=============================================================================== 0200fbf4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fbf4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fbf8: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fbfc: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fc00: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fc04: 80 8e e0 03 btst 3, %i3 200fc08: 02 80 00 07 be 200fc24 <_CORE_message_queue_Initialize+0x30> 200fc0c: ba 10 00 1b mov %i3, %i5 allocated_message_size += sizeof(uint32_t); 200fc10: ba 06 e0 04 add %i3, 4, %i5 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fc14: ba 0f 7f fc and %i5, -4, %i5 } if (allocated_message_size < maximum_message_size) 200fc18: 80 a7 40 1b cmp %i5, %i3 200fc1c: 0a 80 00 24 bcs 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fc20: b8 10 20 00 clr %i4 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 200fc24: ba 07 60 10 add %i5, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 200fc28: 90 10 20 00 clr %o0 200fc2c: 92 10 00 1a mov %i2, %o1 200fc30: 94 10 20 00 clr %o2 200fc34: 96 10 00 1d mov %i5, %o3 200fc38: 40 00 3e e2 call 201f7c0 <__muldi3> 200fc3c: b8 10 20 00 clr %i4 if ( x > SIZE_MAX ) 200fc40: 80 a2 20 00 cmp %o0, 0 200fc44: 34 80 00 1b bg,a 200fcb0 <_CORE_message_queue_Initialize+0xbc> 200fc48: b0 0f 20 01 and %i4, 1, %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fc4c: 40 00 0b fb call 2012c38 <_Workspace_Allocate> 200fc50: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fc54: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fc58: 80 a2 20 00 cmp %o0, 0 200fc5c: 02 80 00 14 be 200fcac <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fc60: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fc64: 90 06 20 60 add %i0, 0x60, %o0 200fc68: 94 10 00 1a mov %i2, %o2 200fc6c: 40 00 13 df call 2014be8 <_Chain_Initialize> 200fc70: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc74: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 200fc78: c2 26 20 58 st %g1, [ %i0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200fc7c: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc80: 84 06 20 54 add %i0, 0x54, %g2 200fc84: 82 18 60 01 xor %g1, 1, %g1 200fc88: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 200fc8c: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 200fc90: c0 26 20 54 clr [ %i0 + 0x54 ] 200fc94: 90 10 00 18 mov %i0, %o0 200fc98: 92 60 3f ff subx %g0, -1, %o1 200fc9c: 94 10 20 80 mov 0x80, %o2 200fca0: 96 10 20 06 mov 6, %o3 200fca4: 40 00 09 91 call 20122e8 <_Thread_queue_Initialize> 200fca8: b8 10 20 01 mov 1, %i4 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fcac: b0 0f 20 01 and %i4, 1, %i0 200fcb0: 81 c7 e0 08 ret 200fcb4: 81 e8 00 00 restore =============================================================================== 02007290 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2007290: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2007294: 90 10 00 18 mov %i0, %o0 2007298: 40 00 07 33 call 2008f64 <_Thread_queue_Dequeue> 200729c: ba 10 00 18 mov %i0, %i5 20072a0: 80 a2 20 00 cmp %o0, 0 20072a4: 12 80 00 0e bne 20072dc <_CORE_semaphore_Surrender+0x4c> 20072a8: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 20072ac: 7f ff eb b4 call 200217c 20072b0: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 20072b4: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 20072b8: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 20072bc: 80 a0 40 02 cmp %g1, %g2 20072c0: 1a 80 00 05 bcc 20072d4 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 20072c4: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 20072c8: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20072cc: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 20072d0: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 20072d4: 7f ff eb ae call 200218c 20072d8: 01 00 00 00 nop } return status; } 20072dc: 81 c7 e0 08 ret 20072e0: 81 e8 00 00 restore =============================================================================== 02006028 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2006028: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 200602c: f8 06 21 58 ld [ %i0 + 0x158 ], %i4 option_set = (rtems_option) the_thread->Wait.option; 2006030: f6 06 20 30 ld [ %i0 + 0x30 ], %i3 _ISR_Disable( level ); 2006034: 7f ff f0 52 call 200217c 2006038: ba 10 00 18 mov %i0, %i5 200603c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2006040: c4 07 00 00 ld [ %i4 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2006044: c6 07 60 24 ld [ %i5 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2006048: 82 88 c0 02 andcc %g3, %g2, %g1 200604c: 02 80 00 43 be 2006158 <_Event_Surrender+0x130> 2006050: 01 00 00 00 nop /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006054: 09 00 80 6d sethi %hi(0x201b400), %g4 2006058: 88 11 22 dc or %g4, 0x2dc, %g4 ! 201b6dc <_Per_CPU_Information> 200605c: f2 01 20 08 ld [ %g4 + 8 ], %i1 2006060: 80 a6 60 00 cmp %i1, 0 2006064: 22 80 00 1d be,a 20060d8 <_Event_Surrender+0xb0> 2006068: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 200606c: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2006070: 80 a7 40 04 cmp %i5, %g4 2006074: 32 80 00 19 bne,a 20060d8 <_Event_Surrender+0xb0> 2006078: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200607c: 09 00 80 6d sethi %hi(0x201b400), %g4 2006080: f2 01 23 30 ld [ %g4 + 0x330 ], %i1 ! 201b730 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006084: 80 a6 60 02 cmp %i1, 2 2006088: 02 80 00 07 be 20060a4 <_Event_Surrender+0x7c> <== NEVER TAKEN 200608c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006090: c8 01 23 30 ld [ %g4 + 0x330 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006094: 80 a1 20 01 cmp %g4, 1 2006098: 32 80 00 10 bne,a 20060d8 <_Event_Surrender+0xb0> 200609c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 20060a0: 80 a0 40 03 cmp %g1, %g3 20060a4: 02 80 00 04 be 20060b4 <_Event_Surrender+0x8c> 20060a8: 80 8e e0 02 btst 2, %i3 20060ac: 02 80 00 2b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN 20060b0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 20060b4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20060b8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060bc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 20060c0: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060c4: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20060c8: 84 10 20 03 mov 3, %g2 20060cc: 03 00 80 6d sethi %hi(0x201b400), %g1 20060d0: c4 20 63 30 st %g2, [ %g1 + 0x330 ] ! 201b730 <_Event_Sync_state> 20060d4: 30 80 00 21 b,a 2006158 <_Event_Surrender+0x130> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20060d8: 80 89 21 00 btst 0x100, %g4 20060dc: 02 80 00 1f be 2006158 <_Event_Surrender+0x130> 20060e0: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20060e4: 02 80 00 04 be 20060f4 <_Event_Surrender+0xcc> 20060e8: 80 8e e0 02 btst 2, %i3 20060ec: 02 80 00 1b be 2006158 <_Event_Surrender+0x130> <== NEVER TAKEN 20060f0: 01 00 00 00 nop 20060f4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 20060f8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060fc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2006100: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006104: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2006108: 7f ff f0 21 call 200218c 200610c: 90 10 00 18 mov %i0, %o0 2006110: 7f ff f0 1b call 200217c 2006114: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2006118: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 200611c: 80 a0 60 02 cmp %g1, 2 2006120: 02 80 00 06 be 2006138 <_Event_Surrender+0x110> 2006124: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2006128: 7f ff f0 19 call 200218c 200612c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006130: 10 80 00 08 b 2006150 <_Event_Surrender+0x128> 2006134: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2006138: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200613c: 7f ff f0 14 call 200218c 2006140: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 2006144: 40 00 0e 75 call 2009b18 <_Watchdog_Remove> 2006148: 90 07 60 48 add %i5, 0x48, %o0 200614c: b2 16 63 f8 or %i1, 0x3f8, %i1 2006150: 40 00 09 d6 call 20088a8 <_Thread_Clear_state> 2006154: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2006158: 7f ff f0 0d call 200218c 200615c: 81 e8 00 00 restore =============================================================================== 02006160 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2006160: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2006164: 90 10 00 18 mov %i0, %o0 2006168: 40 00 0a bb call 2008c54 <_Thread_Get> 200616c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006170: c2 07 bf fc ld [ %fp + -4 ], %g1 2006174: 80 a0 60 00 cmp %g1, 0 2006178: 12 80 00 1d bne 20061ec <_Event_Timeout+0x8c> <== NEVER TAKEN 200617c: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006180: 7f ff ef ff call 200217c 2006184: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006188: 03 00 80 6d sethi %hi(0x201b400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200618c: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 201b6e8 <_Per_CPU_Information+0xc> 2006190: 80 a7 40 01 cmp %i5, %g1 2006194: 12 80 00 09 bne 20061b8 <_Event_Timeout+0x58> 2006198: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 200619c: 03 00 80 6d sethi %hi(0x201b400), %g1 20061a0: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 201b730 <_Event_Sync_state> 20061a4: 80 a0 a0 01 cmp %g2, 1 20061a8: 32 80 00 05 bne,a 20061bc <_Event_Timeout+0x5c> 20061ac: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 20061b0: 84 10 20 02 mov 2, %g2 20061b4: c4 20 63 30 st %g2, [ %g1 + 0x330 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 20061b8: 82 10 20 06 mov 6, %g1 20061bc: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 20061c0: 7f ff ef f3 call 200218c 20061c4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20061c8: 90 10 00 1d mov %i5, %o0 20061cc: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20061d0: 40 00 09 b6 call 20088a8 <_Thread_Clear_state> 20061d4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20061d8: 03 00 80 6d sethi %hi(0x201b400), %g1 20061dc: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 201b4b0 <_Thread_Dispatch_disable_level> 20061e0: 84 00 bf ff add %g2, -1, %g2 20061e4: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ] return _Thread_Dispatch_disable_level; 20061e8: c2 00 60 b0 ld [ %g1 + 0xb0 ], %g1 20061ec: 81 c7 e0 08 ret 20061f0: 81 e8 00 00 restore =============================================================================== 0200bc64 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bc64: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bc68: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200bc6c: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200bc70: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200bc74: e0 06 20 20 ld [ %i0 + 0x20 ], %l0 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200bc78: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 uintptr_t const min_block_size = heap->min_block_size; 200bc7c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200bc80: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200bc84: 80 a7 40 19 cmp %i5, %i1 200bc88: 0a 80 00 9f bcs 200bf04 <_Heap_Extend+0x2a0> 200bc8c: b8 10 20 00 clr %i4 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200bc90: 90 10 00 19 mov %i1, %o0 200bc94: 92 10 00 1a mov %i2, %o1 200bc98: 94 10 00 11 mov %l1, %o2 200bc9c: 98 07 bf f8 add %fp, -8, %o4 200bca0: 7f ff ed 4f call 20071dc <_Heap_Get_first_and_last_block> 200bca4: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200bca8: 80 8a 20 ff btst 0xff, %o0 200bcac: 02 80 00 96 be 200bf04 <_Heap_Extend+0x2a0> 200bcb0: b4 10 00 10 mov %l0, %i2 200bcb4: aa 10 20 00 clr %l5 200bcb8: ac 10 20 00 clr %l6 200bcbc: b8 10 20 00 clr %i4 200bcc0: a8 10 20 00 clr %l4 200bcc4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200bcc8: 80 a0 40 1d cmp %g1, %i5 200bccc: 1a 80 00 05 bcc 200bce0 <_Heap_Extend+0x7c> 200bcd0: e6 06 80 00 ld [ %i2 ], %l3 200bcd4: 80 a6 40 13 cmp %i1, %l3 200bcd8: 2a 80 00 8b bcs,a 200bf04 <_Heap_Extend+0x2a0> 200bcdc: b8 10 20 00 clr %i4 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200bce0: 80 a7 40 01 cmp %i5, %g1 200bce4: 02 80 00 06 be 200bcfc <_Heap_Extend+0x98> 200bce8: 80 a7 40 13 cmp %i5, %l3 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200bcec: 2a 80 00 05 bcs,a 200bd00 <_Heap_Extend+0x9c> 200bcf0: ac 10 00 1a mov %i2, %l6 200bcf4: 10 80 00 04 b 200bd04 <_Heap_Extend+0xa0> 200bcf8: 90 10 00 13 mov %l3, %o0 200bcfc: a8 10 00 1a mov %i2, %l4 200bd00: 90 10 00 13 mov %l3, %o0 200bd04: 40 00 15 fd call 20114f8 <.urem> 200bd08: 92 10 00 11 mov %l1, %o1 200bd0c: ae 04 ff f8 add %l3, -8, %l7 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200bd10: 80 a4 c0 19 cmp %l3, %i1 200bd14: 12 80 00 05 bne 200bd28 <_Heap_Extend+0xc4> 200bd18: 90 25 c0 08 sub %l7, %o0, %o0 start_block->prev_size = extend_area_end; 200bd1c: fa 26 80 00 st %i5, [ %i2 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200bd20: 10 80 00 04 b 200bd30 <_Heap_Extend+0xcc> 200bd24: b8 10 00 08 mov %o0, %i4 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200bd28: 2a 80 00 02 bcs,a 200bd30 <_Heap_Extend+0xcc> 200bd2c: aa 10 00 08 mov %o0, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bd30: f4 02 20 04 ld [ %o0 + 4 ], %i2 200bd34: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd38: b4 06 80 08 add %i2, %o0, %i2 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200bd3c: 80 a6 80 10 cmp %i2, %l0 200bd40: 12 bf ff e2 bne 200bcc8 <_Heap_Extend+0x64> 200bd44: 82 10 00 1a mov %i2, %g1 if ( extend_area_begin < heap->area_begin ) { 200bd48: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200bd4c: 80 a6 40 01 cmp %i1, %g1 200bd50: 3a 80 00 04 bcc,a 200bd60 <_Heap_Extend+0xfc> 200bd54: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200bd58: 10 80 00 05 b 200bd6c <_Heap_Extend+0x108> 200bd5c: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200bd60: 80 a0 40 1d cmp %g1, %i5 200bd64: 2a 80 00 02 bcs,a 200bd6c <_Heap_Extend+0x108> 200bd68: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200bd6c: c4 07 bf f8 ld [ %fp + -8 ], %g2 200bd70: c2 07 bf fc ld [ %fp + -4 ], %g1 extend_first_block->prev_size = extend_area_end; 200bd74: fa 20 80 00 st %i5, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200bd78: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200bd7c: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200bd80: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200bd84: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200bd88: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 200bd8c: 80 a0 c0 02 cmp %g3, %g2 200bd90: 08 80 00 04 bleu 200bda0 <_Heap_Extend+0x13c> 200bd94: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200bd98: 10 80 00 06 b 200bdb0 <_Heap_Extend+0x14c> 200bd9c: c4 26 20 20 st %g2, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200bda0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200bda4: 80 a0 80 01 cmp %g2, %g1 200bda8: 2a 80 00 02 bcs,a 200bdb0 <_Heap_Extend+0x14c> 200bdac: c2 26 20 24 st %g1, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200bdb0: 80 a5 20 00 cmp %l4, 0 200bdb4: 02 80 00 14 be 200be04 <_Heap_Extend+0x1a0> 200bdb8: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200bdbc: f4 06 20 10 ld [ %i0 + 0x10 ], %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200bdc0: 92 10 00 1a mov %i2, %o1 200bdc4: 40 00 15 cd call 20114f8 <.urem> 200bdc8: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200bdcc: 80 a2 20 00 cmp %o0, 0 200bdd0: 02 80 00 04 be 200bde0 <_Heap_Extend+0x17c> 200bdd4: c2 05 00 00 ld [ %l4 ], %g1 return value - remainder + alignment; 200bdd8: b2 06 40 1a add %i1, %i2, %i1 200bddc: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200bde0: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200bde4: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200bde8: 82 25 00 09 sub %l4, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200bdec: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200bdf0: 90 10 00 18 mov %i0, %o0 200bdf4: 7f ff ff 92 call 200bc3c <_Heap_Free_block> 200bdf8: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200bdfc: 10 80 00 08 b 200be1c <_Heap_Extend+0x1b8> 200be00: 80 a7 20 00 cmp %i4, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200be04: 80 a5 a0 00 cmp %l6, 0 200be08: 02 80 00 04 be 200be18 <_Heap_Extend+0x1b4> 200be0c: ac 25 80 01 sub %l6, %g1, %l6 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200be10: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200be14: ec 20 60 04 st %l6, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200be18: 80 a7 20 00 cmp %i4, 0 200be1c: 02 80 00 15 be 200be70 <_Heap_Extend+0x20c> 200be20: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200be24: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200be28: ba 27 40 1c sub %i5, %i4, %i5 200be2c: 40 00 15 b3 call 20114f8 <.urem> 200be30: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200be34: c4 07 20 04 ld [ %i4 + 4 ], %g2 200be38: ba 27 40 08 sub %i5, %o0, %i5 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be3c: 82 07 40 1c add %i5, %i4, %g1 (last_block->size_and_flag - last_block_new_size) 200be40: 84 20 80 1d sub %g2, %i5, %g2 | HEAP_PREV_BLOCK_USED; 200be44: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be48: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be4c: c2 07 20 04 ld [ %i4 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200be50: 90 10 00 18 mov %i0, %o0 200be54: 82 08 60 01 and %g1, 1, %g1 200be58: 92 10 00 1c mov %i4, %o1 block->size_and_flag = size | flag; 200be5c: ba 17 40 01 or %i5, %g1, %i5 200be60: 7f ff ff 77 call 200bc3c <_Heap_Free_block> 200be64: fa 27 20 04 st %i5, [ %i4 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200be68: 10 80 00 0f b 200bea4 <_Heap_Extend+0x240> 200be6c: 80 a7 20 00 cmp %i4, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200be70: 80 a5 60 00 cmp %l5, 0 200be74: 02 80 00 0b be 200bea0 <_Heap_Extend+0x23c> 200be78: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be7c: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200be80: c2 07 bf fc ld [ %fp + -4 ], %g1 200be84: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200be88: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200be8c: 84 10 c0 02 or %g3, %g2, %g2 200be90: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200be94: c4 00 60 04 ld [ %g1 + 4 ], %g2 200be98: 84 10 a0 01 or %g2, 1, %g2 200be9c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200bea0: 80 a7 20 00 cmp %i4, 0 200bea4: 32 80 00 09 bne,a 200bec8 <_Heap_Extend+0x264> 200bea8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200beac: 80 a5 20 00 cmp %l4, 0 200beb0: 32 80 00 06 bne,a 200bec8 <_Heap_Extend+0x264> 200beb4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200beb8: d2 07 bf f8 ld [ %fp + -8 ], %o1 200bebc: 7f ff ff 60 call 200bc3c <_Heap_Free_block> 200bec0: 90 10 00 18 mov %i0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200bec4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200bec8: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200becc: c6 00 60 04 ld [ %g1 + 4 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200bed0: 84 20 80 01 sub %g2, %g1, %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bed4: 86 08 e0 01 and %g3, 1, %g3 block->size_and_flag = size | flag; 200bed8: 84 10 c0 02 or %g3, %g2, %g2 200bedc: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200bee0: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200bee4: