=============================================================================== 0200fbb4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fbb4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fbb8: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fbbc: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fbc0: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fbc4: 80 8e e0 03 btst 3, %i3 200fbc8: 02 80 00 07 be 200fbe4 <_CORE_message_queue_Initialize+0x30> 200fbcc: b8 10 00 1b mov %i3, %i4 allocated_message_size += sizeof(uint32_t); 200fbd0: b8 06 e0 04 add %i3, 4, %i4 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fbd4: b8 0f 3f fc and %i4, -4, %i4 } if (allocated_message_size < maximum_message_size) 200fbd8: 80 a7 00 1b cmp %i4, %i3 200fbdc: 0a 80 00 22 bcs 200fc64 <_CORE_message_queue_Initialize+0xb0><== NEVER TAKEN 200fbe0: a0 10 20 00 clr %l0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 200fbe4: ba 07 20 10 add %i4, 0x10, %i5 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 200fbe8: 92 10 00 1a mov %i2, %o1 200fbec: 90 10 00 1d mov %i5, %o0 200fbf0: 40 00 3d 49 call 201f114 <.umul> 200fbf4: a0 10 20 00 clr %l0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 200fbf8: 80 a2 00 1c cmp %o0, %i4 200fbfc: 2a 80 00 1b bcs,a 200fc68 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fc00: b0 0c 20 01 and %l0, 1, %i0 <== NOT EXECUTED /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fc04: 40 00 0b fa call 2012bec <_Workspace_Allocate> 200fc08: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fc0c: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fc10: 80 a2 20 00 cmp %o0, 0 200fc14: 02 80 00 14 be 200fc64 <_CORE_message_queue_Initialize+0xb0> 200fc18: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fc1c: 90 06 20 60 add %i0, 0x60, %o0 200fc20: 94 10 00 1a mov %i2, %o2 200fc24: 40 00 13 df call 2014ba0 <_Chain_Initialize> 200fc28: 96 10 00 1d mov %i5, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc2c: 82 06 20 50 add %i0, 0x50, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 200fc30: c2 26 20 58 st %g1, [ %i0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200fc34: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fc38: 84 06 20 54 add %i0, 0x54, %g2 200fc3c: 82 18 60 01 xor %g1, 1, %g1 200fc40: 80 a0 00 01 cmp %g0, %g1 head->next = tail; 200fc44: c4 26 20 50 st %g2, [ %i0 + 0x50 ] head->previous = NULL; 200fc48: c0 26 20 54 clr [ %i0 + 0x54 ] 200fc4c: 90 10 00 18 mov %i0, %o0 200fc50: 92 60 3f ff subx %g0, -1, %o1 200fc54: 94 10 20 80 mov 0x80, %o2 200fc58: 96 10 20 06 mov 6, %o3 200fc5c: 40 00 09 90 call 201229c <_Thread_queue_Initialize> 200fc60: a0 10 20 01 mov 1, %l0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fc64: b0 0c 20 01 and %l0, 1, %i0 200fc68: 81 c7 e0 08 ret 200fc6c: 81 e8 00 00 restore =============================================================================== 02006ffc <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2006ffc: 9d e3 bf a0 save %sp, -96, %sp * This routine returns true if thread dispatch indicates * that we are in a critical section. */ RTEMS_INLINE_ROUTINE bool _Thread_Dispatch_in_critical_section(void) { if ( _Thread_Dispatch_disable_level == 0 ) 2007000: 03 00 80 6c sethi %hi(0x201b000), %g1 2007004: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 ! 201b3f0 <_Thread_Dispatch_disable_level> 2007008: 80 a0 60 00 cmp %g1, 0 200700c: 02 80 00 0c be 200703c <_CORE_mutex_Seize+0x40> 2007010: f8 27 a0 54 st %i4, [ %fp + 0x54 ] _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2007014: 10 80 00 2b b 20070c0 <_CORE_mutex_Seize+0xc4> 2007018: 80 a6 a0 00 cmp %i2, 0 200701c: c2 00 61 44 ld [ %g1 + 0x144 ], %g1 2007020: 80 a0 60 01 cmp %g1, 1 2007024: 08 80 00 07 bleu 2007040 <_CORE_mutex_Seize+0x44> 2007028: 90 10 00 18 mov %i0, %o0 200702c: 90 10 20 00 clr %o0 2007030: 92 10 20 00 clr %o1 2007034: 40 00 01 e1 call 20077b8 <_Internal_error_Occurred> 2007038: 94 10 20 12 mov 0x12, %o2 200703c: 90 10 00 18 mov %i0, %o0 2007040: 40 00 13 26 call 200bcd8 <_CORE_mutex_Seize_interrupt_trylock> 2007044: 92 07 a0 54 add %fp, 0x54, %o1 2007048: 80 a2 20 00 cmp %o0, 0 200704c: 02 80 00 0a be 2007074 <_CORE_mutex_Seize+0x78> 2007050: 80 a6 a0 00 cmp %i2, 0 2007054: 12 80 00 0a bne 200707c <_CORE_mutex_Seize+0x80> 2007058: 82 10 20 01 mov 1, %g1 200705c: 7f ff ec 4c call 200218c 2007060: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2007064: 03 00 80 6d sethi %hi(0x201b400), %g1 2007068: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 201b628 <_Per_CPU_Information+0xc> 200706c: 84 10 20 01 mov 1, %g2 2007070: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2007074: 81 c7 e0 08 ret 2007078: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 200707c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2007080: 03 00 80 6d sethi %hi(0x201b400), %g1 2007084: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 201b628 <_Per_CPU_Information+0xc> 2007088: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 200708c: f2 20 60 20 st %i1, [ %g1 + 0x20 ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2007090: 03 00 80 6c sethi %hi(0x201b000), %g1 2007094: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201b3f0 <_Thread_Dispatch_disable_level> 2007098: 84 00 a0 01 inc %g2 200709c: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 20070a0: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 20070a4: 7f ff ec 3a call 200218c 20070a8: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 20070ac: 90 10 00 18 mov %i0, %o0 20070b0: 7f ff ff bb call 2006f9c <_CORE_mutex_Seize_interrupt_blocking> 20070b4: 92 10 00 1b mov %i3, %o1 20070b8: 81 c7 e0 08 ret 20070bc: 81 e8 00 00 restore 20070c0: 12 bf ff d7 bne 200701c <_CORE_mutex_Seize+0x20> <== ALWAYS TAKEN 20070c4: 03 00 80 6d sethi %hi(0x201b400), %g1 20070c8: 10 bf ff de b 2007040 <_CORE_mutex_Seize+0x44> <== NOT EXECUTED 20070cc: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED =============================================================================== 02007244 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2007244: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2007248: 90 10 00 18 mov %i0, %o0 200724c: 40 00 07 32 call 2008f14 <_Thread_queue_Dequeue> 2007250: ba 10 00 18 mov %i0, %i5 2007254: 80 a2 20 00 cmp %o0, 0 2007258: 12 80 00 0e bne 2007290 <_CORE_semaphore_Surrender+0x4c> 200725c: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2007260: 7f ff eb c7 call 200217c 2007264: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2007268: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 200726c: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 2007270: 80 a0 40 02 cmp %g1, %g2 2007274: 1a 80 00 05 bcc 2007288 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2007278: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 200727c: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007280: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2007284: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2007288: 7f ff eb c1 call 200218c 200728c: 01 00 00 00 nop } return status; } 2007290: 81 c7 e0 08 ret 2007294: 81 e8 00 00 restore =============================================================================== 02005ff8 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005ff8: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005ffc: f8 06 21 58 ld [ %i0 + 0x158 ], %i4 option_set = (rtems_option) the_thread->Wait.option; 2006000: f6 06 20 30 ld [ %i0 + 0x30 ], %i3 _ISR_Disable( level ); 2006004: 7f ff f0 5e call 200217c 2006008: ba 10 00 18 mov %i0, %i5 200600c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2006010: c4 07 00 00 ld [ %i4 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2006014: c6 07 60 24 ld [ %i5 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2006018: 82 88 c0 02 andcc %g3, %g2, %g1 200601c: 02 80 00 43 be 2006128 <_Event_Surrender+0x130> 2006020: 01 00 00 00 nop /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006024: 09 00 80 6d sethi %hi(0x201b400), %g4 2006028: 88 11 22 1c or %g4, 0x21c, %g4 ! 