RTEMS 4.11Annotated Report
Thu Jul 28 16:59:19 2011
0200fbc4 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fbc4: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fbc8: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fbcc: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fbd0: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fbd4: 80 8e e0 03 btst 3, %i3
200fbd8: 02 80 00 07 be 200fbf4 <_CORE_message_queue_Initialize+0x30>
200fbdc: ba 10 00 1b mov %i3, %i5
allocated_message_size += sizeof(uint32_t);
200fbe0: ba 06 e0 04 add %i3, 4, %i5
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fbe4: ba 0f 7f fc and %i5, -4, %i5
}
if (allocated_message_size < maximum_message_size)
200fbe8: 80 a7 40 1b cmp %i5, %i3
200fbec: 0a 80 00 24 bcs 200fc7c <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
200fbf0: b8 10 20 00 clr %i4
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
200fbf4: ba 07 60 10 add %i5, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
200fbf8: 90 10 20 00 clr %o0
200fbfc: 92 10 00 1a mov %i2, %o1
200fc00: 94 10 20 00 clr %o2
200fc04: 96 10 00 1d mov %i5, %o3
200fc08: 40 00 3e d8 call 201f768 <__muldi3>
200fc0c: b8 10 20 00 clr %i4
if ( x > SIZE_MAX )
200fc10: 80 a2 20 00 cmp %o0, 0
200fc14: 34 80 00 1b bg,a 200fc80 <_CORE_message_queue_Initialize+0xbc>
200fc18: b0 0f 20 01 and %i4, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fc1c: 40 00 0b fb call 2012c08 <_Workspace_Allocate>
200fc20: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fc24: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fc28: 80 a2 20 00 cmp %o0, 0
200fc2c: 02 80 00 14 be 200fc7c <_CORE_message_queue_Initialize+0xb8><== NEVER TAKEN
200fc30: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fc34: 90 06 20 60 add %i0, 0x60, %o0
200fc38: 94 10 00 1a mov %i2, %o2
200fc3c: 40 00 13 df call 2014bb8 <_Chain_Initialize>
200fc40: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fc44: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
200fc48: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
200fc4c: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fc50: 84 06 20 54 add %i0, 0x54, %g2
200fc54: 82 18 60 01 xor %g1, 1, %g1
200fc58: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
200fc5c: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
200fc60: c0 26 20 54 clr [ %i0 + 0x54 ]
200fc64: 90 10 00 18 mov %i0, %o0
200fc68: 92 60 3f ff subx %g0, -1, %o1
200fc6c: 94 10 20 80 mov 0x80, %o2
200fc70: 96 10 20 06 mov 6, %o3
200fc74: 40 00 09 91 call 20122b8 <_Thread_queue_Initialize>
200fc78: b8 10 20 01 mov 1, %i4
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200fc7c: b0 0f 20 01 and %i4, 1, %i0
200fc80: 81 c7 e0 08 ret
200fc84: 81 e8 00 00 restore
02007260 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2007260: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2007264: 90 10 00 18 mov %i0, %o0
2007268: 40 00 07 33 call 2008f34 <_Thread_queue_Dequeue>
200726c: ba 10 00 18 mov %i0, %i5
2007270: 80 a2 20 00 cmp %o0, 0
2007274: 12 80 00 0e bne 20072ac <_CORE_semaphore_Surrender+0x4c>
2007278: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
200727c: 7f ff eb c0 call 200217c <sparc_disable_interrupts>
2007280: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2007284: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2007288: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
200728c: 80 a0 40 02 cmp %g1, %g2
2007290: 1a 80 00 05 bcc 20072a4 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2007294: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2007298: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
200729c: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20072a0: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20072a4: 7f ff eb ba call 200218c <sparc_enable_interrupts>
20072a8: 01 00 00 00 nop
}
return status;
}
20072ac: 81 c7 e0 08 ret
20072b0: 81 e8 00 00 restore
02005ff8 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005ff8: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005ffc: f8 06 21 58 ld [ %i0 + 0x158 ], %i4
option_set = (rtems_option) the_thread->Wait.option;
2006000: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
_ISR_Disable( level );
2006004: 7f ff f0 5e call 200217c <sparc_disable_interrupts>
2006008: ba 10 00 18 mov %i0, %i5
200600c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2006010: c4 07 00 00 ld [ %i4 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2006014: c6 07 60 24 ld [ %i5 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2006018: 82 88 c0 02 andcc %g3, %g2, %g1
200601c: 02 80 00 43 be 2006128 <_Event_Surrender+0x130>
2006020: 01 00 00 00 nop
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006024: 09 00 80 6d sethi %hi(0x201b400), %g4
2006028: 88 11 22 7c or %g4, 0x27c, %g4 ! 201b67c <_Per_CPU_Information>
200602c: f2 01 20 08 ld [ %g4 + 8 ], %i1
2006030: 80 a6 60 00 cmp %i1, 0
2006034: 22 80 00 1d be,a 20060a8 <_Event_Surrender+0xb0>
2006038: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
200603c: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2006040: 80 a7 40 04 cmp %i5, %g4
2006044: 32 80 00 19 bne,a 20060a8 <_Event_Surrender+0xb0>
2006048: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200604c: 09 00 80 6d sethi %hi(0x201b400), %g4
2006050: f2 01 22 d0 ld [ %g4 + 0x2d0 ], %i1 ! 201b6d0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2006054: 80 a6 60 02 cmp %i1, 2
2006058: 02 80 00 07 be 2006074 <_Event_Surrender+0x7c> <== NEVER TAKEN
200605c: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2006060: c8 01 22 d0 ld [ %g4 + 0x2d0 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006064: 80 a1 20 01 cmp %g4, 1
2006068: 32 80 00 10 bne,a 20060a8 <_Event_Surrender+0xb0>
200606c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2006070: 80 a0 40 03 cmp %g1, %g3
2006074: 02 80 00 04 be 2006084 <_Event_Surrender+0x8c>
2006078: 80 8e e0 02 btst 2, %i3
200607c: 02 80 00 2b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN
2006080: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2006084: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2006088: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200608c: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2006090: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006094: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2006098: 84 10 20 03 mov 3, %g2
200609c: 03 00 80 6d sethi %hi(0x201b400), %g1
20060a0: c4 20 62 d0 st %g2, [ %g1 + 0x2d0 ] ! 201b6d0 <_Event_Sync_state>
20060a4: 30 80 00 21 b,a 2006128 <_Event_Surrender+0x130>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20060a8: 80 89 21 00 btst 0x100, %g4
20060ac: 02 80 00 1f be 2006128 <_Event_Surrender+0x130>
20060b0: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20060b4: 02 80 00 04 be 20060c4 <_Event_Surrender+0xcc>
20060b8: 80 8e e0 02 btst 2, %i3
20060bc: 02 80 00 1b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN
20060c0: 01 00 00 00 nop
20060c4: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
20060c8: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060cc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
20060d0: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060d4: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
20060d8: 7f ff f0 2d call 200218c <sparc_enable_interrupts>
20060dc: 90 10 00 18 mov %i0, %o0
20060e0: 7f ff f0 27 call 200217c <sparc_disable_interrupts>
20060e4: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
20060e8: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
20060ec: 80 a0 60 02 cmp %g1, 2
20060f0: 02 80 00 06 be 2006108 <_Event_Surrender+0x110>
20060f4: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
20060f8: 7f ff f0 25 call 200218c <sparc_enable_interrupts>
20060fc: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006100: 10 80 00 08 b 2006120 <_Event_Surrender+0x128>
2006104: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2006108: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
200610c: 7f ff f0 20 call 200218c <sparc_enable_interrupts>
2006110: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
2006114: 40 00 0e 75 call 2009ae8 <_Watchdog_Remove>
2006118: 90 07 60 48 add %i5, 0x48, %o0
200611c: b2 16 63 f8 or %i1, 0x3f8, %i1
2006120: 40 00 09 d6 call 2008878 <_Thread_Clear_state>
2006124: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2006128: 7f ff f0 19 call 200218c <sparc_enable_interrupts>
200612c: 81 e8 00 00 restore
02006130 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2006130: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2006134: 90 10 00 18 mov %i0, %o0
2006138: 40 00 0a bb call 2008c24 <_Thread_Get>
200613c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2006140: c2 07 bf fc ld [ %fp + -4 ], %g1
2006144: 80 a0 60 00 cmp %g1, 0
2006148: 12 80 00 1d bne 20061bc <_Event_Timeout+0x8c> <== NEVER TAKEN
200614c: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2006150: 7f ff f0 0b call 200217c <sparc_disable_interrupts>
2006154: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2006158: 03 00 80 6d sethi %hi(0x201b400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
200615c: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 201b688 <_Per_CPU_Information+0xc>
2006160: 80 a7 40 01 cmp %i5, %g1
2006164: 12 80 00 09 bne 2006188 <_Event_Timeout+0x58>
2006168: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
200616c: 03 00 80 6d sethi %hi(0x201b400), %g1
2006170: c4 00 62 d0 ld [ %g1 + 0x2d0 ], %g2 ! 201b6d0 <_Event_Sync_state>
2006174: 80 a0 a0 01 cmp %g2, 1
2006178: 32 80 00 05 bne,a 200618c <_Event_Timeout+0x5c>
200617c: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2006180: 84 10 20 02 mov 2, %g2
2006184: c4 20 62 d0 st %g2, [ %g1 + 0x2d0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006188: 82 10 20 06 mov 6, %g1
200618c: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
2006190: 7f ff ef ff call 200218c <sparc_enable_interrupts>
2006194: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006198: 90 10 00 1d mov %i5, %o0
200619c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20061a0: 40 00 09 b6 call 2008878 <_Thread_Clear_state>
20061a4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20061a8: 03 00 80 6d sethi %hi(0x201b400), %g1
20061ac: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level>
20061b0: 84 00 bf ff add %g2, -1, %g2
20061b4: c4 20 60 50 st %g2, [ %g1 + 0x50 ]
return _Thread_Dispatch_disable_level;
20061b8: c2 00 60 50 ld [ %g1 + 0x50 ], %g1
20061bc: 81 c7 e0 08 ret
20061c0: 81 e8 00 00 restore
0200bc34 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bc34: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200bc38: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200bc3c: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200bc40: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200bc44: e0 06 20 20 ld [ %i0 + 0x20 ], %l0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200bc48: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
uintptr_t const min_block_size = heap->min_block_size;
200bc4c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200bc50: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200bc54: 80 a7 40 19 cmp %i5, %i1
200bc58: 0a 80 00 9f bcs 200bed4 <_Heap_Extend+0x2a0>
200bc5c: b8 10 20 00 clr %i4
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200bc60: 90 10 00 19 mov %i1, %o0
200bc64: 92 10 00 1a mov %i2, %o1
200bc68: 94 10 00 11 mov %l1, %o2
200bc6c: 98 07 bf f8 add %fp, -8, %o4
200bc70: 7f ff ed 4f call 20071ac <_Heap_Get_first_and_last_block>
200bc74: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200bc78: 80 8a 20 ff btst 0xff, %o0
200bc7c: 02 80 00 96 be 200bed4 <_Heap_Extend+0x2a0>
200bc80: b4 10 00 10 mov %l0, %i2
200bc84: aa 10 20 00 clr %l5
200bc88: ac 10 20 00 clr %l6
200bc8c: b8 10 20 00 clr %i4
200bc90: a8 10 20 00 clr %l4
200bc94: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200bc98: 80 a0 40 1d cmp %g1, %i5
200bc9c: 1a 80 00 05 bcc 200bcb0 <_Heap_Extend+0x7c>
200bca0: e6 06 80 00 ld [ %i2 ], %l3
200bca4: 80 a6 40 13 cmp %i1, %l3
200bca8: 2a 80 00 8b bcs,a 200bed4 <_Heap_Extend+0x2a0>
200bcac: b8 10 20 00 clr %i4
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200bcb0: 80 a7 40 01 cmp %i5, %g1
200bcb4: 02 80 00 06 be 200bccc <_Heap_Extend+0x98>
200bcb8: 80 a7 40 13 cmp %i5, %l3
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200bcbc: 2a 80 00 05 bcs,a 200bcd0 <_Heap_Extend+0x9c>
200bcc0: ac 10 00 1a mov %i2, %l6
200bcc4: 10 80 00 04 b 200bcd4 <_Heap_Extend+0xa0>
200bcc8: 90 10 00 13 mov %l3, %o0
200bccc: a8 10 00 1a mov %i2, %l4
200bcd0: 90 10 00 13 mov %l3, %o0
200bcd4: 40 00 15 f3 call 20114a0 <.urem>
200bcd8: 92 10 00 11 mov %l1, %o1
200bcdc: ae 04 ff f8 add %l3, -8, %l7
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200bce0: 80 a4 c0 19 cmp %l3, %i1
200bce4: 12 80 00 05 bne 200bcf8 <_Heap_Extend+0xc4>
200bce8: 90 25 c0 08 sub %l7, %o0, %o0
start_block->prev_size = extend_area_end;
200bcec: fa 26 80 00 st %i5, [ %i2 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200bcf0: 10 80 00 04 b 200bd00 <_Heap_Extend+0xcc>
200bcf4: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200bcf8: 2a 80 00 02 bcs,a 200bd00 <_Heap_Extend+0xcc>
200bcfc: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bd00: f4 02 20 04 ld [ %o0 + 4 ], %i2
200bd04: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd08: b4 06 80 08 add %i2, %o0, %i2
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200bd0c: 80 a6 80 10 cmp %i2, %l0
200bd10: 12 bf ff e2 bne 200bc98 <_Heap_Extend+0x64>
200bd14: 82 10 00 1a mov %i2, %g1
if ( extend_area_begin < heap->area_begin ) {
200bd18: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200bd1c: 80 a6 40 01 cmp %i1, %g1
200bd20: 3a 80 00 04 bcc,a 200bd30 <_Heap_Extend+0xfc>
200bd24: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200bd28: 10 80 00 05 b 200bd3c <_Heap_Extend+0x108>
200bd2c: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200bd30: 80 a0 40 1d cmp %g1, %i5
200bd34: 2a 80 00 02 bcs,a 200bd3c <_Heap_Extend+0x108>
200bd38: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200bd3c: c4 07 bf f8 ld [ %fp + -8 ], %g2
200bd40: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
200bd44: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200bd48: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200bd4c: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200bd50: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200bd54: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200bd58: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
200bd5c: 80 a0 c0 02 cmp %g3, %g2
200bd60: 08 80 00 04 bleu 200bd70 <_Heap_Extend+0x13c>
200bd64: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200bd68: 10 80 00 06 b 200bd80 <_Heap_Extend+0x14c>
200bd6c: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200bd70: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200bd74: 80 a0 80 01 cmp %g2, %g1
200bd78: 2a 80 00 02 bcs,a 200bd80 <_Heap_Extend+0x14c>
200bd7c: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200bd80: 80 a5 20 00 cmp %l4, 0
200bd84: 02 80 00 14 be 200bdd4 <_Heap_Extend+0x1a0>
200bd88: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200bd8c: f4 06 20 10 ld [ %i0 + 0x10 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200bd90: 92 10 00 1a mov %i2, %o1
200bd94: 40 00 15 c3 call 20114a0 <.urem>
200bd98: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200bd9c: 80 a2 20 00 cmp %o0, 0
200bda0: 02 80 00 04 be 200bdb0 <_Heap_Extend+0x17c>
200bda4: c2 05 00 00 ld [ %l4 ], %g1
return value - remainder + alignment;
200bda8: b2 06 40 1a add %i1, %i2, %i1
200bdac: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200bdb0: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200bdb4: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200bdb8: 82 25 00 09 sub %l4, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200bdbc: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200bdc0: 90 10 00 18 mov %i0, %o0
200bdc4: 7f ff ff 92 call 200bc0c <_Heap_Free_block>
200bdc8: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200bdcc: 10 80 00 08 b 200bdec <_Heap_Extend+0x1b8>
200bdd0: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200bdd4: 80 a5 a0 00 cmp %l6, 0
200bdd8: 02 80 00 04 be 200bde8 <_Heap_Extend+0x1b4>
200bddc: ac 25 80 01 sub %l6, %g1, %l6
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200bde0: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200bde4: ec 20 60 04 st %l6, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200bde8: 80 a7 20 00 cmp %i4, 0
200bdec: 02 80 00 15 be 200be40 <_Heap_Extend+0x20c>
200bdf0: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bdf4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200bdf8: ba 27 40 1c sub %i5, %i4, %i5
200bdfc: 40 00 15 a9 call 20114a0 <.urem>
200be00: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200be04: c4 07 20 04 ld [ %i4 + 4 ], %g2
200be08: ba 27 40 08 sub %i5, %o0, %i5
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200be0c: 82 07 40 1c add %i5, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
200be10: 84 20 80 1d sub %g2, %i5, %g2
| HEAP_PREV_BLOCK_USED;
200be14: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200be18: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be1c: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200be20: 90 10 00 18 mov %i0, %o0
200be24: 82 08 60 01 and %g1, 1, %g1
200be28: 92 10 00 1c mov %i4, %o1
block->size_and_flag = size | flag;
200be2c: ba 17 40 01 or %i5, %g1, %i5
200be30: 7f ff ff 77 call 200bc0c <_Heap_Free_block>
200be34: fa 27 20 04 st %i5, [ %i4 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200be38: 10 80 00 0f b 200be74 <_Heap_Extend+0x240>
200be3c: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200be40: 80 a5 60 00 cmp %l5, 0
200be44: 02 80 00 0b be 200be70 <_Heap_Extend+0x23c>
200be48: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be4c: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200be50: c2 07 bf fc ld [ %fp + -4 ], %g1
200be54: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200be58: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200be5c: 84 10 c0 02 or %g3, %g2, %g2
200be60: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200be64: c4 00 60 04 ld [ %g1 + 4 ], %g2
200be68: 84 10 a0 01 or %g2, 1, %g2
200be6c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200be70: 80 a7 20 00 cmp %i4, 0
200be74: 32 80 00 09 bne,a 200be98 <_Heap_Extend+0x264>
200be78: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200be7c: 80 a5 20 00 cmp %l4, 0
200be80: 32 80 00 06 bne,a 200be98 <_Heap_Extend+0x264>
200be84: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200be88: d2 07 bf f8 ld [ %fp + -8 ], %o1
200be8c: 7f ff ff 60 call 200bc0c <_Heap_Free_block>
200be90: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200be94: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200be98: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be9c: c6 00 60 04 ld [ %g1 + 4 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200bea0: 84 20 80 01 sub %g2, %g1, %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bea4: 86 08 e0 01 and %g3, 1, %g3
block->size_and_flag = size | flag;
200bea8: 84 10 c0 02 or %g3, %g2, %g2
200beac: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200beb0: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200beb4: b8 10 20 01 mov 1, %i4
