RTEMS 4.11Annotated Report
Sat Sep 3 09:43:40 2011
0200fbf4 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fbf4: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fbf8: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fbfc: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fc00: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fc04: 80 8e e0 03 btst 3, %i3
200fc08: 02 80 00 07 be 200fc24 <_CORE_message_queue_Initialize+0x30>
200fc0c: ba 10 00 1b mov %i3, %i5
allocated_message_size += sizeof(uint32_t);
200fc10: ba 06 e0 04 add %i3, 4, %i5
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fc14: ba 0f 7f fc and %i5, -4, %i5
}
if (allocated_message_size < maximum_message_size)
200fc18: 80 a7 40 1b cmp %i5, %i3
200fc1c: 0a 80 00 24 bcs 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
200fc20: b8 10 20 00 clr %i4
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
200fc24: ba 07 60 10 add %i5, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
200fc28: 90 10 20 00 clr %o0
200fc2c: 92 10 00 1a mov %i2, %o1
200fc30: 94 10 20 00 clr %o2
200fc34: 96 10 00 1d mov %i5, %o3
200fc38: 40 00 3e ef call 201f7f4 <__muldi3>
200fc3c: b8 10 20 00 clr %i4
if ( x > SIZE_MAX )
200fc40: 80 a2 20 00 cmp %o0, 0
200fc44: 34 80 00 1b bg,a 200fcb0 <_CORE_message_queue_Initialize+0xbc>
200fc48: b0 0f 20 01 and %i4, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fc4c: 40 00 0c 08 call 2012c6c <_Workspace_Allocate>
200fc50: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fc54: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fc58: 80 a2 20 00 cmp %o0, 0
200fc5c: 02 80 00 14 be 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
200fc60: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fc64: 90 06 20 60 add %i0, 0x60, %o0
200fc68: 94 10 00 1a mov %i2, %o2
200fc6c: 40 00 13 ec call 2014c1c <_Chain_Initialize>
200fc70: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fc74: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
200fc78: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
200fc7c: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fc80: 84 06 20 54 add %i0, 0x54, %g2
200fc84: 82 18 60 01 xor %g1, 1, %g1
200fc88: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
200fc8c: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
200fc90: c0 26 20 54 clr [ %i0 + 0x54 ]
200fc94: 90 10 00 18 mov %i0, %o0
200fc98: 92 60 3f ff subx %g0, -1, %o1
200fc9c: 94 10 20 80 mov 0x80, %o2
200fca0: 96 10 20 06 mov 6, %o3
200fca4: 40 00 09 9e call 201231c <_Thread_queue_Initialize>
200fca8: b8 10 20 01 mov 1, %i4
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200fcac: b0 0f 20 01 and %i4, 1, %i0
200fcb0: 81 c7 e0 08 ret
200fcb4: 81 e8 00 00 restore
020072a8 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
20072a8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
20072ac: 90 10 00 18 mov %i0, %o0
20072b0: 40 00 07 3a call 2008f98 <_Thread_queue_Dequeue>
20072b4: ba 10 00 18 mov %i0, %i5
20072b8: 80 a2 20 00 cmp %o0, 0
20072bc: 12 80 00 0e bne 20072f4 <_CORE_semaphore_Surrender+0x4c>
20072c0: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
20072c4: 7f ff eb ae call 200217c <sparc_disable_interrupts>
20072c8: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
20072cc: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
20072d0: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
20072d4: 80 a0 40 02 cmp %g1, %g2
20072d8: 1a 80 00 05 bcc 20072ec <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
20072dc: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
20072e0: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20072e4: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20072e8: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20072ec: 7f ff eb a8 call 200218c <sparc_enable_interrupts>
20072f0: 01 00 00 00 nop
}
return status;
}
20072f4: 81 c7 e0 08 ret
20072f8: 81 e8 00 00 restore
02006028 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2006028: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
200602c: f8 06 21 58 ld [ %i0 + 0x158 ], %i4
option_set = (rtems_option) the_thread->Wait.option;
2006030: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
_ISR_Disable( level );
2006034: 7f ff f0 52 call 200217c <sparc_disable_interrupts>
2006038: ba 10 00 18 mov %i0, %i5
200603c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2006040: c4 07 00 00 ld [ %i4 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2006044: c6 07 60 24 ld [ %i5 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2006048: 82 88 c0 02 andcc %g3, %g2, %g1
200604c: 02 80 00 43 be 2006158 <_Event_Surrender+0x130>
2006050: 01 00 00 00 nop
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006054: 09 00 80 6d sethi %hi(0x201b400), %g4
2006058: 88 11 23 1c or %g4, 0x31c, %g4 ! 201b71c <_Per_CPU_Information>
200605c: f2 01 20 08 ld [ %g4 + 8 ], %i1
2006060: 80 a6 60 00 cmp %i1, 0
2006064: 22 80 00 1d be,a 20060d8 <_Event_Surrender+0xb0>
2006068: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
200606c: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2006070: 80 a7 40 04 cmp %i5, %g4
2006074: 32 80 00 19 bne,a 20060d8 <_Event_Surrender+0xb0>
2006078: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200607c: 09 00 80 6d sethi %hi(0x201b400), %g4
2006080: f2 01 23 70 ld [ %g4 + 0x370 ], %i1 ! 201b770 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2006084: 80 a6 60 02 cmp %i1, 2
2006088: 02 80 00 07 be 20060a4 <_Event_Surrender+0x7c> <== NEVER TAKEN
200608c: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2006090: c8 01 23 70 ld [ %g4 + 0x370 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006094: 80 a1 20 01 cmp %g4, 1
2006098: 32 80 00 10 bne,a 20060d8 <_Event_Surrender+0xb0>
200609c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
20060a0: 80 a0 40 03 cmp %g1, %g3
20060a4: 02 80 00 04 be 20060b4 <_Event_Surrender+0x8c>
20060a8: 80 8e e0 02 btst 2, %i3
20060ac: 02 80 00 2b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN
20060b0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
20060b4: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
20060b8: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060bc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
20060c0: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060c4: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20060c8: 84 10 20 03 mov 3, %g2
20060cc: 03 00 80 6d sethi %hi(0x201b400), %g1
20060d0: c4 20 63 70 st %g2, [ %g1 + 0x370 ] ! 201b770 <_Event_Sync_state>
20060d4: 30 80 00 21 b,a 2006158 <_Event_Surrender+0x130>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20060d8: 80 89 21 00 btst 0x100, %g4
20060dc: 02 80 00 1f be 2006158 <_Event_Surrender+0x130>
20060e0: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20060e4: 02 80 00 04 be 20060f4 <_Event_Surrender+0xcc>
20060e8: 80 8e e0 02 btst 2, %i3
20060ec: 02 80 00 1b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN
20060f0: 01 00 00 00 nop
20060f4: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
20060f8: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060fc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2006100: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006104: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2006108: 7f ff f0 21 call 200218c <sparc_enable_interrupts>
200610c: 90 10 00 18 mov %i0, %o0
2006110: 7f ff f0 1b call 200217c <sparc_disable_interrupts>
2006114: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2006118: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
200611c: 80 a0 60 02 cmp %g1, 2
2006120: 02 80 00 06 be 2006138 <_Event_Surrender+0x110>
2006124: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2006128: 7f ff f0 19 call 200218c <sparc_enable_interrupts>
200612c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006130: 10 80 00 08 b 2006150 <_Event_Surrender+0x128>
2006134: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2006138: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
200613c: 7f ff f0 14 call 200218c <sparc_enable_interrupts>
2006140: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
2006144: 40 00 0e 82 call 2009b4c <_Watchdog_Remove>
2006148: 90 07 60 48 add %i5, 0x48, %o0
200614c: b2 16 63 f8 or %i1, 0x3f8, %i1
2006150: 40 00 09 e0 call 20088d0 <_Thread_Clear_state>
2006154: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2006158: 7f ff f0 0d call 200218c <sparc_enable_interrupts>
200615c: 81 e8 00 00 restore
02006160 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2006160: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2006164: 90 10 00 18 mov %i0, %o0
2006168: 40 00 0a c8 call 2008c88 <_Thread_Get>
200616c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2006170: c2 07 bf fc ld [ %fp + -4 ], %g1
2006174: 80 a0 60 00 cmp %g1, 0
2006178: 12 80 00 1d bne 20061ec <_Event_Timeout+0x8c> <== NEVER TAKEN
200617c: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2006180: 7f ff ef ff call 200217c <sparc_disable_interrupts>
2006184: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2006188: 03 00 80 6d sethi %hi(0x201b400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
200618c: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 201b728 <_Per_CPU_Information+0xc>
2006190: 80 a7 40 01 cmp %i5, %g1
2006194: 12 80 00 09 bne 20061b8 <_Event_Timeout+0x58>
2006198: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
200619c: 03 00 80 6d sethi %hi(0x201b400), %g1
20061a0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201b770 <_Event_Sync_state>
20061a4: 80 a0 a0 01 cmp %g2, 1
20061a8: 32 80 00 05 bne,a 20061bc <_Event_Timeout+0x5c>
20061ac: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
20061b0: 84 10 20 02 mov 2, %g2
20061b4: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
20061b8: 82 10 20 06 mov 6, %g1
20061bc: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
20061c0: 7f ff ef f3 call 200218c <sparc_enable_interrupts>
20061c4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20061c8: 90 10 00 1d mov %i5, %o0
20061cc: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20061d0: 40 00 09 c0 call 20088d0 <_Thread_Clear_state>
20061d4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20061d8: 03 00 80 6d sethi %hi(0x201b400), %g1
20061dc: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level>
20061e0: 84 00 bf ff add %g2, -1, %g2
20061e4: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
return _Thread_Dispatch_disable_level;
20061e8: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
20061ec: 81 c7 e0 08 ret
20061f0: 81 e8 00 00 restore
0200bc98 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bc98: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200bc9c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200bca0: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200bca4: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200bca8: e0 06 20 20 ld [ %i0 + 0x20 ], %l0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200bcac: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
uintptr_t const min_block_size = heap->min_block_size;
200bcb0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200bcb4: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200bcb8: 80 a7 40 19 cmp %i5, %i1
200bcbc: 0a 80 00 9f bcs 200bf38 <_Heap_Extend+0x2a0>
200bcc0: b8 10 20 00 clr %i4
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200bcc4: 90 10 00 19 mov %i1, %o0
200bcc8: 92 10 00 1a mov %i2, %o1
200bccc: 94 10 00 11 mov %l1, %o2
200bcd0: 98 07 bf f8 add %fp, -8, %o4
200bcd4: 7f ff ed 48 call 20071f4 <_Heap_Get_first_and_last_block>
200bcd8: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200bcdc: 80 8a 20 ff btst 0xff, %o0
200bce0: 02 80 00 96 be 200bf38 <_Heap_Extend+0x2a0>
200bce4: b4 10 00 10 mov %l0, %i2
200bce8: aa 10 20 00 clr %l5
200bcec: ac 10 20 00 clr %l6
200bcf0: b8 10 20 00 clr %i4
200bcf4: a8 10 20 00 clr %l4
200bcf8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200bcfc: 80 a0 40 1d cmp %g1, %i5
200bd00: 1a 80 00 05 bcc 200bd14 <_Heap_Extend+0x7c>
200bd04: e6 06 80 00 ld [ %i2 ], %l3
200bd08: 80 a6 40 13 cmp %i1, %l3
200bd0c: 2a 80 00 8b bcs,a 200bf38 <_Heap_Extend+0x2a0>
200bd10: b8 10 20 00 clr %i4
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200bd14: 80 a7 40 01 cmp %i5, %g1
200bd18: 02 80 00 06 be 200bd30 <_Heap_Extend+0x98>
200bd1c: 80 a7 40 13 cmp %i5, %l3
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200bd20: 2a 80 00 05 bcs,a 200bd34 <_Heap_Extend+0x9c>
200bd24: ac 10 00 1a mov %i2, %l6
200bd28: 10 80 00 04 b 200bd38 <_Heap_Extend+0xa0>
200bd2c: 90 10 00 13 mov %l3, %o0
200bd30: a8 10 00 1a mov %i2, %l4
200bd34: 90 10 00 13 mov %l3, %o0
200bd38: 40 00 15 fd call 201152c <.urem>
200bd3c: 92 10 00 11 mov %l1, %o1
200bd40: ae 04 ff f8 add %l3, -8, %l7
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200bd44: 80 a4 c0 19 cmp %l3, %i1
200bd48: 12 80 00 05 bne 200bd5c <_Heap_Extend+0xc4>
200bd4c: 90 25 c0 08 sub %l7, %o0, %o0
start_block->prev_size = extend_area_end;
200bd50: fa 26 80 00 st %i5, [ %i2 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200bd54: 10 80 00 04 b 200bd64 <_Heap_Extend+0xcc>
200bd58: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200bd5c: 2a 80 00 02 bcs,a 200bd64 <_Heap_Extend+0xcc>
200bd60: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bd64: f4 02 20 04 ld [ %o0 + 4 ], %i2
200bd68: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd6c: b4 06 80 08 add %i2, %o0, %i2
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200bd70: 80 a6 80 10 cmp %i2, %l0
200bd74: 12 bf ff e2 bne 200bcfc <_Heap_Extend+0x64>
200bd78: 82 10 00 1a mov %i2, %g1
if ( extend_area_begin < heap->area_begin ) {
200bd7c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200bd80: 80 a6 40 01 cmp %i1, %g1
200bd84: 3a 80 00 04 bcc,a 200bd94 <_Heap_Extend+0xfc>
200bd88: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200bd8c: 10 80 00 05 b 200bda0 <_Heap_Extend+0x108>
200bd90: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200bd94: 80 a0 40 1d cmp %g1, %i5
200bd98: 2a 80 00 02 bcs,a 200bda0 <_Heap_Extend+0x108>
200bd9c: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200bda0: c4 07 bf f8 ld [ %fp + -8 ], %g2
200bda4: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
200bda8: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200bdac: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200bdb0: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200bdb4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200bdb8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200bdbc: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
200bdc0: 80 a0 c0 02 cmp %g3, %g2
200bdc4: 08 80 00 04 bleu 200bdd4 <_Heap_Extend+0x13c>
200bdc8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200bdcc: 10 80 00 06 b 200bde4 <_Heap_Extend+0x14c>
200bdd0: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200bdd4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200bdd8: 80 a0 80 01 cmp %g2, %g1
200bddc: 2a 80 00 02 bcs,a 200bde4 <_Heap_Extend+0x14c>
200bde0: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200bde4: 80 a5 20 00 cmp %l4, 0
200bde8: 02 80 00 14 be 200be38 <_Heap_Extend+0x1a0>
200bdec: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200bdf0: f4 06 20 10 ld [ %i0 + 0x10 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200bdf4: 92 10 00 1a mov %i2, %o1
200bdf8: 40 00 15 cd call 201152c <.urem>
200bdfc: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200be00: 80 a2 20 00 cmp %o0, 0
200be04: 02 80 00 04 be 200be14 <_Heap_Extend+0x17c>
200be08: c2 05 00 00 ld [ %l4 ], %g1
return value - remainder + alignment;
200be0c: b2 06 40 1a add %i1, %i2, %i1
200be10: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200be14: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200be18: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200be1c: 82 25 00 09 sub %l4, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200be20: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200be24: 90 10 00 18 mov %i0, %o0
200be28: 7f ff ff 92 call 200bc70 <_Heap_Free_block>
200be2c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200be30: 10 80 00 08 b 200be50 <_Heap_Extend+0x1b8>
200be34: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200be38: 80 a5 a0 00 cmp %l6, 0
200be3c: 02 80 00 04 be 200be4c <_Heap_Extend+0x1b4>
200be40: ac 25 80 01 sub %l6, %g1, %l6
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200be44: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200be48: ec 20 60 04 st %l6, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200be4c: 80 a7 20 00 cmp %i4, 0
200be50: 02 80 00 15 be 200bea4 <_Heap_Extend+0x20c>
200be54: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200be58: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200be5c: ba 27 40 1c sub %i5, %i4, %i5
200be60: 40 00 15 b3 call 201152c <.urem>
200be64: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200be68: c4 07 20 04 ld [ %i4 + 4 ], %g2
200be6c: ba 27 40 08 sub %i5, %o0, %i5
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200be70: 82 07 40 1c add %i5, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
200be74: 84 20 80 1d sub %g2, %i5, %g2
| HEAP_PREV_BLOCK_USED;
200be78: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200be7c: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be80: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200be84: 90 10 00 18 mov %i0, %o0
200be88: 82 08 60 01 and %g1, 1, %g1
200be8c: 92 10 00 1c mov %i4, %o1
block->size_and_flag = size | flag;
200be90: ba 17 40 01 or %i5, %g1, %i5
200be94: 7f ff ff 77 call 200bc70 <_Heap_Free_block>
200be98: fa 27 20 04 st %i5, [ %i4 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200be9c: 10 80 00 0f b 200bed8 <_Heap_Extend+0x240>
200bea0: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200bea4: 80 a5 60 00 cmp %l5, 0
200bea8: 02 80 00 0b be 200bed4 <_Heap_Extend+0x23c>
200beac: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200beb0: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200beb4: c2 07 bf fc ld [ %fp + -4 ], %g1
200beb8: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200bebc: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200bec0: 84 10 c0 02 or %g3, %g2, %g2
200bec4: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200bec8: c4 00 60 04 ld [ %g1 + 4 ], %g2
200becc: 84 10 a0 01 or %g2, 1, %g2
200bed0: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200bed4: 80 a7 20 00 cmp %i4, 0
200bed8: 32 80 00 09 bne,a 200befc <_Heap_Extend+0x264>
200bedc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200bee0: 80 a5 20 00 cmp %l4, 0
200bee4: 32 80 00 06 bne,a 200befc <_Heap_Extend+0x264>
200bee8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200beec: d2 07 bf f8 ld [ %fp + -8 ], %o1
200bef0: 7f ff ff 60 call 200bc70 <_Heap_Free_block>
200bef4: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200bef8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200befc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bf00: c6 00 60 04 ld [ %g1 + 4 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200bf04: 84 20 80 01 sub %g2, %g1, %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bf08: 86 08 e0 01 and %g3, 1, %g3
block->size_and_flag = size | flag;
200bf0c: 84 10 c0 02 or %g3, %g2, %g2
200bf10: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200bf14: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200bf18: b8 10 20 01 mov 1, %i4
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200bf1c: a4 20 40 12 sub %g1, %l2, %l2
/* Statistics */
stats->size += extended_size;