b8 10 20 01 mov 1, %i4 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200bee8: a4 20 40 12 sub %g1, %l2, %l2 /* Statistics */ stats->size += extended_size; 200beec: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200bef0: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200bef4: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200bef8: 02 80 00 03 be 200bf04 <_Heap_Extend+0x2a0> <== NEVER TAKEN 200befc: c2 26 20 2c st %g1, [ %i0 + 0x2c ] 200bf00: e4 26 c0 00 st %l2, [ %i3 ] *extended_size_ptr = extended_size; return true; } 200bf04: b0 0f 20 01 and %i4, 1, %i0 200bf08: 81 c7 e0 08 ret 200bf0c: 81 e8 00 00 restore =============================================================================== 0200c074 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c074: 9d e3 bf a0 save %sp, -96, %sp * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200c078: 88 10 20 01 mov 1, %g4 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200c07c: 80 a6 60 00 cmp %i1, 0 200c080: 02 80 00 77 be 200c25c <_Heap_Free+0x1e8> 200c084: 90 10 00 19 mov %i1, %o0 200c088: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c08c: 40 00 2b 26 call 2016d24 <.urem> 200c090: ba 06 7f f8 add %i1, -8, %i5 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c094: da 06 20 20 ld [ %i0 + 0x20 ], %o5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c098: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c09c: 80 a7 40 0d cmp %i5, %o5 200c0a0: 0a 80 00 05 bcs 200c0b4 <_Heap_Free+0x40> 200c0a4: 82 10 20 00 clr %g1 200c0a8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200c0ac: 80 a0 40 1d cmp %g1, %i5 200c0b0: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200c0b4: 80 a0 60 00 cmp %g1, 0 200c0b8: 02 80 00 69 be 200c25c <_Heap_Free+0x1e8> 200c0bc: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0c0: d6 07 60 04 ld [ %i5 + 4 ], %o3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c0c4: 84 0a ff fe and %o3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c0c8: 82 00 80 1d add %g2, %i5, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c0cc: 80 a0 40 0d cmp %g1, %o5 200c0d0: 0a 80 00 05 bcs 200c0e4 <_Heap_Free+0x70> <== NEVER TAKEN 200c0d4: 86 10 20 00 clr %g3 200c0d8: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200c0dc: 80 a0 c0 01 cmp %g3, %g1 200c0e0: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200c0e4: 80 a0 e0 00 cmp %g3, 0 200c0e8: 02 80 00 5d be 200c25c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c0ec: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0f0: de 00 60 04 ld [ %g1 + 4 ], %o7 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200c0f4: 80 8b e0 01 btst 1, %o7 200c0f8: 02 80 00 59 be 200c25c <_Heap_Free+0x1e8> 200c0fc: 9e 0b ff fe and %o7, -2, %o7 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200c100: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c104: 80 a0 40 04 cmp %g1, %g4 200c108: 02 80 00 07 be 200c124 <_Heap_Free+0xb0> 200c10c: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c110: 86 00 40 0f add %g1, %o7, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c114: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200c118: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c11c: 80 a0 00 03 cmp %g0, %g3 200c120: 98 60 3f ff subx %g0, -1, %o4 if ( !_Heap_Is_prev_used( block ) ) { 200c124: 80 8a e0 01 btst 1, %o3 200c128: 12 80 00 25 bne 200c1bc <_Heap_Free+0x148> 200c12c: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c130: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c134: 86 27 40 0b sub %i5, %o3, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c138: 80 a0 c0 0d cmp %g3, %o5 200c13c: 0a 80 00 04 bcs 200c14c <_Heap_Free+0xd8> <== NEVER TAKEN 200c140: 94 10 20 00 clr %o2 200c144: 80 a1 00 03 cmp %g4, %g3 200c148: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200c14c: 80 a2 a0 00 cmp %o2, 0 200c150: 02 80 00 43 be 200c25c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c154: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c158: da 00 e0 04 ld [ %g3 + 4 ], %o5 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c15c: 80 8b 60 01 btst 1, %o5 200c160: 02 80 00 3f be 200c25c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c164: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c168: 02 80 00 0e be 200c1a0 <_Heap_Free+0x12c> 200c16c: 88 00 80 0b add %g2, %o3, %g4 uintptr_t const size = block_size + prev_size + next_block_size; 200c170: 9e 01 00 0f add %g4, %o7, %o7 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200c174: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200c178: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200c17c: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200c180: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c184: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 200c188: 82 00 7f ff add %g1, -1, %g1 200c18c: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c190: de 23 c0 03 st %o7, [ %o7 + %g3 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c194: 82 13 e0 01 or %o7, 1, %g1 200c198: 10 80 00 27 b 200c234 <_Heap_Free+0x1c0> 200c19c: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1a0: 9e 11 20 01 or %g4, 1, %o7 200c1a4: de 20 e0 04 st %o7, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1a8: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200c1ac: c8 20 80 1d st %g4, [ %g2 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1b0: 86 08 ff fe and %g3, -2, %g3 200c1b4: 10 80 00 20 b 200c234 <_Heap_Free+0x1c0> 200c1b8: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c1bc: 22 80 00 0d be,a 200c1f0 <_Heap_Free+0x17c> 200c1c0: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200c1c4: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200c1c8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200c1cc: c8 27 60 08 st %g4, [ %i5 + 8 ] new_block->prev = prev; 200c1d0: c2 27 60 0c st %g1, [ %i5 + 0xc ] uintptr_t const size = block_size + next_block_size; 200c1d4: 86 03 c0 02 add %o7, %g2, %g3 next->prev = new_block; prev->next = new_block; 200c1d8: fa 20 60 08 st %i5, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200c1dc: fa 21 20 0c st %i5, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1e0: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c1e4: c6 20 c0 1d st %g3, [ %g3 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1e8: 10 80 00 13 b 200c234 <_Heap_Free+0x1c0> 200c1ec: c2 27 60 04 st %g1, [ %i5 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c1f0: f0 27 60 0c st %i0, [ %i5 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c1f4: c6 27 60 08 st %g3, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c1f8: fa 20 e0 0c st %i5, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c1fc: 86 10 a0 01 or %g2, 1, %g3 200c200: c6 27 60 04 st %g3, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c204: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200c208: c4 20 80 1d st %g2, [ %g2 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c20c: 86 08 ff fe and %g3, -2, %g3 200c210: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c214: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200c218: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c21c: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c220: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c224: 80 a0 c0 01 cmp %g3, %g1 200c228: 1a 80 00 03 bcc 200c234 <_Heap_Free+0x1c0> 200c22c: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c230: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200c234: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200c238: 88 10 20 01 mov 1, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c23c: 82 00 7f ff add %g1, -1, %g1 200c240: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200c244: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200c248: 82 00 60 01 inc %g1 200c24c: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200c250: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200c254: 84 00 40 02 add %g1, %g2, %g2 200c258: c4 26 20 30 st %g2, [ %i0 + 0x30 ] return( true ); } 200c25c: b0 09 20 01 and %g4, 1, %i0 200c260: 81 c7 e0 08 ret 200c264: 81 e8 00 00 restore =============================================================================== 020187f4 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 20187f4: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20187f8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 20187fc: 7f ff f9 4a call 2016d24 <.urem> 2018800: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2018804: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2018808: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 201880c: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018810: 80 a2 00 03 cmp %o0, %g3 2018814: 0a 80 00 05 bcs 2018828 <_Heap_Size_of_alloc_area+0x34> 2018818: 84 10 20 00 clr %g2 201881c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2018820: 80 a0 40 08 cmp %g1, %o0 2018824: 84 60 3f ff subx %g0, -1, %g2 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 2018828: 80 a0 a0 00 cmp %g2, 0 201882c: 02 80 00 15 be 2018880 <_Heap_Size_of_alloc_area+0x8c> 2018830: 82 10 20 00 clr %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2018834: fa 02 20 04 ld [ %o0 + 4 ], %i5 2018838: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 201883c: ba 07 40 08 add %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018840: 80 a7 40 03 cmp %i5, %g3 2018844: 0a 80 00 05 bcs 2018858 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 2018848: 84 10 20 00 clr %g2 201884c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2018850: 80 a0 40 1d cmp %g1, %i5 2018854: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 2018858: 80 a0 a0 00 cmp %g2, 0 201885c: 02 80 00 09 be 2018880 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 2018860: 82 10 20 00 clr %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2018864: c4 07 60 04 ld [ %i5 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2018868: 80 88 a0 01 btst 1, %g2 201886c: 02 80 00 05 be 2018880 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 2018870: ba 27 40 19 sub %i5, %i1, %i5 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2018874: 82 10 20 01 mov 1, %g1 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2018878: ba 07 60 04 add %i5, 4, %i5 201887c: fa 26 80 00 st %i5, [ %i2 ] return true; } 2018880: b0 08 60 01 and %g1, 1, %i0 2018884: 81 c7 e0 08 ret 2018888: 81 e8 00 00 restore =============================================================================== 020080d8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20080d8: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080dc: 3b 00 80 20 sethi %hi(0x2008000), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20080e0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 20080e4: e0 06 20 14 ld [ %i0 + 0x14 ], %l0 Heap_Block *const first_block = heap->first_block; 20080e8: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 Heap_Block *const last_block = heap->last_block; 20080ec: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080f0: 80 a6 a0 00 cmp %i2, 0 20080f4: 02 80 00 04 be 2008104 <_Heap_Walk+0x2c> 20080f8: ba 17 60 84 or %i5, 0x84, %i5 20080fc: 3b 00 80 20 sethi %hi(0x2008000), %i5 2008100: ba 17 60 8c or %i5, 0x8c, %i5 ! 200808c <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008104: 03 00 80 5c sethi %hi(0x2017000), %g1 2008108: c4 00 63 e4 ld [ %g1 + 0x3e4 ], %g2 ! 20173e4 <_System_state_Current> 200810c: 80 a0 a0 03 cmp %g2, 3 2008110: 12 80 01 24 bne 20085a0 <_Heap_Walk+0x4c8> 2008114: 82 10 20 01 mov 1, %g1 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008118: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 200811c: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2008120: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2008124: f6 23 a0 60 st %i3, [ %sp + 0x60 ] 2008128: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 200812c: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008130: 90 10 00 19 mov %i1, %o0 2008134: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008138: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200813c: 92 10 20 00 clr %o1 2008140: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008144: 15 00 80 52 sethi %hi(0x2014800), %o2 2008148: 96 10 00 1c mov %i4, %o3 200814c: 94 12 a1 98 or %o2, 0x198, %o2 2008150: 9f c7 40 00 call %i5 2008154: 98 10 00 10 mov %l0, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008158: 80 a7 20 00 cmp %i4, 0 200815c: 12 80 00 07 bne 2008178 <_Heap_Walk+0xa0> 2008160: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 2008164: 15 00 80 52 sethi %hi(0x2014800), %o2 2008168: 90 10 00 19 mov %i1, %o0 200816c: 92 10 20 01 mov 1, %o1 2008170: 10 80 00 32 b 2008238 <_Heap_Walk+0x160> 2008174: 94 12 a2 30 or %o2, 0x230, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008178: 22 80 00 08 be,a 2008198 <_Heap_Walk+0xc0> 200817c: 90 10 00 10 mov %l0, %o0 (*printer)( 2008180: 15 00 80 52 sethi %hi(0x2014800), %o2 2008184: 90 10 00 19 mov %i1, %o0 2008188: 92 10 20 01 mov 1, %o1 200818c: 94 12 a2 48 or %o2, 0x248, %o2 2008190: 10 80 01 0b b 20085bc <_Heap_Walk+0x4e4> 2008194: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008198: 7f ff e6 52 call 2001ae0 <.urem> 200819c: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 20081a0: 80 a2 20 00 cmp %o0, 0 20081a4: 22 80 00 08 be,a 20081c4 <_Heap_Walk+0xec> 20081a8: 90 06 e0 08 add %i3, 8, %o0 (*printer)( 20081ac: 15 00 80 52 sethi %hi(0x2014800), %o2 20081b0: 90 10 00 19 mov %i1, %o0 20081b4: 92 10 20 01 mov 1, %o1 20081b8: 94 12 a2 68 or %o2, 0x268, %o2 20081bc: 10 80 01 00 b 20085bc <_Heap_Walk+0x4e4> 20081c0: 96 10 00 10 mov %l0, %o3 20081c4: 7f ff e6 47 call 2001ae0 <.urem> 20081c8: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 20081cc: 80 a2 20 00 cmp %o0, 0 20081d0: 22 80 00 08 be,a 20081f0 <_Heap_Walk+0x118> 20081d4: c2 06 e0 04 ld [ %i3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20081d8: 15 00 80 52 sethi %hi(0x2014800), %o2 20081dc: 90 10 00 19 mov %i1, %o0 20081e0: 92 10 20 01 mov 1, %o1 20081e4: 94 12 a2 90 or %o2, 0x290, %o2 20081e8: 10 80 00 f5 b 20085bc <_Heap_Walk+0x4e4> 20081ec: 96 10 00 1b mov %i3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20081f0: 80 88 60 01 btst 1, %g1 20081f4: 32 80 00 07 bne,a 2008210 <_Heap_Walk+0x138> 20081f8: f4 04 60 04 ld [ %l1 + 4 ], %i2 (*printer)( 20081fc: 15 00 80 52 sethi %hi(0x2014800), %o2 2008200: 90 10 00 19 mov %i1, %o0 2008204: 92 10 20 01 mov 1, %o1 2008208: 10 80 00 0c b 2008238 <_Heap_Walk+0x160> 200820c: 94 12 a2 c8 or %o2, 0x2c8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008210: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008214: b4 04 40 1a add %l1, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008218: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 200821c: 80 88 60 01 btst 1, %g1 2008220: 12 80 00 0a bne 2008248 <_Heap_Walk+0x170> 2008224: 80 a6 80 1b cmp %i2, %i3 (*printer)( 2008228: 15 00 80 52 sethi %hi(0x2014800), %o2 200822c: 90 10 00 19 mov %i1, %o0 2008230: 92 10 20 01 mov 1, %o1 2008234: 94 12 a2 f8 or %o2, 0x2f8, %o2 2008238: 9f c7 40 00 call %i5 200823c: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008240: 10 80 00 d8 b 20085a0 <_Heap_Walk+0x4c8> 2008244: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( 2008248: 02 80 00 06 be 2008260 <_Heap_Walk+0x188> 200824c: 15 00 80 52 sethi %hi(0x2014800), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008250: 90 10 00 19 mov %i1, %o0 2008254: 92 10 20 01 mov 1, %o1 2008258: 10 bf ff f8 b 2008238 <_Heap_Walk+0x160> 200825c: 94 12 a3 10 or %o2, 0x310, %o2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2008260: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008264: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008268: 10 80 00 33 b 2008334 <_Heap_Walk+0x25c> 200826c: a4 10 00 18 mov %i0, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008270: 80 a0 80 0b cmp %g2, %o3 2008274: 18 80 00 05 bgu 2008288 <_Heap_Walk+0x1b0> 2008278: 82 10 20 00 clr %g1 200827c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2008280: 80 a0 40 0b cmp %g1, %o3 2008284: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2008288: 80 a0 60 00 cmp %g1, 0 200828c: 32 80 00 07 bne,a 20082a8 <_Heap_Walk+0x1d0> 2008290: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 2008294: 15 00 80 52 sethi %hi(0x2014800), %o2 2008298: 90 10 00 19 mov %i1, %o0 200829c: 92 10 20 01 mov 1, %o1 20082a0: 10 80 00 c7 b 20085bc <_Heap_Walk+0x4e4> 20082a4: 94 12 a3 40 or %o2, 0x340, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20082a8: d6 27 bf f8 st %o3, [ %fp + -8 ] 20082ac: 7f ff e6 0d call 2001ae0 <.urem> 20082b0: 92 10 00 13 mov %l3, %o1 ); return false; } if ( 20082b4: 80 a2 20 00 cmp %o0, 0 20082b8: 02 80 00 07 be 20082d4 <_Heap_Walk+0x1fc> 20082bc: d6 07 bf f8 ld [ %fp + -8 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 20082c0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082c4: 90 10 00 19 mov %i1, %o0 20082c8: 92 10 20 01 mov 1, %o1 20082cc: 10 80 00 bc b 20085bc <_Heap_Walk+0x4e4> 20082d0: 94 12 a3 60 or %o2, 0x360, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20082d4: c2 02 e0 04 ld [ %o3 + 4 ], %g1 20082d8: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 20082dc: 82 02 c0 01 add %o3, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20082e0: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20082e4: 80 88 60 01 btst 1, %g1 20082e8: 22 80 00 07 be,a 2008304 <_Heap_Walk+0x22c> 20082ec: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 20082f0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082f4: 90 10 00 19 mov %i1, %o0 20082f8: 92 10 20 01 mov 1, %o1 20082fc: 10 80 00 b0 b 20085bc <_Heap_Walk+0x4e4> 2008300: 94 12 a3 90 or %o2, 0x390, %o2 ); return false; } if ( free_block->prev != prev_block ) { 2008304: 80 a3 00 12 cmp %o4, %l2 2008308: 22 80 00 0a be,a 2008330 <_Heap_Walk+0x258> 200830c: a4 10 00 0b mov %o3, %l2 (*printer)( 2008310: 15 00 80 52 sethi %hi(0x2014800), %o2 2008314: 90 10 00 19 mov %i1, %o0 2008318: 92 10 20 01 mov 1, %o1 200831c: 94 12 a3 b0 or %o2, 0x3b0, %o2 2008320: 9f c7 40 00 call %i5 2008324: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008328: 10 80 00 9e b 20085a0 <_Heap_Walk+0x4c8> 200832c: 82 10 20 00 clr %g1 ! 