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200beb8: a4 20 40 12 sub %g1, %l2, %l2
/* Statistics */
stats->size += extended_size;
200bebc: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200bec0: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200bec4: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200bec8: 02 80 00 03 be 200bed4 <_Heap_Extend+0x2a0> <== NEVER TAKEN
200becc: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
200bed0: e4 26 c0 00 st %l2, [ %i3 ]
*extended_size_ptr = extended_size;
return true;
}
200bed4: b0 0f 20 01 and %i4, 1, %i0
200bed8: 81 c7 e0 08 ret
200bedc: 81 e8 00 00 restore
0200c044 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200c044: 9d e3 bf a0 save %sp, -96, %sp
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200c048: 88 10 20 01 mov 1, %g4
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200c04c: 80 a6 60 00 cmp %i1, 0
200c050: 02 80 00 77 be 200c22c <_Heap_Free+0x1e8>
200c054: 90 10 00 19 mov %i1, %o0
200c058: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200c05c: 40 00 2b 1c call 2016ccc <.urem>
200c060: ba 06 7f f8 add %i1, -8, %i5
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200c064: da 06 20 20 ld [ %i0 + 0x20 ], %o5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200c068: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c06c: 80 a7 40 0d cmp %i5, %o5
200c070: 0a 80 00 05 bcs 200c084 <_Heap_Free+0x40>
200c074: 82 10 20 00 clr %g1
200c078: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200c07c: 80 a0 40 1d cmp %g1, %i5
200c080: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200c084: 80 a0 60 00 cmp %g1, 0
200c088: 02 80 00 69 be 200c22c <_Heap_Free+0x1e8>
200c08c: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c090: d6 07 60 04 ld [ %i5 + 4 ], %o3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c094: 84 0a ff fe and %o3, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c098: 82 00 80 1d add %g2, %i5, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c09c: 80 a0 40 0d cmp %g1, %o5
200c0a0: 0a 80 00 05 bcs 200c0b4 <_Heap_Free+0x70> <== NEVER TAKEN
200c0a4: 86 10 20 00 clr %g3
200c0a8: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200c0ac: 80 a0 c0 01 cmp %g3, %g1
200c0b0: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200c0b4: 80 a0 e0 00 cmp %g3, 0
200c0b8: 02 80 00 5d be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN
200c0bc: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c0c0: de 00 60 04 ld [ %g1 + 4 ], %o7
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200c0c4: 80 8b e0 01 btst 1, %o7
200c0c8: 02 80 00 59 be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN
200c0cc: 9e 0b ff fe and %o7, -2, %o7
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200c0d0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200c0d4: 80 a0 40 04 cmp %g1, %g4
200c0d8: 02 80 00 07 be 200c0f4 <_Heap_Free+0xb0>
200c0dc: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c0e0: 86 00 40 0f add %g1, %o7, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c0e4: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200c0e8: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200c0ec: 80 a0 00 03 cmp %g0, %g3
200c0f0: 98 60 3f ff subx %g0, -1, %o4
if ( !_Heap_Is_prev_used( block ) ) {
200c0f4: 80 8a e0 01 btst 1, %o3
200c0f8: 12 80 00 25 bne 200c18c <_Heap_Free+0x148>
200c0fc: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200c100: d6 07 40 00 ld [ %i5 ], %o3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c104: 86 27 40 0b sub %i5, %o3, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c108: 80 a0 c0 0d cmp %g3, %o5
200c10c: 0a 80 00 04 bcs 200c11c <_Heap_Free+0xd8> <== NEVER TAKEN
200c110: 94 10 20 00 clr %o2
200c114: 80 a1 00 03 cmp %g4, %g3
200c118: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200c11c: 80 a2 a0 00 cmp %o2, 0
200c120: 02 80 00 43 be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN
200c124: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c128: da 00 e0 04 ld [ %g3 + 4 ], %o5
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200c12c: 80 8b 60 01 btst 1, %o5
200c130: 02 80 00 3f be 200c22c <_Heap_Free+0x1e8> <== NEVER TAKEN
200c134: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200c138: 02 80 00 0e be 200c170 <_Heap_Free+0x12c>
200c13c: 88 00 80 0b add %g2, %o3, %g4
uintptr_t const size = block_size + prev_size + next_block_size;
200c140: 9e 01 00 0f add %g4, %o7, %o7
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200c144: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200c148: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200c14c: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200c150: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200c154: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
200c158: 82 00 7f ff add %g1, -1, %g1
200c15c: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200c160: de 23 c0 03 st %o7, [ %o7 + %g3 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c164: 82 13 e0 01 or %o7, 1, %g1
200c168: 10 80 00 27 b 200c204 <_Heap_Free+0x1c0>
200c16c: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c170: 9e 11 20 01 or %g4, 1, %o7
200c174: de 20 e0 04 st %o7, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c178: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200c17c: c8 20 80 1d st %g4, [ %g2 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c180: 86 08 ff fe and %g3, -2, %g3
200c184: 10 80 00 20 b 200c204 <_Heap_Free+0x1c0>
200c188: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200c18c: 22 80 00 0d be,a 200c1c0 <_Heap_Free+0x17c>
200c190: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200c194: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200c198: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200c19c: c8 27 60 08 st %g4, [ %i5 + 8 ]
new_block->prev = prev;
200c1a0: c2 27 60 0c st %g1, [ %i5 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200c1a4: 86 03 c0 02 add %o7, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200c1a8: fa 20 60 08 st %i5, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200c1ac: fa 21 20 0c st %i5, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c1b0: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200c1b4: c6 20 c0 1d st %g3, [ %g3 + %i5 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c1b8: 10 80 00 13 b 200c204 <_Heap_Free+0x1c0>
200c1bc: c2 27 60 04 st %g1, [ %i5 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200c1c0: f0 27 60 0c st %i0, [ %i5 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200c1c4: c6 27 60 08 st %g3, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200c1c8: fa 20 e0 0c st %i5, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200c1cc: 86 10 a0 01 or %g2, 1, %g3
200c1d0: c6 27 60 04 st %g3, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c1d4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200c1d8: c4 20 80 1d st %g2, [ %g2 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c1dc: 86 08 ff fe and %g3, -2, %g3
200c1e0: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c1e4: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200c1e8: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c1ec: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200c1f0: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200c1f4: 80 a0 c0 01 cmp %g3, %g1
200c1f8: 1a 80 00 03 bcc 200c204 <_Heap_Free+0x1c0>
200c1fc: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200c200: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200c204: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200c208: 88 10 20 01 mov 1, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c20c: 82 00 7f ff add %g1, -1, %g1
200c210: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200c214: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200c218: 82 00 60 01 inc %g1
200c21c: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200c220: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200c224: 84 00 40 02 add %g1, %g2, %g2
200c228: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
return( true );
}
200c22c: b0 09 20 01 and %g4, 1, %i0
200c230: 81 c7 e0 08 ret
200c234: 81 e8 00 00 restore
0201879c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
201879c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20187a0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
20187a4: 7f ff f9 4a call 2016ccc <.urem>
20187a8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
20187ac: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20187b0: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20187b4: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20187b8: 80 a2 00 03 cmp %o0, %g3
20187bc: 0a 80 00 05 bcs 20187d0 <_Heap_Size_of_alloc_area+0x34>
20187c0: 84 10 20 00 clr %g2
20187c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20187c8: 80 a0 40 08 cmp %g1, %o0
20187cc: 84 60 3f ff subx %g0, -1, %g2
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
20187d0: 80 a0 a0 00 cmp %g2, 0
20187d4: 02 80 00 15 be 2018828 <_Heap_Size_of_alloc_area+0x8c>
20187d8: 82 10 20 00 clr %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20187dc: fa 02 20 04 ld [ %o0 + 4 ], %i5
20187e0: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20187e4: ba 07 40 08 add %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20187e8: 80 a7 40 03 cmp %i5, %g3
20187ec: 0a 80 00 05 bcs 2018800 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
20187f0: 84 10 20 00 clr %g2
20187f4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20187f8: 80 a0 40 1d cmp %g1, %i5
20187fc: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
2018800: 80 a0 a0 00 cmp %g2, 0
2018804: 02 80 00 09 be 2018828 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
2018808: 82 10 20 00 clr %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
201880c: c4 07 60 04 ld [ %i5 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2018810: 80 88 a0 01 btst 1, %g2
2018814: 02 80 00 05 be 2018828 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
2018818: ba 27 40 19 sub %i5, %i1, %i5
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
201881c: 82 10 20 01 mov 1, %g1
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2018820: ba 07 60 04 add %i5, 4, %i5
2018824: fa 26 80 00 st %i5, [ %i2 ]
return true;
}
2018828: b0 08 60 01 and %g1, 1, %i0
201882c: 81 c7 e0 08 ret
2018830: 81 e8 00 00 restore
020080a8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20080a8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20080ac: 3b 00 80 20 sethi %hi(0x2008000), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
20080b0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
20080b4: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
20080b8: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
Heap_Block *const last_block = heap->last_block;
20080bc: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20080c0: 80 a6 a0 00 cmp %i2, 0
20080c4: 02 80 00 04 be 20080d4 <_Heap_Walk+0x2c>
20080c8: ba 17 60 54 or %i5, 0x54, %i5
20080cc: 3b 00 80 20 sethi %hi(0x2008000), %i5
20080d0: ba 17 60 5c or %i5, 0x5c, %i5 ! 200805c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20080d4: 03 00 80 5c sethi %hi(0x2017000), %g1
20080d8: c4 00 63 84 ld [ %g1 + 0x384 ], %g2 ! 2017384 <_System_state_Current>
20080dc: 80 a0 a0 03 cmp %g2, 3
20080e0: 12 80 01 24 bne 2008570 <_Heap_Walk+0x4c8>
20080e4: 82 10 20 01 mov 1, %g1
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20080e8: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
20080ec: da 06 20 18 ld [ %i0 + 0x18 ], %o5
20080f0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20080f4: f6 23 a0 60 st %i3, [ %sp + 0x60 ]
20080f8: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
20080fc: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008100: 90 10 00 19 mov %i1, %o0
2008104: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008108: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200810c: 92 10 20 00 clr %o1
2008110: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008114: 15 00 80 52 sethi %hi(0x2014800), %o2
2008118: 96 10 00 1c mov %i4, %o3
200811c: 94 12 a1 38 or %o2, 0x138, %o2
2008120: 9f c7 40 00 call %i5
2008124: 98 10 00 10 mov %l0, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2008128: 80 a7 20 00 cmp %i4, 0
200812c: 12 80 00 07 bne 2008148 <_Heap_Walk+0xa0>
2008130: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
2008134: 15 00 80 52 sethi %hi(0x2014800), %o2
2008138: 90 10 00 19 mov %i1, %o0
200813c: 92 10 20 01 mov 1, %o1
2008140: 10 80 00 32 b 2008208 <_Heap_Walk+0x160>
2008144: 94 12 a1 d0 or %o2, 0x1d0, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008148: 22 80 00 08 be,a 2008168 <_Heap_Walk+0xc0>
200814c: 90 10 00 10 mov %l0, %o0
(*printer)(
2008150: 15 00 80 52 sethi %hi(0x2014800), %o2
2008154: 90 10 00 19 mov %i1, %o0
2008158: 92 10 20 01 mov 1, %o1
200815c: 94 12 a1 e8 or %o2, 0x1e8, %o2
2008160: 10 80 01 0b b 200858c <_Heap_Walk+0x4e4>
2008164: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008168: 7f ff e6 5e call 2001ae0 <.urem>
200816c: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008170: 80 a2 20 00 cmp %o0, 0
2008174: 22 80 00 08 be,a 2008194 <_Heap_Walk+0xec>
2008178: 90 06 e0 08 add %i3, 8, %o0
(*printer)(
200817c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008180: 90 10 00 19 mov %i1, %o0
2008184: 92 10 20 01 mov 1, %o1
2008188: 94 12 a2 08 or %o2, 0x208, %o2
200818c: 10 80 01 00 b 200858c <_Heap_Walk+0x4e4>
2008190: 96 10 00 10 mov %l0, %o3
2008194: 7f ff e6 53 call 2001ae0 <.urem>
2008198: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
200819c: 80 a2 20 00 cmp %o0, 0
20081a0: 22 80 00 08 be,a 20081c0 <_Heap_Walk+0x118>
20081a4: c2 06 e0 04 ld [ %i3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
20081a8: 15 00 80 52 sethi %hi(0x2014800), %o2
20081ac: 90 10 00 19 mov %i1, %o0
20081b0: 92 10 20 01 mov 1, %o1
20081b4: 94 12 a2 30 or %o2, 0x230, %o2
20081b8: 10 80 00 f5 b 200858c <_Heap_Walk+0x4e4>
20081bc: 96 10 00 1b mov %i3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20081c0: 80 88 60 01 btst 1, %g1
20081c4: 32 80 00 07 bne,a 20081e0 <_Heap_Walk+0x138>
20081c8: f4 04 60 04 ld [ %l1 + 4 ], %i2
(*printer)(
20081cc: 15 00 80 52 sethi %hi(0x2014800), %o2
20081d0: 90 10 00 19 mov %i1, %o0
20081d4: 92 10 20 01 mov 1, %o1
20081d8: 10 80 00 0c b 2008208 <_Heap_Walk+0x160>
20081dc: 94 12 a2 68 or %o2, 0x268, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20081e0: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20081e4: b4 04 40 1a add %l1, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20081e8: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20081ec: 80 88 60 01 btst 1, %g1
20081f0: 12 80 00 0a bne 2008218 <_Heap_Walk+0x170>
20081f4: 80 a6 80 1b cmp %i2, %i3
(*printer)(
20081f8: 15 00 80 52 sethi %hi(0x2014800), %o2
20081fc: 90 10 00 19 mov %i1, %o0
2008200: 92 10 20 01 mov 1, %o1
2008204: 94 12 a2 98 or %o2, 0x298, %o2
2008208: 9f c7 40 00 call %i5
200820c: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008210: 10 80 00 d8 b 2008570 <_Heap_Walk+0x4c8>
2008214: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if (
2008218: 02 80 00 06 be 2008230 <_Heap_Walk+0x188>
200821c: 15 00 80 52 sethi %hi(0x2014800), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008220: 90 10 00 19 mov %i1, %o0
2008224: 92 10 20 01 mov 1, %o1
2008228: 10 bf ff f8 b 2008208 <_Heap_Walk+0x160>
200822c: 94 12 a2 b0 or %o2, 0x2b0, %o2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008230: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2008234: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008238: 10 80 00 33 b 2008304 <_Heap_Walk+0x25c>
200823c: a4 10 00 18 mov %i0, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008240: 80 a0 80 0b cmp %g2, %o3
2008244: 18 80 00 05 bgu 2008258 <_Heap_Walk+0x1b0>
2008248: 82 10 20 00 clr %g1
200824c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2008250: 80 a0 40 0b cmp %g1, %o3
2008254: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
2008258: 80 a0 60 00 cmp %g1, 0
200825c: 32 80 00 07 bne,a 2008278 <_Heap_Walk+0x1d0>
2008260: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
2008264: 15 00 80 52 sethi %hi(0x2014800), %o2
2008268: 90 10 00 19 mov %i1, %o0
200826c: 92 10 20 01 mov 1, %o1
2008270: 10 80 00 c7 b 200858c <_Heap_Walk+0x4e4>
2008274: 94 12 a2 e0 or %o2, 0x2e0, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008278: d6 27 bf f8 st %o3, [ %fp + -8 ]
200827c: 7f ff e6 19 call 2001ae0 <.urem>
2008280: 92 10 00 13 mov %l3, %o1
);
return false;
}
if (
2008284: 80 a2 20 00 cmp %o0, 0
2008288: 02 80 00 07 be 20082a4 <_Heap_Walk+0x1fc>
200828c: d6 07 bf f8 ld [ %fp + -8 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008290: 15 00 80 52 sethi %hi(0x2014800), %o2
2008294: 90 10 00 19 mov %i1, %o0
2008298: 92 10 20 01 mov 1, %o1
200829c: 10 80 00 bc b 200858c <_Heap_Walk+0x4e4>
20082a0: 94 12 a3 00 or %o2, 0x300, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20082a4: c2 02 e0 04 ld [ %o3 + 4 ], %g1
20082a8: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
20082ac: 82 02 c0 01 add %o3, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20082b0: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20082b4: 80 88 60 01 btst 1, %g1
20082b8: 22 80 00 07 be,a 20082d4 <_Heap_Walk+0x22c>
20082bc: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
20082c0: 15 00 80 52 sethi %hi(0x2014800), %o2
20082c4: 90 10 00 19 mov %i1, %o0
20082c8: 92 10 20 01 mov 1, %o1
20082cc: 10 80 00 b0 b 200858c <_Heap_Walk+0x4e4>
20082d0: 94 12 a3 30 or %o2, 0x330, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
20082d4: 80 a3 00 12 cmp %o4, %l2
20082d8: 22 80 00 0a be,a 2008300 <_Heap_Walk+0x258>
20082dc: a4 10 00 0b mov %o3, %l2
(*printer)(
20082e0: 15 00 80 52 sethi %hi(0x2014800), %o2
20082e4: 90 10 00 19 mov %i1, %o0
20082e8: 92 10 20 01 mov 1, %o1
20082ec: 94 12 a3 50 or %o2, 0x350, %o2
20082f0: 9f c7 40 00 call %i5
20082f4: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20082f8: 10 80 00 9e b 2008570 <_Heap_Walk+0x4c8>
20082fc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
return false;
}
prev_block = free_block;
free_block = free_block->next;
2008300: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008304: 80 a2 c0 18 cmp %o3, %i0
2008308: 32 bf ff ce bne,a 2008240 <_Heap_Walk+0x198>
200830c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
2008310: 2d 00 80 53 sethi %hi(0x2014c00), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008314: 2f 00 80 53 sethi %hi(0x2014c00), %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008318: ac 15 a1 10 or %l6, 0x110, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200831c: ae 15 e0 f8 or %l7, 0xf8, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008320: 2b 00 80 53 sethi %hi(0x2014c00), %l5
block = next_block;
} while ( block != first_block );
return true;
}
2008324: c2 06 a0 04 ld [ %i2 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008328: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200832c: a4 08 7f fe and %g1, -2, %l2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008330: a6 04 80 1a add %l2, %i2, %l3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008334: 80 a0 c0 13 cmp %g3, %l3
2008338: 18 80 00 05 bgu 200834c <_Heap_Walk+0x2a4> <== NEVER TAKEN
200833c: 84 10 20 00 clr %g2
