=============================================================================== 0200fbc4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fbc4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fbc8: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fbcc: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fbd0: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fbd4: 80 8e e0 03 btst 3, %i3 200fbd8: 02 80 00 07 be 200fbf4 <_CORE_message_queue_Initialize+0x30> 200fbdc: ba 10 00 1b mov %i3, %i5 allocated_message_size += sizeof(uint32_t); 200fbe0: ba 06 e0 04 add %i3, 4, %i5 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fbe4: ba 0f 7f fc and %i5, -4, %i5 } if (allocated_message_size < maximum_message_size) 200fbe8: 80 a7 40 1b cmp %i5, %i3 200fbec: 0a 80 00 24 bcs 200fc7c <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fbf0: b8 10 20 00 clr %i4 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 200fbf4: ba 07 60 10 add %i5, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 200fbf8: 90 10 20 00 clr %o0 200fbfc: 92 10 00 1a mov %i2, %o1 200fc00: 94 10 20 00 clr %o2 200fc04: 96 10 00 1d mov %i5, %o3 200fc08: 40 00 3e d8 call 201f768 <__muldi3> 200fc0c: b8 10 20 00 clr %i4 if ( x > SIZE_MAX ) 200fc10: 80 a2 20 00 cmp %o0, 0 200fc14: 34 80 00 1b bg,a 200fc80 <_CORE_message_queue_Initialize+0xbc> 200fc18: b0 0f 20 01 and %i4, 1, %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fc1c: 40 00 0b fb call 2012c08 <_Workspace_Allocate> 200fc20: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fc24: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fc28: 80 a2 20 00 cmp %o0, 0 200fc2c: 02 80 00 14 be 200fc7c <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN 200fc30: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fc34: 90 06 20 60 add %i0, 0x60, %o0 200fc38: 94 10 00 1a mov %i2, %o2 200fc3c: 40 00 13 df call 2014bb8 <_Chain_Initialize> 200fc40: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc44: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 200fc48: c2 26 20 58 st %g1, [ %i0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200fc4c: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc50: 84 06 20 54 add %i0, 0x54, %g2 200fc54: 82 18 60 01 xor %g1, 1, %g1 200fc58: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 200fc5c: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 200fc60: c0 26 20 54 clr [ %i0 + 0x54 ] 200fc64: 90 10 00 18 mov %i0, %o0 200fc68: 92 60 3f ff subx %g0, -1, %o1 200fc6c: 94 10 20 80 mov 0x80, %o2 200fc70: 96 10 20 06 mov 6, %o3 200fc74: 40 00 09 91 call 20122b8 <_Thread_queue_Initialize> 200fc78: b8 10 20 01 mov 1, %i4 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fc7c: b0 0f 20 01 and %i4, 1, %i0 200fc80: 81 c7 e0 08 ret 200fc84: 81 e8 00 00 restore =============================================================================== 02007260 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2007260: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2007264: 90 10 00 18 mov %i0, %o0 2007268: 40 00 07 33 call 2008f34 <_Thread_queue_Dequeue> 200726c: ba 10 00 18 mov %i0, %i5 2007270: 80 a2 20 00 cmp %o0, 0 2007274: 12 80 00 0e bne 20072ac <_CORE_semaphore_Surrender+0x4c> 2007278: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 200727c: 7f ff eb c0 call 200217c 2007280: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2007284: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 2007288: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 200728c: 80 a0 40 02 cmp %g1, %g2 2007290: 1a 80 00 05 bcc 20072a4 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2007294: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2007298: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 200729c: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 20072a0: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 20072a4: 7f ff eb ba call 200218c 20072a8: 01 00 00 00 nop } return status; } 20072ac: 81 c7 e0 08 ret 20072b0: 81 e8 00 00 restore =============================================================================== 02005ff8 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005ff8: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005ffc: f8 06 21 58 ld [ %i0 + 0x158 ], %i4 option_set = (rtems_option) the_thread->Wait.option; 2006000: f6 06 20 30 ld [ %i0 + 0x30 ], %i3 _ISR_Disable( level ); 2006004: 7f ff f0 5e call 200217c 2006008: ba 10 00 18 mov %i0, %i5 200600c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2006010: c4 07 00 00 ld [ %i4 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2006014: c6 07 60 24 ld [ %i5 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2006018: 82 88 c0 02 andcc %g3, %g2, %g1 200601c: 02 80 00 43 be 2006128 <_Event_Surrender+0x130> 2006020: 01 00 00 00 nop /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006024: 09 00 80 6d sethi %hi(0x201b400), %g4 2006028: 88 11 22 7c or %g4, 0x27c, %g4 ! 201b67c <_Per_CPU_Information> 200602c: f2 01 20 08 ld [ %g4 + 8 ], %i1 2006030: 80 a6 60 00 cmp %i1, 0 2006034: 22 80 00 1d be,a 20060a8 <_Event_Surrender+0xb0> 2006038: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 200603c: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2006040: 80 a7 40 04 cmp %i5, %g4 2006044: 32 80 00 19 bne,a 20060a8 <_Event_Surrender+0xb0> 2006048: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200604c: 09 00 80 6d sethi %hi(0x201b400), %g4 2006050: f2 01 22 d0 ld [ %g4 + 0x2d0 ], %i1 ! 201b6d0 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006054: 80 a6 60 02 cmp %i1, 2 2006058: 02 80 00 07 be 2006074 <_Event_Surrender+0x7c> <== NEVER TAKEN 200605c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006060: c8 01 22 d0 ld [ %g4 + 0x2d0 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006064: 80 a1 20 01 cmp %g4, 1 2006068: 32 80 00 10 bne,a 20060a8 <_Event_Surrender+0xb0> 200606c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006070: 80 a0 40 03 cmp %g1, %g3 2006074: 02 80 00 04 be 2006084 <_Event_Surrender+0x8c> 2006078: 80 8e e0 02 btst 2, %i3 200607c: 02 80 00 2b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN 2006080: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2006084: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2006088: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 200608c: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2006090: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006094: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2006098: 84 10 20 03 mov 3, %g2 200609c: 03 00 80 6d sethi %hi(0x201b400), %g1 20060a0: c4 20 62 d0 st %g2, [ %g1 + 0x2d0 ] ! 201b6d0 <_Event_Sync_state> 20060a4: 30 80 00 21 b,a 2006128 <_Event_Surrender+0x130> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20060a8: 80 89 21 00 btst 0x100, %g4 20060ac: 02 80 00 1f be 2006128 <_Event_Surrender+0x130> 20060b0: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20060b4: 02 80 00 04 be 20060c4 <_Event_Surrender+0xcc> 20060b8: 80 8e e0 02 btst 2, %i3 20060bc: 02 80 00 1b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN 20060c0: 01 00 00 00 nop 20060c4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 20060c8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060cc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 20060d0: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060d4: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 20060d8: 7f ff f0 2d call 200218c 20060dc: 90 10 00 18 mov %i0, %o0 20060e0: 7f ff f0 27 call 200217c 20060e4: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 20060e8: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 20060ec: 80 a0 60 02 cmp %g1, 2 20060f0: 02 80 00 06 be 2006108 <_Event_Surrender+0x110> 20060f4: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 20060f8: 7f ff f0 25 call 200218c 20060fc: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006100: 10 80 00 08 b 2006120 <_Event_Surrender+0x128> 2006104: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2006108: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200610c: 7f ff f0 20 call 200218c 2006110: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 2006114: 40 00 0e 75 call 2009ae8 <_Watchdog_Remove> 2006118: 90 07 60 48 add %i5, 0x48, %o0 200611c: b2 16 63 f8 or %i1, 0x3f8, %i1 2006120: 40 00 09 d6 call 2008878 <_Thread_Clear_state> 2006124: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2006128: 7f ff f0 19 call 200218c 200612c: 81 e8 00 00 restore =============================================================================== 02006130 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2006130: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2006134: 90 10 00 18 mov %i0, %o0 2006138: 40 00 0a bb call 2008c24 <_Thread_Get> 200613c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006140: c2 07 bf fc ld [ %fp + -4 ], %g1 2006144: 80 a0 60 00 cmp %g1, 0 2006148: 12 80 00 1d bne 20061bc <_Event_Timeout+0x8c> <== NEVER TAKEN 200614c: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006150: 7f ff f0 0b call 200217c 2006154: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006158: 03 00 80 6d sethi %hi(0x201b400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200615c: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 201b688 <_Per_CPU_Information+0xc> 2006160: 80 a7 40 01 cmp %i5, %g1 2006164: 12 80 00 09 bne 2006188 <_Event_Timeout+0x58> 2006168: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 200616c: 03 00 80 6d sethi %hi(0x201b400), %g1 2006170: c4 00 62 d0 ld [ %g1 + 0x2d0 ], %g2 ! 201b6d0 <_Event_Sync_state> 2006174: 80 a0 a0 01 cmp %g2, 1 2006178: 32 80 00 05 bne,a 200618c <_Event_Timeout+0x5c> 200617c: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2006180: 84 10 20 02 mov 2, %g2 2006184: c4 20 62 d0 st %g2, [ %g1 + 0x2d0 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006188: 82 10 20 06 mov 6, %g1 200618c: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 2006190: 7f ff ef ff call 200218c 2006194: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006198: 90 10 00 1d mov %i5, %o0 200619c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20061a0: 40 00 09 b6 call 2008878 <_Thread_Clear_state> 20061a4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20061a8: 03 00 80 6d sethi %hi(0x201b400), %g1 20061ac: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level> 20061b0: 84 00 bf ff add %g2, -1, %g2 20061b4: c4 20 60 50 st %g2, [ %g1 + 0x50 ] return _Thread_Dispatch_disable_level; 20061b8: c2 00 60 50 ld [ %g1 + 0x50 ], %g1 20061bc: 81 c7 e0 08 ret 20061c0: 81 e8 00 00 restore =============================================================================== 0200bc34 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bc34: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bc38: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200bc3c: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200bc40: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200bc44: e0 06 20 20 ld [ %i0 + 0x20 ], %l0 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200bc48: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 uintptr_t const min_block_size = heap->min_block_size; 200bc4c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200bc50: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200bc54: 80 a7 40 19 cmp %i5, %i1 200bc58: 0a 80 00 9f bcs 200bed4 <_Heap_Extend+0x2a0> 200bc5c: b8 10 20 00 clr %i4 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200bc60: 90 10 00 19 mov %i1, %o0 200bc64: 92 10 00 1a mov %i2, %o1 200bc68: 94 10 00 11 mov %l1, %o2 200bc6c: 98 07 bf f8 add %fp, -8, %o4 200bc70: 7f ff ed 4f call 20071ac <_Heap_Get_first_and_last_block> 200bc74: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200bc78: 80 8a 20 ff btst 0xff, %o0 200bc7c: 02 80 00 96 be 200bed4 <_Heap_Extend+0x2a0> 200bc80: b4 10 00 10 mov %l0, %i2 200bc84: aa 10 20 00 clr %l5 200bc88: ac 10 20 00 clr %l6 200bc8c: b8 10 20 00 clr %i4 200bc90: a8 10 20 00 clr %l4 200bc94: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200bc98: 80 a0 40 1d cmp %g1, %i5 200bc9c: 1a 80 00 05 bcc 200bcb0 <_Heap_Extend+0x7c> 200bca0: e6 06 80 00 ld [ %i2 ], %l3 200bca4: 80 a6 40 13 cmp %i1, %l3 200bca8: 2a 80 00 8b bcs,a 200bed4 <_Heap_Extend+0x2a0> 200bcac: b8 10 20 00 clr %i4 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200bcb0: 80 a7 40 01 cmp %i5, %g1 200bcb4: 02 80 00 06 be 200bccc <_Heap_Extend+0x98> 200bcb8: 80 a7 40 13 cmp %i5, %l3 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200bcbc: 2a 80 00 05 bcs,a 200bcd0 <_Heap_Extend+0x9c> 200bcc0: ac 10 00 1a mov %i2, %l6 200bcc4: 10 80 00 04 b 200bcd4 <_Heap_Extend+0xa0> 200bcc8: 90 10 00 13 mov %l3, %o0 200bccc: a8 10 00 1a mov %i2, %l4 200bcd0: 90 10 00 13 mov %l3, %o0 200bcd4: 40 00 15 f3 call 20114a0 <.urem> 200bcd8: 92 10 00 11 mov %l1, %o1 200bcdc: ae 04 ff f8 add %l3, -8, %l7 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200bce0: 80 a4 c0 19 cmp %l3, %i1 200bce4: 12 80 00 05 bne 200bcf8 <_Heap_Extend+0xc4> 200bce8: 90 25 c0 08 sub %l7, %o0, %o0 start_block->prev_size = extend_area_end; 200bcec: fa 26 80 00 st %i5, [ %i2 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200bcf0: 10 80 00 04 b 200bd00 <_Heap_Extend+0xcc> 200bcf4: b8 10 00 08 mov %o0, %i4 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200bcf8: 2a 80 00 02 bcs,a 200bd00 <_Heap_Extend+0xcc> 200bcfc: aa 10 00 08 mov %o0, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bd00: f4 02 20 04 ld [ %o0 + 4 ], %i2 200bd04: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd08: b4 06 80 08 add %i2, %o0, %i2 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200bd0c: 80 a6 80 10 cmp %i2, %l0 200bd10: 12 bf ff e2 bne 200bc98 <_Heap_Extend+0x64> 200bd14: 82 10 00 1a mov %i2, %g1 if ( extend_area_begin < heap->area_begin ) { 200bd18: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200bd1c: 80 a6 40 01 cmp %i1, %g1 200bd20: 3a 80 00 04 bcc,a 200bd30 <_Heap_Extend+0xfc> 200bd24: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200bd28: 10 80 00 05 b 200bd3c <_Heap_Extend+0x108> 200bd2c: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200bd30: 80 a0 40 1d cmp %g1, %i5 200bd34: 2a 80 00 02 bcs,a 200bd3c <_Heap_Extend+0x108> 200bd38: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200bd3c: c4 07 bf f8 ld [ %fp + -8 ], %g2 200bd40: c2 07 bf fc ld [ %fp + -4 ], %g1 extend_first_block->prev_size = extend_area_end; 200bd44: fa 20 80 00 st %i5, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200bd48: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200bd4c: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200bd50: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200bd54: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200bd58: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 200bd5c: 80 a0 c0 02 cmp %g3, %g2 200bd60: 08 80 00 04 bleu 200bd70 <_Heap_Extend+0x13c> 200bd64: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200bd68: 10 80 00 06 b 200bd80 <_Heap_Extend+0x14c> 200bd6c: c4 26 20 20 st %g2, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200bd70: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200bd74: 80 a0 80 01 cmp %g2, %g1 200bd78: 2a 80 00 02 bcs,a 200bd80 <_Heap_Extend+0x14c> 200bd7c: c2 26 20 24 st %g1, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200bd80: 80 a5 20 00 cmp %l4, 0 200bd84: 02 80 00 14 be 200bdd4 <_Heap_Extend+0x1a0> 200bd88: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200bd8c: f4 06 20 10 ld [ %i0 + 0x10 ], %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200bd90: 92 10 00 1a mov %i2, %o1 200bd94: 40 00 15 c3 call 20114a0 <.urem> 200bd98: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200bd9c: 80 a2 20 00 cmp %o0, 0 200bda0: 02 80 00 04 be 200bdb0 <_Heap_Extend+0x17c> 200bda4: c2 05 00 00 ld [ %l4 ], %g1 return value - remainder + alignment; 200bda8: b2 06 40 1a add %i1, %i2, %i1 200bdac: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200bdb0: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200bdb4: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200bdb8: 82 25 00 09 sub %l4, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200bdbc: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200bdc0: 90 10 00 18 mov %i0, %o0 200bdc4: 7f ff ff 92 call 200bc0c <_Heap_Free_block> 200bdc8: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200bdcc: 10 80 00 08 b 200bdec <_Heap_Extend+0x1b8> 200bdd0: 80 a7 20 00 cmp %i4, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200bdd4: 80 a5 a0 00 cmp %l6, 0 200bdd8: 02 80 00 04 be 200bde8 <_Heap_Extend+0x1b4> 200bddc: ac 25 80 01 sub %l6, %g1, %l6 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200bde0: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200bde4: ec 20 60 04 st %l6, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200bde8: 80 a7 20 00 cmp %i4, 0 200bdec: 02 80 00 15 be 200be40 <_Heap_Extend+0x20c> 200bdf0: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bdf4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200bdf8: ba 27 40 1c sub %i5, %i4, %i5 200bdfc: 40 00 15 a9 call 20114a0 <.urem> 200be00: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200be04: c4 07 20 04 ld [ %i4 + 4 ], %g2 200be08: ba 27 40 08 sub %i5, %o0, %i5 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be0c: 82 07 40 1c add %i5, %i4, %g1 (last_block->size_and_flag - last_block_new_size) 200be10: 84 20 80 1d sub %g2, %i5, %g2 | HEAP_PREV_BLOCK_USED; 200be14: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200be18: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be1c: c2 07 20 04 ld [ %i4 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200be20: 90 10 00 18 mov %i0, %o0 200be24: 82 08 60 01 and %g1, 1, %g1 200be28: 92 10 00 1c mov %i4, %o1 block->size_and_flag = size | flag; 200be2c: ba 17 40 01 or %i5, %g1, %i5 200be30: 7f ff ff 77 call 200bc0c <_Heap_Free_block> 200be34: fa 27 20 04 st %i5, [ %i4 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200be38: 10 80 00 0f b 200be74 <_Heap_Extend+0x240> 200be3c: 80 a7 20 00 cmp %i4, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200be40: 80 a5 60 00 cmp %l5, 0 200be44: 02 80 00 0b be 200be70 <_Heap_Extend+0x23c> 200be48: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be4c: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200be50: c2 07 bf fc ld [ %fp + -4 ], %g1 200be54: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200be58: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200be5c: 84 10 c0 02 or %g3, %g2, %g2 200be60: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200be64: c4 00 60 04 ld [ %g1 + 4 ], %g2 200be68: 84 10 a0 01 or %g2, 1, %g2 200be6c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200be70: 80 a7 20 00 cmp %i4, 0 200be74: 32 80 00 09 bne,a 200be98 <_Heap_Extend+0x264> 200be78: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200be7c: 80 a5 20 00 cmp %l4, 0 200be80: 32 80 00 06 bne,a 200be98 <_Heap_Extend+0x264> 200be84: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200be88: d2 07 bf f8 ld [ %fp + -8 ], %o1 200be8c: 7f ff ff 60 call 200bc0c <_Heap_Free_block> 200be90: 90 10 00 18 mov %i0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200be94: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200be98: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be9c: c6 00 60 04 ld [ %g1 + 4 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200bea0: 84 20 80 01 sub %g2, %g1, %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bea4: 86 08 e0 01 and %g3, 1, %g3 block->size_and_flag = size | flag; 200bea8: 84 10 c0 02 or %g3, %g2, %g2 200beac: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200beb0: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200beb4: b8 10 20 01 mov 1, %i4 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200beb8: a4 20 40 12 sub %g1, %l2, %l2 /* Statistics */ stats->size += extended_size; 200bebc: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200bec0: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200bec4: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200bec8: 02 80 00 03 be 200bed4 <_Heap_Extend+0x2a0> <== NEVER TAKEN 200becc: c2 26 20 2c st %g1, [ %i0 + 0x2c ] 200bed0: e4 26 c0 00 st %l2, [ %i3 ] *extended_size_ptr = extended_size; return true; } 200bed4: b0 0f 20 01 and %i4, 1, %i0 200bed8: 81 c7 e0 08 ret 200bedc: 81 e8 00 00 restore =============================================================================== 0200c044 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c044: 9d e3 bf a0 save %sp, -96, %sp * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200c048: 88 10 20 01 mov 1, %g4 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200c04c: 80 a6 60 00 cmp %i1, 0 200c050: 02 80 00 77 be 200c22c <_Heap_Free+0x1e8> 200c054: 90 10 00 19 mov %i1, %o0 200c058: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c05c: 40 00 2b 1c call 2016ccc <.urem> 200c060: ba 06 7f f8 add %i1, -8, %i5 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c064: da 06 20 20 ld [ %i0 + 0x20 ], %o5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c068: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c06c: 80 a7 40 0d cmp %i5, %o5 200c070: 0a 80 00 05 bcs 200c084 <_Heap_Free+0x40> 200c074: 82 10 20 00 clr %g1 200c078: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200c07c: 80 a0 40 1d cmp %g1, %i5 200c080: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200c084: 80 a0 60 00 cmp %g1, 0 200c088: 02 80 00 69 be 200c22c <_Heap_Free+0x1e8> 200c08c: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c090: d6 07 60 04 ld [ %i5 + 4 ], %o3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c094: 84 0a ff fe and %o3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c098: 82 00 80 1d add %g2, %i5, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c09c: 80 a0 40 0d cmp %g1, %o5 200c0a0: 0a 80 00 05 bcs 200c0b4 <_Heap_Free+0x70> <== NEVER TAKEN 200c0a4: 86 10 20 00 clr %g3 200c0a8: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200c0ac: 80 a0 c0 01 cmp %g3, %g1 200c0b0: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200c0b4: 80 a0 e0 00 cmp %g3, 0 200c0b8: 02 80 00 5d be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c0bc: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0c0: de 00 60 04 ld [ %g1 + 4 ], %o7 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200c0c4: 80 8b e0 01 btst 1, %o7 200c0c8: 02 80 00 59 be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c0cc: 9e 0b ff fe and %o7, -2, %o7 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200c0d0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c0d4: 80 a0 40 04 cmp %g1, %g4 200c0d8: 02 80 00 07 be 200c0f4 <_Heap_Free+0xb0> 200c0dc: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0e0: 86 00 40 0f add %g1, %o7, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c0e4: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200c0e8: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c0ec: 80 a0 00 03 cmp %g0, %g3 200c0f0: 98 60 3f ff subx %g0, -1, %o4 if ( !