0 return false; } prev_block = free_block; free_block = free_block->next; 2008330: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008334: 80 a2 c0 18 cmp %o3, %i0 2008338: 32 bf ff ce bne,a 2008270 <_Heap_Walk+0x198> 200833c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 2008340: 2d 00 80 53 sethi %hi(0x2014c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008344: 2f 00 80 53 sethi %hi(0x2014c00), %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008348: ac 15 a1 70 or %l6, 0x170, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200834c: ae 15 e1 58 or %l7, 0x158, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008350: 2b 00 80 53 sethi %hi(0x2014c00), %l5 block = next_block; } while ( block != first_block ); return true; } 2008354: c2 06 a0 04 ld [ %i2 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008358: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200835c: a4 08 7f fe and %g1, -2, %l2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008360: a6 04 80 1a add %l2, %i2, %l3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008364: 80 a0 c0 13 cmp %g3, %l3 2008368: 18 80 00 05 bgu 200837c <_Heap_Walk+0x2a4> <== NEVER TAKEN 200836c: 84 10 20 00 clr %g2 2008370: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 2008374: 80 a0 80 13 cmp %g2, %l3 2008378: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200837c: 80 a0 a0 00 cmp %g2, 0 2008380: 12 80 00 07 bne 200839c <_Heap_Walk+0x2c4> 2008384: 84 1e 80 11 xor %i2, %l1, %g2 (*printer)( 2008388: 15 00 80 52 sethi %hi(0x2014800), %o2 200838c: 90 10 00 19 mov %i1, %o0 2008390: 92 10 20 01 mov 1, %o1 2008394: 10 80 00 2c b 2008444 <_Heap_Walk+0x36c> 2008398: 94 12 a3 e8 or %o2, 0x3e8, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 200839c: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20083a0: c2 27 bf fc st %g1, [ %fp + -4 ] 20083a4: a8 40 20 00 addx %g0, 0, %l4 20083a8: 90 10 00 12 mov %l2, %o0 20083ac: 7f ff e5 cd call 2001ae0 <.urem> 20083b0: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 20083b4: 80 a2 20 00 cmp %o0, 0 20083b8: 02 80 00 0c be 20083e8 <_Heap_Walk+0x310> 20083bc: c2 07 bf fc ld [ %fp + -4 ], %g1 20083c0: 80 8d 20 ff btst 0xff, %l4 20083c4: 02 80 00 0a be 20083ec <_Heap_Walk+0x314> 20083c8: 80 a4 80 10 cmp %l2, %l0 (*printer)( 20083cc: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083d0: 90 10 00 19 mov %i1, %o0 20083d4: 92 10 20 01 mov 1, %o1 20083d8: 94 12 a0 18 or %o2, 0x18, %o2 20083dc: 96 10 00 1a mov %i2, %o3 20083e0: 10 bf ff d0 b 2008320 <_Heap_Walk+0x248> 20083e4: 98 10 00 12 mov %l2, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20083e8: 80 a4 80 10 cmp %l2, %l0 20083ec: 1a 80 00 0d bcc 2008420 <_Heap_Walk+0x348> 20083f0: 80 a4 c0 1a cmp %l3, %i2 20083f4: 80 8d 20 ff btst 0xff, %l4 20083f8: 02 80 00 0a be 2008420 <_Heap_Walk+0x348> <== NEVER TAKEN 20083fc: 80 a4 c0 1a cmp %l3, %i2 (*printer)( 2008400: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008404: 90 10 00 19 mov %i1, %o0 2008408: 92 10 20 01 mov 1, %o1 200840c: 94 12 a0 48 or %o2, 0x48, %o2 2008410: 96 10 00 1a mov %i2, %o3 2008414: 98 10 00 12 mov %l2, %o4 2008418: 10 80 00 3d b 200850c <_Heap_Walk+0x434> 200841c: 9a 10 00 10 mov %l0, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008420: 38 80 00 0c bgu,a 2008450 <_Heap_Walk+0x378> 2008424: a8 08 60 01 and %g1, 1, %l4 2008428: 80 8d 20 ff btst 0xff, %l4 200842c: 02 80 00 09 be 2008450 <_Heap_Walk+0x378> 2008430: a8 08 60 01 and %g1, 1, %l4 (*printer)( 2008434: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008438: 90 10 00 19 mov %i1, %o0 200843c: 92 10 20 01 mov 1, %o1 2008440: 94 12 a0 78 or %o2, 0x78, %o2 2008444: 96 10 00 1a mov %i2, %o3 2008448: 10 bf ff b6 b 2008320 <_Heap_Walk+0x248> 200844c: 98 10 00 13 mov %l3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008450: c2 04 e0 04 ld [ %l3 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008454: 80 88 60 01 btst 1, %g1 2008458: 12 80 00 40 bne 2008558 <_Heap_Walk+0x480> 200845c: 90 10 00 19 mov %i1, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008460: da 06 a0 0c ld [ %i2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008464: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008468: 05 00 80 52 sethi %hi(0x2014800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 200846c: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008470: 80 a3 40 01 cmp %o5, %g1 2008474: 02 80 00 07 be 2008490 <_Heap_Walk+0x3b8> 2008478: 86 10 a1 58 or %g2, 0x158, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200847c: 80 a3 40 18 cmp %o5, %i0 2008480: 12 80 00 04 bne 2008490 <_Heap_Walk+0x3b8> 2008484: 86 15 61 20 or %l5, 0x120, %g3 2008488: 07 00 80 52 sethi %hi(0x2014800), %g3 200848c: 86 10 e1 68 or %g3, 0x168, %g3 ! 2014968 <_Status_Object_name_errors_to_status+0x48> block->next, block->next == last_free_block ? 2008490: c4 06 a0 08 ld [ %i2 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008494: 1f 00 80 52 sethi %hi(0x2014800), %o7 2008498: 80 a0 80 04 cmp %g2, %g4 200849c: 02 80 00 07 be 20084b8 <_Heap_Walk+0x3e0> 20084a0: 82 13 e1 78 or %o7, 0x178, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20084a4: 80 a0 80 18 cmp %g2, %i0 20084a8: 12 80 00 04 bne 20084b8 <_Heap_Walk+0x3e0> 20084ac: 82 15 61 20 or %l5, 0x120, %g1 20084b0: 03 00 80 52 sethi %hi(0x2014800), %g1 20084b4: 82 10 61 88 or %g1, 0x188, %g1 ! 2014988 <_Status_Object_name_errors_to_status+0x68> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20084b8: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 20084bc: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 20084c0: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 20084c4: 90 10 00 19 mov %i1, %o0 20084c8: 92 10 20 00 clr %o1 20084cc: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084d0: 96 10 00 1a mov %i2, %o3 20084d4: 94 12 a0 b0 or %o2, 0xb0, %o2 20084d8: 9f c7 40 00 call %i5 20084dc: 98 10 00 12 mov %l2, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20084e0: da 04 c0 00 ld [ %l3 ], %o5 20084e4: 80 a4 80 0d cmp %l2, %o5 20084e8: 02 80 00 0d be 200851c <_Heap_Walk+0x444> 20084ec: 80 a5 20 00 cmp %l4, 0 (*printer)( 20084f0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084f4: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 20084f8: 90 10 00 19 mov %i1, %o0 20084fc: 92 10 20 01 mov 1, %o1 2008500: 94 12 a0 e8 or %o2, 0xe8, %o2 2008504: 96 10 00 1a mov %i2, %o3 2008508: 98 10 00 12 mov %l2, %o4 200850c: 9f c7 40 00 call %i5 2008510: 01 00 00 00 nop 2008514: 10 80 00 23 b 20085a0 <_Heap_Walk+0x4c8> 2008518: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( !prev_used ) { 200851c: 32 80 00 0a bne,a 2008544 <_Heap_Walk+0x46c> 2008520: c2 06 20 08 ld [ %i0 + 8 ], %g1 (*printer)( 2008524: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008528: 90 10 00 19 mov %i1, %o0 200852c: 92 10 20 01 mov 1, %o1 2008530: 10 80 00 22 b 20085b8 <_Heap_Walk+0x4e0> 2008534: 94 12 a1 28 or %o2, 0x128, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008538: 02 80 00 17 be 2008594 <_Heap_Walk+0x4bc> 200853c: 80 a4 c0 1b cmp %l3, %i3 return true; } free_block = free_block->next; 2008540: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008544: 80 a0 40 18 cmp %g1, %i0 2008548: 12 bf ff fc bne 2008538 <_Heap_Walk+0x460> 200854c: 80 a0 40 1a cmp %g1, %i2 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008550: 10 80 00 17 b 20085ac <_Heap_Walk+0x4d4> 2008554: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008558: 80 a5 20 00 cmp %l4, 0 200855c: 02 80 00 08 be 200857c <_Heap_Walk+0x4a4> 2008560: 92 10 20 00 clr %o1 (*printer)( 2008564: 94 10 00 17 mov %l7, %o2 2008568: 96 10 00 1a mov %i2, %o3 200856c: 9f c7 40 00 call %i5 2008570: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008574: 10 80 00 08 b 2008594 <_Heap_Walk+0x4bc> 2008578: 80 a4 c0 1b cmp %l3, %i3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 200857c: da 06 80 00 ld [ %i2 ], %o5 2008580: 94 10 00 16 mov %l6, %o2 2008584: 96 10 00 1a mov %i2, %o3 2008588: 9f c7 40 00 call %i5 200858c: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008590: 80 a4 c0 1b cmp %l3, %i3 2008594: 12 bf ff 70 bne 2008354 <_Heap_Walk+0x27c> 2008598: b4 10 00 13 mov %l3, %i2 return true; 200859c: 82 10 20 01 mov 1, %g1 } 20085a0: b0 08 60 01 and %g1, 1, %i0 20085a4: 81 c7 e0 08 ret 20085a8: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 20085ac: 90 10 00 19 mov %i1, %o0 20085b0: 92 10 20 01 mov 1, %o1 20085b4: 94 12 a1 98 or %o2, 0x198, %o2 20085b8: 96 10 00 1a mov %i2, %o3 20085bc: 9f c7 40 00 call %i5 20085c0: 01 00 00 00 nop 20085c4: 10 bf ff f7 b 20085a0 <_Heap_Walk+0x4c8> 20085c8: 82 10 20 00 clr %g1 ! 0 =============================================================================== 020078b4 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20078b4: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20078b8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20078bc: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20078c0: 80 a0 60 00 cmp %g1, 0 20078c4: 02 80 00 20 be 2007944 <_Objects_Allocate+0x90> <== NEVER TAKEN 20078c8: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20078cc: b8 07 60 20 add %i5, 0x20, %i4 20078d0: 7f ff fd 87 call 2006eec <_Chain_Get> 20078d4: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 20078d8: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 20078dc: 80 a0 60 00 cmp %g1, 0 20078e0: 02 80 00 19 be 2007944 <_Objects_Allocate+0x90> 20078e4: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 20078e8: 80 a2 20 00 cmp %o0, 0 20078ec: 32 80 00 0a bne,a 2007914 <_Objects_Allocate+0x60> 20078f0: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 _Objects_Extend_information( information ); 20078f4: 40 00 00 1d call 2007968 <_Objects_Extend_information> 20078f8: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20078fc: 7f ff fd 7c call 2006eec <_Chain_Get> 2007900: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2007904: b0 92 20 00 orcc %o0, 0, %i0 2007908: 02 80 00 0f be 2007944 <_Objects_Allocate+0x90> 200790c: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007910: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 2007914: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007918: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 200791c: 40 00 3c 56 call 2016a74 <.udiv> 2007920: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007924: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2007928: 91 2a 20 02 sll %o0, 2, %o0 200792c: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2007930: 84 00 bf ff add %g2, -1, %g2 2007934: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2007938: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 200793c: 82 00 7f ff add %g1, -1, %g1 2007940: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2007944: 81 c7 e0 08 ret 2007948: 81 e8 00 00 restore =============================================================================== 02007cc0 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007cc0: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007cc4: 80 a6 60 00 cmp %i1, 0 2007cc8: 02 80 00 17 be 2007d24 <_Objects_Get_information+0x64> 2007ccc: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007cd0: 40 00 11 66 call 200c268 <_Objects_API_maximum_class> 2007cd4: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007cd8: 80 a2 20 00 cmp %o0, 0 2007cdc: 02 80 00 12 be 2007d24 <_Objects_Get_information+0x64> 2007ce0: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007ce4: 18 80 00 10 bgu 2007d24 <_Objects_Get_information+0x64> 2007ce8: 03 00 80 6d sethi %hi(0x201b400), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007cec: b1 2e 20 02 sll %i0, 2, %i0 2007cf0: 82 10 60 18 or %g1, 0x18, %g1 2007cf4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007cf8: 80 a0 60 00 cmp %g1, 0 2007cfc: 02 80 00 0a be 2007d24 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007d00: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007d04: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 2007d08: 80 a7 60 00 cmp %i5, 0 2007d0c: 02 80 00 06 be 2007d24 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007d10: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007d14: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 2007d18: 80 a0 00 01 cmp %g0, %g1 2007d1c: 82 60 20 00 subx %g0, 0, %g1 2007d20: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 2007d24: 81 c7 e0 08 ret 2007d28: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 020087f4 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20087f4: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20087f8: 92 96 20 00 orcc %i0, 0, %o1 20087fc: 12 80 00 06 bne 2008814 <_Objects_Id_to_name+0x20> 2008800: 83 32 60 18 srl %o1, 0x18, %g1 2008804: 03 00 80 72 sethi %hi(0x201c800), %g1 2008808: c2 00 62 b8 ld [ %g1 + 0x2b8 ], %g1 ! 201cab8 <_Per_CPU_Information+0xc> 200880c: d2 00 60 08 ld [ %g1 + 8 ], %o1 2008810: 83 32 60 18 srl %o1, 0x18, %g1 2008814: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008818: 84 00 7f ff add %g1, -1, %g2 200881c: 80 a0 a0 02 cmp %g2, 2 2008820: 18 80 00 12 bgu 2008868 <_Objects_Id_to_name+0x74> 2008824: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008828: 10 80 00 12 b 2008870 <_Objects_Id_to_name+0x7c> 200882c: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008830: 85 28 a0 02 sll %g2, 2, %g2 2008834: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2008838: 80 a2 20 00 cmp %o0, 0 200883c: 02 80 00 0b be 2008868 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 2008840: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008844: 7f ff ff ce call 200877c <_Objects_Get> 2008848: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 200884c: 80 a2 20 00 cmp %o0, 0 2008850: 02 80 00 06 be 2008868 <_Objects_Id_to_name+0x74> 2008854: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2008858: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 200885c: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008860: 40 00 03 62 call 20095e8 <_Thread_Enable_dispatch> 2008864: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2008868: 81 c7 e0 08 ret 200886c: 91 e8 00 1d restore %g0, %i5, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008870: 05 00 80 71 sethi %hi(0x201c400), %g2 2008874: 84 10 a3 e8 or %g2, 0x3e8, %g2 ! 201c7e8 <_Objects_Information_table> 2008878: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200887c: 80 a0 60 00 cmp %g1, 0 2008880: 12 bf ff ec bne 2008830 <_Objects_Id_to_name+0x3c> 2008884: 85 32 60 1b srl %o1, 0x1b, %g2 2008888: 30 bf ff f8 b,a 2008868 <_Objects_Id_to_name+0x74> =============================================================================== 02008da4 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 2008da4: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 2008da8: 80 a6 60 00 cmp %i1, 0 2008dac: 02 80 00 73 be 2008f78 <_RBTree_Extract_unprotected+0x1d4> 2008db0: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 2008db4: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008db8: 80 a6 40 01 cmp %i1, %g1 2008dbc: 32 80 00 0d bne,a 2008df0 <_RBTree_Extract_unprotected+0x4c> 2008dc0: c2 06 20 0c ld [ %i0 + 0xc ], %g1 if (the_node->child[RBT_RIGHT]) 2008dc4: c2 06 60 08 ld [ %i1 + 8 ], %g1 2008dc8: 80 a0 60 00 cmp %g1, 0 2008dcc: 22 80 00 04 be,a 2008ddc <_RBTree_Extract_unprotected+0x38> 2008dd0: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 2008dd4: 10 80 00 06 b 2008dec <_RBTree_Extract_unprotected+0x48> 2008dd8: c2 26 20 08 st %g1, [ %i0 + 8 ] else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008ddc: 80 a6 00 01 cmp %i0, %g1 2008de0: 12 80 00 03 bne 2008dec <_RBTree_Extract_unprotected+0x48> 2008de4: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 2008de8: c0 26 20 08 clr [ %i0 + 8 ] } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 2008dec: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008df0: 80 a6 40 01 cmp %i1, %g1 2008df4: 12 80 00 0b bne 2008e20 <_RBTree_Extract_unprotected+0x7c> 2008df8: c2 06 60 04 ld [ %i1 + 4 ], %g1 if (the_node->child[RBT_LEFT]) 2008dfc: 80 a0 60 00 cmp %g1, 0 2008e00: 22 80 00 04 be,a 2008e10 <_RBTree_Extract_unprotected+0x6c> 2008e04: c4 06 40 00 ld [ %i1 ], %g2 the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; 2008e08: 10 80 00 06 b 2008e20 <_RBTree_Extract_unprotected+0x7c> 2008e0c: c2 26 20 0c st %g1, [ %i0 + 0xc ] else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008e10: 80 a6 00 02 cmp %i0, %g2 2008e14: 12 80 00 03 bne 2008e20 <_RBTree_Extract_unprotected+0x7c> 2008e18: c4 26 20 0c st %g2, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 2008e1c: c0 26 20 0c clr [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2008e20: ba 90 60 00 orcc %g1, 0, %i5 2008e24: 02 80 00 36 be 2008efc <_RBTree_Extract_unprotected+0x158> 2008e28: f8 06 60 08 ld [ %i1 + 8 ], %i4 2008e2c: 80 a7 20 00 cmp %i4, 0 2008e30: 32 80 00 05 bne,a 2008e44 <_RBTree_Extract_unprotected+0xa0> 2008e34: c2 07 60 08 ld [ %i5 + 8 ], %g1 2008e38: 10 80 00 35 b 2008f0c <_RBTree_Extract_unprotected+0x168> 2008e3c: b8 10 00 01 mov %g1, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 2008e40: c2 07 60 08 ld [ %i5 + 8 ], %g1 2008e44: 80 a0 60 00 cmp %g1, 0 2008e48: 32 bf ff fe bne,a 2008e40 <_RBTree_Extract_unprotected+0x9c> 2008e4c: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 2008e50: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 2008e54: 80 a7 20 00 cmp %i4, 0 2008e58: 02 80 00 05 be 2008e6c <_RBTree_Extract_unprotected+0xc8> 2008e5c: 01 00 00 00 nop leaf->parent = target->parent; 2008e60: c2 07 40 00 ld [ %i5 ], %g1 2008e64: 10 80 00 04 b 2008e74 <_RBTree_Extract_unprotected+0xd0> 2008e68: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 2008e6c: 7f ff ff 53 call 2008bb8 <_RBTree_Extract_validate_unprotected> 2008e70: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 2008e74: c4 07 40 00 ld [ %i5 ], %g2 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 2008e78: c2 07 60 0c ld [ %i5 + 0xc ], %g1 dir = target != target->parent->child[0]; 2008e7c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008e80: 86 1f 40 03 xor %i5, %g3, %g3 2008e84: 80 a0 00 03 cmp %g0, %g3 2008e88: 86 40 20 00 addx %g0, 0, %g3 target->parent->child[dir] = leaf; 2008e8c: 87 28 e0 02 sll %g3, 2, %g3 2008e90: 84 00 80 03 add %g2, %g3, %g2 2008e94: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 2008e98: c4 06 40 00 ld [ %i1 ], %g2 2008e9c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008ea0: 86 1e 40 03 xor %i1, %g3, %g3 2008ea4: 80 a0 00 03 cmp %g0, %g3 2008ea8: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = target; 2008eac: 87 28 e0 02 sll %g3, 2, %g3 2008eb0: 84 00 80 03 add %g2, %g3, %g2 2008eb4: fa 20 a0 04 st %i5, [ %g2 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2008eb8: c4 06 60 08 ld [ %i1 + 8 ], %g2 2008ebc: c4 27 60 08 st %g2, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 2008ec0: c4 06 60 08 ld [ %i1 + 8 ], %g2 2008ec4: 80 a0 a0 00 cmp %g2, 0 2008ec8: 32 80 00 02 bne,a 2008ed0 <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN 2008ecc: fa 20 80 00 st %i5, [ %g2 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2008ed0: c4 06 60 04 ld [ %i1 + 4 ], %g2 2008ed4: c4 27 60 04 st %g2, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 2008ed8: c4 06 60 04 ld [ %i1 + 4 ], %g2 2008edc: 80 a0 a0 00 cmp %g2, 0 2008ee0: 32 80 00 02 bne,a 2008ee8 <_RBTree_Extract_unprotected+0x144> 2008ee4: fa 20 80 00 st %i5, [ %g2 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2008ee8: c4 06 40 00 ld [ %i1 ], %g2 2008eec: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 2008ef0: c4 06 60 0c ld [ %i1 + 0xc ], %g2 2008ef4: 10 80 00 14 b 2008f44 <_RBTree_Extract_unprotected+0x1a0> 2008ef8: c4 27 60 0c st %g2, [ %i5 + 0xc ] * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 2008efc: 80 a7 20 00 cmp %i4, 0 2008f00: 32 80 00 04 bne,a 2008f10 <_RBTree_Extract_unprotected+0x16c> 2008f04: c2 06 40 00 ld [ %i1 ], %g1 2008f08: 30 80 00 04 b,a 2008f18 <_RBTree_Extract_unprotected+0x174> leaf->parent = the_node->parent; 2008f0c: c2 06 40 00 ld [ %i1 ], %g1 2008f10: 10 80 00 04 b 2008f20 <_RBTree_Extract_unprotected+0x17c> 2008f14: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 2008f18: 7f ff ff 28 call 2008bb8 <_RBTree_Extract_validate_unprotected> 2008f1c: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008f20: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 2008f24: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008f28: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008f2c: 86 1e 40 03 xor %i1, %g3, %g3 2008f30: 80 a0 00 03 cmp %g0, %g3 2008f34: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 2008f38: 87 28 e0 02 sll %g3, 2, %g3 2008f3c: 84 00 80 03 add %g2, %g3, %g2 2008f40: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 2008f44: 80 a0 60 00 cmp %g1, 0 2008f48: 32 80 00 06 bne,a 2008f60 <_RBTree_Extract_unprotected+0x1bc> 2008f4c: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 2008f50: 80 a7 20 00 cmp %i4, 0 2008f54: 32 80 00 02 bne,a 2008f5c <_RBTree_Extract_unprotected+0x1b8> 2008f58: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 2008f5c: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 2008f60: c0 26 60 08 clr [ %i1 + 8 ] 2008f64: c0 26 60 04 clr [ %i1 + 4 ] 2008f68: 80 a0 60 00 cmp %g1, 0 2008f6c: 02 80 00 03 be 2008f78 <_RBTree_Extract_unprotected+0x1d4> 2008f70: c0 26 40 00 clr [ %i1 ] 2008f74: c0 20 60 0c clr [ %g1 + 0xc ] 2008f78: 81 c7 e0 08 ret 2008f7c: 81 e8 00 00 restore =============================================================================== 02008bb8 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2008bb8: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 2008bbc: fa 06 00 00 ld [ %i0 ], %i5 if(!parent->parent) return; 2008bc0: c2 07 40 00 ld [ %i5 ], %g1 2008bc4: 80 a0 60 00 cmp %g1, 0 2008bc8: 02 80 00 6e be 2008d80 <_RBTree_Extract_validate_unprotected+0x1c8> 2008bcc: 90 10 00 18 mov %i0, %o0 sibling = _RBTree_Sibling(the_node); 2008bd0: 7f ff ff ca call 2008af8 <_RBTree_Sibling> 2008bd4: b4 10 20 01 mov 1, %i2 /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008bd8: 10 80 00 5d b 2008d4c <_RBTree_Extract_validate_unprotected+0x194> 2008bdc: c2 06 20 0c ld [ %i0 + 0xc ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008be0: 22 80 00 15 be,a 2008c34 <_RBTree_Extract_validate_unprotected+0x7c><== NEVER TAKEN 2008be4: c4 02 20 08 ld [ %o0 + 8 ], %g2 <== NOT EXECUTED 2008be8: c2 02 20 0c ld [ %o0 + 0xc ], %g1 2008bec: 80 a0 60 01 cmp %g1, 1 2008bf0: 32 80 00 11 bne,a 2008c34 <_RBTree_Extract_validate_unprotected+0x7c> 2008bf4: c4 02 20 08 ld [ %o0 + 8 ], %g2 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2008bf8: c2 27 60 0c st %g1, [ %i5 + 0xc ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008bfc: c2 07 60 04 ld [ %i5 + 4 ], %g1 * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; 2008c00: c0 22 20 0c clr [ %o0 + 0xc ] dir = the_node != parent->child[0]; 2008c04: 82 1e 00 01 xor %i0, %g1, %g1 2008c08: 80 a0 00 01 cmp %g0, %g1 _RBTree_Rotate(parent, dir); 2008c0c: 90 10 00 1d mov %i5, %o0 * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008c10: b8 40 20 00 addx %g0, 0, %i4 _RBTree_Rotate(parent, dir); 2008c14: 7f ff ff ca call 2008b3c <_RBTree_Rotate> 2008c18: 92 10 00 1c mov %i4, %o1 sibling = parent->child[!dir]; 2008c1c: 80 a0 00 1c cmp %g0, %i4 2008c20: 82 60 3f ff subx %g0, -1, %g1 2008c24: 83 28 60 02 sll %g1, 2, %g1 2008c28: 82 07 40 01 add %i5, %g1, %g1 2008c2c: d0 00 60 04 ld [ %g1 + 4 ], %o0 } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2008c30: c4 02 20 08 ld [ %o0 + 8 ], %g2 2008c34: 80 a0 a0 00 cmp %g2, 0 2008c38: 02 80 00 06 be 2008c50 <_RBTree_Extract_validate_unprotected+0x98> 2008c3c: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2008c40: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 2008c44: 82 18 60 01 xor %g1, 1, %g1 2008c48: 80 a0 00 01 cmp %g0, %g1 2008c4c: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2008c50: 80 a0 60 00 cmp %g1, 0 2008c54: 32 80 00 14 bne,a 2008ca4 <_RBTree_Extract_validate_unprotected+0xec> 2008c58: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 2008c5c: c4 02 20 04 ld [ %o0 + 4 ], %g2 2008c60: 80 a0 a0 00 cmp %g2, 0 2008c64: 02 80 00 07 be 2008c80 <_RBTree_Extract_validate_unprotected+0xc8> 2008c68: 80 a0 60 00 cmp %g1, 0 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2008c6c: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 2008c70: 82 18 60 01 xor %g1, 1, %g1 2008c74: 80 a0 00 01 cmp %g0, %g1 2008c78: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2008c7c: 80 a0 60 00 cmp %g1, 0 2008c80: 32 80 00 09 bne,a 2008ca4 <_RBTree_Extract_validate_unprotected+0xec> 2008c84: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 2008c88: f4 22 20 0c st %i2, [ %o0 + 0xc ] 2008c8c: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2008c90: 80 a0 60 01 cmp %g1, 1 2008c94: 32 80 00 3d bne,a 2008d88 <_RBTree_Extract_validate_unprotected+0x1d0> 2008c98: f8 07 40 00 ld [ %i5 ], %i4 if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; 2008c9c: 10 80 00 33 b 2008d68 <_RBTree_Extract_validate_unprotected+0x1b0> 2008ca0: c0 27 60 0c clr [ %i5 + 0xc ] * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 2008ca4: 82 1e 00 01 xor %i0, %g1, %g1 2008ca8: 80 a0 00 01 cmp %g0, %g1 2008cac: b8 40 20 00 addx %g0, 0, %i4 if (!_RBTree_Is_red(sibling->child[!dir])) { 2008cb0: 80 a0 00 1c cmp %g0, %i4 2008cb4: b6 60 3f ff subx %g0, -1, %i3 2008cb8: 83 2e e0 02 sll %i3, 2, %g1 2008cbc: 82 02 00 01 add %o0, %g1, %g1 2008cc0: c4 00 60 04 ld [ %g1 + 4 ], %g2 2008cc4: 80 a0 a0 00 cmp %g2, 0 2008cc8: 02 80 00 06 be 2008ce0 <_RBTree_Extract_validate_unprotected+0x128> 2008ccc: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2008cd0: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 2008cd4: 82 18 60 01 xor %g1, 1, %g1 2008cd8: 80 a0 00 01 cmp %g0, %g1 2008cdc: 82 60 3f ff subx %g0, -1, %g1 * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { 2008ce0: 80 a0 60 00 cmp %g1, 0 2008ce4: 32 80 00 0e bne,a 2008d1c <_RBTree_Extract_validate_unprotected+0x164> 2008ce8: c2 07 60 0c ld [ %i5 + 0xc ], %g1 sibling->color = RBT_RED; 2008cec: 82 10 20 01 mov 1, %g1 2008cf0: c2 22 20 0c st %g1, [ %o0 + 0xc ] sibling->child[dir]->color = RBT_BLACK; 2008cf4: 83 2f 20 02 sll %i4, 2, %g1 2008cf8: 82 02 00 01 add %o0, %g1, %g1 2008cfc: c2 00 60 04 ld [ %g1 + 4 ], %g1 _RBTree_Rotate(sibling, !dir); 2008d00: 92 1f 20 01 xor %i4, 1, %o1 2008d04: 7f ff ff 8e call 2008b3c <_RBTree_Rotate> 2008d08: c0 20 60 0c clr [ %g1 + 0xc ] sibling = parent->child[!dir]; 2008d0c: 83 2e e0 02 sll %i3, 2, %g1 2008d10: 82 07 40 01 add %i5, %g1, %g1 2008d14: d0 00 60 04 ld [ %g1 + 4 ], %o0 } sibling->color = parent->color; 2008d18: c2 07 60 0c ld [ %i5 + 0xc ], %g1 parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008d1c: b7 2e e0 02 sll %i3, 2, %i3 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; 2008d20: c2 22 20 0c st %g1, [ %o0 + 0xc ] parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008d24: 90 02 00 1b add %o0, %i3, %o0 2008d28: c2 02 20 04 ld [ %o0 + 4 ], %g1 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; parent->color = RBT_BLACK; 2008d2c: c0 27 60 0c clr [ %i5 + 0xc ] sibling->child[!dir]->color = RBT_BLACK; 2008d30: c0 20 60 0c clr [ %g1 + 0xc ] _RBTree_Rotate(parent, dir); 2008d34: 90 10 00 1d mov %i5, %o0 2008d38: 7f ff ff 81 call 2008b3c <_RBTree_Rotate> 2008d3c: 92 10 00 1c mov %i4, %o1 break; /* done */ 2008d40: 10 80 00 0b b 2008d6c <_RBTree_Extract_validate_unprotected+0x1b4> 2008d44: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008d48: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008d4c: 80 a0 60 01 cmp %g1, 1 2008d50: 22 80 00 07 be,a 2008d6c <_RBTree_Extract_validate_unprotected+0x1b4> 2008d54: c2 06 00 00 ld [ %i0 ], %g1 2008d58: c2 07 40 00 ld [ %i5 ], %g1 2008d5c: 80 a0 60 00 cmp %g1, 0 2008d60: 12 bf ff a0 bne 2008be0 <_RBTree_Extract_validate_unprotected+0x28> 2008d64: 80 a2 20 00 cmp %o0, 0 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 2008d68: c2 06 00 00 ld [ %i0 ], %g1 2008d6c: c2 00 40 00 ld [ %g1 ], %g1 2008d70: 80 a0 60 00 cmp %g1, 0 2008d74: 12 80 00 0a bne 2008d9c <_RBTree_Extract_validate_unprotected+0x1e4> 2008d78: 01 00 00 00 nop 2008d7c: c0 26 20 0c clr [ %i0 + 0xc ] 2008d80: 81 c7 e0 08 ret 2008d84: 81 e8 00 00 restore parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; sibling = _RBTree_Sibling(the_node); 2008d88: 90 10 00 1d mov %i5, %o0 2008d8c: 7f ff ff 5b call 2008af8 <_RBTree_Sibling> 2008d90: b0 10 00 1d mov %i5, %i0 2008d94: 10 bf ff ed b 2008d48 <_RBTree_Extract_validate_unprotected+0x190> 2008d98: ba 10 00 1c mov %i4, %i5 2008d9c: 81 c7 e0 08 ret 2008da0: 81 e8 00 00 restore =============================================================================== 02008ff4 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, RBTree_Node *search_node ) { 2008ff4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 2008ff8: 7f ff e8 15 call 200304c 2008ffc: ba 10 00 18 mov %i0, %i5 2009000: b8 10 00 08 mov %o0, %i4 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 2009004: 10 80 00 0d b 2009038 <_RBTree_Find+0x44> 2009008: f0 06 20 04 ld [ %i0 + 4 ], %i0 int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 200900c: 90 10 00 19 mov %i1, %o0 2009010: 9f c0 40 00 call %g1 2009014: 92 10 00 18 mov %i0, %o1 if (compare_result == 0) { 2009018: 80 a2 20 00 cmp %o0, 0 200901c: 02 80 00 0a be 2009044 <_RBTree_Find+0x50> 2009020: 90 38 00 08 xnor %g0, %o0, %o0 return(iter_node); } RBTree_Direction dir = (compare_result != -1); 2009024: 80 a0 00 08 cmp %g0, %o0 2009028: 82 40 20 00 addx %g0, 0, %g1 iter_node = iter_node->child[dir]; 200902c: 83 28 60 02 sll %g1, 2, %g1 2009030: b0 06 00 01 add %i0, %g1, %i0 2009034: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; int compare_result; while (iter_node) { 2009038: 80 a6 20 00 cmp %i0, 0 200903c: 32 bf ff f4 bne,a 200900c <_RBTree_Find+0x18> <== ALWAYS TAKEN 2009040: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 2009044: 7f ff e8 06 call 200305c 2009048: 90 10 00 1c mov %i4, %o0 return return_node; } 200904c: 81 c7 e0 08 ret 2009050: 81 e8 00 00 restore =============================================================================== 020092e8 <_RBTree_Initialize>: void *compare_function, void *starting_address, size_t number_nodes, size_t node_size ) { 20092e8: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 20092ec: 80 a6 20 00 cmp %i0, 0 20092f0: 02 80 00 0f be 200932c <_RBTree_Initialize+0x44> <== NEVER TAKEN 20092f4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _RBTree_Initialize_empty( RBTree_Control *the_rbtree, void *compare_function ) { the_rbtree->permanent_null = NULL; 20092f8: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 20092fc: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 2009300: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 2009304: c0 26 20 0c clr [ %i0 + 0xc ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function); count = number_nodes; next = starting_address; while ( count-- ) { 2009308: 10 80 00 06 b 2009320 <_RBTree_Initialize+0x38> 200930c: f2 26 20 10 st %i1, [ %i0 + 0x10 ] _RBTree_Insert(the_rbtree, next); 2009310: 90 10 00 18 mov %i0, %o0 2009314: 7f ff ff ec call 20092c4 <_RBTree_Insert> 2009318: b4 06 80 1c add %i2, %i4, %i2 * node_size - size of node in bytes * * Output parameters: NONE */ void _RBTree_Initialize( 200931c: b6 06 ff ff add %i3, -1, %i3 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function); count = number_nodes; next = starting_address; while ( count-- ) { 2009320: 80 a6 e0 00 cmp %i3, 0 2009324: 12 bf ff fb bne 2009310 <_RBTree_Initialize+0x28> 2009328: 92 10 00 1a mov %i2, %o1 200932c: 81 c7 e0 08 ret 2009330: 81 e8 00 00 restore =============================================================================== 020025cc <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; 20025cc: 80 a2 20 00 cmp %o0, 0 20025d0: 02 80 00 0e be 2002608 <_RBTree_Sibling+0x3c> 20025d4: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 20025d8: c4 02 00 00 ld [ %o0 ], %g2 20025dc: 80 a0 a0 00 cmp %g2, 0 20025e0: 02 80 00 0a be 2002608 <_RBTree_Sibling+0x3c> <== NEVER TAKEN 20025e4: 01 00 00 00 nop if(!(the_node->parent->parent)) return NULL; 20025e8: c6 00 80 00 ld [ %g2 ], %g3 20025ec: 80 a0 e0 00 cmp %g3, 0 20025f0: 02 80 00 06 be 2002608 <_RBTree_Sibling+0x3c> 20025f4: 01 00 00 00 nop if(the_node == the_node->parent->child[RBT_LEFT]) 20025f8: c2 00 a0 04 ld [ %g2 + 4 ], %g1 20025fc: 80 a2 00 01 cmp %o0, %g1 2002600: 22 80 00 02 be,a 2002608 <_RBTree_Sibling+0x3c> 2002604: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; else return the_node->parent->child[RBT_LEFT]; } 2002608: 81 c3 e0 08 retl 200260c: 90 10 00 01 mov %g1, %o0 =============================================================================== 0200910c <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 200910c: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 2009110: 10 80 00 1f b 200918c <_RBTree_Validate_insert_unprotected+0x80> 2009114: b6 10 20 01 mov 1, %i3 ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2009118: 80 a0 60 00 cmp %g1, 0 200911c: 02 80 00 27 be 20091b8 <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN 2009120: c2 07 60 04 ld [ %i5 + 4 ], %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2009124: 80 a2 00 01 cmp %o0, %g1 2009128: 22 80 00 02 be,a 2009130 <_RBTree_Validate_insert_unprotected+0x24> 200912c: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009130: 80 a0 60 00 cmp %g1, 0 2009134: 22 80 00 21 be,a 20091b8 <_RBTree_Validate_insert_unprotected+0xac> 2009138: c2 07 60 04 ld [ %i5 + 4 ], %g1 200913c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2009140: 80 a0 a0 01 cmp %g2, 1 2009144: 32 80 00 1d bne,a 20091b8 <_RBTree_Validate_insert_unprotected+0xac> 2009148: c2 07 60 04 ld [ %i5 + 4 ], %g1 u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; 200914c: c0 22 20 0c clr [ %o0 + 0xc ] u->color = RBT_BLACK; 2009150: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 2009154: c4 27 60 0c st %g2, [ %i5 + 0xc ] 2009158: 10 80 00 0d b 200918c <_RBTree_Validate_insert_unprotected+0x80> 200915c: b0 10 00 1d mov %i5, %i0 RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); 2009160: 7f ff ff cc call 2009090 <_RBTree_Rotate> 2009164: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 2009168: 83 2f 20 02 sll %i4, 2, %g1 200916c: b0 06 00 01 add %i0, %g1, %i0 2009170: f0 06 20 04 ld [ %i0 + 4 ], %i0 } the_node->parent->color = RBT_BLACK; 2009174: c2 06 00 00 ld [ %i0 ], %g1 g->color = RBT_RED; /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2009178: 90 10 00 1d mov %i5, %o0 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 200917c: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; 2009180: f6 27 60 0c st %i3, [ %i5 + 0xc ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2009184: 7f ff ff c3 call 2009090 <_RBTree_Rotate> 2009188: 92 26 c0 1c sub %i3, %i4, %o1 ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 200918c: d0 06 00 00 ld [ %i0 ], %o0 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2009190: fa 02 00 00 ld [ %o0 ], %i5 2009194: 80 a7 60 00 cmp %i5, 0 2009198: 22 80 00 14 be,a 20091e8 <_RBTree_Validate_insert_unprotected+0xdc> 200919c: c0 26 20 0c clr [ %i0 + 0xc ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 20091a0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 20091a4: 80 a0 60 01 cmp %g1, 1 20091a8: 12 80 00 10 bne 20091e8 <_RBTree_Validate_insert_unprotected+0xdc> 20091ac: 01 00 00 00 nop ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 20091b0: 10 bf ff da b 2009118 <_RBTree_Validate_insert_unprotected+0xc> 20091b4: c2 07 40 00 ld [ %i5 ], %g1 u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 20091b8: 82 1a 00 01 xor %o0, %g1, %g1 20091bc: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 20091c0: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 20091c4: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 20091c8: 82 1e 00 01 xor %i0, %g1, %g1 20091cc: 80 a0 00 01 cmp %g0, %g1 20091d0: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 20091d4: 80 a0 40 1c cmp %g1, %i4 20091d8: 12 bf ff e2 bne 2009160 <_RBTree_Validate_insert_unprotected+0x54> 20091dc: 01 00 00 00 nop _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 20091e0: 10 bf ff e6 b 2009178 <_RBTree_Validate_insert_unprotected+0x6c> 20091e4: c2 06 00 00 ld [ %i0 ], %g1 20091e8: 81 c7 e0 08 ret 20091ec: 81 e8 00 00 restore =============================================================================== 0200ba60 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200ba60: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200ba64: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200ba68: 80 a7 60 00 cmp %i5, 0 200ba6c: 02 80 00 1c be 200badc <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN 200ba70: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200ba74: 7f ff d9 c2 call 200217c 200ba78: 01 00 00 00 nop signal_set = asr->signals_posted; 200ba7c: f6 07 60 14 ld [ %i5 + 0x14 ], %i3 asr->signals_posted = 0; 200ba80: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200ba84: 7f ff d9 c2 call 200218c 200ba88: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200ba8c: 80 a6 e0 00 cmp %i3, 0 200ba90: 02 80 00 13 be 200badc <_RTEMS_tasks_Post_switch_extension+0x7c> 200ba94: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 200ba98: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba9c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200baa0: 82 00 60 01 inc %g1 200baa4: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200baa8: 39 00 00 3f sethi %hi(0xfc00), %i4 200baac: 40 00 07 3b call 200d798 200bab0: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200bab4: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200bab8: 9f c0 40 00 call %g1 200babc: 90 10 00 1b mov %i3, %o0 asr->nest_level -= 1; 200bac0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bac4: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200bac8: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bacc: 92 17 23 ff or %i4, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200bad0: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bad4: 40 00 07 31 call 200d798 200bad8: 94 07 bf fc add %fp, -4, %o2 200badc: 81 c7 e0 08 ret 200bae0: 81 e8 00 00 restore =============================================================================== 020076c8 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 20076c8: 9d e3 bf 98 save %sp, -104, %sp 20076cc: 11 00 80 74 sethi %hi(0x201d000), %o0 20076d0: 92 10 00 18 mov %i0, %o1 20076d4: 90 12 21 c4 or %o0, 0x1c4, %o0 20076d8: 40 00 07 be call 20095d0 <_Objects_Get> 20076dc: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20076e0: c2 07 bf fc ld [ %fp + -4 ], %g1 20076e4: 80 a0 60 00 cmp %g1, 0 20076e8: 12 80 00 25 bne 200777c <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN 20076ec: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 20076f0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20076f4: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 20076f8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 20076fc: 80 88 80 01 btst %g2, %g1 2007700: 22 80 00 0b be,a 200772c <_Rate_monotonic_Timeout+0x64> 2007704: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007708: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 200770c: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007710: 80 a0 80 01 cmp %g2, %g1 2007714: 32 80 00 06 bne,a 200772c <_Rate_monotonic_Timeout+0x64> 2007718: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200771c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007720: 40 00 0a 6e call 200a0d8 <_Thread_Clear_state> 2007724: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007728: 30 80 00 06 b,a 2007740 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 200772c: 80 a0 60 01 cmp %g1, 1 2007730: 12 80 00 0d bne 2007764 <_Rate_monotonic_Timeout+0x9c> 2007734: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007738: 82 10 20 03 mov 3, %g1 200773c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007740: 7f ff fe 70 call 2007100 <_Rate_monotonic_Initiate_statistics> 2007744: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007748: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200774c: 11 00 80 74 sethi %hi(0x201d000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007750: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007754: 90 12 23 ec or %o0, 0x3ec, %o0 2007758: 40 00 0f 04 call 200b368 <_Watchdog_Insert> 200775c: 92 07 60 10 add %i5, 0x10, %o1 2007760: 30 80 00 02 b,a 2007768 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007764: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007768: 03 00 80 74 sethi %hi(0x201d000), %g1 200776c: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 201d330 <_Thread_Dispatch_disable_level> 2007770: 84 00 bf ff add %g2, -1, %g2 2007774: c4 20 63 30 st %g2, [ %g1 + 0x330 ] return _Thread_Dispatch_disable_level; 2007778: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 200777c: 81 c7 e0 08 ret 2007780: 81 e8 00 00 restore =============================================================================== 02007160 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007160: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007164: 03 00 80 73 sethi %hi(0x201cc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007168: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200716c: 80 a6 20 00 cmp %i0, 0 2007170: 02 80 00 2b be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 2007174: d2 00 63 38 ld [ %g1 + 0x338 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007178: 11 00 03 d0 sethi %hi(0xf4000), %o0 200717c: 40 00 46 65 call 2018b10 <.udiv> 2007180: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007184: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007188: 80 a0 40 08 cmp %g1, %o0 200718c: 3a 80 00 25 bcc,a 2007220 <_TOD_Validate+0xc0> 2007190: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2007194: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007198: 80 a0 60 3b cmp %g1, 0x3b 200719c: 38 80 00 21 bgu,a 2007220 <_TOD_Validate+0xc0> 20071a0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20071a4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20071a8: 80 a0 60 3b cmp %g1, 0x3b 20071ac: 38 80 00 1d bgu,a 2007220 <_TOD_Validate+0xc0> 20071b0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20071b4: c2 06 20 0c ld [ %i0 + 0xc ], %g1 20071b8: 80 a0 60 17 cmp %g1, 0x17 20071bc: 38 80 00 19 bgu,a 2007220 <_TOD_Validate+0xc0> 20071c0: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20071c4: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 20071c8: 80 a0 60 00 cmp %g1, 0 20071cc: 02 80 00 14 be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 20071d0: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20071d4: 38 80 00 13 bgu,a 2007220 <_TOD_Validate+0xc0> 20071d8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071dc: c6 06 00 00 ld [ %i0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20071e0: 80 a0 e7 c3 cmp %g3, 0x7c3 20071e4: 28 80 00 0f bleu,a 2007220 <_TOD_Validate+0xc0> 20071e8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20071ec: c4 06 20 08 ld [ %i0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071f0: 80 a0 a0 00 cmp %g2, 0 20071f4: 02 80 00 0a be 200721c <_TOD_Validate+0xbc> <== NEVER TAKEN 20071f8: 80 88 e0 03 btst 3, %g3 20071fc: 07 00 80 6f sethi %hi(0x201bc00), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007200: 12 80 00 03 bne 200720c <_TOD_Validate+0xac> 2007204: 86 10 e0 48 or %g3, 0x48, %g3 ! 