2008340: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
2008344: 80 a0 80 13 cmp %g2, %l3
2008348: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200834c: 80 a0 a0 00 cmp %g2, 0
2008350: 12 80 00 07 bne 200836c <_Heap_Walk+0x2c4>
2008354: 84 1e 80 11 xor %i2, %l1, %g2
(*printer)(
2008358: 15 00 80 52 sethi %hi(0x2014800), %o2
200835c: 90 10 00 19 mov %i1, %o0
2008360: 92 10 20 01 mov 1, %o1
2008364: 10 80 00 2c b 2008414 <_Heap_Walk+0x36c>
2008368: 94 12 a3 88 or %o2, 0x388, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
200836c: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008370: c2 27 bf fc st %g1, [ %fp + -4 ]
2008374: a8 40 20 00 addx %g0, 0, %l4
2008378: 90 10 00 12 mov %l2, %o0
200837c: 7f ff e5 d9 call 2001ae0 <.urem>
2008380: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008384: 80 a2 20 00 cmp %o0, 0
2008388: 02 80 00 0c be 20083b8 <_Heap_Walk+0x310>
200838c: c2 07 bf fc ld [ %fp + -4 ], %g1
2008390: 80 8d 20 ff btst 0xff, %l4
2008394: 02 80 00 0a be 20083bc <_Heap_Walk+0x314>
2008398: 80 a4 80 10 cmp %l2, %l0
(*printer)(
200839c: 15 00 80 52 sethi %hi(0x2014800), %o2
20083a0: 90 10 00 19 mov %i1, %o0
20083a4: 92 10 20 01 mov 1, %o1
20083a8: 94 12 a3 b8 or %o2, 0x3b8, %o2
20083ac: 96 10 00 1a mov %i2, %o3
20083b0: 10 bf ff d0 b 20082f0 <_Heap_Walk+0x248>
20083b4: 98 10 00 12 mov %l2, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
20083b8: 80 a4 80 10 cmp %l2, %l0
20083bc: 1a 80 00 0d bcc 20083f0 <_Heap_Walk+0x348>
20083c0: 80 a4 c0 1a cmp %l3, %i2
20083c4: 80 8d 20 ff btst 0xff, %l4
20083c8: 02 80 00 0a be 20083f0 <_Heap_Walk+0x348> <== NEVER TAKEN
20083cc: 80 a4 c0 1a cmp %l3, %i2
(*printer)(
20083d0: 15 00 80 52 sethi %hi(0x2014800), %o2
20083d4: 90 10 00 19 mov %i1, %o0
20083d8: 92 10 20 01 mov 1, %o1
20083dc: 94 12 a3 e8 or %o2, 0x3e8, %o2
20083e0: 96 10 00 1a mov %i2, %o3
20083e4: 98 10 00 12 mov %l2, %o4
20083e8: 10 80 00 3d b 20084dc <_Heap_Walk+0x434>
20083ec: 9a 10 00 10 mov %l0, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
20083f0: 38 80 00 0c bgu,a 2008420 <_Heap_Walk+0x378>
20083f4: a8 08 60 01 and %g1, 1, %l4
20083f8: 80 8d 20 ff btst 0xff, %l4
20083fc: 02 80 00 09 be 2008420 <_Heap_Walk+0x378>
2008400: a8 08 60 01 and %g1, 1, %l4
(*printer)(
2008404: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008408: 90 10 00 19 mov %i1, %o0
200840c: 92 10 20 01 mov 1, %o1
2008410: 94 12 a0 18 or %o2, 0x18, %o2
2008414: 96 10 00 1a mov %i2, %o3
2008418: 10 bf ff b6 b 20082f0 <_Heap_Walk+0x248>
200841c: 98 10 00 13 mov %l3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008420: c2 04 e0 04 ld [ %l3 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2008424: 80 88 60 01 btst 1, %g1
2008428: 12 80 00 40 bne 2008528 <_Heap_Walk+0x480>
200842c: 90 10 00 19 mov %i1, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008430: da 06 a0 0c ld [ %i2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008434: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008438: 05 00 80 52 sethi %hi(0x2014800), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
200843c: c8 06 20 0c ld [ %i0 + 0xc ], %g4
2008440: 80 a3 40 01 cmp %o5, %g1
2008444: 02 80 00 07 be 2008460 <_Heap_Walk+0x3b8>
2008448: 86 10 a0 f8 or %g2, 0xf8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
200844c: 80 a3 40 18 cmp %o5, %i0
2008450: 12 80 00 04 bne 2008460 <_Heap_Walk+0x3b8>
2008454: 86 15 60 c0 or %l5, 0xc0, %g3
2008458: 07 00 80 52 sethi %hi(0x2014800), %g3
200845c: 86 10 e1 08 or %g3, 0x108, %g3 ! 2014908 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
2008460: c4 06 a0 08 ld [ %i2 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008464: 1f 00 80 52 sethi %hi(0x2014800), %o7
2008468: 80 a0 80 04 cmp %g2, %g4
200846c: 02 80 00 07 be 2008488 <_Heap_Walk+0x3e0>
2008470: 82 13 e1 18 or %o7, 0x118, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008474: 80 a0 80 18 cmp %g2, %i0
2008478: 12 80 00 04 bne 2008488 <_Heap_Walk+0x3e0>
200847c: 82 15 60 c0 or %l5, 0xc0, %g1
2008480: 03 00 80 52 sethi %hi(0x2014800), %g1
2008484: 82 10 61 28 or %g1, 0x128, %g1 ! 2014928 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008488: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
200848c: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2008490: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
2008494: 90 10 00 19 mov %i1, %o0
2008498: 92 10 20 00 clr %o1
200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084a0: 96 10 00 1a mov %i2, %o3
20084a4: 94 12 a0 50 or %o2, 0x50, %o2
20084a8: 9f c7 40 00 call %i5
20084ac: 98 10 00 12 mov %l2, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
20084b0: da 04 c0 00 ld [ %l3 ], %o5
20084b4: 80 a4 80 0d cmp %l2, %o5
20084b8: 02 80 00 0d be 20084ec <_Heap_Walk+0x444>
20084bc: 80 a5 20 00 cmp %l4, 0
(*printer)(
20084c0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084c4: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
20084c8: 90 10 00 19 mov %i1, %o0
20084cc: 92 10 20 01 mov 1, %o1
20084d0: 94 12 a0 88 or %o2, 0x88, %o2
20084d4: 96 10 00 1a mov %i2, %o3
20084d8: 98 10 00 12 mov %l2, %o4
20084dc: 9f c7 40 00 call %i5
20084e0: 01 00 00 00 nop
20084e4: 10 80 00 23 b 2008570 <_Heap_Walk+0x4c8>
20084e8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if ( !prev_used ) {
20084ec: 32 80 00 0a bne,a 2008514 <_Heap_Walk+0x46c>
20084f0: c2 06 20 08 ld [ %i0 + 8 ], %g1
(*printer)(
20084f4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084f8: 90 10 00 19 mov %i1, %o0
20084fc: 92 10 20 01 mov 1, %o1
2008500: 10 80 00 22 b 2008588 <_Heap_Walk+0x4e0>
2008504: 94 12 a0 c8 or %o2, 0xc8, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2008508: 02 80 00 17 be 2008564 <_Heap_Walk+0x4bc>
200850c: 80 a4 c0 1b cmp %l3, %i3
return true;
}
free_block = free_block->next;
2008510: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008514: 80 a0 40 18 cmp %g1, %i0
2008518: 12 bf ff fc bne 2008508 <_Heap_Walk+0x460>
200851c: 80 a0 40 1a cmp %g1, %i2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008520: 10 80 00 17 b 200857c <_Heap_Walk+0x4d4>
2008524: 15 00 80 53 sethi %hi(0x2014c00), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2008528: 80 a5 20 00 cmp %l4, 0
200852c: 02 80 00 08 be 200854c <_Heap_Walk+0x4a4>
2008530: 92 10 20 00 clr %o1
(*printer)(
2008534: 94 10 00 17 mov %l7, %o2
2008538: 96 10 00 1a mov %i2, %o3
200853c: 9f c7 40 00 call %i5
2008540: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008544: 10 80 00 08 b 2008564 <_Heap_Walk+0x4bc>
2008548: 80 a4 c0 1b cmp %l3, %i3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
200854c: da 06 80 00 ld [ %i2 ], %o5
2008550: 94 10 00 16 mov %l6, %o2
2008554: 96 10 00 1a mov %i2, %o3
2008558: 9f c7 40 00 call %i5
200855c: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008560: 80 a4 c0 1b cmp %l3, %i3
2008564: 12 bf ff 70 bne 2008324 <_Heap_Walk+0x27c>
2008568: b4 10 00 13 mov %l3, %i2
return true;
200856c: 82 10 20 01 mov 1, %g1
}
2008570: b0 08 60 01 and %g1, 1, %i0
2008574: 81 c7 e0 08 ret
2008578: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200857c: 90 10 00 19 mov %i1, %o0
2008580: 92 10 20 01 mov 1, %o1
2008584: 94 12 a1 38 or %o2, 0x138, %o2
2008588: 96 10 00 1a mov %i2, %o3
200858c: 9f c7 40 00 call %i5
2008590: 01 00 00 00 nop
2008594: 10 bf ff f7 b 2008570 <_Heap_Walk+0x4c8>
2008598: 82 10 20 00 clr %g1 ! 0 <PROM_START>
02007884 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007884: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007888: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
200788c: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007890: 80 a0 60 00 cmp %g1, 0
2007894: 02 80 00 20 be 2007914 <_Objects_Allocate+0x90> <== NEVER TAKEN
2007898: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
200789c: b8 07 60 20 add %i5, 0x20, %i4
20078a0: 7f ff fd 87 call 2006ebc <_Chain_Get>
20078a4: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
20078a8: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
20078ac: 80 a0 60 00 cmp %g1, 0
20078b0: 02 80 00 19 be 2007914 <_Objects_Allocate+0x90>
20078b4: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
20078b8: 80 a2 20 00 cmp %o0, 0
20078bc: 32 80 00 0a bne,a 20078e4 <_Objects_Allocate+0x60>
20078c0: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
_Objects_Extend_information( information );
20078c4: 40 00 00 1d call 2007938 <_Objects_Extend_information>
20078c8: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20078cc: 7f ff fd 7c call 2006ebc <_Chain_Get>
20078d0: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
20078d4: b0 92 20 00 orcc %o0, 0, %i0
20078d8: 02 80 00 0f be 2007914 <_Objects_Allocate+0x90>
20078dc: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
20078e0: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
20078e4: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
20078e8: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
20078ec: 40 00 3c 4c call 2016a1c <.udiv>
20078f0: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20078f4: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
20078f8: 91 2a 20 02 sll %o0, 2, %o0
20078fc: c4 00 40 08 ld [ %g1 + %o0 ], %g2
2007900: 84 00 bf ff add %g2, -1, %g2
2007904: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007908: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
200790c: 82 00 7f ff add %g1, -1, %g1
2007910: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2007914: 81 c7 e0 08 ret
2007918: 81 e8 00 00 restore
02007c90 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007c90: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007c94: 80 a6 60 00 cmp %i1, 0
2007c98: 02 80 00 17 be 2007cf4 <_Objects_Get_information+0x64>
2007c9c: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007ca0: 40 00 11 66 call 200c238 <_Objects_API_maximum_class>
2007ca4: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007ca8: 80 a2 20 00 cmp %o0, 0
2007cac: 02 80 00 12 be 2007cf4 <_Objects_Get_information+0x64>
2007cb0: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007cb4: 18 80 00 10 bgu 2007cf4 <_Objects_Get_information+0x64>
2007cb8: 03 00 80 6c sethi %hi(0x201b000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007cbc: b1 2e 20 02 sll %i0, 2, %i0
2007cc0: 82 10 63 b8 or %g1, 0x3b8, %g1
2007cc4: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2007cc8: 80 a0 60 00 cmp %g1, 0
2007ccc: 02 80 00 0a be 2007cf4 <_Objects_Get_information+0x64> <== NEVER TAKEN
2007cd0: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2007cd4: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
2007cd8: 80 a7 60 00 cmp %i5, 0
2007cdc: 02 80 00 06 be 2007cf4 <_Objects_Get_information+0x64> <== NEVER TAKEN
2007ce0: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2007ce4: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
2007ce8: 80 a0 00 01 cmp %g0, %g1
2007cec: 82 60 20 00 subx %g0, 0, %g1
2007cf0: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
2007cf4: 81 c7 e0 08 ret
2007cf8: 91 e8 00 1d restore %g0, %i5, %o0
020087c4 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
20087c4: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20087c8: 92 96 20 00 orcc %i0, 0, %o1
20087cc: 12 80 00 06 bne 20087e4 <_Objects_Id_to_name+0x20>
20087d0: 83 32 60 18 srl %o1, 0x18, %g1
20087d4: 03 00 80 72 sethi %hi(0x201c800), %g1
20087d8: c2 00 62 68 ld [ %g1 + 0x268 ], %g1 ! 201ca68 <_Per_CPU_Information+0xc>
20087dc: d2 00 60 08 ld [ %g1 + 8 ], %o1
20087e0: 83 32 60 18 srl %o1, 0x18, %g1
20087e4: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
20087e8: 84 00 7f ff add %g1, -1, %g2
20087ec: 80 a0 a0 02 cmp %g2, 2
20087f0: 18 80 00 12 bgu 2008838 <_Objects_Id_to_name+0x74>
20087f4: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20087f8: 10 80 00 12 b 2008840 <_Objects_Id_to_name+0x7c>
20087fc: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2008800: 85 28 a0 02 sll %g2, 2, %g2
2008804: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2008808: 80 a2 20 00 cmp %o0, 0
200880c: 02 80 00 0b be 2008838 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
2008810: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2008814: 7f ff ff ce call 200874c <_Objects_Get>
2008818: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200881c: 80 a2 20 00 cmp %o0, 0
2008820: 02 80 00 06 be 2008838 <_Objects_Id_to_name+0x74>
2008824: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2008828: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200882c: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2008830: 40 00 03 62 call 20095b8 <_Thread_Enable_dispatch>
2008834: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2008838: 81 c7 e0 08 ret
200883c: 91 e8 00 1d restore %g0, %i5, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2008840: 05 00 80 71 sethi %hi(0x201c400), %g2
2008844: 84 10 a3 98 or %g2, 0x398, %g2 ! 201c798 <_Objects_Information_table>
2008848: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200884c: 80 a0 60 00 cmp %g1, 0
2008850: 12 bf ff ec bne 2008800 <_Objects_Id_to_name+0x3c>
2008854: 85 32 60 1b srl %o1, 0x1b, %g2
2008858: 30 bf ff f8 b,a 2008838 <_Objects_Id_to_name+0x74>
02008910 <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
2008910: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if(!the_node) return;
2008914: 80 a6 60 00 cmp %i1, 0
2008918: 02 80 00 7b be 2008b04 <_RBTree_Extract_unprotected+0x1f4>
200891c: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
2008920: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008924: 80 a6 40 01 cmp %i1, %g1
2008928: 32 80 00 0d bne,a 200895c <_RBTree_Extract_unprotected+0x4c>
200892c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
if (the_node->child[RBT_RIGHT])
2008930: c2 06 60 08 ld [ %i1 + 8 ], %g1
2008934: 80 a0 60 00 cmp %g1, 0
2008938: 22 80 00 04 be,a 2008948 <_RBTree_Extract_unprotected+0x38>
200893c: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
2008940: 10 80 00 06 b 2008958 <_RBTree_Extract_unprotected+0x48>
2008944: c2 26 20 08 st %g1, [ %i0 + 8 ]
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
2008948: 80 a6 00 01 cmp %i0, %g1
200894c: 12 80 00 03 bne 2008958 <_RBTree_Extract_unprotected+0x48>
2008950: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
2008954: c0 26 20 08 clr [ %i0 + 8 ]
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
2008958: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200895c: 80 a6 40 01 cmp %i1, %g1
2008960: 12 80 00 0b bne 200898c <_RBTree_Extract_unprotected+0x7c>
2008964: c2 06 60 04 ld [ %i1 + 4 ], %g1
if (the_node->child[RBT_LEFT])
2008968: 80 a0 60 00 cmp %g1, 0
200896c: 22 80 00 04 be,a 200897c <_RBTree_Extract_unprotected+0x6c>
2008970: c4 06 40 00 ld [ %i1 ], %g2
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
2008974: 10 80 00 06 b 200898c <_RBTree_Extract_unprotected+0x7c>
2008978: c2 26 20 0c st %g1, [ %i0 + 0xc ]
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
200897c: 80 a6 00 02 cmp %i0, %g2
2008980: 12 80 00 03 bne 200898c <_RBTree_Extract_unprotected+0x7c>
2008984: c4 26 20 0c st %g2, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
2008988: c0 26 20 0c clr [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200898c: ba 90 60 00 orcc %g1, 0, %i5
2008990: 02 80 00 36 be 2008a68 <_RBTree_Extract_unprotected+0x158>
2008994: f8 06 60 08 ld [ %i1 + 8 ], %i4
2008998: 80 a7 20 00 cmp %i4, 0
200899c: 32 80 00 05 bne,a 20089b0 <_RBTree_Extract_unprotected+0xa0>
20089a0: c2 07 60 08 ld [ %i5 + 8 ], %g1
20089a4: 10 80 00 35 b 2008a78 <_RBTree_Extract_unprotected+0x168>
20089a8: b8 10 00 01 mov %g1, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
20089ac: c2 07 60 08 ld [ %i5 + 8 ], %g1
20089b0: 80 a0 60 00 cmp %g1, 0
20089b4: 32 bf ff fe bne,a 20089ac <_RBTree_Extract_unprotected+0x9c>
20089b8: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
20089bc: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
20089c0: 80 a7 20 00 cmp %i4, 0
20089c4: 02 80 00 05 be 20089d8 <_RBTree_Extract_unprotected+0xc8> <== ALWAYS TAKEN
20089c8: 01 00 00 00 nop
leaf->parent = target->parent;
20089cc: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED
20089d0: 10 80 00 04 b 20089e0 <_RBTree_Extract_unprotected+0xd0> <== NOT EXECUTED
20089d4: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
20089d8: 7f ff ff 50 call 2008718 <_RBTree_Extract_validate_unprotected>
20089dc: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
20089e0: c4 07 40 00 ld [ %i5 ], %g2
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
20089e4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
dir = target != target->parent->child[0];
20089e8: c6 00 a0 04 ld [ %g2 + 4 ], %g3
20089ec: 86 1f 40 03 xor %i5, %g3, %g3
20089f0: 80 a0 00 03 cmp %g0, %g3
20089f4: 86 40 20 00 addx %g0, 0, %g3
target->parent->child[dir] = leaf;
20089f8: 87 28 e0 02 sll %g3, 2, %g3
20089fc: 84 00 80 03 add %g2, %g3, %g2
2008a00: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
2008a04: c4 06 40 00 ld [ %i1 ], %g2
2008a08: c6 00 a0 04 ld [ %g2 + 4 ], %g3
2008a0c: 86 1e 40 03 xor %i1, %g3, %g3
2008a10: 80 a0 00 03 cmp %g0, %g3
2008a14: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = target;
2008a18: 87 28 e0 02 sll %g3, 2, %g3
2008a1c: 84 00 80 03 add %g2, %g3, %g2
2008a20: fa 20 a0 04 st %i5, [ %g2 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
2008a24: c4 06 60 08 ld [ %i1 + 8 ], %g2
2008a28: c4 27 60 08 st %g2, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
2008a2c: c4 06 60 08 ld [ %i1 + 8 ], %g2
2008a30: 80 a0 a0 00 cmp %g2, 0
2008a34: 32 80 00 02 bne,a 2008a3c <_RBTree_Extract_unprotected+0x12c><== ALWAYS TAKEN
2008a38: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
2008a3c: c4 06 60 04 ld [ %i1 + 4 ], %g2
2008a40: c4 27 60 04 st %g2, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
2008a44: c4 06 60 04 ld [ %i1 + 4 ], %g2
2008a48: 80 a0 a0 00 cmp %g2, 0
2008a4c: 32 80 00 02 bne,a 2008a54 <_RBTree_Extract_unprotected+0x144>
2008a50: fa 20 80 00 st %i5, [ %g2 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
2008a54: c4 06 40 00 ld [ %i1 ], %g2
2008a58: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
2008a5c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
2008a60: 10 80 00 14 b 2008ab0 <_RBTree_Extract_unprotected+0x1a0>
2008a64: c4 27 60 10 st %g2, [ %i5 + 0x10 ]
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
2008a68: 80 a7 20 00 cmp %i4, 0
2008a6c: 32 80 00 04 bne,a 2008a7c <_RBTree_Extract_unprotected+0x16c>
2008a70: c2 06 40 00 ld [ %i1 ], %g1
2008a74: 30 80 00 04 b,a 2008a84 <_RBTree_Extract_unprotected+0x174>
leaf->parent = the_node->parent;
2008a78: c2 06 40 00 ld [ %i1 ], %g1
2008a7c: 10 80 00 04 b 2008a8c <_RBTree_Extract_unprotected+0x17c>
2008a80: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
2008a84: 7f ff ff 25 call 2008718 <_RBTree_Extract_validate_unprotected>
2008a88: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2008a8c: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
2008a90: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2008a94: c6 00 a0 04 ld [ %g2 + 4 ], %g3
2008a98: 86 1e 40 03 xor %i1, %g3, %g3
2008a9c: 80 a0 00 03 cmp %g0, %g3
2008aa0: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
2008aa4: 87 28 e0 02 sll %g3, 2, %g3
2008aa8: 84 00 80 03 add %g2, %g3, %g2
2008aac: f8 20 a0 04 st %i4, [ %g2 + 4 ]
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node and the child is red. Paint child black.