_Heap_Is_prev_used( block ) ) { 200c0f4: 80 8a e0 01 btst 1, %o3 200c0f8: 12 80 00 25 bne 200c18c <_Heap_Free+0x148> 200c0fc: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c100: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c104: 86 27 40 0b sub %i5, %o3, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c108: 80 a0 c0 0d cmp %g3, %o5 200c10c: 0a 80 00 04 bcs 200c11c <_Heap_Free+0xd8> <== NEVER TAKEN 200c110: 94 10 20 00 clr %o2 200c114: 80 a1 00 03 cmp %g4, %g3 200c118: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200c11c: 80 a2 a0 00 cmp %o2, 0 200c120: 02 80 00 43 be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c124: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c128: da 00 e0 04 ld [ %g3 + 4 ], %o5 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c12c: 80 8b 60 01 btst 1, %o5 200c130: 02 80 00 3f be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN 200c134: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c138: 02 80 00 0e be 200c170 <_Heap_Free+0x12c> 200c13c: 88 00 80 0b add %g2, %o3, %g4 uintptr_t const size = block_size + prev_size + next_block_size; 200c140: 9e 01 00 0f add %g4, %o7, %o7 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200c144: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200c148: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200c14c: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200c150: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c154: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 200c158: 82 00 7f ff add %g1, -1, %g1 200c15c: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c160: de 23 c0 03 st %o7, [ %o7 + %g3 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c164: 82 13 e0 01 or %o7, 1, %g1 200c168: 10 80 00 27 b 200c204 <_Heap_Free+0x1c0> 200c16c: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c170: 9e 11 20 01 or %g4, 1, %o7 200c174: de 20 e0 04 st %o7, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c178: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200c17c: c8 20 80 1d st %g4, [ %g2 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c180: 86 08 ff fe and %g3, -2, %g3 200c184: 10 80 00 20 b 200c204 <_Heap_Free+0x1c0> 200c188: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c18c: 22 80 00 0d be,a 200c1c0 <_Heap_Free+0x17c> 200c190: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200c194: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200c198: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200c19c: c8 27 60 08 st %g4, [ %i5 + 8 ] new_block->prev = prev; 200c1a0: c2 27 60 0c st %g1, [ %i5 + 0xc ] uintptr_t const size = block_size + next_block_size; 200c1a4: 86 03 c0 02 add %o7, %g2, %g3 next->prev = new_block; prev->next = new_block; 200c1a8: fa 20 60 08 st %i5, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200c1ac: fa 21 20 0c st %i5, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1b0: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c1b4: c6 20 c0 1d st %g3, [ %g3 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c1b8: 10 80 00 13 b 200c204 <_Heap_Free+0x1c0> 200c1bc: c2 27 60 04 st %g1, [ %i5 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c1c0: f0 27 60 0c st %i0, [ %i5 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c1c4: c6 27 60 08 st %g3, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c1c8: fa 20 e0 0c st %i5, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c1cc: 86 10 a0 01 or %g2, 1, %g3 200c1d0: c6 27 60 04 st %g3, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1d4: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200c1d8: c4 20 80 1d st %g2, [ %g2 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1dc: 86 08 ff fe and %g3, -2, %g3 200c1e0: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c1e4: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200c1e8: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c1ec: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c1f0: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c1f4: 80 a0 c0 01 cmp %g3, %g1 200c1f8: 1a 80 00 03 bcc 200c204 <_Heap_Free+0x1c0> 200c1fc: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c200: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200c204: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200c208: 88 10 20 01 mov 1, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c20c: 82 00 7f ff add %g1, -1, %g1 200c210: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200c214: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200c218: 82 00 60 01 inc %g1 200c21c: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200c220: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200c224: 84 00 40 02 add %g1, %g2, %g2 200c228: c4 26 20 30 st %g2, [ %i0 + 0x30 ] return( true ); } 200c22c: b0 09 20 01 and %g4, 1, %i0 200c230: 81 c7 e0 08 ret 200c234: 81 e8 00 00 restore =============================================================================== 0201879c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 201879c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20187a0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 20187a4: 7f ff f9 4a call 2016ccc <.urem> 20187a8: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 20187ac: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20187b0: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 20187b4: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20187b8: 80 a2 00 03 cmp %o0, %g3 20187bc: 0a 80 00 05 bcs 20187d0 <_Heap_Size_of_alloc_area+0x34> 20187c0: 84 10 20 00 clr %g2 20187c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 20187c8: 80 a0 40 08 cmp %g1, %o0 20187cc: 84 60 3f ff subx %g0, -1, %g2 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 20187d0: 80 a0 a0 00 cmp %g2, 0 20187d4: 02 80 00 15 be 2018828 <_Heap_Size_of_alloc_area+0x8c> 20187d8: 82 10 20 00 clr %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20187dc: fa 02 20 04 ld [ %o0 + 4 ], %i5 20187e0: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20187e4: ba 07 40 08 add %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20187e8: 80 a7 40 03 cmp %i5, %g3 20187ec: 0a 80 00 05 bcs 2018800 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 20187f0: 84 10 20 00 clr %g2 20187f4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 20187f8: 80 a0 40 1d cmp %g1, %i5 20187fc: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 2018800: 80 a0 a0 00 cmp %g2, 0 2018804: 02 80 00 09 be 2018828 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 2018808: 82 10 20 00 clr %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 201880c: c4 07 60 04 ld [ %i5 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2018810: 80 88 a0 01 btst 1, %g2 2018814: 02 80 00 05 be 2018828 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 2018818: ba 27 40 19 sub %i5, %i1, %i5 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 201881c: 82 10 20 01 mov 1, %g1 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2018820: ba 07 60 04 add %i5, 4, %i5 2018824: fa 26 80 00 st %i5, [ %i2 ] return true; } 2018828: b0 08 60 01 and %g1, 1, %i0 201882c: 81 c7 e0 08 ret 2018830: 81 e8 00 00 restore =============================================================================== 020080a8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20080a8: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080ac: 3b 00 80 20 sethi %hi(0x2008000), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20080b0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 20080b4: e0 06 20 14 ld [ %i0 + 0x14 ], %l0 Heap_Block *const first_block = heap->first_block; 20080b8: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 Heap_Block *const last_block = heap->last_block; 20080bc: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080c0: 80 a6 a0 00 cmp %i2, 0 20080c4: 02 80 00 04 be 20080d4 <_Heap_Walk+0x2c> 20080c8: ba 17 60 54 or %i5, 0x54, %i5 20080cc: 3b 00 80 20 sethi %hi(0x2008000), %i5 20080d0: ba 17 60 5c or %i5, 0x5c, %i5 ! 200805c <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20080d4: 03 00 80 5c sethi %hi(0x2017000), %g1 20080d8: c4 00 63 84 ld [ %g1 + 0x384 ], %g2 ! 2017384 <_System_state_Current> 20080dc: 80 a0 a0 03 cmp %g2, 3 20080e0: 12 80 01 24 bne 2008570 <_Heap_Walk+0x4c8> 20080e4: 82 10 20 01 mov 1, %g1 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 20080e8: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 20080ec: da 06 20 18 ld [ %i0 + 0x18 ], %o5 20080f0: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20080f4: f6 23 a0 60 st %i3, [ %sp + 0x60 ] 20080f8: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 20080fc: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008100: 90 10 00 19 mov %i1, %o0 2008104: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008108: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200810c: 92 10 20 00 clr %o1 2008110: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008114: 15 00 80 52 sethi %hi(0x2014800), %o2 2008118: 96 10 00 1c mov %i4, %o3 200811c: 94 12 a1 38 or %o2, 0x138, %o2 2008120: 9f c7 40 00 call %i5 2008124: 98 10 00 10 mov %l0, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008128: 80 a7 20 00 cmp %i4, 0 200812c: 12 80 00 07 bne 2008148 <_Heap_Walk+0xa0> 2008130: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 2008134: 15 00 80 52 sethi %hi(0x2014800), %o2 2008138: 90 10 00 19 mov %i1, %o0 200813c: 92 10 20 01 mov 1, %o1 2008140: 10 80 00 32 b 2008208 <_Heap_Walk+0x160> 2008144: 94 12 a1 d0 or %o2, 0x1d0, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008148: 22 80 00 08 be,a 2008168 <_Heap_Walk+0xc0> 200814c: 90 10 00 10 mov %l0, %o0 (*printer)( 2008150: 15 00 80 52 sethi %hi(0x2014800), %o2 2008154: 90 10 00 19 mov %i1, %o0 2008158: 92 10 20 01 mov 1, %o1 200815c: 94 12 a1 e8 or %o2, 0x1e8, %o2 2008160: 10 80 01 0b b 200858c <_Heap_Walk+0x4e4> 2008164: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008168: 7f ff e6 5e call 2001ae0 <.urem> 200816c: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008170: 80 a2 20 00 cmp %o0, 0 2008174: 22 80 00 08 be,a 2008194 <_Heap_Walk+0xec> 2008178: 90 06 e0 08 add %i3, 8, %o0 (*printer)( 200817c: 15 00 80 52 sethi %hi(0x2014800), %o2 2008180: 90 10 00 19 mov %i1, %o0 2008184: 92 10 20 01 mov 1, %o1 2008188: 94 12 a2 08 or %o2, 0x208, %o2 200818c: 10 80 01 00 b 200858c <_Heap_Walk+0x4e4> 2008190: 96 10 00 10 mov %l0, %o3 2008194: 7f ff e6 53 call 2001ae0 <.urem> 2008198: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 200819c: 80 a2 20 00 cmp %o0, 0 20081a0: 22 80 00 08 be,a 20081c0 <_Heap_Walk+0x118> 20081a4: c2 06 e0 04 ld [ %i3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20081a8: 15 00 80 52 sethi %hi(0x2014800), %o2 20081ac: 90 10 00 19 mov %i1, %o0 20081b0: 92 10 20 01 mov 1, %o1 20081b4: 94 12 a2 30 or %o2, 0x230, %o2 20081b8: 10 80 00 f5 b 200858c <_Heap_Walk+0x4e4> 20081bc: 96 10 00 1b mov %i3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20081c0: 80 88 60 01 btst 1, %g1 20081c4: 32 80 00 07 bne,a 20081e0 <_Heap_Walk+0x138> 20081c8: f4 04 60 04 ld [ %l1 + 4 ], %i2 (*printer)( 20081cc: 15 00 80 52 sethi %hi(0x2014800), %o2 20081d0: 90 10 00 19 mov %i1, %o0 20081d4: 92 10 20 01 mov 1, %o1 20081d8: 10 80 00 0c b 2008208 <_Heap_Walk+0x160> 20081dc: 94 12 a2 68 or %o2, 0x268, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20081e0: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20081e4: b4 04 40 1a add %l1, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20081e8: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20081ec: 80 88 60 01 btst 1, %g1 20081f0: 12 80 00 0a bne 2008218 <_Heap_Walk+0x170> 20081f4: 80 a6 80 1b cmp %i2, %i3 (*printer)( 20081f8: 15 00 80 52 sethi %hi(0x2014800), %o2 20081fc: 90 10 00 19 mov %i1, %o0 2008200: 92 10 20 01 mov 1, %o1 2008204: 94 12 a2 98 or %o2, 0x298, %o2 2008208: 9f c7 40 00 call %i5 200820c: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008210: 10 80 00 d8 b 2008570 <_Heap_Walk+0x4c8> 2008214: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( 2008218: 02 80 00 06 be 2008230 <_Heap_Walk+0x188> 200821c: 15 00 80 52 sethi %hi(0x2014800), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008220: 90 10 00 19 mov %i1, %o0 2008224: 92 10 20 01 mov 1, %o1 2008228: 10 bf ff f8 b 2008208 <_Heap_Walk+0x160> 200822c: 94 12 a2 b0 or %o2, 0x2b0, %o2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2008230: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008234: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008238: 10 80 00 33 b 2008304 <_Heap_Walk+0x25c> 200823c: a4 10 00 18 mov %i0, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008240: 80 a0 80 0b cmp %g2, %o3 2008244: 18 80 00 05 bgu 2008258 <_Heap_Walk+0x1b0> 2008248: 82 10 20 00 clr %g1 200824c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2008250: 80 a0 40 0b cmp %g1, %o3 2008254: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2008258: 80 a0 60 00 cmp %g1, 0 200825c: 32 80 00 07 bne,a 2008278 <_Heap_Walk+0x1d0> 2008260: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 2008264: 15 00 80 52 sethi %hi(0x2014800), %o2 2008268: 90 10 00 19 mov %i1, %o0 200826c: 92 10 20 01 mov 1, %o1 2008270: 10 80 00 c7 b 200858c <_Heap_Walk+0x4e4> 2008274: 94 12 a2 e0 or %o2, 0x2e0, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008278: d6 27 bf f8 st %o3, [ %fp + -8 ] 200827c: 7f ff e6 19 call 2001ae0 <.urem> 2008280: 92 10 00 13 mov %l3, %o1 ); return false; } if ( 2008284: 80 a2 20 00 cmp %o0, 0 2008288: 02 80 00 07 be 20082a4 <_Heap_Walk+0x1fc> 200828c: d6 07 bf f8 ld [ %fp + -8 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008290: 15 00 80 52 sethi %hi(0x2014800), %o2 2008294: 90 10 00 19 mov %i1, %o0 2008298: 92 10 20 01 mov 1, %o1 200829c: 10 80 00 bc b 200858c <_Heap_Walk+0x4e4> 20082a0: 94 12 a3 00 or %o2, 0x300, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20082a4: c2 02 e0 04 ld [ %o3 + 4 ], %g1 20082a8: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 20082ac: 82 02 c0 01 add %o3, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20082b0: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20082b4: 80 88 60 01 btst 1, %g1 20082b8: 22 80 00 07 be,a 20082d4 <_Heap_Walk+0x22c> 20082bc: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 20082c0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082c4: 90 10 00 19 mov %i1, %o0 20082c8: 92 10 20 01 mov 1, %o1 20082cc: 10 80 00 b0 b 200858c <_Heap_Walk+0x4e4> 20082d0: 94 12 a3 30 or %o2, 0x330, %o2 ); return false; } if ( free_block->prev != prev_block ) { 20082d4: 80 a3 00 12 cmp %o4, %l2 20082d8: 22 80 00 0a be,a 2008300 <_Heap_Walk+0x258> 20082dc: a4 10 00 0b mov %o3, %l2 (*printer)( 20082e0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082e4: 90 10 00 19 mov %i1, %o0 20082e8: 92 10 20 01 mov 1, %o1 20082ec: 94 12 a3 50 or %o2, 0x350, %o2 20082f0: 9f c7 40 00 call %i5 20082f4: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20082f8: 10 80 00 9e b 2008570 <_Heap_Walk+0x4c8> 20082fc: 82 10 20 00 clr %g1 ! 0 return false; } prev_block = free_block; free_block = free_block->next; 2008300: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008304: 80 a2 c0 18 cmp %o3, %i0 2008308: 32 bf ff ce bne,a 2008240 <_Heap_Walk+0x198> 200830c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 2008310: 2d 00 80 53 sethi %hi(0x2014c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008314: 2f 00 80 53 sethi %hi(0x2014c00), %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008318: ac 15 a1 10 or %l6, 0x110, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200831c: ae 15 e0 f8 or %l7, 0xf8, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008320: 2b 00 80 53 sethi %hi(0x2014c00), %l5 block = next_block; } while ( block != first_block ); return true; } 2008324: c2 06 a0 04 ld [ %i2 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008328: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200832c: a4 08 7f fe and %g1, -2, %l2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008330: a6 04 80 1a add %l2, %i2, %l3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008334: 80 a0 c0 13 cmp %g3, %l3 2008338: 18 80 00 05 bgu 200834c <_Heap_Walk+0x2a4> <== NEVER TAKEN 200833c: 84 10 20 00 clr %g2 2008340: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 2008344: 80 a0 80 13 cmp %g2, %l3 2008348: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200834c: 80 a0 a0 00 cmp %g2, 0 2008350: 12 80 00 07 bne 200836c <_Heap_Walk+0x2c4> 2008354: 84 1e 80 11 xor %i2, %l1, %g2 (*printer)( 2008358: 15 00 80 52 sethi %hi(0x2014800), %o2 200835c: 90 10 00 19 mov %i1, %o0 2008360: 92 10 20 01 mov 1, %o1 2008364: 10 80 00 2c b 2008414 <_Heap_Walk+0x36c> 2008368: 94 12 a3 88 or %o2, 0x388, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 200836c: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008370: c2 27 bf fc st %g1, [ %fp + -4 ] 2008374: a8 40 20 00 addx %g0, 0, %l4 2008378: 90 10 00 12 mov %l2, %o0 200837c: 7f ff e5 d9 call 2001ae0 <.urem> 2008380: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008384: 80 a2 20 00 cmp %o0, 0 2008388: 02 80 00 0c be 20083b8 <_Heap_Walk+0x310> 200838c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008390: 80 8d 20 ff btst 0xff, %l4 2008394: 02 80 00 0a be 20083bc <_Heap_Walk+0x314> 2008398: 80 a4 80 10 cmp %l2, %l0 (*printer)( 200839c: 15 00 80 52 sethi %hi(0x2014800), %o2 20083a0: 90 10 00 19 mov %i1, %o0 20083a4: 92 10 20 01 mov 1, %o1 20083a8: 94 12 a3 b8 or %o2, 0x3b8, %o2 20083ac: 96 10 00 1a mov %i2, %o3 20083b0: 10 bf ff d0 b 20082f0 <_Heap_Walk+0x248> 20083b4: 98 10 00 12 mov %l2, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20083b8: 80 a4 80 10 cmp %l2, %l0 20083bc: 1a 80 00 0d bcc 20083f0 <_Heap_Walk+0x348> 20083c0: 80 a4 c0 1a cmp %l3, %i2 20083c4: 80 8d 20 ff btst 0xff, %l4 20083c8: 02 80 00 0a be 20083f0 <_Heap_Walk+0x348> <== NEVER TAKEN 20083cc: 80 a4 c0 1a cmp %l3, %i2 (*printer)( 20083d0: 15 00 80 52 sethi %hi(0x2014800), %o2 20083d4: 90 10 00 19 mov %i1, %o0 20083d8: 92 10 20 01 mov 1, %o1 20083dc: 94 12 a3 e8 or %o2, 0x3e8, %o2 20083e0: 96 10 00 1a mov %i2, %o3 20083e4: 98 10 00 12 mov %l2, %o4 20083e8: 10 80 00 3d b 20084dc <_Heap_Walk+0x434> 20083ec: 9a 10 00 10 mov %l0, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20083f0: 38 80 00 0c bgu,a 2008420 <_Heap_Walk+0x378> 20083f4: a8 08 60 01 and %g1, 1, %l4 20083f8: 80 8d 20 ff btst 0xff, %l4 20083fc: 02 80 00 09 be 2008420 <_Heap_Walk+0x378> 2008400: a8 08 60 01 and %g1, 1, %l4 (*printer)( 2008404: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008408: 90 10 00 19 mov %i1, %o0 200840c: 92 10 20 01 mov 1, %o1 2008410: 94 12 a0 18 or %o2, 0x18, %o2 2008414: 96 10 00 1a mov %i2, %o3 2008418: 10 bf ff b6 b 20082f0 <_Heap_Walk+0x248> 200841c: 98 10 00 13 mov %l3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008420: c2 04 e0 04 ld [ %l3 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008424: 80 88 60 01 btst 1, %g1 2008428: 12 80 00 40 bne 2008528 <_Heap_Walk+0x480> 200842c: 90 10 00 19 mov %i1, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008430: da 06 a0 0c ld [ %i2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008434: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008438: 05 00 80 52 sethi %hi(0x2014800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 200843c: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008440: 80 a3 40 01 cmp %o5, %g1 2008444: 02 80 00 07 be 2008460 <_Heap_Walk+0x3b8> 2008448: 86 10 a0 f8 or %g2, 0xf8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200844c: 80 a3 40 18 cmp %o5, %i0 2008450: 12 80 00 04 bne 2008460 <_Heap_Walk+0x3b8> 2008454: 86 15 60 c0 or %l5, 0xc0, %g3 2008458: 07 00 80 52 sethi %hi(0x2014800), %g3 200845c: 86 10 e1 08 or %g3, 0x108, %g3 ! 