x54> 200b4e0: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b4e4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b4e8: 80 a6 80 02 cmp %i2, %g2 200b4ec: 3a 80 00 05 bcc,a 200b500 <_Watchdog_Adjust+0x5c> 200b4f0: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b4f4: b4 20 80 1a sub %g2, %i2, %i2 break; 200b4f8: 10 80 00 10 b 200b538 <_Watchdog_Adjust+0x94> 200b4fc: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200b500: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b504: 7f ff de c1 call 2003008 200b508: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b50c: 40 00 00 90 call 200b74c <_Watchdog_Tickle> 200b510: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200b514: 7f ff de b9 call 2002ff8 200b518: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b51c: c2 07 40 00 ld [ %i5 ], %g1 200b520: 80 a0 40 1c cmp %g1, %i4 200b524: 02 80 00 05 be 200b538 <_Watchdog_Adjust+0x94> 200b528: 01 00 00 00 nop switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b52c: 80 a6 a0 00 cmp %i2, 0 200b530: 32 bf ff ed bne,a 200b4e4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b534: c2 07 40 00 ld [ %i5 ], %g1 } break; } } _ISR_Enable( level ); 200b538: 7f ff de b4 call 2003008 200b53c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009b4c <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009b4c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009b50: 7f ff e1 8b call 200217c 2009b54: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 2009b58: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009b5c: 80 a6 20 01 cmp %i0, 1 2009b60: 22 80 00 1d be,a 2009bd4 <_Watchdog_Remove+0x88> 2009b64: c0 27 60 08 clr [ %i5 + 8 ] 2009b68: 0a 80 00 1c bcs 2009bd8 <_Watchdog_Remove+0x8c> 2009b6c: 03 00 80 6d sethi %hi(0x201b400), %g1 2009b70: 80 a6 20 03 cmp %i0, 3 2009b74: 18 80 00 19 bgu 2009bd8 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009b78: 01 00 00 00 nop 2009b7c: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009b80: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009b84: c4 00 40 00 ld [ %g1 ], %g2 2009b88: 80 a0 a0 00 cmp %g2, 0 2009b8c: 02 80 00 07 be 2009ba8 <_Watchdog_Remove+0x5c> 2009b90: 05 00 80 6d sethi %hi(0x201b400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009b94: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009b98: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 2009b9c: 84 00 c0 02 add %g3, %g2, %g2 2009ba0: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009ba4: 05 00 80 6d sethi %hi(0x201b400), %g2 2009ba8: c4 00 a1 f8 ld [ %g2 + 0x1f8 ], %g2 ! 201b5f8 <_Watchdog_Sync_count> 2009bac: 80 a0 a0 00 cmp %g2, 0 2009bb0: 22 80 00 07 be,a 2009bcc <_Watchdog_Remove+0x80> 2009bb4: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009bb8: 05 00 80 6d sethi %hi(0x201b400), %g2 2009bbc: c6 00 a3 24 ld [ %g2 + 0x324 ], %g3 ! 201b724 <_Per_CPU_Information+0x8> 2009bc0: 05 00 80 6d sethi %hi(0x201b400), %g2 2009bc4: c6 20 a1 98 st %g3, [ %g2 + 0x198 ] ! 201b598 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009bc8: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 2009bcc: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009bd0: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009bd4: 03 00 80 6d sethi %hi(0x201b400), %g1 2009bd8: c2 00 61 fc ld [ %g1 + 0x1fc ], %g1 ! 201b5fc <_Watchdog_Ticks_since_boot> 2009bdc: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 2009be0: 7f ff e1 6b call 200218c 2009be4: 01 00 00 00 nop return( previous_state ); } 2009be8: 81 c7 e0 08 ret 2009bec: 81 e8 00 00 restore =============================================================================== 0200ac9c <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200ac9c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200aca0: 7f ff df a6 call 2002b38 200aca4: ba 10 00 18 mov %i0, %i5 200aca8: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200acac: 11 00 80 6d sethi %hi(0x201b400), %o0 200acb0: 94 10 00 19 mov %i1, %o2 200acb4: 90 12 21 40 or %o0, 0x140, %o0 200acb8: 7f ff e6 56 call 2004610 200acbc: 92 10 00 1d mov %i5, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200acc0: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200acc4: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200acc8: 80 a7 00 19 cmp %i4, %i1 200accc: 12 80 00 04 bne 200acdc <_Watchdog_Report_chain+0x40> 200acd0: 92 10 00 1c mov %i4, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200acd4: 10 80 00 0d b 200ad08 <_Watchdog_Report_chain+0x6c> 200acd8: 11 00 80 6d sethi %hi(0x201b400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200acdc: 40 00 00 0f call 200ad18 <_Watchdog_Report> 200ace0: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200ace4: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200ace8: 