201bc48 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 2007208: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 200720c: 83 28 60 02 sll %g1, 2, %g1 2007210: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 2007214: 80 a0 40 02 cmp %g1, %g2 2007218: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 200721c: b0 0f 60 01 and %i5, 1, %i0 2007220: 81 c7 e0 08 ret 2007224: 81 e8 00 00 restore =============================================================================== 02008790 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008790: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008794: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008798: 40 00 03 56 call 20094f0 <_Thread_Set_transient> 200879c: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 20087a0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20087a4: 80 a0 40 19 cmp %g1, %i1 20087a8: 02 80 00 05 be 20087bc <_Thread_Change_priority+0x2c> 20087ac: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 20087b0: 90 10 00 18 mov %i0, %o0 20087b4: 40 00 03 36 call 200948c <_Thread_Set_priority> 20087b8: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 20087bc: 7f ff e6 70 call 200217c 20087c0: 01 00 00 00 nop 20087c4: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 20087c8: f2 07 60 10 ld [ %i5 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 20087cc: 80 a6 60 04 cmp %i1, 4 20087d0: 02 80 00 10 be 2008810 <_Thread_Change_priority+0x80> 20087d4: b8 0f 20 04 and %i4, 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 20087d8: 80 a7 20 00 cmp %i4, 0 20087dc: 12 80 00 03 bne 20087e8 <_Thread_Change_priority+0x58> <== NEVER TAKEN 20087e0: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20087e4: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 20087e8: 7f ff e6 69 call 200218c 20087ec: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 20087f0: 03 00 00 ef sethi %hi(0x3bc00), %g1 20087f4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20087f8: 80 8e 40 01 btst %i1, %g1 20087fc: 02 80 00 29 be 20088a0 <_Thread_Change_priority+0x110> 2008800: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008804: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2008808: 40 00 02 f3 call 20093d4 <_Thread_queue_Requeue> 200880c: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008810: 80 a7 20 00 cmp %i4, 0 2008814: 12 80 00 0b bne 2008840 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 2008818: 03 00 80 6a sethi %hi(0x201a800), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200881c: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 2008820: 80 a6 a0 00 cmp %i2, 0 2008824: 02 80 00 04 be 2008834 <_Thread_Change_priority+0xa4> 2008828: 82 10 60 b4 or %g1, 0xb4, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 200882c: 10 80 00 03 b 2008838 <_Thread_Change_priority+0xa8> 2008830: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008834: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2008838: 9f c0 40 00 call %g1 200883c: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008840: 7f ff e6 53 call 200218c 2008844: 90 10 00 1b mov %i3, %o0 2008848: 7f ff e6 4d call 200217c 200884c: 01 00 00 00 nop 2008850: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008854: 03 00 80 6a sethi %hi(0x201a800), %g1 2008858: c2 00 60 bc ld [ %g1 + 0xbc ], %g1 ! 201a8bc <_Scheduler+0x8> 200885c: 9f c0 40 00 call %g1 2008860: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008864: 03 00 80 6d sethi %hi(0x201b400), %g1 2008868: 82 10 62 dc or %g1, 0x2dc, %g1 ! 201b6dc <_Per_CPU_Information> 200886c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008870: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008874: 80 a0 80 03 cmp %g2, %g3 2008878: 02 80 00 08 be 2008898 <_Thread_Change_priority+0x108> 200887c: 01 00 00 00 nop 2008880: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008884: 80 a0 a0 00 cmp %g2, 0 2008888: 02 80 00 04 be 2008898 <_Thread_Change_priority+0x108> 200888c: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008890: 84 10 20 01 mov 1, %g2 ! 1 2008894: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008898: 7f ff e6 3d call 200218c 200889c: 81 e8 00 00 restore 20088a0: 81 c7 e0 08 ret 20088a4: 81 e8 00 00 restore =============================================================================== 02008a94 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008a94: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008a98: 90 10 00 18 mov %i0, %o0 2008a9c: 40 00 00 6e call 2008c54 <_Thread_Get> 2008aa0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008aa4: c2 07 bf fc ld [ %fp + -4 ], %g1 2008aa8: 80 a0 60 00 cmp %g1, 0 2008aac: 12 80 00 09 bne 2008ad0 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2008ab0: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008ab4: 7f ff ff 7d call 20088a8 <_Thread_Clear_state> 2008ab8: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2008abc: 03 00 80 6d sethi %hi(0x201b400), %g1 2008ac0: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 201b4b0 <_Thread_Dispatch_disable_level> 2008ac4: 84 00 bf ff add %g2, -1, %g2 2008ac8: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ] return _Thread_Dispatch_disable_level; 2008acc: c2 00 60 b0 ld [ %g1 + 0xb0 ], %g1 2008ad0: 81 c7 e0 08 ret 2008ad4: 81 e8 00 00 restore =============================================================================== 02008ad8 <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008ad8: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2008adc: 03 00 80 6d sethi %hi(0x201b400), %g1 2008ae0: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 201b4b0 <_Thread_Dispatch_disable_level> 2008ae4: 84 00 a0 01 inc %g2 2008ae8: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ] return _Thread_Dispatch_disable_level; 2008aec: c2 00 60 b0 ld [ %g1 + 0xb0 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2008af0: 33 00 80 6d sethi %hi(0x201b400), %i1 2008af4: b4 16 62 dc or %i1, 0x2dc, %i2 ! 201b6dc <_Per_CPU_Information> _ISR_Disable( level ); 2008af8: 7f ff e5 a1 call 200217c 2008afc: fa 06 a0 0c ld [ %i2 + 0xc ], %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008b00: 21 00 80 6d sethi %hi(0x201b400), %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008b04: b4 06 a0 1c add %i2, 0x1c, %i2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b08: 31 00 80 6d sethi %hi(0x201b400), %i0 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008b0c: 10 80 00 38 b 2008bec <_Thread_Dispatch+0x114> 2008b10: 37 00 80 6d sethi %hi(0x201b400), %i3 heir = _Thread_Heir; _Thread_Dispatch_necessary = false; 2008b14: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008b18: 80 a7 00 1d cmp %i4, %i5 2008b1c: 02 80 00 39 be 2008c00 <_Thread_Dispatch+0x128> 2008b20: f8 20 60 0c st %i4, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008b24: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 2008b28: 80 a0 60 01 cmp %g1, 1 2008b2c: 12 80 00 03 bne 2008b38 <_Thread_Dispatch+0x60> 2008b30: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008b34: c2 27 20 78 st %g1, [ %i4 + 0x78 ] _ISR_Enable( level ); 2008b38: 7f ff e5 95 call 200218c 2008b3c: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008b40: 40 00 0c c1 call 200be44 <_TOD_Get_uptime> 2008b44: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 2008b48: 90 10 00 1a mov %i2, %o0 2008b4c: 92 07 bf f0 add %fp, -16, %o1 2008b50: 40 00 02 db call 20096bc <_Timespec_Subtract> 2008b54: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008b58: 90 07 60 84 add %i5, 0x84, %o0 2008b5c: 40 00 02 bf call 2009658 <_Timespec_Add_to> 2008b60: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 2008b64: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b68: c2 06 21 38 ld [ %i0 + 0x138 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008b6c: c4 26 80 00 st %g2, [ %i2 ] 2008b70: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b74: 80 a0 60 00 cmp %g1, 0 2008b78: 02 80 00 06 be 2008b90 <_Thread_Dispatch+0xb8> <== NEVER TAKEN 2008b7c: c4 26 a0 04 st %g2, [ %i2 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008b80: c4 00 40 00 ld [ %g1 ], %g2 2008b84: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008b88: c4 07 21 54 ld [ %i4 + 0x154 ], %g2 2008b8c: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008b90: 90 10 00 1d mov %i5, %o0 2008b94: 40 00 03 78 call 2009974 <_User_extensions_Thread_switch> 2008b98: 92 10 00 1c mov %i4, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008b9c: 90 07 60 c8 add %i5, 0xc8, %o0 2008ba0: 40 00 04 9e call 2009e18 <_CPU_Context_switch> 2008ba4: 92 07 20 c8 add %i4, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008ba8: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2008bac: 80 a0 60 00 cmp %g1, 0 2008bb0: 02 80 00 0c be 2008be0 <_Thread_Dispatch+0x108> 2008bb4: d0 06 e1 34 ld [ %i3 + 0x134 ], %o0 2008bb8: 80 a7 40 08 cmp %i5, %o0 2008bbc: 02 80 00 09 be 2008be0 <_Thread_Dispatch+0x108> 2008bc0: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008bc4: 02 80 00 04 be 2008bd4 <_Thread_Dispatch+0xfc> 2008bc8: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008bcc: 40 00 04 59 call 2009d30 <_CPU_Context_save_fp> 2008bd0: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008bd4: 40 00 04 74 call 2009da4 <_CPU_Context_restore_fp> 2008bd8: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2008bdc: fa 26 e1 34 st %i5, [ %i3 + 0x134 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2008be0: 82 16 62 dc or %i1, 0x2dc, %g1 _ISR_Disable( level ); 2008be4: 7f ff e5 66 call 200217c 2008be8: fa 00 60 0c ld [ %g1 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008bec: 82 16 62 dc or %i1, 0x2dc, %g1 2008bf0: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008bf4: 80 a0 a0 00 cmp %g2, 0 2008bf8: 32 bf ff c7 bne,a 2008b14 <_Thread_Dispatch+0x3c> 2008bfc: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 2008c00: 03 00 80 6d sethi %hi(0x201b400), %g1 2008c04: c0 20 60 b0 clr [ %g1 + 0xb0 ] ! 201b4b0 <_Thread_Dispatch_disable_level> } post_switch: _Thread_Dispatch_set_disable_level( 0 ); _ISR_Enable( level ); 2008c08: 7f ff e5 61 call 200218c 2008c0c: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008c10: 7f ff f8 5a call 2006d78 <_API_extensions_Run_postswitch> 2008c14: 01 00 00 00 nop } 2008c18: 81 c7 e0 08 ret 2008c1c: 81 e8 00 00 restore =============================================================================== 0200dac8 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200dac8: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200dacc: 03 00 80 6d sethi %hi(0x201b400), %g1 200dad0: fa 00 62 e8 ld [ %g1 + 0x2e8 ], %i5 ! 201b6e8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200dad4: 3f 00 80 36 sethi %hi(0x200d800), %i7 200dad8: be 17 e2 c8 or %i7, 0x2c8, %i7 ! 200dac8 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200dadc: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200dae0: 7f ff d1 ab call 200218c 200dae4: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200dae8: 03 00 80 6c sethi %hi(0x201b000), %g1 doneConstructors = 1; 200daec: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200daf0: f8 08 61 70 ldub [ %g1 + 0x170 ], %i4 doneConstructors = 1; 200daf4: c4 28 61 70 stb %g2, [ %g1 + 0x170 ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200daf8: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 200dafc: 80 a0 60 00 cmp %g1, 0 200db00: 02 80 00 0c be 200db30 <_Thread_Handler+0x68> 200db04: 03 00 80 6d sethi %hi(0x201b400), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200db08: d0 00 61 34 ld [ %g1 + 0x134 ], %o0 ! 201b534 <_Thread_Allocated_fp> 200db0c: 80 a7 40 08 cmp %i5, %o0 200db10: 02 80 00 08 be 200db30 <_Thread_Handler+0x68> 200db14: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200db18: 22 80 00 06 be,a 200db30 <_Thread_Handler+0x68> 200db1c: fa 20 61 34 st %i5, [ %g1 + 0x134 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200db20: 7f ff f0 84 call 2009d30 <_CPU_Context_save_fp> 200db24: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200db28: 03 00 80 6d sethi %hi(0x201b400), %g1 200db2c: fa 20 61 34 st %i5, [ %g1 + 0x134 ] ! 201b534 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200db30: 7f ff ef 22 call 20097b8 <_User_extensions_Thread_begin> 200db34: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200db38: 7f ff ec 3a call 2008c20 <_Thread_Enable_dispatch> 200db3c: b9 2f 20 18 sll %i4, 0x18, %i4 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200db40: 80 a7 20 00 cmp %i4, 0 200db44: 32 80 00 05 bne,a 200db58 <_Thread_Handler+0x90> 200db48: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 INIT_NAME (); 200db4c: 40 00 33 0f call 201a788 <_init> 200db50: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200db54: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200db58: 80 a0 60 00 cmp %g1, 0 200db5c: 12 80 00 06 bne 200db74 <_Thread_Handler+0xac> <== NEVER TAKEN 200db60: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200db64: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200db68: 9f c0 40 00 call %g1 200db6c: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200db70: d0 27 60 28 st %o0, [ %i5 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200db74: 7f ff ef 22 call 20097fc <_User_extensions_Thread_exitted> 200db78: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200db7c: 90 10 20 00 clr %o0 200db80: 92 10 20 01 mov 1, %o1 200db84: 7f ff e7 20 call 2007804 <_Internal_error_Occurred> 200db88: 94 10 20 05 mov 5, %o2 =============================================================================== 02008d04 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008d04: 9d e3 bf a0 save %sp, -96, %sp 2008d08: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008d0c: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 2008d10: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008d14: c0 26 61 58 clr [ %i1 + 0x158 ] 2008d18: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008d1c: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008d20: 90 10 00 19 mov %i1, %o0 2008d24: 40 00 02 02 call 200952c <_Thread_Stack_Allocate> 2008d28: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008d2c: 80 a2 00 1b cmp %o0, %i3 2008d30: 0a 80 00 61 bcs 2008eb4 <_Thread_Initialize+0x1b0> 2008d34: 80 a2 20 00 cmp %o0, 0 2008d38: 02 80 00 5f be 2008eb4 <_Thread_Initialize+0x1b0> <== NEVER TAKEN 2008d3c: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d40: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008d44: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d48: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008d4c: 02 80 00 07 be 2008d68 <_Thread_Initialize+0x64> 2008d50: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008d54: 40 00 03 db call 2009cc0 <_Workspace_Allocate> 2008d58: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008d5c: b6 92 20 00 orcc %o0, 0, %i3 2008d60: 02 80 00 46 be 2008e78 <_Thread_Initialize+0x174> 2008d64: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d68: 03 00 80 6d sethi %hi(0x201b400), %g1 2008d6c: d0 00 61 44 ld [ %g1 + 0x144 ], %o0 ! 201b544 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008d70: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008d74: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008d78: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008d7c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008d80: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 2008d84: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d88: 80 a2 20 00 cmp %o0, 0 2008d8c: 02 80 00 08 be 2008dac <_Thread_Initialize+0xa8> 2008d90: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 2008d94: 90 02 20 01 inc %o0 2008d98: 40 00 03 ca call 2009cc0 <_Workspace_Allocate> 2008d9c: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008da0: b8 92 20 00 orcc %o0, 0, %i4 2008da4: 22 80 00 36 be,a 2008e7c <_Thread_Initialize+0x178> 2008da8: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008dac: 80 a7 20 00 cmp %i4, 0 2008db0: 02 80 00 0c be 2008de0 <_Thread_Initialize+0xdc> 2008db4: f8 26 61 60 st %i4, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008db8: 03 00 80 6d sethi %hi(0x201b400), %g1 2008dbc: c4 00 61 44 ld [ %g1 + 0x144 ], %g2 ! 