2014908 <_Status_Object_name_errors_to_status+0x48> block->next, block->next == last_free_block ? 2008460: c4 06 a0 08 ld [ %i2 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008464: 1f 00 80 52 sethi %hi(0x2014800), %o7 2008468: 80 a0 80 04 cmp %g2, %g4 200846c: 02 80 00 07 be 2008488 <_Heap_Walk+0x3e0> 2008470: 82 13 e1 18 or %o7, 0x118, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008474: 80 a0 80 18 cmp %g2, %i0 2008478: 12 80 00 04 bne 2008488 <_Heap_Walk+0x3e0> 200847c: 82 15 60 c0 or %l5, 0xc0, %g1 2008480: 03 00 80 52 sethi %hi(0x2014800), %g1 2008484: 82 10 61 28 or %g1, 0x128, %g1 ! 2014928 <_Status_Object_name_errors_to_status+0x68> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008488: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200848c: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008490: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 2008494: 90 10 00 19 mov %i1, %o0 2008498: 92 10 20 00 clr %o1 200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084a0: 96 10 00 1a mov %i2, %o3 20084a4: 94 12 a0 50 or %o2, 0x50, %o2 20084a8: 9f c7 40 00 call %i5 20084ac: 98 10 00 12 mov %l2, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20084b0: da 04 c0 00 ld [ %l3 ], %o5 20084b4: 80 a4 80 0d cmp %l2, %o5 20084b8: 02 80 00 0d be 20084ec <_Heap_Walk+0x444> 20084bc: 80 a5 20 00 cmp %l4, 0 (*printer)( 20084c0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084c4: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 20084c8: 90 10 00 19 mov %i1, %o0 20084cc: 92 10 20 01 mov 1, %o1 20084d0: 94 12 a0 88 or %o2, 0x88, %o2 20084d4: 96 10 00 1a mov %i2, %o3 20084d8: 98 10 00 12 mov %l2, %o4 20084dc: 9f c7 40 00 call %i5 20084e0: 01 00 00 00 nop 20084e4: 10 80 00 23 b 2008570 <_Heap_Walk+0x4c8> 20084e8: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( !prev_used ) { 20084ec: 32 80 00 0a bne,a 2008514 <_Heap_Walk+0x46c> 20084f0: c2 06 20 08 ld [ %i0 + 8 ], %g1 (*printer)( 20084f4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084f8: 90 10 00 19 mov %i1, %o0 20084fc: 92 10 20 01 mov 1, %o1 2008500: 10 80 00 22 b 2008588 <_Heap_Walk+0x4e0> 2008504: 94 12 a0 c8 or %o2, 0xc8, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008508: 02 80 00 17 be 2008564 <_Heap_Walk+0x4bc> 200850c: 80 a4 c0 1b cmp %l3, %i3 return true; } free_block = free_block->next; 2008510: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008514: 80 a0 40 18 cmp %g1, %i0 2008518: 12 bf ff fc bne 2008508 <_Heap_Walk+0x460> 200851c: 80 a0 40 1a cmp %g1, %i2 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008520: 10 80 00 17 b 200857c <_Heap_Walk+0x4d4> 2008524: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008528: 80 a5 20 00 cmp %l4, 0 200852c: 02 80 00 08 be 200854c <_Heap_Walk+0x4a4> 2008530: 92 10 20 00 clr %o1 (*printer)( 2008534: 94 10 00 17 mov %l7, %o2 2008538: 96 10 00 1a mov %i2, %o3 200853c: 9f c7 40 00 call %i5 2008540: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008544: 10 80 00 08 b 2008564 <_Heap_Walk+0x4bc> 2008548: 80 a4 c0 1b cmp %l3, %i3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 200854c: da 06 80 00 ld [ %i2 ], %o5 2008550: 94 10 00 16 mov %l6, %o2 2008554: 96 10 00 1a mov %i2, %o3 2008558: 9f c7 40 00 call %i5 200855c: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008560: 80 a4 c0 1b cmp %l3, %i3 2008564: 12 bf ff 70 bne 2008324 <_Heap_Walk+0x27c> 2008568: b4 10 00 13 mov %l3, %i2 return true; 200856c: 82 10 20 01 mov 1, %g1 } 2008570: b0 08 60 01 and %g1, 1, %i0 2008574: 81 c7 e0 08 ret 2008578: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 200857c: 90 10 00 19 mov %i1, %o0 2008580: 92 10 20 01 mov 1, %o1 2008584: 94 12 a1 38 or %o2, 0x138, %o2 2008588: 96 10 00 1a mov %i2, %o3 200858c: 9f c7 40 00 call %i5 2008590: 01 00 00 00 nop 2008594: 10 bf ff f7 b 2008570 <_Heap_Walk+0x4c8> 2008598: 82 10 20 00 clr %g1 ! 0 =============================================================================== 02007884 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007884: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007888: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 200788c: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007890: 80 a0 60 00 cmp %g1, 0 2007894: 02 80 00 20 be 2007914 <_Objects_Allocate+0x90> <== NEVER TAKEN 2007898: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 200789c: b8 07 60 20 add %i5, 0x20, %i4 20078a0: 7f ff fd 87 call 2006ebc <_Chain_Get> 20078a4: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 20078a8: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 20078ac: 80 a0 60 00 cmp %g1, 0 20078b0: 02 80 00 19 be 2007914 <_Objects_Allocate+0x90> 20078b4: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 20078b8: 80 a2 20 00 cmp %o0, 0 20078bc: 32 80 00 0a bne,a 20078e4 <_Objects_Allocate+0x60> 20078c0: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 _Objects_Extend_information( information ); 20078c4: 40 00 00 1d call 2007938 <_Objects_Extend_information> 20078c8: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20078cc: 7f ff fd 7c call 2006ebc <_Chain_Get> 20078d0: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 20078d4: b0 92 20 00 orcc %o0, 0, %i0 20078d8: 02 80 00 0f be 2007914 <_Objects_Allocate+0x90> 20078dc: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 20078e0: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 20078e4: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 20078e8: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 20078ec: 40 00 3c 4c call 2016a1c <.udiv> 20078f0: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 20078f4: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 20078f8: 91 2a 20 02 sll %o0, 2, %o0 20078fc: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2007900: 84 00 bf ff add %g2, -1, %g2 2007904: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2007908: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 200790c: 82 00 7f ff add %g1, -1, %g1 2007910: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2007914: 81 c7 e0 08 ret 2007918: 81 e8 00 00 restore =============================================================================== 02007c90 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007c90: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007c94: 80 a6 60 00 cmp %i1, 0 2007c98: 02 80 00 17 be 2007cf4 <_Objects_Get_information+0x64> 2007c9c: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007ca0: 40 00 11 66 call 200c238 <_Objects_API_maximum_class> 2007ca4: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007ca8: 80 a2 20 00 cmp %o0, 0 2007cac: 02 80 00 12 be 2007cf4 <_Objects_Get_information+0x64> 2007cb0: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007cb4: 18 80 00 10 bgu 2007cf4 <_Objects_Get_information+0x64> 2007cb8: 03 00 80 6c sethi %hi(0x201b000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007cbc: b1 2e 20 02 sll %i0, 2, %i0 2007cc0: 82 10 63 b8 or %g1, 0x3b8, %g1 2007cc4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007cc8: 80 a0 60 00 cmp %g1, 0 2007ccc: 02 80 00 0a be 2007cf4 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007cd0: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007cd4: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 2007cd8: 80 a7 60 00 cmp %i5, 0 2007cdc: 02 80 00 06 be 2007cf4 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007ce0: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007ce4: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 2007ce8: 80 a0 00 01 cmp %g0, %g1 2007cec: 82 60 20 00 subx %g0, 0, %g1 2007cf0: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 2007cf4: 81 c7 e0 08 ret 2007cf8: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 020087c4 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20087c4: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20087c8: 92 96 20 00 orcc %i0, 0, %o1 20087cc: 12 80 00 06 bne 20087e4 <_Objects_Id_to_name+0x20> 20087d0: 83 32 60 18 srl %o1, 0x18, %g1 20087d4: 03 00 80 72 sethi %hi(0x201c800), %g1 20087d8: c2 00 62 68 ld [ %g1 + 0x268 ], %g1 ! 201ca68 <_Per_CPU_Information+0xc> 20087dc: d2 00 60 08 ld [ %g1 + 8 ], %o1 20087e0: 83 32 60 18 srl %o1, 0x18, %g1 20087e4: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20087e8: 84 00 7f ff add %g1, -1, %g2 20087ec: 80 a0 a0 02 cmp %g2, 2 20087f0: 18 80 00 12 bgu 2008838 <_Objects_Id_to_name+0x74> 20087f4: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20087f8: 10 80 00 12 b 2008840 <_Objects_Id_to_name+0x7c> 20087fc: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008800: 85 28 a0 02 sll %g2, 2, %g2 2008804: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2008808: 80 a2 20 00 cmp %o0, 0 200880c: 02 80 00 0b be 2008838 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 2008810: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008814: 7f ff ff ce call 200874c <_Objects_Get> 2008818: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 200881c: 80 a2 20 00 cmp %o0, 0 2008820: 02 80 00 06 be 2008838 <_Objects_Id_to_name+0x74> 2008824: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2008828: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 200882c: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008830: 40 00 03 62 call 20095b8 <_Thread_Enable_dispatch> 2008834: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2008838: 81 c7 e0 08 ret 200883c: 91 e8 00 1d restore %g0, %i5, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008840: 05 00 80 71 sethi %hi(0x201c400), %g2 2008844: 84 10 a3 98 or %g2, 0x398, %g2 ! 201c798 <_Objects_Information_table> 2008848: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200884c: 80 a0 60 00 cmp %g1, 0 2008850: 12 bf ff ec bne 2008800 <_Objects_Id_to_name+0x3c> 2008854: 85 32 60 1b srl %o1, 0x1b, %g2 2008858: 30 bf ff f8 b,a 2008838 <_Objects_Id_to_name+0x74> =============================================================================== 02008910 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 2008910: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if(!the_node) return; 2008914: 80 a6 60 00 cmp %i1, 0 2008918: 02 80 00 7b be 2008b04 <_RBTree_Extract_unprotected+0x1f4> 200891c: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 2008920: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008924: 80 a6 40 01 cmp %i1, %g1 2008928: 32 80 00 0d bne,a 200895c <_RBTree_Extract_unprotected+0x4c> 200892c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 if (the_node->child[RBT_RIGHT]) 2008930: c2 06 60 08 ld [ %i1 + 8 ], %g1 2008934: 80 a0 60 00 cmp %g1, 0 2008938: 22 80 00 04 be,a 2008948 <_RBTree_Extract_unprotected+0x38> 200893c: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 2008940: 10 80 00 06 b 2008958 <_RBTree_Extract_unprotected+0x48> 2008944: c2 26 20 08 st %g1, [ %i0 + 8 ] else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008948: 80 a6 00 01 cmp %i0, %g1 200894c: 12 80 00 03 bne 2008958 <_RBTree_Extract_unprotected+0x48> 2008950: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 2008954: c0 26 20 08 clr [ %i0 + 8 ] } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 2008958: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200895c: 80 a6 40 01 cmp %i1, %g1 2008960: 12 80 00 0b bne 200898c <_RBTree_Extract_unprotected+0x7c> 2008964: c2 06 60 04 ld [ %i1 + 4 ], %g1 if (the_node->child[RBT_LEFT]) 2008968: 80 a0 60 00 cmp %g1, 0 200896c: 22 80 00 04 be,a 200897c <_RBTree_Extract_unprotected+0x6c> 2008970: c4 06 40 00 ld [ %i1 ], %g2 the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; 2008974: 10 80 00 06 b 200898c <_RBTree_Extract_unprotected+0x7c> 2008978: c2 26 20 0c st %g1, [ %i0 + 0xc ] else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 200897c: 80 a6 00 02 cmp %i0, %g2 2008980: 12 80 00 03 bne 200898c <_RBTree_Extract_unprotected+0x7c> 2008984: c4 26 20 0c st %g2, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 2008988: c0 26 20 0c clr [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200898c: ba 90 60 00 orcc %g1, 0, %i5 2008990: 02 80 00 36 be 2008a68 <_RBTree_Extract_unprotected+0x158> 2008994: f8 06 60 08 ld [ %i1 + 8 ], %i4 2008998: 80 a7 20 00 cmp %i4, 0 200899c: 32 80 00 05 bne,a 20089b0 <_RBTree_Extract_unprotected+0xa0> 20089a0: c2 07 60 08 ld [ %i5 + 8 ], %g1 20089a4: 10 80 00 35 b 2008a78 <_RBTree_Extract_unprotected+0x168> 20089a8: b8 10 00 01 mov %g1, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 20089ac: c2 07 60 08 ld [ %i5 + 8 ], %g1 20089b0: 80 a0 60 00 cmp %g1, 0 20089b4: 32 bf ff fe bne,a 20089ac <_RBTree_Extract_unprotected+0x9c> 20089b8: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 20089bc: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 20089c0: 80 a7 20 00 cmp %i4, 0 20089c4: 02 80 00 05 be 20089d8 <_RBTree_Extract_unprotected+0xc8> <== ALWAYS TAKEN 20089c8: 01 00 00 00 nop leaf->parent = target->parent; 20089cc: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED 20089d0: 10 80 00 04 b 20089e0 <_RBTree_Extract_unprotected+0xd0> <== NOT EXECUTED 20089d4: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 20089d8: 7f ff ff 50 call 2008718 <_RBTree_Extract_validate_unprotected> 20089dc: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 20089e0: c4 07 40 00 ld [ %i5 ], %g2 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 20089e4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 dir = target != target->parent->child[0]; 20089e8: c6 00 a0 04 ld [ %g2 + 4 ], %g3 20089ec: 86 1f 40 03 xor %i5, %g3, %g3 20089f0: 80 a0 00 03 cmp %g0, %g3 20089f4: 86 40 20 00 addx %g0, 0, %g3 target->parent->child[dir] = leaf; 20089f8: 87 28 e0 02 sll %g3, 2, %g3 20089fc: 84 00 80 03 add %g2, %g3, %g2 2008a00: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 2008a04: c4 06 40 00 ld [ %i1 ], %g2 2008a08: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008a0c: 86 1e 40 03 xor %i1, %g3, %g3 2008a10: 80 a0 00 03 cmp %g0, %g3 2008a14: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = target; 2008a18: 87 28 e0 02 sll %g3, 2, %g3 2008a1c: 84 00 80 03 add %g2, %g3, %g2 2008a20: fa 20 a0 04 st %i5, [ %g2 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2008a24: c4 06 60 08 ld [ %i1 + 8 ], %g2 2008a28: c4 27 60 08 st %g2, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 2008a2c: c4 06 60 08 ld [ %i1 + 8 ], %g2 2008a30: 80 a0 a0 00 cmp %g2, 0 2008a34: 32 80 00 02 bne,a 2008a3c <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN 2008a38: fa 20 80 00 st %i5, [ %g2 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2008a3c: c4 06 60 04 ld [ %i1 + 4 ], %g2 2008a40: c4 27 60 04 st %g2, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 2008a44: c4 06 60 04 ld [ %i1 + 4 ], %g2 2008a48: 80 a0 a0 00 cmp %g2, 0 2008a4c: 32 80 00 02 bne,a 2008a54 <_RBTree_Extract_unprotected+0x144> 2008a50: fa 20 80 00 st %i5, [ %g2 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2008a54: c4 06 40 00 ld [ %i1 ], %g2 2008a58: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 2008a5c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2008a60: 10 80 00 14 b 2008ab0 <_RBTree_Extract_unprotected+0x1a0> 2008a64: c4 27 60 10 st %g2, [ %i5 + 0x10 ] * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 2008a68: 80 a7 20 00 cmp %i4, 0 2008a6c: 32 80 00 04 bne,a 2008a7c <_RBTree_Extract_unprotected+0x16c> 2008a70: c2 06 40 00 ld [ %i1 ], %g1 2008a74: 30 80 00 04 b,a 2008a84 <_RBTree_Extract_unprotected+0x174> leaf->parent = the_node->parent; 2008a78: c2 06 40 00 ld [ %i1 ], %g1 2008a7c: 10 80 00 04 b 2008a8c <_RBTree_Extract_unprotected+0x17c> 2008a80: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 2008a84: 7f ff ff 25 call 2008718 <_RBTree_Extract_validate_unprotected> 2008a88: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008a8c: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 2008a90: c2 06 60 10 ld [ %i1 + 0x10 ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008a94: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008a98: 86 1e 40 03 xor %i1, %g3, %g3 2008a9c: 80 a0 00 03 cmp %g0, %g3 2008aa0: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 2008aa4: 87 28 e0 02 sll %g3, 2, %g3 2008aa8: 84 00 80 03 add %g2, %g3, %g2 2008aac: f8 20 a0 04 st %i4, [ %g2 + 4 ] * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node and the child is red. Paint child black. * 3. Deleted a black node and its child is black. This requires some * care and rotations. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 2008ab0: 80 a0 60 00 cmp %g1, 0 2008ab4: 32 80 00 0e bne,a 2008aec <_RBTree_Extract_unprotected+0x1dc> 2008ab8: c2 06 20 04 ld [ %i0 + 4 ], %g1 2008abc: 80 a7 20 00 cmp %i4, 0 2008ac0: 22 80 00 0b be,a 2008aec <_RBTree_Extract_unprotected+0x1dc> 2008ac4: c2 06 20 04 ld [ %i0 + 4 ], %g1 2008ac8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 2008acc: 80 a0 60 01 cmp %g1, 1 2008ad0: 12 80 00 04 bne 2008ae0 <_RBTree_Extract_unprotected+0x1d0><== NEVER TAKEN 2008ad4: 01 00 00 00 nop if (_RBTree_Is_red(leaf)) leaf->color = RBT_BLACK; /* case 2 */ 2008ad8: 10 80 00 04 b 2008ae8 <_RBTree_Extract_unprotected+0x1d8> 2008adc: c0 27 20 10 clr [ %i4 + 0x10 ] else if(leaf) _RBTree_Extract_validate_unprotected(leaf); /* case 3 */ 2008ae0: 7f ff ff 0e call 2008718 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED 2008ae4: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 2008ae8: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 2008aec: c0 26 60 08 clr [ %i1 + 8 ] 2008af0: c0 26 60 04 clr [ %i1 + 4 ] 2008af4: 80 a0 60 00 cmp %g1, 0 2008af8: 02 80 00 03 be 2008b04 <_RBTree_Extract_unprotected+0x1f4> 2008afc: c0 26 40 00 clr [ %i1 ] 2008b00: c0 20 60 10 clr [ %g1 + 0x10 ] 2008b04: 81 c7 e0 08 ret 2008b08: 81 e8 00 00 restore =============================================================================== 02008718 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2008718: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 200871c: fa 06 00 00 ld [ %i0 ], %i5 if(!parent->parent) return; 2008720: c2 07 40 00 ld [ %i5 ], %g1 2008724: 80 a0 60 00 cmp %g1, 0 2008728: 02 80 00 71 be 20088ec <_RBTree_Extract_validate_unprotected+0x1d4> 200872c: 90 10 00 18 mov %i0, %o0 sibling = _RBTree_Sibling(the_node); 2008730: 7f ff ff ca call 2008658 <_RBTree_Sibling> 2008734: b4 10 20 01 mov 1, %i2 /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008738: 10 80 00 60 b 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0> 200873c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008740: 22 80 00 5e be,a 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN 2008744: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED 2008748: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 200874c: 80 a0 60 01 cmp %g1, 1 2008750: 32 80 00 14 bne,a 20087a0 <_RBTree_Extract_validate_unprotected+0x88> 2008754: c4 02 20 08 ld [ %o0 + 8 ], %g2 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2008758: c2 27 60 10 st %g1, [ %i5 + 0x10 ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 200875c: c2 07 60 04 ld [ %i5 + 4 ], %g1 * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; 2008760: c0 22 20 10 clr [ %o0 + 0x10 ] dir = the_node != parent->child[0]; 2008764: 82 1e 00 01 xor %i0, %g1, %g1 2008768: 80 a0 00 01 cmp %g0, %g1 _RBTree_Rotate(parent, dir); 200876c: 90 10 00 1d mov %i5, %o0 * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008770: b8 40 20 00 addx %g0, 0, %i4 _RBTree_Rotate(parent, dir); 2008774: 7f ff ff ca call 200869c <_RBTree_Rotate> 2008778: 92 10 00 1c mov %i4, %o1 sibling = parent->child[!dir]; 200877c: 80 a0 00 1c cmp %g0, %i4 2008780: 82 60 3f ff subx %g0, -1, %g1 2008784: 83 28 60 02 sll %g1, 2, %g1 2008788: 82 07 40 01 add %i5, %g1, %g1 200878c: d0 00 60 04 ld [ %g1 + 4 ], %o0 } /* sibling is black, see if both of its children are also black. */ if (sibling && 2008790: 80 a2 20 00 cmp %o0, 0 2008794: 22 80 00 49 be,a 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN 2008798: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 200879c: c4 02 20 08 ld [ %o0 + 8 ], %g2 20087a0: 80 a0 a0 00 cmp %g2, 0 20087a4: 02 80 00 06 be 20087bc <_RBTree_Extract_validate_unprotected+0xa4> 20087a8: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 20087ac: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 20087b0: 82 18 60 01 xor %g1, 1, %g1 20087b4: 80 a0 00 01 cmp %g0, %g1 20087b8: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (sibling && 20087bc: 80 a0 60 00 cmp %g1, 0 20087c0: 32 80 00 14 bne,a 2008810 <_RBTree_Extract_validate_unprotected+0xf8> 20087c4: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 20087c8: c4 02 20 04 ld [ %o0 + 4 ], %g2 20087cc: 80 a0 a0 00 cmp %g2, 0 20087d0: 02 80 00 07 be 20087ec <_RBTree_Extract_validate_unprotected+0xd4> 20087d4: 80 a0 60 00 cmp %g1, 0 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 20087d8: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 20087dc: 82 18 60 01 xor %g1, 1, %g1 20087e0: 80 a0 00 01 cmp %g0, %g1 20087e4: 82 60 3f ff subx %g0, -1, %g1 sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (sibling && !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 20087e8: 80 a0 60 00 cmp %g1, 0 20087ec: 32 80 00 09 bne,a 2008810 <_RBTree_Extract_validate_unprotected+0xf8> 20087f0: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 20087f4: f4 22 20 10 st %i2, [ %o0 + 0x10 ] 20087f8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 20087fc: 80 a0 60 01 cmp %g1, 1 2008800: 32 80 00 3d bne,a 20088f4 <_RBTree_Extract_validate_unprotected+0x1dc> 2008804: f8 07 40 00 ld [ %i5 ], %i4 if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; 2008808: 10 80 00 33 b 20088d4 <_RBTree_Extract_validate_unprotected+0x1bc> 200880c: c0 27 60 10 clr [ %i5 + 0x10 ] * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 2008810: 82 1e 00 01 xor %i0, %g1, %g1 2008814: 80 a0 00 01 cmp %g0, %g1 2008818: b8 40 20 00 addx %g0, 0, %i4 if (!_RBTree_Is_red(sibling->child[!dir])) { 200881c: 80 a0 00 1c cmp %g0, %i4 2008820: b6 60 3f ff subx %g0, -1, %i3 2008824: 83 2e e0 02 sll %i3, 2, %g1 2008828: 82 02 00 01 add %o0, %g1, %g1 200882c: c4 00 60 04 ld [ %g1 + 4 ], %g2 2008830: 80 a0 a0 00 cmp %g2, 0 2008834: 02 80 00 06 be 200884c <_RBTree_Extract_validate_unprotected+0x134> 2008838: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 200883c: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 2008840: 82 18 60 01 xor %g1, 1, %g1 2008844: 80 a0 00 01 cmp %g0, %g1 2008848: 82 60 3f ff subx %g0, -1, %g1 * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { 200884c: 80 a0 60 00 cmp %g1, 0 2008850: 32 80 00 0e bne,a 2008888 <_RBTree_Extract_validate_unprotected+0x170> 2008854: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 sibling->color = RBT_RED; 2008858: 82 10 20 01 mov 1, %g1 200885c: c2 22 20 10 st %g1, [ %o0 + 0x10 ] sibling->child[dir]->color = RBT_BLACK; 2008860: 83 2f 20 02 sll %i4, 2, %g1 2008864: 82 02 00 01 add %o0, %g1, %g1 2008868: c2 00 60 04 ld [ %g1 + 4 ], %g1 _RBTree_Rotate(sibling, !dir); 200886c: 92 1f 20 01 xor %i4, 1, %o1 2008870: 7f ff ff 8b call 200869c <_RBTree_Rotate> 2008874: c0 20 60 10 clr [ %g1 + 0x10 ] sibling = parent->child[!dir]; 2008878: 83 2e e0 02 sll %i3, 2, %g1 200887c: 82 07 40 01 add %i5, %g1, %g1 2008880: d0 00 60 04 ld [ %g1 + 4 ], %o0 } sibling->color = parent->color; 2008884: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008888: b7 2e e0 02 sll %i3, 2, %i3 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; 200888c: c2 22 20 10 st %g1, [ %o0 + 0x10 ] parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008890: 90 02 00 1b add %o0, %i3, %o0 2008894: c2 02 20 04 ld [ %o0 + 4 ], %g1 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; parent->color = RBT_BLACK; 2008898: c0 27 60 10 clr [ %i5 + 0x10 ] sibling->child[!dir]->color = RBT_BLACK; 200889c: c0 20 60 10 clr [ %g1 + 0x10 ] _RBTree_Rotate(parent, dir); 20088a0: 90 10 00 1d mov %i5, %o0 20088a4: 7f ff ff 7e call 200869c <_RBTree_Rotate> 20088a8: 92 10 00 1c mov %i4, %o1 break; /* done */ 20088ac: 10 80 00 0b b 20088d8 <_RBTree_Extract_validate_unprotected+0x1c0> 20088b0: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 20088b4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20088b8: 80 a0 60 01 cmp %g1, 1 20088bc: 22 80 00 07 be,a 20088d8 <_RBTree_Extract_validate_unprotected+0x1c0> 20088c0: c2 06 00 00 ld [ %i0 ], %g1 20088c4: c2 07 40 00 ld [ %i5 ], %g1 20088c8: 80 a0 60 00 cmp %g1, 0 20088cc: 12 bf ff 9d bne 2008740 <_RBTree_Extract_validate_unprotected+0x28> 20088d0: 80 a2 20 00 cmp %o0, 0 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 20088d4: c2 06 00 00 ld [ %i0 ], %g1 20088d8: c2 00 40 00 ld [ %g1 ], %g1 20088dc: 80 a0 60 00 cmp %g1, 0 20088e0: 12 80 00 0a bne 2008908 <_RBTree_Extract_validate_unprotected+0x1f0> 20088e4: 01 00 00 00 nop 20088e8: c0 26 20 10 clr [ %i0 + 0x10 ] 20088ec: 81 c7 e0 08 ret 20088f0: 81 e8 00 00 restore parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; sibling = _RBTree_Sibling(the_node); 20088f4: 90 10 00 1d mov %i5, %o0 20088f8: 7f ff ff 58 call 2008658 <_RBTree_Sibling> 20088fc: b0 10 00 1d mov %i5, %i0 2008900: 10 bf ff ed b 20088b4 <_RBTree_Extract_validate_unprotected+0x19c> 2008904: ba 10 00 1c mov %i4, %i5 2008908: 81 c7 e0 08 ret 200890c: 81 e8 00 00 restore =============================================================================== 02008b80 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, unsigned int the_value ) { 2008b80: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 2008b84: 7f ff e8 16 call 2002bdc 2008b88: 01 00 00 00 nop RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { if (the_value == iter_node->value) return(iter_node); RBTree_Direction dir = the_value > iter_node->value; iter_node = iter_node->child[dir]; 2008b8c: 10 80 00 09 b 2008bb0 <_RBTree_Find+0x30> 2008b90: f0 06 20 04 ld [ %i0 + 4 ], %i0 unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { if (the_value == iter_node->value) return(iter_node); 2008b94: 80 a6 40 01 cmp %i1, %g1 2008b98: 02 80 00 09 be 2008bbc <_RBTree_Find+0x3c> 2008b9c: 80 a0 40 19 cmp %g1, %i1 RBTree_Direction dir = the_value > iter_node->value; 2008ba0: 82 40 20 00 addx %g0, 0, %g1 iter_node = iter_node->child[dir]; 2008ba4: 83 28 60 02 sll %g1, 2, %g1 2008ba8: b0 06 00 01 add %i0, %g1, %i0 2008bac: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Control *the_rbtree, unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { 2008bb0: 80 a6 20 00 cmp %i0, 0 2008bb4: 32 bf ff f8 bne,a 2008b94 <_RBTree_Find+0x14> <== ALWAYS TAKEN 2008bb8: c2 06 20 0c ld [ %i0 + 0xc ], %g1 return_node = _RBTree_Find_unprotected( the_rbtree, the_value ); _ISR_Enable( level ); 2008bbc: 7f ff e8 0c call 2002bec 2008bc0: 01 00 00 00 nop return return_node; } 2008bc4: 81 c7 e0 08 ret 2008bc8: 81 e8 00 00 restore =============================================================================== 02008b30 <_RBTree_Find_header>: */ RBTree_Control *_RBTree_Find_header( RBTree_Node *the_node ) { 2008b30: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Control *return_header; return_header = NULL; _ISR_Disable( level ); 2008b34: 7f ff e8 2a call 2002bdc 2008b38: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected( RBTree_Node *the_node ) { if(!the_node) return NULL; 2008b3c: 80 a7 60 00 cmp %i5, 0 2008b40: 02 80 00 0c be 2008b70 <_RBTree_Find_header+0x40> <== NEVER TAKEN 2008b44: b0 10 20 00 clr %i0 if(!(the_node->parent)) return NULL; 2008b48: c2 07 40 00 ld [ %i5 ], %g1 2008b4c: 80 a0 60 00 cmp %g1, 0 2008b50: 32 80 00 03 bne,a 2008b5c <_RBTree_Find_header+0x2c> <== ALWAYS TAKEN 2008b54: ba 10 00 01 mov %g1, %i5 2008b58: 30 80 00 06 b,a 2008b70 <_RBTree_Find_header+0x40> <== NOT EXECUTED while(the_node->parent) the_node = the_node->parent; 2008b5c: c2 07 40 00 ld [ %i5 ], %g1 2008b60: 80 a0 60 00 cmp %g1, 0 2008b64: 32 bf ff fe bne,a 2008b5c <_RBTree_Find_header+0x2c> 2008b68: ba 10 00 01 mov %g1, %i5 2008b6c: b0 10 00 1d mov %i5, %i0 return_header = _RBTree_Find_header_unprotected( the_node ); _ISR_Enable( level ); 2008b70: 7f ff e8 1f call 2002bec 2008b74: 01 00 00 00 nop return return_header; } 2008b78: 81 c7 e0 08 ret 2008b7c: 81 e8 00 00 restore =============================================================================== 02008d68 <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 2008d68: 9d e3 bf a0 save %sp, -96, %sp 2008d6c: 82 10 00 18 mov %i0, %g1 2008d70: 90 10 00 19 mov %i1, %o0 if(!the_node) return (RBTree_Node*)-1; 2008d74: 80 a6 60 00 cmp %i1, 0 2008d78: 02 80 00 0d be 2008dac <_RBTree_Insert_unprotected+0x44> <== NEVER TAKEN 2008d7c: b0 10 3f ff mov -1, %i0 RBTree_Node *iter_node = the_rbtree->root; 2008d80: f0 00 60 04 ld [ %g1 + 4 ], %i0 if (!iter_node) { /* special case: first node inserted */ 2008d84: 80 a6 20 00 cmp %i0, 0 2008d88: 32 80 00 1f bne,a 2008e04 <_RBTree_Insert_unprotected+0x9c> 2008d8c: c4 06 60 0c ld [ %i1 + 0xc ], %g2 the_node->color = RBT_BLACK; 2008d90: c0 26 60 10 clr [ %i1 + 0x10 ] the_rbtree->root = the_node; 2008d94: f2 20 60 04 st %i1, [ %g1 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 2008d98: f2 20 60 0c st %i1, [ %g1 + 0xc ] 2008d9c: f2 20 60 08 st %i1, [ %g1 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 2008da0: c2 26 40 00 st %g1, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 2008da4: c0 26 60 08 clr [ %i1 + 8 ] 2008da8: c0 26 60 04 clr [ %i1 + 4 ] 2008dac: 81 c7 e0 08 ret 2008db0: 81 e8 00 00 restore } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; 2008db4: 86 40 20 00 addx %g0, 0, %g3 if (!iter_node->child[dir]) { 2008db8: 89 28 e0 02 sll %g3, 2, %g4 2008dbc: 88 06 00 04 add %i0, %g4, %g4 2008dc0: de 01 20 04 ld [ %g4 + 4 ], %o7 2008dc4: 80 a3 e0 00 cmp %o7, 0 2008dc8: 32 80 00 0f bne,a 2008e04 <_RBTree_Insert_unprotected+0x9c> 2008dcc: b0 10 00 0f mov %o7, %i0 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 2008dd0: 84 10 20 01 mov 1, %g2 /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 2008dd4: c0 22 20 08 clr [ %o0 + 8 ] 2008dd8: c0 22 20 04 clr [ %o0 + 4 ] the_node->color = RBT_RED; 2008ddc: c4 22 20 10 st %g2, [ %o0 + 0x10 ] RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 2008de0: 84 00 e0 02 add %g3, 2, %g2 2008de4: 85 28 a0 02 sll %g2, 2, %g2 iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 2008de8: c6 00 40 02 ld [ %g1 + %g2 ], %g3 if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; iter_node->child[dir] = the_node; 2008dec: d0 21 20 04 st %o0, [ %g4 + 4 ] the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 2008df0: 80 a6 00 03 cmp %i0, %g3 2008df4: 12 80 00 0a bne 2008e1c <_RBTree_Insert_unprotected+0xb4> 2008df8: f0 22 00 00 st %i0, [ %o0 ] the_rbtree->first[dir] = the_node; 2008dfc: 10 80 00 08 b 2008e1c <_RBTree_Insert_unprotected+0xb4> 2008e00: d0 20 40 02 st %o0, [ %g1 + %g2 ] the_node->parent = (RBTree_Node *) the_rbtree; the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); 2008e04: c6 06 20 0c ld [ %i0 + 0xc ], %g3 2008e08: 80 a0 80 03 cmp %g2, %g3 2008e0c: 12 bf ff ea bne 2008db4 <_RBTree_Insert_unprotected+0x4c> 2008e10: 80 a0 c0 02 cmp %g3, %g2 2008e14: 81 c7 e0 08 ret 2008e18: 81 e8 00 00 restore } } /* while(iter_node) */ /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); 2008e1c: 7f ff ff 9a call 2008c84 <_RBTree_Validate_insert_unprotected> 2008e20: b0 10 20 00 clr %i0 } return (RBTree_Node*)0; } 2008e24: 81 c7 e0 08 ret 2008e28: 81 e8 00 00 restore =============================================================================== 0200869c <_RBTree_Rotate>: RBTree_Node *the_node, RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; 200869c: 80 a2 20 00 cmp %o0, 0 20086a0: 02 80 00 1c be 2008710 <_RBTree_Rotate+0x74> <== NEVER TAKEN 20086a4: 86 10 20 01 mov 1, %g3 if (the_node->child[(1-dir)] == NULL) return; 20086a8: 86 20 c0 09 sub %g3, %o1, %g3 20086ac: 87 28 e0 02 sll %g3, 2, %g3 20086b0: 86 02 00 03 add %o0, %g3, %g3 20086b4: c2 00 e0 04 ld [ %g3 + 4 ], %g1 20086b8: 80 a0 60 00 cmp %g1, 0 20086bc: 02 80 00 15 be 2008710 <_RBTree_Rotate+0x74> <== NEVER TAKEN 20086c0: 93 2a 60 02 sll %o1, 2, %o1 c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 20086c4: 84 00 40 09 add %g1, %o1, %g2 20086c8: c8 00 a0 04 ld [ %g2 + 4 ], %g4 20086cc: c8 20 e0 04 st %g4, [ %g3 + 4 ] if (c->child[dir]) 20086d0: c4 00 a0 04 ld [ %g2 + 4 ], %g2 20086d4: 80 a0 a0 00 cmp %g2, 0 20086d8: 32 80 00 02 bne,a 20086e0 <_RBTree_Rotate+0x44> 20086dc: d0 20 80 00 st %o0, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20086e0: c4 02 00 00 ld [ %o0 ], %g2 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 20086e4: 92 00 40 09 add %g1, %o1, %o1 20086e8: d0 22 60 04 st %o0, [ %o1 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20086ec: c6 00 a0 04 ld [ %g2 + 4 ], %g3 c->parent = the_node->parent; 20086f0: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20086f4: 86 1a 00 03 xor %o0, %g3, %g3 c->parent = the_node->parent; the_node->parent = c; 20086f8: c2 22 00 00 st %g1, [ %o0 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20086fc: 80 a0 00 03 cmp %g0, %g3 2008700: 86 40 20 00 addx %g0, 0, %g3 2008704: 87 28 e0 02 sll %g3, 2, %g3 2008708: 86 00 80 03 add %g2, %g3, %g3 200870c: c2 20 e0 04 st %g1, [ %g3 + 4 ] 2008710: 81 c3 e0 08 retl =============================================================================== 02008658 <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; 2008658: 80 a2 20 00 cmp %o0, 0 200865c: 02 80 00 0e be 2008694 <_RBTree_Sibling+0x3c> <== NEVER TAKEN 2008660: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 2008664: c4 02 00 00 ld [ %o0 ], %g2 2008668: 80 a0 a0 00 cmp %g2, 0 200866c: 02 80 00 0a be 2008694 <_RBTree_Sibling+0x3c> <== NEVER TAKEN 2008670: 01 00 00 00 nop if(!(the_node->parent->parent)) return NULL; 2008674: c6 00 80 00 ld [ %g2 ], %g3 2008678: 80 a0 e0 00 cmp %g3, 0 200867c: 02 80 00 06 be 2008694 <_RBTree_Sibling+0x3c> 2008680: 01 00 00 00 nop if(the_node == the_node->parent->child[RBT_LEFT]) 2008684: c2 00 a0 04 ld [ %g2 + 4 ], %g1 2008688: 80 a2 00 01 cmp %o0, %g1 200868c: 22 80 00 02 be,a 2008694 <_RBTree_Sibling+0x3c> 2008690: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; else return the_node->parent->child[RBT_LEFT]; } 2008694: 81 c3 e0 08 retl 2008698: 90 10 00 01 mov %g1, %o0 =============================================================================== 02008c84 <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 2008c84: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 2008c88: 10 80 00 1f b 2008d04 <_RBTree_Validate_insert_unprotected+0x80> 2008c8c: b6 10 20 01 mov 1, %i3 ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2008c90: 80 a0 60 00 cmp %g1, 0 2008c94: 02 80 00 27 be 2008d30 <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN 2008c98: c2 07 60 04 ld [ %i5 + 4 ], %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2008c9c: 80 a2 00 01 cmp %o0, %g1 2008ca0: 22 80 00 02 be,a 2008ca8 <_RBTree_Validate_insert_unprotected+0x24> 2008ca4: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008ca8: 80 a0 60 00 cmp %g1, 0 2008cac: 22 80 00 21 be,a 2008d30 <_RBTree_Validate_insert_unprotected+0xac> 2008cb0: c2 07 60 04 ld [ %i5 + 4 ], %g1 2008cb4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 2008cb8: 80 a0 a0 01 cmp %g2, 1 2008cbc: 32 80 00 1d bne,a 2008d30 <_RBTree_Validate_insert_unprotected+0xac> 2008cc0: c2 07 60 04 ld [ %i5 + 4 ], %g1 u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; 2008cc4: c0 22 20 10 clr [ %o0 + 0x10 ] u->color = RBT_BLACK; 2008cc8: c0 20 60 10 clr [ %g1 + 0x10 ] g->color = RBT_RED; 2008ccc: c4 27 60 10 st %g2, [ %i5 + 0x10 ] 2008cd0: 10 80 00 0d b 2008d04 <_RBTree_Validate_insert_unprotected+0x80> 2008cd4: b0 10 00 1d mov %i5, %i0 RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); 2008cd8: 7f ff ff cc call 2008c08 <_RBTree_Rotate> 2008cdc: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 2008ce0: 83 2f 20 02 sll %i4, 2, %g1 2008ce4: b0 06 00 01 add %i0, %g1, %i0 2008ce8: f0 06 20 04 ld [ %i0 + 4 ], %i0 } the_node->parent->color = RBT_BLACK; 2008cec: c2 06 00 00 ld [ %i0 ], %g1 g->color = RBT_RED; /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2008cf0: 90 10 00 1d mov %i5, %o0 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2008cf4: c0 20 60 10 clr [ %g1 + 0x10 ] g->color = RBT_RED; 2008cf8: f6 27 60 10 st %i3, [ %i5 + 0x10 ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2008cfc: 7f ff ff c3 call 2008c08 <_RBTree_Rotate> 2008d00: 92 26 c0 1c sub %i3, %i4, %o1 ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 2008d04: d0 06 00 00 ld [ %i0 ], %o0 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2008d08: fa 02 00 00 ld [ %o0 ], %i5 2008d0c: 80 a7 60 00 cmp %i5, 0 2008d10: 22 80 00 14 be,a 2008d60 <_RBTree_Validate_insert_unprotected+0xdc> 2008d14: c0 26 20 10 clr [ %i0 + 0x10 ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008d18: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 2008d1c: 80 a0 60 01 cmp %g1, 1 2008d20: 12 80 00 10 bne 2008d60 <_RBTree_Validate_insert_unprotected+0xdc> 2008d24: 01 00 00 00 nop ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2008d28: 10 bf ff da b 2008c90 <_RBTree_Validate_insert_unprotected+0xc> 2008d2c: c2 07 40 00 ld [ %i5 ], %g1 u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 2008d30: 82 1a 00 01 xor %o0, %g1, %g1 2008d34: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2008d38: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 2008d3c: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2008d40: 82 1e 00 01 xor %i0, %g1, %g1 2008d44: 80 a0 00 01 cmp %g0, %g1 2008d48: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 2008d4c: 80 a0 40 1c cmp %g1, %i4 2008d50: 12 bf ff e2 bne 2008cd8 <_RBTree_Validate_insert_unprotected+0x54> 2008d54: 01 00 00 00 nop _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2008d58: 10 bf ff e6 b 2008cf0 <_RBTree_Validate_insert_unprotected+0x6c> 2008d5c: c2 06 00 00 ld [ %i0 ], %g1 2008d60: 81 c7 e0 08 ret 2008d64: 81 e8 00 00 restore =============================================================================== 0200ba30 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200ba30: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200ba34: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200ba38: 80 a7 60 00 cmp %i5, 0 200ba3c: 02 80 00 1c be 200baac <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN 200ba40: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200ba44: 7f ff d9 ce call 200217c 200ba48: 01 00 00 00 nop signal_set = asr->signals_posted; 200ba4c: f6 07 60 14 ld [ %i5 + 0x14 ], %i3 asr->signals_posted = 0; 200ba50: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200ba54: 7f ff d9 ce call 200218c 200ba58: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200ba5c: 80 a6 e0 00 cmp %i3, 0 200ba60: 02 80 00 13 be 200baac <_RTEMS_tasks_Post_switch_extension+0x7c> 200ba64: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 200ba68: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba6c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200ba70: 82 00 60 01 inc %g1 200ba74: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba78: 39 00 00 3f sethi %hi(0xfc00), %i4 200ba7c: 40 00 07 31 call 200d740 200ba80: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200ba84: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200ba88: 9f c0 40 00 call %g1 200ba8c: 90 10 00 1b mov %i3, %o0 asr->nest_level -= 1; 200ba90: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba94: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200ba98: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba9c: 92 17 23 ff or %i4, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200baa0: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200baa4: 40 00 07 27 call 200d740 200baa8: 94 07 bf fc add %fp, -4, %o2 200baac: 81 c7 e0 08 ret 200bab0: 81 e8 00 00 restore =============================================================================== 02007698 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007698: 9d e3 bf 98 save %sp, -104, %sp 200769c: 11 00 80 74 sethi %hi(0x201d000), %o0 20076a0: 92 10 00 18 mov %i0, %o1 20076a4: 90 12 21 74 or %o0, 0x174, %o0 20076a8: 40 00 07 be call 20095a0 <_Objects_Get> 20076ac: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20076b0: c2 07 bf fc ld [ %fp + -4 ], %g1 20076b4: 80 a0 60 00 cmp %g1, 0 20076b8: 12 80 00 25 bne 200774c <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN 20076bc: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 20076c0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20076c4: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 20076c8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 20076cc: 80 88 80 01 btst %g2, %g1 20076d0: 22 80 00 0b be,a 20076fc <_Rate_monotonic_Timeout+0x64> 20076d4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 20076d8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 20076dc: c2 07 60 08 ld [ %i5 + 8 ], %g1 20076e0: 80 a0 80 01 cmp %g2, %g1 20076e4: 32 80 00 06 bne,a 20076fc <_Rate_monotonic_Timeout+0x64> 20076e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20076ec: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20076f0: 40 00 0a 6e call 200a0a8 <_Thread_Clear_state> 20076f4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 20076f8: 30 80 00 06 b,a 2007710 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 20076fc: 80 a0 60 01 cmp %g1, 1 2007700: 12 80 00 0d bne 2007734 <_Rate_monotonic_Timeout+0x9c> 2007704: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007708: 82 10 20 03 mov 3, %g1 200770c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007710: 7f ff fe 70 call 20070d0 <_Rate_monotonic_Initiate_statistics> 2007714: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007718: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200771c: 11 00 80 74 sethi %hi(0x201d000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007720: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007724: 90 12 23 9c or %o0, 0x39c, %o0 2007728: 40 00 0f 04 call 200b338 <_Watchdog_Insert> 200772c: 92 07 60 10 add %i5, 0x10, %o1 2007730: 30 80 00 02 b,a 2007738 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007734: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007738: 03 00 80 74 sethi %hi(0x201d000), %g1 200773c: c4 00 62 e0 ld [ %g1 + 0x2e0 ], %g2 ! 201d2e0 <_Thread_Dispatch_disable_level> 2007740: 84 00 bf ff add %g2, -1, %g2 2007744: c4 20 62 e0 st %g2, [ %g1 + 0x2e0 ] return _Thread_Dispatch_disable_level; 2007748: c2 00 62 e0 ld [ %g1 + 0x2e0 ], %g1 200774c: 81 c7 e0 08 ret 2007750: 81 e8 00 00 restore =============================================================================== 02007130 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007130: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007134: 03 00 80 73 sethi %hi(0x201cc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007138: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200713c: 80 a6 20 00 cmp %i0, 0 2007140: 02 80 00 2b be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 2007144: d2 00 62 e8 ld [ %g1 + 0x2e8 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007148: 11 00 03 d0 sethi %hi(0xf4000), %o0 200714c: 40 00 46 5b call 2018ab8 <.udiv> 2007150: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007154: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007158: 80 a0 40 08 cmp %g1, %o0 200715c: 3a 80 00 25 bcc,a 20071f0 <_TOD_Validate+0xc0> 2007160: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2007164: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007168: 80 a0 60 3b cmp %g1, 0x3b 200716c: 38 80 00 21 bgu,a 20071f0 <_TOD_Validate+0xc0> 2007170: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007174: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 2007178: 80 a0 60 3b cmp %g1, 0x3b 200717c: 38 80 00 1d bgu,a 20071f0 <_TOD_Validate+0xc0> 2007180: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007184: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2007188: 80 a0 60 17 cmp %g1, 0x17 200718c: 38 80 00 19 bgu,a 20071f0 <_TOD_Validate+0xc0> 2007190: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2007194: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007198: 80 a0 60 00 cmp %g1, 0 200719c: 02 80 00 14 be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 20071a0: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20071a4: 38 80 00 13 bgu,a 20071f0 <_TOD_Validate+0xc0> 20071a8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071ac: c6 06 00 00 ld [ %i0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20071b0: 80 a0 e7 c3 cmp %g3, 0x7c3 20071b4: 28 80 00 0f bleu,a 20071f0 <_TOD_Validate+0xc0> 20071b8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20071bc: c4 06 20 08 ld [ %i0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071c0: 80 a0 a0 00 cmp %g2, 0 20071c4: 02 80 00 0a be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 20071c8: 80 88 e0 03 btst 3, %g3 20071cc: 07 00 80 6e sethi %hi(0x201b800), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20071d0: 12 80 00 03 bne 20071dc <_TOD_Validate+0xac> 20071d4: 86 10 e3 f8 or %g3, 0x3f8, %g3 ! 201bbf8 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20071d8: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20071dc: 83 28 60 02 sll %g1, 2, %g1 20071e0: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20071e4: 80 a0 40 02 cmp %g1, %g2 20071e8: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 20071ec: b0 0f 60 01 and %i5, 1, %i0 20071f0: 81 c7 e0 08 ret 20071f4: 81 e8 00 00 restore =============================================================================== 02008760 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008760: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008764: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008768: 40 00 03 56 call 20094c0 <_Thread_Set_transient> 200876c: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008770: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008774: 80 a0 40 19 cmp %g1, %i1 2008778: 02 80 00 05 be 200878c <_Thread_Change_priority+0x2c> 200877c: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 2008780: 90 10 00 18 mov %i0, %o0 2008784: 40 00 03 36 call 200945c <_Thread_Set_priority> 2008788: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 200878c: 7f ff e6 7c call 200217c 2008790: 01 00 00 00 nop 2008794: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2008798: f2 07 60 10 ld [ %i5 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 200879c: 80 a6 60 04 cmp %i1, 4 20087a0: 02 80 00 10 be 20087e0 <_Thread_Change_priority+0x80> 20087a4: b8 0f 20 04 and %i4, 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 20087a8: 80 a7 20 00 cmp %i4, 0 20087ac: 12 80 00 03 bne 20087b8 <_Thread_Change_priority+0x58> <== NEVER TAKEN 20087b0: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20087b4: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 20087b8: 7f ff e6 75 call 200218c 20087bc: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 20087c0: 03 00 00 ef sethi %hi(0x3bc00), %g1 20087c4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20087c8: 80 8e 40 01 btst %i1, %g1 20087cc: 02 80 00 29 be 2008870 <_Thread_Change_priority+0x110> 20087d0: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 20087d4: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 20087d8: 40 00 02 f3 call 20093a4 <_Thread_queue_Requeue> 20087dc: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 20087e0: 80 a7 20 00 cmp %i4, 0 20087e4: 12 80 00 0b bne 2008810 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 20087e8: 03 00 80 6a sethi %hi(0x201a800), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20087ec: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 20087f0: 80 a6 a0 00 cmp %i2, 0 20087f4: 02 80 00 04 be 2008804 <_Thread_Change_priority+0xa4> 20087f8: 82 10 60 54 or %g1, 0x54, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 20087fc: 10 80 00 03 b 2008808 <_Thread_Change_priority+0xa8> 2008800: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008804: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2008808: 9f c0 40 00 call %g1 200880c: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008810: 7f ff e6 5f call 200218c 2008814: 90 10 00 1b mov %i3, %o0 2008818: 7f ff e6 59 call 200217c 200881c: 01 00 00 00 nop 2008820: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008824: 03 00 80 6a sethi %hi(0x201a800), %g1 2008828: c2 00 60 5c ld [ %g1 + 0x5c ], %g1 ! 201a85c <_Scheduler+0x8> 200882c: 9f c0 40 00 call %g1 2008830: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008834: 03 00 80 6d sethi %hi(0x201b400), %g1 2008838: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c <_Per_CPU_Information> 200883c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008840: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008844: 80 a0 80 03 cmp %g2, %g3 2008848: 02 80 00 08 be 2008868 <_Thread_Change_priority+0x108> 200884c: 01 00 00 00 nop 2008850: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008854: 80 a0 a0 00 cmp %g2, 0 2008858: 02 80 00 04 be 2008868 <_Thread_Change_priority+0x108> 200885c: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008860: 84 10 20 01 mov 1, %g2 ! 1 2008864: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008868: 7f ff e6 49 call 200218c 200886c: 81 e8 00 00 restore 2008870: 81 c7 e0 08 ret 2008874: 81 e8 00 00 restore =============================================================================== 02008a64 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008a64: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008a68: 90 10 00 18 mov %i0, %o0 2008a6c: 40 00 00 6e call 2008c24 <_Thread_Get> 2008a70: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008a74: c2 07 bf fc ld [ %fp + -4 ], %g1 2008a78: 80 a0 60 00 cmp %g1, 0 2008a7c: 12 80 00 09 bne 2008aa0 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2008a80: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008a84: 7f ff ff 7d call 2008878 <_Thread_Clear_state> 2008a88: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2008a8c: 03 00 80 6d sethi %hi(0x201b400), %g1 2008a90: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level> 2008a94: 84 00 bf ff add %g2, -1, %g2 2008a98: c4 20 60 50 st %g2, [ %g1 + 0x50 ] return _Thread_Dispatch_disable_level; 2008a9c: c2 00 60 50 ld [ %g1 + 0x50 ], %g1 2008aa0: 81 c7 e0 08 ret 2008aa4: 81 e8 00 00 restore =============================================================================== 02008aa8 <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008aa8: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2008aac: 03 00 80 6d sethi %hi(0x201b400), %g1 2008ab0: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level> 2008ab4: 84 00 a0 01 inc %g2 2008ab8: c4 20 60 50 st %g2, [ %g1 + 0x50 ] return _Thread_Dispatch_disable_level; 2008abc: c2 00 60 50 ld [ %g1 + 0x50 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2008ac0: 33 00 80 6d sethi %hi(0x201b400), %i1 2008ac4: b4 16 62 7c or %i1, 0x27c, %i2 ! 201b67c <_Per_CPU_Information> _ISR_Disable( level ); 2008ac8: 7f ff e5 ad call 200217c 2008acc: fa 06 a0 0c ld [ %i2 + 0xc ], %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008ad0: 21 00 80 6c sethi %hi(0x201b000), %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008ad4: b4 06 a0 1c add %i2, 0x1c, %i2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008ad8: 31 00 80 6d sethi %hi(0x201b400), %i0 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008adc: 10 80 00 38 b 2008bbc <_Thread_Dispatch+0x114> 2008ae0: 37 00 80 6d sethi %hi(0x201b400), %i3 heir = _Thread_Heir; _Thread_Dispatch_necessary = false; 2008ae4: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008ae8: 80 a7 00 1d cmp %i4, %i5 2008aec: 02 80 00 39 be 2008bd0 <_Thread_Dispatch+0x128> 2008af0: f8 20 60 0c st %i4, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008af4: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 2008af8: 80 a0 60 01 cmp %g1, 1 2008afc: 12 80 00 03 bne 2008b08 <_Thread_Dispatch+0x60> 2008b00: c2 04 23 b4 ld [ %l0 + 0x3b4 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008b04: c2 27 20 78 st %g1, [ %i4 + 0x78 ] _ISR_Enable( level ); 2008b08: 7f ff e5 a1 call 200218c 2008b0c: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008b10: 40 00 0c c1 call 200be14 <_TOD_Get_uptime> 2008b14: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 2008b18: 90 10 00 1a mov %i2, %o0 2008b1c: 92 07 bf f0 add %fp, -16, %o1 2008b20: 40 00 02 db call 200968c <_Timespec_Subtract> 2008b24: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008b28: 90 07 60 84 add %i5, 0x84, %o0 2008b2c: 40 00 02 bf call 2009628 <_Timespec_Add_to> 2008b30: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 2008b34: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b38: c2 06 20 d8 ld [ %i0 + 0xd8 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008b3c: c4 26 80 00 st %g2, [ %i2 ] 2008b40: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b44: 80 a0 60 00 cmp %g1, 0 2008b48: 02 80 00 06 be 2008b60 <_Thread_Dispatch+0xb8> <== NEVER TAKEN 2008b4c: c4 26 a0 04 st %g2, [ %i2 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008b50: c4 00 40 00 ld [ %g1 ], %g2 2008b54: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008b58: c4 07 21 54 ld [ %i4 + 0x154 ], %g2 2008b5c: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008b60: 90 10 00 1d mov %i5, %o0 2008b64: 40 00 03 78 call 2009944 <_User_extensions_Thread_switch> 2008b68: 92 10 00 1c mov %i4, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008b6c: 90 07 60 c8 add %i5, 0xc8, %o0 2008b70: 40 00 04 9e call 2009de8 <_CPU_Context_switch> 2008b74: 92 07 20 c8 add %i4, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008b78: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2008b7c: 80 a0 60 00 cmp %g1, 0 2008b80: 02 80 00 0c be 2008bb0 <_Thread_Dispatch+0x108> 2008b84: d0 06 e0 d4 ld [ %i3 + 0xd4 ], %o0 2008b88: 80 a7 40 08 cmp %i5, %o0 2008b8c: 02 80 00 09 be 2008bb0 <_Thread_Dispatch+0x108> 2008b90: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008b94: 02 80 00 04 be 2008ba4 <_Thread_Dispatch+0xfc> 2008b98: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008b9c: 40 00 04 59 call 2009d00 <_CPU_Context_save_fp> 2008ba0: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008ba4: 40 00 04 74 call 2009d74 <_CPU_Context_restore_fp> 2008ba8: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2008bac: fa 26 e0 d4 st %i5, [ %i3 + 0xd4 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2008bb0: 82 16 62 7c or %i1, 0x27c, %g1 _ISR_Disable( level ); 2008bb4: 7f ff e5 72 call 200217c 2008bb8: fa 00 60 0c ld [ %g1 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008bbc: 82 16 62 7c or %i1, 0x27c, %g1 2008bc0: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008bc4: 80 a0 a0 00 cmp %g2, 0 2008bc8: 32 bf ff c7 bne,a 2008ae4 <_Thread_Dispatch+0x3c> 2008bcc: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 2008bd0: 03 00 80 6d sethi %hi(0x201b400), %g1 2008bd4: c0 20 60 50 clr [ %g1 + 0x50 ] ! 201b450 <_Thread_Dispatch_disable_level> } post_switch: _Thread_Dispatch_set_disable_level( 0 ); _ISR_Enable( level ); 2008bd8: 7f ff e5 6d call 200218c 2008bdc: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008be0: 7f ff f8 5a call 2006d48 <_API_extensions_Run_postswitch> 2008be4: 01 00 00 00 nop } 2008be8: 81 c7 e0 08 ret 2008bec: 81 e8 00 00 restore =============================================================================== 0200da70 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200da70: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200da74: 03 00 80 6d sethi %hi(0x201b400), %g1 200da78: fa 00 62 88 ld [ %g1 + 0x288 ], %i5 ! 201b688 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200da7c: 3f 00 80 36 sethi %hi(0x200d800), %i7 200da80: be 17 e2 70 or %i7, 0x270, %i7 ! 200da70 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200da84: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200da88: 7f ff d1 c1 call 200218c 200da8c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200da90: 03 00 80 6c sethi %hi(0x201b000), %g1 doneConstructors = 1; 200da94: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200da98: f8 08 61 10 ldub [ %g1 + 0x110 ], %i4 doneConstructors = 1; 200da9c: c4 28 61 10 stb %g2, [ %g1 + 0x110 ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200daa0: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 200daa4: 80 a0 60 00 cmp %g1, 0 200daa8: 02 80 00 0c be 200dad8 <_Thread_Handler+0x68> 200daac: 03 00 80 6d sethi %hi(0x201b400), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200dab0: d0 00 60 d4 ld [ %g1 + 0xd4 ], %o0 ! 201b4d4 <_Thread_Allocated_fp> 200dab4: 80 a7 40 08 cmp %i5, %o0 200dab8: 02 80 00 08 be 200dad8 <_Thread_Handler+0x68> 200dabc: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200dac0: 22 80 00 06 be,a 200dad8 <_Thread_Handler+0x68> 200dac4: fa 20 60 d4 st %i5, [ %g1 + 0xd4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200dac8: 7f ff f0 8e call 2009d00 <_CPU_Context_save_fp> 200dacc: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200dad0: 03 00 80 6d sethi %hi(0x201b400), %g1 200dad4: fa 20 60 d4 st %i5, [ %g1 + 0xd4 ] ! 201b4d4 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200dad8: 7f ff ef 2c call 2009788 <_User_extensions_Thread_begin> 200dadc: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200dae0: 7f ff ec 44 call 2008bf0 <_Thread_Enable_dispatch> 200dae4: b9 2f 20 18 sll %i4, 0x18, %i4 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200dae8: 80 a7 20 00 cmp %i4, 0 200daec: 32 80 00 05 bne,a 200db00 <_Thread_Handler+0x90> 200daf0: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 INIT_NAME (); 200daf4: 40 00 33 0d call 201a728 <_init> 200daf8: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200dafc: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200db00: 80 a0 60 00 cmp %g1, 0 200db04: 12 80 00 06 bne 200db1c <_Thread_Handler+0xac> <== NEVER TAKEN 200db08: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200db0c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200db10: 9f c0 40 00 call %g1 200db14: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200db18: d0 27 60 28 st %o0, [ %i5 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200db1c: 7f ff ef 2c call 20097cc <_User_extensions_Thread_exitted> 200db20: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200db24: 90 10 20 00 clr %o0 200db28: 92 10 20 01 mov 1, %o1 200db2c: 7f ff e7 2a call 20077d4 <_Internal_error_Occurred> 200db30: 94 10 20 05 mov 5, %o2 =============================================================================== 02008cd4 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008cd4: 9d e3 bf a0 save %sp, -96, %sp 2008cd8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008cdc: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 2008ce0: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008ce4: c0 26 61 58 clr [ %i1 + 0x158 ] 2008ce8: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008cec: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008cf0: 90 10 00 19 mov %i1, %o0 2008cf4: 40 00 02 02 call 20094fc <_Thread_Stack_Allocate> 2008cf8: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008cfc: 80 a2 00 1b cmp %o0, %i3 2008d00: 0a 80 00 61 bcs 2008e84 <_Thread_Initialize+0x1b0> 2008d04: 80 a2 20 00 cmp %o0, 0 2008d08: 02 80 00 5f be 2008e84 <_Thread_Initialize+0x1b0> <== NEVER TAKEN 2008d0c: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d10: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008d14: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008d18: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008d1c: 02 80 00 07 be 2008d38 <_Thread_Initialize+0x64> 2008d20: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008d24: 40 00 03 db call 2009c90 <_Workspace_Allocate> 2008d28: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008d2c: b6 92 20 00 orcc %o0, 0, %i3 2008d30: 02 80 00 46 be 2008e48 <_Thread_Initialize+0x174> 2008d34: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d38: 03 00 80 6d sethi %hi(0x201b400), %g1 2008d3c: d0 00 60 e4 ld [ %g1 + 0xe4 ], %o0 ! 