80 a7 00 19 cmp %i4, %i1 200acec: 12 bf ff fc bne 200acdc <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200acf0: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200acf4: 11 00 80 6d sethi %hi(0x201b400), %o0 200acf8: 92 10 00 1d mov %i5, %o1 200acfc: 7f ff e6 45 call 2004610 200ad00: 90 12 21 58 or %o0, 0x158, %o0 200ad04: 30 80 00 03 b,a 200ad10 <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200ad08: 7f ff e6 42 call 2004610 200ad0c: 90 12 21 68 or %o0, 0x168, %o0 } _ISR_Enable( level ); 200ad10: 7f ff df 8e call 2002b48 200ad14: 81 e8 00 00 restore =============================================================================== 02006d20 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006d20: 9d e3 bf 98 save %sp, -104, %sp 2006d24: 10 80 00 09 b 2006d48 2006d28: ba 10 00 18 mov %i0, %i5 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006d2c: 92 10 20 00 clr %o1 2006d30: 94 10 00 1a mov %i2, %o2 2006d34: 7f ff fd 03 call 2006140 2006d38: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006d3c: 80 a2 20 00 cmp %o0, 0 2006d40: 32 80 00 09 bne,a 2006d64 <== ALWAYS TAKEN 2006d44: f8 26 c0 00 st %i4, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d48: 40 00 01 62 call 20072d0 <_Chain_Get> 2006d4c: 90 10 00 1d mov %i5, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d50: b8 92 20 00 orcc %o0, 0, %i4 2006d54: 02 bf ff f6 be 2006d2c 2006d58: 90 10 00 19 mov %i1, %o0 2006d5c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d60: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 2006d64: 81 c7 e0 08 ret 2006d68: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200902c : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 200902c: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009030: 80 a6 20 00 cmp %i0, 0 2009034: 02 80 00 1e be 20090ac <== NEVER TAKEN 2009038: ba 10 20 01 mov 1, %i5 return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200903c: 35 00 80 77 sethi %hi(0x201dc00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009040: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2009044: 84 16 a3 88 or %i2, 0x388, %g2 2009048: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200904c: 80 a0 60 00 cmp %g1, 0 2009050: 22 80 00 14 be,a 20090a0 2009054: ba 07 60 01 inc %i5 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009058: f6 00 60 04 ld [ %g1 + 4 ], %i3 if ( !information ) 200905c: 80 a6 e0 00 cmp %i3, 0 2009060: 12 80 00 0b bne 200908c 2009064: b8 10 20 01 mov 1, %i4 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009068: 10 80 00 0e b 20090a0 200906c: ba 07 60 01 inc %i5 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { the_thread = (Thread_Control *)information->local_table[ i ]; 2009070: 83 2f 20 02 sll %i4, 2, %g1 2009074: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009078: 80 a2 20 00 cmp %o0, 0 200907c: 02 80 00 04 be 200908c 2009080: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 2009084: 9f c6 00 00 call %i0 2009088: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200908c: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 2009090: 80 a7 00 01 cmp %i4, %g1 2009094: 28 bf ff f7 bleu,a 2009070 2009098: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200909c: ba 07 60 01 inc %i5 20090a0: 80 a7 60 04 cmp %i5, 4 20090a4: 12 bf ff e8 bne 2009044 20090a8: 83 2f 60 02 sll %i5, 2, %g1 20090ac: 81 c7 e0 08 ret 20090b0: 81 e8 00 00 restore =============================================================================== 02014b6c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014b6c: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014b70: 80 a6 20 00 cmp %i0, 0 2014b74: 02 80 00 39 be 2014c58 2014b78: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014b7c: 80 a6 60 00 cmp %i1, 0 2014b80: 02 80 00 36 be 2014c58 2014b84: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014b88: 80 a7 60 00 cmp %i5, 0 2014b8c: 02 80 00 33 be 2014c58 <== NEVER TAKEN 2014b90: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014b94: 02 80 00 31 be 2014c58 2014b98: 82 10 20 08 mov 8, %g1 2014b9c: 80 a6 a0 00 cmp %i2, 0 2014ba0: 02 80 00 2e be 2014c58 2014ba4: 80 a6 80 1b cmp %i2, %i3 2014ba8: 0a 80 00 2c bcs 2014c58 2014bac: 80 8e e0 07 btst 7, %i3 2014bb0: 12 80 00 2a bne 2014c58 2014bb4: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2014bb8: 12 80 00 28 bne 2014c58 2014bbc: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2014bc0: 03 00 80 e8 sethi %hi(0x203a000), %g1 2014bc4: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 203a040 <_Thread_Dispatch_disable_level> 2014bc8: 84 00 a0 01 inc %g2 2014bcc: c4 20 60 40 st %g2, [ %g1 + 0x40 ] return _Thread_Dispatch_disable_level; 2014bd0: c2 00 60 40 ld [ %g1 + 0x40 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014bd4: 23 00 80 e7 sethi %hi(0x2039c00), %l1 2014bd8: 40 00 12 4b call 2019504 <_Objects_Allocate> 2014bdc: 90 14 62 54 or %l1, 0x254, %o0 ! 