200bf20: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200bf24: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200bf28: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200bf2c: 02 80 00 03 be 200bf38 <_Heap_Extend+0x2a0> <== NEVER TAKEN
200bf30: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
200bf34: e4 26 c0 00 st %l2, [ %i3 ]
*extended_size_ptr = extended_size;
return true;
}
200bf38: b0 0f 20 01 and %i4, 1, %i0
200bf3c: 81 c7 e0 08 ret
200bf40: 81 e8 00 00 restore
0200c0a8 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200c0a8: 9d e3 bf a0 save %sp, -96, %sp
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200c0ac: 88 10 20 01 mov 1, %g4
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200c0b0: 80 a6 60 00 cmp %i1, 0
200c0b4: 02 80 00 77 be 200c290 <_Heap_Free+0x1e8>
200c0b8: 90 10 00 19 mov %i1, %o0
200c0bc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200c0c0: 40 00 2b 26 call 2016d58 <.urem>
200c0c4: ba 06 7f f8 add %i1, -8, %i5
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200c0c8: da 06 20 20 ld [ %i0 + 0x20 ], %o5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200c0cc: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c0d0: 80 a7 40 0d cmp %i5, %o5
200c0d4: 0a 80 00 05 bcs 200c0e8 <_Heap_Free+0x40>
200c0d8: 82 10 20 00 clr %g1
200c0dc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200c0e0: 80 a0 40 1d cmp %g1, %i5
200c0e4: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200c0e8: 80 a0 60 00 cmp %g1, 0
200c0ec: 02 80 00 69 be 200c290 <_Heap_Free+0x1e8>
200c0f0: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c0f4: d6 07 60 04 ld [ %i5 + 4 ], %o3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c0f8: 84 0a ff fe and %o3, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c0fc: 82 00 80 1d add %g2, %i5, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c100: 80 a0 40 0d cmp %g1, %o5
200c104: 0a 80 00 05 bcs 200c118 <_Heap_Free+0x70> <== NEVER TAKEN
200c108: 86 10 20 00 clr %g3
200c10c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200c110: 80 a0 c0 01 cmp %g3, %g1
200c114: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200c118: 80 a0 e0 00 cmp %g3, 0
200c11c: 02 80 00 5d be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN
200c120: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c124: de 00 60 04 ld [ %g1 + 4 ], %o7
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200c128: 80 8b e0 01 btst 1, %o7
200c12c: 02 80 00 59 be 200c290 <_Heap_Free+0x1e8>
200c130: 9e 0b ff fe and %o7, -2, %o7
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200c134: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200c138: 80 a0 40 04 cmp %g1, %g4
200c13c: 02 80 00 07 be 200c158 <_Heap_Free+0xb0>
200c140: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c144: 86 00 40 0f add %g1, %o7, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c148: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200c14c: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200c150: 80 a0 00 03 cmp %g0, %g3
200c154: 98 60 3f ff subx %g0, -1, %o4
if ( !_Heap_Is_prev_used( block ) ) {
200c158: 80 8a e0 01 btst 1, %o3
200c15c: 12 80 00 25 bne 200c1f0 <_Heap_Free+0x148>
200c160: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200c164: d6 07 40 00 ld [ %i5 ], %o3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c168: 86 27 40 0b sub %i5, %o3, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c16c: 80 a0 c0 0d cmp %g3, %o5
200c170: 0a 80 00 04 bcs 200c180 <_Heap_Free+0xd8> <== NEVER TAKEN
200c174: 94 10 20 00 clr %o2
200c178: 80 a1 00 03 cmp %g4, %g3
200c17c: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200c180: 80 a2 a0 00 cmp %o2, 0
200c184: 02 80 00 43 be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN
200c188: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c18c: da 00 e0 04 ld [ %g3 + 4 ], %o5
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200c190: 80 8b 60 01 btst 1, %o5
200c194: 02 80 00 3f be 200c290 <_Heap_Free+0x1e8> <== NEVER TAKEN
200c198: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200c19c: 02 80 00 0e be 200c1d4 <_Heap_Free+0x12c>
200c1a0: 88 00 80 0b add %g2, %o3, %g4
uintptr_t const size = block_size + prev_size + next_block_size;
200c1a4: 9e 01 00 0f add %g4, %o7, %o7
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200c1a8: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200c1ac: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200c1b0: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200c1b4: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200c1b8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
200c1bc: 82 00 7f ff add %g1, -1, %g1
200c1c0: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200c1c4: de 23 c0 03 st %o7, [ %o7 + %g3 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c1c8: 82 13 e0 01 or %o7, 1, %g1
200c1cc: 10 80 00 27 b 200c268 <_Heap_Free+0x1c0>
200c1d0: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c1d4: 9e 11 20 01 or %g4, 1, %o7
200c1d8: de 20 e0 04 st %o7, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c1dc: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200c1e0: c8 20 80 1d st %g4, [ %g2 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c1e4: 86 08 ff fe and %g3, -2, %g3
200c1e8: 10 80 00 20 b 200c268 <_Heap_Free+0x1c0>
200c1ec: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200c1f0: 22 80 00 0d be,a 200c224 <_Heap_Free+0x17c>
200c1f4: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200c1f8: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200c1fc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200c200: c8 27 60 08 st %g4, [ %i5 + 8 ]
new_block->prev = prev;
200c204: c2 27 60 0c st %g1, [ %i5 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200c208: 86 03 c0 02 add %o7, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200c20c: fa 20 60 08 st %i5, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200c210: fa 21 20 0c st %i5, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c214: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200c218: c6 20 c0 1d st %g3, [ %g3 + %i5 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c21c: 10 80 00 13 b 200c268 <_Heap_Free+0x1c0>
200c220: c2 27 60 04 st %g1, [ %i5 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200c224: f0 27 60 0c st %i0, [ %i5 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200c228: c6 27 60 08 st %g3, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200c22c: fa 20 e0 0c st %i5, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200c230: 86 10 a0 01 or %g2, 1, %g3
200c234: c6 27 60 04 st %g3, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c238: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200c23c: c4 20 80 1d st %g2, [ %g2 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c240: 86 08 ff fe and %g3, -2, %g3
200c244: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c248: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200c24c: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c250: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200c254: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200c258: 80 a0 c0 01 cmp %g3, %g1
200c25c: 1a 80 00 03 bcc 200c268 <_Heap_Free+0x1c0>
200c260: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200c264: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200c268: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200c26c: 88 10 20 01 mov 1, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c270: 82 00 7f ff add %g1, -1, %g1
200c274: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200c278: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200c27c: 82 00 60 01 inc %g1
200c280: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200c284: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200c288: 84 00 40 02 add %g1, %g2, %g2
200c28c: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
return( true );
}
200c290: b0 09 20 01 and %g4, 1, %i0
200c294: 81 c7 e0 08 ret
200c298: 81 e8 00 00 restore
02018828 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2018828: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
201882c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2018830: 7f ff f9 4a call 2016d58 <.urem>
2018834: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2018838: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
201883c: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2018840: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2018844: 80 a2 00 03 cmp %o0, %g3
2018848: 0a 80 00 05 bcs 201885c <_Heap_Size_of_alloc_area+0x34>
201884c: 84 10 20 00 clr %g2
2018850: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2018854: 80 a0 40 08 cmp %g1, %o0
2018858: 84 60 3f ff subx %g0, -1, %g2
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
201885c: 80 a0 a0 00 cmp %g2, 0
2018860: 02 80 00 15 be 20188b4 <_Heap_Size_of_alloc_area+0x8c>
2018864: 82 10 20 00 clr %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2018868: fa 02 20 04 ld [ %o0 + 4 ], %i5
201886c: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2018870: ba 07 40 08 add %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2018874: 80 a7 40 03 cmp %i5, %g3
2018878: 0a 80 00 05 bcs 201888c <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
201887c: 84 10 20 00 clr %g2
2018880: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2018884: 80 a0 40 1d cmp %g1, %i5
2018888: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
201888c: 80 a0 a0 00 cmp %g2, 0
2018890: 02 80 00 09 be 20188b4 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
2018894: 82 10 20 00 clr %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2018898: c4 07 60 04 ld [ %i5 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
201889c: 80 88 a0 01 btst 1, %g2
20188a0: 02 80 00 05 be 20188b4 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
20188a4: ba 27 40 19 sub %i5, %i1, %i5
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
20188a8: 82 10 20 01 mov 1, %g1
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
20188ac: ba 07 60 04 add %i5, 4, %i5
20188b0: fa 26 80 00 st %i5, [ %i2 ]
return true;
}
20188b4: b0 08 60 01 and %g1, 1, %i0
20188b8: 81 c7 e0 08 ret
20188bc: 81 e8 00 00 restore
020080f0 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20080f0: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20080f4: 3b 00 80 20 sethi %hi(0x2008000), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
20080f8: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
20080fc: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
2008100: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
Heap_Block *const last_block = heap->last_block;
2008104: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008108: 80 a6 a0 00 cmp %i2, 0
200810c: 02 80 00 04 be 200811c <_Heap_Walk+0x2c>
2008110: ba 17 60 9c or %i5, 0x9c, %i5
2008114: 3b 00 80 20 sethi %hi(0x2008000), %i5
2008118: ba 17 60 a4 or %i5, 0xa4, %i5 ! 20080a4 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
200811c: 03 00 80 5d sethi %hi(0x2017400), %g1
2008120: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 ! 2017414 <_System_state_Current>
2008124: 80 a0 a0 03 cmp %g2, 3
2008128: 12 80 01 24 bne 20085b8 <_Heap_Walk+0x4c8>
200812c: 82 10 20 01 mov 1, %g1
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008130: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
2008134: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2008138: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200813c: f6 23 a0 60 st %i3, [ %sp + 0x60 ]
2008140: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
2008144: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008148: 90 10 00 19 mov %i1, %o0
200814c: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008150: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2008154: 92 10 20 00 clr %o1
2008158: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
200815c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008160: 96 10 00 1c mov %i4, %o3
2008164: 94 12 a1 c8 or %o2, 0x1c8, %o2
2008168: 9f c7 40 00 call %i5
200816c: 98 10 00 10 mov %l0, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2008170: 80 a7 20 00 cmp %i4, 0
2008174: 12 80 00 07 bne 2008190 <_Heap_Walk+0xa0>
2008178: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
200817c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008180: 90 10 00 19 mov %i1, %o0
2008184: 92 10 20 01 mov 1, %o1
2008188: 10 80 00 32 b 2008250 <_Heap_Walk+0x160>
200818c: 94 12 a2 60 or %o2, 0x260, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008190: 22 80 00 08 be,a 20081b0 <_Heap_Walk+0xc0>
2008194: 90 10 00 10 mov %l0, %o0
(*printer)(
2008198: 15 00 80 52 sethi %hi(0x2014800), %o2
200819c: 90 10 00 19 mov %i1, %o0
20081a0: 92 10 20 01 mov 1, %o1
20081a4: 94 12 a2 78 or %o2, 0x278, %o2
20081a8: 10 80 01 0b b 20085d4 <_Heap_Walk+0x4e4>
20081ac: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20081b0: 7f ff e6 4c call 2001ae0 <.urem>
20081b4: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
20081b8: 80 a2 20 00 cmp %o0, 0
20081bc: 22 80 00 08 be,a 20081dc <_Heap_Walk+0xec>
20081c0: 90 06 e0 08 add %i3, 8, %o0
(*printer)(
20081c4: 15 00 80 52 sethi %hi(0x2014800), %o2
20081c8: 90 10 00 19 mov %i1, %o0
20081cc: 92 10 20 01 mov 1, %o1
20081d0: 94 12 a2 98 or %o2, 0x298, %o2
20081d4: 10 80 01 00 b 20085d4 <_Heap_Walk+0x4e4>
20081d8: 96 10 00 10 mov %l0, %o3
20081dc: 7f ff e6 41 call 2001ae0 <.urem>
20081e0: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
20081e4: 80 a2 20 00 cmp %o0, 0
20081e8: 22 80 00 08 be,a 2008208 <_Heap_Walk+0x118>
20081ec: c2 06 e0 04 ld [ %i3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
20081f0: 15 00 80 52 sethi %hi(0x2014800), %o2
20081f4: 90 10 00 19 mov %i1, %o0
20081f8: 92 10 20 01 mov 1, %o1
20081fc: 94 12 a2 c0 or %o2, 0x2c0, %o2
2008200: 10 80 00 f5 b 20085d4 <_Heap_Walk+0x4e4>
2008204: 96 10 00 1b mov %i3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008208: 80 88 60 01 btst 1, %g1
200820c: 32 80 00 07 bne,a 2008228 <_Heap_Walk+0x138>
2008210: f4 04 60 04 ld [ %l1 + 4 ], %i2
(*printer)(
2008214: 15 00 80 52 sethi %hi(0x2014800), %o2
2008218: 90 10 00 19 mov %i1, %o0
200821c: 92 10 20 01 mov 1, %o1
2008220: 10 80 00 0c b 2008250 <_Heap_Walk+0x160>
2008224: 94 12 a2 f8 or %o2, 0x2f8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008228: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200822c: b4 04 40 1a add %l1, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008230: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
2008234: 80 88 60 01 btst 1, %g1
2008238: 12 80 00 0a bne 2008260 <_Heap_Walk+0x170>
200823c: 80 a6 80 1b cmp %i2, %i3
(*printer)(
2008240: 15 00 80 52 sethi %hi(0x2014800), %o2
2008244: 90 10 00 19 mov %i1, %o0
2008248: 92 10 20 01 mov 1, %o1
200824c: 94 12 a3 28 or %o2, 0x328, %o2
2008250: 9f c7 40 00 call %i5
2008254: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008258: 10 80 00 d8 b 20085b8 <_Heap_Walk+0x4c8>
200825c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if (
2008260: 02 80 00 06 be 2008278 <_Heap_Walk+0x188>
2008264: 15 00 80 52 sethi %hi(0x2014800), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008268: 90 10 00 19 mov %i1, %o0
200826c: 92 10 20 01 mov 1, %o1
2008270: 10 bf ff f8 b 2008250 <_Heap_Walk+0x160>
2008274: 94 12 a3 40 or %o2, 0x340, %o2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008278: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200827c: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008280: 10 80 00 33 b 200834c <_Heap_Walk+0x25c>
2008284: a4 10 00 18 mov %i0, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008288: 80 a0 80 0b cmp %g2, %o3
200828c: 18 80 00 05 bgu 20082a0 <_Heap_Walk+0x1b0>
2008290: 82 10 20 00 clr %g1
2008294: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2008298: 80 a0 40 0b cmp %g1, %o3
200829c: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
20082a0: 80 a0 60 00 cmp %g1, 0
20082a4: 32 80 00 07 bne,a 20082c0 <_Heap_Walk+0x1d0>
20082a8: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
20082ac: 15 00 80 52 sethi %hi(0x2014800), %o2
20082b0: 90 10 00 19 mov %i1, %o0
20082b4: 92 10 20 01 mov 1, %o1
20082b8: 10 80 00 c7 b 20085d4 <_Heap_Walk+0x4e4>
20082bc: 94 12 a3 70 or %o2, 0x370, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20082c0: d6 27 bf f8 st %o3, [ %fp + -8 ]
20082c4: 7f ff e6 07 call 2001ae0 <.urem>
20082c8: 92 10 00 13 mov %l3, %o1
);
return false;
}
if (
20082cc: 80 a2 20 00 cmp %o0, 0
20082d0: 02 80 00 07 be 20082ec <_Heap_Walk+0x1fc>
20082d4: d6 07 bf f8 ld [ %fp + -8 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
20082d8: 15 00 80 52 sethi %hi(0x2014800), %o2
20082dc: 90 10 00 19 mov %i1, %o0
20082e0: 92 10 20 01 mov 1, %o1
20082e4: 10 80 00 bc b 20085d4 <_Heap_Walk+0x4e4>
20082e8: 94 12 a3 90 or %o2, 0x390, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20082ec: c2 02 e0 04 ld [ %o3 + 4 ], %g1
20082f0: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
20082f4: 82 02 c0 01 add %o3, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20082f8: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20082fc: 80 88 60 01 btst 1, %g1
2008300: 22 80 00 07 be,a 200831c <_Heap_Walk+0x22c>
2008304: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
2008308: 15 00 80 52 sethi %hi(0x2014800), %o2
200830c: 90 10 00 19 mov %i1, %o0
2008310: 92 10 20 01 mov 1, %o1
2008314: 10 80 00 b0 b 20085d4 <_Heap_Walk+0x4e4>
2008318: 94 12 a3 c0 or %o2, 0x3c0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
200831c: 80 a3 00 12 cmp %o4, %l2
2008320: 22 80 00 0a be,a 2008348 <_Heap_Walk+0x258>
2008324: a4 10 00 0b mov %o3, %l2
(*printer)(
2008328: 15 00 80 52 sethi %hi(0x2014800), %o2
200832c: 90 10 00 19 mov %i1, %o0
2008330: 92 10 20 01 mov 1, %o1
2008334: 94 12 a3 e0 or %o2, 0x3e0, %o2
2008338: 9f c7 40 00 call %i5
200833c: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008340: 10 80 00 9e b 20085b8 <_Heap_Walk+0x4c8>
2008344: 82 10 20 00 clr %g1 ! 0 <PROM_START>
return false;
}
prev_block = free_block;
free_block = free_block->next;
2008348: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
200834c: 80 a2 c0 18 cmp %o3, %i0
2008350: 32 bf ff ce bne,a 2008288 <_Heap_Walk+0x198>
2008354: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
2008358: 2d 00 80 53 sethi %hi(0x2014c00), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200835c: 2f 00 80 53 sethi %hi(0x2014c00), %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008360: ac 15 a1 a0 or %l6, 0x1a0, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008364: ae 15 e1 88 or %l7, 0x188, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008368: 2b 00 80 53 sethi %hi(0x2014c00), %l5
block = next_block;
} while ( block != first_block );
return true;
}
200836c: c2 06 a0 04 ld [ %i2 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008370: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008374: a4 08 7f fe and %g1, -2, %l2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008378: a6 04 80 1a add %l2, %i2, %l3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200837c: 80 a0 c0 13 cmp %g3, %l3
2008380: 18 80 00 05 bgu 2008394 <_Heap_Walk+0x2a4> <== NEVER TAKEN
2008384: 84 10 20 00 clr %g2
2008388: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200838c: 80 a0 80 13 cmp %g2, %l3
2008390: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
2008394: 80 a0 a0 00 cmp %g2, 0
2008398: 12 80 00 07 bne 20083b4 <_Heap_Walk+0x2c4>
200839c: 84 1e 80 11 xor %i2, %l1, %g2
(*printer)(
20083a0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083a4: 90 10 00 19 mov %i1, %o0
20083a8: 92 10 20 01 mov 1, %o1
20083ac: 10 80 00 2c b 200845c <_Heap_Walk+0x36c>
20083b0: 94 12 a0 18 or %o2, 0x18, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