201b544 <_Thread_Maximum_extensions> 2008dc0: 10 80 00 05 b 2008dd4 <_Thread_Initialize+0xd0> 2008dc4: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 2008dc8: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008dcc: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008dd0: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008dd4: 80 a0 40 02 cmp %g1, %g2 2008dd8: 28 bf ff fc bleu,a 2008dc8 <_Thread_Initialize+0xc4> 2008ddc: c8 06 61 60 ld [ %i1 + 0x160 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008de0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008de4: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] the_thread->Start.budget_algorithm = budget_algorithm; 2008de8: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008dec: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008df0: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008df4: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008df8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008dfc: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008e00: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008e04: 82 10 20 01 mov 1, %g1 2008e08: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008e0c: 03 00 80 6a sethi %hi(0x201a800), %g1 2008e10: c2 00 60 cc ld [ %g1 + 0xcc ], %g1 ! 201a8cc <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 2008e14: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008e18: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008e1c: 9f c0 40 00 call %g1 2008e20: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008e24: b4 92 20 00 orcc %o0, 0, %i2 2008e28: 02 80 00 15 be 2008e7c <_Thread_Initialize+0x178> 2008e2c: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008e30: 40 00 01 97 call 200948c <_Thread_Set_priority> 2008e34: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e38: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008e3c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008e40: c0 26 60 84 clr [ %i1 + 0x84 ] 2008e44: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e48: 83 28 60 02 sll %g1, 2, %g1 2008e4c: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008e50: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008e54: 90 10 00 19 mov %i1, %o0 2008e58: 40 00 02 8a call 2009880 <_User_extensions_Thread_create> 2008e5c: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008e60: 80 8a 20 ff btst 0xff, %o0 2008e64: 02 80 00 06 be 2008e7c <_Thread_Initialize+0x178> 2008e68: 01 00 00 00 nop 2008e6c: b0 0e 20 01 and %i0, 1, %i0 2008e70: 81 c7 e0 08 ret 2008e74: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2008e78: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 2008e7c: 40 00 03 99 call 2009ce0 <_Workspace_Free> 2008e80: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 2008e84: 40 00 03 97 call 2009ce0 <_Workspace_Free> 2008e88: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008e8c: 40 00 03 95 call 2009ce0 <_Workspace_Free> 2008e90: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 2008e94: 40 00 03 93 call 2009ce0 <_Workspace_Free> 2008e98: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2008e9c: 40 00 03 91 call 2009ce0 <_Workspace_Free> 2008ea0: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 2008ea4: 40 00 03 8f call 2009ce0 <_Workspace_Free> 2008ea8: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 2008eac: 40 00 01 b7 call 2009588 <_Thread_Stack_Free> 2008eb0: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 2008eb4: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008eb8: b0 0e 20 01 and %i0, 1, %i0 2008ebc: 81 c7 e0 08 ret 2008ec0: 81 e8 00 00 restore =============================================================================== 020093d4 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 20093d4: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 20093d8: 80 a6 20 00 cmp %i0, 0 20093dc: 02 80 00 19 be 2009440 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 20093e0: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 20093e4: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 20093e8: 80 a7 20 01 cmp %i4, 1 20093ec: 12 80 00 15 bne 2009440 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 20093f0: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 20093f4: 7f ff e3 62 call 200217c 20093f8: 01 00 00 00 nop 20093fc: ba 10 00 08 mov %o0, %i5 2009400: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009404: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009408: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 200940c: 80 88 80 01 btst %g2, %g1 2009410: 02 80 00 0a be 2009438 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2009414: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009418: 92 10 00 19 mov %i1, %o1 200941c: 94 10 20 01 mov 1, %o2 2009420: 40 00 0b f8 call 200c400 <_Thread_queue_Extract_priority_helper> 2009424: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009428: 90 10 00 18 mov %i0, %o0 200942c: 92 10 00 19 mov %i1, %o1 2009430: 7f ff ff 50 call 2009170 <_Thread_queue_Enqueue_priority> 2009434: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2009438: 7f ff e3 55 call 200218c 200943c: 90 10 00 1d mov %i5, %o0 2009440: 81 c7 e0 08 ret 2009444: 81 e8 00 00 restore =============================================================================== 02009448 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009448: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200944c: 90 10 00 18 mov %i0, %o0 2009450: 7f ff fe 01 call 2008c54 <_Thread_Get> 2009454: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009458: c2 07 bf fc ld [ %fp + -4 ], %g1 200945c: 80 a0 60 00 cmp %g1, 0 2009460: 12 80 00 09 bne 2009484 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009464: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009468: 40 00 0c 1d call 200c4dc <_Thread_queue_Process_timeout> 200946c: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009470: 03 00 80 6d sethi %hi(0x201b400), %g1 2009474: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 201b4b0 <_Thread_Dispatch_disable_level> 2009478: 84 00 bf ff add %g2, -1, %g2 200947c: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ] return _Thread_Dispatch_disable_level; 2009480: c2 00 60 b0 ld [ %g1 + 0xb0 ], %g1 2009484: 81 c7 e0 08 ret 2009488: 81 e8 00 00 restore =============================================================================== 0201718c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201718c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2017190: 27 00 80 e8 sethi %hi(0x203a000), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017194: a8 07 bf e8 add %fp, -24, %l4 2017198: a4 07 bf ec add %fp, -20, %l2 201719c: b6 07 bf f4 add %fp, -12, %i3 20171a0: b4 07 bf f8 add %fp, -8, %i2 20171a4: e4 27 bf e8 st %l2, [ %fp + -24 ] head->previous = NULL; 20171a8: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20171ac: e8 27 bf f0 st %l4, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20171b0: f4 27 bf f4 st %i2, [ %fp + -12 ] head->previous = NULL; 20171b4: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20171b8: f6 27 bf fc st %i3, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171bc: b2 06 20 30 add %i0, 0x30, %i1 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20171c0: b8 06 20 68 add %i0, 0x68, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20171c4: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20171c8: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20171cc: e8 26 20 78 st %l4, [ %i0 + 0x78 ] static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20171d0: 2b 00 80 e8 sethi %hi(0x203a000), %l5 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20171d4: c2 04 e0 ac ld [ %l3 + 0xac ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20171d8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171dc: 94 10 00 1b mov %i3, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20171e0: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171e4: 90 10 00 19 mov %i1, %o0 20171e8: 40 00 11 77 call 201b7c4 <_Watchdog_Adjust_to_chain> 20171ec: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20171f0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20171f4: fa 05 60 2c ld [ %l5 + 0x2c ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20171f8: 80 a7 40 0a cmp %i5, %o2 20171fc: 08 80 00 06 bleu 2017214 <_Timer_server_Body+0x88> 2017200: 92 27 40 0a sub %i5, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2017204: 90 10 00 1c mov %i4, %o0 2017208: 40 00 11 6f call 201b7c4 <_Watchdog_Adjust_to_chain> 201720c: 94 10 00 1b mov %i3, %o2 2017210: 30 80 00 06 b,a 2017228 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 2017214: 1a 80 00 05 bcc 2017228 <_Timer_server_Body+0x9c> 2017218: 90 10 00 1c mov %i4, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 201721c: 92 10 20 01 mov 1, %o1 2017220: 40 00 11 42 call 201b728 <_Watchdog_Adjust> 2017224: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 2017228: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 201722c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2017230: 40 00 02 bd call 2017d24 <_Chain_Get> 2017234: 01 00 00 00 nop if ( timer == NULL ) { 2017238: 92 92 20 00 orcc %o0, 0, %o1 201723c: 02 80 00 0c be 201726c <_Timer_server_Body+0xe0> 2017240: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2017244: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2017248: 80 a0 60 01 cmp %g1, 1 201724c: 02 80 00 05 be 2017260 <_Timer_server_Body+0xd4> 2017250: 90 10 00 19 mov %i1, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2017254: 80 a0 60 03 cmp %g1, 3 2017258: 12 bf ff f5 bne 201722c <_Timer_server_Body+0xa0> <== NEVER TAKEN 201725c: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017260: 40 00 11 8b call 201b88c <_Watchdog_Insert> 2017264: 92 02 60 10 add %o1, 0x10, %o1 2017268: 30 bf ff f1 b,a 201722c <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 201726c: 7f ff e3 95 call 20100c0 2017270: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2017274: c2 07 bf e8 ld [ %fp + -24 ], %g1 2017278: 80 a0 40 12 cmp %g1, %l2 201727c: 12 80 00 0a bne 20172a4 <_Timer_server_Body+0x118> <== NEVER TAKEN 2017280: 01 00 00 00 nop ts->insert_chain = NULL; 2017284: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2017288: 7f ff e3 92 call 20100d0 201728c: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2017290: c2 07 bf f4 ld [ %fp + -12 ], %g1 2017294: 80 a0 40 1a cmp %g1, %i2 2017298: 12 80 00 06 bne 20172b0 <_Timer_server_Body+0x124> 201729c: 01 00 00 00 nop 20172a0: 30 80 00 18 b,a 2017300 <_Timer_server_Body+0x174> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 20172a4: 7f ff e3 8b call 20100d0 <== NOT EXECUTED 20172a8: 01 00 00 00 nop <== NOT EXECUTED 20172ac: 30 bf ff ca b,a 20171d4 <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 20172b0: 7f ff e3 84 call 20100c0 20172b4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20172b8: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 20172bc: 80 a7 40 1a cmp %i5, %i2 20172c0: 02 80 00 0d be 20172f4 <_Timer_server_Body+0x168> 20172c4: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 20172c8: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 20172cc: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 20172d0: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20172d4: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 20172d8: 7f ff e3 7e call 20100d0 20172dc: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20172e0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 20172e4: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 20172e8: 9f c0 40 00 call %g1 20172ec: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 20172f0: 30 bf ff f0 b,a 20172b0 <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 20172f4: 7f ff e3 77 call 20100d0 20172f8: 01 00 00 00 nop 20172fc: 30 bf ff b4 b,a 20171cc <_Timer_server_Body+0x40> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2017300: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 2017304: 7f ff ff 73 call 20170d0 <_Thread_Disable_dispatch> 2017308: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 201730c: d0 06 00 00 ld [ %i0 ], %o0 2017310: 40 00 0f 92 call 201b158 <_Thread_Set_state> 2017314: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2017318: 7f ff ff 75 call 20170ec <_Timer_server_Reset_interval_system_watchdog> 201731c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2017320: 7f ff ff 87 call 201713c <_Timer_server_Reset_tod_system_watchdog> 2017324: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2017328: 40 00 0d 46 call 201a840 <_Thread_Enable_dispatch> 201732c: 01 00 00 00 nop ts->active = true; 2017330: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2017334: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2017338: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201733c: 40 00 11 ae call 201b9f4 <_Watchdog_Remove> 2017340: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2017344: 40 00 11 ac call 201b9f4 <_Watchdog_Remove> 2017348: 90 10 00 10 mov %l0, %o0 201734c: 30 bf ff a0 b,a 20171cc <_Timer_server_Body+0x40> =============================================================================== 02017350 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2017350: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2017354: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2017358: 80 a0 60 00 cmp %g1, 0 201735c: 12 80 00 49 bne 2017480 <_Timer_server_Schedule_operation_method+0x130> 2017360: ba 10 00 19 mov %i1, %i5 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2017364: 7f ff ff 5b call 20170d0 <_Thread_Disable_dispatch> 2017368: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201736c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2017370: 80 a0 60 01 cmp %g1, 1 2017374: 12 80 00 1f bne 20173f0 <_Timer_server_Schedule_operation_method+0xa0> 2017378: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 201737c: 7f ff e3 51 call 20100c0 2017380: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2017384: 03 00 80 e8 sethi %hi(0x203a000), %g1 2017388: c4 00 60 ac ld [ %g1 + 0xac ], %g2 ! 203a0ac <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201738c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2017390: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2017394: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2017398: 80 a0 40 03 cmp %g1, %g3 201739c: 02 80 00 08 be 20173bc <_Timer_server_Schedule_operation_method+0x6c> 20173a0: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 20173a4: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 20173a8: 80 a3 c0 04 cmp %o7, %g4 20173ac: 08 80 00 03 bleu 20173b8 <_Timer_server_Schedule_operation_method+0x68> 20173b0: 86 10 20 00 clr %g3 delta_interval -= delta; 20173b4: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 20173b8: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 20173bc: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 20173c0: 7f ff e3 44 call 20100d0 20173c4: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20173c8: 90 06 20 30 add %i0, 0x30, %o0 20173cc: 40 00 11 30 call 201b88c <_Watchdog_Insert> 20173d0: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20173d4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20173d8: 80 a0 60 00 cmp %g1, 0 20173dc: 12 80 00 27 bne 2017478 <_Timer_server_Schedule_operation_method+0x128> 20173e0: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 20173e4: 7f ff ff 42 call 20170ec <_Timer_server_Reset_interval_system_watchdog> 20173e8: 90 10 00 18 mov %i0, %o0 20173ec: 30 80 00 23 b,a 2017478 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20173f0: 12 80 00 22 bne 2017478 <_Timer_server_Schedule_operation_method+0x128> 20173f4: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20173f8: 7f ff e3 32 call 20100c0 20173fc: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017400: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2017404: de 06 20 74 ld [ %i0 + 0x74 ], %o7 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2017408: 03 00 80 e8 sethi %hi(0x203a000), %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 201740c: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2017410: 80 a0 80 03 cmp %g2, %g3 2017414: 02 80 00 0d be 2017448 <_Timer_server_Schedule_operation_method+0xf8> 2017418: c2 00 60 2c ld [ %g1 + 0x2c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 201741c: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2017420: 80 a0 40 0f cmp %g1, %o7 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2017424: 86 01 00 0f add %g4, %o7, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2017428: 08 80 00 07 bleu 2017444 <_Timer_server_Schedule_operation_method+0xf4> 201742c: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2017430: 9e 20 40 0f sub %g1, %o7, %o7 if (delta_interval > delta) { 2017434: 80 a1 00 0f cmp %g4, %o7 2017438: 08 80 00 03 bleu 2017444 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 201743c: 86 10 20 00 clr %g3 delta_interval -= delta; 2017440: 86 21 00 0f sub %g4, %o7, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2017444: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2017448: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 201744c: 7f ff e3 21 call 20100d0 2017450: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017454: 90 06 20 68 add %i0, 0x68, %o0 2017458: 40 00 11 0d call 201b88c <_Watchdog_Insert> 201745c: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2017460: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2017464: 80 a0 60 00 cmp %g1, 0 2017468: 12 80 00 04 bne 2017478 <_Timer_server_Schedule_operation_method+0x128> 201746c: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2017470: 7f ff ff 33 call 201713c <_Timer_server_Reset_tod_system_watchdog> 2017474: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2017478: 40 00 0c f2 call 201a840 <_Thread_Enable_dispatch> 201747c: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2017480: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2017484: 40 00 02 14 call 2017cd4 <_Chain_Append> 2017488: 81 e8 00 00 restore =============================================================================== 02009700 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009700: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009704: 03 00 80 69 sethi %hi(0x201a400), %g1 2009708: 82 10 63 cc or %g1, 0x3cc, %g1 ! 201a7cc ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200970c: 05 00 80 6d sethi %hi(0x201b400), %g2 initial_extensions = Configuration.User_extension_table; 2009710: f4 00 60 3c ld [ %g1 + 0x3c ], %i2 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009714: f6 00 60 38 ld [ %g1 + 0x38 ], %i3 2009718: 82 10 a2 98 or %g2, 0x298, %g1 200971c: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 2009720: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009724: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009728: c6 20 a2 98 st %g3, [ %g2 + 0x298 ] 200972c: 05 00 80 6d sethi %hi(0x201b400), %g2 2009730: 82 10 a0 b4 or %g2, 0xb4, %g1 ! 