2039e54 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014be0: a0 92 20 00 orcc %o0, 0, %l0 2014be4: 32 80 00 06 bne,a 2014bfc 2014be8: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2014bec: 40 00 17 38 call 201a8cc <_Thread_Enable_dispatch> 2014bf0: 01 00 00 00 nop return RTEMS_TOO_MANY; 2014bf4: 10 80 00 19 b 2014c58 2014bf8: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014bfc: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014c00: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2014c04: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2014c08: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2014c0c: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014c10: 40 00 55 1d call 202a084 <.udiv> 2014c14: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014c18: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2014c1c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014c20: 96 10 00 1b mov %i3, %o3 2014c24: b8 04 20 24 add %l0, 0x24, %i4 2014c28: 40 00 0c 64 call 2017db8 <_Chain_Initialize> 2014c2c: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c30: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014c34: a2 14 62 54 or %l1, 0x254, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c38: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c3c: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c40: 85 28 a0 02 sll %g2, 2, %g2 2014c44: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014c48: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014c4c: 40 00 17 20 call 201a8cc <_Thread_Enable_dispatch> 2014c50: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2014c54: 82 10 20 00 clr %g1 } 2014c58: 81 c7 e0 08 ret 2014c5c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02007270 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007270: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 2007274: 11 00 80 74 sethi %hi(0x201d000), %o0 2007278: 92 10 00 18 mov %i0, %o1 200727c: 90 12 22 24 or %o0, 0x224, %o0 2007280: 40 00 08 e5 call 2009614 <_Objects_Get> 2007284: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007288: c2 07 bf fc ld [ %fp + -4 ], %g1 200728c: 80 a0 60 00 cmp %g1, 0 2007290: 12 80 00 6a bne 2007438 2007294: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007298: 37 00 80 75 sethi %hi(0x201d400), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 200729c: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 20072a0: b6 16 e1 bc or %i3, 0x1bc, %i3 20072a4: c2 06 e0 0c ld [ %i3 + 0xc ], %g1 20072a8: 80 a0 80 01 cmp %g2, %g1 20072ac: 02 80 00 06 be 20072c4 20072b0: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 20072b4: 40 00 0c 7f call 200a4b0 <_Thread_Enable_dispatch> 20072b8: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20072bc: 81 c7 e0 08 ret 20072c0: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 20072c4: 12 80 00 0d bne 20072f8 20072c8: 01 00 00 00 nop switch ( the_period->state ) { 20072cc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20072d0: 80 a0 60 04 cmp %g1, 4 20072d4: 18 80 00 05 bgu 20072e8 <== NEVER TAKEN 20072d8: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20072dc: 05 00 80 6c sethi %hi(0x201b000), %g2 20072e0: 84 10 a2 68 or %g2, 0x268, %g2 ! 201b268 20072e4: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20072e8: 40 00 0c 72 call 200a4b0 <_Thread_Enable_dispatch> 20072ec: 01 00 00 00 nop return( return_value ); 20072f0: 81 c7 e0 08 ret 20072f4: 81 e8 00 00 restore } _ISR_Disable( level ); 20072f8: 7f ff ee e9 call 2002e9c 20072fc: 01 00 00 00 nop 2007300: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007304: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 2007308: 80 a7 20 00 cmp %i4, 0 200730c: 12 80 00 15 bne 2007360 2007310: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 2007314: 7f ff ee e6 call 2002eac 2007318: 01 00 00 00 nop the_period->next_length = length; /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 200731c: 90 10 00 1d mov %i5, %o0 2007320: 7f ff ff 78 call 2007100 <_Rate_monotonic_Initiate_statistics> 2007324: f2 27 60 3c st %i1, [ %i5 + 0x3c ] the_period->state = RATE_MONOTONIC_ACTIVE; 2007328: 82 10 20 02 mov 2, %g1 200732c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007330: 03 00 80 1d sethi %hi(0x2007400), %g1 2007334: 82 10 62 f4 or %g1, 0x2f4, %g1 ! 