* 3. Deleted a black node and its child is black. This requires some
* care and rotations.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
2008ab0: 80 a0 60 00 cmp %g1, 0
2008ab4: 32 80 00 0e bne,a 2008aec <_RBTree_Extract_unprotected+0x1dc>
2008ab8: c2 06 20 04 ld [ %i0 + 4 ], %g1
2008abc: 80 a7 20 00 cmp %i4, 0
2008ac0: 22 80 00 0b be,a 2008aec <_RBTree_Extract_unprotected+0x1dc>
2008ac4: c2 06 20 04 ld [ %i0 + 4 ], %g1
2008ac8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2008acc: 80 a0 60 01 cmp %g1, 1
2008ad0: 12 80 00 04 bne 2008ae0 <_RBTree_Extract_unprotected+0x1d0><== NEVER TAKEN
2008ad4: 01 00 00 00 nop
if (_RBTree_Is_red(leaf))
leaf->color = RBT_BLACK; /* case 2 */
2008ad8: 10 80 00 04 b 2008ae8 <_RBTree_Extract_unprotected+0x1d8>
2008adc: c0 27 20 10 clr [ %i4 + 0x10 ]
else if(leaf)
_RBTree_Extract_validate_unprotected(leaf); /* case 3 */
2008ae0: 7f ff ff 0e call 2008718 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED
2008ae4: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
2008ae8: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
2008aec: c0 26 60 08 clr [ %i1 + 8 ]
2008af0: c0 26 60 04 clr [ %i1 + 4 ]
2008af4: 80 a0 60 00 cmp %g1, 0
2008af8: 02 80 00 03 be 2008b04 <_RBTree_Extract_unprotected+0x1f4>
2008afc: c0 26 40 00 clr [ %i1 ]
2008b00: c0 20 60 10 clr [ %g1 + 0x10 ]
2008b04: 81 c7 e0 08 ret
2008b08: 81 e8 00 00 restore
02008718 <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
2008718: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
200871c: fa 06 00 00 ld [ %i0 ], %i5
if(!parent->parent) return;
2008720: c2 07 40 00 ld [ %i5 ], %g1
2008724: 80 a0 60 00 cmp %g1, 0
2008728: 02 80 00 71 be 20088ec <_RBTree_Extract_validate_unprotected+0x1d4>
200872c: 90 10 00 18 mov %i0, %o0
sibling = _RBTree_Sibling(the_node);
2008730: 7f ff ff ca call 2008658 <_RBTree_Sibling>
2008734: b4 10 20 01 mov 1, %i2
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2008738: 10 80 00 60 b 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0>
200873c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008740: 22 80 00 5e be,a 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN
2008744: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED
2008748: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
200874c: 80 a0 60 01 cmp %g1, 1
2008750: 32 80 00 14 bne,a 20087a0 <_RBTree_Extract_validate_unprotected+0x88>
2008754: c4 02 20 08 ld [ %o0 + 8 ], %g2
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
2008758: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200875c: c2 07 60 04 ld [ %i5 + 4 ], %g1
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
2008760: c0 22 20 10 clr [ %o0 + 0x10 ]
dir = the_node != parent->child[0];
2008764: 82 1e 00 01 xor %i0, %g1, %g1
2008768: 80 a0 00 01 cmp %g0, %g1
_RBTree_Rotate(parent, dir);
200876c: 90 10 00 1d mov %i5, %o0
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
2008770: b8 40 20 00 addx %g0, 0, %i4
_RBTree_Rotate(parent, dir);
2008774: 7f ff ff ca call 200869c <_RBTree_Rotate>
2008778: 92 10 00 1c mov %i4, %o1
sibling = parent->child[!dir];
200877c: 80 a0 00 1c cmp %g0, %i4
2008780: 82 60 3f ff subx %g0, -1, %g1
2008784: 83 28 60 02 sll %g1, 2, %g1
2008788: 82 07 40 01 add %i5, %g1, %g1
200878c: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
2008790: 80 a2 20 00 cmp %o0, 0
2008794: 22 80 00 49 be,a 20088b8 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN
2008798: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200879c: c4 02 20 08 ld [ %o0 + 8 ], %g2
20087a0: 80 a0 a0 00 cmp %g2, 0
20087a4: 02 80 00 06 be 20087bc <_RBTree_Extract_validate_unprotected+0xa4>
20087a8: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
20087ac: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
20087b0: 82 18 60 01 xor %g1, 1, %g1
20087b4: 80 a0 00 01 cmp %g0, %g1
20087b8: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
20087bc: 80 a0 60 00 cmp %g1, 0
20087c0: 32 80 00 14 bne,a 2008810 <_RBTree_Extract_validate_unprotected+0xf8>
20087c4: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
20087c8: c4 02 20 04 ld [ %o0 + 4 ], %g2
20087cc: 80 a0 a0 00 cmp %g2, 0
20087d0: 02 80 00 07 be 20087ec <_RBTree_Extract_validate_unprotected+0xd4>
20087d4: 80 a0 60 00 cmp %g1, 0
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
20087d8: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
20087dc: 82 18 60 01 xor %g1, 1, %g1
20087e0: 80 a0 00 01 cmp %g0, %g1
20087e4: 82 60 3f ff subx %g0, -1, %g1
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
20087e8: 80 a0 60 00 cmp %g1, 0
20087ec: 32 80 00 09 bne,a 2008810 <_RBTree_Extract_validate_unprotected+0xf8>
20087f0: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
20087f4: f4 22 20 10 st %i2, [ %o0 + 0x10 ]
20087f8: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
20087fc: 80 a0 60 01 cmp %g1, 1
2008800: 32 80 00 3d bne,a 20088f4 <_RBTree_Extract_validate_unprotected+0x1dc>
2008804: f8 07 40 00 ld [ %i5 ], %i4
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
2008808: 10 80 00 33 b 20088d4 <_RBTree_Extract_validate_unprotected+0x1bc>
200880c: c0 27 60 10 clr [ %i5 + 0x10 ]
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
2008810: 82 1e 00 01 xor %i0, %g1, %g1
2008814: 80 a0 00 01 cmp %g0, %g1
2008818: b8 40 20 00 addx %g0, 0, %i4
if (!_RBTree_Is_red(sibling->child[!dir])) {
200881c: 80 a0 00 1c cmp %g0, %i4
2008820: b6 60 3f ff subx %g0, -1, %i3
2008824: 83 2e e0 02 sll %i3, 2, %g1
2008828: 82 02 00 01 add %o0, %g1, %g1
200882c: c4 00 60 04 ld [ %g1 + 4 ], %g2
2008830: 80 a0 a0 00 cmp %g2, 0
2008834: 02 80 00 06 be 200884c <_RBTree_Extract_validate_unprotected+0x134>
2008838: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
200883c: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
2008840: 82 18 60 01 xor %g1, 1, %g1
2008844: 80 a0 00 01 cmp %g0, %g1
2008848: 82 60 3f ff subx %g0, -1, %g1
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
200884c: 80 a0 60 00 cmp %g1, 0
2008850: 32 80 00 0e bne,a 2008888 <_RBTree_Extract_validate_unprotected+0x170>
2008854: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
sibling->color = RBT_RED;
2008858: 82 10 20 01 mov 1, %g1
200885c: c2 22 20 10 st %g1, [ %o0 + 0x10 ]
sibling->child[dir]->color = RBT_BLACK;
2008860: 83 2f 20 02 sll %i4, 2, %g1
2008864: 82 02 00 01 add %o0, %g1, %g1
2008868: c2 00 60 04 ld [ %g1 + 4 ], %g1
_RBTree_Rotate(sibling, !dir);
200886c: 92 1f 20 01 xor %i4, 1, %o1
2008870: 7f ff ff 8b call 200869c <_RBTree_Rotate>
2008874: c0 20 60 10 clr [ %g1 + 0x10 ]
sibling = parent->child[!dir];
2008878: 83 2e e0 02 sll %i3, 2, %g1
200887c: 82 07 40 01 add %i5, %g1, %g1
2008880: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
sibling->color = parent->color;
2008884: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
2008888: b7 2e e0 02 sll %i3, 2, %i3
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
200888c: c2 22 20 10 st %g1, [ %o0 + 0x10 ]
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
2008890: 90 02 00 1b add %o0, %i3, %o0
2008894: c2 02 20 04 ld [ %o0 + 4 ], %g1
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
parent->color = RBT_BLACK;
2008898: c0 27 60 10 clr [ %i5 + 0x10 ]
sibling->child[!dir]->color = RBT_BLACK;
200889c: c0 20 60 10 clr [ %g1 + 0x10 ]
_RBTree_Rotate(parent, dir);
20088a0: 90 10 00 1d mov %i5, %o0
20088a4: 7f ff ff 7e call 200869c <_RBTree_Rotate>
20088a8: 92 10 00 1c mov %i4, %o1
break; /* done */
20088ac: 10 80 00 0b b 20088d8 <_RBTree_Extract_validate_unprotected+0x1c0>
20088b0: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
20088b4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
20088b8: 80 a0 60 01 cmp %g1, 1
20088bc: 22 80 00 07 be,a 20088d8 <_RBTree_Extract_validate_unprotected+0x1c0>
20088c0: c2 06 00 00 ld [ %i0 ], %g1
20088c4: c2 07 40 00 ld [ %i5 ], %g1
20088c8: 80 a0 60 00 cmp %g1, 0
20088cc: 12 bf ff 9d bne 2008740 <_RBTree_Extract_validate_unprotected+0x28>
20088d0: 80 a2 20 00 cmp %o0, 0
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
20088d4: c2 06 00 00 ld [ %i0 ], %g1
20088d8: c2 00 40 00 ld [ %g1 ], %g1
20088dc: 80 a0 60 00 cmp %g1, 0
20088e0: 12 80 00 0a bne 2008908 <_RBTree_Extract_validate_unprotected+0x1f0>
20088e4: 01 00 00 00 nop
20088e8: c0 26 20 10 clr [ %i0 + 0x10 ]
20088ec: 81 c7 e0 08 ret
20088f0: 81 e8 00 00 restore
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
sibling = _RBTree_Sibling(the_node);
20088f4: 90 10 00 1d mov %i5, %o0
20088f8: 7f ff ff 58 call 2008658 <_RBTree_Sibling>
20088fc: b0 10 00 1d mov %i5, %i0
2008900: 10 bf ff ed b 20088b4 <_RBTree_Extract_validate_unprotected+0x19c>
2008904: ba 10 00 1c mov %i4, %i5
2008908: 81 c7 e0 08 ret
200890c: 81 e8 00 00 restore
02008b80 <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
2008b80: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
2008b84: 7f ff e8 16 call 2002bdc <sparc_disable_interrupts>
2008b88: 01 00 00 00 nop
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
if (the_value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_value > iter_node->value;
iter_node = iter_node->child[dir];
2008b8c: 10 80 00 09 b 2008bb0 <_RBTree_Find+0x30>
2008b90: f0 06 20 04 ld [ %i0 + 4 ], %i0
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
if (the_value == iter_node->value) return(iter_node);
2008b94: 80 a6 40 01 cmp %i1, %g1
2008b98: 02 80 00 09 be 2008bbc <_RBTree_Find+0x3c>
2008b9c: 80 a0 40 19 cmp %g1, %i1
RBTree_Direction dir = the_value > iter_node->value;
2008ba0: 82 40 20 00 addx %g0, 0, %g1
iter_node = iter_node->child[dir];
2008ba4: 83 28 60 02 sll %g1, 2, %g1
2008ba8: b0 06 00 01 add %i0, %g1, %i0
2008bac: f0 06 20 04 ld [ %i0 + 4 ], %i0
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
2008bb0: 80 a6 20 00 cmp %i0, 0
2008bb4: 32 bf ff f8 bne,a 2008b94 <_RBTree_Find+0x14> <== ALWAYS TAKEN
2008bb8: c2 06 20 0c ld [ %i0 + 0xc ], %g1
return_node = _RBTree_Find_unprotected( the_rbtree, the_value );
_ISR_Enable( level );
2008bbc: 7f ff e8 0c call 2002bec <sparc_enable_interrupts>
2008bc0: 01 00 00 00 nop
return return_node;
}
2008bc4: 81 c7 e0 08 ret
2008bc8: 81 e8 00 00 restore
02008b30 <_RBTree_Find_header>:
*/
RBTree_Control *_RBTree_Find_header(
RBTree_Node *the_node
)
{
2008b30: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Control *return_header;
return_header = NULL;
_ISR_Disable( level );
2008b34: 7f ff e8 2a call 2002bdc <sparc_disable_interrupts>
2008b38: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
2008b3c: 80 a7 60 00 cmp %i5, 0
2008b40: 02 80 00 0c be 2008b70 <_RBTree_Find_header+0x40> <== NEVER TAKEN
2008b44: b0 10 20 00 clr %i0
if(!(the_node->parent)) return NULL;
2008b48: c2 07 40 00 ld [ %i5 ], %g1
2008b4c: 80 a0 60 00 cmp %g1, 0
2008b50: 32 80 00 03 bne,a 2008b5c <_RBTree_Find_header+0x2c> <== ALWAYS TAKEN
2008b54: ba 10 00 01 mov %g1, %i5
2008b58: 30 80 00 06 b,a 2008b70 <_RBTree_Find_header+0x40> <== NOT EXECUTED
while(the_node->parent) the_node = the_node->parent;
2008b5c: c2 07 40 00 ld [ %i5 ], %g1
2008b60: 80 a0 60 00 cmp %g1, 0
2008b64: 32 bf ff fe bne,a 2008b5c <_RBTree_Find_header+0x2c>
2008b68: ba 10 00 01 mov %g1, %i5
2008b6c: b0 10 00 1d mov %i5, %i0
return_header = _RBTree_Find_header_unprotected( the_node );
_ISR_Enable( level );
2008b70: 7f ff e8 1f call 2002bec <sparc_enable_interrupts>
2008b74: 01 00 00 00 nop
return return_header;
}
2008b78: 81 c7 e0 08 ret
2008b7c: 81 e8 00 00 restore
02008d68 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
2008d68: 9d e3 bf a0 save %sp, -96, %sp
2008d6c: 82 10 00 18 mov %i0, %g1
2008d70: 90 10 00 19 mov %i1, %o0
if(!the_node) return (RBTree_Node*)-1;
2008d74: 80 a6 60 00 cmp %i1, 0
2008d78: 02 80 00 0d be 2008dac <_RBTree_Insert_unprotected+0x44> <== NEVER TAKEN
2008d7c: b0 10 3f ff mov -1, %i0
RBTree_Node *iter_node = the_rbtree->root;
2008d80: f0 00 60 04 ld [ %g1 + 4 ], %i0
if (!iter_node) { /* special case: first node inserted */
2008d84: 80 a6 20 00 cmp %i0, 0
2008d88: 32 80 00 1f bne,a 2008e04 <_RBTree_Insert_unprotected+0x9c>
2008d8c: c4 06 60 0c ld [ %i1 + 0xc ], %g2
the_node->color = RBT_BLACK;
2008d90: c0 26 60 10 clr [ %i1 + 0x10 ]
the_rbtree->root = the_node;
2008d94: f2 20 60 04 st %i1, [ %g1 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
2008d98: f2 20 60 0c st %i1, [ %g1 + 0xc ]
2008d9c: f2 20 60 08 st %i1, [ %g1 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
2008da0: c2 26 40 00 st %g1, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
2008da4: c0 26 60 08 clr [ %i1 + 8 ]
2008da8: c0 26 60 04 clr [ %i1 + 4 ]
2008dac: 81 c7 e0 08 ret
2008db0: 81 e8 00 00 restore
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
2008db4: 86 40 20 00 addx %g0, 0, %g3
if (!iter_node->child[dir]) {
2008db8: 89 28 e0 02 sll %g3, 2, %g4
2008dbc: 88 06 00 04 add %i0, %g4, %g4
2008dc0: de 01 20 04 ld [ %g4 + 4 ], %o7
2008dc4: 80 a3 e0 00 cmp %o7, 0
2008dc8: 32 80 00 0f bne,a 2008e04 <_RBTree_Insert_unprotected+0x9c>
2008dcc: b0 10 00 0f mov %o7, %i0
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
2008dd0: 84 10 20 01 mov 1, %g2
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
2008dd4: c0 22 20 08 clr [ %o0 + 8 ]
2008dd8: c0 22 20 04 clr [ %o0 + 4 ]
the_node->color = RBT_RED;
2008ddc: c4 22 20 10 st %g2, [ %o0 + 0x10 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
2008de0: 84 00 e0 02 add %g3, 2, %g2
2008de4: 85 28 a0 02 sll %g2, 2, %g2
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
2008de8: c6 00 40 02 ld [ %g1 + %g2 ], %g3
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
2008dec: d0 21 20 04 st %o0, [ %g4 + 4 ]
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
2008df0: 80 a6 00 03 cmp %i0, %g3
2008df4: 12 80 00 0a bne 2008e1c <_RBTree_Insert_unprotected+0xb4>
2008df8: f0 22 00 00 st %i0, [ %o0 ]
the_rbtree->first[dir] = the_node;
2008dfc: 10 80 00 08 b 2008e1c <_RBTree_Insert_unprotected+0xb4>
2008e00: d0 20 40 02 st %o0, [ %g1 + %g2 ]
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
2008e04: c6 06 20 0c ld [ %i0 + 0xc ], %g3
2008e08: 80 a0 80 03 cmp %g2, %g3
2008e0c: 12 bf ff ea bne 2008db4 <_RBTree_Insert_unprotected+0x4c>
2008e10: 80 a0 c0 02 cmp %g3, %g2
2008e14: 81 c7 e0 08 ret
2008e18: 81 e8 00 00 restore
}
} /* while(iter_node) */
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
2008e1c: 7f ff ff 9a call 2008c84 <_RBTree_Validate_insert_unprotected>
2008e20: b0 10 20 00 clr %i0
}
return (RBTree_Node*)0;
}
2008e24: 81 c7 e0 08 ret
2008e28: 81 e8 00 00 restore
0200869c <_RBTree_Rotate>:
RBTree_Node *the_node,
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
200869c: 80 a2 20 00 cmp %o0, 0
20086a0: 02 80 00 1c be 2008710 <_RBTree_Rotate+0x74> <== NEVER TAKEN
20086a4: 86 10 20 01 mov 1, %g3
if (the_node->child[(1-dir)] == NULL) return;
20086a8: 86 20 c0 09 sub %g3, %o1, %g3
20086ac: 87 28 e0 02 sll %g3, 2, %g3
20086b0: 86 02 00 03 add %o0, %g3, %g3
20086b4: c2 00 e0 04 ld [ %g3 + 4 ], %g1
20086b8: 80 a0 60 00 cmp %g1, 0
20086bc: 02 80 00 15 be 2008710 <_RBTree_Rotate+0x74> <== NEVER TAKEN
20086c0: 93 2a 60 02 sll %o1, 2, %o1
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
20086c4: 84 00 40 09 add %g1, %o1, %g2
20086c8: c8 00 a0 04 ld [ %g2 + 4 ], %g4
20086cc: c8 20 e0 04 st %g4, [ %g3 + 4 ]
if (c->child[dir])
20086d0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
20086d4: 80 a0 a0 00 cmp %g2, 0
20086d8: 32 80 00 02 bne,a 20086e0 <_RBTree_Rotate+0x44>
20086dc: d0 20 80 00 st %o0, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20086e0: c4 02 00 00 ld [ %o0 ], %g2
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
20086e4: 92 00 40 09 add %g1, %o1, %o1
20086e8: d0 22 60 04 st %o0, [ %o1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20086ec: c6 00 a0 04 ld [ %g2 + 4 ], %g3
c->parent = the_node->parent;
20086f0: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20086f4: 86 1a 00 03 xor %o0, %g3, %g3
c->parent = the_node->parent;
the_node->parent = c;
20086f8: c2 22 00 00 st %g1, [ %o0 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20086fc: 80 a0 00 03 cmp %g0, %g3
2008700: 86 40 20 00 addx %g0, 0, %g3
2008704: 87 28 e0 02 sll %g3, 2, %g3
2008708: 86 00 80 03 add %g2, %g3, %g3
200870c: c2 20 e0 04 st %g1, [ %g3 + 4 ]
2008710: 81 c3 e0 08 retl
02008658 <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
2008658: 80 a2 20 00 cmp %o0, 0
200865c: 02 80 00 0e be 2008694 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
2008660: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
2008664: c4 02 00 00 ld [ %o0 ], %g2
2008668: 80 a0 a0 00 cmp %g2, 0
200866c: 02 80 00 0a be 2008694 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
2008670: 01 00 00 00 nop
if(!(the_node->parent->parent)) return NULL;
2008674: c6 00 80 00 ld [ %g2 ], %g3
2008678: 80 a0 e0 00 cmp %g3, 0
200867c: 02 80 00 06 be 2008694 <_RBTree_Sibling+0x3c>
2008680: 01 00 00 00 nop
if(the_node == the_node->parent->child[RBT_LEFT])
2008684: c2 00 a0 04 ld [ %g2 + 4 ], %g1
2008688: 80 a2 00 01 cmp %o0, %g1
200868c: 22 80 00 02 be,a 2008694 <_RBTree_Sibling+0x3c>
2008690: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
else
return the_node->parent->child[RBT_LEFT];
}
2008694: 81 c3 e0 08 retl
2008698: 90 10 00 01 mov %g1, %o0
02008c84 <_RBTree_Validate_insert_unprotected>:
* append operation.