201b61c <_Per_CPU_Information> 200602c: f2 01 20 08 ld [ %g4 + 8 ], %i1 2006030: 80 a6 60 00 cmp %i1, 0 2006034: 22 80 00 1d be,a 20060a8 <_Event_Surrender+0xb0> 2006038: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 200603c: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2006040: 80 a7 40 04 cmp %i5, %g4 2006044: 32 80 00 19 bne,a 20060a8 <_Event_Surrender+0xb0> 2006048: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200604c: 09 00 80 6d sethi %hi(0x201b400), %g4 2006050: f2 01 22 70 ld [ %g4 + 0x270 ], %i1 ! 201b670 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006054: 80 a6 60 02 cmp %i1, 2 2006058: 02 80 00 07 be 2006074 <_Event_Surrender+0x7c> <== NEVER TAKEN 200605c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006060: c8 01 22 70 ld [ %g4 + 0x270 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006064: 80 a1 20 01 cmp %g4, 1 2006068: 32 80 00 10 bne,a 20060a8 <_Event_Surrender+0xb0> 200606c: c8 07 60 10 ld [ %i5 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006070: 80 a0 40 03 cmp %g1, %g3 2006074: 02 80 00 04 be 2006084 <_Event_Surrender+0x8c> 2006078: 80 8e e0 02 btst 2, %i3 200607c: 02 80 00 2b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN 2006080: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2006084: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2006088: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 200608c: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2006090: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006094: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2006098: 84 10 20 03 mov 3, %g2 200609c: 03 00 80 6d sethi %hi(0x201b400), %g1 20060a0: c4 20 62 70 st %g2, [ %g1 + 0x270 ] ! 201b670 <_Event_Sync_state> 20060a4: 30 80 00 21 b,a 2006128 <_Event_Surrender+0x130> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20060a8: 80 89 21 00 btst 0x100, %g4 20060ac: 02 80 00 1f be 2006128 <_Event_Surrender+0x130> 20060b0: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20060b4: 02 80 00 04 be 20060c4 <_Event_Surrender+0xcc> 20060b8: 80 8e e0 02 btst 2, %i3 20060bc: 02 80 00 1b be 2006128 <_Event_Surrender+0x130> <== NEVER TAKEN 20060c0: 01 00 00 00 nop 20060c4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 20060c8: c4 27 00 00 st %g2, [ %i4 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060cc: c4 07 60 28 ld [ %i5 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 20060d0: c0 27 60 24 clr [ %i5 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060d4: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 20060d8: 7f ff f0 2d call 200218c 20060dc: 90 10 00 18 mov %i0, %o0 20060e0: 7f ff f0 27 call 200217c 20060e4: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 20060e8: c2 07 60 50 ld [ %i5 + 0x50 ], %g1 20060ec: 80 a0 60 02 cmp %g1, 2 20060f0: 02 80 00 06 be 2006108 <_Event_Surrender+0x110> 20060f4: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 20060f8: 7f ff f0 25 call 200218c 20060fc: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006100: 10 80 00 08 b 2006120 <_Event_Surrender+0x128> 2006104: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2006108: c2 27 60 50 st %g1, [ %i5 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200610c: 7f ff f0 20 call 200218c 2006110: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 2006114: 40 00 0e 6d call 2009ac8 <_Watchdog_Remove> 2006118: 90 07 60 48 add %i5, 0x48, %o0 200611c: b2 16 63 f8 or %i1, 0x3f8, %i1 2006120: 40 00 09 cf call 200885c <_Thread_Clear_state> 2006124: 91 e8 00 1d restore %g0, %i5, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2006128: 7f ff f0 19 call 200218c 200612c: 81 e8 00 00 restore =============================================================================== 02006130 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2006130: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2006134: 90 10 00 18 mov %i0, %o0 2006138: 40 00 0a b3 call 2008c04 <_Thread_Get> 200613c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006140: c2 07 bf fc ld [ %fp + -4 ], %g1 2006144: 80 a0 60 00 cmp %g1, 0 2006148: 12 80 00 1d bne 20061bc <_Event_Timeout+0x8c> <== NEVER TAKEN 200614c: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006150: 7f ff f0 0b call 200217c 2006154: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006158: 03 00 80 6d sethi %hi(0x201b400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200615c: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 201b628 <_Per_CPU_Information+0xc> 2006160: 80 a7 40 01 cmp %i5, %g1 2006164: 12 80 00 09 bne 2006188 <_Event_Timeout+0x58> 2006168: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 200616c: 03 00 80 6d sethi %hi(0x201b400), %g1 2006170: c4 00 62 70 ld [ %g1 + 0x270 ], %g2 ! 201b670 <_Event_Sync_state> 2006174: 80 a0 a0 01 cmp %g2, 1 2006178: 32 80 00 05 bne,a 200618c <_Event_Timeout+0x5c> 200617c: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2006180: 84 10 20 02 mov 2, %g2 2006184: c4 20 62 70 st %g2, [ %g1 + 0x270 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006188: 82 10 20 06 mov 6, %g1 200618c: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 2006190: 7f ff ef ff call 200218c 2006194: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006198: 90 10 00 1d mov %i5, %o0 200619c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20061a0: 40 00 09 af call 200885c <_Thread_Clear_state> 20061a4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20061a8: 03 00 80 6c sethi %hi(0x201b000), %g1 20061ac: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201b3f0 <_Thread_Dispatch_disable_level> 20061b0: 84 00 bf ff add %g2, -1, %g2 20061b4: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 20061b8: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 20061bc: 81 c7 e0 08 ret 20061c0: 81 e8 00 00 restore =============================================================================== 0200bdf4 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bdf4: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bdf8: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200bdfc: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200be00: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200be04: e0 06 20 20 ld [ %i0 + 0x20 ], %l0 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200be08: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 uintptr_t const min_block_size = heap->min_block_size; 200be0c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200be10: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200be14: 80 a7 40 19 cmp %i5, %i1 200be18: 0a 80 00 9f bcs 200c094 <_Heap_Extend+0x2a0> 200be1c: b8 10 20 00 clr %i4 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200be20: 90 10 00 19 mov %i1, %o0 200be24: 92 10 00 1a mov %i2, %o1 200be28: 94 10 00 11 mov %l1, %o2 200be2c: 98 07 bf f8 add %fp, -8, %o4 200be30: 7f ff ed 4f call 200736c <_Heap_Get_first_and_last_block> 200be34: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200be38: 80 8a 20 ff btst 0xff, %o0 200be3c: 02 80 00 96 be 200c094 <_Heap_Extend+0x2a0> 200be40: b4 10 00 10 mov %l0, %i2 200be44: aa 10 20 