20076f4 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007338: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 200733c: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 2007340: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 2007344: c0 27 60 34 clr [ %i5 + 0x34 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007348: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200734c: 11 00 80 75 sethi %hi(0x201d400), %o0 2007350: 92 07 60 10 add %i5, 0x10, %o1 2007354: 40 00 10 1d call 200b3c8 <_Watchdog_Insert> 2007358: 90 12 20 4c or %o0, 0x4c, %o0 200735c: 30 80 00 1b b,a 20073c8 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007360: 12 80 00 1e bne 20073d8 2007364: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007368: 7f ff ff 86 call 2007180 <_Rate_monotonic_Update_statistics> 200736c: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007370: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007374: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007378: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 200737c: 7f ff ee cc call 2002eac 2007380: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007384: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007388: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 200738c: 13 00 00 10 sethi %hi(0x4000), %o1 2007390: 40 00 0e 6b call 200ad3c <_Thread_Set_state> 2007394: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007398: 7f ff ee c1 call 2002e9c 200739c: 01 00 00 00 nop local_state = the_period->state; 20073a0: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 20073a4: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 20073a8: 7f ff ee c1 call 2002eac 20073ac: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20073b0: 80 a6 a0 03 cmp %i2, 3 20073b4: 12 80 00 05 bne 20073c8 20073b8: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20073bc: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 20073c0: 40 00 0b 5b call 200a12c <_Thread_Clear_state> 20073c4: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 20073c8: 40 00 0c 3a call 200a4b0 <_Thread_Enable_dispatch> 20073cc: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20073d0: 81 c7 e0 08 ret 20073d4: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20073d8: 12 bf ff b9 bne 20072bc <== NEVER TAKEN 20073dc: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20073e0: 7f ff ff 68 call 2007180 <_Rate_monotonic_Update_statistics> 20073e4: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20073e8: 7f ff ee b1 call 2002eac 20073ec: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20073f0: 82 10 20 02 mov 2, %g1 20073f4: 92 07 60 10 add %i5, 0x10, %o1 20073f8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 20073fc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007400: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007404: 11 00 80 75 sethi %hi(0x201d400), %o0 2007408: 40 00 0f f0 call 200b3c8 <_Watchdog_Insert> 200740c: 90 12 20 4c or %o0, 0x4c, %o0 ! 201d44c <_Watchdog_Ticks_chain> 2007410: d0 07 60 40 ld [ %i5 + 0x40 ], %o0 2007414: d2 07 60 3c ld [ %i5 + 0x3c ], %o1 2007418: 03 00 80 71 sethi %hi(0x201c400), %g1 200741c: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 201c6d8 <_Scheduler+0x34> 2007420: 9f c0 40 00 call %g1 2007424: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Scheduler_Release_job(the_period->owner, the_period->next_length); _Thread_Enable_dispatch(); 2007428: 40 00 0c 22 call 200a4b0 <_Thread_Enable_dispatch> 200742c: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007430: 81 c7 e0 08 ret 2007434: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2007438: b0 10 20 04 mov 4, %i0 } 200743c: 81 c7 e0 08 ret 2007440: 81 e8 00 00 restore =============================================================================== 02007444 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007444: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007448: 80 a6 60 00 cmp %i1, 0 200744c: 02 80 00 75 be 2007620 <== NEVER TAKEN 2007450: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007454: 13 00 80 6c sethi %hi(0x201b000), %o1 2007458: 9f c6 40 00 call %i1 200745c: 92 12 62 70 or %o1, 0x270, %o1 ! 201b270 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007460: 90 10 00 18 mov %i0, %o0 2007464: 13 00 80 6c sethi %hi(0x201b000), %o1 2007468: 9f c6 40 00 call %i1 200746c: 92 12 62 90 or %o1, 0x290, %o1 ! 201b290 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007470: 90 10 00 18 mov %i0, %o0 2007474: 13 00 80 6c sethi %hi(0x201b000), %o1 2007478: 9f c6 40 00 call %i1 200747c: 92 12 62 b8 or %o1, 0x2b8, %o1 ! 201b2b8 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007480: 90 10 00 18 mov %i0, %o0 2007484: 13 00 80 6c sethi %hi(0x201b000), %o1 2007488: 9f c6 40 00 call %i1 200748c: 92 12 62 e0 or %o1, 0x2e0, %o1 ! 201b2e0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007490: 90 10 00 18 mov %i0, %o0 2007494: 13 00 80 6c sethi %hi(0x201b000), %o1 2007498: 9f c6 40 00 call %i1 200749c: 92 12 63 30 or %o1, 0x330, %o1 ! 