20083b4: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20083b8: c2 27 bf fc st %g1, [ %fp + -4 ]
20083bc: a8 40 20 00 addx %g0, 0, %l4
20083c0: 90 10 00 12 mov %l2, %o0
20083c4: 7f ff e5 c7 call 2001ae0 <.urem>
20083c8: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
20083cc: 80 a2 20 00 cmp %o0, 0
20083d0: 02 80 00 0c be 2008400 <_Heap_Walk+0x310>
20083d4: c2 07 bf fc ld [ %fp + -4 ], %g1
20083d8: 80 8d 20 ff btst 0xff, %l4
20083dc: 02 80 00 0a be 2008404 <_Heap_Walk+0x314>
20083e0: 80 a4 80 10 cmp %l2, %l0
(*printer)(
20083e4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083e8: 90 10 00 19 mov %i1, %o0
20083ec: 92 10 20 01 mov 1, %o1
20083f0: 94 12 a0 48 or %o2, 0x48, %o2
20083f4: 96 10 00 1a mov %i2, %o3
20083f8: 10 bf ff d0 b 2008338 <_Heap_Walk+0x248>
20083fc: 98 10 00 12 mov %l2, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008400: 80 a4 80 10 cmp %l2, %l0
2008404: 1a 80 00 0d bcc 2008438 <_Heap_Walk+0x348>
2008408: 80 a4 c0 1a cmp %l3, %i2
200840c: 80 8d 20 ff btst 0xff, %l4
2008410: 02 80 00 0a be 2008438 <_Heap_Walk+0x348> <== NEVER TAKEN
2008414: 80 a4 c0 1a cmp %l3, %i2
(*printer)(
2008418: 15 00 80 53 sethi %hi(0x2014c00), %o2
200841c: 90 10 00 19 mov %i1, %o0
2008420: 92 10 20 01 mov 1, %o1
2008424: 94 12 a0 78 or %o2, 0x78, %o2
2008428: 96 10 00 1a mov %i2, %o3
200842c: 98 10 00 12 mov %l2, %o4
2008430: 10 80 00 3d b 2008524 <_Heap_Walk+0x434>
2008434: 9a 10 00 10 mov %l0, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008438: 38 80 00 0c bgu,a 2008468 <_Heap_Walk+0x378>
200843c: a8 08 60 01 and %g1, 1, %l4
2008440: 80 8d 20 ff btst 0xff, %l4
2008444: 02 80 00 09 be 2008468 <_Heap_Walk+0x378>
2008448: a8 08 60 01 and %g1, 1, %l4
(*printer)(
200844c: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008450: 90 10 00 19 mov %i1, %o0
2008454: 92 10 20 01 mov 1, %o1
2008458: 94 12 a0 a8 or %o2, 0xa8, %o2
200845c: 96 10 00 1a mov %i2, %o3
2008460: 10 bf ff b6 b 2008338 <_Heap_Walk+0x248>
2008464: 98 10 00 13 mov %l3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008468: c2 04 e0 04 ld [ %l3 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200846c: 80 88 60 01 btst 1, %g1
2008470: 12 80 00 40 bne 2008570 <_Heap_Walk+0x480>
2008474: 90 10 00 19 mov %i1, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008478: da 06 a0 0c ld [ %i2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200847c: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008480: 05 00 80 52 sethi %hi(0x2014800), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
2008484: c8 06 20 0c ld [ %i0 + 0xc ], %g4
2008488: 80 a3 40 01 cmp %o5, %g1
200848c: 02 80 00 07 be 20084a8 <_Heap_Walk+0x3b8>
2008490: 86 10 a1 88 or %g2, 0x188, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008494: 80 a3 40 18 cmp %o5, %i0
2008498: 12 80 00 04 bne 20084a8 <_Heap_Walk+0x3b8>
200849c: 86 15 61 50 or %l5, 0x150, %g3
20084a0: 07 00 80 52 sethi %hi(0x2014800), %g3
20084a4: 86 10 e1 98 or %g3, 0x198, %g3 ! 2014998 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
20084a8: c4 06 a0 08 ld [ %i2 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20084ac: 1f 00 80 52 sethi %hi(0x2014800), %o7
20084b0: 80 a0 80 04 cmp %g2, %g4
20084b4: 02 80 00 07 be 20084d0 <_Heap_Walk+0x3e0>
20084b8: 82 13 e1 a8 or %o7, 0x1a8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
20084bc: 80 a0 80 18 cmp %g2, %i0
20084c0: 12 80 00 04 bne 20084d0 <_Heap_Walk+0x3e0>
20084c4: 82 15 61 50 or %l5, 0x150, %g1
20084c8: 03 00 80 52 sethi %hi(0x2014800), %g1
20084cc: 82 10 61 b8 or %g1, 0x1b8, %g1 ! 20149b8 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20084d0: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
20084d4: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
20084d8: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
20084dc: 90 10 00 19 mov %i1, %o0
20084e0: 92 10 20 00 clr %o1
20084e4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084e8: 96 10 00 1a mov %i2, %o3
20084ec: 94 12 a0 e0 or %o2, 0xe0, %o2
20084f0: 9f c7 40 00 call %i5
20084f4: 98 10 00 12 mov %l2, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
20084f8: da 04 c0 00 ld [ %l3 ], %o5
20084fc: 80 a4 80 0d cmp %l2, %o5
2008500: 02 80 00 0d be 2008534 <_Heap_Walk+0x444>
2008504: 80 a5 20 00 cmp %l4, 0
(*printer)(
2008508: 15 00 80 53 sethi %hi(0x2014c00), %o2
200850c: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
2008510: 90 10 00 19 mov %i1, %o0
2008514: 92 10 20 01 mov 1, %o1
2008518: 94 12 a1 18 or %o2, 0x118, %o2
200851c: 96 10 00 1a mov %i2, %o3
2008520: 98 10 00 12 mov %l2, %o4
2008524: 9f c7 40 00 call %i5
2008528: 01 00 00 00 nop
200852c: 10 80 00 23 b 20085b8 <_Heap_Walk+0x4c8>
2008530: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if ( !prev_used ) {
2008534: 32 80 00 0a bne,a 200855c <_Heap_Walk+0x46c>
2008538: c2 06 20 08 ld [ %i0 + 8 ], %g1
(*printer)(
200853c: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008540: 90 10 00 19 mov %i1, %o0
2008544: 92 10 20 01 mov 1, %o1
2008548: 10 80 00 22 b 20085d0 <_Heap_Walk+0x4e0>
200854c: 94 12 a1 58 or %o2, 0x158, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2008550: 02 80 00 17 be 20085ac <_Heap_Walk+0x4bc>
2008554: 80 a4 c0 1b cmp %l3, %i3
return true;
}
free_block = free_block->next;
2008558: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
200855c: 80 a0 40 18 cmp %g1, %i0
2008560: 12 bf ff fc bne 2008550 <_Heap_Walk+0x460>
2008564: 80 a0 40 1a cmp %g1, %i2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008568: 10 80 00 17 b 20085c4 <_Heap_Walk+0x4d4>
200856c: 15 00 80 53 sethi %hi(0x2014c00), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2008570: 80 a5 20 00 cmp %l4, 0
2008574: 02 80 00 08 be 2008594 <_Heap_Walk+0x4a4>
2008578: 92 10 20 00 clr %o1
(*printer)(
200857c: 94 10 00 17 mov %l7, %o2
2008580: 96 10 00 1a mov %i2, %o3
2008584: 9f c7 40 00 call %i5
2008588: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200858c: 10 80 00 08 b 20085ac <_Heap_Walk+0x4bc>
2008590: 80 a4 c0 1b cmp %l3, %i3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008594: da 06 80 00 ld [ %i2 ], %o5
2008598: 94 10 00 16 mov %l6, %o2
200859c: 96 10 00 1a mov %i2, %o3
20085a0: 9f c7 40 00 call %i5
20085a4: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20085a8: 80 a4 c0 1b cmp %l3, %i3
20085ac: 12 bf ff 70 bne 200836c <_Heap_Walk+0x27c>
20085b0: b4 10 00 13 mov %l3, %i2
return true;
20085b4: 82 10 20 01 mov 1, %g1
}
20085b8: b0 08 60 01 and %g1, 1, %i0
20085bc: 81 c7 e0 08 ret
20085c0: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
20085c4: 90 10 00 19 mov %i1, %o0
20085c8: 92 10 20 01 mov 1, %o1
20085cc: 94 12 a1 c8 or %o2, 0x1c8, %o2
20085d0: 96 10 00 1a mov %i2, %o3
20085d4: 9f c7 40 00 call %i5
20085d8: 01 00 00 00 nop
20085dc: 10 bf ff f7 b 20085b8 <_Heap_Walk+0x4c8>
20085e0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
020078cc <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20078cc: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20078d0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20078d4: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20078d8: 80 a0 60 00 cmp %g1, 0
20078dc: 02 80 00 20 be 200795c <_Objects_Allocate+0x90> <== NEVER TAKEN
20078e0: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20078e4: b8 07 60 20 add %i5, 0x20, %i4
20078e8: 7f ff fd 81 call 2006eec <_Chain_Get>
20078ec: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
20078f0: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
20078f4: 80 a0 60 00 cmp %g1, 0
20078f8: 02 80 00 19 be 200795c <_Objects_Allocate+0x90>
20078fc: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007900: 80 a2 20 00 cmp %o0, 0
2007904: 32 80 00 0a bne,a 200792c <_Objects_Allocate+0x60>
2007908: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
_Objects_Extend_information( information );
200790c: 40 00 00 1d call 2007980 <_Objects_Extend_information>
2007910: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007914: 7f ff fd 76 call 2006eec <_Chain_Get>
2007918: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
200791c: b0 92 20 00 orcc %o0, 0, %i0
2007920: 02 80 00 0f be 200795c <_Objects_Allocate+0x90>
2007924: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007928: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
200792c: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007930: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
2007934: 40 00 3c 5d call 2016aa8 <.udiv>
2007938: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
200793c: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2007940: 91 2a 20 02 sll %o0, 2, %o0
2007944: c4 00 40 08 ld [ %g1 + %o0 ], %g2
2007948: 84 00 bf ff add %g2, -1, %g2
200794c: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007950: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
2007954: 82 00 7f ff add %g1, -1, %g1
2007958: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
200795c: 81 c7 e0 08 ret
2007960: 81 e8 00 00 restore
02007cd8 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007cd8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007cdc: 80 a6 60 00 cmp %i1, 0
2007ce0: 02 80 00 17 be 2007d3c <_Objects_Get_information+0x64>
2007ce4: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007ce8: 40 00 11 6d call 200c29c <_Objects_API_maximum_class>
2007cec: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007cf0: 80 a2 20 00 cmp %o0, 0
2007cf4: 02 80 00 12 be 2007d3c <_Objects_Get_information+0x64>
2007cf8: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007cfc: 18 80 00 10 bgu 2007d3c <_Objects_Get_information+0x64>
2007d00: 03 00 80 6d sethi %hi(0x201b400), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007d04: b1 2e 20 02 sll %i0, 2, %i0
2007d08: 82 10 60 58 or %g1, 0x58, %g1
2007d0c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2007d10: 80 a0 60 00 cmp %g1, 0
2007d14: 02 80 00 0a be 2007d3c <_Objects_Get_information+0x64> <== NEVER TAKEN
2007d18: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2007d1c: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
2007d20: 80 a7 60 00 cmp %i5, 0
2007d24: 02 80 00 06 be 2007d3c <_Objects_Get_information+0x64> <== NEVER TAKEN
2007d28: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2007d2c: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
2007d30: 80 a0 00 01 cmp %g0, %g1
2007d34: 82 60 20 00 subx %g0, 0, %g1
2007d38: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
2007d3c: 81 c7 e0 08 ret
2007d40: 91 e8 00 1d restore %g0, %i5, %o0
02008828 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2008828: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200882c: 92 96 20 00 orcc %i0, 0, %o1
2008830: 12 80 00 06 bne 2008848 <_Objects_Id_to_name+0x20>
2008834: 83 32 60 18 srl %o1, 0x18, %g1
2008838: 03 00 80 72 sethi %hi(0x201c800), %g1
200883c: c2 00 63 08 ld [ %g1 + 0x308 ], %g1 ! 201cb08 <_Per_CPU_Information+0xc>
2008840: d2 00 60 08 ld [ %g1 + 8 ], %o1
2008844: 83 32 60 18 srl %o1, 0x18, %g1
2008848: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200884c: 84 00 7f ff add %g1, -1, %g2
2008850: 80 a0 a0 02 cmp %g2, 2
2008854: 18 80 00 12 bgu 200889c <_Objects_Id_to_name+0x74>
2008858: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200885c: 10 80 00 12 b 20088a4 <_Objects_Id_to_name+0x7c>
2008860: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2008864: 85 28 a0 02 sll %g2, 2, %g2
2008868: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200886c: 80 a2 20 00 cmp %o0, 0
2008870: 02 80 00 0b be 200889c <_Objects_Id_to_name+0x74> <== NEVER TAKEN
2008874: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2008878: 7f ff ff ce call 20087b0 <_Objects_Get>
200887c: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2008880: 80 a2 20 00 cmp %o0, 0
2008884: 02 80 00 06 be 200889c <_Objects_Id_to_name+0x74>
2008888: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
200888c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2008890: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2008894: 40 00 03 69 call 2009638 <_Thread_Enable_dispatch>
2008898: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
200889c: 81 c7 e0 08 ret
20088a0: 91 e8 00 1d restore %g0, %i5, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20088a4: 05 00 80 72 sethi %hi(0x201c800), %g2
20088a8: 84 10 a0 38 or %g2, 0x38, %g2 ! 201c838 <_Objects_Information_table>
20088ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1
20088b0: 80 a0 60 00 cmp %g1, 0
20088b4: 12 bf ff ec bne 2008864 <_Objects_Id_to_name+0x3c>
20088b8: 85 32 60 1b srl %o1, 0x1b, %g2
20088bc: 30 bf ff f8 b,a 200889c <_Objects_Id_to_name+0x74>
020096ec <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
20096ec: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
20096f0: 80 a6 60 00 cmp %i1, 0
20096f4: 02 80 00 73 be 20098c0 <_RBTree_Extract_unprotected+0x1d4>
20096f8: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
20096fc: c2 06 20 08 ld [ %i0 + 8 ], %g1
2009700: 80 a6 40 01 cmp %i1, %g1
2009704: 32 80 00 0d bne,a 2009738 <_RBTree_Extract_unprotected+0x4c>
2009708: c2 06 20 0c ld [ %i0 + 0xc ], %g1
if (the_node->child[RBT_RIGHT])
200970c: c2 06 60 08 ld [ %i1 + 8 ], %g1
2009710: 80 a0 60 00 cmp %g1, 0
2009714: 22 80 00 04 be,a 2009724 <_RBTree_Extract_unprotected+0x38>
2009718: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
200971c: 10 80 00 06 b 2009734 <_RBTree_Extract_unprotected+0x48>
2009720: c2 26 20 08 st %g1, [ %i0 + 8 ]
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
2009724: 80 a6 00 01 cmp %i0, %g1
2009728: 12 80 00 03 bne 2009734 <_RBTree_Extract_unprotected+0x48>
200972c: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
2009730: c0 26 20 08 clr [ %i0 + 8 ]
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
2009734: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009738: 80 a6 40 01 cmp %i1, %g1
200973c: 12 80 00 0b bne 2009768 <_RBTree_Extract_unprotected+0x7c>
2009740: c2 06 60 04 ld [ %i1 + 4 ], %g1
if (the_node->child[RBT_LEFT])
2009744: 80 a0 60 00 cmp %g1, 0
2009748: 22 80 00 04 be,a 2009758 <_RBTree_Extract_unprotected+0x6c>
200974c: c4 06 40 00 ld [ %i1 ], %g2
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
2009750: 10 80 00 06 b 2009768 <_RBTree_Extract_unprotected+0x7c>
2009754: c2 26 20 0c st %g1, [ %i0 + 0xc ]
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
2009758: 80 a6 00 02 cmp %i0, %g2
200975c: 12 80 00 03 bne 2009768 <_RBTree_Extract_unprotected+0x7c>
2009760: c4 26 20 0c st %g2, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
2009764: c0 26 20 0c clr [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
2009768: ba 90 60 00 orcc %g1, 0, %i5
200976c: 02 80 00 36 be 2009844 <_RBTree_Extract_unprotected+0x158>
2009770: f8 06 60 08 ld [ %i1 + 8 ], %i4
2009774: 80 a7 20 00 cmp %i4, 0
2009778: 32 80 00 05 bne,a 200978c <_RBTree_Extract_unprotected+0xa0>
200977c: c2 07 60 08 ld [ %i5 + 8 ], %g1
2009780: 10 80 00 35 b 2009854 <_RBTree_Extract_unprotected+0x168>
2009784: b8 10 00 01 mov %g1, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
2009788: c2 07 60 08 ld [ %i5 + 8 ], %g1
200978c: 80 a0 60 00 cmp %g1, 0
2009790: 32 bf ff fe bne,a 2009788 <_RBTree_Extract_unprotected+0x9c>
2009794: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
2009798: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200979c: 80 a7 20 00 cmp %i4, 0
20097a0: 02 80 00 05 be 20097b4 <_RBTree_Extract_unprotected+0xc8>
20097a4: 01 00 00 00 nop
leaf->parent = target->parent;
20097a8: c2 07 40 00 ld [ %i5 ], %g1
20097ac: 10 80 00 04 b 20097bc <_RBTree_Extract_unprotected+0xd0>
20097b0: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
20097b4: 7f ff ff 53 call 2009500 <_RBTree_Extract_validate_unprotected>
20097b8: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
20097bc: c4 07 40 00 ld [ %i5 ], %g2
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
20097c0: c2 07 60 0c ld [ %i5 + 0xc ], %g1
dir = target != target->parent->child[0];
20097c4: c6 00 a0 04 ld [ %g2 + 4 ], %g3
20097c8: 86 1f 40 03 xor %i5, %g3, %g3
20097cc: 80 a0 00 03 cmp %g0, %g3
20097d0: 86 40 20 00 addx %g0, 0, %g3
target->parent->child[dir] = leaf;
20097d4: 87 28 e0 02 sll %g3, 2, %g3
20097d8: 84 00 80 03 add %g2, %g3, %g2
20097dc: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
20097e0: c4 06 40 00 ld [ %i1 ], %g2
20097e4: c6 00 a0 04 ld [ %g2 + 4 ], %g3
20097e8: 86 1e 40 03 xor %i1, %g3, %g3
20097ec: 80 a0 00 03 cmp %g0, %g3
20097f0: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = target;
20097f4: 87 28 e0 02 sll %g3, 2, %g3
20097f8: 84 00 80 03 add %g2, %g3, %g2
20097fc: fa 20 a0 04 st %i5, [ %g2 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
2009800: c4 06 60 08 ld [ %i1 + 8 ], %g2
2009804: c4 27 60 08 st %g2, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
2009808: c4 06 60 08 ld [ %i1 + 8 ], %g2
200980c: 80 a0 a0 00 cmp %g2, 0
2009810: 32 80 00 02 bne,a 2009818 <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN
2009814: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
2009818: c4 06 60 04 ld [ %i1 + 4 ], %g2
200981c: c4 27 60 04 st %g2, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
2009820: c4 06 60 04 ld [ %i1 + 4 ], %g2
2009824: 80 a0 a0 00 cmp %g2, 0
2009828: 32 80 00 02 bne,a 2009830 <_RBTree_Extract_unprotected+0x144>
200982c: fa 20 80 00 st %i5, [ %g2 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
2009830: c4 06 40 00 ld [ %i1 ], %g2
2009834: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
2009838: c4 06 60 0c ld [ %i1 + 0xc ], %g2
200983c: 10 80 00 14 b 200988c <_RBTree_Extract_unprotected+0x1a0>
2009840: c4 27 60 0c st %g2, [ %i5 + 0xc ]
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
2009844: 80 a7 20 00 cmp %i4, 0
2009848: 32 80 00 04 bne,a 2009858 <_RBTree_Extract_unprotected+0x16c>
200984c: c2 06 40 00 ld [ %i1 ], %g1
2009850: 30 80 00 04 b,a 2009860 <_RBTree_Extract_unprotected+0x174>
leaf->parent = the_node->parent;
2009854: c2 06 40 00 ld [ %i1 ], %g1
2009858: 10 80 00 04 b 2009868 <_RBTree_Extract_unprotected+0x17c>
200985c: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
2009860: 7f ff ff 28 call 2009500 <_RBTree_Extract_validate_unprotected>
2009864: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2009868: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200986c: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2009870: c6 00 a0 04 ld [ %g2 + 4 ], %g3
2009874: 86 1e 40 03 xor %i1, %g3, %g3
2009878: 80 a0 00 03 cmp %g0, %g3
200987c: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
2009880: 87 28 e0 02 sll %g3, 2, %g3
2009884: 84 00 80 03 add %g2, %g3, %g2
2009888: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200988c: 80 a0 60 00 cmp %g1, 0
2009890: 32 80 00 06 bne,a 20098a8 <_RBTree_Extract_unprotected+0x1bc>
2009894: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
2009898: 80 a7 20 00 cmp %i4, 0
200989c: 32 80 00 02 bne,a 20098a4 <_RBTree_Extract_unprotected+0x1b8>
20098a0: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
20098a4: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
20098a8: c0 26 60 08 clr [ %i1 + 8 ]
20098ac: c0 26 60 04 clr [ %i1 + 4 ]
20098b0: 80 a0 60 00 cmp %g1, 0
20098b4: 02 80 00 03 be 20098c0 <_RBTree_Extract_unprotected+0x1d4>
20098b8: c0 26 40 00 clr [ %i1 ]
20098bc: c0 20 60 0c clr [ %g1 + 0xc ]
20098c0: 81 c7 e0 08 ret
20098c4: 81 e8 00 00 restore
02009500 <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
2009500: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
2009504: fa 06 00 00 ld [ %i0 ], %i5
if(!parent->parent) return;
2009508: c2 07 40 00 ld [ %i5 ], %g1
200950c: 80 a0 60 00 cmp %g1, 0
2009510: 02 80 00 6e be 20096c8 <_RBTree_Extract_validate_unprotected+0x1c8>
2009514: 90 10 00 18 mov %i0, %o0
sibling = _RBTree_Sibling(the_node);