00 clr %l5 200be48: ac 10 20 00 clr %l6 200be4c: b8 10 20 00 clr %i4 200be50: a8 10 20 00 clr %l4 200be54: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200be58: 80 a0 40 1d cmp %g1, %i5 200be5c: 1a 80 00 05 bcc 200be70 <_Heap_Extend+0x7c> 200be60: e6 06 80 00 ld [ %i2 ], %l3 200be64: 80 a6 40 13 cmp %i1, %l3 200be68: 2a 80 00 8b bcs,a 200c094 <_Heap_Extend+0x2a0> 200be6c: b8 10 20 00 clr %i4 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200be70: 80 a7 40 01 cmp %i5, %g1 200be74: 02 80 00 06 be 200be8c <_Heap_Extend+0x98> 200be78: 80 a7 40 13 cmp %i5, %l3 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200be7c: 2a 80 00 05 bcs,a 200be90 <_Heap_Extend+0x9c> 200be80: ac 10 00 1a mov %i2, %l6 200be84: 10 80 00 04 b 200be94 <_Heap_Extend+0xa0> 200be88: 90 10 00 13 mov %l3, %o0 200be8c: a8 10 00 1a mov %i2, %l4 200be90: 90 10 00 13 mov %l3, %o0 200be94: 40 00 15 f6 call 201166c <.urem> 200be98: 92 10 00 11 mov %l1, %o1 200be9c: ae 04 ff f8 add %l3, -8, %l7 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200bea0: 80 a4 c0 19 cmp %l3, %i1 200bea4: 12 80 00 05 bne 200beb8 <_Heap_Extend+0xc4> 200bea8: 90 25 c0 08 sub %l7, %o0, %o0 start_block->prev_size = extend_area_end; 200beac: fa 26 80 00 st %i5, [ %i2 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200beb0: 10 80 00 04 b 200bec0 <_Heap_Extend+0xcc> 200beb4: b8 10 00 08 mov %o0, %i4 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200beb8: 2a 80 00 02 bcs,a 200bec0 <_Heap_Extend+0xcc> 200bebc: aa 10 00 08 mov %o0, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bec0: f4 02 20 04 ld [ %o0 + 4 ], %i2 200bec4: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bec8: b4 06 80 08 add %i2, %o0, %i2 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200becc: 80 a6 80 10 cmp %i2, %l0 200bed0: 12 bf ff e2 bne 200be58 <_Heap_Extend+0x64> 200bed4: 82 10 00 1a mov %i2, %g1 if ( extend_area_begin < heap->area_begin ) { 200bed8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200bedc: 80 a6 40 01 cmp %i1, %g1 200bee0: 3a 80 00 04 bcc,a 200bef0 <_Heap_Extend+0xfc> 200bee4: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200bee8: 10 80 00 05 b 200befc <_Heap_Extend+0x108> 200beec: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200bef0: 80 a0 40 1d cmp %g1, %i5 200bef4: 2a 80 00 02 bcs,a 200befc <_Heap_Extend+0x108> 200bef8: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200befc: c4 07 bf f8 ld [ %fp + -8 ], %g2 200bf00: c2 07 bf fc ld [ %fp + -4 ], %g1 extend_first_block->prev_size = extend_area_end; 200bf04: fa 20 80 00 st %i5, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200bf08: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200bf0c: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200bf10: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200bf14: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200bf18: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 200bf1c: 80 a0 c0 02 cmp %g3, %g2 200bf20: 08 80 00 04 bleu 200bf30 <_Heap_Extend+0x13c> 200bf24: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200bf28: 10 80 00 06 b 200bf40 <_Heap_Extend+0x14c> 200bf2c: c4 26 20 20 st %g2, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200bf30: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 200bf34: 80 a0 80 01 cmp %g2, %g1 200bf38: 2a 80 00 02 bcs,a 200bf40 <_Heap_Extend+0x14c> 200bf3c: c2 26 20 24 st %g1, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200bf40: 80 a5 20 00 cmp %l4, 0 200bf44: 02 80 00 14 be 200bf94 <_Heap_Extend+0x1a0> 200bf48: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200bf4c: f4 06 20 10 ld [ %i0 + 0x10 ], %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200bf50: 92 10 00 1a mov %i2, %o1 200bf54: 40 00 15 c6 call 201166c <.urem> 200bf58: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200bf5c: 80 a2 20 00 cmp %o0, 0 200bf60: 02 80 00 04 be 200bf70 <_Heap_Extend+0x17c> 200bf64: c2 05 00 00 ld [ %l4 ], %g1 return value - remainder + alignment; 200bf68: b2 06 40 1a add %i1, %i2, %i1 200bf6c: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200bf70: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200bf74: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200bf78: 82 25 00 09 sub %l4, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200bf7c: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200bf80: 90 10 00 18 mov %i0, %o0 200bf84: 7f ff ff 92 call 200bdcc <_Heap_Free_block> 200bf88: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200bf8c: 10 80 00 08 b 200bfac <_Heap_Extend+0x1b8> 200bf90: 80 a7 20 00 cmp %i4, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200bf94: 80 a5 a0 00 cmp %l6, 0 200bf98: 02 80 00 04 be 200bfa8 <_Heap_Extend+0x1b4> 200bf9c: ac 25 80 01 sub %l6, %g1, %l6 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200bfa0: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200bfa4: ec 20 60 04 st %l6, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200bfa8: 80 a7 20 00 cmp %i4, 0 200bfac: 02 80 00 15 be 200c000 <_Heap_Extend+0x20c> 200bfb0: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bfb4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200bfb8: ba 27 40 1c sub %i5, %i4, %i5 200bfbc: 40 00 15 ac call 201166c <.urem> 200bfc0: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200bfc4: c4 07 20 04 ld [ %i4 + 4 ], %g2 200bfc8: ba 27 40 08 sub %i5, %o0, %i5 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200bfcc: 82 07 40 1c add %i5, %i4, %g1 (last_block->size_and_flag - last_block_new_size) 200bfd0: 84 20 80 1d sub %g2, %i5, %g2 | HEAP_PREV_BLOCK_USED; 200bfd4: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200bfd8: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bfdc: c2 07 20 04 ld [ %i4 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200bfe0: 90 10 00 18 mov %i0, %o0 200bfe4: 82 08 60 01 and %g1, 1, %g1 200bfe8: 92 10 00 1c mov %i4, %o1 block->size_and_flag = size | flag; 200bfec: ba 17 40 01 or %i5, %g1, %i5 200bff0: 7f ff ff 77 call 200bdcc <_Heap_Free_block> 200bff4: fa 27 20 04 st %i5, [ %i4 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200bff8: 10 80 00 0f b 200c034 <_Heap_Extend+0x240> 200bffc: 80 a7 20 00 cmp %i4, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200c000: 80 a5 60 00 cmp %l5, 0 200c004: 02 80 00 0b be 200c030 <_Heap_Extend+0x23c> 200c008: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c00c: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200c010: c2 07 bf fc ld [ %fp + -4 ], %g1 200c014: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200c018: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200c01c: 84 10 c0 02 or %g3, %g2, %g2 200c020: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200c024: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c028: 84 10 a0 01 or %g2, 1, %g2 200c02c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c030: 80 a7 20 00 cmp %i4, 0 200c034: 32 80 00 09 bne,a 200c058 <_Heap_Extend+0x264> 200c038: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200c03c: 80 a5 20 00 cmp %l4, 0 200c040: 32 80 00 06 bne,a 200c058 <_Heap_Extend+0x264> 200c044: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200c048: d2 07 bf f8 ld [ %fp + -8 ], %o1 200c04c: 7f ff ff 60 call 200bdcc <_Heap_Free_block> 200c050: 90 10 00 18 mov %i0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200c054: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c058: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c05c: c6 00 60 04 ld [ %g1 + 4 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c060: 84 20 80 01 sub %g2, %g1, %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c064: 