201b330 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20074a0: 03 00 80 74 sethi %hi(0x201d000), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074a4: 21 00 80 6c sethi %hi(0x201b000), %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 20074a8: 35 00 80 6c sethi %hi(0x201b000), %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 20074ac: 37 00 80 6c sethi %hi(0x201b000), %i3 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 20074b0: 39 00 80 69 sethi %hi(0x201a400), %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20074b4: fa 00 62 2c ld [ %g1 + 0x22c ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074b8: a0 14 23 80 or %l0, 0x380, %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 20074bc: b4 16 a3 98 or %i2, 0x398, %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 20074c0: b6 16 e3 b8 or %i3, 0x3b8, %i3 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20074c4: 10 80 00 52 b 200760c 20074c8: b8 17 20 f8 or %i4, 0xf8, %i4 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20074cc: 40 00 17 98 call 200d32c 20074d0: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 20074d4: 80 a2 20 00 cmp %o0, 0 20074d8: 32 80 00 4d bne,a 200760c 20074dc: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20074e0: 92 07 bf d8 add %fp, -40, %o1 20074e4: 40 00 17 bf call 200d3e0 20074e8: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20074ec: d0 07 bf d8 ld [ %fp + -40 ], %o0 20074f0: 92 10 20 05 mov 5, %o1 20074f4: 40 00 00 af call 20077b0 20074f8: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074fc: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007500: 92 10 00 10 mov %l0, %o1 2007504: 90 10 00 18 mov %i0, %o0 2007508: 94 10 00 1d mov %i5, %o2 200750c: 9f c6 40 00 call %i1 2007510: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007514: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007518: 80 a2 60 00 cmp %o1, 0 200751c: 12 80 00 07 bne 2007538 2007520: 94 07 bf f0 add %fp, -16, %o2 (*print)( context, "\n" ); 2007524: 90 10 00 18 mov %i0, %o0 2007528: 9f c6 40 00 call %i1 200752c: 92 10 00 1c mov %i4, %o1 continue; 2007530: 10 80 00 37 b 200760c 2007534: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007538: 40 00 0e 85 call 200af4c <_Timespec_Divide_by_integer> 200753c: 90 07 bf b8 add %fp, -72, %o0 (*print)( context, 2007540: d0 07 bf ac ld [ %fp + -84 ], %o0 2007544: 40 00 43 c1 call 2018448 <.div> 2007548: 92 10 23 e8 mov 0x3e8, %o1 200754c: a6 10 00 08 mov %o0, %l3 2007550: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007554: 40 00 43 bd call 2018448 <.div> 2007558: 92 10 23 e8 mov 0x3e8, %o1 200755c: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007560: a2 10 00 08 mov %o0, %l1 2007564: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007568: e8 07 bf a8 ld [ %fp + -88 ], %l4 200756c: e4 07 bf b0 ld [ %fp + -80 ], %l2 2007570: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007574: 40 00 43 b5 call 2018448 <.div> 2007578: 92 10 23 e8 mov 0x3e8, %o1 200757c: 96 10 00 13 mov %l3, %o3 2007580: 98 10 00 12 mov %l2, %o4 2007584: 9a 10 00 11 mov %l1, %o5 2007588: 94 10 00 14 mov %l4, %o2 200758c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007590: 92 10 00 1a mov %i2, %o1 2007594: 9f c6 40 00 call %i1 2007598: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 200759c: d2 07 bf a0 ld [ %fp + -96 ], %o1 20075a0: 94 07 bf f0 add %fp, -16, %o2 20075a4: 40 00 0e 6a call 200af4c <_Timespec_Divide_by_integer> 20075a8: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 20075ac: d0 07 bf c4 ld [ %fp + -60 ], %o0 20075b0: 40 00 43 a6 call 2018448 <.div> 20075b4: 92 10 23 e8 mov 0x3e8, %o1 20075b8: a6 10 00 08 mov %o0, %l3 20075bc: d0 07 bf cc ld [ %fp + -52 ], %o0 20075c0: 40 00 43 a2 call 2018448 <.div> 20075c4: 92 10 23 e8 mov 0x3e8, %o1 20075c8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20075cc: a2 10 00 08 mov %o0, %l1 20075d0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20075d4: e8 07 bf c0 ld [ %fp + -64 ], %l4 20075d8: e4 07 bf c8 ld [ %fp + -56 ], %l2 20075dc: 92 10 23 e8 mov 0x3e8, %o1 20075e0: 40 00 43 9a call 2018448 <.div> 20075e4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20075e8: 92 10 00 1b mov %i3, %o1 20075ec: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20075f0: 94 10 00 14 mov %l4, %o2 20075f4: 90 10 00 18 mov %i0, %o0 20075f8: 96 10 00 13 mov %l3, %o3 20075fc: 98 10 00 12 mov %l2, %o4 2007600: 9f c6 40 00 call %i1 2007604: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007608: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 200760c: 03 00 80 74 sethi %hi(0x201d000), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007610: c2 00 62 30 ld [ %g1 + 0x230 ], %g1 ! 