2009518: 7f ff ff ca call 2009440 <_RBTree_Sibling>
200951c: b4 10 20 01 mov 1, %i2
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2009520: 10 80 00 5d b 2009694 <_RBTree_Extract_validate_unprotected+0x194>
2009524: c2 06 20 0c ld [ %i0 + 0xc ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2009528: 22 80 00 15 be,a 200957c <_RBTree_Extract_validate_unprotected+0x7c><== NEVER TAKEN
200952c: c4 02 20 08 ld [ %o0 + 8 ], %g2 <== NOT EXECUTED
2009530: c2 02 20 0c ld [ %o0 + 0xc ], %g1
2009534: 80 a0 60 01 cmp %g1, 1
2009538: 32 80 00 11 bne,a 200957c <_RBTree_Extract_validate_unprotected+0x7c>
200953c: c4 02 20 08 ld [ %o0 + 8 ], %g2
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
2009540: c2 27 60 0c st %g1, [ %i5 + 0xc ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
2009544: c2 07 60 04 ld [ %i5 + 4 ], %g1
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
2009548: c0 22 20 0c clr [ %o0 + 0xc ]
dir = the_node != parent->child[0];
200954c: 82 1e 00 01 xor %i0, %g1, %g1
2009550: 80 a0 00 01 cmp %g0, %g1
_RBTree_Rotate(parent, dir);
2009554: 90 10 00 1d mov %i5, %o0
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
2009558: b8 40 20 00 addx %g0, 0, %i4
_RBTree_Rotate(parent, dir);
200955c: 7f ff ff ca call 2009484 <_RBTree_Rotate>
2009560: 92 10 00 1c mov %i4, %o1
sibling = parent->child[!dir];
2009564: 80 a0 00 1c cmp %g0, %i4
2009568: 82 60 3f ff subx %g0, -1, %g1
200956c: 83 28 60 02 sll %g1, 2, %g1
2009570: 82 07 40 01 add %i5, %g1, %g1
2009574: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
2009578: c4 02 20 08 ld [ %o0 + 8 ], %g2
200957c: 80 a0 a0 00 cmp %g2, 0
2009580: 02 80 00 06 be 2009598 <_RBTree_Extract_validate_unprotected+0x98>
2009584: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
2009588: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
200958c: 82 18 60 01 xor %g1, 1, %g1
2009590: 80 a0 00 01 cmp %g0, %g1
2009594: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
2009598: 80 a0 60 00 cmp %g1, 0
200959c: 32 80 00 14 bne,a 20095ec <_RBTree_Extract_validate_unprotected+0xec>
20095a0: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
20095a4: c4 02 20 04 ld [ %o0 + 4 ], %g2
20095a8: 80 a0 a0 00 cmp %g2, 0
20095ac: 02 80 00 07 be 20095c8 <_RBTree_Extract_validate_unprotected+0xc8>
20095b0: 80 a0 60 00 cmp %g1, 0
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
20095b4: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
20095b8: 82 18 60 01 xor %g1, 1, %g1
20095bc: 80 a0 00 01 cmp %g0, %g1
20095c0: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
20095c4: 80 a0 60 00 cmp %g1, 0
20095c8: 32 80 00 09 bne,a 20095ec <_RBTree_Extract_validate_unprotected+0xec>
20095cc: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
20095d0: f4 22 20 0c st %i2, [ %o0 + 0xc ]
20095d4: c2 07 60 0c ld [ %i5 + 0xc ], %g1
20095d8: 80 a0 60 01 cmp %g1, 1
20095dc: 32 80 00 3d bne,a 20096d0 <_RBTree_Extract_validate_unprotected+0x1d0>
20095e0: f8 07 40 00 ld [ %i5 ], %i4
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
20095e4: 10 80 00 33 b 20096b0 <_RBTree_Extract_validate_unprotected+0x1b0>
20095e8: c0 27 60 0c clr [ %i5 + 0xc ]
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
20095ec: 82 1e 00 01 xor %i0, %g1, %g1
20095f0: 80 a0 00 01 cmp %g0, %g1
20095f4: b8 40 20 00 addx %g0, 0, %i4
if (!_RBTree_Is_red(sibling->child[!dir])) {
20095f8: 80 a0 00 1c cmp %g0, %i4
20095fc: b6 60 3f ff subx %g0, -1, %i3
2009600: 83 2e e0 02 sll %i3, 2, %g1
2009604: 82 02 00 01 add %o0, %g1, %g1
2009608: c4 00 60 04 ld [ %g1 + 4 ], %g2
200960c: 80 a0 a0 00 cmp %g2, 0
2009610: 02 80 00 06 be 2009628 <_RBTree_Extract_validate_unprotected+0x128>
2009614: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
2009618: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
200961c: 82 18 60 01 xor %g1, 1, %g1
2009620: 80 a0 00 01 cmp %g0, %g1
2009624: 82 60 3f ff subx %g0, -1, %g1
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
2009628: 80 a0 60 00 cmp %g1, 0
200962c: 32 80 00 0e bne,a 2009664 <_RBTree_Extract_validate_unprotected+0x164>
2009630: c2 07 60 0c ld [ %i5 + 0xc ], %g1
sibling->color = RBT_RED;
2009634: 82 10 20 01 mov 1, %g1
2009638: c2 22 20 0c st %g1, [ %o0 + 0xc ]
sibling->child[dir]->color = RBT_BLACK;
200963c: 83 2f 20 02 sll %i4, 2, %g1
2009640: 82 02 00 01 add %o0, %g1, %g1
2009644: c2 00 60 04 ld [ %g1 + 4 ], %g1
_RBTree_Rotate(sibling, !dir);
2009648: 92 1f 20 01 xor %i4, 1, %o1
200964c: 7f ff ff 8e call 2009484 <_RBTree_Rotate>
2009650: c0 20 60 0c clr [ %g1 + 0xc ]
sibling = parent->child[!dir];
2009654: 83 2e e0 02 sll %i3, 2, %g1
2009658: 82 07 40 01 add %i5, %g1, %g1
200965c: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
sibling->color = parent->color;
2009660: c2 07 60 0c ld [ %i5 + 0xc ], %g1
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
2009664: b7 2e e0 02 sll %i3, 2, %i3
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
2009668: c2 22 20 0c st %g1, [ %o0 + 0xc ]
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
200966c: 90 02 00 1b add %o0, %i3, %o0
2009670: c2 02 20 04 ld [ %o0 + 4 ], %g1
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
parent->color = RBT_BLACK;
2009674: c0 27 60 0c clr [ %i5 + 0xc ]
sibling->child[!dir]->color = RBT_BLACK;
2009678: c0 20 60 0c clr [ %g1 + 0xc ]
_RBTree_Rotate(parent, dir);
200967c: 90 10 00 1d mov %i5, %o0
2009680: 7f ff ff 81 call 2009484 <_RBTree_Rotate>
2009684: 92 10 00 1c mov %i4, %o1
break; /* done */
2009688: 10 80 00 0b b 20096b4 <_RBTree_Extract_validate_unprotected+0x1b4>
200968c: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2009690: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009694: 80 a0 60 01 cmp %g1, 1
2009698: 22 80 00 07 be,a 20096b4 <_RBTree_Extract_validate_unprotected+0x1b4>
200969c: c2 06 00 00 ld [ %i0 ], %g1
20096a0: c2 07 40 00 ld [ %i5 ], %g1
20096a4: 80 a0 60 00 cmp %g1, 0
20096a8: 12 bf ff a0 bne 2009528 <_RBTree_Extract_validate_unprotected+0x28>
20096ac: 80 a2 20 00 cmp %o0, 0
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
20096b0: c2 06 00 00 ld [ %i0 ], %g1
20096b4: c2 00 40 00 ld [ %g1 ], %g1
20096b8: 80 a0 60 00 cmp %g1, 0
20096bc: 12 80 00 0a bne 20096e4 <_RBTree_Extract_validate_unprotected+0x1e4>
20096c0: 01 00 00 00 nop
20096c4: c0 26 20 0c clr [ %i0 + 0xc ]
20096c8: 81 c7 e0 08 ret
20096cc: 81 e8 00 00 restore
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
sibling = _RBTree_Sibling(the_node);
20096d0: 90 10 00 1d mov %i5, %o0
20096d4: 7f ff ff 5b call 2009440 <_RBTree_Sibling>
20096d8: b0 10 00 1d mov %i5, %i0
20096dc: 10 bf ff ed b 2009690 <_RBTree_Extract_validate_unprotected+0x190>
20096e0: ba 10 00 1c mov %i4, %i5
20096e4: 81 c7 e0 08 ret
20096e8: 81 e8 00 00 restore
02009c48 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
2009c48: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
2009c4c: 80 a6 20 00 cmp %i0, 0
2009c50: 02 80 00 10 be 2009c90 <_RBTree_Initialize+0x48> <== NEVER TAKEN
2009c54: 01 00 00 00 nop
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
2009c58: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
2009c5c: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
2009c60: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
2009c64: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
2009c68: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
2009c6c: 10 80 00 06 b 2009c84 <_RBTree_Initialize+0x3c>
2009c70: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert(the_rbtree, next);
2009c74: 90 10 00 18 mov %i0, %o0
2009c78: 7f ff ff ef call 2009c34 <_RBTree_Insert>
2009c7c: b4 06 80 1c add %i2, %i4, %i2
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _RBTree_Initialize(
2009c80: b6 06 ff ff add %i3, -1, %i3
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
2009c84: 80 a6 e0 00 cmp %i3, 0
2009c88: 12 bf ff fb bne 2009c74 <_RBTree_Initialize+0x2c>
2009c8c: 92 10 00 1a mov %i2, %o1
2009c90: 81 c7 e0 08 ret
2009c94: 81 e8 00 00 restore
0200299c <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
200299c: 80 a2 20 00 cmp %o0, 0
20029a0: 02 80 00 0e be 20029d8 <_RBTree_Sibling+0x3c>
20029a4: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
20029a8: c4 02 00 00 ld [ %o0 ], %g2
20029ac: 80 a0 a0 00 cmp %g2, 0
20029b0: 02 80 00 0a be 20029d8 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
20029b4: 01 00 00 00 nop
if(!(the_node->parent->parent)) return NULL;
20029b8: c6 00 80 00 ld [ %g2 ], %g3
20029bc: 80 a0 e0 00 cmp %g3, 0
20029c0: 02 80 00 06 be 20029d8 <_RBTree_Sibling+0x3c>
20029c4: 01 00 00 00 nop
if(the_node == the_node->parent->child[RBT_LEFT])
20029c8: c2 00 a0 04 ld [ %g2 + 4 ], %g1
20029cc: 80 a2 00 01 cmp %o0, %g1
20029d0: 22 80 00 02 be,a 20029d8 <_RBTree_Sibling+0x3c>
20029d4: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
else
return the_node->parent->child[RBT_LEFT];
}
20029d8: 81 c3 e0 08 retl
20029dc: 90 10 00 01 mov %g1, %o0
02009a70 <_RBTree_Validate_insert_unprotected>:
* append operation.
*/
void _RBTree_Validate_insert_unprotected(
RBTree_Node *the_node
)
{
2009a70: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
2009a74: 10 80 00 1f b 2009af0 <_RBTree_Validate_insert_unprotected+0x80>
2009a78: b6 10 20 01 mov 1, %i3
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2009a7c: 80 a0 60 00 cmp %g1, 0
2009a80: 02 80 00 27 be 2009b1c <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN
2009a84: c2 07 60 04 ld [ %i5 + 4 ], %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
2009a88: 80 a2 00 01 cmp %o0, %g1
2009a8c: 22 80 00 02 be,a 2009a94 <_RBTree_Validate_insert_unprotected+0x24>
2009a90: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2009a94: 80 a0 60 00 cmp %g1, 0
2009a98: 22 80 00 21 be,a 2009b1c <_RBTree_Validate_insert_unprotected+0xac>
2009a9c: c2 07 60 04 ld [ %i5 + 4 ], %g1
2009aa0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2009aa4: 80 a0 a0 01 cmp %g2, 1
2009aa8: 32 80 00 1d bne,a 2009b1c <_RBTree_Validate_insert_unprotected+0xac>
2009aac: c2 07 60 04 ld [ %i5 + 4 ], %g1
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
2009ab0: c0 22 20 0c clr [ %o0 + 0xc ]
u->color = RBT_BLACK;
2009ab4: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
2009ab8: c4 27 60 0c st %g2, [ %i5 + 0xc ]
2009abc: 10 80 00 0d b 2009af0 <_RBTree_Validate_insert_unprotected+0x80>
2009ac0: b0 10 00 1d mov %i5, %i0
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
2009ac4: 7f ff ff cc call 20099f4 <_RBTree_Rotate>
2009ac8: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
2009acc: 83 2f 20 02 sll %i4, 2, %g1
2009ad0: b0 06 00 01 add %i0, %g1, %i0
2009ad4: f0 06 20 04 ld [ %i0 + 4 ], %i0
}
the_node->parent->color = RBT_BLACK;
2009ad8: c2 06 00 00 ld [ %i0 ], %g1
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2009adc: 90 10 00 1d mov %i5, %o0
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2009ae0: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
2009ae4: f6 27 60 0c st %i3, [ %i5 + 0xc ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2009ae8: 7f ff ff c3 call 20099f4 <_RBTree_Rotate>
2009aec: 92 26 c0 1c sub %i3, %i4, %o1
ISR_Level level;
_ISR_Disable( level );
return _RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
2009af0: d0 06 00 00 ld [ %i0 ], %o0
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
2009af4: fa 02 00 00 ld [ %o0 ], %i5
2009af8: 80 a7 60 00 cmp %i5, 0
2009afc: 22 80 00 14 be,a 2009b4c <_RBTree_Validate_insert_unprotected+0xdc>
2009b00: c0 26 20 0c clr [ %i0 + 0xc ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2009b04: c2 02 20 0c ld [ %o0 + 0xc ], %g1
2009b08: 80 a0 60 01 cmp %g1, 1
2009b0c: 12 80 00 10 bne 2009b4c <_RBTree_Validate_insert_unprotected+0xdc>
2009b10: 01 00 00 00 nop
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2009b14: 10 bf ff da b 2009a7c <_RBTree_Validate_insert_unprotected+0xc>
2009b18: c2 07 40 00 ld [ %i5 ], %g1
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
2009b1c: 82 1a 00 01 xor %o0, %g1, %g1
2009b20: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2009b24: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
2009b28: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2009b2c: 82 1e 00 01 xor %i0, %g1, %g1
2009b30: 80 a0 00 01 cmp %g0, %g1
2009b34: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
2009b38: 80 a0 40 1c cmp %g1, %i4
2009b3c: 12 bf ff e2 bne 2009ac4 <_RBTree_Validate_insert_unprotected+0x54>
2009b40: 01 00 00 00 nop
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2009b44: 10 bf ff e6 b 2009adc <_RBTree_Validate_insert_unprotected+0x6c>
2009b48: c2 06 00 00 ld [ %i0 ], %g1
2009b4c: 81 c7 e0 08 ret
2009b50: 81 e8 00 00 restore
0200ba94 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200ba94: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200ba98: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
if ( !api )
200ba9c: 80 a7 60 00 cmp %i5, 0
200baa0: 02 80 00 1c be 200bb10 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN
200baa4: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200baa8: 7f ff d9 b5 call 200217c <sparc_disable_interrupts>
200baac: 01 00 00 00 nop
signal_set = asr->signals_posted;
200bab0: f6 07 60 14 ld [ %i5 + 0x14 ], %i3
asr->signals_posted = 0;
200bab4: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200bab8: 7f ff d9 b5 call 200218c <sparc_enable_interrupts>
200babc: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200bac0: 80 a6 e0 00 cmp %i3, 0
200bac4: 02 80 00 13 be 200bb10 <_RTEMS_tasks_Post_switch_extension+0x7c>
200bac8: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
200bacc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bad0: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200bad4: 82 00 60 01 inc %g1
200bad8: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200badc: 39 00 00 3f sethi %hi(0xfc00), %i4
200bae0: 40 00 07 3b call 200d7cc <rtems_task_mode>
200bae4: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200bae8: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200baec: 9f c0 40 00 call %g1
200baf0: 90 10 00 1b mov %i3, %o0
asr->nest_level -= 1;
200baf4: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200baf8: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200bafc: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bb00: 92 17 23 ff or %i4, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200bb04: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bb08: 40 00 07 31 call 200d7cc <rtems_task_mode>
200bb0c: 94 07 bf fc add %fp, -4, %o2
200bb10: 81 c7 e0 08 ret
200bb14: 81 e8 00 00 restore
020076f4 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
20076f4: 9d e3 bf 98 save %sp, -104, %sp
20076f8: 11 00 80 74 sethi %hi(0x201d000), %o0
20076fc: 92 10 00 18 mov %i0, %o1
2007700: 90 12 22 24 or %o0, 0x224, %o0
2007704: 40 00 07 c4 call 2009614 <_Objects_Get>
2007708: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
200770c: c2 07 bf fc ld [ %fp + -4 ], %g1
2007710: 80 a0 60 00 cmp %g1, 0
2007714: 12 80 00 25 bne 20077a8 <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN
2007718: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
200771c: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007720: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007724: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007728: 80 88 80 01 btst %g2, %g1
200772c: 22 80 00 0b be,a 2007758 <_Rate_monotonic_Timeout+0x64>
2007730: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2007734: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007738: c2 07 60 08 ld [ %i5 + 8 ], %g1
200773c: 80 a0 80 01 cmp %g2, %g1
2007740: 32 80 00 06 bne,a 2007758 <_Rate_monotonic_Timeout+0x64>
2007744: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007748: 13 04 00 ff sethi %hi(0x1003fc00), %o1
200774c: 40 00 0a 78 call 200a12c <_Thread_Clear_state>
2007750: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
2007754: 30 80 00 06 b,a 200776c <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007758: 80 a0 60 01 cmp %g1, 1
200775c: 12 80 00 0d bne 2007790 <_Rate_monotonic_Timeout+0x9c>
2007760: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007764: 82 10 20 03 mov 3, %g1
2007768: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
200776c: 7f ff fe 65 call 2007100 <_Rate_monotonic_Initiate_statistics>
2007770: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007774: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007778: 11 00 80 75 sethi %hi(0x201d400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
200777c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007780: 90 12 20 4c or %o0, 0x4c, %o0
2007784: 40 00 0f 11 call 200b3c8 <_Watchdog_Insert>
2007788: 92 07 60 10 add %i5, 0x10, %o1
200778c: 30 80 00 02 b,a 2007794 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007790: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007794: 03 00 80 74 sethi %hi(0x201d000), %g1
2007798: c4 00 63 90 ld [ %g1 + 0x390 ], %g2 ! 201d390 <_Thread_Dispatch_disable_level>
200779c: 84 00 bf ff add %g2, -1, %g2
20077a0: c4 20 63 90 st %g2, [ %g1 + 0x390 ]
return _Thread_Dispatch_disable_level;
20077a4: c2 00 63 90 ld [ %g1 + 0x390 ], %g1
20077a8: 81 c7 e0 08 ret
20077ac: 81 e8 00 00 restore
02007160 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007160: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007164: 03 00 80 73 sethi %hi(0x201cc00), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
2007168: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200716c: 80 a6 20 00 cmp %i0, 0
2007170: 02 80 00 2b be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN
2007174: d2 00 63 78 ld [ %g1 + 0x378 ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007178: 11 00 03 d0 sethi %hi(0xf4000), %o0
200717c: 40 00 46 72 call 2018b44 <.udiv>
2007180: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007184: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2007188: 80 a0 40 08 cmp %g1, %o0
200718c: 3a 80 00 25 bcc,a 2007220 <_TOD_Validate+0xc0>
2007190: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
2007194: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007198: 80 a0 60 3b cmp %g1, 0x3b
200719c: 38 80 00 21 bgu,a 2007220 <_TOD_Validate+0xc0>
20071a0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20071a4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
20071a8: 80 a0 60 3b cmp %g1, 0x3b
20071ac: 38 80 00 1d bgu,a 2007220 <_TOD_Validate+0xc0>
20071b0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20071b4: c2 06 20 0c ld [ %i0 + 0xc ], %g1
20071b8: 80 a0 60 17 cmp %g1, 0x17
20071bc: 38 80 00 19 bgu,a 2007220 <_TOD_Validate+0xc0>
20071c0: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20071c4: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
20071c8: 80 a0 60 00 cmp %g1, 0
20071cc: 02 80 00 14 be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN
20071d0: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20071d4: 38 80 00 13 bgu,a 2007220 <_TOD_Validate+0xc0>
20071d8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20071dc: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20071e0: 80 a0 e7 c3 cmp %g3, 0x7c3
20071e4: 28 80 00 0f bleu,a 2007220 <_TOD_Validate+0xc0>
20071e8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20071ec: c4 06 20 08 ld [ %i0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20071f0: 80 a0 a0 00 cmp %g2, 0
20071f4: 02 80 00 0a be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN
20071f8: 80 88 e0 03 btst 3, %g3
20071fc: 07 00 80 6f sethi %hi(0x201bc00), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007200: 12 80 00 03 bne 200720c <_TOD_Validate+0xac>
2007204: 86 10 e0 88 or %g3, 0x88, %g3 ! 201bc88 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2007208: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