*/
void _RBTree_Validate_insert_unprotected(
RBTree_Node *the_node
)
{
2008c84: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
2008c88: 10 80 00 1f b 2008d04 <_RBTree_Validate_insert_unprotected+0x80>
2008c8c: b6 10 20 01 mov 1, %i3
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2008c90: 80 a0 60 00 cmp %g1, 0
2008c94: 02 80 00 27 be 2008d30 <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN
2008c98: c2 07 60 04 ld [ %i5 + 4 ], %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
2008c9c: 80 a2 00 01 cmp %o0, %g1
2008ca0: 22 80 00 02 be,a 2008ca8 <_RBTree_Validate_insert_unprotected+0x24>
2008ca4: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008ca8: 80 a0 60 00 cmp %g1, 0
2008cac: 22 80 00 21 be,a 2008d30 <_RBTree_Validate_insert_unprotected+0xac>
2008cb0: c2 07 60 04 ld [ %i5 + 4 ], %g1
2008cb4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
2008cb8: 80 a0 a0 01 cmp %g2, 1
2008cbc: 32 80 00 1d bne,a 2008d30 <_RBTree_Validate_insert_unprotected+0xac>
2008cc0: c2 07 60 04 ld [ %i5 + 4 ], %g1
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
2008cc4: c0 22 20 10 clr [ %o0 + 0x10 ]
u->color = RBT_BLACK;
2008cc8: c0 20 60 10 clr [ %g1 + 0x10 ]
g->color = RBT_RED;
2008ccc: c4 27 60 10 st %g2, [ %i5 + 0x10 ]
2008cd0: 10 80 00 0d b 2008d04 <_RBTree_Validate_insert_unprotected+0x80>
2008cd4: b0 10 00 1d mov %i5, %i0
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
2008cd8: 7f ff ff cc call 2008c08 <_RBTree_Rotate>
2008cdc: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
2008ce0: 83 2f 20 02 sll %i4, 2, %g1
2008ce4: b0 06 00 01 add %i0, %g1, %i0
2008ce8: f0 06 20 04 ld [ %i0 + 4 ], %i0
}
the_node->parent->color = RBT_BLACK;
2008cec: c2 06 00 00 ld [ %i0 ], %g1
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2008cf0: 90 10 00 1d mov %i5, %o0
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2008cf4: c0 20 60 10 clr [ %g1 + 0x10 ]
g->color = RBT_RED;
2008cf8: f6 27 60 10 st %i3, [ %i5 + 0x10 ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2008cfc: 7f ff ff c3 call 2008c08 <_RBTree_Rotate>
2008d00: 92 26 c0 1c sub %i3, %i4, %o1
ISR_Level level;
_ISR_Disable( level );
_RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
2008d04: d0 06 00 00 ld [ %i0 ], %o0
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
2008d08: fa 02 00 00 ld [ %o0 ], %i5
2008d0c: 80 a7 60 00 cmp %i5, 0
2008d10: 22 80 00 14 be,a 2008d60 <_RBTree_Validate_insert_unprotected+0xdc>
2008d14: c0 26 20 10 clr [ %i0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008d18: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
2008d1c: 80 a0 60 01 cmp %g1, 1
2008d20: 12 80 00 10 bne 2008d60 <_RBTree_Validate_insert_unprotected+0xdc>
2008d24: 01 00 00 00 nop
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2008d28: 10 bf ff da b 2008c90 <_RBTree_Validate_insert_unprotected+0xc>
2008d2c: c2 07 40 00 ld [ %i5 ], %g1
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
2008d30: 82 1a 00 01 xor %o0, %g1, %g1
2008d34: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2008d38: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
2008d3c: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2008d40: 82 1e 00 01 xor %i0, %g1, %g1
2008d44: 80 a0 00 01 cmp %g0, %g1
2008d48: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
2008d4c: 80 a0 40 1c cmp %g1, %i4
2008d50: 12 bf ff e2 bne 2008cd8 <_RBTree_Validate_insert_unprotected+0x54>
2008d54: 01 00 00 00 nop
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2008d58: 10 bf ff e6 b 2008cf0 <_RBTree_Validate_insert_unprotected+0x6c>
2008d5c: c2 06 00 00 ld [ %i0 ], %g1
2008d60: 81 c7 e0 08 ret
2008d64: 81 e8 00 00 restore
0200ba30 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200ba30: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200ba34: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
if ( !api )
200ba38: 80 a7 60 00 cmp %i5, 0
200ba3c: 02 80 00 1c be 200baac <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN
200ba40: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200ba44: 7f ff d9 ce call 200217c <sparc_disable_interrupts>
200ba48: 01 00 00 00 nop
signal_set = asr->signals_posted;
200ba4c: f6 07 60 14 ld [ %i5 + 0x14 ], %i3
asr->signals_posted = 0;
200ba50: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200ba54: 7f ff d9 ce call 200218c <sparc_enable_interrupts>
200ba58: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200ba5c: 80 a6 e0 00 cmp %i3, 0
200ba60: 02 80 00 13 be 200baac <_RTEMS_tasks_Post_switch_extension+0x7c>
200ba64: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
200ba68: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ba6c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200ba70: 82 00 60 01 inc %g1
200ba74: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ba78: 39 00 00 3f sethi %hi(0xfc00), %i4
200ba7c: 40 00 07 31 call 200d740 <rtems_task_mode>
200ba80: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200ba84: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200ba88: 9f c0 40 00 call %g1
200ba8c: 90 10 00 1b mov %i3, %o0
asr->nest_level -= 1;
200ba90: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ba94: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200ba98: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200ba9c: 92 17 23 ff or %i4, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200baa0: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200baa4: 40 00 07 27 call 200d740 <rtems_task_mode>
200baa8: 94 07 bf fc add %fp, -4, %o2
200baac: 81 c7 e0 08 ret
200bab0: 81 e8 00 00 restore
02007698 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007698: 9d e3 bf 98 save %sp, -104, %sp
200769c: 11 00 80 74 sethi %hi(0x201d000), %o0
20076a0: 92 10 00 18 mov %i0, %o1
20076a4: 90 12 21 74 or %o0, 0x174, %o0
20076a8: 40 00 07 be call 20095a0 <_Objects_Get>
20076ac: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20076b0: c2 07 bf fc ld [ %fp + -4 ], %g1
20076b4: 80 a0 60 00 cmp %g1, 0
20076b8: 12 80 00 25 bne 200774c <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN
20076bc: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
20076c0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
20076c4: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
20076c8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
20076cc: 80 88 80 01 btst %g2, %g1
20076d0: 22 80 00 0b be,a 20076fc <_Rate_monotonic_Timeout+0x64>
20076d4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
20076d8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
20076dc: c2 07 60 08 ld [ %i5 + 8 ], %g1
20076e0: 80 a0 80 01 cmp %g2, %g1
20076e4: 32 80 00 06 bne,a 20076fc <_Rate_monotonic_Timeout+0x64>
20076e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20076ec: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20076f0: 40 00 0a 6e call 200a0a8 <_Thread_Clear_state>
20076f4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
20076f8: 30 80 00 06 b,a 2007710 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
20076fc: 80 a0 60 01 cmp %g1, 1
2007700: 12 80 00 0d bne 2007734 <_Rate_monotonic_Timeout+0x9c>
2007704: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007708: 82 10 20 03 mov 3, %g1
200770c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007710: 7f ff fe 70 call 20070d0 <_Rate_monotonic_Initiate_statistics>
2007714: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007718: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200771c: 11 00 80 74 sethi %hi(0x201d000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007720: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007724: 90 12 23 9c or %o0, 0x39c, %o0
2007728: 40 00 0f 04 call 200b338 <_Watchdog_Insert>
200772c: 92 07 60 10 add %i5, 0x10, %o1
2007730: 30 80 00 02 b,a 2007738 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007734: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007738: 03 00 80 74 sethi %hi(0x201d000), %g1
200773c: c4 00 62 e0 ld [ %g1 + 0x2e0 ], %g2 ! 201d2e0 <_Thread_Dispatch_disable_level>
2007740: 84 00 bf ff add %g2, -1, %g2
2007744: c4 20 62 e0 st %g2, [ %g1 + 0x2e0 ]
return _Thread_Dispatch_disable_level;
2007748: c2 00 62 e0 ld [ %g1 + 0x2e0 ], %g1
200774c: 81 c7 e0 08 ret
2007750: 81 e8 00 00 restore
02007130 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007130: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007134: 03 00 80 73 sethi %hi(0x201cc00), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
2007138: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200713c: 80 a6 20 00 cmp %i0, 0
2007140: 02 80 00 2b be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN
2007144: d2 00 62 e8 ld [ %g1 + 0x2e8 ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007148: 11 00 03 d0 sethi %hi(0xf4000), %o0
200714c: 40 00 46 5b call 2018ab8 <.udiv>
2007150: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007154: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2007158: 80 a0 40 08 cmp %g1, %o0
200715c: 3a 80 00 25 bcc,a 20071f0 <_TOD_Validate+0xc0>
2007160: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
2007164: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007168: 80 a0 60 3b cmp %g1, 0x3b
200716c: 38 80 00 21 bgu,a 20071f0 <_TOD_Validate+0xc0>
2007170: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2007174: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
2007178: 80 a0 60 3b cmp %g1, 0x3b
200717c: 38 80 00 1d bgu,a 20071f0 <_TOD_Validate+0xc0>
2007180: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2007184: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2007188: 80 a0 60 17 cmp %g1, 0x17
200718c: 38 80 00 19 bgu,a 20071f0 <_TOD_Validate+0xc0>
2007190: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2007194: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007198: 80 a0 60 00 cmp %g1, 0
200719c: 02 80 00 14 be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN
20071a0: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20071a4: 38 80 00 13 bgu,a 20071f0 <_TOD_Validate+0xc0>
20071a8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20071ac: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20071b0: 80 a0 e7 c3 cmp %g3, 0x7c3
20071b4: 28 80 00 0f bleu,a 20071f0 <_TOD_Validate+0xc0>
20071b8: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20071bc: c4 06 20 08 ld [ %i0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20071c0: 80 a0 a0 00 cmp %g2, 0
20071c4: 02 80 00 0a be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN
20071c8: 80 88 e0 03 btst 3, %g3
20071cc: 07 00 80 6e sethi %hi(0x201b800), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
20071d0: 12 80 00 03 bne 20071dc <_TOD_Validate+0xac>
20071d4: 86 10 e3 f8 or %g3, 0x3f8, %g3 ! 201bbf8 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20071d8: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20071dc: 83 28 60 02 sll %g1, 2, %g1
20071e0: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20071e4: 80 a0 40 02 cmp %g1, %g2
20071e8: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
20071ec: b0 0f 60 01 and %i5, 1, %i0
20071f0: 81 c7 e0 08 ret
20071f4: 81 e8 00 00 restore
02008760 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2008760: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2008764: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008768: 40 00 03 56 call 20094c0 <_Thread_Set_transient>
200876c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2008770: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008774: 80 a0 40 19 cmp %g1, %i1
2008778: 02 80 00 05 be 200878c <_Thread_Change_priority+0x2c>
200877c: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
2008780: 90 10 00 18 mov %i0, %o0
2008784: 40 00 03 36 call 200945c <_Thread_Set_priority>
2008788: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
200878c: 7f ff e6 7c call 200217c <sparc_disable_interrupts>
2008790: 01 00 00 00 nop
2008794: b6 10 00 08 mov %o0, %i3
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008798: f2 07 60 10 ld [ %i5 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
200879c: 80 a6 60 04 cmp %i1, 4
20087a0: 02 80 00 10 be 20087e0 <_Thread_Change_priority+0x80>
20087a4: b8 0f 20 04 and %i4, 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
20087a8: 80 a7 20 00 cmp %i4, 0
20087ac: 12 80 00 03 bne 20087b8 <_Thread_Change_priority+0x58> <== NEVER TAKEN
20087b0: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20087b4: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
20087b8: 7f ff e6 75 call 200218c <sparc_enable_interrupts>
20087bc: 90 10 00 1b mov %i3, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
20087c0: 03 00 00 ef sethi %hi(0x3bc00), %g1
20087c4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
20087c8: 80 8e 40 01 btst %i1, %g1
20087cc: 02 80 00 29 be 2008870 <_Thread_Change_priority+0x110>
20087d0: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
20087d4: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
20087d8: 40 00 02 f3 call 20093a4 <_Thread_queue_Requeue>
20087dc: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
20087e0: 80 a7 20 00 cmp %i4, 0
20087e4: 12 80 00 0b bne 2008810 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
20087e8: 03 00 80 6a sethi %hi(0x201a800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20087ec: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
20087f0: 80 a6 a0 00 cmp %i2, 0
20087f4: 02 80 00 04 be 2008804 <_Thread_Change_priority+0xa4>
20087f8: 82 10 60 54 or %g1, 0x54, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
20087fc: 10 80 00 03 b 2008808 <_Thread_Change_priority+0xa8>
2008800: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2008804: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2008808: 9f c0 40 00 call %g1
200880c: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008810: 7f ff e6 5f call 200218c <sparc_enable_interrupts>
2008814: 90 10 00 1b mov %i3, %o0
2008818: 7f ff e6 59 call 200217c <sparc_disable_interrupts>
200881c: 01 00 00 00 nop
2008820: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2008824: 03 00 80 6a sethi %hi(0x201a800), %g1
2008828: c2 00 60 5c ld [ %g1 + 0x5c ], %g1 ! 201a85c <_Scheduler+0x8>
200882c: 9f c0 40 00 call %g1
2008830: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008834: 03 00 80 6d sethi %hi(0x201b400), %g1
2008838: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c <_Per_CPU_Information>
200883c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2008840: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2008844: 80 a0 80 03 cmp %g2, %g3
2008848: 02 80 00 08 be 2008868 <_Thread_Change_priority+0x108>
200884c: 01 00 00 00 nop
2008850: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2008854: 80 a0 a0 00 cmp %g2, 0
2008858: 02 80 00 04 be 2008868 <_Thread_Change_priority+0x108>
200885c: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2008860: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
2008864: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2008868: 7f ff e6 49 call 200218c <sparc_enable_interrupts>
200886c: 81 e8 00 00 restore
2008870: 81 c7 e0 08 ret
2008874: 81 e8 00 00 restore
02008a64 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008a64: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008a68: 90 10 00 18 mov %i0, %o0
2008a6c: 40 00 00 6e call 2008c24 <_Thread_Get>
2008a70: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008a74: c2 07 bf fc ld [ %fp + -4 ], %g1
2008a78: 80 a0 60 00 cmp %g1, 0
2008a7c: 12 80 00 09 bne 2008aa0 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
2008a80: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008a84: 7f ff ff 7d call 2008878 <_Thread_Clear_state>
2008a88: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2008a8c: 03 00 80 6d sethi %hi(0x201b400), %g1
2008a90: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level>
2008a94: 84 00 bf ff add %g2, -1, %g2
2008a98: c4 20 60 50 st %g2, [ %g1 + 0x50 ]
return _Thread_Dispatch_disable_level;
2008a9c: c2 00 60 50 ld [ %g1 + 0x50 ], %g1
2008aa0: 81 c7 e0 08 ret
2008aa4: 81 e8 00 00 restore
02008aa8 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008aa8: 9d e3 bf 90 save %sp, -112, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2008aac: 03 00 80 6d sethi %hi(0x201b400), %g1
2008ab0: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level>
2008ab4: 84 00 a0 01 inc %g2
2008ab8: c4 20 60 50 st %g2, [ %g1 + 0x50 ]
return _Thread_Dispatch_disable_level;
2008abc: c2 00 60 50 ld [ %g1 + 0x50 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2008ac0: 33 00 80 6d sethi %hi(0x201b400), %i1
2008ac4: b4 16 62 7c or %i1, 0x27c, %i2 ! 201b67c <_Per_CPU_Information>
_ISR_Disable( level );
2008ac8: 7f ff e5 ad call 200217c <sparc_disable_interrupts>
2008acc: fa 06 a0 0c ld [ %i2 + 0xc ], %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008ad0: 21 00 80 6c sethi %hi(0x201b000), %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008ad4: b4 06 a0 1c add %i2, 0x1c, %i2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008ad8: 31 00 80 6d sethi %hi(0x201b400), %i0
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008adc: 10 80 00 38 b 2008bbc <_Thread_Dispatch+0x114>
2008ae0: 37 00 80 6d sethi %hi(0x201b400), %i3
heir = _Thread_Heir;
_Thread_Dispatch_necessary = false;
2008ae4: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008ae8: 80 a7 00 1d cmp %i4, %i5
2008aec: 02 80 00 39 be 2008bd0 <_Thread_Dispatch+0x128>
2008af0: f8 20 60 0c st %i4, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008af4: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
2008af8: 80 a0 60 01 cmp %g1, 1
2008afc: 12 80 00 03 bne 2008b08 <_Thread_Dispatch+0x60>
2008b00: c2 04 23 b4 ld [ %l0 + 0x3b4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008b04: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
_ISR_Enable( level );
2008b08: 7f ff e5 a1 call 200218c <sparc_enable_interrupts>
2008b0c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008b10: 40 00 0c c1 call 200be14 <_TOD_Get_uptime>
2008b14: 90 07 bf f0 add %fp, -16, %o0
_Timestamp_Subtract(
2008b18: 90 10 00 1a mov %i2, %o0
2008b1c: 92 07 bf f0 add %fp, -16, %o1
2008b20: 40 00 02 db call 200968c <_Timespec_Subtract>
2008b24: 94 07 bf f8 add %fp, -8, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008b28: 90 07 60 84 add %i5, 0x84, %o0
2008b2c: 40 00 02 bf call 2009628 <_Timespec_Add_to>
2008b30: 92 07 bf f8 add %fp, -8, %o1
_Thread_Time_of_last_context_switch = uptime;
2008b34: c4 07 bf f0 ld [ %fp + -16 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008b38: c2 06 20 d8 ld [ %i0 + 0xd8 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2008b3c: c4 26 80 00 st %g2, [ %i2 ]
2008b40: c4 07 bf f4 ld [ %fp + -12 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008b44: 80 a0 60 00 cmp %g1, 0
2008b48: 02 80 00 06 be 2008b60 <_Thread_Dispatch+0xb8> <== NEVER TAKEN
2008b4c: c4 26 a0 04 st %g2, [ %i2 + 4 ]
executing->libc_reent = *_Thread_libc_reent;
2008b50: c4 00 40 00 ld [ %g1 ], %g2
2008b54: c4 27 61 54 st %g2, [ %i5 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2008b58: c4 07 21 54 ld [ %i4 + 0x154 ], %g2
2008b5c: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008b60: 90 10 00 1d mov %i5, %o0
2008b64: 40 00 03 78 call 2009944 <_User_extensions_Thread_switch>
2008b68: 92 10 00 1c mov %i4, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008b6c: 90 07 60 c8 add %i5, 0xc8, %o0
2008b70: 40 00 04 9e call 2009de8 <_CPU_Context_switch>
2008b74: 92 07 20 c8 add %i4, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008b78: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
2008b7c: 80 a0 60 00 cmp %g1, 0
2008b80: 02 80 00 0c be 2008bb0 <_Thread_Dispatch+0x108>
2008b84: d0 06 e0 d4 ld [ %i3 + 0xd4 ], %o0
2008b88: 80 a7 40 08 cmp %i5, %o0
2008b8c: 02 80 00 09 be 2008bb0 <_Thread_Dispatch+0x108>
2008b90: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008b94: 02 80 00 04 be 2008ba4 <_Thread_Dispatch+0xfc>
2008b98: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008b9c: 40 00 04 59 call 2009d00 <_CPU_Context_save_fp>
2008ba0: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008ba4: 40 00 04 74 call 2009d74 <_CPU_Context_restore_fp>
2008ba8: 90 07 61 50 add %i5, 0x150, %o0
_Thread_Allocated_fp = executing;
2008bac: fa 26 e0 d4 st %i5, [ %i3 + 0xd4 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
2008bb0: 82 16 62 7c or %i1, 0x27c, %g1
_ISR_Disable( level );
2008bb4: 7f ff e5 72 call 200217c <sparc_disable_interrupts>
2008bb8: fa 00 60 0c ld [ %g1 + 0xc ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008bbc: 82 16 62 7c or %i1, 0x27c, %g1
2008bc0: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
2008bc4: 80 a0 a0 00 cmp %g2, 0
2008bc8: 32 bf ff c7 bne,a 2008ae4 <_Thread_Dispatch+0x3c>
2008bcc: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
2008bd0: 03 00 80 6d sethi %hi(0x201b400), %g1
2008bd4: c0 20 60 50 clr [ %g1 + 0x50 ] ! 201b450 <_Thread_Dispatch_disable_level>
}
post_switch:
_Thread_Dispatch_set_disable_level( 0 );
_ISR_Enable( level );
2008bd8: 7f ff e5 6d call 200218c <sparc_enable_interrupts>
2008bdc: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008be0: 7f ff f8 5a call 2006d48 <_API_extensions_Run_postswitch>
2008be4: 01 00 00 00 nop
}
2008be8: 81 c7 e0 08 ret
2008bec: 81 e8 00 00 restore
0200da70 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200da70: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200da74: 03 00 80 6d sethi %hi(0x201b400), %g1
200da78: fa 00 62 88 ld [ %g1 + 0x288 ], %i5 ! 201b688 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200da7c: 3f 00 80 36 sethi %hi(0x200d800), %i7
200da80: be 17 e2 70 or %i7, 0x270, %i7 ! 200da70 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200da84: d0 07 60 ac ld [ %i5 + 0xac ], %o0
_ISR_Set_level(level);
200da88: 7f ff d1 c1 call 200218c <sparc_enable_interrupts>
200da8c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200da90: 03 00 80 6c sethi %hi(0x201b000), %g1
doneConstructors = 1;
200da94: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200da98: f8 08 61 10 ldub [ %g1 + 0x110 ], %i4
doneConstructors = 1;
200da9c: c4 28 61 10 stb %g2, [ %g1 + 0x110 ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200daa0: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
200daa4: 80 a0 60 00 cmp %g1, 0
200daa8: 02 80 00 0c be 200dad8 <_Thread_Handler+0x68>