201d230 <_Rate_monotonic_Information+0xc> 2007614: 80 a7 40 01 cmp %i5, %g1 2007618: 08 bf ff ad bleu 20074cc 200761c: 90 10 00 1d mov %i5, %o0 2007620: 81 c7 e0 08 ret 2007624: 81 e8 00 00 restore =============================================================================== 02016134 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2016134: 9d e3 bf 98 save %sp, -104, %sp 2016138: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 201613c: 80 a6 60 00 cmp %i1, 0 2016140: 02 80 00 2e be 20161f8 2016144: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2016148: 40 00 11 ee call 201a900 <_Thread_Get> 201614c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2016150: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2016154: b8 10 00 08 mov %o0, %i4 switch ( location ) { 2016158: 80 a0 60 00 cmp %g1, 0 201615c: 12 80 00 27 bne 20161f8 2016160: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2016164: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2016168: c2 07 60 0c ld [ %i5 + 0xc ], %g1 201616c: 80 a0 60 00 cmp %g1, 0 2016170: 02 80 00 24 be 2016200 2016174: 01 00 00 00 nop if ( asr->is_enabled ) { 2016178: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 201617c: 80 a0 60 00 cmp %g1, 0 2016180: 02 80 00 15 be 20161d4 2016184: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016188: 7f ff e7 ce call 20100c0 201618c: 01 00 00 00 nop *signal_set |= signals; 2016190: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2016194: b2 10 40 19 or %g1, %i1, %i1 2016198: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 201619c: 7f ff e7 cd call 20100d0 20161a0: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 20161a4: 03 00 80 e8 sethi %hi(0x203a000), %g1 20161a8: 82 10 62 74 or %g1, 0x274, %g1 ! 203a274 <_Per_CPU_Information> 20161ac: c4 00 60 08 ld [ %g1 + 8 ], %g2 20161b0: 80 a0 a0 00 cmp %g2, 0 20161b4: 02 80 00 0f be 20161f0 20161b8: 01 00 00 00 nop 20161bc: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20161c0: 80 a7 00 02 cmp %i4, %g2 20161c4: 12 80 00 0b bne 20161f0 <== NEVER TAKEN 20161c8: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 20161cc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20161d0: 30 80 00 08 b,a 20161f0 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20161d4: 7f ff e7 bb call 20100c0 20161d8: 01 00 00 00 nop *signal_set |= signals; 20161dc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 20161e0: b2 10 40 19 or %g1, %i1, %i1 20161e4: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 20161e8: 7f ff e7 ba call 20100d0 20161ec: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 20161f0: 40 00 11 b7 call 201a8cc <_Thread_Enable_dispatch> 20161f4: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 20161f8: 81 c7 e0 08 ret 20161fc: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 2016200: 40 00 11 b3 call 201a8cc <_Thread_Enable_dispatch> 2016204: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2016208: 81 c7 e0 08 ret 201620c: 81 e8 00 00 restore =============================================================================== 0200d7cc : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d7cc: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d7d0: 80 a6 a0 00 cmp %i2, 0 200d7d4: 02 80 00 5a be 200d93c 200d7d8: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d7dc: 03 00 80 6d sethi %hi(0x201b400), %g1 200d7e0: f8 00 63 28 ld [ %g1 + 0x328 ], %i4 ! 201b728 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7e4: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d7e8: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7ec: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7f0: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7f4: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7f8: 80 a0 60 00 cmp %g1, 0 200d7fc: 02 80 00 03 be 200d808 200d800: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d804: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d808: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 200d80c: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d810: 7f ff f1 ea call 2009fb8 <_CPU_ISR_Get_level> 200d814: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d818: a1 2c 20 0a sll %l0, 0xa, %l0 200d81c: a0 14 00 08 or %l0, %o0, %l0 old_mode |= _ISR_Get_level(); 200d820: b6 14 00 1b or %l0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d824: 80 8e 61 00 btst 0x100, %i1 200d828: 02 80 00 06 be 200d840 200d82c: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d830: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d834: 80 a0 00 01 cmp %g0, %g1 200d838: 82 60 3f ff subx %g0, -1, %g1 200d83c: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d840: 80 8e 62 00 btst 0x200, %i1 200d844: 02 80 00 0b be 200d870 200d848: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d84c: 80 8e 22 00 btst 0x200, %i0 200d850: 22 80 00 07 be,a 200d86c 200d854: c0 27 20 7c clr [ %i4 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d858: 82 10 20 01 mov 1, %g1 200d85c: c2 27 20 7c st %g1, [ %i4 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d860: 03 00 80 6d sethi %hi(0x201b400), %g1 200d864: c2 00 60 54 ld [ %g1 + 0x54 ], %g1 ! 