200720c: 83 28 60 02 sll %g1, 2, %g1
2007210: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007214: 80 a0 40 02 cmp %g1, %g2
2007218: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
200721c: b0 0f 60 01 and %i5, 1, %i0
2007220: 81 c7 e0 08 ret
2007224: 81 e8 00 00 restore
020087b8 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
20087b8: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
20087bc: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
20087c0: 40 00 03 59 call 2009524 <_Thread_Set_transient>
20087c4: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
20087c8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20087cc: 80 a0 40 19 cmp %g1, %i1
20087d0: 02 80 00 05 be 20087e4 <_Thread_Change_priority+0x2c>
20087d4: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
20087d8: 90 10 00 18 mov %i0, %o0
20087dc: 40 00 03 39 call 20094c0 <_Thread_Set_priority>
20087e0: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
20087e4: 7f ff e6 66 call 200217c <sparc_disable_interrupts>
20087e8: 01 00 00 00 nop
20087ec: b6 10 00 08 mov %o0, %i3
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
20087f0: f2 07 60 10 ld [ %i5 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
20087f4: 80 a6 60 04 cmp %i1, 4
20087f8: 02 80 00 10 be 2008838 <_Thread_Change_priority+0x80>
20087fc: b8 0f 20 04 and %i4, 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2008800: 80 a7 20 00 cmp %i4, 0
2008804: 12 80 00 03 bne 2008810 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2008808: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
200880c: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2008810: 7f ff e6 5f call 200218c <sparc_enable_interrupts>
2008814: 90 10 00 1b mov %i3, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008818: 03 00 00 ef sethi %hi(0x3bc00), %g1
200881c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008820: 80 8e 40 01 btst %i1, %g1
2008824: 02 80 00 29 be 20088c8 <_Thread_Change_priority+0x110>
2008828: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
200882c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2008830: 40 00 02 f6 call 2009408 <_Thread_queue_Requeue>
2008834: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008838: 80 a7 20 00 cmp %i4, 0
200883c: 12 80 00 0b bne 2008868 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2008840: 03 00 80 6a sethi %hi(0x201a800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008844: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
2008848: 80 a6 a0 00 cmp %i2, 0
200884c: 02 80 00 04 be 200885c <_Thread_Change_priority+0xa4>
2008850: 82 10 60 e4 or %g1, 0xe4, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2008854: 10 80 00 03 b 2008860 <_Thread_Change_priority+0xa8>
2008858: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
200885c: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2008860: 9f c0 40 00 call %g1
2008864: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008868: 7f ff e6 49 call 200218c <sparc_enable_interrupts>
200886c: 90 10 00 1b mov %i3, %o0
2008870: 7f ff e6 43 call 200217c <sparc_disable_interrupts>
2008874: 01 00 00 00 nop
2008878: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
200887c: 03 00 80 6a sethi %hi(0x201a800), %g1
2008880: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 201a8ec <_Scheduler+0x8>
2008884: 9f c0 40 00 call %g1
2008888: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
200888c: 03 00 80 6d sethi %hi(0x201b400), %g1
2008890: 82 10 63 1c or %g1, 0x31c, %g1 ! 201b71c <_Per_CPU_Information>
2008894: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2008898: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200889c: 80 a0 80 03 cmp %g2, %g3
20088a0: 02 80 00 08 be 20088c0 <_Thread_Change_priority+0x108>
20088a4: 01 00 00 00 nop
20088a8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
20088ac: 80 a0 a0 00 cmp %g2, 0
20088b0: 02 80 00 04 be 20088c0 <_Thread_Change_priority+0x108>
20088b4: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20088b8: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
20088bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20088c0: 7f ff e6 33 call 200218c <sparc_enable_interrupts>
20088c4: 81 e8 00 00 restore
20088c8: 81 c7 e0 08 ret
20088cc: 81 e8 00 00 restore
02008abc <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008abc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008ac0: 90 10 00 18 mov %i0, %o0
2008ac4: 40 00 00 71 call 2008c88 <_Thread_Get>
2008ac8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008acc: c2 07 bf fc ld [ %fp + -4 ], %g1
2008ad0: 80 a0 60 00 cmp %g1, 0
2008ad4: 12 80 00 09 bne 2008af8 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
2008ad8: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008adc: 7f ff ff 7d call 20088d0 <_Thread_Clear_state>
2008ae0: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2008ae4: 03 00 80 6d sethi %hi(0x201b400), %g1
2008ae8: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level>
2008aec: 84 00 bf ff add %g2, -1, %g2
2008af0: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
return _Thread_Dispatch_disable_level;
2008af4: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
2008af8: 81 c7 e0 08 ret
2008afc: 81 e8 00 00 restore
02008b00 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008b00: 9d e3 bf 90 save %sp, -112, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2008b04: 03 00 80 6d sethi %hi(0x201b400), %g1
2008b08: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level>
2008b0c: 84 00 a0 01 inc %g2
2008b10: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
return _Thread_Dispatch_disable_level;
2008b14: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2008b18: 33 00 80 6d sethi %hi(0x201b400), %i1
2008b1c: b4 16 63 1c or %i1, 0x31c, %i2 ! 201b71c <_Per_CPU_Information>
_ISR_Disable( level );
2008b20: 7f ff e5 97 call 200217c <sparc_disable_interrupts>
2008b24: fa 06 a0 0c ld [ %i2 + 0xc ], %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008b28: 21 00 80 6d sethi %hi(0x201b400), %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008b2c: b4 06 a0 1c add %i2, 0x1c, %i2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008b30: 31 00 80 6d sethi %hi(0x201b400), %i0
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008b34: 10 80 00 38 b 2008c14 <_Thread_Dispatch+0x114>
2008b38: 37 00 80 6d sethi %hi(0x201b400), %i3
heir = _Thread_Heir;
_Thread_Dispatch_necessary = false;
2008b3c: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008b40: 80 a7 00 1d cmp %i4, %i5
2008b44: 02 80 00 39 be 2008c28 <_Thread_Dispatch+0x128>
2008b48: f8 20 60 0c st %i4, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008b4c: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
2008b50: 80 a0 60 01 cmp %g1, 1
2008b54: 12 80 00 03 bne 2008b60 <_Thread_Dispatch+0x60>
2008b58: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008b5c: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
_ISR_Enable( level );
2008b60: 7f ff e5 8b call 200218c <sparc_enable_interrupts>
2008b64: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008b68: 40 00 0c c4 call 200be78 <_TOD_Get_uptime>
2008b6c: 90 07 bf f0 add %fp, -16, %o0
_Timestamp_Subtract(
2008b70: 90 10 00 1a mov %i2, %o0
2008b74: 92 07 bf f0 add %fp, -16, %o1
2008b78: 40 00 02 de call 20096f0 <_Timespec_Subtract>
2008b7c: 94 07 bf f8 add %fp, -8, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008b80: 90 07 60 84 add %i5, 0x84, %o0
2008b84: 40 00 02 c2 call 200968c <_Timespec_Add_to>
2008b88: 92 07 bf f8 add %fp, -8, %o1
_Thread_Time_of_last_context_switch = uptime;
2008b8c: c4 07 bf f0 ld [ %fp + -16 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008b90: c2 06 21 78 ld [ %i0 + 0x178 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2008b94: c4 26 80 00 st %g2, [ %i2 ]
2008b98: c4 07 bf f4 ld [ %fp + -12 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008b9c: 80 a0 60 00 cmp %g1, 0
2008ba0: 02 80 00 06 be 2008bb8 <_Thread_Dispatch+0xb8> <== NEVER TAKEN
2008ba4: c4 26 a0 04 st %g2, [ %i2 + 4 ]
executing->libc_reent = *_Thread_libc_reent;
2008ba8: c4 00 40 00 ld [ %g1 ], %g2
2008bac: c4 27 61 54 st %g2, [ %i5 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2008bb0: c4 07 21 54 ld [ %i4 + 0x154 ], %g2
2008bb4: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008bb8: 90 10 00 1d mov %i5, %o0
2008bbc: 40 00 03 7b call 20099a8 <_User_extensions_Thread_switch>
2008bc0: 92 10 00 1c mov %i4, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008bc4: 90 07 60 c8 add %i5, 0xc8, %o0
2008bc8: 40 00 04 a1 call 2009e4c <_CPU_Context_switch>
2008bcc: 92 07 20 c8 add %i4, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008bd0: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
2008bd4: 80 a0 60 00 cmp %g1, 0
2008bd8: 02 80 00 0c be 2008c08 <_Thread_Dispatch+0x108>
2008bdc: d0 06 e1 74 ld [ %i3 + 0x174 ], %o0
2008be0: 80 a7 40 08 cmp %i5, %o0
2008be4: 02 80 00 09 be 2008c08 <_Thread_Dispatch+0x108>
2008be8: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008bec: 02 80 00 04 be 2008bfc <_Thread_Dispatch+0xfc>
2008bf0: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008bf4: 40 00 04 5c call 2009d64 <_CPU_Context_save_fp>
2008bf8: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008bfc: 40 00 04 77 call 2009dd8 <_CPU_Context_restore_fp>
2008c00: 90 07 61 50 add %i5, 0x150, %o0
_Thread_Allocated_fp = executing;
2008c04: fa 26 e1 74 st %i5, [ %i3 + 0x174 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
2008c08: 82 16 63 1c or %i1, 0x31c, %g1
_ISR_Disable( level );
2008c0c: 7f ff e5 5c call 200217c <sparc_disable_interrupts>
2008c10: fa 00 60 0c ld [ %g1 + 0xc ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008c14: 82 16 63 1c or %i1, 0x31c, %g1
2008c18: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
2008c1c: 80 a0 a0 00 cmp %g2, 0
2008c20: 32 bf ff c7 bne,a 2008b3c <_Thread_Dispatch+0x3c>
2008c24: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
_ISR_Disable( level );
}
post_switch:
_ISR_Enable( level );
2008c28: 7f ff e5 59 call 200218c <sparc_enable_interrupts>
2008c2c: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2008c30: 03 00 80 6d sethi %hi(0x201b400), %g1
2008c34: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level>
2008c38: 84 00 bf ff add %g2, -1, %g2
2008c3c: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
return _Thread_Dispatch_disable_level;
2008c40: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
_Thread_Unnest_dispatch();
_API_extensions_Run_postswitch();
2008c44: 7f ff f8 4d call 2006d78 <_API_extensions_Run_postswitch>
2008c48: 01 00 00 00 nop
}
2008c4c: 81 c7 e0 08 ret
2008c50: 81 e8 00 00 restore
0200dafc <_Thread_Handler>:
* Input parameters: NONE
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200dafc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200db00: 03 00 80 6d sethi %hi(0x201b400), %g1
200db04: fa 00 63 28 ld [ %g1 + 0x328 ], %i5 ! 201b728 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200db08: 3f 00 80 36 sethi %hi(0x200d800), %i7
200db0c: be 17 e2 fc or %i7, 0x2fc, %i7 ! 200dafc <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200db10: d0 07 60 ac ld [ %i5 + 0xac ], %o0
_ISR_Set_level(level);
200db14: 7f ff d1 9e call 200218c <sparc_enable_interrupts>
200db18: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200db1c: 03 00 80 6c sethi %hi(0x201b000), %g1
doneConstructors = 1;
200db20: 84 10 20 01 mov 1, %g2
*/
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200db24: f8 08 61 b0 ldub [ %g1 + 0x1b0 ], %i4
doneConstructors = 1;
200db28: c4 28 61 b0 stb %g2, [ %g1 + 0x1b0 ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200db2c: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
200db30: 80 a0 60 00 cmp %g1, 0
200db34: 02 80 00 0c be 200db64 <_Thread_Handler+0x68>
200db38: 03 00 80 6d sethi %hi(0x201b400), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200db3c: d0 00 61 74 ld [ %g1 + 0x174 ], %o0 ! 201b574 <_Thread_Allocated_fp>
200db40: 80 a7 40 08 cmp %i5, %o0
200db44: 02 80 00 08 be 200db64 <_Thread_Handler+0x68>
200db48: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200db4c: 22 80 00 06 be,a 200db64 <_Thread_Handler+0x68>
200db50: fa 20 61 74 st %i5, [ %g1 + 0x174 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200db54: 7f ff f0 84 call 2009d64 <_CPU_Context_save_fp>
200db58: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200db5c: 03 00 80 6d sethi %hi(0x201b400), %g1
200db60: fa 20 61 74 st %i5, [ %g1 + 0x174 ] ! 201b574 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200db64: 7f ff ef 22 call 20097ec <_User_extensions_Thread_begin>
200db68: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200db6c: 7f ff ec 3a call 2008c54 <_Thread_Enable_dispatch>
200db70: b9 2f 20 18 sll %i4, 0x18, %i4
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200db74: 80 a7 20 00 cmp %i4, 0
200db78: 32 80 00 05 bne,a 200db8c <_Thread_Handler+0x90>
200db7c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
INIT_NAME ();
200db80: 40 00 33 0e call 201a7b8 <_init>
200db84: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200db88: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
200db8c: 80 a0 60 00 cmp %g1, 0
200db90: 12 80 00 06 bne 200dba8 <_Thread_Handler+0xac> <== NEVER TAKEN
200db94: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200db98: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200db9c: 9f c0 40 00 call %g1
200dba0: d0 07 60 9c ld [ %i5 + 0x9c ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200dba4: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200dba8: 7f ff ef 22 call 2009830 <_User_extensions_Thread_exitted>
200dbac: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200dbb0: 90 10 20 00 clr %o0
200dbb4: 92 10 20 01 mov 1, %o1
200dbb8: 7f ff e7 19 call 200781c <_Internal_error_Occurred>
200dbbc: 94 10 20 05 mov 5, %o2
02008d38 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008d38: 9d e3 bf a0 save %sp, -96, %sp
2008d3c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008d40: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
2008d44: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008d48: c0 26 61 58 clr [ %i1 + 0x158 ]
2008d4c: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008d50: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008d54: 90 10 00 19 mov %i1, %o0
2008d58: 40 00 02 02 call 2009560 <_Thread_Stack_Allocate>
2008d5c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008d60: 80 a2 00 1b cmp %o0, %i3
2008d64: 0a 80 00 61 bcs 2008ee8 <_Thread_Initialize+0x1b0>
2008d68: 80 a2 20 00 cmp %o0, 0
2008d6c: 02 80 00 5f be 2008ee8 <_Thread_Initialize+0x1b0> <== NEVER TAKEN
2008d70: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008d74: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008d78: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008d7c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008d80: 02 80 00 07 be 2008d9c <_Thread_Initialize+0x64>
2008d84: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008d88: 40 00 03 db call 2009cf4 <_Workspace_Allocate>
2008d8c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008d90: b6 92 20 00 orcc %o0, 0, %i3
2008d94: 02 80 00 46 be 2008eac <_Thread_Initialize+0x174>
2008d98: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008d9c: 03 00 80 6d sethi %hi(0x201b400), %g1
2008da0: d0 00 61 84 ld [ %g1 + 0x184 ], %o0 ! 201b584 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008da4: f6 26 61 50 st %i3, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2008da8: f6 26 60 bc st %i3, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008dac: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008db0: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008db4: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
2008db8: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008dbc: 80 a2 20 00 cmp %o0, 0
2008dc0: 02 80 00 08 be 2008de0 <_Thread_Initialize+0xa8>
2008dc4: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
2008dc8: 90 02 20 01 inc %o0
2008dcc: 40 00 03 ca call 2009cf4 <_Workspace_Allocate>
2008dd0: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2008dd4: b8 92 20 00 orcc %o0, 0, %i4
2008dd8: 22 80 00 36 be,a 2008eb0 <_Thread_Initialize+0x178>
2008ddc: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
2008de0: 80 a7 20 00 cmp %i4, 0
2008de4: 02 80 00 0c be 2008e14 <_Thread_Initialize+0xdc>
2008de8: f8 26 61 60 st %i4, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008dec: 03 00 80 6d sethi %hi(0x201b400), %g1
2008df0: c4 00 61 84 ld [ %g1 + 0x184 ], %g2 ! 201b584 <_Thread_Maximum_extensions>
2008df4: 10 80 00 05 b 2008e08 <_Thread_Initialize+0xd0>
2008df8: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
2008dfc: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008e00: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008e04: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008e08: 80 a0 40 02 cmp %g1, %g2
2008e0c: 28 bf ff fc bleu,a 2008dfc <_Thread_Initialize+0xc4>
2008e10: c8 06 61 60 ld [ %i1 + 0x160 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008e14: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008e18: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
2008e1c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008e20: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
2008e24: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
2008e28: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008e2c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008e30: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008e34: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008e38: 82 10 20 01 mov 1, %g1
2008e3c: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2008e40: 03 00 80 6a sethi %hi(0x201a800), %g1
2008e44: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 201a8fc <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
2008e48: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2008e4c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008e50: 9f c0 40 00 call %g1
2008e54: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2008e58: b4 92 20 00 orcc %o0, 0, %i2
2008e5c: 02 80 00 15 be 2008eb0 <_Thread_Initialize+0x178>
2008e60: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008e64: 40 00 01 97 call 20094c0 <_Thread_Set_priority>
2008e68: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008e6c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008e70: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008e74: c0 26 60 84 clr [ %i1 + 0x84 ]
2008e78: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008e7c: 83 28 60 02 sll %g1, 2, %g1
2008e80: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008e84: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008e88: 90 10 00 19 mov %i1, %o0
2008e8c: 40 00 02 8a call 20098b4 <_User_extensions_Thread_create>
2008e90: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008e94: 80 8a 20 ff btst 0xff, %o0
2008e98: 02 80 00 06 be 2008eb0 <_Thread_Initialize+0x178>
2008e9c: 01 00 00 00 nop
2008ea0: b0 0e 20 01 and %i0, 1, %i0
2008ea4: 81 c7 e0 08 ret
2008ea8: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2008eac: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
2008eb0: 40 00 03 99 call 2009d14 <_Workspace_Free>
2008eb4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
2008eb8: 40 00 03 97 call 2009d14 <_Workspace_Free>
2008ebc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
2008ec0: 40 00 03 95 call 2009d14 <_Workspace_Free>
2008ec4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
2008ec8: 40 00 03 93 call 2009d14 <_Workspace_Free>
2008ecc: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