200daac: 03 00 80 6d sethi %hi(0x201b400), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200dab0: d0 00 60 d4 ld [ %g1 + 0xd4 ], %o0 ! 201b4d4 <_Thread_Allocated_fp>
200dab4: 80 a7 40 08 cmp %i5, %o0
200dab8: 02 80 00 08 be 200dad8 <_Thread_Handler+0x68>
200dabc: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200dac0: 22 80 00 06 be,a 200dad8 <_Thread_Handler+0x68>
200dac4: fa 20 60 d4 st %i5, [ %g1 + 0xd4 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200dac8: 7f ff f0 8e call 2009d00 <_CPU_Context_save_fp>
200dacc: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200dad0: 03 00 80 6d sethi %hi(0x201b400), %g1
200dad4: fa 20 60 d4 st %i5, [ %g1 + 0xd4 ] ! 201b4d4 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200dad8: 7f ff ef 2c call 2009788 <_User_extensions_Thread_begin>
200dadc: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200dae0: 7f ff ec 44 call 2008bf0 <_Thread_Enable_dispatch>
200dae4: b9 2f 20 18 sll %i4, 0x18, %i4
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200dae8: 80 a7 20 00 cmp %i4, 0
200daec: 32 80 00 05 bne,a 200db00 <_Thread_Handler+0x90>
200daf0: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
INIT_NAME ();
200daf4: 40 00 33 0d call 201a728 <_init>
200daf8: 01 00 00 00 nop
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200dafc: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
200db00: 80 a0 60 00 cmp %g1, 0
200db04: 12 80 00 06 bne 200db1c <_Thread_Handler+0xac> <== NEVER TAKEN
200db08: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200db0c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200db10: 9f c0 40 00 call %g1
200db14: d0 07 60 9c ld [ %i5 + 0x9c ], %o0
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200db18: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200db1c: 7f ff ef 2c call 20097cc <_User_extensions_Thread_exitted>
200db20: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200db24: 90 10 20 00 clr %o0
200db28: 92 10 20 01 mov 1, %o1
200db2c: 7f ff e7 2a call 20077d4 <_Internal_error_Occurred>
200db30: 94 10 20 05 mov 5, %o2
02008cd4 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008cd4: 9d e3 bf a0 save %sp, -96, %sp
2008cd8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008cdc: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
2008ce0: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008ce4: c0 26 61 58 clr [ %i1 + 0x158 ]
2008ce8: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008cec: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008cf0: 90 10 00 19 mov %i1, %o0
2008cf4: 40 00 02 02 call 20094fc <_Thread_Stack_Allocate>
2008cf8: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008cfc: 80 a2 00 1b cmp %o0, %i3
2008d00: 0a 80 00 61 bcs 2008e84 <_Thread_Initialize+0x1b0>
2008d04: 80 a2 20 00 cmp %o0, 0
2008d08: 02 80 00 5f be 2008e84 <_Thread_Initialize+0x1b0> <== NEVER TAKEN
2008d0c: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008d10: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008d14: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008d18: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008d1c: 02 80 00 07 be 2008d38 <_Thread_Initialize+0x64>
2008d20: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008d24: 40 00 03 db call 2009c90 <_Workspace_Allocate>
2008d28: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008d2c: b6 92 20 00 orcc %o0, 0, %i3
2008d30: 02 80 00 46 be 2008e48 <_Thread_Initialize+0x174>
2008d34: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008d38: 03 00 80 6d sethi %hi(0x201b400), %g1
2008d3c: d0 00 60 e4 ld [ %g1 + 0xe4 ], %o0 ! 201b4e4 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008d40: f6 26 61 50 st %i3, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2008d44: f6 26 60 bc st %i3, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008d48: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008d4c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008d50: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
2008d54: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008d58: 80 a2 20 00 cmp %o0, 0
2008d5c: 02 80 00 08 be 2008d7c <_Thread_Initialize+0xa8>
2008d60: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
2008d64: 90 02 20 01 inc %o0
2008d68: 40 00 03 ca call 2009c90 <_Workspace_Allocate>
2008d6c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2008d70: b8 92 20 00 orcc %o0, 0, %i4
2008d74: 22 80 00 36 be,a 2008e4c <_Thread_Initialize+0x178>
2008d78: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
2008d7c: 80 a7 20 00 cmp %i4, 0
2008d80: 02 80 00 0c be 2008db0 <_Thread_Initialize+0xdc>
2008d84: f8 26 61 60 st %i4, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008d88: 03 00 80 6d sethi %hi(0x201b400), %g1
2008d8c: c4 00 60 e4 ld [ %g1 + 0xe4 ], %g2 ! 201b4e4 <_Thread_Maximum_extensions>
2008d90: 10 80 00 05 b 2008da4 <_Thread_Initialize+0xd0>
2008d94: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
2008d98: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008d9c: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008da0: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008da4: 80 a0 40 02 cmp %g1, %g2
2008da8: 28 bf ff fc bleu,a 2008d98 <_Thread_Initialize+0xc4>
2008dac: c8 06 61 60 ld [ %i1 + 0x160 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008db0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008db4: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
2008db8: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008dbc: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
2008dc0: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
2008dc4: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008dc8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008dcc: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008dd0: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008dd4: 82 10 20 01 mov 1, %g1
2008dd8: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2008ddc: 03 00 80 6a sethi %hi(0x201a800), %g1
2008de0: c2 00 60 6c ld [ %g1 + 0x6c ], %g1 ! 201a86c <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
2008de4: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2008de8: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008dec: 9f c0 40 00 call %g1
2008df0: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2008df4: b4 92 20 00 orcc %o0, 0, %i2
2008df8: 02 80 00 15 be 2008e4c <_Thread_Initialize+0x178>
2008dfc: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008e00: 40 00 01 97 call 200945c <_Thread_Set_priority>
2008e04: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008e08: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008e0c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008e10: c0 26 60 84 clr [ %i1 + 0x84 ]
2008e14: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008e18: 83 28 60 02 sll %g1, 2, %g1
2008e1c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008e20: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008e24: 90 10 00 19 mov %i1, %o0
2008e28: 40 00 02 8a call 2009850 <_User_extensions_Thread_create>
2008e2c: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008e30: 80 8a 20 ff btst 0xff, %o0
2008e34: 02 80 00 06 be 2008e4c <_Thread_Initialize+0x178>
2008e38: 01 00 00 00 nop
2008e3c: b0 0e 20 01 and %i0, 1, %i0
2008e40: 81 c7 e0 08 ret
2008e44: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2008e48: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
2008e4c: 40 00 03 99 call 2009cb0 <_Workspace_Free>
2008e50: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
2008e54: 40 00 03 97 call 2009cb0 <_Workspace_Free>
2008e58: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
2008e5c: 40 00 03 95 call 2009cb0 <_Workspace_Free>
2008e60: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
2008e64: 40 00 03 93 call 2009cb0 <_Workspace_Free>
2008e68: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
2008e6c: 40 00 03 91 call 2009cb0 <_Workspace_Free>
2008e70: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
2008e74: 40 00 03 8f call 2009cb0 <_Workspace_Free>
2008e78: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
2008e7c: 40 00 01 b7 call 2009558 <_Thread_Stack_Free>
2008e80: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
2008e84: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
2008e88: b0 0e 20 01 and %i0, 1, %i0
2008e8c: 81 c7 e0 08 ret
2008e90: 81 e8 00 00 restore
020093a4 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
20093a4: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
20093a8: 80 a6 20 00 cmp %i0, 0
20093ac: 02 80 00 19 be 2009410 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
20093b0: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
20093b4: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
20093b8: 80 a7 20 01 cmp %i4, 1
20093bc: 12 80 00 15 bne 2009410 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
20093c0: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
20093c4: 7f ff e3 6e call 200217c <sparc_disable_interrupts>
20093c8: 01 00 00 00 nop
20093cc: ba 10 00 08 mov %o0, %i5
20093d0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
20093d4: 03 00 00 ef sethi %hi(0x3bc00), %g1
20093d8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
20093dc: 80 88 80 01 btst %g2, %g1
20093e0: 02 80 00 0a be 2009408 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
20093e4: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
20093e8: 92 10 00 19 mov %i1, %o1
20093ec: 94 10 20 01 mov 1, %o2
20093f0: 40 00 0b f8 call 200c3d0 <_Thread_queue_Extract_priority_helper>
20093f4: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
20093f8: 90 10 00 18 mov %i0, %o0
20093fc: 92 10 00 19 mov %i1, %o1
2009400: 7f ff ff 50 call 2009140 <_Thread_queue_Enqueue_priority>
2009404: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2009408: 7f ff e3 61 call 200218c <sparc_enable_interrupts>
200940c: 90 10 00 1d mov %i5, %o0
2009410: 81 c7 e0 08 ret
2009414: 81 e8 00 00 restore
02009418 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009418: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200941c: 90 10 00 18 mov %i0, %o0
2009420: 7f ff fe 01 call 2008c24 <_Thread_Get>
2009424: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009428: c2 07 bf fc ld [ %fp + -4 ], %g1
200942c: 80 a0 60 00 cmp %g1, 0
2009430: 12 80 00 09 bne 2009454 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
2009434: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2009438: 40 00 0c 1d call 200c4ac <_Thread_queue_Process_timeout>
200943c: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009440: 03 00 80 6d sethi %hi(0x201b400), %g1
2009444: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 201b450 <_Thread_Dispatch_disable_level>
2009448: 84 00 bf ff add %g2, -1, %g2
200944c: c4 20 60 50 st %g2, [ %g1 + 0x50 ]
return _Thread_Dispatch_disable_level;
2009450: c2 00 60 50 ld [ %g1 + 0x50 ], %g1
2009454: 81 c7 e0 08 ret
2009458: 81 e8 00 00 restore
0201715c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
201715c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2017160: 27 00 80 e8 sethi %hi(0x203a000), %l3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2017164: a8 07 bf e8 add %fp, -24, %l4
2017168: a4 07 bf ec add %fp, -20, %l2
201716c: b6 07 bf f4 add %fp, -12, %i3
2017170: b4 07 bf f8 add %fp, -8, %i2
2017174: e4 27 bf e8 st %l2, [ %fp + -24 ]
head->previous = NULL;
2017178: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
201717c: e8 27 bf f0 st %l4, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2017180: f4 27 bf f4 st %i2, [ %fp + -12 ]
head->previous = NULL;
2017184: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2017188: f6 27 bf fc st %i3, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201718c: b2 06 20 30 add %i0, 0x30, %i1
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2017190: b8 06 20 68 add %i0, 0x68, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2017194: a2 06 20 08 add %i0, 8, %l1
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2017198: a0 06 20 40 add %i0, 0x40, %l0
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
201719c: e8 26 20 78 st %l4, [ %i0 + 0x78 ]
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20171a0: 2b 00 80 e7 sethi %hi(0x2039c00), %l5
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20171a4: c2 04 e0 5c ld [ %l3 + 0x5c ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20171a8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20171ac: 94 10 00 1b mov %i3, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20171b0: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20171b4: 90 10 00 19 mov %i1, %o0
20171b8: 40 00 11 77 call 201b794 <_Watchdog_Adjust_to_chain>
20171bc: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20171c0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20171c4: fa 05 63 dc ld [ %l5 + 0x3dc ], %i5
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20171c8: 80 a7 40 0a cmp %i5, %o2
20171cc: 08 80 00 06 bleu 20171e4 <_Timer_server_Body+0x88>
20171d0: 92 27 40 0a sub %i5, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20171d4: 90 10 00 1c mov %i4, %o0
20171d8: 40 00 11 6f call 201b794 <_Watchdog_Adjust_to_chain>
20171dc: 94 10 00 1b mov %i3, %o2
20171e0: 30 80 00 06 b,a 20171f8 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
20171e4: 1a 80 00 05 bcc 20171f8 <_Timer_server_Body+0x9c>
20171e8: 90 10 00 1c mov %i4, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20171ec: 92 10 20 01 mov 1, %o1
20171f0: 40 00 11 42 call 201b6f8 <_Watchdog_Adjust>
20171f4: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
20171f8: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20171fc: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2017200: 40 00 02 bd call 2017cf4 <_Chain_Get>
2017204: 01 00 00 00 nop
if ( timer == NULL ) {
2017208: 92 92 20 00 orcc %o0, 0, %o1
201720c: 02 80 00 0c be 201723c <_Timer_server_Body+0xe0>
2017210: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2017214: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2017218: 80 a0 60 01 cmp %g1, 1
201721c: 02 80 00 05 be 2017230 <_Timer_server_Body+0xd4>
2017220: 90 10 00 19 mov %i1, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2017224: 80 a0 60 03 cmp %g1, 3
2017228: 12 bf ff f5 bne 20171fc <_Timer_server_Body+0xa0> <== NEVER TAKEN
201722c: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2017230: 40 00 11 8b call 201b85c <_Watchdog_Insert>
2017234: 92 02 60 10 add %o1, 0x10, %o1
2017238: 30 bf ff f1 b,a 20171fc <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
201723c: 7f ff e3 a1 call 20100c0 <sparc_disable_interrupts>
2017240: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2017244: c2 07 bf e8 ld [ %fp + -24 ], %g1
2017248: 80 a0 40 12 cmp %g1, %l2
201724c: 12 80 00 0a bne 2017274 <_Timer_server_Body+0x118> <== NEVER TAKEN
2017250: 01 00 00 00 nop
ts->insert_chain = NULL;
2017254: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2017258: 7f ff e3 9e call 20100d0 <sparc_enable_interrupts>
201725c: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2017260: c2 07 bf f4 ld [ %fp + -12 ], %g1
2017264: 80 a0 40 1a cmp %g1, %i2
2017268: 12 80 00 06 bne 2017280 <_Timer_server_Body+0x124>
201726c: 01 00 00 00 nop
2017270: 30 80 00 18 b,a 20172d0 <_Timer_server_Body+0x174>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2017274: 7f ff e3 97 call 20100d0 <sparc_enable_interrupts> <== NOT EXECUTED
2017278: 01 00 00 00 nop <== NOT EXECUTED
201727c: 30 bf ff ca b,a 20171a4 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2017280: 7f ff e3 90 call 20100c0 <sparc_disable_interrupts>
2017284: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2017288: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
201728c: 80 a7 40 1a cmp %i5, %i2
2017290: 02 80 00 0d be 20172c4 <_Timer_server_Body+0x168>
2017294: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2017298: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
201729c: f6 20 60 04 st %i3, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
20172a0: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
20172a4: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
20172a8: 7f ff e3 8a call 20100d0 <sparc_enable_interrupts>
20172ac: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20172b0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
20172b4: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
20172b8: 9f c0 40 00 call %g1
20172bc: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
}
20172c0: 30 bf ff f0 b,a 2017280 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
20172c4: 7f ff e3 83 call 20100d0 <sparc_enable_interrupts>
20172c8: 01 00 00 00 nop
20172cc: 30 bf ff b4 b,a 201719c <_Timer_server_Body+0x40>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
20172d0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
20172d4: 7f ff ff 73 call 20170a0 <_Thread_Disable_dispatch>
20172d8: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
20172dc: d0 06 00 00 ld [ %i0 ], %o0
20172e0: 40 00 0f 92 call 201b128 <_Thread_Set_state>
20172e4: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
20172e8: 7f ff ff 75 call 20170bc <_Timer_server_Reset_interval_system_watchdog>
20172ec: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
20172f0: 7f ff ff 87 call 201710c <_Timer_server_Reset_tod_system_watchdog>
20172f4: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
20172f8: 40 00 0d 46 call 201a810 <_Thread_Enable_dispatch>
20172fc: 01 00 00 00 nop
ts->active = true;
2017300: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2017304: 90 10 00 11 mov %l1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2017308: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201730c: 40 00 11 ae call 201b9c4 <_Watchdog_Remove>
2017310: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2017314: 40 00 11 ac call 201b9c4 <_Watchdog_Remove>
2017318: 90 10 00 10 mov %l0, %o0
201731c: 30 bf ff a0 b,a 201719c <_Timer_server_Body+0x40>
02017320 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2017320: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2017324: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2017328: 80 a0 60 00 cmp %g1, 0
201732c: 12 80 00 49 bne 2017450 <_Timer_server_Schedule_operation_method+0x130>
2017330: ba 10 00 19 mov %i1, %i5
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2017334: 7f ff ff 5b call 20170a0 <_Thread_Disable_dispatch>
2017338: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201733c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2017340: 80 a0 60 01 cmp %g1, 1
2017344: 12 80 00 1f bne 20173c0 <_Timer_server_Schedule_operation_method+0xa0>
2017348: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
201734c: 7f ff e3 5d call 20100c0 <sparc_disable_interrupts>
2017350: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2017354: 03 00 80 e8 sethi %hi(0x203a000), %g1
2017358: c4 00 60 5c ld [ %g1 + 0x5c ], %g2 ! 203a05c <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201735c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2017360: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2017364: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2017368: 80 a0 40 03 cmp %g1, %g3
201736c: 02 80 00 08 be 201738c <_Timer_server_Schedule_operation_method+0x6c>
2017370: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2017374: de 00 60 10 ld [ %g1 + 0x10 ], %o7
if (delta_interval > delta) {
2017378: 80 a3 c0 04 cmp %o7, %g4
201737c: 08 80 00 03 bleu 2017388 <_Timer_server_Schedule_operation_method+0x68>
2017380: 86 10 20 00 clr %g3
delta_interval -= delta;
2017384: 86 23 c0 04 sub %o7, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2017388: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
201738c: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2017390: 7f ff e3 50 call 20100d0 <sparc_enable_interrupts>
2017394: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2017398: 90 06 20 30 add %i0, 0x30, %o0
201739c: 40 00 11 30 call 201b85c <_Watchdog_Insert>
20173a0: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20173a4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20173a8: 80 a0 60 00 cmp %g1, 0
20173ac: 12 80 00 27 bne 2017448 <_Timer_server_Schedule_operation_method+0x128>
20173b0: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
20173b4: 7f ff ff 42 call 20170bc <_Timer_server_Reset_interval_system_watchdog>
20173b8: 90 10 00 18 mov %i0, %o0
20173bc: 30 80 00 23 b,a 2017448 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20173c0: 12 80 00 22 bne 2017448 <_Timer_server_Schedule_operation_method+0x128>
20173c4: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
20173c8: 7f ff e3 3e call 20100c0 <sparc_disable_interrupts>
20173cc: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20173d0: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
20173d4: de 06 20 74 ld [ %i0 + 0x74 ], %o7
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20173d8: 03 00 80 e7 sethi %hi(0x2039c00), %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20173dc: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
20173e0: 80 a0 80 03 cmp %g2, %g3
20173e4: 02 80 00 0d be 2017418 <_Timer_server_Schedule_operation_method+0xf8>
20173e8: c2 00 63 dc ld [ %g1 + 0x3dc ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
20173ec: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
20173f0: 80 a0 40 0f cmp %g1, %o7
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
20173f4: 86 01 00 0f add %g4, %o7, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
20173f8: 08 80 00 07 bleu 2017414 <_Timer_server_Schedule_operation_method+0xf4>
20173fc: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2017400: 9e 20 40 0f sub %g1, %o7, %o7
if (delta_interval > delta) {
2017404: 80 a1 00 0f cmp %g4, %o7
2017408: 08 80 00 03 bleu 2017414 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
201740c: 86 10 20 00 clr %g3
delta_interval -= delta;
2017410: 86 21 00 0f sub %g4, %o7, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2017414: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2017418: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
201741c: 7f ff e3 2d call 20100d0 <sparc_enable_interrupts>
2017420: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2017424: 90 06 20 68 add %i0, 0x68, %o0