201b4e4 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008d40: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008d44: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008d48: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008d4c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008d50: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 2008d54: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d58: 80 a2 20 00 cmp %o0, 0 2008d5c: 02 80 00 08 be 2008d7c <_Thread_Initialize+0xa8> 2008d60: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 2008d64: 90 02 20 01 inc %o0 2008d68: 40 00 03 ca call 2009c90 <_Workspace_Allocate> 2008d6c: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008d70: b8 92 20 00 orcc %o0, 0, %i4 2008d74: 22 80 00 36 be,a 2008e4c <_Thread_Initialize+0x178> 2008d78: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008d7c: 80 a7 20 00 cmp %i4, 0 2008d80: 02 80 00 0c be 2008db0 <_Thread_Initialize+0xdc> 2008d84: f8 26 61 60 st %i4, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008d88: 03 00 80 6d sethi %hi(0x201b400), %g1 2008d8c: c4 00 60 e4 ld [ %g1 + 0xe4 ], %g2 ! 201b4e4 <_Thread_Maximum_extensions> 2008d90: 10 80 00 05 b 2008da4 <_Thread_Initialize+0xd0> 2008d94: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 2008d98: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008d9c: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008da0: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008da4: 80 a0 40 02 cmp %g1, %g2 2008da8: 28 bf ff fc bleu,a 2008d98 <_Thread_Initialize+0xc4> 2008dac: c8 06 61 60 ld [ %i1 + 0x160 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008db0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008db4: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] the_thread->Start.budget_algorithm = budget_algorithm; 2008db8: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008dbc: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008dc0: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008dc4: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008dc8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008dcc: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008dd0: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008dd4: 82 10 20 01 mov 1, %g1 2008dd8: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008ddc: 03 00 80 6a sethi %hi(0x201a800), %g1 2008de0: c2 00 60 6c ld [ %g1 + 0x6c ], %g1 ! 201a86c <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 2008de4: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008de8: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008dec: 9f c0 40 00 call %g1 2008df0: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008df4: b4 92 20 00 orcc %o0, 0, %i2 2008df8: 02 80 00 15 be 2008e4c <_Thread_Initialize+0x178> 2008dfc: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008e00: 40 00 01 97 call 200945c <_Thread_Set_priority> 2008e04: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e08: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008e0c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008e10: c0 26 60 84 clr [ %i1 + 0x84 ] 2008e14: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008e18: 83 28 60 02 sll %g1, 2, %g1 2008e1c: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008e20: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008e24: 90 10 00 19 mov %i1, %o0 2008e28: 40 00 02 8a call 2009850 <_User_extensions_Thread_create> 2008e2c: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008e30: 80 8a 20 ff btst 0xff, %o0 2008e34: 02 80 00 06 be 2008e4c <_Thread_Initialize+0x178> 2008e38: 01 00 00 00 nop 2008e3c: b0 0e 20 01 and %i0, 1, %i0 2008e40: 81 c7 e0 08 ret 2008e44: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2008e48: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 2008e4c: 40 00 03 99 call 2009cb0 <_Workspace_Free> 2008e50: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 2008e54: 40 00 03 97 call 2009cb0 <_Workspace_Free> 2008e58: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008e5c: 40 00 03 95 call 2009cb0 <_Workspace_Free> 2008e60: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 2008e64: 40 00 03 93 call 2009cb0 <_Workspace_Free> 2008e68: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2008e6c: 40 00 03 91 call 2009cb0 <_Workspace_Free> 2008e70: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 2008e74: 40 00 03 8f call 2009cb0 <_Workspace_Free> 2008e78: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 2008e7c: 40 00 01 b7 call 2009558 <_Thread_Stack_Free> 2008e80: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 2008e84: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008e88: b0 0e 20 01 and %i0, 1, %i0 2008e8c: 81 c7 e0 08 ret 2008e90: 81 e8 00 00 restore =============================================================================== 020093a4 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 20093a4: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 20093a8: 80 a6 20 00 cmp %i0, 0 20093ac: 02 80 00 19 be 2009410 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 20093b0: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 20093b4: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 20093b8: 80 a7 20 01 cmp %i4, 1 20093bc: 12 80 00 15 bne 2009410 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 20093c0: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 20093c4: 7f ff e3 6e call 200217c 20093c8: 01 00 00 00 nop 20093cc: ba 10 00 08 mov %o0, %i5 20093d0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 20093d4: 03 00 00 ef sethi %hi(0x3bc00), %g1 20093d8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20093dc: 80 88 80 01 btst %g2, %g1 20093e0: 02 80 00 0a be 2009408 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 20093e4: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 20093e8: 92 10 00 19 mov %i1, %o1 20093ec: 94 10 20 01 mov 1, %o2 20093f0: 40 00 0b f8 call 200c3d0 <_Thread_queue_Extract_priority_helper> 20093f4: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 20093f8: 90 10 00 18 mov %i0, %o0 20093fc: 92 10 00 19 mov %i1, %o1 2009400: 7f ff ff 50 call 2009140 <_Thread_queue_Enqueue_priority> 2009404: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2009408: 7f ff e3 61 call 200218c 200940c: 90 10 00 1d mov %i5, %o0 2009410: 81 c7 e0 08 ret 2009414: 81 e8 00 00 restore =============================================================================== 02009418 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009418: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200941c: 90 10 00 18 mov %i0, %o0 2009420: 7f ff fe 01 call 2008c24 <_Thread_Get> 2009424: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009428: c2 07 bf fc ld [ %fp + -4 ], %g1 200942c: 80 a0 60 00 cmp %g1, 0 2009430: 12 80 00 09 bne 2009454 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009434: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009438: 40 00 0c 1d call 200c4ac <_Thread_queue_Process_timeout> 200943c: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009440: 03 00 80 6d sethi %hi(0x201b400), %g1 2009444: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level> 2009448: 84 00 bf ff add %g2, -1, %g2 200944c: c4 20 60 50 st %g2, [ %g1 + 0x50 ] return _Thread_Dispatch_disable_level; 2009450: c2 00 60 50 ld [ %g1 + 0x50 ], %g1 2009454: 81 c7 e0 08 ret 2009458: 81 e8 00 00 restore =============================================================================== 0201715c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201715c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2017160: 27 00 80 e8 sethi %hi(0x203a000), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017164: a8 07 bf e8 add %fp, -24, %l4 2017168: a4 07 bf ec add %fp, -20, %l2 201716c: b6 07 bf f4 add %fp, -12, %i3 2017170: b4 07 bf f8 add %fp, -8, %i2 2017174: e4 27 bf e8 st %l2, [ %fp + -24 ] head->previous = NULL; 2017178: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 201717c: e8 27 bf f0 st %l4, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017180: f4 27 bf f4 st %i2, [ %fp + -12 ] head->previous = NULL; 2017184: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2017188: f6 27 bf fc st %i3, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201718c: b2 06 20 30 add %i0, 0x30, %i1 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2017190: b8 06 20 68 add %i0, 0x68, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2017194: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2017198: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 201719c: e8 26 20 78 st %l4, [ %i0 + 0x78 ] static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20171a0: 2b 00 80 e7 sethi %hi(0x2039c00), %l5 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20171a4: c2 04 e0 5c ld [ %l3 + 0x5c ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20171a8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171ac: 94 10 00 1b mov %i3, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20171b0: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171b4: 90 10 00 19 mov %i1, %o0 20171b8: 40 00 11 77 call 201b794 <_Watchdog_Adjust_to_chain> 20171bc: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20171c0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20171c4: fa 05 63 dc ld [ %l5 + 0x3dc ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20171c8: 80 a7 40 0a cmp %i5, %o2 20171cc: 08 80 00 06 bleu 20171e4 <_Timer_server_Body+0x88> 20171d0: 92 27 40 0a sub %i5, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20171d4: 90 10 00 1c mov %i4, %o0 20171d8: 40 00 11 6f call 201b794 <_Watchdog_Adjust_to_chain> 20171dc: 94 10 00 1b mov %i3, %o2 20171e0: 30 80 00 06 b,a 20171f8 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 20171e4: 1a 80 00 05 bcc 20171f8 <_Timer_server_Body+0x9c> 20171e8: 90 10 00 1c mov %i4, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20171ec: 92 10 20 01 mov 1, %o1 20171f0: 40 00 11 42 call 201b6f8 <_Watchdog_Adjust> 20171f4: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 20171f8: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20171fc: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2017200: 40 00 02 bd call 2017cf4 <_Chain_Get> 2017204: 01 00 00 00 nop if ( timer == NULL ) { 2017208: 92 92 20 00 orcc %o0, 0, %o1 201720c: 02 80 00 0c be 201723c <_Timer_server_Body+0xe0> 2017210: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2017214: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2017218: 80 a0 60 01 cmp %g1, 1 201721c: 02 80 00 05 be 2017230 <_Timer_server_Body+0xd4> 2017220: 90 10 00 19 mov %i1, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2017224: 80 a0 60 03 cmp %g1, 3 2017228: 12 bf ff f5 bne 20171fc <_Timer_server_Body+0xa0> <== NEVER TAKEN 201722c: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017230: 40 00 11 8b call 201b85c <_Watchdog_Insert> 2017234: 92 02 60 10 add %o1, 0x10, %o1 2017238: 30 bf ff f1 b,a 20171fc <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 201723c: 7f ff e3 a1 call 20100c0 2017240: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2017244: c2 07 bf e8 ld [ %fp + -24 ], %g1 2017248: 80 a0 40 12 cmp %g1, %l2 201724c: 12 80 00 0a bne 2017274 <_Timer_server_Body+0x118> <== NEVER TAKEN 2017250: 01 00 00 00 nop ts->insert_chain = NULL; 2017254: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2017258: 7f ff e3 9e call 20100d0 201725c: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2017260: c2 07 bf f4 ld [ %fp + -12 ], %g1 2017264: 80 a0 40 1a cmp %g1, %i2 2017268: 12 80 00 06 bne 2017280 <_Timer_server_Body+0x124> 201726c: 01 00 00 00 nop 2017270: 30 80 00 18 b,a 20172d0 <_Timer_server_Body+0x174> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2017274: 7f ff e3 97 call 20100d0 <== NOT EXECUTED 2017278: 01 00 00 00 nop <== NOT EXECUTED 201727c: 30 bf ff ca b,a 20171a4 <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2017280: 7f ff e3 90 call 20100c0 2017284: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017288: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 201728c: 80 a7 40 1a cmp %i5, %i2 2017290: 02 80 00 0d be 20172c4 <_Timer_server_Body+0x168> 2017294: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 2017298: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 201729c: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 20172a0: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20172a4: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 20172a8: 7f ff e3 8a call 20100d0 20172ac: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20172b0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 20172b4: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 20172b8: 9f c0 40 00 call %g1 20172bc: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 20172c0: 30 bf ff f0 b,a 2017280 <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 20172c4: 7f ff e3 83 call 20100d0 20172c8: 01 00 00 00 nop 20172cc: 30 bf ff b4 b,a 201719c <_Timer_server_Body+0x40> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 20172d0: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 20172d4: 7f ff ff 73 call 20170a0 <_Thread_Disable_dispatch> 20172d8: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 20172dc: d0 06 00 00 ld [ %i0 ], %o0 20172e0: 40 00 0f 92 call 201b128 <_Thread_Set_state> 20172e4: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 20172e8: 7f ff ff 75 call 20170bc <_Timer_server_Reset_interval_system_watchdog> 20172ec: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 20172f0: 7f ff ff 87 call 201710c <_Timer_server_Reset_tod_system_watchdog> 20172f4: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 20172f8: 40 00 0d 46 call 201a810 <_Thread_Enable_dispatch> 20172fc: 01 00 00 00 nop ts->active = true; 2017300: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2017304: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2017308: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201730c: 40 00 11 ae call 201b9c4 <_Watchdog_Remove> 2017310: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2017314: 40 00 11 ac call 201b9c4 <_Watchdog_Remove> 2017318: 90 10 00 10 mov %l0, %o0 201731c: 30 bf ff a0 b,a 201719c <_Timer_server_Body+0x40> =============================================================================== 02017320 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2017320: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2017324: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2017328: 80 a0 60 00 cmp %g1, 0 201732c: 12 80 00 49 bne 2017450 <_Timer_server_Schedule_operation_method+0x130> 2017330: ba 10 00 19 mov %i1, %i5 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2017334: 7f ff ff 5b call 20170a0 <_Thread_Disable_dispatch> 2017338: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201733c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2017340: 80 a0 60 01 cmp %g1, 1 2017344: 12 80 00 1f bne 20173c0 <_Timer_server_Schedule_operation_method+0xa0> 2017348: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 201734c: 7f ff e3 5d call 20100c0 2017350: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2017354: 03 00 80 e8 sethi %hi(0x203a000), %g1 2017358: c4 00 60 5c ld [ %g1 + 0x5c ], %g2 ! 203a05c <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201735c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2017360: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2017364: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2017368: 80 a0 40 03 cmp %g1, %g3 201736c: 02 80 00 08 be 201738c <_Timer_server_Schedule_operation_method+0x6c> 2017370: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2017374: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 2017378: 80 a3 c0 04 cmp %o7, %g4 201737c: 08 80 00 03 bleu 2017388 <_Timer_server_Schedule_operation_method+0x68> 2017380: 86 10 20 00 clr %g3 delta_interval -= delta; 2017384: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2017388: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 201738c: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2017390: 7f ff e3 50 call 20100d0 2017394: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2017398: 90 06 20 30 add %i0, 0x30, %o0 201739c: 40 00 11 30 call 201b85c <_Watchdog_Insert> 20173a0: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20173a4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20173a8: 80 a0 60 00 cmp %g1, 0 20173ac: 12 80 00 27 bne 2017448 <_Timer_server_Schedule_operation_method+0x128> 20173b0: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 20173b4: 7f ff ff 42 call 20170bc <_Timer_server_Reset_interval_system_watchdog> 20173b8: 90 10 00 18 mov %i0, %o0 20173bc: 30 80 00 23 b,a 2017448 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20173c0: 12 80 00 22 bne 2017448 <_Timer_server_Schedule_operation_method+0x128> 20173c4: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20173c8: 7f ff e3 3e call 20100c0 20173cc: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20173d0: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 20173d4: de 06 20 74 ld [ %i0 + 0x74 ], %o7 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20173d8: 03 00 80 e7 sethi %hi(0x2039c00), %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20173dc: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 20173e0: 80 a0 80 03 cmp %g2, %g3 20173e4: 02 80 00 0d be 2017418 <_Timer_server_Schedule_operation_method+0xf8> 20173e8: c2 00 63 dc ld [ %g1 + 0x3dc ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 20173ec: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 20173f0: 80 a0 40 0f cmp %g1, %o7 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 20173f4: 86 01 00 0f add %g4, %o7, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 20173f8: 08 80 00 07 bleu 2017414 <_Timer_server_Schedule_operation_method+0xf4> 20173fc: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2017400: 9e 20 40 0f sub %g1, %o7, %o7 if (delta_interval > delta) { 2017404: 80 a1 00 0f cmp %g4, %o7 2017408: 08 80 00 03 bleu 2017414 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 201740c: 86 10 20 00 clr %g3 delta_interval -= delta; 2017410: 86 21 00 0f sub %g4, %o7, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2017414: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2017418: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 201741c: 7f ff e3 2d call 20100d0 2017420: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017424: 90 06 20 68 add %i0, 0x68, %o0 2017428: 40 00 11 0d call 201b85c <_Watchdog_Insert> 201742c: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2017430: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2017434: 80 a0 60 00 cmp %g1, 0 2017438: 12 80 00 04 bne 2017448 <_Timer_server_Schedule_operation_method+0x128> 201743c: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2017440: 7f ff ff 33 call 201710c <_Timer_server_Reset_tod_system_watchdog> 2017444: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2017448: 40 00 0c f2 call 201a810 <_Thread_Enable_dispatch> 201744c: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2017450: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2017454: 40 00 02 14 call 2017ca4 <_Chain_Append> 2017458: 81 e8 00 00 restore =============================================================================== 020096d0 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 20096d0: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20096d4: 03 00 80 69 sethi %hi(0x201a400), %g1 20096d8: 82 10 63 6c or %g1, 0x36c, %g1 ! 201a76c ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20096dc: 05 00 80 6d sethi %hi(0x201b400), %g2 initial_extensions = Configuration.User_extension_table; 20096e0: f4 00 60 3c ld [ %g1 + 0x3c ], %i2 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20096e4: f6 00 60 38 ld [ %g1 + 0x38 ], %i3 20096e8: 82 10 a2 38 or %g2, 0x238, %g1 20096ec: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 20096f0: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 20096f4: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20096f8: c6 20 a2 38 st %g3, [ %g2 + 0x238 ] 20096fc: 05 00 80 6d sethi %hi(0x201b400), %g2 2009700: 82 10 a0 54 or %g2, 0x54, %g1 ! 