201b454 <_Thread_Ticks_per_timeslice> 200d868: c2 27 20 78 st %g1, [ %i4 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d86c: 80 8e 60 0f btst 0xf, %i1 200d870: 02 80 00 06 be 200d888 200d874: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d878: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d87c: 7f ff d2 44 call 200218c 200d880: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d884: 80 8e 64 00 btst 0x400, %i1 200d888: 02 80 00 14 be 200d8d8 200d88c: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d890: c4 0f 60 08 ldub [ %i5 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d894: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d898: 80 a0 00 18 cmp %g0, %i0 200d89c: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d8a0: 80 a0 40 02 cmp %g1, %g2 200d8a4: 22 80 00 0e be,a 200d8dc 200d8a8: 03 00 80 6d sethi %hi(0x201b400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d8ac: 7f ff d2 34 call 200217c 200d8b0: c2 2f 60 08 stb %g1, [ %i5 + 8 ] _signals = information->signals_pending; 200d8b4: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d8b8: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 200d8bc: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d8c0: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d8c4: 7f ff d2 32 call 200218c 200d8c8: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d8cc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d8d0: 80 a0 00 01 cmp %g0, %g1 200d8d4: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d8d8: 03 00 80 6d sethi %hi(0x201b400), %g1 200d8dc: c4 00 62 44 ld [ %g1 + 0x244 ], %g2 ! 201b644 <_System_state_Current> 200d8e0: 80 a0 a0 03 cmp %g2, 3 200d8e4: 12 80 00 16 bne 200d93c 200d8e8: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d8ec: 07 00 80 6d sethi %hi(0x201b400), %g3 if ( are_signals_pending || 200d8f0: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d8f4: 86 10 e3 1c or %g3, 0x31c, %g3 if ( are_signals_pending || 200d8f8: 12 80 00 0a bne 200d920 200d8fc: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d900: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d904: 80 a0 80 03 cmp %g2, %g3 200d908: 02 80 00 0d be 200d93c 200d90c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d910: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d914: 80 a0 a0 00 cmp %g2, 0 200d918: 02 80 00 09 be 200d93c <== NEVER TAKEN 200d91c: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d920: 84 10 20 01 mov 1, %g2 ! 1 200d924: 03 00 80 6d sethi %hi(0x201b400), %g1 200d928: 82 10 63 1c or %g1, 0x31c, %g1 ! 201b71c <_Per_CPU_Information> 200d92c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d930: 7f ff ec 74 call 2008b00 <_Thread_Dispatch> 200d934: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d938: 82 10 20 00 clr %g1 ! 0 } 200d93c: 81 c7 e0 08 ret 200d940: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200aa28 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200aa28: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200aa2c: 80 a6 60 00 cmp %i1, 0 200aa30: 02 80 00 07 be 200aa4c 200aa34: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200aa38: 03 00 80 61 sethi %hi(0x2018400), %g1 200aa3c: c2 08 62 dc ldub [ %g1 + 0x2dc ], %g1 ! 20186dc 200aa40: 80 a6 40 01 cmp %i1, %g1 200aa44: 18 80 00 1c bgu 200aab4 200aa48: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200aa4c: 80 a6 a0 00 cmp %i2, 0 200aa50: 02 80 00 19 be 200aab4 200aa54: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200aa58: 40 00 09 5c call 200cfc8 <_Thread_Get> 200aa5c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200aa60: c2 07 bf fc ld [ %fp + -4 ], %g1 200aa64: 80 a0 60 00 cmp %g1, 0 200aa68: 12 80 00 13 bne 200aab4 200aa6c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200aa70: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200aa74: 80 a6 60 00 cmp %i1, 0 200aa78: 02 80 00 0d be 200aaac 200aa7c: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200aa80: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200aa84: 80 a0 60 00 cmp %g1, 0 200aa88: 02 80 00 06 be 200aaa0 200aa8c: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200aa90: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200aa94: 80 a0 40 19 cmp %g1, %i1 200aa98: 08 80 00 05 bleu 200aaac <== ALWAYS TAKEN 200aa9c: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200aaa0: 