201b4b4 <_User_extensions_Switches_list> 2009734: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 2009738: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200973c: c6 20 a0 b4 st %g3, [ %g2 + 0xb4 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009740: 80 a6 a0 00 cmp %i2, 0 2009744: 02 80 00 1b be 20097b0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009748: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 200974c: 83 2e e0 02 sll %i3, 2, %g1 2009750: bb 2e e0 04 sll %i3, 4, %i5 2009754: ba 27 40 01 sub %i5, %g1, %i5 2009758: ba 07 40 1b add %i5, %i3, %i5 200975c: bb 2f 60 02 sll %i5, 2, %i5 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009760: 40 00 01 66 call 2009cf8 <_Workspace_Allocate_or_fatal_error> 2009764: 90 10 00 1d mov %i5, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009768: 94 10 00 1d mov %i5, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 200976c: b8 10 00 08 mov %o0, %i4 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009770: 92 10 20 00 clr %o1 2009774: 40 00 13 de call 200e6ec 2009778: ba 10 20 00 clr %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200977c: 10 80 00 0b b 20097a8 <_User_extensions_Handler_initialization+0xa8> 2009780: 80 a7 40 1b cmp %i5, %i3 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009784: 90 07 20 14 add %i4, 0x14, %o0 2009788: 92 06 80 09 add %i2, %o1, %o1 200978c: 40 00 13 9c call 200e5fc 2009790: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 2009794: 90 10 00 1c mov %i4, %o0 2009798: 40 00 0b 75 call 200c56c <_User_extensions_Add_set> 200979c: ba 07 60 01 inc %i5 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 20097a0: b8 07 20 34 add %i4, 0x34, %i4 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 20097a4: 80 a7 40 1b cmp %i5, %i3 20097a8: 12 bf ff f7 bne 2009784 <_User_extensions_Handler_initialization+0x84> 20097ac: 93 2f 60 05 sll %i5, 5, %o1 20097b0: 81 c7 e0 08 ret 20097b4: 81 e8 00 00 restore =============================================================================== 0200b470 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b470: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b474: 7f ff de e1 call 2002ff8 200b478: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b47c: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b480: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b484: 80 a0 40 1c cmp %g1, %i4 200b488: 02 80 00 1f be 200b504 <_Watchdog_Adjust+0x94> 200b48c: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b490: 02 80 00 1a be 200b4f8 <_Watchdog_Adjust+0x88> 200b494: b6 10 20 01 mov 1, %i3 200b498: 80 a6 60 01 cmp %i1, 1 200b49c: 12 80 00 1a bne 200b504 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b4a0: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b4a4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b4a8: 10 80 00 07 b 200b4c4 <_Watchdog_Adjust+0x54> 200b4ac: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b4b0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b4b4: 80 a6 80 02 cmp %i2, %g2 200b4b8: 3a 80 00 05 bcc,a 200b4cc <_Watchdog_Adjust+0x5c> 200b4bc: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b4c0: b4 20 80 1a sub %g2, %i2, %i2 break; 200b4c4: 10 80 00 10 b 200b504 <_Watchdog_Adjust+0x94> 200b4c8: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200b4cc: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b4d0: 7f ff de ce call 2003008 200b4d4: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b4d8: 40 00 00 90 call 200b718 <_Watchdog_Tickle> 200b4dc: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200b4e0: 7f ff de c6 call 2002ff8 200b4e4: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b4e8: c2 07 40 00 ld [ %i5 ], %g1 200b4ec: 80 a0 40 1c cmp %g1, %i4 200b4f0: 02 80 00 05 be 200b504 <_Watchdog_Adjust+0x94> 200b4f4: 01 00 00 00 nop switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b4f8: 80 a6 a0 00 cmp %i2, 0 200b4fc: 32 bf ff ed bne,a 200b4b0 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b500: c2 07 40 00 ld [ %i5 ], %g1 } break; } } _ISR_Enable( level ); 200b504: 7f ff de c1 call 2003008 200b508: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009b18 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009b18: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009b1c: 7f ff e1 98 call 200217c 2009b20: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 2009b24: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009b28: 80 a6 20 01 cmp %i0, 1 2009b2c: 22 80 00 1d be,a 2009ba0 <_Watchdog_Remove+0x88> 2009b30: c0 27 60 08 clr [ %i5 + 8 ] 2009b34: 0a 80 00 1c bcs 2009ba4 <_Watchdog_Remove+0x8c> 2009b38: 03 00 80 6d sethi %hi(0x201b400), %g1 2009b3c: 80 a6 20 03 cmp %i0, 3 2009b40: 18 80 00 19 bgu 2009ba4 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009b44: 01 00 00 00 nop 2009b48: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009b4c: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009b50: c4 00 40 00 ld [ %g1 ], %g2 2009b54: 80 a0 a0 00 cmp %g2, 0 2009b58: 02 80 00 07 be 2009b74 <_Watchdog_Remove+0x5c> 2009b5c: 05 00 80 6d sethi %hi(0x201b400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009b60: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009b64: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 2009b68: 84 00 c0 02 add %g3, %g2, %g2 2009b6c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009b70: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b74: c4 00 a1 b8 ld [ %g2 + 0x1b8 ], %g2 ! 201b5b8 <_Watchdog_Sync_count> 2009b78: 80 a0 a0 00 cmp %g2, 0 2009b7c: 22 80 00 07 be,a 2009b98 <_Watchdog_Remove+0x80> 2009b80: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009b84: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b88: c6 00 a2 e4 ld [ %g2 + 0x2e4 ], %g3 ! 201b6e4 <_Per_CPU_Information+0x8> 2009b8c: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b90: c6 20 a1 58 st %g3, [ %g2 + 0x158 ] ! 201b558 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009b94: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 2009b98: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009b9c: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009ba0: 03 00 80 6d sethi %hi(0x201b400), %g1 2009ba4: c2 00 61 bc ld [ %g1 + 0x1bc ], %g1 ! 201b5bc <_Watchdog_Ticks_since_boot> 2009ba8: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 2009bac: 7f ff e1 78 call 200218c 2009bb0: 01 00 00 00 nop return( previous_state ); } 2009bb4: 81 c7 e0 08 ret 2009bb8: 81 e8 00 00 restore =============================================================================== 0200ac68 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200ac68: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200ac6c: 7f ff df b3 call 2002b38 200ac70: ba 10 00 18 mov %i0, %i5 200ac74: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200ac78: 11 00 80 6d sethi %hi(0x201b400), %o0 200ac7c: 94 10 00 19 mov %i1, %o2 200ac80: 90 12 21 00 or %o0, 0x100, %o0 200ac84: 7f ff e6 63 call 2004610 200ac88: 92 10 00 1d mov %i5, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200ac8c: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ac90: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200ac94: 80 a7 00 19 cmp %i4, %i1 200ac98: 12 80 00 04 bne 200aca8 <_Watchdog_Report_chain+0x40> 200ac9c: 92 10 00 1c mov %i4, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200aca0: 10 80 00 0d b 200acd4 <_Watchdog_Report_chain+0x6c> 200aca4: 11 00 80 6d sethi %hi(0x201b400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200aca8: 40 00 00 0f call 200ace4 <_Watchdog_Report> 200acac: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200acb0: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200acb4: 80 a7 00 19 cmp %i4, %i1 200acb8: 12 bf ff fc bne 200aca8 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200acbc: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200acc0: 11 00 80 6d sethi %hi(0x201b400), %o0 200acc4: 92 10 00 1d mov %i5, %o1 200acc8: 7f ff e6 52 call 2004610 200accc: 90 12 21 18 or %o0, 0x118, %o0 200acd0: 30 80 00 03 b,a 200acdc <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200acd4: 7f ff e6 4f call 2004610 200acd8: 90 12 21 28 or %o0, 0x128, %o0 } _ISR_Enable( level ); 200acdc: 7f ff df 9b call 2002b48 200ace0: 81 e8 00 00 restore =============================================================================== 02006d20 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006d20: 9d e3 bf 98 save %sp, -104, %sp 2006d24: 10 80 00 09 b 2006d48 2006d28: ba 10 00 18 mov %i0, %i5 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006d2c: 92 10 20 00 clr %o1 2006d30: 94 10 00 1a mov %i2, %o2 2006d34: 7f ff fd 03 call 2006140 2006d38: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006d3c: 80 a2 20 00 cmp %o0, 0 2006d40: 32 80 00 09 bne,a 2006d64 <== ALWAYS TAKEN 2006d44: f8 26 c0 00 st %i4, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d48: 40 00 01 62 call 20072d0 <_Chain_Get> 2006d4c: 90 10 00 1d mov %i5, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d50: b8 92 20 00 orcc %o0, 0, %i4 2006d54: 02 bf ff f6 be 2006d2c 2006d58: 90 10 00 19 mov %i1, %o0 2006d5c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d60: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 2006d64: 81 c7 e0 08 ret 2006d68: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009014 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009014: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009018: 80 a6 20 00 cmp %i0, 0 200901c: 02 80 00 1e be 2009094 <== NEVER TAKEN 2009020: ba 10 20 01 mov 1, %i5 return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2009024: 35 00 80 77 sethi %hi(0x201dc00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009028: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200902c: 84 16 a3 48 or %i2, 0x348, %g2 2009030: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009034: 80 a0 60 00 cmp %g1, 0 2009038: 22 80 00 14 be,a 2009088 200903c: ba 07 60 01 inc %i5 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009040: f6 00 60 04 ld [ %g1 + 4 ], %i3 if ( !information ) 2009044: 80 a6 e0 00 cmp %i3, 0 2009048: 12 80 00 0b bne 2009074 200904c: b8 10 20 01 mov 1, %i4 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009050: 10 80 00 0e b 2009088 2009054: ba 07 60 01 inc %i5 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { the_thread = (Thread_Control *)information->local_table[ i ]; 2009058: 83 2f 20 02 sll %i4, 2, %g1 200905c: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009060: 80 a2 20 00 cmp %o0, 0 2009064: 02 80 00 04 be 2009074 2009068: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 200906c: 9f c6 00 00 call %i0 2009070: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009074: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 2009078: 80 a7 00 01 cmp %i4, %g1 200907c: 28 bf ff f7 bleu,a 2009058 2009080: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009084: ba 07 60 01 inc %i5 2009088: 80 a7 60 04 cmp %i5, 4 200908c: 12 bf ff e8 bne 200902c 2009090: 83 2f 60 02 sll %i5, 2, %g1 2009094: 81 c7 e0 08 ret 2009098: 81 e8 00 00 restore =============================================================================== 02014b6c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014b6c: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014b70: 80 a6 20 00 cmp %i0, 0 2014b74: 02 80 00 39 be 2014c58 2014b78: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014b7c: 80 a6 60 00 cmp %i1, 0 2014b80: 02 80 00 36 be 2014c58 2014b84: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014b88: 80 a7 60 00 cmp %i5, 0 2014b8c: 02 80 00 33 be 2014c58 <== NEVER TAKEN 2014b90: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014b94: 02 80 00 31 be 2014c58 2014b98: 82 10 20 08 mov 8, %g1 2014b9c: 80 a6 a0 00 cmp %i2, 0 2014ba0: 02 80 00 2e be 2014c58 2014ba4: 80 a6 80 1b cmp %i2, %i3 2014ba8: 0a 80 00 2c bcs 2014c58 2014bac: 80 8e e0 07 btst 7, %i3 2014bb0: 12 80 00 2a bne 2014c58 2014bb4: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2014bb8: 12 80 00 28 bne 2014c58 2014bbc: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2014bc0: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2014bc4: c4 00 63 a0 ld [ %g1 + 0x3a0 ], %g2 ! 2039fa0 <_Thread_Dispatch_disable_level> 2014bc8: 84 00 a0 01 inc %g2 2014bcc: c4 20 63 a0 st %g2, [ %g1 + 0x3a0 ] return _Thread_Dispatch_disable_level; 2014bd0: c2 00 63 a0 ld [ %g1 + 0x3a0 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014bd4: 23 00 80 e7 sethi %hi(0x2039c00), %l1 2014bd8: 40 00 12 2f call 2019494 <_Objects_Allocate> 2014bdc: 90 14 61 b4 or %l1, 0x1b4, %o0 ! 2039db4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014be0: a0 92 20 00 orcc %o0, 0, %l0 2014be4: 32 80 00 06 bne,a 2014bfc 2014be8: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2014bec: 40 00 17 15 call 201a840 <_Thread_Enable_dispatch> 2014bf0: 01 00 00 00 nop return RTEMS_TOO_MANY; 2014bf4: 10 80 00 19 b 2014c58 2014bf8: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014bfc: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014c00: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2014c04: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2014c08: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2014c0c: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014c10: 40 00 54 fa call 2029ff8 <.udiv> 2014c14: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014c18: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2014c1c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014c20: 96 10 00 1b mov %i3, %o3 2014c24: b8 04 20 24 add %l0, 0x24, %i4 2014c28: 40 00 0c 4e call 2017d60 <_Chain_Initialize> 2014c2c: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c30: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014c34: a2 14 61 b4 or %l1, 0x1b4, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c38: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c3c: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c40: 85 28 a0 02 sll %g2, 2, %g2 2014c44: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014c48: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014c4c: 40 00 16 fd call 201a840 <_Thread_Enable_dispatch> 2014c50: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2014c54: 82 10 20 00 clr %g1 } 2014c58: 81 c7 e0 08 ret 2014c5c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02007258 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007258: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 200725c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007260: 92 10 00 18 mov %i0, %o1 2007264: 90 12 21 c4 or %o0, 0x1c4, %o0 2007268: 40 00 08 da call 20095d0 <_Objects_Get> 200726c: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007270: c2 07 bf fc ld [ %fp + -4 ], %g1 2007274: 80 a0 60 00 cmp %g1, 0 2007278: 12 80 00 65 bne 200740c 200727c: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007280: 37 00 80 75 sethi %hi(0x201d400), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007284: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 2007288: b6 16 e1 5c or %i3, 0x15c, %i3 200728c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1 2007290: 80 a0 80 01 cmp %g2, %g1 2007294: 02 80 00 06 be 20072ac 2007298: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 200729c: 40 00 0c 6d call 200a450 <_Thread_Enable_dispatch> 20072a0: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20072a4: 81 c7 e0 08 ret 20072a8: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 20072ac: 12 80 00 0d bne 20072e0 20072b0: 01 00 00 00 nop switch ( the_period->state ) { 20072b4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20072b8: 80 a0 60 04 cmp %g1, 4 20072bc: 18 80 00 05 bgu 20072d0 <== NEVER TAKEN 20072c0: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20072c4: 05 00 80 6c sethi %hi(0x201b000), %g2 20072c8: 84 10 a2 08 or %g2, 0x208, %g2 ! 201b208 20072cc: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20072d0: 40 00 0c 60 call 200a450 <_Thread_Enable_dispatch> 20072d4: 01 00 00 00 nop return( return_value ); 20072d8: 81 c7 e0 08 ret 20072dc: 81 e8 00 00 restore } _ISR_Disable( level ); 20072e0: 7f ff ee ef call 2002e9c 20072e4: 01 00 00 00 nop 20072e8: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20072ec: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 20072f0: 80 a7 20 00 cmp %i4, 0 20072f4: 12 80 00 15 bne 2007348 20072f8: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 20072fc: 7f ff ee ec call 2002eac 2007300: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007304: 7f ff ff 7f call 2007100 <_Rate_monotonic_Initiate_statistics> 2007308: 90 10 00 1d mov %i5, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 200730c: 82 10 20 02 mov 2, %g1 2007310: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007314: 03 00 80 1d sethi %hi(0x2007400), %g1 2007318: 82 10 62 c8 or %g1, 0x2c8, %g1 ! 20076c8 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200731c: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 2007320: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 2007324: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 2007328: c0 27 60 34 clr [ %i5 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 200732c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007330: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007334: 11 00 80 74 sethi %hi(0x201d000), %o0 2007338: 92 07 60 10 add %i5, 0x10, %o1 200733c: 40 00 10 0b call 200b368 <_Watchdog_Insert> 2007340: 90 12 23 ec or %o0, 0x3ec, %o0 2007344: 30 80 00 1b b,a 20073b0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007348: 12 80 00 1e bne 20073c0 200734c: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007350: 7f ff ff 86 call 2007168 <_Rate_monotonic_Update_statistics> 2007354: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007358: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 200735c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007360: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007364: 7f ff ee d2 call 2002eac 2007368: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 200736c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007370: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007374: 13 00 00 10 sethi %hi(0x4000), %o1 2007378: 40 00 0e 59 call 200acdc <_Thread_Set_state> 200737c: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007380: 7f ff ee c7 call 2002e9c 2007384: 01 00 00 00 nop local_state = the_period->state; 2007388: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 200738c: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 2007390: 7f ff ee c7 call 2002eac 2007394: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007398: 80 a6 a0 03 cmp %i2, 3 200739c: 12 80 00 05 bne 20073b0 20073a0: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20073a4: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 20073a8: 40 00 0b 4c call 200a0d8 <_Thread_Clear_state> 20073ac: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 20073b0: 40 00 0c 28 call 200a450 <_Thread_Enable_dispatch> 20073b4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20073b8: 81 c7 e0 08 ret 20073bc: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20073c0: 12 bf ff b9 bne 20072a4 <== NEVER TAKEN 20073c4: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20073c8: 7f ff ff 68 call 2007168 <_Rate_monotonic_Update_statistics> 20073cc: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20073d0: 7f ff ee b7 call 2002eac 20073d4: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20073d8: 82 10 20 02 mov 2, %g1 20073dc: 92 07 60 10 add %i5, 0x10, %o1 20073e0: 11 00 80 74 sethi %hi(0x201d000), %o0 20073e4: 90 12 23 ec or %o0, 0x3ec, %o0 ! 201d3ec <_Watchdog_Ticks_chain> 20073e8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 20073ec: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20073f0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20073f4: 40 00 0f dd call 200b368 <_Watchdog_Insert> 20073f8: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20073fc: 40 00 0c 15 call 200a450 <_Thread_Enable_dispatch> 2007400: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007404: 81 c7 e0 08 ret 2007408: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 200740c: b0 10 20 04 mov 4, %i0 } 2007410: 81 c7 e0 08 ret 2007414: 81 e8 00 00 restore =============================================================================== 02007418 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007418: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 200741c: 80 a6 60 00 cmp %i1, 0 2007420: 02 80 00 75 be 20075f4 <== NEVER TAKEN 2007424: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007428: 13 00 80 6c sethi %hi(0x201b000), %o1 200742c: 9f c6 40 00 call %i1 2007430: 92 12 62 10 or %o1, 0x210, %o1 ! 