86 08 e0 01 and %g3, 1, %g3 block->size_and_flag = size | flag; 200c068: 84 10 c0 02 or %g3, %g2, %g2 200c06c: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c070: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200c074: b8 10 20 01 mov 1, %i4 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c078: a4 20 40 12 sub %g1, %l2, %l2 /* Statistics */ stats->size += extended_size; 200c07c: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200c080: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200c084: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200c088: 02 80 00 03 be 200c094 <_Heap_Extend+0x2a0> <== NEVER TAKEN 200c08c: c2 26 20 2c st %g1, [ %i0 + 0x2c ] 200c090: e4 26 c0 00 st %l2, [ %i3 ] *extended_size_ptr = extended_size; return true; } 200c094: b0 0f 20 01 and %i4, 1, %i0 200c098: 81 c7 e0 08 ret 200c09c: 81 e8 00 00 restore =============================================================================== 0200c028 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c028: 9d e3 bf a0 save %sp, -96, %sp * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { return true; 200c02c: 88 10 20 01 mov 1, %g4 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200c030: 80 a6 60 00 cmp %i1, 0 200c034: 02 80 00 77 be 200c210 <_Heap_Free+0x1e8> 200c038: 90 10 00 19 mov %i1, %o0 200c03c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c040: 40 00 2b 0f call 2016c7c <.urem> 200c044: ba 06 7f f8 add %i1, -8, %i5 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c048: da 06 20 20 ld [ %i0 + 0x20 ], %o5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c04c: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c050: 80 a7 40 0d cmp %i5, %o5 200c054: 0a 80 00 05 bcs 200c068 <_Heap_Free+0x40> 200c058: 82 10 20 00 clr %g1 200c05c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200c060: 80 a0 40 1d cmp %g1, %i5 200c064: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200c068: 80 a0 60 00 cmp %g1, 0 200c06c: 02 80 00 69 be 200c210 <_Heap_Free+0x1e8> 200c070: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c074: d6 07 60 04 ld [ %i5 + 4 ], %o3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c078: 84 0a ff fe and %o3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c07c: 82 00 80 1d add %g2, %i5, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c080: 80 a0 40 0d cmp %g1, %o5 200c084: 0a 80 00 05 bcs 200c098 <_Heap_Free+0x70> <== NEVER TAKEN 200c088: 86 10 20 00 clr %g3 200c08c: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200c090: 80 a0 c0 01 cmp %g3, %g1 200c094: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200c098: 80 a0 e0 00 cmp %g3, 0 200c09c: 02 80 00 5d be 200c210 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c0a0: 88 10 20 00 clr %g4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0a4: de 00 60 04 ld [ %g1 + 4 ], %o7 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200c0a8: 80 8b e0 01 btst 1, %o7 200c0ac: 02 80 00 59 be 200c210 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c0b0: 9e 0b ff fe and %o7, -2, %o7 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200c0b4: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c0b8: 80 a0 40 04 cmp %g1, %g4 200c0bc: 02 80 00 07 be 200c0d8 <_Heap_Free+0xb0> 200c0c0: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c0c4: 86 00 40 0f add %g1, %o7, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c0c8: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200c0cc: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c0d0: 80 a0 00 03 cmp %g0, %g3 200c0d4: 98 60 3f ff subx %g0, -1, %o4 if ( !_Heap_Is_prev_used( block ) ) { 200c0d8: 80 8a e0 01 btst 1, %o3 200c0dc: 12 80 00 25 bne 200c170 <_Heap_Free+0x148> 200c0e0: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c0e4: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c0e8: 86 27 40 0b sub %i5, %o3, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c0ec: 80 a0 c0 0d cmp %g3, %o5 200c0f0: 0a 80 00 04 bcs 200c100 <_Heap_Free+0xd8> <== NEVER TAKEN 200c0f4: 94 10 20 00 clr %o2 200c0f8: 80 a1 00 03 cmp %g4, %g3 200c0fc: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200c100: 80 a2 a0 00 cmp %o2, 0 200c104: 02 80 00 43 be 200c210 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c108: 88 10 20 00 clr %g4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c10c: da 00 e0 04 ld [ %g3 + 4 ], %o5 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c110: 80 8b 60 01 btst 1, %o5 200c114: 02 80 00 3f be 200c210 <_Heap_Free+0x1e8> <== NEVER TAKEN 200c118: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c11c: 02 80 00 0e be 200c154 <_Heap_Free+0x12c> 200c120: 88 00 80 0b add %g2, %o3, %g4 uintptr_t const size = block_size + prev_size + next_block_size; 200c124: 9e 01 00 0f add %g4, %o7, %o7 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200c128: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200c12c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200c130: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200c134: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c138: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 200c13c: 82 00 7f ff add %g1, -1, %g1 200c140: c2 26 20 38 st %g1, [ %i0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c144: de 23 c0 03 st %o7, [ %o7 + %g3 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c148: 82 13 e0 01 or %o7, 1, %g1 200c14c: 10 80 00 27 b 200c1e8 <_Heap_Free+0x1c0> 200c150: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c154: 9e 11 20 01 or %g4, 1, %o7 200c158: de 20 e0 04 st %o7, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c15c: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200c160: c8 20 80 1d st %g4, [ %g2 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c164: 86 08 ff fe and %g3, -2, %g3 200c168: 10 80 00 20 b 200c1e8 <_Heap_Free+0x1c0> 200c16c: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c170: 22 80 00 0d be,a 200c1a4 <_Heap_Free+0x17c> 200c174: c6 06 20 08 ld [ %i0 + 8 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200c178: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200c17c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200c180: c8 27 60 08 st %g4, [ %i5 + 8 ] new_block->prev = prev; 200c184: c2 27 60 0c st %g1, [ %i5 + 0xc ] uintptr_t const size = block_size + next_block_size; 200c188: 86 03 c0 02 add %o7, %g2, %g3 next->prev = new_block; prev->next = new_block; 200c18c: fa 20 60 08 st %i5, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200c190: fa 21 20 0c st %i5, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c194: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c198: c6 20 c0 1d st %g3, [ %g3 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c19c: 10 80 00 13 b 200c1e8 <_Heap_Free+0x1c0> 200c1a0: c2 27 60 04 st %g1, [ %i5 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c1a4: f0 27 60 0c st %i0, [ %i5 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c1a8: c6 27 60 08 st %g3, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c1ac: fa 20 e0 0c st %i5, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c1b0: 86 10 a0 01 or %g2, 1, %g3 200c1b4: c6 27 60 04 st %g3, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1b8: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200c1bc: c4 20 80 1d st %g2, [ %g2 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c1c0: 86 08 ff fe and %g3, -2, %g3 200c1c4: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c1c8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200c1cc: c6 06 20 3c ld [ %i0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c1d0: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c1d4: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c1d8: 80 a0 c0 01 cmp %g3, %g1 200c1dc: 1a 80 00 03 bcc 200c1e8 <_Heap_Free+0x1c0> 200c1e0: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c1e4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200c1e8: c2 06 20 40 ld [ %i0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200c1ec: 88 10 20 01 mov 1, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c1f0: 82 00 7f ff add %g1, -1, %g1 200c1f4: c2 26 20 40 st %g1, [ %i0 + 0x40 ] ++stats->frees; 200c1f8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200c1fc: 82 00 60 01 inc %g1 200c200: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200c204: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 200c208: 84 00 40 02 add %g1, %g2, %g2 200c20c: c4 26 20 30 st %g2, [ %i0 + 0x30 ] return( true ); } 200c210: b0 09 20 01 and %g4, 1, %i0 200c214: 81 c7 e0 08 ret 200c218: 81 e8 00 00 restore =============================================================================== 0201874c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 201874c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2018750: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2018754: 7f ff f9 4a call 2016c7c <.urem> 2018758: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 201875c: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2018760: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2018764: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018768: 80 a2 00 03 cmp %o0, %g3 201876c: 0a 80 00 05 bcs 2018780 <_Heap_Size_of_alloc_area+0x34> 2018770: 84 10 20 00 clr %g2 2018774: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2018778: 80 a0 40 08 cmp %g1, %o0 201877c: 84 60 3f ff subx %g0, -1, %g2 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 2018780: 80 a0 a0 00 cmp %g2, 0 2018784: 02 80 00 15 be 20187d8 <_Heap_Size_of_alloc_area+0x8c> 2018788: 82 10 20 00 clr %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 201878c: fa 02 20 04 ld [ %o0 + 4 ], %i5 2018790: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2018794: ba 07 40 08 add %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2018798: 80 a7 40 03 cmp %i5, %g3 201879c: 0a 80 00 05 bcs 20187b0 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN 20187a0: 84 10 20 00 clr %g2 20187a4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 20187a8: 80 a0 40 1d cmp %g1, %i5 20187ac: 84 60 3f ff subx %g0, -1, %g2 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 20187b0: 80 a0 a0 00 cmp %g2, 0 20187b4: 02 80 00 09 be 20187d8 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 20187b8: 82 10 20 00 clr %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20187bc: c4 07 60 04 ld [ %i5 + 4 ], %g2 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 20187c0: 80 88 a0 01 btst 1, %g2 20187c4: 02 80 00 05 be 20187d8 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN 20187c8: ba 27 40 19 sub %i5, %i1, %i5 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 20187cc: 82 10 20 01 mov 1, %g1 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 20187d0: ba 07 60 04 add %i5, 4, %i5 20187d4: fa 26 80 00 st %i5, [ %i2 ] return true; } 20187d8: b0 08 60 01 and %g1, 1, %i0 20187dc: 81 c7 e0 08 ret 20187e0: 81 e8 00 00 restore =============================================================================== 02008098 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008098: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 200809c: 3b 00 80 20 sethi %hi(0x2008000), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20080a0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 uintptr_t const min_block_size = heap->min_block_size; 20080a4: e0 06 20 14 ld [ %i0 + 0x14 ], %l0 Heap_Block *const first_block = heap->first_block; 20080a8: f6 06 20 20 ld [ %i0 + 0x20 ], %i3 Heap_Block *const last_block = heap->last_block; 20080ac: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20080b0: 80 a6 a0 00 cmp %i2, 0 20080b4: 02 80 00 04 be 20080c4 <_Heap_Walk+0x2c> 20080b8: ba 17 60 44 or %i5, 0x44, %i5 20080bc: 3b 00 80 20 sethi %hi(0x2008000), %i5 20080c0: ba 17 60 4c or %i5, 0x4c, %i5 ! 200804c <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20080c4: 03 00 80 5c sethi %hi(0x2017000), %g1 20080c8: c4 00 63 74 ld [ %g1 + 0x374 ], %g2 ! 2017374 <_System_state_Current> 20080cc: 80 a0 a0 03 cmp %g2, 3 20080d0: 12 80 01 24 bne 2008560 <_Heap_Walk+0x4c8> 20080d4: 82 10 20 01 mov 1, %g1 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 20080d8: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 20080dc: da 06 20 18 ld [ %i0 + 0x18 ], %o5 20080e0: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20080e4: f6 23 a0 60 st %i3, [ %sp + 0x60 ] 20080e8: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 20080ec: c2 06 20 08 ld [ %i0 + 8 ], %g1 20080f0: 90 10 00 19 mov %i1, %o0 20080f4: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 20080f8: c2 06 20 0c ld [ %i0 + 0xc ], %g1 20080fc: 92 10 20 00 clr %o1 2008100: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008104: 15 00 80 52 sethi %hi(0x2014800), %o2 2008108: 96 10 00 1c mov %i4, %o3 200810c: 94 12 a1 28 or %o2, 0x128, %o2 2008110: 9f c7 40 00 call %i5 2008114: 98 10 00 10 mov %l0, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008118: 80 a7 20 00 cmp %i4, 0 200811c: 12 80 00 07 bne 2008138 <_Heap_Walk+0xa0> 2008120: 80 8f 20 07 btst 7, %i4 (*printer)( source, true, "page size is zero\n" ); 2008124: 15 00 80 52 sethi %hi(0x2014800), %o2 2008128: 90 10 00 19 mov %i1, %o0 200812c: 92 10 20 01 mov 1, %o1 2008130: 10 80 00 32 b 20081f8 <_Heap_Walk+0x160> 2008134: 94 12 a1 c0 or %o2, 0x1c0, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008138: 22 80 00 08 be,a 2008158 <_Heap_Walk+0xc0> 200813c: 90 10 00 10 mov %l0, %o0 (*printer)( 2008140: 15 00 80 52 sethi %hi(0x2014800), %o2 2008144: 90 10 00 19 mov %i1, %o0 2008148: 92 10 20 01 mov 1, %o1 200814c: 94 12 a1 d8 or %o2, 0x1d8, %o2 2008150: 10 80 01 0b b 200857c <_Heap_Walk+0x4e4> 2008154: 96 10 00 1c mov %i4, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008158: 7f ff e6 62 call 2001ae0 <.urem> 200815c: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008160: 80 a2 20 00 cmp %o0, 0 2008164: 22 80 00 08 be,a 2008184 <_Heap_Walk+0xec> 2008168: 90 06 e0 08 add %i3, 8, %o0 (*printer)( 200816c: 15 00 80 52 sethi %hi(0x2014800), %o2 2008170: 90 10 00 19 mov %i1, %o0 2008174: 92 10 20 01 mov 1, %o1 2008178: 94 12 a1 f8 or %o2, 0x1f8, %o2 200817c: 10 80 01 00 b 200857c <_Heap_Walk+0x4e4> 2008180: 96 10 00 10 mov %l0, %o3 2008184: 7f ff e6 57 call 2001ae0 <.urem> 2008188: 92 10 00 1c mov %i4, %o1 ); return false; } if ( 200818c: 80 a2 20 00 cmp %o0, 0 2008190: 22 80 00 08 be,a 20081b0 <_Heap_Walk+0x118> 2008194: c2 06 e0 04 ld [ %i3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008198: 15 00 80 52 sethi %hi(0x2014800), %o2 200819c: 90 10 00 19 mov %i1, %o0 20081a0: 92 10 20 01 mov 1, %o1 20081a4: 94 12 a2 20 or %o2, 0x220, %o2 20081a8: 10 80 00 f5 b 200857c <_Heap_Walk+0x4e4> 20081ac: 96 10 00 1b mov %i3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20081b0: 80 88 60 01 btst 1, %g1 20081b4: 32 80 00 07 bne,a 20081d0 <_Heap_Walk+0x138> 20081b8: f4 04 60 04 ld [ %l1 + 4 ], %i2 (*printer)( 20081bc: 15 00 80 52 sethi %hi(0x2014800), %o2 20081c0: 90 10 00 19 mov %i1, %o0 20081c4: 92 10 20 01 mov 1, %o1 20081c8: 10 80 00 0c b 20081f8 <_Heap_Walk+0x160> 20081cc: 94 12 a2 58 or %o2, 0x258, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20081d0: b4 0e bf fe and %i2, -2, %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20081d4: b4 04 40 1a add %l1, %i2, %i2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20081d8: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20081dc: 80 88 60 01 btst 1, %g1 20081e0: 12 80 00 0a bne 2008208 <_Heap_Walk+0x170> 20081e4: 80 a6 80 1b cmp %i2, %i3 (*printer)( 20081e8: 15 00 80 52 sethi %hi(0x2014800), %o2 20081ec: 90 10 00 19 mov %i1, %o0 20081f0: 92 10 20 01 mov 1, %o1 20081f4: 94 12 a2 88 or %o2, 0x288, %o2 20081f8: 9f c7 40 00 call %i5 20081fc: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008200: 10 80 00 d8 b 2008560 <_Heap_Walk+0x4c8> 2008204: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( 2008208: 02 80 00 06 be 2008220 <_Heap_Walk+0x188> 200820c: 15 00 80 52 sethi %hi(0x2014800), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008210: 90 10 00 19 mov %i1, %o0 2008214: 92 10 20 01 mov 1, %o1 2008218: 10 bf ff f8 b 20081f8 <_Heap_Walk+0x160> 200821c: 94 12 a2 a0 or %o2, 0x2a0, %o2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2008220: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008224: d6 06 20 08 ld [ %i0 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008228: 10 80 00 33 b 20082f4 <_Heap_Walk+0x25c> 200822c: a4 10 00 18 mov %i0, %l2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008230: 80 a0 80 0b cmp %g2, %o3 2008234: 18 80 00 05 bgu 2008248 <_Heap_Walk+0x1b0> 2008238: 82 10 20 00 clr %g1 200823c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2008240: 80 a0 40 0b cmp %g1, %o3 2008244: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2008248: 80 a0 60 00 cmp %g1, 0 200824c: 32 80 00 07 bne,a 2008268 <_Heap_Walk+0x1d0> 2008250: 90 02 e0 08 add %o3, 8, %o0 (*printer)( 2008254: 15 00 80 52 sethi %hi(0x2014800), %o2 2008258: 90 10 00 19 mov %i1, %o0 200825c: 92 10 20 01 mov 1, %o1 2008260: 10 80 00 c7 b 200857c <_Heap_Walk+0x4e4> 2008264: 94 12 a2 d0 or %o2, 0x2d0, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008268: d6 27 bf f8 st %o3, [ %fp + -8 ] 200826c: 7f ff e6 1d call 2001ae0 <.urem> 2008270: 92 10 00 13 mov %l3, %o1 ); return false; } if ( 2008274: 80 a2 20 00 cmp %o0, 0 2008278: 02 80 00 07 be 2008294 <_Heap_Walk+0x1fc> 200827c: d6 07 bf f8 ld [ %fp + -8 ], %o3 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008280: 15 00 80 52 sethi %hi(0x2014800), %o2 2008284: 90 10 00 19 mov %i1, %o0 2008288: 92 10 20 01 mov 1, %o1 200828c: 10 80 00 bc b 200857c <_Heap_Walk+0x4e4> 2008290: 94 12 a2 f0 or %o2, 0x2f0, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008294: c2 02 e0 04 ld [ %o3 + 4 ], %g1 2008298: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 200829c: 82 02 c0 01 add %o3, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20082a0: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20082a4: 80 88 60 01 btst 1, %g1 20082a8: 22 80 00 07 be,a 20082c4 <_Heap_Walk+0x22c> 20082ac: d8 02 e0 0c ld [ %o3 + 0xc ], %o4 (*printer)( 20082b0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082b4: 90 10 00 19 mov %i1, %o0 20082b8: 92 10 20 01 mov 1, %o1 20082bc: 10 80 00 b0 b 200857c <_Heap_Walk+0x4e4> 20082c0: 94 12 a3 20 or %o2, 0x320, %o2 ); return false; } if ( free_block->prev != prev_block ) { 20082c4: 80 a3 00 12 cmp %o4, %l2 20082c8: 22 80 00 0a be,a 20082f0 <_Heap_Walk+0x258> 20082cc: a4 10 00 0b mov %o3, %l2 (*printer)( 20082d0: 15 00 80 52 sethi %hi(0x2014800), %o2 20082d4: 90 10 00 19 mov %i1, %o0 20082d8: 92 10 20 01 mov 1, %o1 20082dc: 94 12 a3 40 or %o2, 0x340, %o2 20082e0: 9f c7 40 00 call %i5 20082e4: 01 00 00 00 nop if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20082e8: 10 80 00 9e b 2008560 <_Heap_Walk+0x4c8> 20082ec: 82 10 20 00 clr %g1 ! 0 return false; } prev_block = free_block; free_block = free_block->next; 20082f0: d6 02 e0 08 ld [ %o3 + 8 ], %o3 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 20082f4: 80 a2 c0 18 cmp %o3, %i0 20082f8: 32 bf ff ce bne,a 2008230 <_Heap_Walk+0x198> 20082fc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 2008300: 2d 00 80 53 sethi %hi(0x2014c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008304: 2f 00 80 53 sethi %hi(0x2014c00), %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008308: ac 15 a1 00 or %l6, 0x100, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200830c: ae 15 e0 e8 or %l7, 0xe8, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008310: 2b 00 80 53 sethi %hi(0x2014c00), %l5 block = next_block; } while ( block != first_block ); return true; } 2008314: c2 06 a0 04 ld [ %i2 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008318: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200831c: a4 08 7f fe and %g1, -2, %l2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008320: a6 04 80 1a add %l2, %i2, %l3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008324: 80 a0 c0 13 cmp %g3, %l3 2008328: 18 80 00 05 bgu 200833c <_Heap_Walk+0x2a4> <== NEVER TAKEN 200832c: 84 10 20 00 clr %g2 2008330: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 2008334: 80 a0 80 13 cmp %g2, %l3 2008338: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200833c: 80 a0 a0 00 cmp %g2, 0 2008340: 12 80 00 07 bne 200835c <_Heap_Walk+0x2c4> 2008344: 84 1e 80 11 xor %i2, %l1, %g2 (*printer)( 2008348: 15 00 80 52 sethi %hi(0x2014800), %o2 200834c: 90 10 00 19 mov %i1, %o0 2008350: 92 10 20 01 mov 1, %o1 2008354: 10 80 00 2c b 2008404 <_Heap_Walk+0x36c> 2008358: 94 12 a3 78 or %o2, 0x378, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 200835c: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008360: c2 27 bf fc st %g1, [ %fp + -4 ] 2008364: a8 40 20 00 addx %g0, 0, %l4 2008368: 90 10 00 12 mov %l2, %o0 200836c: 7f ff e5 dd call 2001ae0 <.urem> 2008370: 92 10 00 1c mov %i4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008374: 80 a2 20 00 cmp %o0, 0 2008378: 02 80 00 0c be 20083a8 <_Heap_Walk+0x310> 200837c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008380: 80 8d 20 ff btst 0xff, %l4 2008384: 02 80 00 0a be 20083ac <_Heap_Walk+0x314> 2008388: 80 a4 80 10 cmp %l2, %l0 (*printer)( 200838c: 15 00 80 52 sethi %hi(0x2014800), %o2 2008390: 90 10 00 19 mov %i1, %o0 2008394: 92 10 20 01 mov 1, %o1 2008398: 94 12 a3 a8 or %o2, 0x3a8, %o2 200839c: 96 10 00 1a mov %i2, %o3 20083a0: 10 bf ff d0 b 20082e0 <_Heap_Walk+0x248> 20083a4: 98 10 00 12 mov %l2, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20083a8: 80 a4 80 10 cmp %l2, %l0 20083ac: 1a 80 00 0d bcc 20083e0 <_Heap_Walk+0x348> 20083b0: 80 a4 c0 1a cmp %l3, %i2 20083b4: 80 8d 20 ff btst 0xff, %l4 20083b8: 02 80 00 0a be 20083e0 <_Heap_Walk+0x348> <== NEVER TAKEN 20083bc: 80 a4 c0 1a cmp %l3, %i2 (*printer)( 20083c0: 15 00 80 52 sethi %hi(0x2014800), %o2 20083c4: 90 10 00 19 mov %i1, %o0 20083c8: 92 10 20 01 mov 1, %o1 20083cc: 94 12 a3 d8 or %o2, 0x3d8, %o2 20083d0: 96 10 00 1a mov %i2, %o3 20083d4: 98 10 00 12 mov %l2, %o4 20083d8: 10 80 00 3d b 20084cc <_Heap_Walk+0x434> 20083dc: 9a 10 00 10 mov %l0, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20083e0: 38 80 00 0c bgu,a 2008410 <_Heap_Walk+0x378> 20083e4: a8 08 60 01 and %g1, 1, %l4 20083e8: 80 8d 20 ff btst 0xff, %l4 20083ec: 02 80 00 09 be 2008410 <_Heap_Walk+0x378> 20083f0: a8 08 60 01 and %g1, 1, %l4 (*printer)( 20083f4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083f8: 90 10 00 19 mov %i1, %o0 20083fc: 92 10 20 01 mov 1, %o1 2008400: 94 12 a0 08 or %o2, 8, %o2 2008404: 96 10 00 1a mov %i2, %o3 2008408: 10 bf ff b6 b 20082e0 <_Heap_Walk+0x248> 200840c: 98 10 00 13 mov %l3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008410: c2 04 e0 04 ld [ %l3 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008414: 80 88 60 01 btst 1, %g1 2008418: 12 80 00 40 bne 2008518 <_Heap_Walk+0x480> 200841c: 90 10 00 19 mov %i1, %o0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008420: da 06 a0 0c ld [ %i2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008424: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008428: 05 00 80 52 sethi %hi(0x2014800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 200842c: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008430: 80 a3 40 01 cmp %o5, %g1 2008434: 02 80 00 07 be 2008450 <_Heap_Walk+0x3b8> 2008438: 86 10 a0 e8 or %g2, 0xe8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200843c: 80 a3 40 18 cmp %o5, %i0 2008440: 12 80 00 04 bne 2008450 <_Heap_Walk+0x3b8> 2008444: 86 15 60 b0 or %l5, 0xb0, %g3 2008448: 07 00 80 52 sethi %hi(0x2014800), %g3 200844c: 86 10 e0 f8 or %g3, 0xf8, %g3 ! 