2008ed0: 40 00 03 91 call 2009d14 <_Workspace_Free>
2008ed4: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
2008ed8: 40 00 03 8f call 2009d14 <_Workspace_Free>
2008edc: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
2008ee0: 40 00 01 b7 call 20095bc <_Thread_Stack_Free>
2008ee4: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
2008ee8: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
2008eec: b0 0e 20 01 and %i0, 1, %i0
2008ef0: 81 c7 e0 08 ret
2008ef4: 81 e8 00 00 restore
02009408 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2009408: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200940c: 80 a6 20 00 cmp %i0, 0
2009410: 02 80 00 19 be 2009474 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2009414: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2009418: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
200941c: 80 a7 20 01 cmp %i4, 1
2009420: 12 80 00 15 bne 2009474 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2009424: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2009428: 7f ff e3 55 call 200217c <sparc_disable_interrupts>
200942c: 01 00 00 00 nop
2009430: ba 10 00 08 mov %o0, %i5
2009434: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2009438: 03 00 00 ef sethi %hi(0x3bc00), %g1
200943c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2009440: 80 88 80 01 btst %g2, %g1
2009444: 02 80 00 0a be 200946c <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2009448: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200944c: 92 10 00 19 mov %i1, %o1
2009450: 94 10 20 01 mov 1, %o2
2009454: 40 00 0b f8 call 200c434 <_Thread_queue_Extract_priority_helper>
2009458: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200945c: 90 10 00 18 mov %i0, %o0
2009460: 92 10 00 19 mov %i1, %o1
2009464: 7f ff ff 50 call 20091a4 <_Thread_queue_Enqueue_priority>
2009468: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
200946c: 7f ff e3 48 call 200218c <sparc_enable_interrupts>
2009470: 90 10 00 1d mov %i5, %o0
2009474: 81 c7 e0 08 ret
2009478: 81 e8 00 00 restore
0200947c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200947c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009480: 90 10 00 18 mov %i0, %o0
2009484: 7f ff fe 01 call 2008c88 <_Thread_Get>
2009488: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200948c: c2 07 bf fc ld [ %fp + -4 ], %g1
2009490: 80 a0 60 00 cmp %g1, 0
2009494: 12 80 00 09 bne 20094b8 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
2009498: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200949c: 40 00 0c 1d call 200c510 <_Thread_queue_Process_timeout>
20094a0: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20094a4: 03 00 80 6d sethi %hi(0x201b400), %g1
20094a8: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 201b4f0 <_Thread_Dispatch_disable_level>
20094ac: 84 00 bf ff add %g2, -1, %g2
20094b0: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
return _Thread_Dispatch_disable_level;
20094b4: c2 00 60 f0 ld [ %g1 + 0xf0 ], %g1
20094b8: 81 c7 e0 08 ret
20094bc: 81 e8 00 00 restore
020171e4 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20171e4: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20171e8: 27 00 80 e8 sethi %hi(0x203a000), %l3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20171ec: a8 07 bf e8 add %fp, -24, %l4
20171f0: a4 07 bf ec add %fp, -20, %l2
20171f4: b6 07 bf f4 add %fp, -12, %i3
20171f8: b4 07 bf f8 add %fp, -8, %i2
20171fc: e4 27 bf e8 st %l2, [ %fp + -24 ]
head->previous = NULL;
2017200: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2017204: e8 27 bf f0 st %l4, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2017208: f4 27 bf f4 st %i2, [ %fp + -12 ]
head->previous = NULL;
201720c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2017210: f6 27 bf fc st %i3, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2017214: b2 06 20 30 add %i0, 0x30, %i1
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2017218: b8 06 20 68 add %i0, 0x68, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201721c: a2 06 20 08 add %i0, 8, %l1
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2017220: a0 06 20 40 add %i0, 0x40, %l0
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2017224: e8 26 20 78 st %l4, [ %i0 + 0x78 ]
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2017228: 2b 00 80 e8 sethi %hi(0x203a000), %l5
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
201722c: c2 04 e1 4c ld [ %l3 + 0x14c ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2017230: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2017234: 94 10 00 1b mov %i3, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2017238: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201723c: 90 10 00 19 mov %i1, %o0
2017240: 40 00 11 84 call 201b850 <_Watchdog_Adjust_to_chain>
2017244: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2017248: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
201724c: fa 05 60 cc ld [ %l5 + 0xcc ], %i5
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2017250: 80 a7 40 0a cmp %i5, %o2
2017254: 08 80 00 06 bleu 201726c <_Timer_server_Body+0x88>
2017258: 92 27 40 0a sub %i5, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201725c: 90 10 00 1c mov %i4, %o0
2017260: 40 00 11 7c call 201b850 <_Watchdog_Adjust_to_chain>
2017264: 94 10 00 1b mov %i3, %o2
2017268: 30 80 00 06 b,a 2017280 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
201726c: 1a 80 00 05 bcc 2017280 <_Timer_server_Body+0x9c>
2017270: 90 10 00 1c mov %i4, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2017274: 92 10 20 01 mov 1, %o1
2017278: 40 00 11 4f call 201b7b4 <_Watchdog_Adjust>
201727c: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
2017280: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2017284: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2017288: 40 00 02 bd call 2017d7c <_Chain_Get>
201728c: 01 00 00 00 nop
if ( timer == NULL ) {
2017290: 92 92 20 00 orcc %o0, 0, %o1
2017294: 02 80 00 0c be 20172c4 <_Timer_server_Body+0xe0>
2017298: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201729c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
20172a0: 80 a0 60 01 cmp %g1, 1
20172a4: 02 80 00 05 be 20172b8 <_Timer_server_Body+0xd4>
20172a8: 90 10 00 19 mov %i1, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20172ac: 80 a0 60 03 cmp %g1, 3
20172b0: 12 bf ff f5 bne 2017284 <_Timer_server_Body+0xa0> <== NEVER TAKEN
20172b4: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20172b8: 40 00 11 98 call 201b918 <_Watchdog_Insert>
20172bc: 92 02 60 10 add %o1, 0x10, %o1
20172c0: 30 bf ff f1 b,a 2017284 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
20172c4: 7f ff e3 7f call 20100c0 <sparc_disable_interrupts>
20172c8: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
20172cc: c2 07 bf e8 ld [ %fp + -24 ], %g1
20172d0: 80 a0 40 12 cmp %g1, %l2
20172d4: 12 80 00 0a bne 20172fc <_Timer_server_Body+0x118> <== NEVER TAKEN
20172d8: 01 00 00 00 nop
ts->insert_chain = NULL;
20172dc: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
20172e0: 7f ff e3 7c call 20100d0 <sparc_enable_interrupts>
20172e4: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
20172e8: c2 07 bf f4 ld [ %fp + -12 ], %g1
20172ec: 80 a0 40 1a cmp %g1, %i2
20172f0: 12 80 00 06 bne 2017308 <_Timer_server_Body+0x124>
20172f4: 01 00 00 00 nop
20172f8: 30 80 00 18 b,a 2017358 <_Timer_server_Body+0x174>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
20172fc: 7f ff e3 75 call 20100d0 <sparc_enable_interrupts> <== NOT EXECUTED
2017300: 01 00 00 00 nop <== NOT EXECUTED
2017304: 30 bf ff ca b,a 201722c <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2017308: 7f ff e3 6e call 20100c0 <sparc_disable_interrupts>
201730c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2017310: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2017314: 80 a7 40 1a cmp %i5, %i2
2017318: 02 80 00 0d be 201734c <_Timer_server_Body+0x168>
201731c: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2017320: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
2017324: f6 20 60 04 st %i3, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2017328: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
201732c: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
2017330: 7f ff e3 68 call 20100d0 <sparc_enable_interrupts>
2017334: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2017338: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
201733c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
2017340: 9f c0 40 00 call %g1
2017344: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
}
2017348: 30 bf ff f0 b,a 2017308 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
201734c: 7f ff e3 61 call 20100d0 <sparc_enable_interrupts>
2017350: 01 00 00 00 nop
2017354: 30 bf ff b4 b,a 2017224 <_Timer_server_Body+0x40>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2017358: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
201735c: 7f ff ff 73 call 2017128 <_Thread_Disable_dispatch>
2017360: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2017364: d0 06 00 00 ld [ %i0 ], %o0
2017368: 40 00 0f 9f call 201b1e4 <_Thread_Set_state>
201736c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2017370: 7f ff ff 75 call 2017144 <_Timer_server_Reset_interval_system_watchdog>
2017374: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2017378: 7f ff ff 87 call 2017194 <_Timer_server_Reset_tod_system_watchdog>
201737c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2017380: 40 00 0d 53 call 201a8cc <_Thread_Enable_dispatch>
2017384: 01 00 00 00 nop
ts->active = true;
2017388: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201738c: 90 10 00 11 mov %l1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2017390: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2017394: 40 00 11 bb call 201ba80 <_Watchdog_Remove>
2017398: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
201739c: 40 00 11 b9 call 201ba80 <_Watchdog_Remove>
20173a0: 90 10 00 10 mov %l0, %o0
20173a4: 30 bf ff a0 b,a 2017224 <_Timer_server_Body+0x40>
020173a8 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
20173a8: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
20173ac: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20173b0: 80 a0 60 00 cmp %g1, 0
20173b4: 12 80 00 49 bne 20174d8 <_Timer_server_Schedule_operation_method+0x130>
20173b8: ba 10 00 19 mov %i1, %i5
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
20173bc: 7f ff ff 5b call 2017128 <_Thread_Disable_dispatch>
20173c0: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20173c4: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
20173c8: 80 a0 60 01 cmp %g1, 1
20173cc: 12 80 00 1f bne 2017448 <_Timer_server_Schedule_operation_method+0xa0>
20173d0: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
20173d4: 7f ff e3 3b call 20100c0 <sparc_disable_interrupts>
20173d8: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
20173dc: 03 00 80 e8 sethi %hi(0x203a000), %g1
20173e0: c4 00 61 4c ld [ %g1 + 0x14c ], %g2 ! 203a14c <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20173e4: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
20173e8: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20173ec: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
20173f0: 80 a0 40 03 cmp %g1, %g3
20173f4: 02 80 00 08 be 2017414 <_Timer_server_Schedule_operation_method+0x6c>
20173f8: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
20173fc: de 00 60 10 ld [ %g1 + 0x10 ], %o7
if (delta_interval > delta) {
2017400: 80 a3 c0 04 cmp %o7, %g4
2017404: 08 80 00 03 bleu 2017410 <_Timer_server_Schedule_operation_method+0x68>
2017408: 86 10 20 00 clr %g3
delta_interval -= delta;
201740c: 86 23 c0 04 sub %o7, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2017410: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2017414: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2017418: 7f ff e3 2e call 20100d0 <sparc_enable_interrupts>
201741c: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2017420: 90 06 20 30 add %i0, 0x30, %o0
2017424: 40 00 11 3d call 201b918 <_Watchdog_Insert>
2017428: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
201742c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2017430: 80 a0 60 00 cmp %g1, 0
2017434: 12 80 00 27 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128>
2017438: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
201743c: 7f ff ff 42 call 2017144 <_Timer_server_Reset_interval_system_watchdog>
2017440: 90 10 00 18 mov %i0, %o0
2017444: 30 80 00 23 b,a 20174d0 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2017448: 12 80 00 22 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128>
201744c: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2017450: 7f ff e3 1c call 20100c0 <sparc_disable_interrupts>
2017454: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2017458: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
201745c: de 06 20 74 ld [ %i0 + 0x74 ], %o7
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2017460: 03 00 80 e8 sethi %hi(0x203a000), %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2017464: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2017468: 80 a0 80 03 cmp %g2, %g3
201746c: 02 80 00 0d be 20174a0 <_Timer_server_Schedule_operation_method+0xf8>
2017470: c2 00 60 cc ld [ %g1 + 0xcc ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2017474: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2017478: 80 a0 40 0f cmp %g1, %o7
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
201747c: 86 01 00 0f add %g4, %o7, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2017480: 08 80 00 07 bleu 201749c <_Timer_server_Schedule_operation_method+0xf4>
2017484: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2017488: 9e 20 40 0f sub %g1, %o7, %o7
if (delta_interval > delta) {
201748c: 80 a1 00 0f cmp %g4, %o7
2017490: 08 80 00 03 bleu 201749c <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2017494: 86 10 20 00 clr %g3
delta_interval -= delta;
2017498: 86 21 00 0f sub %g4, %o7, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
201749c: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
20174a0: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
20174a4: 7f ff e3 0b call 20100d0 <sparc_enable_interrupts>
20174a8: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20174ac: 90 06 20 68 add %i0, 0x68, %o0
20174b0: 40 00 11 1a call 201b918 <_Watchdog_Insert>
20174b4: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20174b8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20174bc: 80 a0 60 00 cmp %g1, 0
20174c0: 12 80 00 04 bne 20174d0 <_Timer_server_Schedule_operation_method+0x128>
20174c4: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
20174c8: 7f ff ff 33 call 2017194 <_Timer_server_Reset_tod_system_watchdog>
20174cc: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
20174d0: 40 00 0c ff call 201a8cc <_Thread_Enable_dispatch>
20174d4: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
20174d8: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
20174dc: 40 00 02 14 call 2017d2c <_Chain_Append>
20174e0: 81 e8 00 00 restore
02009734 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009734: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009738: 03 00 80 69 sethi %hi(0x201a400), %g1
200973c: 82 10 63 fc or %g1, 0x3fc, %g1 ! 201a7fc <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009740: 05 00 80 6d sethi %hi(0x201b400), %g2
initial_extensions = Configuration.User_extension_table;
2009744: f4 00 60 3c ld [ %g1 + 0x3c ], %i2
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009748: f6 00 60 38 ld [ %g1 + 0x38 ], %i3
200974c: 82 10 a2 d8 or %g2, 0x2d8, %g1
2009750: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
2009754: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009758: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200975c: c6 20 a2 d8 st %g3, [ %g2 + 0x2d8 ]
2009760: 05 00 80 6d sethi %hi(0x201b400), %g2
2009764: 82 10 a0 f4 or %g2, 0xf4, %g1 ! 201b4f4 <_User_extensions_Switches_list>
2009768: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200976c: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009770: c6 20 a0 f4 st %g3, [ %g2 + 0xf4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009774: 80 a6 a0 00 cmp %i2, 0
2009778: 02 80 00 1b be 20097e4 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
200977c: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009780: 83 2e e0 02 sll %i3, 2, %g1
2009784: bb 2e e0 04 sll %i3, 4, %i5
2009788: ba 27 40 01 sub %i5, %g1, %i5
200978c: ba 07 40 1b add %i5, %i3, %i5
2009790: bb 2f 60 02 sll %i5, 2, %i5
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009794: 40 00 01 66 call 2009d2c <_Workspace_Allocate_or_fatal_error>
2009798: 90 10 00 1d mov %i5, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200979c: 94 10 00 1d mov %i5, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
20097a0: b8 10 00 08 mov %o0, %i4
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
20097a4: 92 10 20 00 clr %o1
20097a8: 40 00 13 de call 200e720 <memset>
20097ac: ba 10 20 00 clr %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
20097b0: 10 80 00 0b b 20097dc <_User_extensions_Handler_initialization+0xa8>
20097b4: 80 a7 40 1b cmp %i5, %i3
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
20097b8: 90 07 20 14 add %i4, 0x14, %o0
20097bc: 92 06 80 09 add %i2, %o1, %o1
20097c0: 40 00 13 9c call 200e630 <memcpy>
20097c4: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
20097c8: 90 10 00 1c mov %i4, %o0
20097cc: 40 00 0b 75 call 200c5a0 <_User_extensions_Add_set>
20097d0: ba 07 60 01 inc %i5
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
20097d4: b8 07 20 34 add %i4, 0x34, %i4
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
20097d8: 80 a7 40 1b cmp %i5, %i3
20097dc: 12 bf ff f7 bne 20097b8 <_User_extensions_Handler_initialization+0x84>
20097e0: 93 2f 60 05 sll %i5, 5, %o1
20097e4: 81 c7 e0 08 ret
20097e8: 81 e8 00 00 restore
0200b4a4 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b4a4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b4a8: 7f ff de d4 call 2002ff8 <sparc_disable_interrupts>
200b4ac: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b4b0: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b4b4: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b4b8: 80 a0 40 1c cmp %g1, %i4
200b4bc: 02 80 00 1f be 200b538 <_Watchdog_Adjust+0x94>
200b4c0: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b4c4: 02 80 00 1a be 200b52c <_Watchdog_Adjust+0x88>
200b4c8: b6 10 20 01 mov 1, %i3
200b4cc: 80 a6 60 01 cmp %i1, 1
200b4d0: 12 80 00 1a bne 200b538 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b4d4: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b4d8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b4dc: 10 80 00 07 b 200b4f8 <_Watchdog_Adjust+0x54>
200b4e0: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b4e4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b4e8: 80 a6 80 02 cmp %i2, %g2
200b4ec: 3a 80 00 05 bcc,a 200b500 <_Watchdog_Adjust+0x5c>
200b4f0: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b4f4: b4 20 80 1a sub %g2, %i2, %i2
break;
200b4f8: 10 80 00 10 b 200b538 <_Watchdog_Adjust+0x94>
200b4fc: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200b500: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b504: 7f ff de c1 call 2003008 <sparc_enable_interrupts>
200b508: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b50c: 40 00 00 90 call 200b74c <_Watchdog_Tickle>
200b510: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200b514: 7f ff de b9 call 2002ff8 <sparc_disable_interrupts>