201b210 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007434: 90 10 00 18 mov %i0, %o0 2007438: 13 00 80 6c sethi %hi(0x201b000), %o1 200743c: 9f c6 40 00 call %i1 2007440: 92 12 62 30 or %o1, 0x230, %o1 ! 201b230 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007444: 90 10 00 18 mov %i0, %o0 2007448: 13 00 80 6c sethi %hi(0x201b000), %o1 200744c: 9f c6 40 00 call %i1 2007450: 92 12 62 58 or %o1, 0x258, %o1 ! 201b258 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007454: 90 10 00 18 mov %i0, %o0 2007458: 13 00 80 6c sethi %hi(0x201b000), %o1 200745c: 9f c6 40 00 call %i1 2007460: 92 12 62 80 or %o1, 0x280, %o1 ! 201b280 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007464: 90 10 00 18 mov %i0, %o0 2007468: 13 00 80 6c sethi %hi(0x201b000), %o1 200746c: 9f c6 40 00 call %i1 2007470: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 201b2d0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007474: 03 00 80 74 sethi %hi(0x201d000), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007478: 21 00 80 6c sethi %hi(0x201b000), %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 200747c: 35 00 80 6c sethi %hi(0x201b000), %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007480: 37 00 80 6c sethi %hi(0x201b000), %i3 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007484: 39 00 80 69 sethi %hi(0x201a400), %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007488: fa 00 61 cc ld [ %g1 + 0x1cc ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200748c: a0 14 23 20 or %l0, 0x320, %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007490: b4 16 a3 38 or %i2, 0x338, %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007494: b6 16 e3 58 or %i3, 0x358, %i3 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007498: 10 80 00 52 b 20075e0 200749c: b8 17 20 98 or %i4, 0x98, %i4 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20074a0: 40 00 17 8b call 200d2cc 20074a4: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 20074a8: 80 a2 20 00 cmp %o0, 0 20074ac: 32 80 00 4d bne,a 20075e0 20074b0: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20074b4: 92 07 bf d8 add %fp, -40, %o1 20074b8: 40 00 17 b2 call 200d380 20074bc: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20074c0: d0 07 bf d8 ld [ %fp + -40 ], %o0 20074c4: 92 10 20 05 mov 5, %o1 20074c8: 40 00 00 af call 2007784 20074cc: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074d0: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20074d4: 92 10 00 10 mov %l0, %o1 20074d8: 90 10 00 18 mov %i0, %o0 20074dc: 94 10 00 1d mov %i5, %o2 20074e0: 9f c6 40 00 call %i1 20074e4: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20074e8: d2 07 bf a0 ld [ %fp + -96 ], %o1 20074ec: 80 a2 60 00 cmp %o1, 0 20074f0: 12 80 00 07 bne 200750c 20074f4: 94 07 bf f0 add %fp, -16, %o2 (*print)( context, "\n" ); 20074f8: 90 10 00 18 mov %i0, %o0 20074fc: 9f c6 40 00 call %i1 2007500: 92 10 00 1c mov %i4, %o1 continue; 2007504: 10 80 00 37 b 20075e0 2007508: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 200750c: 40 00 0e 78 call 200aeec <_Timespec_Divide_by_integer> 2007510: 90 07 bf b8 add %fp, -72, %o0 (*print)( context, 2007514: d0 07 bf ac ld [ %fp + -84 ], %o0 2007518: 40 00 43 b4 call 20183e8 <.div> 200751c: 92 10 23 e8 mov 0x3e8, %o1 2007520: a6 10 00 08 mov %o0, %l3 2007524: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007528: 40 00 43 b0 call 20183e8 <.div> 200752c: 92 10 23 e8 mov 0x3e8, %o1 2007530: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007534: a2 10 00 08 mov %o0, %l1 2007538: d0 07 bf f4 ld [ %fp + -12 ], %o0 200753c: e8 07 bf a8 ld [ %fp + -88 ], %l4 2007540: e4 07 bf b0 ld [ %fp + -80 ], %l2 2007544: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007548: 40 00 43 a8 call 20183e8 <.div> 200754c: 92 10 23 e8 mov 0x3e8, %o1 2007550: 96 10 00 13 mov %l3, %o3 2007554: 98 10 00 12 mov %l2, %o4 2007558: 9a 10 00 11 mov %l1, %o5 200755c: 94 10 00 14 mov %l4, %o2 2007560: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007564: 92 10 00 1a mov %i2, %o1 2007568: 9f c6 40 00 call %i1 200756c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007570: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007574: 94 07 bf f0 add %fp, -16, %o2 2007578: 40 00 0e 5d call 200aeec <_Timespec_Divide_by_integer> 200757c: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 2007580: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007584: 40 00 43 99 call 20183e8 <.div> 2007588: 92 10 23 e8 mov 0x3e8, %o1 200758c: a6 10 00 08 mov %o0, %l3 2007590: d0 07 bf cc ld [ %fp + -52 ], %o0 2007594: 40 00 43 95 call 20183e8 <.div> 2007598: 92 10 23 e8 mov 0x3e8, %o1 200759c: c2 07 bf f0 ld [ %fp + -16 ], %g1 20075a0: a2 10 00 08 mov %o0, %l1 20075a4: d0 07 bf f4 ld [ %fp + -12 ], %o0 20075a8: e8 07 bf c0 ld [ %fp + -64 ], %l4 20075ac: e4 07 bf c8 ld [ %fp + -56 ], %l2 20075b0: 92 10 23 e8 mov 0x3e8, %o1 20075b4: 40 00 43 8d call 20183e8 <.div> 20075b8: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20075bc: 92 10 00 1b mov %i3, %o1 20075c0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20075c4: 94 10 00 14 mov %l4, %o2 20075c8: 90 10 00 18 mov %i0, %o0 20075cc: 96 10 00 13 mov %l3, %o3 20075d0: 98 10 00 12 mov %l2, %o4 20075d4: 9f c6 40 00 call %i1 20075d8: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20075dc: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 20075e0: 03 00 80 74 sethi %hi(0x201d000), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075e4: c2 00 61 d0 ld [ %g1 + 0x1d0 ], %g1 ! 201d1d0 <_Rate_monotonic_Information+0xc> 20075e8: 80 a7 40 01 cmp %i5, %g1 20075ec: 08 bf ff ad bleu 20074a0 20075f0: 90 10 00 1d mov %i5, %o0 20075f4: 81 c7 e0 08 ret 20075f8: 81 e8 00 00 restore =============================================================================== 020160dc : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20160dc: 9d e3 bf 98 save %sp, -104, %sp 20160e0: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20160e4: 80 a6 60 00 cmp %i1, 0 20160e8: 02 80 00 2e be 20161a0 20160ec: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20160f0: 40 00 11 e1 call 201a874 <_Thread_Get> 20160f4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20160f8: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20160fc: b8 10 00 08 mov %o0, %i4 switch ( location ) { 2016100: 80 a0 60 00 cmp %g1, 0 2016104: 12 80 00 27 bne 20161a0 2016108: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 201610c: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2016110: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2016114: 80 a0 60 00 cmp %g1, 0 2016118: 02 80 00 24 be 20161a8 201611c: 01 00 00 00 nop if ( asr->is_enabled ) { 2016120: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2016124: 80 a0 60 00 cmp %g1, 0 2016128: 02 80 00 15 be 201617c 201612c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016130: 7f ff e7 e4 call 20100c0 2016134: 01 00 00 00 nop *signal_set |= signals; 2016138: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 201613c: b2 10 40 19 or %g1, %i1, %i1 2016140: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2016144: 7f ff e7 e3 call 20100d0 2016148: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201614c: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016150: 82 10 61 d4 or %g1, 0x1d4, %g1 ! 203a1d4 <_Per_CPU_Information> 2016154: c4 00 60 08 ld [ %g1 + 8 ], %g2 2016158: 80 a0 a0 00 cmp %g2, 0 201615c: 02 80 00 0f be 2016198 2016160: 01 00 00 00 nop 2016164: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2016168: 80 a7 00 02 cmp %i4, %g2 201616c: 12 80 00 0b bne 2016198 <== NEVER TAKEN 2016170: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2016174: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2016178: 30 80 00 08 b,a 2016198 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201617c: 7f ff e7 d1 call 20100c0 2016180: 01 00 00 00 nop *signal_set |= signals; 2016184: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2016188: b2 10 40 19 or %g1, %i1, %i1 201618c: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2016190: 7f ff e7 d0 call 20100d0 2016194: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2016198: 40 00 11 aa call 201a840 <_Thread_Enable_dispatch> 201619c: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 20161a0: 81 c7 e0 08 ret 20161a4: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 20161a8: 40 00 11 a6 call 201a840 <_Thread_Enable_dispatch> 20161ac: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 20161b0: 81 c7 e0 08 ret 20161b4: 81 e8 00 00 restore =============================================================================== 0200d798 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d798: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d79c: 80 a6 a0 00 cmp %i2, 0 200d7a0: 02 80 00 5a be 200d908 200d7a4: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d7a8: 03 00 80 6d sethi %hi(0x201b400), %g1 200d7ac: f8 00 62 e8 ld [ %g1 + 0x2e8 ], %i4 ! 201b6e8 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7b0: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d7b4: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7b8: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7bc: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7c0: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7c4: 80 a0 60 00 cmp %g1, 0 200d7c8: 02 80 00 03 be 200d7d4 200d7cc: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d7d0: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d7d4: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 200d7d8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d7dc: 7f ff f1 ea call 2009f84 <_CPU_ISR_Get_level> 200d7e0: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d7e4: a1 2c 20 0a sll %l0, 0xa, %l0 200d7e8: a0 14 00 08 or %l0, %o0, %l0 old_mode |= _ISR_Get_level(); 200d7ec: b6 14 00 1b or %l0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d7f0: 80 8e 61 00 btst 0x100, %i1 200d7f4: 02 80 00 06 be 200d80c 200d7f8: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d7fc: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d800: 80 a0 00 01 cmp %g0, %g1 200d804: 82 60 3f ff subx %g0, -1, %g1 200d808: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d80c: 80 8e 62 00 btst 0x200, %i1 200d810: 02 80 00 0b be 200d83c 200d814: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d818: 80 8e 22 00 btst 0x200, %i0 200d81c: 22 80 00 07 be,a 200d838 200d820: c0 27 20 7c clr [ %i4 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d824: 82 10 20 01 mov 1, %g1 200d828: c2 27 20 7c st %g1, [ %i4 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d82c: 03 00 80 6d sethi %hi(0x201b400), %g1 200d830: c2 00 60 14 ld [ %g1 + 0x14 ], %g1 ! 201b414 <_Thread_Ticks_per_timeslice> 200d834: c2 27 20 78 st %g1, [ %i4 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d838: 80 8e 60 0f btst 0xf, %i1 200d83c: 02 80 00 06 be 200d854 200d840: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d844: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d848: 7f ff d2 51 call 200218c 200d84c: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d850: 80 8e 64 00 btst 0x400, %i1 200d854: 02 80 00 14 be 200d8a4 200d858: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d85c: c4 0f 60 08 ldub [ %i5 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d860: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d864: 80 a0 00 18 cmp %g0, %i0 200d868: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d86c: 80 a0 40 02 cmp %g1, %g2 200d870: 22 80 00 0e be,a 200d8a8 200d874: 03 00 80 6d sethi %hi(0x201b400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d878: 7f ff d2 41 call 200217c 200d87c: c2 2f 60 08 stb %g1, [ %i5 + 8 ] _signals = information->signals_pending; 200d880: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d884: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 200d888: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d88c: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d890: 7f ff d2 3f call 200218c 200d894: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d898: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d89c: 80 a0 00 01 cmp %g0, %g1 200d8a0: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d8a4: 03 00 80 6d sethi %hi(0x201b400), %g1 200d8a8: c4 00 62 04 ld [ %g1 + 0x204 ], %g2 ! 201b604 <_System_state_Current> 200d8ac: 80 a0 a0 03 cmp %g2, 3 200d8b0: 12 80 00 16 bne 200d908 200d8b4: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d8b8: 07 00 80 6d sethi %hi(0x201b400), %g3 if ( are_signals_pending || 200d8bc: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d8c0: 86 10 e2 dc or %g3, 0x2dc, %g3 if ( are_signals_pending || 200d8c4: 12 80 00 0a bne 200d8ec 200d8c8: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d8cc: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d8d0: 80 a0 80 03 cmp %g2, %g3 200d8d4: 02 80 00 0d be 200d908 200d8d8: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d8dc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d8e0: 80 a0 a0 00 cmp %g2, 0 200d8e4: 02 80 00 09 be 200d908 <== NEVER TAKEN 200d8e8: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d8ec: 84 10 20 01 mov 1, %g2 ! 1 200d8f0: 03 00 80 6d sethi %hi(0x201b400), %g1 200d8f4: 82 10 62 dc or %g1, 0x2dc, %g1 ! 201b6dc <_Per_CPU_Information> 200d8f8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d8fc: 7f ff ec 77 call 2008ad8 <_Thread_Dispatch> 200d900: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d904: 82 10 20 00 clr %g1 ! 0 } 200d908: 81 c7 e0 08 ret 200d90c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200aa28 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200aa28: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200aa2c: 80 a6 60 00 cmp %i1, 0 200aa30: 02 80 00 07 be 200aa4c 200aa34: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200aa38: 03 00 80 61 sethi %hi(0x2018400), %g1 200aa3c: c2 08 62 9c ldub [ %g1 + 0x29c ], %g1 ! 201869c 200aa40: 80 a6 40 01 cmp %i1, %g1 200aa44: 18 80 00 1c bgu 200aab4 200aa48: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200aa4c: 80 a6 a0 00 cmp %i2, 0 200aa50: 02 80 00 19 be 200aab4 200aa54: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200aa58: 40 00 09 4f call 200cf94 <_Thread_Get> 200aa5c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200aa60: c2 07 bf fc ld [ %fp + -4 ], %g1 200aa64: 80 a0 60 00 cmp %g1, 0 200aa68: 12 80 00 13 bne 200aab4 200aa6c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200aa70: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200aa74: 80 a6 60 00 cmp %i1, 0 200aa78: 02 80 00 0d be 200aaac 200aa7c: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200aa80: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200aa84: 80 a0 60 00 cmp %g1, 0 200aa88: 02 80 00 06 be 200aaa0 200aa8c: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200aa90: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200aa94: 80 a0 40 19 cmp %g1, %i1 200aa98: 08 80 00 05 bleu 200aaac <== ALWAYS TAKEN 200aa9c: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200aaa0: 92 10 00 19 mov %i1, %o1 200aaa4: 40 00 08 0b call 200cad0 <_Thread_Change_priority> 200aaa8: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200aaac: 40 00 09 2d call 200cf60 <_Thread_Enable_dispatch> 200aab0: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200aab4: 81 c7 e0 08 ret 200aab8: 81 e8 00 00 restore =============================================================================== 02016ae4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016ae4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2016ae8: 11 00 80 e8 sethi %hi(0x203a000), %o0 2016aec: 92 10 00 18 mov %i0, %o1 2016af0: 90 12 22 74 or %o0, 0x274, %o0 2016af4: 40 00 0b b3 call 20199c0 <_Objects_Get> 2016af8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016afc: c2 07 bf fc ld [ %fp + -4 ], %g1 2016b00: 80 a0 60 00 cmp %g1, 0 2016b04: 12 80 00 0c bne 2016b34 2016b08: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016b0c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2016b10: 80 a0 60 04 cmp %g1, 4 2016b14: 02 80 00 04 be 2016b24 <== NEVER TAKEN 2016b18: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016b1c: 40 00 13 b6 call 201b9f4 <_Watchdog_Remove> 2016b20: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016b24: 40 00 0f 47 call 201a840 <_Thread_Enable_dispatch> 2016b28: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016b2c: 81 c7 e0 08 ret 2016b30: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016b34: 81 c7 e0 08 ret 2016b38: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016fe0 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016fe0: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016fe4: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016fe8: f8 00 62 b4 ld [ %g1 + 0x2b4 ], %i4 ! 203a2b4 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016fec: ba 10 00 18 mov %i0, %i5 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016ff0: 80 a7 20 00 cmp %i4, 0 2016ff4: 02 80 00 32 be 20170bc 2016ff8: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016ffc: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2017000: c2 08 63 b0 ldub [ %g1 + 0x3b0 ], %g1 ! 2039fb0 <_TOD_Is_set> 2017004: 80 a0 60 00 cmp %g1, 0 2017008: 02 80 00 2d be 20170bc <== NEVER TAKEN 201700c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2017010: 80 a6 a0 00 cmp %i2, 0 2017014: 02 80 00 2a be 20170bc 2017018: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 201701c: 90 10 00 19 mov %i1, %o0 2017020: 7f ff f4 11 call 2014064 <_TOD_Validate> 2017024: b0 10 20 14 mov 0x14, %i0 2017028: 80 8a 20 ff btst 0xff, %o0 201702c: 02 80 00 27 be 20170c8 2017030: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2017034: 7f ff f3 d8 call 2013f94 <_TOD_To_seconds> 2017038: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 201703c: 21 00 80 e8 sethi %hi(0x203a000), %l0 2017040: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 ! 203a02c <_TOD_Now> 2017044: 80 a2 00 01 cmp %o0, %g1 2017048: 08 80 00 1d bleu 20170bc 201704c: b2 10 00 08 mov %o0, %i1 2017050: 11 00 80 e8 sethi %hi(0x203a000), %o0 2017054: 92 10 00 1d mov %i5, %o1 2017058: 90 12 22 74 or %o0, 0x274, %o0 201705c: 40 00 0a 59 call 20199c0 <_Objects_Get> 2017060: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2017064: c2 07 bf fc ld [ %fp + -4 ], %g1 2017068: 80 a0 60 00 cmp %g1, 0 201706c: 12 80 00 16 bne 20170c4 2017070: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2017074: 40 00 12 60 call 201b9f4 <_Watchdog_Remove> 2017078: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 201707c: 82 10 20 03 mov 3, %g1 2017080: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2017084: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2017088: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201708c: b2 26 40 01 sub %i1, %g1, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2017090: c2 07 20 04 ld [ %i4 + 4 ], %g1 2017094: 90 10 00 1c mov %i4, %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2017098: c0 26 20 18 clr [ %i0 + 0x18 ] the_watchdog->routine = routine; 201709c: f4 26 20 2c st %i2, [ %i0 + 0x2c ] the_watchdog->id = id; 20170a0: fa 26 20 30 st %i5, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20170a4: f6 26 20 34 st %i3, [ %i0 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20170a8: f2 26 20 1c st %i1, [ %i0 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20170ac: 9f c0 40 00 call %g1 20170b0: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20170b4: 40 00 0d e3 call 201a840 <_Thread_Enable_dispatch> 20170b8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20170bc: 81 c7 e0 08 ret 20170c0: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20170c4: b0 10 20 04 mov 4, %i0 } 20170c8: 81 c7 e0 08 ret 20170cc: 81 e8 00 00 restore