20148f8 <_Status_Object_name_errors_to_status+0x48> block->next, block->next == last_free_block ? 2008450: c4 06 a0 08 ld [ %i2 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008454: 1f 00 80 52 sethi %hi(0x2014800), %o7 2008458: 80 a0 80 04 cmp %g2, %g4 200845c: 02 80 00 07 be 2008478 <_Heap_Walk+0x3e0> 2008460: 82 13 e1 08 or %o7, 0x108, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008464: 80 a0 80 18 cmp %g2, %i0 2008468: 12 80 00 04 bne 2008478 <_Heap_Walk+0x3e0> 200846c: 82 15 60 b0 or %l5, 0xb0, %g1 2008470: 03 00 80 52 sethi %hi(0x2014800), %g1 2008474: 82 10 61 18 or %g1, 0x118, %g1 ! 2014918 <_Status_Object_name_errors_to_status+0x68> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008478: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200847c: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008480: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 2008484: 90 10 00 19 mov %i1, %o0 2008488: 92 10 20 00 clr %o1 200848c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008490: 96 10 00 1a mov %i2, %o3 2008494: 94 12 a0 40 or %o2, 0x40, %o2 2008498: 9f c7 40 00 call %i5 200849c: 98 10 00 12 mov %l2, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20084a0: da 04 c0 00 ld [ %l3 ], %o5 20084a4: 80 a4 80 0d cmp %l2, %o5 20084a8: 02 80 00 0d be 20084dc <_Heap_Walk+0x444> 20084ac: 80 a5 20 00 cmp %l4, 0 (*printer)( 20084b0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084b4: e6 23 a0 5c st %l3, [ %sp + 0x5c ] 20084b8: 90 10 00 19 mov %i1, %o0 20084bc: 92 10 20 01 mov 1, %o1 20084c0: 94 12 a0 78 or %o2, 0x78, %o2 20084c4: 96 10 00 1a mov %i2, %o3 20084c8: 98 10 00 12 mov %l2, %o4 20084cc: 9f c7 40 00 call %i5 20084d0: 01 00 00 00 nop 20084d4: 10 80 00 23 b 2008560 <_Heap_Walk+0x4c8> 20084d8: 82 10 20 00 clr %g1 ! 0 ); return false; } if ( !prev_used ) { 20084dc: 32 80 00 0a bne,a 2008504 <_Heap_Walk+0x46c> 20084e0: c2 06 20 08 ld [ %i0 + 8 ], %g1 (*printer)( 20084e4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084e8: 90 10 00 19 mov %i1, %o0 20084ec: 92 10 20 01 mov 1, %o1 20084f0: 10 80 00 22 b 2008578 <_Heap_Walk+0x4e0> 20084f4: 94 12 a0 b8 or %o2, 0xb8, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 20084f8: 02 80 00 17 be 2008554 <_Heap_Walk+0x4bc> 20084fc: 80 a4 c0 1b cmp %l3, %i3 return true; } free_block = free_block->next; 2008500: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008504: 80 a0 40 18 cmp %g1, %i0 2008508: 12 bf ff fc bne 20084f8 <_Heap_Walk+0x460> 200850c: 80 a0 40 1a cmp %g1, %i2 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008510: 10 80 00 17 b 200856c <_Heap_Walk+0x4d4> 2008514: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008518: 80 a5 20 00 cmp %l4, 0 200851c: 02 80 00 08 be 200853c <_Heap_Walk+0x4a4> 2008520: 92 10 20 00 clr %o1 (*printer)( 2008524: 94 10 00 17 mov %l7, %o2 2008528: 96 10 00 1a mov %i2, %o3 200852c: 9f c7 40 00 call %i5 2008530: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008534: 10 80 00 08 b 2008554 <_Heap_Walk+0x4bc> 2008538: 80 a4 c0 1b cmp %l3, %i3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 200853c: da 06 80 00 ld [ %i2 ], %o5 2008540: 94 10 00 16 mov %l6, %o2 2008544: 96 10 00 1a mov %i2, %o3 2008548: 9f c7 40 00 call %i5 200854c: 98 10 00 12 mov %l2, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008550: 80 a4 c0 1b cmp %l3, %i3 2008554: 12 bf ff 70 bne 2008314 <_Heap_Walk+0x27c> 2008558: b4 10 00 13 mov %l3, %i2 return true; 200855c: 82 10 20 01 mov 1, %g1 } 2008560: b0 08 60 01 and %g1, 1, %i0 2008564: 81 c7 e0 08 ret 2008568: 81 e8 00 00 restore return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 200856c: 90 10 00 19 mov %i1, %o0 2008570: 92 10 20 01 mov 1, %o1 2008574: 94 12 a1 28 or %o2, 0x128, %o2 2008578: 96 10 00 1a mov %i2, %o3 200857c: 9f c7 40 00 call %i5 2008580: 01 00 00 00 nop 2008584: 10 bf ff f7 b 2008560 <_Heap_Walk+0x4c8> 2008588: 82 10 20 00 clr %g1 ! 0 =============================================================================== 02007868 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007868: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 200786c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007870: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007874: 80 a0 60 00 cmp %g1, 0 2007878: 02 80 00 20 be 20078f8 <_Objects_Allocate+0x90> <== NEVER TAKEN 200787c: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007880: b8 07 60 20 add %i5, 0x20, %i4 2007884: 7f ff fd 87 call 2006ea0 <_Chain_Get> 2007888: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 200788c: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2007890: 80 a0 60 00 cmp %g1, 0 2007894: 02 80 00 19 be 20078f8 <_Objects_Allocate+0x90> 2007898: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 200789c: 80 a2 20 00 cmp %o0, 0 20078a0: 32 80 00 0a bne,a 20078c8 <_Objects_Allocate+0x60> 20078a4: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 _Objects_Extend_information( information ); 20078a8: 40 00 00 1d call 200791c <_Objects_Extend_information> 20078ac: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20078b0: 7f ff fd 7c call 2006ea0 <_Chain_Get> 20078b4: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 20078b8: b0 92 20 00 orcc %o0, 0, %i0 20078bc: 02 80 00 0f be 20078f8 <_Objects_Allocate+0x90> 20078c0: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 20078c4: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 20078c8: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 20078cc: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 20078d0: 40 00 3c 3f call 20169cc <.udiv> 20078d4: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 20078d8: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 20078dc: 91 2a 20 02 sll %o0, 2, %o0 20078e0: c4 00 40 08 ld [ %g1 + %o0 ], %g2 20078e4: 84 00 bf ff add %g2, -1, %g2 20078e8: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 20078ec: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1 20078f0: 82 00 7f ff add %g1, -1, %g1 20078f4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 20078f8: 81 c7 e0 08 ret 20078fc: 81 e8 00 00 restore =============================================================================== 02007c74 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007c74: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007c78: 80 a6 60 00 cmp %i1, 0 2007c7c: 02 80 00 17 be 2007cd8 <_Objects_Get_information+0x64> 2007c80: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007c84: 40 00 11 66 call 200c21c <_Objects_API_maximum_class> 2007c88: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007c8c: 80 a2 20 00 cmp %o0, 0 2007c90: 02 80 00 12 be 2007cd8 <_Objects_Get_information+0x64> 2007c94: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007c98: 18 80 00 10 bgu 2007cd8 <_Objects_Get_information+0x64> 