2017428: 40 00 11 0d call 201b85c <_Watchdog_Insert>
201742c: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2017430: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2017434: 80 a0 60 00 cmp %g1, 0
2017438: 12 80 00 04 bne 2017448 <_Timer_server_Schedule_operation_method+0x128>
201743c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2017440: 7f ff ff 33 call 201710c <_Timer_server_Reset_tod_system_watchdog>
2017444: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2017448: 40 00 0c f2 call 201a810 <_Thread_Enable_dispatch>
201744c: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2017450: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2017454: 40 00 02 14 call 2017ca4 <_Chain_Append>
2017458: 81 e8 00 00 restore
020096d0 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
20096d0: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
20096d4: 03 00 80 69 sethi %hi(0x201a400), %g1
20096d8: 82 10 63 6c or %g1, 0x36c, %g1 ! 201a76c <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20096dc: 05 00 80 6d sethi %hi(0x201b400), %g2
initial_extensions = Configuration.User_extension_table;
20096e0: f4 00 60 3c ld [ %g1 + 0x3c ], %i2
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
20096e4: f6 00 60 38 ld [ %g1 + 0x38 ], %i3
20096e8: 82 10 a2 38 or %g2, 0x238, %g1
20096ec: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
20096f0: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
20096f4: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20096f8: c6 20 a2 38 st %g3, [ %g2 + 0x238 ]
20096fc: 05 00 80 6d sethi %hi(0x201b400), %g2
2009700: 82 10 a0 54 or %g2, 0x54, %g1 ! 201b454 <_User_extensions_Switches_list>
2009704: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
2009708: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200970c: c6 20 a0 54 st %g3, [ %g2 + 0x54 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009710: 80 a6 a0 00 cmp %i2, 0
2009714: 02 80 00 1b be 2009780 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009718: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
200971c: 83 2e e0 02 sll %i3, 2, %g1
2009720: bb 2e e0 04 sll %i3, 4, %i5
2009724: ba 27 40 01 sub %i5, %g1, %i5
2009728: ba 07 40 1b add %i5, %i3, %i5
200972c: bb 2f 60 02 sll %i5, 2, %i5
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009730: 40 00 01 66 call 2009cc8 <_Workspace_Allocate_or_fatal_error>
2009734: 90 10 00 1d mov %i5, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009738: 94 10 00 1d mov %i5, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200973c: b8 10 00 08 mov %o0, %i4
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009740: 92 10 20 00 clr %o1
2009744: 40 00 13 d4 call 200e694 <memset>
2009748: ba 10 20 00 clr %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200974c: 10 80 00 0b b 2009778 <_User_extensions_Handler_initialization+0xa8>
2009750: 80 a7 40 1b cmp %i5, %i3
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009754: 90 07 20 14 add %i4, 0x14, %o0
2009758: 92 06 80 09 add %i2, %o1, %o1
200975c: 40 00 13 92 call 200e5a4 <memcpy>
2009760: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
2009764: 90 10 00 1c mov %i4, %o0
2009768: 40 00 0b 75 call 200c53c <_User_extensions_Add_set>
200976c: ba 07 60 01 inc %i5
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
2009770: b8 07 20 34 add %i4, 0x34, %i4
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009774: 80 a7 40 1b cmp %i5, %i3
2009778: 12 bf ff f7 bne 2009754 <_User_extensions_Handler_initialization+0x84>
200977c: 93 2f 60 05 sll %i5, 5, %o1
2009780: 81 c7 e0 08 ret
2009784: 81 e8 00 00 restore
0200b440 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b440: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b444: 7f ff de ed call 2002ff8 <sparc_disable_interrupts>
200b448: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b44c: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b450: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b454: 80 a0 40 1c cmp %g1, %i4
200b458: 02 80 00 1f be 200b4d4 <_Watchdog_Adjust+0x94>
200b45c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b460: 02 80 00 1a be 200b4c8 <_Watchdog_Adjust+0x88>
200b464: b6 10 20 01 mov 1, %i3
200b468: 80 a6 60 01 cmp %i1, 1
200b46c: 12 80 00 1a bne 200b4d4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b470: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b474: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b478: 10 80 00 07 b 200b494 <_Watchdog_Adjust+0x54>
200b47c: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b480: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b484: 80 a6 80 02 cmp %i2, %g2
200b488: 3a 80 00 05 bcc,a 200b49c <_Watchdog_Adjust+0x5c>
200b48c: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b490: b4 20 80 1a sub %g2, %i2, %i2
break;
200b494: 10 80 00 10 b 200b4d4 <_Watchdog_Adjust+0x94>
200b498: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200b49c: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b4a0: 7f ff de da call 2003008 <sparc_enable_interrupts>
200b4a4: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b4a8: 40 00 00 90 call 200b6e8 <_Watchdog_Tickle>
200b4ac: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200b4b0: 7f ff de d2 call 2002ff8 <sparc_disable_interrupts>
200b4b4: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b4b8: c2 07 40 00 ld [ %i5 ], %g1
200b4bc: 80 a0 40 1c cmp %g1, %i4
200b4c0: 02 80 00 05 be 200b4d4 <_Watchdog_Adjust+0x94>
200b4c4: 01 00 00 00 nop
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b4c8: 80 a6 a0 00 cmp %i2, 0
200b4cc: 32 bf ff ed bne,a 200b480 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b4d0: c2 07 40 00 ld [ %i5 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b4d4: 7f ff de cd call 2003008 <sparc_enable_interrupts>
200b4d8: 91 e8 00 08 restore %g0, %o0, %o0
02009ae8 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009ae8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009aec: 7f ff e1 a4 call 200217c <sparc_disable_interrupts>
2009af0: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
2009af4: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009af8: 80 a6 20 01 cmp %i0, 1
2009afc: 22 80 00 1d be,a 2009b70 <_Watchdog_Remove+0x88>
2009b00: c0 27 60 08 clr [ %i5 + 8 ]
2009b04: 0a 80 00 1c bcs 2009b74 <_Watchdog_Remove+0x8c>
2009b08: 03 00 80 6d sethi %hi(0x201b400), %g1
2009b0c: 80 a6 20 03 cmp %i0, 3
2009b10: 18 80 00 19 bgu 2009b74 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009b14: 01 00 00 00 nop
2009b18: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009b1c: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009b20: c4 00 40 00 ld [ %g1 ], %g2
2009b24: 80 a0 a0 00 cmp %g2, 0
2009b28: 02 80 00 07 be 2009b44 <_Watchdog_Remove+0x5c>
2009b2c: 05 00 80 6d sethi %hi(0x201b400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009b30: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009b34: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
2009b38: 84 00 c0 02 add %g3, %g2, %g2
2009b3c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009b40: 05 00 80 6d sethi %hi(0x201b400), %g2
2009b44: c4 00 a1 58 ld [ %g2 + 0x158 ], %g2 ! 201b558 <_Watchdog_Sync_count>
2009b48: 80 a0 a0 00 cmp %g2, 0
2009b4c: 22 80 00 07 be,a 2009b68 <_Watchdog_Remove+0x80>
2009b50: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009b54: 05 00 80 6d sethi %hi(0x201b400), %g2
2009b58: c6 00 a2 84 ld [ %g2 + 0x284 ], %g3 ! 201b684 <_Per_CPU_Information+0x8>
2009b5c: 05 00 80 6d sethi %hi(0x201b400), %g2
2009b60: c6 20 a0 f8 st %g3, [ %g2 + 0xf8 ] ! 201b4f8 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009b64: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
2009b68: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009b6c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009b70: 03 00 80 6d sethi %hi(0x201b400), %g1
2009b74: c2 00 61 5c ld [ %g1 + 0x15c ], %g1 ! 201b55c <_Watchdog_Ticks_since_boot>
2009b78: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
2009b7c: 7f ff e1 84 call 200218c <sparc_enable_interrupts>
2009b80: 01 00 00 00 nop
return( previous_state );
}
2009b84: 81 c7 e0 08 ret
2009b88: 81 e8 00 00 restore
0200ac38 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200ac38: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200ac3c: 7f ff df bf call 2002b38 <sparc_disable_interrupts>
200ac40: ba 10 00 18 mov %i0, %i5
200ac44: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200ac48: 11 00 80 6d sethi %hi(0x201b400), %o0
200ac4c: 94 10 00 19 mov %i1, %o2
200ac50: 90 12 20 b0 or %o0, 0xb0, %o0
200ac54: 7f ff e6 63 call 20045e0 <printk>
200ac58: 92 10 00 1d mov %i5, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200ac5c: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200ac60: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200ac64: 80 a7 00 19 cmp %i4, %i1
200ac68: 12 80 00 04 bne 200ac78 <_Watchdog_Report_chain+0x40>
200ac6c: 92 10 00 1c mov %i4, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200ac70: 10 80 00 0d b 200aca4 <_Watchdog_Report_chain+0x6c>
200ac74: 11 00 80 6d sethi %hi(0x201b400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200ac78: 40 00 00 0f call 200acb4 <_Watchdog_Report>
200ac7c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200ac80: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200ac84: 80 a7 00 19 cmp %i4, %i1
200ac88: 12 bf ff fc bne 200ac78 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200ac8c: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200ac90: 11 00 80 6d sethi %hi(0x201b400), %o0
200ac94: 92 10 00 1d mov %i5, %o1
200ac98: 7f ff e6 52 call 20045e0 <printk>
200ac9c: 90 12 20 c8 or %o0, 0xc8, %o0
200aca0: 30 80 00 03 b,a 200acac <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200aca4: 7f ff e6 4f call 20045e0 <printk>
200aca8: 90 12 20 d8 or %o0, 0xd8, %o0
}
_ISR_Enable( level );
200acac: 7f ff df a7 call 2002b48 <sparc_enable_interrupts>
200acb0: 81 e8 00 00 restore
02006cf0 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006cf0: 9d e3 bf 98 save %sp, -104, %sp
2006cf4: 10 80 00 09 b 2006d18 <rtems_chain_get_with_wait+0x28>
2006cf8: ba 10 00 18 mov %i0, %i5
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006cfc: 92 10 20 00 clr %o1
2006d00: 94 10 00 1a mov %i2, %o2
2006d04: 7f ff fd 03 call 2006110 <rtems_event_receive>
2006d08: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006d0c: 80 a2 20 00 cmp %o0, 0
2006d10: 32 80 00 09 bne,a 2006d34 <rtems_chain_get_with_wait+0x44><== ALWAYS TAKEN
2006d14: f8 26 c0 00 st %i4, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006d18: 40 00 01 62 call 20072a0 <_Chain_Get>
2006d1c: 90 10 00 1d mov %i5, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006d20: b8 92 20 00 orcc %o0, 0, %i4
2006d24: 02 bf ff f6 be 2006cfc <rtems_chain_get_with_wait+0xc>
2006d28: 90 10 00 19 mov %i1, %o0
2006d2c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006d30: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
2006d34: 81 c7 e0 08 ret
2006d38: 91 e8 00 08 restore %g0, %o0, %o0
02008fe4 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2008fe4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2008fe8: 80 a6 20 00 cmp %i0, 0
2008fec: 02 80 00 1e be 2009064 <rtems_iterate_over_all_threads+0x80><== NEVER TAKEN
2008ff0: ba 10 20 01 mov 1, %i5
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2008ff4: 35 00 80 77 sethi %hi(0x201dc00), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2008ff8: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2008ffc: 84 16 a2 f8 or %i2, 0x2f8, %g2
2009000: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2009004: 80 a0 60 00 cmp %g1, 0
2009008: 22 80 00 14 be,a 2009058 <rtems_iterate_over_all_threads+0x74>
200900c: ba 07 60 01 inc %i5
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009010: f6 00 60 04 ld [ %g1 + 4 ], %i3
if ( !information )
2009014: 80 a6 e0 00 cmp %i3, 0
2009018: 12 80 00 0b bne 2009044 <rtems_iterate_over_all_threads+0x60>
200901c: b8 10 20 01 mov 1, %i4
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009020: 10 80 00 0e b 2009058 <rtems_iterate_over_all_threads+0x74>
2009024: ba 07 60 01 inc %i5
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
the_thread = (Thread_Control *)information->local_table[ i ];
2009028: 83 2f 20 02 sll %i4, 2, %g1
200902c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009030: 80 a2 20 00 cmp %o0, 0
2009034: 02 80 00 04 be 2009044 <rtems_iterate_over_all_threads+0x60>
2009038: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
200903c: 9f c6 00 00 call %i0
2009040: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009044: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
2009048: 80 a7 00 01 cmp %i4, %g1
200904c: 28 bf ff f7 bleu,a 2009028 <rtems_iterate_over_all_threads+0x44>
2009050: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009054: ba 07 60 01 inc %i5
2009058: 80 a7 60 04 cmp %i5, 4
200905c: 12 bf ff e8 bne 2008ffc <rtems_iterate_over_all_threads+0x18>
2009060: 83 2f 60 02 sll %i5, 2, %g1
2009064: 81 c7 e0 08 ret
2009068: 81 e8 00 00 restore
02014b3c <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2014b3c: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2014b40: 80 a6 20 00 cmp %i0, 0
2014b44: 02 80 00 39 be 2014c28 <rtems_partition_create+0xec>
2014b48: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
2014b4c: 80 a6 60 00 cmp %i1, 0
2014b50: 02 80 00 36 be 2014c28 <rtems_partition_create+0xec>
2014b54: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2014b58: 80 a7 60 00 cmp %i5, 0
2014b5c: 02 80 00 33 be 2014c28 <rtems_partition_create+0xec> <== NEVER TAKEN
2014b60: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014b64: 02 80 00 31 be 2014c28 <rtems_partition_create+0xec>
2014b68: 82 10 20 08 mov 8, %g1
2014b6c: 80 a6 a0 00 cmp %i2, 0
2014b70: 02 80 00 2e be 2014c28 <rtems_partition_create+0xec>
2014b74: 80 a6 80 1b cmp %i2, %i3
2014b78: 0a 80 00 2c bcs 2014c28 <rtems_partition_create+0xec>
2014b7c: 80 8e e0 07 btst 7, %i3
2014b80: 12 80 00 2a bne 2014c28 <rtems_partition_create+0xec>
2014b84: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2014b88: 12 80 00 28 bne 2014c28 <rtems_partition_create+0xec>
2014b8c: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2014b90: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2014b94: c4 00 63 50 ld [ %g1 + 0x350 ], %g2 ! 2039f50 <_Thread_Dispatch_disable_level>
2014b98: 84 00 a0 01 inc %g2
2014b9c: c4 20 63 50 st %g2, [ %g1 + 0x350 ]
return _Thread_Dispatch_disable_level;
2014ba0: c2 00 63 50 ld [ %g1 + 0x350 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014ba4: 23 00 80 e7 sethi %hi(0x2039c00), %l1
2014ba8: 40 00 12 2f call 2019464 <_Objects_Allocate>
2014bac: 90 14 61 64 or %l1, 0x164, %o0 ! 2039d64 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014bb0: a0 92 20 00 orcc %o0, 0, %l0
2014bb4: 32 80 00 06 bne,a 2014bcc <rtems_partition_create+0x90>
2014bb8: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2014bbc: 40 00 17 15 call 201a810 <_Thread_Enable_dispatch>
2014bc0: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2014bc4: 10 80 00 19 b 2014c28 <rtems_partition_create+0xec>
2014bc8: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014bcc: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014bd0: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2014bd4: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014bd8: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2014bdc: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014be0: 40 00 54 f0 call 2029fa0 <.udiv>
2014be4: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014be8: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2014bec: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014bf0: 96 10 00 1b mov %i3, %o3
2014bf4: b8 04 20 24 add %l0, 0x24, %i4
2014bf8: 40 00 0c 4e call 2017d30 <_Chain_Initialize>
2014bfc: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014c00: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014c04: a2 14 61 64 or %l1, 0x164, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014c08: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014c0c: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014c10: 85 28 a0 02 sll %g2, 2, %g2
2014c14: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014c18: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2014c1c: 40 00 16 fd call 201a810 <_Thread_Enable_dispatch>
2014c20: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2014c24: 82 10 20 00 clr %g1
}
2014c28: 81 c7 e0 08 ret
2014c2c: 91 e8 00 01 restore %g0, %g1, %o0
02007228 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2007228: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
200722c: 11 00 80 74 sethi %hi(0x201d000), %o0
2007230: 92 10 00 18 mov %i0, %o1
2007234: 90 12 21 74 or %o0, 0x174, %o0
2007238: 40 00 08 da call 20095a0 <_Objects_Get>
200723c: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007240: c2 07 bf fc ld [ %fp + -4 ], %g1
2007244: 80 a0 60 00 cmp %g1, 0
2007248: 12 80 00 65 bne 20073dc <rtems_rate_monotonic_period+0x1b4>
200724c: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007250: 37 00 80 75 sethi %hi(0x201d400), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007254: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
2007258: b6 16 e1 0c or %i3, 0x10c, %i3
200725c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1
2007260: 80 a0 80 01 cmp %g2, %g1
2007264: 02 80 00 06 be 200727c <rtems_rate_monotonic_period+0x54>
2007268: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
200726c: 40 00 0c 6d call 200a420 <_Thread_Enable_dispatch>
2007270: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007274: 81 c7 e0 08 ret
2007278: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
200727c: 12 80 00 0d bne 20072b0 <rtems_rate_monotonic_period+0x88>
2007280: 01 00 00 00 nop
switch ( the_period->state ) {
2007284: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007288: 80 a0 60 04 cmp %g1, 4
200728c: 18 80 00 05 bgu 20072a0 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
2007290: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007294: 05 00 80 6c sethi %hi(0x201b000), %g2
2007298: 84 10 a1 b8 or %g2, 0x1b8, %g2 ! 201b1b8 <CSWTCH.2>
200729c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20072a0: 40 00 0c 60 call 200a420 <_Thread_Enable_dispatch>
20072a4: 01 00 00 00 nop
return( return_value );
20072a8: 81 c7 e0 08 ret
20072ac: 81 e8 00 00 restore
}
_ISR_Disable( level );
20072b0: 7f ff ee fb call 2002e9c <sparc_disable_interrupts>
20072b4: 01 00 00 00 nop
20072b8: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
20072bc: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
20072c0: 80 a7 20 00 cmp %i4, 0
20072c4: 12 80 00 15 bne 2007318 <rtems_rate_monotonic_period+0xf0>
20072c8: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
20072cc: 7f ff ee f8 call 2002eac <sparc_enable_interrupts>
20072d0: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20072d4: 7f ff ff 7f call 20070d0 <_Rate_monotonic_Initiate_statistics>
20072d8: 90 10 00 1d mov %i5, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20072dc: 82 10 20 02 mov 2, %g1
20072e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20072e4: 03 00 80 1d sethi %hi(0x2007400), %g1
20072e8: 82 10 62 98 or %g1, 0x298, %g1 ! 2007698 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20072ec: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
20072f0: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
20072f4: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
20072f8: c0 27 60 34 clr [ %i5 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
20072fc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007300: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007304: 11 00 80 74 sethi %hi(0x201d000), %o0
2007308: 92 07 60 10 add %i5, 0x10, %o1
200730c: 40 00 10 0b call 200b338 <_Watchdog_Insert>
2007310: 90 12 23 9c or %o0, 0x39c, %o0
2007314: 30 80 00 1b b,a 2007380 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
2007318: 12 80 00 1e bne 2007390 <rtems_rate_monotonic_period+0x168>
200731c: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007320: 7f ff ff 86 call 2007138 <_Rate_monotonic_Update_statistics>
2007324: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007328: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
200732c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007330: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007334: 7f ff ee de call 2002eac <sparc_enable_interrupts>
2007338: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
200733c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
2007340: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007344: 13 00 00 10 sethi %hi(0x4000), %o1
2007348: 40 00 0e 59 call 200acac <_Thread_Set_state>
200734c: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007350: 7f ff ee d3 call 2002e9c <sparc_disable_interrupts>
2007354: 01 00 00 00 nop
local_state = the_period->state;
2007358: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
200735c: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
2007360: 7f ff ee d3 call 2002eac <sparc_enable_interrupts>
2007364: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007368: 80 a6 a0 03 cmp %i2, 3
200736c: 12 80 00 05 bne 2007380 <rtems_rate_monotonic_period+0x158>
2007370: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007374: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
2007378: 40 00 0b 4c call 200a0a8 <_Thread_Clear_state>
200737c: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
2007380: 40 00 0c 28 call 200a420 <_Thread_Enable_dispatch>
2007384: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007388: 81 c7 e0 08 ret
200738c: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
2007390: 12 bf ff b9 bne 2007274 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2007394: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2007398: 7f ff ff 68 call 2007138 <_Rate_monotonic_Update_statistics>
200739c: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20073a0: 7f ff ee c3 call 2002eac <sparc_enable_interrupts>
20073a4: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20073a8: 82 10 20 02 mov 2, %g1
20073ac: 92 07 60 10 add %i5, 0x10, %o1