200b518: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b51c: c2 07 40 00 ld [ %i5 ], %g1
200b520: 80 a0 40 1c cmp %g1, %i4
200b524: 02 80 00 05 be 200b538 <_Watchdog_Adjust+0x94>
200b528: 01 00 00 00 nop
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b52c: 80 a6 a0 00 cmp %i2, 0
200b530: 32 bf ff ed bne,a 200b4e4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b534: c2 07 40 00 ld [ %i5 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b538: 7f ff de b4 call 2003008 <sparc_enable_interrupts>
200b53c: 91 e8 00 08 restore %g0, %o0, %o0
02009b4c <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009b4c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009b50: 7f ff e1 8b call 200217c <sparc_disable_interrupts>
2009b54: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
2009b58: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009b5c: 80 a6 20 01 cmp %i0, 1
2009b60: 22 80 00 1d be,a 2009bd4 <_Watchdog_Remove+0x88>
2009b64: c0 27 60 08 clr [ %i5 + 8 ]
2009b68: 0a 80 00 1c bcs 2009bd8 <_Watchdog_Remove+0x8c>
2009b6c: 03 00 80 6d sethi %hi(0x201b400), %g1
2009b70: 80 a6 20 03 cmp %i0, 3
2009b74: 18 80 00 19 bgu 2009bd8 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009b78: 01 00 00 00 nop
2009b7c: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009b80: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009b84: c4 00 40 00 ld [ %g1 ], %g2
2009b88: 80 a0 a0 00 cmp %g2, 0
2009b8c: 02 80 00 07 be 2009ba8 <_Watchdog_Remove+0x5c>
2009b90: 05 00 80 6d sethi %hi(0x201b400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009b94: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009b98: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
2009b9c: 84 00 c0 02 add %g3, %g2, %g2
2009ba0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009ba4: 05 00 80 6d sethi %hi(0x201b400), %g2
2009ba8: c4 00 a1 f8 ld [ %g2 + 0x1f8 ], %g2 ! 201b5f8 <_Watchdog_Sync_count>
2009bac: 80 a0 a0 00 cmp %g2, 0
2009bb0: 22 80 00 07 be,a 2009bcc <_Watchdog_Remove+0x80>
2009bb4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009bb8: 05 00 80 6d sethi %hi(0x201b400), %g2
2009bbc: c6 00 a3 24 ld [ %g2 + 0x324 ], %g3 ! 201b724 <_Per_CPU_Information+0x8>
2009bc0: 05 00 80 6d sethi %hi(0x201b400), %g2
2009bc4: c6 20 a1 98 st %g3, [ %g2 + 0x198 ] ! 201b598 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009bc8: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
2009bcc: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009bd0: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009bd4: 03 00 80 6d sethi %hi(0x201b400), %g1
2009bd8: c2 00 61 fc ld [ %g1 + 0x1fc ], %g1 ! 201b5fc <_Watchdog_Ticks_since_boot>
2009bdc: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
2009be0: 7f ff e1 6b call 200218c <sparc_enable_interrupts>
2009be4: 01 00 00 00 nop
return( previous_state );
}
2009be8: 81 c7 e0 08 ret
2009bec: 81 e8 00 00 restore
0200ac9c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200ac9c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200aca0: 7f ff df a6 call 2002b38 <sparc_disable_interrupts>
200aca4: ba 10 00 18 mov %i0, %i5
200aca8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200acac: 11 00 80 6d sethi %hi(0x201b400), %o0
200acb0: 94 10 00 19 mov %i1, %o2
200acb4: 90 12 21 40 or %o0, 0x140, %o0
200acb8: 7f ff e6 56 call 2004610 <printk>
200acbc: 92 10 00 1d mov %i5, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200acc0: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200acc4: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200acc8: 80 a7 00 19 cmp %i4, %i1
200accc: 12 80 00 04 bne 200acdc <_Watchdog_Report_chain+0x40>
200acd0: 92 10 00 1c mov %i4, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200acd4: 10 80 00 0d b 200ad08 <_Watchdog_Report_chain+0x6c>
200acd8: 11 00 80 6d sethi %hi(0x201b400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200acdc: 40 00 00 0f call 200ad18 <_Watchdog_Report>
200ace0: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200ace4: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200ace8: 80 a7 00 19 cmp %i4, %i1
200acec: 12 bf ff fc bne 200acdc <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200acf0: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200acf4: 11 00 80 6d sethi %hi(0x201b400), %o0
200acf8: 92 10 00 1d mov %i5, %o1
200acfc: 7f ff e6 45 call 2004610 <printk>
200ad00: 90 12 21 58 or %o0, 0x158, %o0
200ad04: 30 80 00 03 b,a 200ad10 <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200ad08: 7f ff e6 42 call 2004610 <printk>
200ad0c: 90 12 21 68 or %o0, 0x168, %o0
}
_ISR_Enable( level );
200ad10: 7f ff df 8e call 2002b48 <sparc_enable_interrupts>
200ad14: 81 e8 00 00 restore
02006d20 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006d20: 9d e3 bf 98 save %sp, -104, %sp
2006d24: 10 80 00 09 b 2006d48 <rtems_chain_get_with_wait+0x28>
2006d28: ba 10 00 18 mov %i0, %i5
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006d2c: 92 10 20 00 clr %o1
2006d30: 94 10 00 1a mov %i2, %o2
2006d34: 7f ff fd 03 call 2006140 <rtems_event_receive>
2006d38: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006d3c: 80 a2 20 00 cmp %o0, 0
2006d40: 32 80 00 09 bne,a 2006d64 <rtems_chain_get_with_wait+0x44><== ALWAYS TAKEN
2006d44: f8 26 c0 00 st %i4, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006d48: 40 00 01 62 call 20072d0 <_Chain_Get>
2006d4c: 90 10 00 1d mov %i5, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006d50: b8 92 20 00 orcc %o0, 0, %i4
2006d54: 02 bf ff f6 be 2006d2c <rtems_chain_get_with_wait+0xc>
2006d58: 90 10 00 19 mov %i1, %o0
2006d5c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006d60: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
2006d64: 81 c7 e0 08 ret
2006d68: 91 e8 00 08 restore %g0, %o0, %o0
0200902c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200902c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009030: 80 a6 20 00 cmp %i0, 0
2009034: 02 80 00 1e be 20090ac <rtems_iterate_over_all_threads+0x80><== NEVER TAKEN
2009038: ba 10 20 01 mov 1, %i5
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200903c: 35 00 80 77 sethi %hi(0x201dc00), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009040: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2009044: 84 16 a3 88 or %i2, 0x388, %g2
2009048: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200904c: 80 a0 60 00 cmp %g1, 0
2009050: 22 80 00 14 be,a 20090a0 <rtems_iterate_over_all_threads+0x74>
2009054: ba 07 60 01 inc %i5
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009058: f6 00 60 04 ld [ %g1 + 4 ], %i3
if ( !information )
200905c: 80 a6 e0 00 cmp %i3, 0
2009060: 12 80 00 0b bne 200908c <rtems_iterate_over_all_threads+0x60>
2009064: b8 10 20 01 mov 1, %i4
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009068: 10 80 00 0e b 20090a0 <rtems_iterate_over_all_threads+0x74>
200906c: ba 07 60 01 inc %i5
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
the_thread = (Thread_Control *)information->local_table[ i ];
2009070: 83 2f 20 02 sll %i4, 2, %g1
2009074: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009078: 80 a2 20 00 cmp %o0, 0
200907c: 02 80 00 04 be 200908c <rtems_iterate_over_all_threads+0x60>
2009080: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
2009084: 9f c6 00 00 call %i0
2009088: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200908c: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
2009090: 80 a7 00 01 cmp %i4, %g1
2009094: 28 bf ff f7 bleu,a 2009070 <rtems_iterate_over_all_threads+0x44>
2009098: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200909c: ba 07 60 01 inc %i5
20090a0: 80 a7 60 04 cmp %i5, 4
20090a4: 12 bf ff e8 bne 2009044 <rtems_iterate_over_all_threads+0x18>
20090a8: 83 2f 60 02 sll %i5, 2, %g1
20090ac: 81 c7 e0 08 ret
20090b0: 81 e8 00 00 restore
02014b6c <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2014b6c: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2014b70: 80 a6 20 00 cmp %i0, 0
2014b74: 02 80 00 39 be 2014c58 <rtems_partition_create+0xec>
2014b78: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
2014b7c: 80 a6 60 00 cmp %i1, 0
2014b80: 02 80 00 36 be 2014c58 <rtems_partition_create+0xec>
2014b84: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2014b88: 80 a7 60 00 cmp %i5, 0
2014b8c: 02 80 00 33 be 2014c58 <rtems_partition_create+0xec> <== NEVER TAKEN
2014b90: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014b94: 02 80 00 31 be 2014c58 <rtems_partition_create+0xec>
2014b98: 82 10 20 08 mov 8, %g1
2014b9c: 80 a6 a0 00 cmp %i2, 0
2014ba0: 02 80 00 2e be 2014c58 <rtems_partition_create+0xec>
2014ba4: 80 a6 80 1b cmp %i2, %i3
2014ba8: 0a 80 00 2c bcs 2014c58 <rtems_partition_create+0xec>
2014bac: 80 8e e0 07 btst 7, %i3
2014bb0: 12 80 00 2a bne 2014c58 <rtems_partition_create+0xec>
2014bb4: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2014bb8: 12 80 00 28 bne 2014c58 <rtems_partition_create+0xec>
2014bbc: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2014bc0: 03 00 80 e8 sethi %hi(0x203a000), %g1
2014bc4: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 203a040 <_Thread_Dispatch_disable_level>
2014bc8: 84 00 a0 01 inc %g2
2014bcc: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
return _Thread_Dispatch_disable_level;
2014bd0: c2 00 60 40 ld [ %g1 + 0x40 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014bd4: 23 00 80 e7 sethi %hi(0x2039c00), %l1
2014bd8: 40 00 12 4b call 2019504 <_Objects_Allocate>
2014bdc: 90 14 62 54 or %l1, 0x254, %o0 ! 2039e54 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014be0: a0 92 20 00 orcc %o0, 0, %l0
2014be4: 32 80 00 06 bne,a 2014bfc <rtems_partition_create+0x90>
2014be8: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2014bec: 40 00 17 38 call 201a8cc <_Thread_Enable_dispatch>
2014bf0: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2014bf4: 10 80 00 19 b 2014c58 <rtems_partition_create+0xec>
2014bf8: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014bfc: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014c00: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2014c04: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014c08: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2014c0c: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014c10: 40 00 55 1d call 202a084 <.udiv>
2014c14: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014c18: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2014c1c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014c20: 96 10 00 1b mov %i3, %o3
2014c24: b8 04 20 24 add %l0, 0x24, %i4
2014c28: 40 00 0c 64 call 2017db8 <_Chain_Initialize>
2014c2c: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014c30: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014c34: a2 14 62 54 or %l1, 0x254, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014c38: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014c3c: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014c40: 85 28 a0 02 sll %g2, 2, %g2
2014c44: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014c48: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2014c4c: 40 00 17 20 call 201a8cc <_Thread_Enable_dispatch>
2014c50: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2014c54: 82 10 20 00 clr %g1
}
2014c58: 81 c7 e0 08 ret
2014c5c: 91 e8 00 01 restore %g0, %g1, %o0
02007270 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2007270: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
2007274: 11 00 80 74 sethi %hi(0x201d000), %o0
2007278: 92 10 00 18 mov %i0, %o1
200727c: 90 12 22 24 or %o0, 0x224, %o0
2007280: 40 00 08 e5 call 2009614 <_Objects_Get>
2007284: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007288: c2 07 bf fc ld [ %fp + -4 ], %g1
200728c: 80 a0 60 00 cmp %g1, 0
2007290: 12 80 00 6a bne 2007438 <rtems_rate_monotonic_period+0x1c8>
2007294: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007298: 37 00 80 75 sethi %hi(0x201d400), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
200729c: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
20072a0: b6 16 e1 bc or %i3, 0x1bc, %i3
20072a4: c2 06 e0 0c ld [ %i3 + 0xc ], %g1
20072a8: 80 a0 80 01 cmp %g2, %g1
20072ac: 02 80 00 06 be 20072c4 <rtems_rate_monotonic_period+0x54>
20072b0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20072b4: 40 00 0c 7f call 200a4b0 <_Thread_Enable_dispatch>
20072b8: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
20072bc: 81 c7 e0 08 ret
20072c0: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
20072c4: 12 80 00 0d bne 20072f8 <rtems_rate_monotonic_period+0x88>
20072c8: 01 00 00 00 nop
switch ( the_period->state ) {
20072cc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20072d0: 80 a0 60 04 cmp %g1, 4
20072d4: 18 80 00 05 bgu 20072e8 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
20072d8: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20072dc: 05 00 80 6c sethi %hi(0x201b000), %g2
20072e0: 84 10 a2 68 or %g2, 0x268, %g2 ! 201b268 <CSWTCH.2>
20072e4: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20072e8: 40 00 0c 72 call 200a4b0 <_Thread_Enable_dispatch>
20072ec: 01 00 00 00 nop
return( return_value );
20072f0: 81 c7 e0 08 ret
20072f4: 81 e8 00 00 restore
}
_ISR_Disable( level );
20072f8: 7f ff ee e9 call 2002e9c <sparc_disable_interrupts>
20072fc: 01 00 00 00 nop
2007300: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007304: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
2007308: 80 a7 20 00 cmp %i4, 0
200730c: 12 80 00 15 bne 2007360 <rtems_rate_monotonic_period+0xf0>
2007310: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
2007314: 7f ff ee e6 call 2002eac <sparc_enable_interrupts>
2007318: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
200731c: 90 10 00 1d mov %i5, %o0
2007320: 7f ff ff 78 call 2007100 <_Rate_monotonic_Initiate_statistics>
2007324: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
2007328: 82 10 20 02 mov 2, %g1
200732c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007330: 03 00 80 1d sethi %hi(0x2007400), %g1
2007334: 82 10 62 f4 or %g1, 0x2f4, %g1 ! 20076f4 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007338: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
200733c: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
2007340: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
2007344: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007348: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200734c: 11 00 80 75 sethi %hi(0x201d400), %o0
2007350: 92 07 60 10 add %i5, 0x10, %o1
2007354: 40 00 10 1d call 200b3c8 <_Watchdog_Insert>
2007358: 90 12 20 4c or %o0, 0x4c, %o0
200735c: 30 80 00 1b b,a 20073c8 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
2007360: 12 80 00 1e bne 20073d8 <rtems_rate_monotonic_period+0x168>
2007364: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007368: 7f ff ff 86 call 2007180 <_Rate_monotonic_Update_statistics>
200736c: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007370: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007374: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007378: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
200737c: 7f ff ee cc call 2002eac <sparc_enable_interrupts>
2007380: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007384: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
2007388: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
200738c: 13 00 00 10 sethi %hi(0x4000), %o1
2007390: 40 00 0e 6b call 200ad3c <_Thread_Set_state>
2007394: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007398: 7f ff ee c1 call 2002e9c <sparc_disable_interrupts>
200739c: 01 00 00 00 nop
local_state = the_period->state;
20073a0: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
20073a4: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
20073a8: 7f ff ee c1 call 2002eac <sparc_enable_interrupts>
20073ac: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20073b0: 80 a6 a0 03 cmp %i2, 3
20073b4: 12 80 00 05 bne 20073c8 <rtems_rate_monotonic_period+0x158>
20073b8: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20073bc: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
20073c0: 40 00 0b 5b call 200a12c <_Thread_Clear_state>
20073c4: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
20073c8: 40 00 0c 3a call 200a4b0 <_Thread_Enable_dispatch>
20073cc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20073d0: 81 c7 e0 08 ret
20073d4: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20073d8: 12 bf ff b9 bne 20072bc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20073dc: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20073e0: 7f ff ff 68 call 2007180 <_Rate_monotonic_Update_statistics>
20073e4: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20073e8: 7f ff ee b1 call 2002eac <sparc_enable_interrupts>
20073ec: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20073f0: 82 10 20 02 mov 2, %g1
20073f4: 92 07 60 10 add %i5, 0x10, %o1
20073f8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
20073fc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007400: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007404: 11 00 80 75 sethi %hi(0x201d400), %o0
2007408: 40 00 0f f0 call 200b3c8 <_Watchdog_Insert>
200740c: 90 12 20 4c or %o0, 0x4c, %o0 ! 201d44c <_Watchdog_Ticks_chain>
2007410: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
2007414: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2007418: 03 00 80 71 sethi %hi(0x201c400), %g1
200741c: c2 00 62 d8 ld [ %g1 + 0x2d8 ], %g1 ! 201c6d8 <_Scheduler+0x34>
2007420: 9f c0 40 00 call %g1
2007424: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
2007428: 40 00 0c 22 call 200a4b0 <_Thread_Enable_dispatch>
200742c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007430: 81 c7 e0 08 ret
2007434: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2007438: b0 10 20 04 mov 4, %i0
}
200743c: 81 c7 e0 08 ret
2007440: 81 e8 00 00 restore
02007444 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2007444: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007448: 80 a6 60 00 cmp %i1, 0
200744c: 02 80 00 75 be 2007620 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
2007450: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2007454: 13 00 80 6c sethi %hi(0x201b000), %o1
2007458: 9f c6 40 00 call %i1
200745c: 92 12 62 70 or %o1, 0x270, %o1 ! 201b270 <CSWTCH.2+0x8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007460: 90 10 00 18 mov %i0, %o0
2007464: 13 00 80 6c sethi %hi(0x201b000), %o1
2007468: 9f c6 40 00 call %i1
200746c: 92 12 62 90 or %o1, 0x290, %o1 ! 201b290 <CSWTCH.2+0x28>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007470: 90 10 00 18 mov %i0, %o0
2007474: 13 00 80 6c sethi %hi(0x201b000), %o1
2007478: 9f c6 40 00 call %i1
200747c: 92 12 62 b8 or %o1, 0x2b8, %o1 ! 201b2b8 <CSWTCH.2+0x50>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007480: 90 10 00 18 mov %i0, %o0
2007484: 13 00 80 6c sethi %hi(0x201b000), %o1
2007488: 9f c6 40 00 call %i1
200748c: 92 12 62 e0 or %o1, 0x2e0, %o1 ! 201b2e0 <CSWTCH.2+0x78>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007490: 90 10 00 18 mov %i0, %o0
2007494: 13 00 80 6c sethi %hi(0x201b000), %o1
2007498: 9f c6 40 00 call %i1
200749c: 92 12 63 30 or %o1, 0x330, %o1 ! 201b330 <CSWTCH.2+0xc8>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20074a0: 03 00 80 74 sethi %hi(0x201d000), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20074a4: 21 00 80 6c sethi %hi(0x201b000), %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20074a8: 35 00 80 6c sethi %hi(0x201b000), %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
20074ac: 37 00 80 6c sethi %hi(0x201b000), %i3
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