92 10 00 19 mov %i1, %o1 200aaa4: 40 00 08 15 call 200caf8 <_Thread_Change_priority> 200aaa8: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200aaac: 40 00 09 3a call 200cf94 <_Thread_Enable_dispatch> 200aab0: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200aab4: 81 c7 e0 08 ret 200aab8: 81 e8 00 00 restore =============================================================================== 02016b3c : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016b3c: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2016b40: 11 00 80 e8 sethi %hi(0x203a000), %o0 2016b44: 92 10 00 18 mov %i0, %o1 2016b48: 90 12 23 14 or %o0, 0x314, %o0 2016b4c: 40 00 0b b9 call 2019a30 <_Objects_Get> 2016b50: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016b54: c2 07 bf fc ld [ %fp + -4 ], %g1 2016b58: 80 a0 60 00 cmp %g1, 0 2016b5c: 12 80 00 0c bne 2016b8c 2016b60: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016b64: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2016b68: 80 a0 60 04 cmp %g1, 4 2016b6c: 02 80 00 04 be 2016b7c <== NEVER TAKEN 2016b70: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016b74: 40 00 13 c3 call 201ba80 <_Watchdog_Remove> 2016b78: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016b7c: 40 00 0f 54 call 201a8cc <_Thread_Enable_dispatch> 2016b80: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016b84: 81 c7 e0 08 ret 2016b88: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016b8c: 81 c7 e0 08 ret 2016b90: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02017038 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2017038: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 201703c: 03 00 80 e8 sethi %hi(0x203a000), %g1 2017040: f8 00 63 54 ld [ %g1 + 0x354 ], %i4 ! 203a354 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2017044: ba 10 00 18 mov %i0, %i5 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2017048: 80 a7 20 00 cmp %i4, 0 201704c: 02 80 00 32 be 2017114 2017050: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2017054: 03 00 80 e8 sethi %hi(0x203a000), %g1 2017058: c2 08 60 50 ldub [ %g1 + 0x50 ], %g1 ! 203a050 <_TOD_Is_set> 201705c: 80 a0 60 00 cmp %g1, 0 2017060: 02 80 00 2d be 2017114 <== NEVER TAKEN 2017064: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2017068: 80 a6 a0 00 cmp %i2, 0 201706c: 02 80 00 2a be 2017114 2017070: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2017074: 90 10 00 19 mov %i1, %o0 2017078: 7f ff f3 fb call 2014064 <_TOD_Validate> 201707c: b0 10 20 14 mov 0x14, %i0 2017080: 80 8a 20 ff btst 0xff, %o0 2017084: 02 80 00 27 be 2017120 2017088: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 201708c: 7f ff f3 c2 call 2013f94 <_TOD_To_seconds> 2017090: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2017094: 21 00 80 e8 sethi %hi(0x203a000), %l0 2017098: c2 04 20 cc ld [ %l0 + 0xcc ], %g1 ! 203a0cc <_TOD_Now> 201709c: 80 a2 00 01 cmp %o0, %g1 20170a0: 08 80 00 1d bleu 2017114 20170a4: b2 10 00 08 mov %o0, %i1 20170a8: 11 00 80 e8 sethi %hi(0x203a000), %o0 20170ac: 92 10 00 1d mov %i5, %o1 20170b0: 90 12 23 14 or %o0, 0x314, %o0 20170b4: 40 00 0a 5f call 2019a30 <_Objects_Get> 20170b8: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20170bc: c2 07 bf fc ld [ %fp + -4 ], %g1 20170c0: 80 a0 60 00 cmp %g1, 0 20170c4: 12 80 00 16 bne 201711c 20170c8: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20170cc: 40 00 12 6d call 201ba80 <_Watchdog_Remove> 20170d0: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20170d4: 82 10 20 03 mov 3, %g1 20170d8: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20170dc: c2 04 20 cc ld [ %l0 + 0xcc ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20170e0: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20170e4: b2 26 40 01 sub %i1, %g1, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20170e8: c2 07 20 04 ld [ %i4 + 4 ], %g1 20170ec: 90 10 00 1c mov %i4, %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20170f0: c0 26 20 18 clr [ %i0 + 0x18 ] the_watchdog->routine = routine; 20170f4: f4 26 20 2c st %i2, [ %i0 + 0x2c ] the_watchdog->id = id; 20170f8: fa 26 20 30 st %i5, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20170fc: f6 26 20 34 st %i3, [ %i0 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2017100: f2 26 20 1c st %i1, [ %i0 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2017104: 9f c0 40 00 call %g1 2017108: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 201710c: 40 00 0d f0 call 201a8cc <_Thread_Enable_dispatch> 2017110: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2017114: 81 c7 e0 08 ret 2017118: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 201711c: b0 10 20 04 mov 4, %i0 } 2017120: 81 c7 e0 08 ret 2017124: 81 e8 00 00 restore