20073b0: 11 00 80 74 sethi %hi(0x201d000), %o0
20073b4: 90 12 23 9c or %o0, 0x39c, %o0 ! 201d39c <_Watchdog_Ticks_chain>
20073b8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
20073bc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20073c0: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20073c4: 40 00 0f dd call 200b338 <_Watchdog_Insert>
20073c8: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20073cc: 40 00 0c 15 call 200a420 <_Thread_Enable_dispatch>
20073d0: 01 00 00 00 nop
return RTEMS_TIMEOUT;
20073d4: 81 c7 e0 08 ret
20073d8: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20073dc: b0 10 20 04 mov 4, %i0
}
20073e0: 81 c7 e0 08 ret
20073e4: 81 e8 00 00 restore
020073e8 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
20073e8: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
20073ec: 80 a6 60 00 cmp %i1, 0
20073f0: 02 80 00 75 be 20075c4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
20073f4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
20073f8: 13 00 80 6c sethi %hi(0x201b000), %o1
20073fc: 9f c6 40 00 call %i1
2007400: 92 12 61 c0 or %o1, 0x1c0, %o1 ! 201b1c0 <CSWTCH.2+0x8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007404: 90 10 00 18 mov %i0, %o0
2007408: 13 00 80 6c sethi %hi(0x201b000), %o1
200740c: 9f c6 40 00 call %i1
2007410: 92 12 61 e0 or %o1, 0x1e0, %o1 ! 201b1e0 <CSWTCH.2+0x28>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007414: 90 10 00 18 mov %i0, %o0
2007418: 13 00 80 6c sethi %hi(0x201b000), %o1
200741c: 9f c6 40 00 call %i1
2007420: 92 12 62 08 or %o1, 0x208, %o1 ! 201b208 <CSWTCH.2+0x50>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007424: 90 10 00 18 mov %i0, %o0
2007428: 13 00 80 6c sethi %hi(0x201b000), %o1
200742c: 9f c6 40 00 call %i1
2007430: 92 12 62 30 or %o1, 0x230, %o1 ! 201b230 <CSWTCH.2+0x78>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007434: 90 10 00 18 mov %i0, %o0
2007438: 13 00 80 6c sethi %hi(0x201b000), %o1
200743c: 9f c6 40 00 call %i1
2007440: 92 12 62 80 or %o1, 0x280, %o1 ! 201b280 <CSWTCH.2+0xc8>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007444: 03 00 80 74 sethi %hi(0x201d000), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007448: 21 00 80 6c sethi %hi(0x201b000), %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
200744c: 35 00 80 6c sethi %hi(0x201b000), %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007450: 37 00 80 6c sethi %hi(0x201b000), %i3
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007454: 39 00 80 69 sethi %hi(0x201a400), %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007458: fa 00 61 7c ld [ %g1 + 0x17c ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200745c: a0 14 22 d0 or %l0, 0x2d0, %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007460: b4 16 a2 e8 or %i2, 0x2e8, %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007464: b6 16 e3 08 or %i3, 0x308, %i3
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007468: 10 80 00 52 b 20075b0 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
200746c: b8 17 20 48 or %i4, 0x48, %i4
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007470: 40 00 17 8b call 200d29c <rtems_rate_monotonic_get_statistics>
2007474: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
2007478: 80 a2 20 00 cmp %o0, 0
200747c: 32 80 00 4d bne,a 20075b0 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2007480: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007484: 92 07 bf d8 add %fp, -40, %o1
2007488: 40 00 17 b2 call 200d350 <rtems_rate_monotonic_get_status>
200748c: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007490: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007494: 92 10 20 05 mov 5, %o1
2007498: 40 00 00 af call 2007754 <rtems_object_get_name>
200749c: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20074a0: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20074a4: 92 10 00 10 mov %l0, %o1
20074a8: 90 10 00 18 mov %i0, %o0
20074ac: 94 10 00 1d mov %i5, %o2
20074b0: 9f c6 40 00 call %i1
20074b4: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20074b8: d2 07 bf a0 ld [ %fp + -96 ], %o1
20074bc: 80 a2 60 00 cmp %o1, 0
20074c0: 12 80 00 07 bne 20074dc <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
20074c4: 94 07 bf f0 add %fp, -16, %o2
(*print)( context, "\n" );
20074c8: 90 10 00 18 mov %i0, %o0
20074cc: 9f c6 40 00 call %i1
20074d0: 92 10 00 1c mov %i4, %o1
continue;
20074d4: 10 80 00 37 b 20075b0 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20074d8: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20074dc: 40 00 0e 78 call 200aebc <_Timespec_Divide_by_integer>
20074e0: 90 07 bf b8 add %fp, -72, %o0
(*print)( context,
20074e4: d0 07 bf ac ld [ %fp + -84 ], %o0
20074e8: 40 00 43 aa call 2018390 <.div>
20074ec: 92 10 23 e8 mov 0x3e8, %o1
20074f0: a6 10 00 08 mov %o0, %l3
20074f4: d0 07 bf b4 ld [ %fp + -76 ], %o0
20074f8: 40 00 43 a6 call 2018390 <.div>
20074fc: 92 10 23 e8 mov 0x3e8, %o1
2007500: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007504: a2 10 00 08 mov %o0, %l1
2007508: d0 07 bf f4 ld [ %fp + -12 ], %o0
200750c: e8 07 bf a8 ld [ %fp + -88 ], %l4
2007510: e4 07 bf b0 ld [ %fp + -80 ], %l2
2007514: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007518: 40 00 43 9e call 2018390 <.div>
200751c: 92 10 23 e8 mov 0x3e8, %o1
2007520: 96 10 00 13 mov %l3, %o3
2007524: 98 10 00 12 mov %l2, %o4
2007528: 9a 10 00 11 mov %l1, %o5
200752c: 94 10 00 14 mov %l4, %o2
2007530: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007534: 92 10 00 1a mov %i2, %o1
2007538: 9f c6 40 00 call %i1
200753c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007540: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007544: 94 07 bf f0 add %fp, -16, %o2
2007548: 40 00 0e 5d call 200aebc <_Timespec_Divide_by_integer>
200754c: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
2007550: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007554: 40 00 43 8f call 2018390 <.div>
2007558: 92 10 23 e8 mov 0x3e8, %o1
200755c: a6 10 00 08 mov %o0, %l3
2007560: d0 07 bf cc ld [ %fp + -52 ], %o0
2007564: 40 00 43 8b call 2018390 <.div>
2007568: 92 10 23 e8 mov 0x3e8, %o1
200756c: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007570: a2 10 00 08 mov %o0, %l1
2007574: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007578: e8 07 bf c0 ld [ %fp + -64 ], %l4
200757c: e4 07 bf c8 ld [ %fp + -56 ], %l2
2007580: 92 10 23 e8 mov 0x3e8, %o1
2007584: 40 00 43 83 call 2018390 <.div>
2007588: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200758c: 92 10 00 1b mov %i3, %o1
2007590: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007594: 94 10 00 14 mov %l4, %o2
2007598: 90 10 00 18 mov %i0, %o0
200759c: 96 10 00 13 mov %l3, %o3
20075a0: 98 10 00 12 mov %l2, %o4
20075a4: 9f c6 40 00 call %i1
20075a8: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20075ac: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
20075b0: 03 00 80 74 sethi %hi(0x201d000), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075b4: c2 00 61 80 ld [ %g1 + 0x180 ], %g1 ! 201d180 <_Rate_monotonic_Information+0xc>
20075b8: 80 a7 40 01 cmp %i5, %g1
20075bc: 08 bf ff ad bleu 2007470 <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
20075c0: 90 10 00 1d mov %i5, %o0
20075c4: 81 c7 e0 08 ret
20075c8: 81 e8 00 00 restore
020160ac <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20160ac: 9d e3 bf 98 save %sp, -104, %sp
20160b0: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20160b4: 80 a6 60 00 cmp %i1, 0
20160b8: 02 80 00 2e be 2016170 <rtems_signal_send+0xc4>
20160bc: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20160c0: 40 00 11 e1 call 201a844 <_Thread_Get>
20160c4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20160c8: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20160cc: b8 10 00 08 mov %o0, %i4
switch ( location ) {
20160d0: 80 a0 60 00 cmp %g1, 0
20160d4: 12 80 00 27 bne 2016170 <rtems_signal_send+0xc4>
20160d8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20160dc: fa 02 21 58 ld [ %o0 + 0x158 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20160e0: c2 07 60 0c ld [ %i5 + 0xc ], %g1
20160e4: 80 a0 60 00 cmp %g1, 0
20160e8: 02 80 00 24 be 2016178 <rtems_signal_send+0xcc>
20160ec: 01 00 00 00 nop
if ( asr->is_enabled ) {
20160f0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
20160f4: 80 a0 60 00 cmp %g1, 0
20160f8: 02 80 00 15 be 201614c <rtems_signal_send+0xa0>
20160fc: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2016100: 7f ff e7 f0 call 20100c0 <sparc_disable_interrupts>
2016104: 01 00 00 00 nop
*signal_set |= signals;
2016108: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
201610c: b2 10 40 19 or %g1, %i1, %i1
2016110: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2016114: 7f ff e7 ef call 20100d0 <sparc_enable_interrupts>
2016118: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
201611c: 03 00 80 e8 sethi %hi(0x203a000), %g1
2016120: 82 10 61 84 or %g1, 0x184, %g1 ! 203a184 <_Per_CPU_Information>
2016124: c4 00 60 08 ld [ %g1 + 8 ], %g2
2016128: 80 a0 a0 00 cmp %g2, 0
201612c: 02 80 00 0f be 2016168 <rtems_signal_send+0xbc>
2016130: 01 00 00 00 nop
2016134: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2016138: 80 a7 00 02 cmp %i4, %g2
201613c: 12 80 00 0b bne 2016168 <rtems_signal_send+0xbc> <== NEVER TAKEN
2016140: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2016144: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2016148: 30 80 00 08 b,a 2016168 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201614c: 7f ff e7 dd call 20100c0 <sparc_disable_interrupts>
2016150: 01 00 00 00 nop
*signal_set |= signals;
2016154: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2016158: b2 10 40 19 or %g1, %i1, %i1
201615c: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
2016160: 7f ff e7 dc call 20100d0 <sparc_enable_interrupts>
2016164: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2016168: 40 00 11 aa call 201a810 <_Thread_Enable_dispatch>
201616c: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
2016170: 81 c7 e0 08 ret
2016174: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
2016178: 40 00 11 a6 call 201a810 <_Thread_Enable_dispatch>
201617c: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2016180: 81 c7 e0 08 ret
2016184: 81 e8 00 00 restore
0200d740 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d740: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d744: 80 a6 a0 00 cmp %i2, 0
200d748: 02 80 00 5a be 200d8b0 <rtems_task_mode+0x170>
200d74c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d750: 03 00 80 6d sethi %hi(0x201b400), %g1
200d754: f8 00 62 88 ld [ %g1 + 0x288 ], %i4 ! 201b688 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d758: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d75c: fa 07 21 58 ld [ %i4 + 0x158 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d760: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d764: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d768: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d76c: 80 a0 60 00 cmp %g1, 0
200d770: 02 80 00 03 be 200d77c <rtems_task_mode+0x3c>
200d774: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d778: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d77c: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
200d780: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d784: 7f ff f1 f4 call 2009f54 <_CPU_ISR_Get_level>
200d788: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d78c: a1 2c 20 0a sll %l0, 0xa, %l0
200d790: a0 14 00 08 or %l0, %o0, %l0
old_mode |= _ISR_Get_level();
200d794: b6 14 00 1b or %l0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d798: 80 8e 61 00 btst 0x100, %i1
200d79c: 02 80 00 06 be 200d7b4 <rtems_task_mode+0x74>
200d7a0: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d7a4: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d7a8: 80 a0 00 01 cmp %g0, %g1
200d7ac: 82 60 3f ff subx %g0, -1, %g1
200d7b0: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d7b4: 80 8e 62 00 btst 0x200, %i1
200d7b8: 02 80 00 0b be 200d7e4 <rtems_task_mode+0xa4>
200d7bc: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d7c0: 80 8e 22 00 btst 0x200, %i0
200d7c4: 22 80 00 07 be,a 200d7e0 <rtems_task_mode+0xa0>
200d7c8: c0 27 20 7c clr [ %i4 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d7cc: 82 10 20 01 mov 1, %g1
200d7d0: c2 27 20 7c st %g1, [ %i4 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d7d4: 03 00 80 6c sethi %hi(0x201b000), %g1
200d7d8: c2 00 63 b4 ld [ %g1 + 0x3b4 ], %g1 ! 201b3b4 <_Thread_Ticks_per_timeslice>
200d7dc: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d7e0: 80 8e 60 0f btst 0xf, %i1
200d7e4: 02 80 00 06 be 200d7fc <rtems_task_mode+0xbc>
200d7e8: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d7ec: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d7f0: 7f ff d2 67 call 200218c <sparc_enable_interrupts>
200d7f4: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d7f8: 80 8e 64 00 btst 0x400, %i1
200d7fc: 02 80 00 14 be 200d84c <rtems_task_mode+0x10c>
200d800: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d804: c4 0f 60 08 ldub [ %i5 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d808: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d80c: 80 a0 00 18 cmp %g0, %i0
200d810: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d814: 80 a0 40 02 cmp %g1, %g2
200d818: 22 80 00 0e be,a 200d850 <rtems_task_mode+0x110>
200d81c: 03 00 80 6d sethi %hi(0x201b400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d820: 7f ff d2 57 call 200217c <sparc_disable_interrupts>
200d824: c2 2f 60 08 stb %g1, [ %i5 + 8 ]
_signals = information->signals_pending;
200d828: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d82c: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
200d830: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d834: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d838: 7f ff d2 55 call 200218c <sparc_enable_interrupts>
200d83c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d840: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d844: 80 a0 00 01 cmp %g0, %g1
200d848: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200d84c: 03 00 80 6d sethi %hi(0x201b400), %g1
200d850: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 201b5a4 <_System_state_Current>
200d854: 80 a0 a0 03 cmp %g2, 3
200d858: 12 80 00 16 bne 200d8b0 <rtems_task_mode+0x170>
200d85c: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d860: 07 00 80 6d sethi %hi(0x201b400), %g3
if ( are_signals_pending ||
200d864: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d868: 86 10 e2 7c or %g3, 0x27c, %g3
if ( are_signals_pending ||
200d86c: 12 80 00 0a bne 200d894 <rtems_task_mode+0x154>
200d870: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200d874: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d878: 80 a0 80 03 cmp %g2, %g3
200d87c: 02 80 00 0d be 200d8b0 <rtems_task_mode+0x170>
200d880: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d884: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d888: 80 a0 a0 00 cmp %g2, 0
200d88c: 02 80 00 09 be 200d8b0 <rtems_task_mode+0x170> <== NEVER TAKEN
200d890: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d894: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d898: 03 00 80 6d sethi %hi(0x201b400), %g1
200d89c: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c <_Per_CPU_Information>
200d8a0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d8a4: 7f ff ec 81 call 2008aa8 <_Thread_Dispatch>
200d8a8: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d8ac: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d8b0: 81 c7 e0 08 ret
200d8b4: 91 e8 00 01 restore %g0, %g1, %o0
0200a9f8 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200a9f8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200a9fc: 80 a6 60 00 cmp %i1, 0
200aa00: 02 80 00 07 be 200aa1c <rtems_task_set_priority+0x24>
200aa04: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200aa08: 03 00 80 61 sethi %hi(0x2018400), %g1
200aa0c: c2 08 62 4c ldub [ %g1 + 0x24c ], %g1 ! 201864c <rtems_maximum_priority>
200aa10: 80 a6 40 01 cmp %i1, %g1
200aa14: 18 80 00 1c bgu 200aa84 <rtems_task_set_priority+0x8c>
200aa18: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200aa1c: 80 a6 a0 00 cmp %i2, 0
200aa20: 02 80 00 19 be 200aa84 <rtems_task_set_priority+0x8c>
200aa24: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200aa28: 40 00 09 4f call 200cf64 <_Thread_Get>
200aa2c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200aa30: c2 07 bf fc ld [ %fp + -4 ], %g1
200aa34: 80 a0 60 00 cmp %g1, 0
200aa38: 12 80 00 13 bne 200aa84 <rtems_task_set_priority+0x8c>
200aa3c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200aa40: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200aa44: 80 a6 60 00 cmp %i1, 0
200aa48: 02 80 00 0d be 200aa7c <rtems_task_set_priority+0x84>
200aa4c: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200aa50: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200aa54: 80 a0 60 00 cmp %g1, 0
200aa58: 02 80 00 06 be 200aa70 <rtems_task_set_priority+0x78>
200aa5c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200aa60: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200aa64: 80 a0 40 19 cmp %g1, %i1
200aa68: 08 80 00 05 bleu 200aa7c <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200aa6c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200aa70: 92 10 00 19 mov %i1, %o1
200aa74: 40 00 08 0b call 200caa0 <_Thread_Change_priority>
200aa78: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200aa7c: 40 00 09 2d call 200cf30 <_Thread_Enable_dispatch>
200aa80: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200aa84: 81 c7 e0 08 ret
200aa88: 81 e8 00 00 restore
02016ab4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2016ab4: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2016ab8: 11 00 80 e8 sethi %hi(0x203a000), %o0
2016abc: 92 10 00 18 mov %i0, %o1
2016ac0: 90 12 22 24 or %o0, 0x224, %o0
2016ac4: 40 00 0b b3 call 2019990 <_Objects_Get>
2016ac8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016acc: c2 07 bf fc ld [ %fp + -4 ], %g1
2016ad0: 80 a0 60 00 cmp %g1, 0
2016ad4: 12 80 00 0c bne 2016b04 <rtems_timer_cancel+0x50>
2016ad8: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2016adc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2016ae0: 80 a0 60 04 cmp %g1, 4
2016ae4: 02 80 00 04 be 2016af4 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2016ae8: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2016aec: 40 00 13 b6 call 201b9c4 <_Watchdog_Remove>
2016af0: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016af4: 40 00 0f 47 call 201a810 <_Thread_Enable_dispatch>
2016af8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2016afc: 81 c7 e0 08 ret
2016b00: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016b04: 81 c7 e0 08 ret
2016b08: 91 e8 20 04 restore %g0, 4, %o0
02016fb0 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016fb0: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016fb4: 03 00 80 e8 sethi %hi(0x203a000), %g1
2016fb8: f8 00 62 64 ld [ %g1 + 0x264 ], %i4 ! 203a264 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016fbc: ba 10 00 18 mov %i0, %i5
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2016fc0: 80 a7 20 00 cmp %i4, 0
2016fc4: 02 80 00 32 be 201708c <rtems_timer_server_fire_when+0xdc>
2016fc8: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2016fcc: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2016fd0: c2 08 63 60 ldub [ %g1 + 0x360 ], %g1 ! 2039f60 <_TOD_Is_set>
2016fd4: 80 a0 60 00 cmp %g1, 0
2016fd8: 02 80 00 2d be 201708c <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
2016fdc: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2016fe0: 80 a6 a0 00 cmp %i2, 0
2016fe4: 02 80 00 2a be 201708c <rtems_timer_server_fire_when+0xdc>
2016fe8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016fec: 90 10 00 19 mov %i1, %o0
2016ff0: 7f ff f4 11 call 2014034 <_TOD_Validate>
2016ff4: b0 10 20 14 mov 0x14, %i0
2016ff8: 80 8a 20 ff btst 0xff, %o0
2016ffc: 02 80 00 27 be 2017098 <rtems_timer_server_fire_when+0xe8>
2017000: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2017004: 7f ff f3 d8 call 2013f64 <_TOD_To_seconds>
2017008: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
201700c: 21 00 80 e7 sethi %hi(0x2039c00), %l0
2017010: c2 04 23 dc ld [ %l0 + 0x3dc ], %g1 ! 2039fdc <_TOD_Now>
2017014: 80 a2 00 01 cmp %o0, %g1
2017018: 08 80 00 1d bleu 201708c <rtems_timer_server_fire_when+0xdc>
201701c: b2 10 00 08 mov %o0, %i1
2017020: 11 00 80 e8 sethi %hi(0x203a000), %o0
2017024: 92 10 00 1d mov %i5, %o1
2017028: 90 12 22 24 or %o0, 0x224, %o0
201702c: 40 00 0a 59 call 2019990 <_Objects_Get>
2017030: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2017034: c2 07 bf fc ld [ %fp + -4 ], %g1
2017038: 80 a0 60 00 cmp %g1, 0
201703c: 12 80 00 16 bne 2017094 <rtems_timer_server_fire_when+0xe4>
2017040: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2017044: 40 00 12 60 call 201b9c4 <_Watchdog_Remove>
2017048: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
201704c: 82 10 20 03 mov 3, %g1
2017050: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2017054: c2 04 23 dc ld [ %l0 + 0x3dc ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2017058: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201705c: b2 26 40 01 sub %i1, %g1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
2017060: c2 07 20 04 ld [ %i4 + 4 ], %g1
2017064: 90 10 00 1c mov %i4, %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2017068: c0 26 20 18 clr [ %i0 + 0x18 ]
the_watchdog->routine = routine;
201706c: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
the_watchdog->id = id;
2017070: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
2017074: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2017078: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201707c: 9f c0 40 00 call %g1
2017080: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2017084: 40 00 0d e3 call 201a810 <_Thread_Enable_dispatch>
2017088: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201708c: 81 c7 e0 08 ret
2017090: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2017094: b0 10 20 04 mov 4, %i0
}
2017098: 81 c7 e0 08 ret
201709c: 81 e8 00 00 restore