20074b0: 39 00 80 69 sethi %hi(0x201a400), %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20074b4: fa 00 62 2c ld [ %g1 + 0x22c ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20074b8: a0 14 23 80 or %l0, 0x380, %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20074bc: b4 16 a3 98 or %i2, 0x398, %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
20074c0: b6 16 e3 b8 or %i3, 0x3b8, %i3
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20074c4: 10 80 00 52 b 200760c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20074c8: b8 17 20 f8 or %i4, 0xf8, %i4
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20074cc: 40 00 17 98 call 200d32c <rtems_rate_monotonic_get_statistics>
20074d0: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
20074d4: 80 a2 20 00 cmp %o0, 0
20074d8: 32 80 00 4d bne,a 200760c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20074dc: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
20074e0: 92 07 bf d8 add %fp, -40, %o1
20074e4: 40 00 17 bf call 200d3e0 <rtems_rate_monotonic_get_status>
20074e8: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20074ec: d0 07 bf d8 ld [ %fp + -40 ], %o0
20074f0: 92 10 20 05 mov 5, %o1
20074f4: 40 00 00 af call 20077b0 <rtems_object_get_name>
20074f8: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20074fc: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2007500: 92 10 00 10 mov %l0, %o1
2007504: 90 10 00 18 mov %i0, %o0
2007508: 94 10 00 1d mov %i5, %o2
200750c: 9f c6 40 00 call %i1
2007510: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007514: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007518: 80 a2 60 00 cmp %o1, 0
200751c: 12 80 00 07 bne 2007538 <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
2007520: 94 07 bf f0 add %fp, -16, %o2
(*print)( context, "\n" );
2007524: 90 10 00 18 mov %i0, %o0
2007528: 9f c6 40 00 call %i1
200752c: 92 10 00 1c mov %i4, %o1
continue;
2007530: 10 80 00 37 b 200760c <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2007534: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007538: 40 00 0e 85 call 200af4c <_Timespec_Divide_by_integer>
200753c: 90 07 bf b8 add %fp, -72, %o0
(*print)( context,
2007540: d0 07 bf ac ld [ %fp + -84 ], %o0
2007544: 40 00 43 c1 call 2018448 <.div>
2007548: 92 10 23 e8 mov 0x3e8, %o1
200754c: a6 10 00 08 mov %o0, %l3
2007550: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007554: 40 00 43 bd call 2018448 <.div>
2007558: 92 10 23 e8 mov 0x3e8, %o1
200755c: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007560: a2 10 00 08 mov %o0, %l1
2007564: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007568: e8 07 bf a8 ld [ %fp + -88 ], %l4
200756c: e4 07 bf b0 ld [ %fp + -80 ], %l2
2007570: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007574: 40 00 43 b5 call 2018448 <.div>
2007578: 92 10 23 e8 mov 0x3e8, %o1
200757c: 96 10 00 13 mov %l3, %o3
2007580: 98 10 00 12 mov %l2, %o4
2007584: 9a 10 00 11 mov %l1, %o5
2007588: 94 10 00 14 mov %l4, %o2
200758c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007590: 92 10 00 1a mov %i2, %o1
2007594: 9f c6 40 00 call %i1
2007598: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
200759c: d2 07 bf a0 ld [ %fp + -96 ], %o1
20075a0: 94 07 bf f0 add %fp, -16, %o2
20075a4: 40 00 0e 6a call 200af4c <_Timespec_Divide_by_integer>
20075a8: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
20075ac: d0 07 bf c4 ld [ %fp + -60 ], %o0
20075b0: 40 00 43 a6 call 2018448 <.div>
20075b4: 92 10 23 e8 mov 0x3e8, %o1
20075b8: a6 10 00 08 mov %o0, %l3
20075bc: d0 07 bf cc ld [ %fp + -52 ], %o0
20075c0: 40 00 43 a2 call 2018448 <.div>
20075c4: 92 10 23 e8 mov 0x3e8, %o1
20075c8: c2 07 bf f0 ld [ %fp + -16 ], %g1
20075cc: a2 10 00 08 mov %o0, %l1
20075d0: d0 07 bf f4 ld [ %fp + -12 ], %o0
20075d4: e8 07 bf c0 ld [ %fp + -64 ], %l4
20075d8: e4 07 bf c8 ld [ %fp + -56 ], %l2
20075dc: 92 10 23 e8 mov 0x3e8, %o1
20075e0: 40 00 43 9a call 2018448 <.div>
20075e4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20075e8: 92 10 00 1b mov %i3, %o1
20075ec: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20075f0: 94 10 00 14 mov %l4, %o2
20075f4: 90 10 00 18 mov %i0, %o0
20075f8: 96 10 00 13 mov %l3, %o3
20075fc: 98 10 00 12 mov %l2, %o4
2007600: 9f c6 40 00 call %i1
2007604: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007608: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
200760c: 03 00 80 74 sethi %hi(0x201d000), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007610: c2 00 62 30 ld [ %g1 + 0x230 ], %g1 ! 201d230 <_Rate_monotonic_Information+0xc>
2007614: 80 a7 40 01 cmp %i5, %g1
2007618: 08 bf ff ad bleu 20074cc <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
200761c: 90 10 00 1d mov %i5, %o0
2007620: 81 c7 e0 08 ret
2007624: 81 e8 00 00 restore
02016134 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2016134: 9d e3 bf 98 save %sp, -104, %sp
2016138: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
201613c: 80 a6 60 00 cmp %i1, 0
2016140: 02 80 00 2e be 20161f8 <rtems_signal_send+0xc4>
2016144: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2016148: 40 00 11 ee call 201a900 <_Thread_Get>
201614c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2016150: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2016154: b8 10 00 08 mov %o0, %i4
switch ( location ) {
2016158: 80 a0 60 00 cmp %g1, 0
201615c: 12 80 00 27 bne 20161f8 <rtems_signal_send+0xc4>
2016160: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2016164: fa 02 21 58 ld [ %o0 + 0x158 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2016168: c2 07 60 0c ld [ %i5 + 0xc ], %g1
201616c: 80 a0 60 00 cmp %g1, 0
2016170: 02 80 00 24 be 2016200 <rtems_signal_send+0xcc>
2016174: 01 00 00 00 nop
if ( asr->is_enabled ) {
2016178: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
201617c: 80 a0 60 00 cmp %g1, 0
2016180: 02 80 00 15 be 20161d4 <rtems_signal_send+0xa0>
2016184: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2016188: 7f ff e7 ce call 20100c0 <sparc_disable_interrupts>
201618c: 01 00 00 00 nop
*signal_set |= signals;
2016190: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2016194: b2 10 40 19 or %g1, %i1, %i1
2016198: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
201619c: 7f ff e7 cd call 20100d0 <sparc_enable_interrupts>
20161a0: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20161a4: 03 00 80 e8 sethi %hi(0x203a000), %g1
20161a8: 82 10 62 74 or %g1, 0x274, %g1 ! 203a274 <_Per_CPU_Information>
20161ac: c4 00 60 08 ld [ %g1 + 8 ], %g2
20161b0: 80 a0 a0 00 cmp %g2, 0
20161b4: 02 80 00 0f be 20161f0 <rtems_signal_send+0xbc>
20161b8: 01 00 00 00 nop
20161bc: c4 00 60 0c ld [ %g1 + 0xc ], %g2
20161c0: 80 a7 00 02 cmp %i4, %g2
20161c4: 12 80 00 0b bne 20161f0 <rtems_signal_send+0xbc> <== NEVER TAKEN
20161c8: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
20161cc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
20161d0: 30 80 00 08 b,a 20161f0 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20161d4: 7f ff e7 bb call 20100c0 <sparc_disable_interrupts>
20161d8: 01 00 00 00 nop
*signal_set |= signals;
20161dc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
20161e0: b2 10 40 19 or %g1, %i1, %i1
20161e4: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
20161e8: 7f ff e7 ba call 20100d0 <sparc_enable_interrupts>
20161ec: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
20161f0: 40 00 11 b7 call 201a8cc <_Thread_Enable_dispatch>
20161f4: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
20161f8: 81 c7 e0 08 ret
20161fc: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
2016200: 40 00 11 b3 call 201a8cc <_Thread_Enable_dispatch>
2016204: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2016208: 81 c7 e0 08 ret
201620c: 81 e8 00 00 restore
0200d7cc <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d7cc: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d7d0: 80 a6 a0 00 cmp %i2, 0
200d7d4: 02 80 00 5a be 200d93c <rtems_task_mode+0x170>
200d7d8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d7dc: 03 00 80 6d sethi %hi(0x201b400), %g1
200d7e0: f8 00 63 28 ld [ %g1 + 0x328 ], %i4 ! 201b728 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d7e4: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d7e8: fa 07 21 58 ld [ %i4 + 0x158 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d7ec: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d7f0: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d7f4: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d7f8: 80 a0 60 00 cmp %g1, 0
200d7fc: 02 80 00 03 be 200d808 <rtems_task_mode+0x3c>
200d800: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d804: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d808: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
200d80c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d810: 7f ff f1 ea call 2009fb8 <_CPU_ISR_Get_level>
200d814: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d818: a1 2c 20 0a sll %l0, 0xa, %l0
200d81c: a0 14 00 08 or %l0, %o0, %l0
old_mode |= _ISR_Get_level();
200d820: b6 14 00 1b or %l0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d824: 80 8e 61 00 btst 0x100, %i1
200d828: 02 80 00 06 be 200d840 <rtems_task_mode+0x74>
200d82c: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d830: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d834: 80 a0 00 01 cmp %g0, %g1
200d838: 82 60 3f ff subx %g0, -1, %g1
200d83c: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d840: 80 8e 62 00 btst 0x200, %i1
200d844: 02 80 00 0b be 200d870 <rtems_task_mode+0xa4>
200d848: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d84c: 80 8e 22 00 btst 0x200, %i0
200d850: 22 80 00 07 be,a 200d86c <rtems_task_mode+0xa0>
200d854: c0 27 20 7c clr [ %i4 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d858: 82 10 20 01 mov 1, %g1
200d85c: c2 27 20 7c st %g1, [ %i4 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d860: 03 00 80 6d sethi %hi(0x201b400), %g1
200d864: c2 00 60 54 ld [ %g1 + 0x54 ], %g1 ! 201b454 <_Thread_Ticks_per_timeslice>
200d868: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d86c: 80 8e 60 0f btst 0xf, %i1
200d870: 02 80 00 06 be 200d888 <rtems_task_mode+0xbc>
200d874: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d878: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d87c: 7f ff d2 44 call 200218c <sparc_enable_interrupts>
200d880: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d884: 80 8e 64 00 btst 0x400, %i1
200d888: 02 80 00 14 be 200d8d8 <rtems_task_mode+0x10c>
200d88c: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d890: c4 0f 60 08 ldub [ %i5 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d894: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d898: 80 a0 00 18 cmp %g0, %i0
200d89c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d8a0: 80 a0 40 02 cmp %g1, %g2
200d8a4: 22 80 00 0e be,a 200d8dc <rtems_task_mode+0x110>
200d8a8: 03 00 80 6d sethi %hi(0x201b400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d8ac: 7f ff d2 34 call 200217c <sparc_disable_interrupts>
200d8b0: c2 2f 60 08 stb %g1, [ %i5 + 8 ]
_signals = information->signals_pending;
200d8b4: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d8b8: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
200d8bc: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d8c0: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d8c4: 7f ff d2 32 call 200218c <sparc_enable_interrupts>
200d8c8: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d8cc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d8d0: 80 a0 00 01 cmp %g0, %g1
200d8d4: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200d8d8: 03 00 80 6d sethi %hi(0x201b400), %g1
200d8dc: c4 00 62 44 ld [ %g1 + 0x244 ], %g2 ! 201b644 <_System_state_Current>
200d8e0: 80 a0 a0 03 cmp %g2, 3
200d8e4: 12 80 00 16 bne 200d93c <rtems_task_mode+0x170>
200d8e8: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d8ec: 07 00 80 6d sethi %hi(0x201b400), %g3
if ( are_signals_pending ||
200d8f0: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d8f4: 86 10 e3 1c or %g3, 0x31c, %g3
if ( are_signals_pending ||
200d8f8: 12 80 00 0a bne 200d920 <rtems_task_mode+0x154>
200d8fc: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200d900: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d904: 80 a0 80 03 cmp %g2, %g3
200d908: 02 80 00 0d be 200d93c <rtems_task_mode+0x170>
200d90c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d910: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d914: 80 a0 a0 00 cmp %g2, 0
200d918: 02 80 00 09 be 200d93c <rtems_task_mode+0x170> <== NEVER TAKEN
200d91c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d920: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d924: 03 00 80 6d sethi %hi(0x201b400), %g1
200d928: 82 10 63 1c or %g1, 0x31c, %g1 ! 201b71c <_Per_CPU_Information>
200d92c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d930: 7f ff ec 74 call 2008b00 <_Thread_Dispatch>
200d934: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d938: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d93c: 81 c7 e0 08 ret
200d940: 91 e8 00 01 restore %g0, %g1, %o0
0200aa28 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200aa28: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200aa2c: 80 a6 60 00 cmp %i1, 0
200aa30: 02 80 00 07 be 200aa4c <rtems_task_set_priority+0x24>
200aa34: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200aa38: 03 00 80 61 sethi %hi(0x2018400), %g1
200aa3c: c2 08 62 dc ldub [ %g1 + 0x2dc ], %g1 ! 20186dc <rtems_maximum_priority>
200aa40: 80 a6 40 01 cmp %i1, %g1
200aa44: 18 80 00 1c bgu 200aab4 <rtems_task_set_priority+0x8c>
200aa48: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200aa4c: 80 a6 a0 00 cmp %i2, 0
200aa50: 02 80 00 19 be 200aab4 <rtems_task_set_priority+0x8c>
200aa54: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200aa58: 40 00 09 5c call 200cfc8 <_Thread_Get>
200aa5c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200aa60: c2 07 bf fc ld [ %fp + -4 ], %g1
200aa64: 80 a0 60 00 cmp %g1, 0
200aa68: 12 80 00 13 bne 200aab4 <rtems_task_set_priority+0x8c>
200aa6c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200aa70: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200aa74: 80 a6 60 00 cmp %i1, 0
200aa78: 02 80 00 0d be 200aaac <rtems_task_set_priority+0x84>
200aa7c: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200aa80: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200aa84: 80 a0 60 00 cmp %g1, 0
200aa88: 02 80 00 06 be 200aaa0 <rtems_task_set_priority+0x78>
200aa8c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200aa90: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200aa94: 80 a0 40 19 cmp %g1, %i1
200aa98: 08 80 00 05 bleu 200aaac <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200aa9c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200aaa0: 92 10 00 19 mov %i1, %o1
200aaa4: 40 00 08 15 call 200caf8 <_Thread_Change_priority>
200aaa8: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200aaac: 40 00 09 3a call 200cf94 <_Thread_Enable_dispatch>
200aab0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200aab4: 81 c7 e0 08 ret
200aab8: 81 e8 00 00 restore
02016b3c <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2016b3c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2016b40: 11 00 80 e8 sethi %hi(0x203a000), %o0
2016b44: 92 10 00 18 mov %i0, %o1
2016b48: 90 12 23 14 or %o0, 0x314, %o0
2016b4c: 40 00 0b b9 call 2019a30 <_Objects_Get>
2016b50: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016b54: c2 07 bf fc ld [ %fp + -4 ], %g1
2016b58: 80 a0 60 00 cmp %g1, 0
2016b5c: 12 80 00 0c bne 2016b8c <rtems_timer_cancel+0x50>
2016b60: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2016b64: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2016b68: 80 a0 60 04 cmp %g1, 4
2016b6c: 02 80 00 04 be 2016b7c <rtems_timer_cancel+0x40> <== NEVER TAKEN
2016b70: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2016b74: 40 00 13 c3 call 201ba80 <_Watchdog_Remove>
2016b78: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016b7c: 40 00 0f 54 call 201a8cc <_Thread_Enable_dispatch>
2016b80: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2016b84: 81 c7 e0 08 ret
2016b88: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016b8c: 81 c7 e0 08 ret
2016b90: 91 e8 20 04 restore %g0, 4, %o0
02017038 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2017038: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
201703c: 03 00 80 e8 sethi %hi(0x203a000), %g1
2017040: f8 00 63 54 ld [ %g1 + 0x354 ], %i4 ! 203a354 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2017044: ba 10 00 18 mov %i0, %i5
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2017048: 80 a7 20 00 cmp %i4, 0
201704c: 02 80 00 32 be 2017114 <rtems_timer_server_fire_when+0xdc>
2017050: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2017054: 03 00 80 e8 sethi %hi(0x203a000), %g1
2017058: c2 08 60 50 ldub [ %g1 + 0x50 ], %g1 ! 203a050 <_TOD_Is_set>
201705c: 80 a0 60 00 cmp %g1, 0
2017060: 02 80 00 2d be 2017114 <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
2017064: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2017068: 80 a6 a0 00 cmp %i2, 0
201706c: 02 80 00 2a be 2017114 <rtems_timer_server_fire_when+0xdc>
2017070: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2017074: 90 10 00 19 mov %i1, %o0
2017078: 7f ff f3 fb call 2014064 <_TOD_Validate>
201707c: b0 10 20 14 mov 0x14, %i0
2017080: 80 8a 20 ff btst 0xff, %o0
2017084: 02 80 00 27 be 2017120 <rtems_timer_server_fire_when+0xe8>
2017088: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
201708c: 7f ff f3 c2 call 2013f94 <_TOD_To_seconds>
2017090: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2017094: 21 00 80 e8 sethi %hi(0x203a000), %l0
2017098: c2 04 20 cc ld [ %l0 + 0xcc ], %g1 ! 203a0cc <_TOD_Now>
201709c: 80 a2 00 01 cmp %o0, %g1
20170a0: 08 80 00 1d bleu 2017114 <rtems_timer_server_fire_when+0xdc>
20170a4: b2 10 00 08 mov %o0, %i1
20170a8: 11 00 80 e8 sethi %hi(0x203a000), %o0
20170ac: 92 10 00 1d mov %i5, %o1
20170b0: 90 12 23 14 or %o0, 0x314, %o0
20170b4: 40 00 0a 5f call 2019a30 <_Objects_Get>
20170b8: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20170bc: c2 07 bf fc ld [ %fp + -4 ], %g1
20170c0: 80 a0 60 00 cmp %g1, 0
20170c4: 12 80 00 16 bne 201711c <rtems_timer_server_fire_when+0xe4>
20170c8: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20170cc: 40 00 12 6d call 201ba80 <_Watchdog_Remove>
20170d0: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20170d4: 82 10 20 03 mov 3, %g1
20170d8: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20170dc: c2 04 20 cc ld [ %l0 + 0xcc ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
20170e0: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20170e4: b2 26 40 01 sub %i1, %g1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
20170e8: c2 07 20 04 ld [ %i4 + 4 ], %g1
20170ec: 90 10 00 1c mov %i4, %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20170f0: c0 26 20 18 clr [ %i0 + 0x18 ]
the_watchdog->routine = routine;
20170f4: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
the_watchdog->id = id;
20170f8: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
20170fc: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2017100: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2017104: 9f c0 40 00 call %g1
2017108: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
201710c: 40 00 0d f0 call 201a8cc <_Thread_Enable_dispatch>
2017110: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2017114: 81 c7 e0 08 ret
2017118: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
201711c: b0 10 20 04 mov 4, %i0
}
2017120: 81 c7 e0 08 ret
2017124: 81 e8 00 00 restore