201b454 <_User_extensions_Switches_list> 2009704: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 2009708: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200970c: c6 20 a0 54 st %g3, [ %g2 + 0x54 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009710: 80 a6 a0 00 cmp %i2, 0 2009714: 02 80 00 1b be 2009780 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009718: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 200971c: 83 2e e0 02 sll %i3, 2, %g1 2009720: bb 2e e0 04 sll %i3, 4, %i5 2009724: ba 27 40 01 sub %i5, %g1, %i5 2009728: ba 07 40 1b add %i5, %i3, %i5 200972c: bb 2f 60 02 sll %i5, 2, %i5 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009730: 40 00 01 66 call 2009cc8 <_Workspace_Allocate_or_fatal_error> 2009734: 90 10 00 1d mov %i5, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009738: 94 10 00 1d mov %i5, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 200973c: b8 10 00 08 mov %o0, %i4 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009740: 92 10 20 00 clr %o1 2009744: 40 00 13 d4 call 200e694 2009748: ba 10 20 00 clr %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200974c: 10 80 00 0b b 2009778 <_User_extensions_Handler_initialization+0xa8> 2009750: 80 a7 40 1b cmp %i5, %i3 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009754: 90 07 20 14 add %i4, 0x14, %o0 2009758: 92 06 80 09 add %i2, %o1, %o1 200975c: 40 00 13 92 call 200e5a4 2009760: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 2009764: 90 10 00 1c mov %i4, %o0 2009768: 40 00 0b 75 call 200c53c <_User_extensions_Add_set> 200976c: ba 07 60 01 inc %i5 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009770: b8 07 20 34 add %i4, 0x34, %i4 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009774: 80 a7 40 1b cmp %i5, %i3 2009778: 12 bf ff f7 bne 2009754 <_User_extensions_Handler_initialization+0x84> 200977c: 93 2f 60 05 sll %i5, 5, %o1 2009780: 81 c7 e0 08 ret 2009784: 81 e8 00 00 restore =============================================================================== 0200b440 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b440: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b444: 7f ff de ed call 2002ff8 200b448: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b44c: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b450: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b454: 80 a0 40 1c cmp %g1, %i4 200b458: 02 80 00 1f be 200b4d4 <_Watchdog_Adjust+0x94> 200b45c: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b460: 02 80 00 1a be 200b4c8 <_Watchdog_Adjust+0x88> 200b464: b6 10 20 01 mov 1, %i3 200b468: 80 a6 60 01 cmp %i1, 1 200b46c: 12 80 00 1a bne 200b4d4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b470: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b474: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b478: 10 80 00 07 b 200b494 <_Watchdog_Adjust+0x54> 200b47c: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b480: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b484: 80 a6 80 02 cmp %i2, %g2 200b488: 3a 80 00 05 bcc,a 200b49c <_Watchdog_Adjust+0x5c> 200b48c: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b490: b4 20 80 1a sub %g2, %i2, %i2 break; 200b494: 10 80 00 10 b 200b4d4 <_Watchdog_Adjust+0x94> 200b498: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200b49c: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b4a0: 7f ff de da call 2003008 200b4a4: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b4a8: 40 00 00 90 call 200b6e8 <_Watchdog_Tickle> 200b4ac: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200b4b0: 7f ff de d2 call 2002ff8 200b4b4: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b4b8: c2 07 40 00 ld [ %i5 ], %g1 200b4bc: 80 a0 40 1c cmp %g1, %i4 200b4c0: 02 80 00 05 be 200b4d4 <_Watchdog_Adjust+0x94> 200b4c4: 01 00 00 00 nop switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b4c8: 80 a6 a0 00 cmp %i2, 0 200b4cc: 32 bf ff ed bne,a 200b480 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b4d0: c2 07 40 00 ld [ %i5 ], %g1 } break; } } _ISR_Enable( level ); 200b4d4: 7f ff de cd call 2003008 200b4d8: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009ae8 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009ae8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009aec: 7f ff e1 a4 call 200217c 2009af0: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 2009af4: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009af8: 80 a6 20 01 cmp %i0, 1 2009afc: 22 80 00 1d be,a 2009b70 <_Watchdog_Remove+0x88> 2009b00: c0 27 60 08 clr [ %i5 + 8 ] 2009b04: 0a 80 00 1c bcs 2009b74 <_Watchdog_Remove+0x8c> 2009b08: 03 00 80 6d sethi %hi(0x201b400), %g1 2009b0c: 80 a6 20 03 cmp %i0, 3 2009b10: 18 80 00 19 bgu 2009b74 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009b14: 01 00 00 00 nop 2009b18: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009b1c: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009b20: c4 00 40 00 ld [ %g1 ], %g2 2009b24: 80 a0 a0 00 cmp %g2, 0 2009b28: 02 80 00 07 be 2009b44 <_Watchdog_Remove+0x5c> 2009b2c: 05 00 80 6d sethi %hi(0x201b400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009b30: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009b34: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 2009b38: 84 00 c0 02 add %g3, %g2, %g2 2009b3c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009b40: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b44: c4 00 a1 58 ld [ %g2 + 0x158 ], %g2 ! 201b558 <_Watchdog_Sync_count> 2009b48: 80 a0 a0 00 cmp %g2, 0 2009b4c: 22 80 00 07 be,a 2009b68 <_Watchdog_Remove+0x80> 2009b50: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009b54: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b58: c6 00 a2 84 ld [ %g2 + 0x284 ], %g3 ! 201b684 <_Per_CPU_Information+0x8> 2009b5c: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b60: c6 20 a0 f8 st %g3, [ %g2 + 0xf8 ] ! 201b4f8 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009b64: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 2009b68: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009b6c: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009b70: 03 00 80 6d sethi %hi(0x201b400), %g1 2009b74: c2 00 61 5c ld [ %g1 + 0x15c ], %g1 ! 201b55c <_Watchdog_Ticks_since_boot> 2009b78: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 2009b7c: 7f ff e1 84 call 200218c 2009b80: 01 00 00 00 nop return( previous_state ); } 2009b84: 81 c7 e0 08 ret 2009b88: 81 e8 00 00 restore =============================================================================== 0200ac38 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200ac38: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200ac3c: 7f ff df bf call 2002b38 200ac40: ba 10 00 18 mov %i0, %i5 200ac44: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200ac48: 11 00 80 6d sethi %hi(0x201b400), %o0 200ac4c: 94 10 00 19 mov %i1, %o2 200ac50: 90 12 20 b0 or %o0, 0xb0, %o0 200ac54: 7f ff e6 63 call 20045e0 200ac58: 92 10 00 1d mov %i5, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200ac5c: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ac60: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200ac64: 80 a7 00 19 cmp %i4, %i1 200ac68: 12 80 00 04 bne 200ac78 <_Watchdog_Report_chain+0x40> 200ac6c: 92 10 00 1c mov %i4, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200ac70: 10 80 00 0d b 200aca4 <_Watchdog_Report_chain+0x6c> 200ac74: 11 00 80 6d sethi %hi(0x201b400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200ac78: 40 00 00 0f call 200acb4 <_Watchdog_Report> 200ac7c: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200ac80: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200ac84: 80 a7 00 19 cmp %i4, %i1 200ac88: 12 bf ff fc bne 200ac78 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200ac8c: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200ac90: 11 00 80 6d sethi %hi(0x201b400), %o0 200ac94: 92 10 00 1d mov %i5, %o1 200ac98: 7f ff e6 52 call 20045e0 200ac9c: 90 12 20 c8 or %o0, 0xc8, %o0 200aca0: 30 80 00 03 b,a 200acac <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200aca4: 7f ff e6 4f call 20045e0 200aca8: 90 12 20 d8 or %o0, 0xd8, %o0 } _ISR_Enable( level ); 200acac: 7f ff df a7 call 2002b48 200acb0: 81 e8 00 00 restore =============================================================================== 02006cf0 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006cf0: 9d e3 bf 98 save %sp, -104, %sp 2006cf4: 10 80 00 09 b 2006d18 2006cf8: ba 10 00 18 mov %i0, %i5 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006cfc: 92 10 20 00 clr %o1 2006d00: 94 10 00 1a mov %i2, %o2 2006d04: 7f ff fd 03 call 2006110 2006d08: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006d0c: 80 a2 20 00 cmp %o0, 0 2006d10: 32 80 00 09 bne,a 2006d34 <== ALWAYS TAKEN 2006d14: f8 26 c0 00 st %i4, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d18: 40 00 01 62 call 20072a0 <_Chain_Get> 2006d1c: 90 10 00 1d mov %i5, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d20: b8 92 20 00 orcc %o0, 0, %i4 2006d24: 02 bf ff f6 be 2006cfc 2006d28: 90 10 00 19 mov %i1, %o0 2006d2c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d30: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 2006d34: 81 c7 e0 08 ret 2006d38: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02008fe4 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2008fe4: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2008fe8: 80 a6 20 00 cmp %i0, 0 2008fec: 02 80 00 1e be 2009064 <== NEVER TAKEN 2008ff0: ba 10 20 01 mov 1, %i5 return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2008ff4: 35 00 80 77 sethi %hi(0x201dc00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2008ff8: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2008ffc: 84 16 a2 f8 or %i2, 0x2f8, %g2 2009000: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009004: 80 a0 60 00 cmp %g1, 0 2009008: 22 80 00 14 be,a 2009058 200900c: ba 07 60 01 inc %i5 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009010: f6 00 60 04 ld [ %g1 + 4 ], %i3 if ( !information ) 2009014: 80 a6 e0 00 cmp %i3, 0 2009018: 12 80 00 0b bne 2009044 200901c: b8 10 20 01 mov 1, %i4 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009020: 10 80 00 0e b 2009058 2009024: ba 07 60 01 inc %i5 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { the_thread = (Thread_Control *)information->local_table[ i ]; 2009028: 83 2f 20 02 sll %i4, 2, %g1 200902c: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009030: 80 a2 20 00 cmp %o0, 0 2009034: 02 80 00 04 be 2009044 2009038: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 200903c: 9f c6 00 00 call %i0 2009040: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009044: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 2009048: 80 a7 00 01 cmp %i4, %g1 200904c: 28 bf ff f7 bleu,a 2009028 2009050: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009054: ba 07 60 01 inc %i5 2009058: 80 a7 60 04 cmp %i5, 4 200905c: 12 bf ff e8 bne 2008ffc 2009060: 83 2f 60 02 sll %i5, 2, %g1 2009064: 81 c7 e0 08 ret 2009068: 81 e8 00 00 restore =============================================================================== 02014b3c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014b3c: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014b40: 80 a6 20 00 cmp %i0, 0 2014b44: 02 80 00 39 be 2014c28 2014b48: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014b4c: 80 a6 60 00 cmp %i1, 0 2014b50: 02 80 00 36 be 2014c28 2014b54: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014b58: 80 a7 60 00 cmp %i5, 0 2014b5c: 02 80 00 33 be 2014c28 <== NEVER TAKEN 2014b60: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014b64: 02 80 00 31 be 2014c28 2014b68: 82 10 20 08 mov 8, %g1 2014b6c: 80 a6 a0 00 cmp %i2, 0 2014b70: 02 80 00 2e be 2014c28 2014b74: 80 a6 80 1b cmp %i2, %i3 2014b78: 0a 80 00 2c bcs 2014c28 2014b7c: 80 8e e0 07 btst 7, %i3 2014b80: 12 80 00 2a bne 2014c28 2014b84: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2014b88: 12 80 00 28 bne 2014c28 2014b8c: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2014b90: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2014b94: c4 00 63 50 ld [ %g1 + 0x350 ], %g2 ! 2039f50 <_Thread_Dispatch_disable_level> 2014b98: 84 00 a0 01 inc %g2 2014b9c: c4 20 63 50 st %g2, [ %g1 + 0x350 ] return _Thread_Dispatch_disable_level; 2014ba0: c2 00 63 50 ld [ %g1 + 0x350 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014ba4: 23 00 80 e7 sethi %hi(0x2039c00), %l1 2014ba8: 40 00 12 2f call 2019464 <_Objects_Allocate> 2014bac: 90 14 61 64 or %l1, 0x164, %o0 ! 2039d64 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014bb0: a0 92 20 00 orcc %o0, 0, %l0 2014bb4: 32 80 00 06 bne,a 2014bcc 2014bb8: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2014bbc: 40 00 17 15 call 201a810 <_Thread_Enable_dispatch> 2014bc0: 01 00 00 00 nop return RTEMS_TOO_MANY; 2014bc4: 10 80 00 19 b 2014c28 2014bc8: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014bcc: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014bd0: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2014bd4: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2014bd8: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2014bdc: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014be0: 40 00 54 f0 call 2029fa0 <.udiv> 2014be4: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014be8: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2014bec: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014bf0: 96 10 00 1b mov %i3, %o3 2014bf4: b8 04 20 24 add %l0, 0x24, %i4 2014bf8: 40 00 0c 4e call 2017d30 <_Chain_Initialize> 2014bfc: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c00: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014c04: a2 14 61 64 or %l1, 0x164, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c08: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014c0c: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014c10: 85 28 a0 02 sll %g2, 2, %g2 2014c14: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014c18: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014c1c: 40 00 16 fd call 201a810 <_Thread_Enable_dispatch> 2014c20: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2014c24: 82 10 20 00 clr %g1 } 2014c28: 81 c7 e0 08 ret 2014c2c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02007228 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007228: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 200722c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007230: 92 10 00 18 mov %i0, %o1 2007234: 90 12 21 74 or %o0, 0x174, %o0 2007238: 40 00 08 da call 20095a0 <_Objects_Get> 200723c: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007240: c2 07 bf fc ld [ %fp + -4 ], %g1 2007244: 80 a0 60 00 cmp %g1, 0 2007248: 12 80 00 65 bne 20073dc 200724c: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007250: 37 00 80 75 sethi %hi(0x201d400), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007254: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 2007258: b6 16 e1 0c or %i3, 0x10c, %i3 200725c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1 2007260: 80 a0 80 01 cmp %g2, %g1 2007264: 02 80 00 06 be 200727c 2007268: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 200726c: 40 00 0c 6d call 200a420 <_Thread_Enable_dispatch> 2007270: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007274: 81 c7 e0 08 ret 2007278: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 200727c: 12 80 00 0d bne 20072b0 2007280: 01 00 00 00 nop switch ( the_period->state ) { 2007284: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007288: 80 a0 60 04 cmp %g1, 4 200728c: 18 80 00 05 bgu 20072a0 <== NEVER TAKEN 2007290: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007294: 05 00 80 6c sethi %hi(0x201b000), %g2 2007298: 84 10 a1 b8 or %g2, 0x1b8, %g2 ! 201b1b8 200729c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20072a0: 40 00 0c 60 call 200a420 <_Thread_Enable_dispatch> 20072a4: 01 00 00 00 nop return( return_value ); 20072a8: 81 c7 e0 08 ret 20072ac: 81 e8 00 00 restore } _ISR_Disable( level ); 20072b0: 7f ff ee fb call 2002e9c 20072b4: 01 00 00 00 nop 20072b8: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20072bc: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 20072c0: 80 a7 20 00 cmp %i4, 0 20072c4: 12 80 00 15 bne 2007318 20072c8: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 20072cc: 7f ff ee f8 call 2002eac 20072d0: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20072d4: 7f ff ff 7f call 20070d0 <_Rate_monotonic_Initiate_statistics> 20072d8: 90 10 00 1d mov %i5, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20072dc: 82 10 20 02 mov 2, %g1 20072e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20072e4: 03 00 80 1d sethi %hi(0x2007400), %g1 20072e8: 82 10 62 98 or %g1, 0x298, %g1 ! 2007698 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20072ec: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 20072f0: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 20072f4: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 20072f8: c0 27 60 34 clr [ %i5 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 20072fc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007300: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007304: 11 00 80 74 sethi %hi(0x201d000), %o0 2007308: 92 07 60 10 add %i5, 0x10, %o1 200730c: 40 00 10 0b call 200b338 <_Watchdog_Insert> 2007310: 90 12 23 9c or %o0, 0x39c, %o0 2007314: 30 80 00 1b b,a 2007380 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007318: 12 80 00 1e bne 2007390 200731c: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007320: 7f ff ff 86 call 2007138 <_Rate_monotonic_Update_statistics> 2007324: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007328: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 200732c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007330: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007334: 7f ff ee de call 2002eac 2007338: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 200733c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007340: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007344: 13 00 00 10 sethi %hi(0x4000), %o1 2007348: 40 00 0e 59 call 200acac <_Thread_Set_state> 200734c: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007350: 7f ff ee d3 call 2002e9c 2007354: 01 00 00 00 nop local_state = the_period->state; 2007358: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 200735c: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 2007360: 7f ff ee d3 call 2002eac 2007364: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007368: 80 a6 a0 03 cmp %i2, 3 200736c: 12 80 00 05 bne 2007380 2007370: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007374: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007378: 40 00 0b 4c call 200a0a8 <_Thread_Clear_state> 200737c: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 2007380: 40 00 0c 28 call 200a420 <_Thread_Enable_dispatch> 2007384: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007388: 81 c7 e0 08 ret 200738c: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 2007390: 12 bf ff b9 bne 2007274 <== NEVER TAKEN 2007394: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007398: 7f ff ff 68 call 2007138 <_Rate_monotonic_Update_statistics> 200739c: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20073a0: 7f ff ee c3 call 2002eac 20073a4: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20073a8: 82 10 20 02 mov 2, %g1 20073ac: 92 07 60 10 add %i5, 0x10, %o1 20073b0: 11 00 80 74 sethi %hi(0x201d000), %o0 20073b4: 90 12 23 9c or %o0, 0x39c, %o0 ! 201d39c <_Watchdog_Ticks_chain> 20073b8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 20073bc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20073c0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20073c4: 40 00 0f dd call 200b338 <_Watchdog_Insert> 20073c8: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20073cc: 40 00 0c 15 call 200a420 <_Thread_Enable_dispatch> 20073d0: 01 00 00 00 nop return RTEMS_TIMEOUT; 20073d4: 81 c7 e0 08 ret 20073d8: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20073dc: b0 10 20 04 mov 4, %i0 } 20073e0: 81 c7 e0 08 ret 20073e4: 81 e8 00 00 restore =============================================================================== 020073e8 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20073e8: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20073ec: 80 a6 60 00 cmp %i1, 0 20073f0: 02 80 00 75 be 20075c4 <== NEVER TAKEN 20073f4: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20073f8: 13 00 80 6c sethi %hi(0x201b000), %o1 20073fc: 9f c6 40 00 call %i1 2007400: 92 12 61 c0 or %o1, 0x1c0, %o1 ! 201b1c0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007404: 90 10 00 18 mov %i0, %o0 2007408: 13 00 80 6c sethi %hi(0x201b000), %o1 200740c: 9f c6 40 00 call %i1 2007410: 92 12 61 e0 or %o1, 0x1e0, %o1 ! 201b1e0 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007414: 90 10 00 18 mov %i0, %o0 2007418: 13 00 80 6c sethi %hi(0x201b000), %o1 200741c: 9f c6 40 00 call %i1 2007420: 92 12 62 08 or %o1, 0x208, %o1 ! 201b208 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007424: 90 10 00 18 mov %i0, %o0 2007428: 13 00 80 6c sethi %hi(0x201b000), %o1 200742c: 9f c6 40 00 call %i1 2007430: 92 12 62 30 or %o1, 0x230, %o1 ! 201b230 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007434: 90 10 00 18 mov %i0, %o0 2007438: 13 00 80 6c sethi %hi(0x201b000), %o1 200743c: 9f c6 40 00 call %i1 2007440: 92 12 62 80 or %o1, 0x280, %o1 ! 201b280 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007444: 03 00 80 74 sethi %hi(0x201d000), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007448: 21 00 80 6c sethi %hi(0x201b000), %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 200744c: 35 00 80 6c sethi %hi(0x201b000), %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007450: 37 00 80 6c sethi %hi(0x201b000), %i3 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007454: 39 00 80 69 sethi %hi(0x201a400), %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007458: fa 00 61 7c ld [ %g1 + 0x17c ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200745c: a0 14 22 d0 or %l0, 0x2d0, %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007460: b4 16 a2 e8 or %i2, 0x2e8, %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007464: b6 16 e3 08 or %i3, 0x308, %i3 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007468: 10 80 00 52 b 20075b0 200746c: b8 17 20 48 or %i4, 0x48, %i4 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007470: 40 00 17 8b call 200d29c 2007474: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007478: 80 a2 20 00 cmp %o0, 0 200747c: 32 80 00 4d bne,a 20075b0 2007480: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007484: 92 07 bf d8 add %fp, -40, %o1 2007488: 40 00 17 b2 call 200d350 200748c: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007490: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007494: 92 10 20 05 mov 5, %o1 2007498: 40 00 00 af call 2007754 200749c: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074a0: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20074a4: 92 10 00 10 mov %l0, %o1 20074a8: 90 10 00 18 mov %i0, %o0 20074ac: 94 10 00 1d mov %i5, %o2 20074b0: 9f c6 40 00 call %i1 20074b4: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20074b8: d2 07 bf a0 ld [ %fp + -96 ], %o1 20074bc: 80 a2 60 00 cmp %o1, 0 20074c0: 12 80 00 07 bne 20074dc 20074c4: 94 07 bf f0 add %fp, -16, %o2 (*print)( context, "\n" ); 20074c8: 90 10 00 18 mov %i0, %o0 20074cc: 9f c6 40 00 call %i1 20074d0: 92 10 00 1c mov %i4, %o1 continue; 20074d4: 10 80 00 37 b 20075b0 20074d8: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20074dc: 40 00 0e 78 call 200aebc <_Timespec_Divide_by_integer> 20074e0: 90 07 bf b8 add %fp, -72, %o0 (*print)( context, 20074e4: d0 07 bf ac ld [ %fp + -84 ], %o0 20074e8: 40 00 43 aa call 2018390 <.div> 20074ec: 92 10 23 e8 mov 0x3e8, %o1 20074f0: a6 10 00 08 mov %o0, %l3 20074f4: d0 07 bf b4 ld [ %fp + -76 ], %o0 20074f8: 40 00 43 a6 call 2018390 <.div> 20074fc: 92 10 23 e8 mov 0x3e8, %o1 2007500: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007504: a2 10 00 08 mov %o0, %l1 2007508: d0 07 bf f4 ld [ %fp + -12 ], %o0 200750c: e8 07 bf a8 ld [ %fp + -88 ], %l4 2007510: e4 07 bf b0 ld [ %fp + -80 ], %l2 2007514: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007518: 40 00 43 9e call 2018390 <.div> 200751c: 92 10 23 e8 mov 0x3e8, %o1 2007520: 96 10 00 13 mov %l3, %o3 2007524: 98 10 00 12 mov %l2, %o4 2007528: 9a 10 00 11 mov %l1, %o5 200752c: 94 10 00 14 mov %l4, %o2 2007530: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007534: 92 10 00 1a mov %i2, %o1 2007538: 9f c6 40 00 call %i1 200753c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007540: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007544: 94 07 bf f0 add %fp, -16, %o2 2007548: 40 00 0e 5d call 200aebc <_Timespec_Divide_by_integer> 200754c: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 2007550: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007554: 40 00 43 8f call 2018390 <.div> 2007558: 92 10 23 e8 mov 0x3e8, %o1 200755c: a6 10 00 08 mov %o0, %l3 2007560: d0 07 bf cc ld [ %fp + -52 ], %o0 2007564: 40 00 43 8b call 2018390 <.div> 2007568: 92 10 23 e8 mov 0x3e8, %o1 200756c: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007570: a2 10 00 08 mov %o0, %l1 2007574: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007578: e8 07 bf c0 ld [ %fp + -64 ], %l4 200757c: e4 07 bf c8 ld [ %fp + -56 ], %l2 2007580: 92 10 23 e8 mov 0x3e8, %o1 2007584: 40 00 43 83 call 2018390 <.div> 2007588: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200758c: 92 10 00 1b mov %i3, %o1 2007590: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007594: 94 10 00 14 mov %l4, %o2 2007598: 90 10 00 18 mov %i0, %o0 200759c: 96 10 00 13 mov %l3, %o3 20075a0: 98 10 00 12 mov %l2, %o4 20075a4: 9f c6 40 00 call %i1 20075a8: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20075ac: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 20075b0: 03 00 80 74 sethi %hi(0x201d000), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075b4: c2 00 61 80 ld [ %g1 + 0x180 ], %g1 ! 201d180 <_Rate_monotonic_Information+0xc> 20075b8: 80 a7 40 01 cmp %i5, %g1 20075bc: 08 bf ff ad bleu 2007470 20075c0: 90 10 00 1d mov %i5, %o0 20075c4: 81 c7 e0 08 ret 20075c8: 81 e8 00 00 restore =============================================================================== 020160ac : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20160ac: 9d e3 bf 98 save %sp, -104, %sp 20160b0: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20160b4: 80 a6 60 00 cmp %i1, 0 20160b8: 02 80 00 2e be 2016170 20160bc: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20160c0: 40 00 11 e1 call 201a844 <_Thread_Get> 20160c4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20160c8: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20160cc: b8 10 00 08 mov %o0, %i4 switch ( location ) { 20160d0: 80 a0 60 00 cmp %g1, 0 20160d4: 12 80 00 27 bne 2016170 20160d8: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20160dc: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20160e0: c2 07 60 0c ld [ %i5 + 0xc ], %g1 20160e4: 80 a0 60 00 cmp %g1, 0 20160e8: 02 80 00 24 be 2016178 20160ec: 01 00 00 00 nop if ( asr->is_enabled ) { 20160f0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 20160f4: 80 a0 60 00 cmp %g1, 0 20160f8: 02 80 00 15 be 201614c 20160fc: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016100: 7f ff e7 f0 call 20100c0 2016104: 01 00 00 00 nop *signal_set |= signals; 2016108: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 201610c: b2 10 40 19 or %g1, %i1, %i1 2016110: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2016114: 7f ff e7 ef call 20100d0 2016118: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201611c: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016120: 82 10 61 84 or %g1, 0x184, %g1 ! 203a184 <_Per_CPU_Information> 2016124: c4 00 60 08 ld [ %g1 + 8 ], %g2 2016128: 80 a0 a0 00 cmp %g2, 0 201612c: 02 80 00 0f be 2016168 2016130: 01 00 00 00 nop 2016134: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2016138: 80 a7 00 02 cmp %i4, %g2 201613c: 12 80 00 0b bne 2016168 <== NEVER TAKEN 2016140: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2016144: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2016148: 30 80 00 08 b,a 2016168 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201614c: 7f ff e7 dd call 20100c0 2016150: 01 00 00 00 nop *signal_set |= signals; 2016154: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2016158: b2 10 40 19 or %g1, %i1, %i1 201615c: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2016160: 7f ff e7 dc call 20100d0 2016164: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2016168: 40 00 11 aa call 201a810 <_Thread_Enable_dispatch> 201616c: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 2016170: 81 c7 e0 08 ret 2016174: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 2016178: 40 00 11 a6 call 201a810 <_Thread_Enable_dispatch> 201617c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2016180: 81 c7 e0 08 ret 2016184: 81 e8 00 00 restore =============================================================================== 0200d740 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d740: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d744: 80 a6 a0 00 cmp %i2, 0 200d748: 02 80 00 5a be 200d8b0 200d74c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d750: 03 00 80 6d sethi %hi(0x201b400), %g1 200d754: f8 00 62 88 ld [ %g1 + 0x288 ], %i4 ! 201b688 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d758: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d75c: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d760: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d764: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d768: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d76c: 80 a0 60 00 cmp %g1, 0 200d770: 02 80 00 03 be 200d77c 200d774: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d778: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d77c: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 200d780: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d784: 7f ff f1 f4 call 2009f54 <_CPU_ISR_Get_level> 200d788: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d78c: a1 2c 20 0a sll %l0, 0xa, %l0 200d790: a0 14 00 08 or %l0, %o0, %l0 old_mode |= _ISR_Get_level(); 200d794: b6 14 00 1b or %l0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d798: 80 8e 61 00 btst 0x100, %i1 200d79c: 02 80 00 06 be 200d7b4 200d7a0: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d7a4: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d7a8: 80 a0 00 01 cmp %g0, %g1 200d7ac: 82 60 3f ff subx %g0, -1, %g1 200d7b0: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d7b4: 80 8e 62 00 btst 0x200, %i1 200d7b8: 02 80 00 0b be 200d7e4 200d7bc: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d7c0: 80 8e 22 00 btst 0x200, %i0 200d7c4: 22 80 00 07 be,a 200d7e0 200d7c8: c0 27 20 7c clr [ %i4 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d7cc: 82 10 20 01 mov 1, %g1 200d7d0: c2 27 20 7c st %g1, [ %i4 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d7d4: 03 00 80 6c sethi %hi(0x201b000), %g1 200d7d8: c2 00 63 b4 ld [ %g1 + 0x3b4 ], %g1 ! 201b3b4 <_Thread_Ticks_per_timeslice> 200d7dc: c2 27 20 78 st %g1, [ %i4 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d7e0: 80 8e 60 0f btst 0xf, %i1 200d7e4: 02 80 00 06 be 200d7fc 200d7e8: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d7ec: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d7f0: 7f ff d2 67 call 200218c 200d7f4: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d7f8: 80 8e 64 00 btst 0x400, %i1 200d7fc: 02 80 00 14 be 200d84c 200d800: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d804: c4 0f 60 08 ldub [ %i5 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d808: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d80c: 80 a0 00 18 cmp %g0, %i0 200d810: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d814: 80 a0 40 02 cmp %g1, %g2 200d818: 22 80 00 0e be,a 200d850 200d81c: 03 00 80 6d sethi %hi(0x201b400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d820: 7f ff d2 57 call 200217c 200d824: c2 2f 60 08 stb %g1, [ %i5 + 8 ] _signals = information->signals_pending; 200d828: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d82c: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 200d830: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d834: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d838: 7f ff d2 55 call 200218c 200d83c: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d840: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d844: 80 a0 00 01 cmp %g0, %g1 200d848: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d84c: 03 00 80 6d sethi %hi(0x201b400), %g1 200d850: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 201b5a4 <_System_state_Current> 200d854: 80 a0 a0 03 cmp %g2, 3 200d858: 12 80 00 16 bne 200d8b0 200d85c: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d860: 07 00 80 6d sethi %hi(0x201b400), %g3 if ( are_signals_pending || 200d864: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d868: 86 10 e2 7c or %g3, 0x27c, %g3 if ( are_signals_pending || 200d86c: 12 80 00 0a bne 200d894 200d870: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d874: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d878: 80 a0 80 03 cmp %g2, %g3 200d87c: 02 80 00 0d be 200d8b0 200d880: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d884: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d888: 80 a0 a0 00 cmp %g2, 0 200d88c: 02 80 00 09 be 200d8b0 <== NEVER TAKEN 200d890: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d894: 84 10 20 01 mov 1, %g2 ! 1 200d898: 03 00 80 6d sethi %hi(0x201b400), %g1 200d89c: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c <_Per_CPU_Information> 200d8a0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d8a4: 7f ff ec 81 call 2008aa8 <_Thread_Dispatch> 200d8a8: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d8ac: 82 10 20 00 clr %g1 ! 0 } 200d8b0: 81 c7 e0 08 ret 200d8b4: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200a9f8 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200a9f8: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200a9fc: 80 a6 60 00 cmp %i1, 0 200aa00: 02 80 00 07 be 200aa1c 200aa04: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200aa08: 03 00 80 61 sethi %hi(0x2018400), %g1 200aa0c: c2 08 62 4c ldub [ %g1 + 0x24c ], %g1 ! 201864c 200aa10: 80 a6 40 01 cmp %i1, %g1 200aa14: 18 80 00 1c bgu 200aa84 200aa18: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200aa1c: 80 a6 a0 00 cmp %i2, 0 200aa20: 02 80 00 19 be 200aa84 200aa24: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200aa28: 40 00 09 4f call 200cf64 <_Thread_Get> 200aa2c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200aa30: c2 07 bf fc ld [ %fp + -4 ], %g1 200aa34: 80 a0 60 00 cmp %g1, 0 200aa38: 12 80 00 13 bne 200aa84 200aa3c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200aa40: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200aa44: 80 a6 60 00 cmp %i1, 0 200aa48: 02 80 00 0d be 200aa7c 200aa4c: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200aa50: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200aa54: 80 a0 60 00 cmp %g1, 0 200aa58: 02 80 00 06 be 200aa70 200aa5c: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200aa60: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200aa64: 80 a0 40 19 cmp %g1, %i1 200aa68: 08 80 00 05 bleu 200aa7c <== ALWAYS TAKEN 200aa6c: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200aa70: 92 10 00 19 mov %i1, %o1 200aa74: 40 00 08 0b call 200caa0 <_Thread_Change_priority> 200aa78: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200aa7c: 40 00 09 2d call 200cf30 <_Thread_Enable_dispatch> 200aa80: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200aa84: 81 c7 e0 08 ret 200aa88: 81 e8 00 00 restore =============================================================================== 02016ab4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016ab4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2016ab8: 11 00 80 e8 sethi %hi(0x203a000), %o0 2016abc: 92 10 00 18 mov %i0, %o1 2016ac0: 90 12 22 24 or %o0, 0x224, %o0 2016ac4: 40 00 0b b3 call 2019990 <_Objects_Get> 2016ac8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016acc: c2 07 bf fc ld [ %fp + -4 ], %g1 2016ad0: 80 a0 60 00 cmp %g1, 0 2016ad4: 12 80 00 0c bne 2016b04 2016ad8: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016adc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2016ae0: 80 a0 60 04 cmp %g1, 4 2016ae4: 02 80 00 04 be 2016af4 <== NEVER TAKEN 2016ae8: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016aec: 40 00 13 b6 call 201b9c4 <_Watchdog_Remove> 2016af0: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016af4: 40 00 0f 47 call 201a810 <_Thread_Enable_dispatch> 2016af8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016afc: 81 c7 e0 08 ret 2016b00: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016b04: 81 c7 e0 08 ret 2016b08: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016fb0 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016fb0: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016fb4: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016fb8: f8 00 62 64 ld [ %g1 + 0x264 ], %i4 ! 203a264 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016fbc: ba 10 00 18 mov %i0, %i5 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016fc0: 80 a7 20 00 cmp %i4, 0 2016fc4: 02 80 00 32 be 201708c 2016fc8: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016fcc: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2016fd0: c2 08 63 60 ldub [ %g1 + 0x360 ], %g1 ! 2039f60 <_TOD_Is_set> 2016fd4: 80 a0 60 00 cmp %g1, 0 2016fd8: 02 80 00 2d be 201708c <== NEVER TAKEN 2016fdc: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016fe0: 80 a6 a0 00 cmp %i2, 0 2016fe4: 02 80 00 2a be 201708c 2016fe8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016fec: 90 10 00 19 mov %i1, %o0 2016ff0: 7f ff f4 11 call 2014034 <_TOD_Validate> 2016ff4: b0 10 20 14 mov 0x14, %i0 2016ff8: 80 8a 20 ff btst 0xff, %o0 2016ffc: 02 80 00 27 be 2017098 2017000: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2017004: 7f ff f3 d8 call 2013f64 <_TOD_To_seconds> 2017008: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 201700c: 21 00 80 e7 sethi %hi(0x2039c00), %l0 2017010: c2 04 23 dc ld [ %l0 + 0x3dc ], %g1 ! 2039fdc <_TOD_Now> 2017014: 80 a2 00 01 cmp %o0, %g1 2017018: 08 80 00 1d bleu 201708c 201701c: b2 10 00 08 mov %o0, %i1 2017020: 11 00 80 e8 sethi %hi(0x203a000), %o0 2017024: 92 10 00 1d mov %i5, %o1 2017028: 90 12 22 24 or %o0, 0x224, %o0 201702c: 40 00 0a 59 call 2019990 <_Objects_Get> 2017030: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2017034: c2 07 bf fc ld [ %fp + -4 ], %g1 2017038: 80 a0 60 00 cmp %g1, 0 201703c: 12 80 00 16 bne 2017094 2017040: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2017044: 40 00 12 60 call 201b9c4 <_Watchdog_Remove> 2017048: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 201704c: 82 10 20 03 mov 3, %g1 2017050: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2017054: c2 04 23 dc ld [ %l0 + 0x3dc ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2017058: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201705c: b2 26 40 01 sub %i1, %g1, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2017060: c2 07 20 04 ld [ %i4 + 4 ], %g1 2017064: 90 10 00 1c mov %i4, %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2017068: c0 26 20 18 clr [ %i0 + 0x18 ] the_watchdog->routine = routine; 201706c: f4 26 20 2c st %i2, [ %i0 + 0x2c ] the_watchdog->id = id; 2017070: fa 26 20 30 st %i5, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 2017074: f6 26 20 34 st %i3, [ %i0 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2017078: f2 26 20 1c st %i1, [ %i0 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 201707c: 9f c0 40 00 call %g1 2017080: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2017084: 40 00 0d e3 call 201a810 <_Thread_Enable_dispatch> 2017088: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201708c: 81 c7 e0 08 ret 2017090: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2017094: b0 10 20 04 mov 4, %i0 } 2017098: 81 c7 e0 08 ret 201709c: 81 e8 00 00 restore