2007c9c: 03 00 80 6c sethi %hi(0x201b000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007ca0: b1 2e 20 02 sll %i0, 2, %i0 2007ca4: 82 10 63 58 or %g1, 0x358, %g1 2007ca8: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007cac: 80 a0 60 00 cmp %g1, 0 2007cb0: 02 80 00 0a be 2007cd8 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007cb4: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007cb8: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 2007cbc: 80 a7 60 00 cmp %i5, 0 2007cc0: 02 80 00 06 be 2007cd8 <_Objects_Get_information+0x64> <== NEVER TAKEN 2007cc4: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007cc8: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 2007ccc: 80 a0 00 01 cmp %g0, %g1 2007cd0: 82 60 20 00 subx %g0, 0, %g1 2007cd4: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 2007cd8: 81 c7 e0 08 ret 2007cdc: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 020087a8 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20087a8: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20087ac: 92 96 20 00 orcc %i0, 0, %o1 20087b0: 12 80 00 06 bne 20087c8 <_Objects_Id_to_name+0x20> 20087b4: 83 32 60 18 srl %o1, 0x18, %g1 20087b8: 03 00 80 72 sethi %hi(0x201c800), %g1 20087bc: c2 00 62 18 ld [ %g1 + 0x218 ], %g1 ! 201ca18 <_Per_CPU_Information+0xc> 20087c0: d2 00 60 08 ld [ %g1 + 8 ], %o1 20087c4: 83 32 60 18 srl %o1, 0x18, %g1 20087c8: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20087cc: 84 00 7f ff add %g1, -1, %g2 20087d0: 80 a0 a0 02 cmp %g2, 2 20087d4: 18 80 00 12 bgu 200881c <_Objects_Id_to_name+0x74> 20087d8: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20087dc: 10 80 00 12 b 2008824 <_Objects_Id_to_name+0x7c> 20087e0: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 20087e4: 85 28 a0 02 sll %g2, 2, %g2 20087e8: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 20087ec: 80 a2 20 00 cmp %o0, 0 20087f0: 02 80 00 0b be 200881c <_Objects_Id_to_name+0x74> <== NEVER TAKEN 20087f4: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 20087f8: 7f ff ff ce call 2008730 <_Objects_Get> 20087fc: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2008800: 80 a2 20 00 cmp %o0, 0 2008804: 02 80 00 06 be 200881c <_Objects_Id_to_name+0x74> 2008808: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200880c: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2008810: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008814: 40 00 03 62 call 200959c <_Thread_Enable_dispatch> 2008818: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 200881c: 81 c7 e0 08 ret 2008820: 91 e8 00 1d restore %g0, %i5, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008824: 05 00 80 71 sethi %hi(0x201c400), %g2 2008828: 84 10 a3 48 or %g2, 0x348, %g2 ! 201c748 <_Objects_Information_table> 200882c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2008830: 80 a0 60 00 cmp %g1, 0 2008834: 12 bf ff ec bne 20087e4 <_Objects_Id_to_name+0x3c> 2008838: 85 32 60 1b srl %o1, 0x1b, %g2 200883c: 30 bf ff f8 b,a 200881c <_Objects_Id_to_name+0x74> =============================================================================== 020086f8 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 20086f8: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if(!the_node) return; 20086fc: 80 a6 60 00 cmp %i1, 0 2008700: 02 80 00 77 be 20088dc <_RBTree_Extract_unprotected+0x1e4> 2008704: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 2008708: c2 06 20 08 ld [ %i0 + 8 ], %g1 200870c: 80 a6 40 01 cmp %i1, %g1 2008710: 32 80 00 0d bne,a 2008744 <_RBTree_Extract_unprotected+0x4c> 2008714: c2 06 20 0c ld [ %i0 + 0xc ], %g1 if (the_node->child[RBT_RIGHT]) 2008718: c2 06 60 08 ld [ %i1 + 8 ], %g1 200871c: 80 a0 60 00 cmp %g1, 0 2008720: 22 80 00 04 be,a 2008730 <_RBTree_Extract_unprotected+0x38> 2008724: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 2008728: 10 80 00 06 b 2008740 <_RBTree_Extract_unprotected+0x48> 200872c: c2 26 20 08 st %g1, [ %i0 + 8 ] else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008730: 80 a6 00 01 cmp %i0, %g1 2008734: 12 80 00 03 bne 2008740 <_RBTree_Extract_unprotected+0x48> 2008738: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 200873c: c0 26 20 08 clr [ %i0 + 8 ] } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 2008740: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008744: 80 a6 40 01 cmp %i1, %g1 2008748: 12 80 00 0b bne 2008774 <_RBTree_Extract_unprotected+0x7c> 200874c: c2 06 60 04 ld [ %i1 + 4 ], %g1 if (the_node->child[RBT_LEFT]) 2008750: 80 a0 60 00 cmp %g1, 0 2008754: 22 80 00 04 be,a 2008764 <_RBTree_Extract_unprotected+0x6c> 2008758: c4 06 40 00 ld [ %i1 ], %g2 the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; 200875c: 10 80 00 06 b 2008774 <_RBTree_Extract_unprotected+0x7c> 2008760: c2 26 20 0c st %g1, [ %i0 + 0xc ] else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008764: 80 a6 00 02 cmp %i0, %g2 2008768: 12 80 00 03 bne 2008774 <_RBTree_Extract_unprotected+0x7c> 200876c: c4 26 20 0c st %g2, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 2008770: c0 26 20 0c clr [ %i0 + 0xc ] * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2008774: ba 90 60 00 orcc %g1, 0, %i5 2008778: 02 80 00 32 be 2008840 <_RBTree_Extract_unprotected+0x148> 200877c: f8 06 60 08 ld [ %i1 + 8 ], %i4 2008780: 80 a7 20 00 cmp %i4, 0 2008784: 32 80 00 05 bne,a 2008798 <_RBTree_Extract_unprotected+0xa0><== NEVER TAKEN 2008788: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 200878c: 10 80 00 31 b 2008850 <_RBTree_Extract_unprotected+0x158> 2008790: b8 10 00 01 mov %g1, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 2008794: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2008798: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED 200879c: 32 bf ff fe bne,a 2008794 <_RBTree_Extract_unprotected+0x9c><== NOT EXECUTED 20087a0: ba 10 00 01 mov %g1, %i5 <== NOT EXECUTED * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 20087a4: f8 07 60 04 ld [ %i5 + 4 ], %i4 <== NOT EXECUTED if(leaf) { 20087a8: 80 a7 20 00 cmp %i4, 0 <== NOT EXECUTED 20087ac: 02 80 00 05 be 20087c0 <_RBTree_Extract_unprotected+0xc8> <== NOT EXECUTED 20087b0: 01 00 00 00 nop <== NOT EXECUTED leaf->parent = target->parent; 20087b4: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED 20087b8: 10 80 00 04 b 20087c8 <_RBTree_Extract_unprotected+0xd0> <== NOT EXECUTED 20087bc: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 20087c0: 7f ff ff 50 call 2008500 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED 20087c4: 90 10 00 1d mov %i5, %o0 <== NOT EXECUTED } victim_color = target->color; dir = target != target->parent->child[0]; 20087c8: c4 07 40 00 ld [ %i5 ], %g2 <== NOT EXECUTED leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 20087cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED dir = target != target->parent->child[0]; 20087d0: c6 00 a0 04 ld [ %g2 + 4 ], %g3 <== NOT EXECUTED 20087d4: 86 1f 40 03 xor %i5, %g3, %g3 <== NOT EXECUTED 20087d8: 80 a0 00 03 cmp %g0, %g3 <== NOT EXECUTED 20087dc: 86 40 20 00 addx %g0, 0, %g3 <== NOT EXECUTED target->parent->child[dir] = leaf; 20087e0: 87 28 e0 02 sll %g3, 2, %g3 <== NOT EXECUTED 20087e4: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED 20087e8: f8 20 a0 04 st %i4, [ %g2 + 4 ] <== NOT EXECUTED /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 20087ec: c4 06 40 00 ld [ %i1 ], %g2 <== NOT EXECUTED 20087f0: c6 00 a0 04 ld [ %g2 + 4 ], %g3 <== NOT EXECUTED 20087f4: 86 1e 40 03 xor %i1, %g3, %g3 <== NOT EXECUTED 20087f8: 80 a0 00 03 cmp %g0, %g3 <== NOT EXECUTED 20087fc: 86 40 20 00 addx %g0, 0, %g3 <== NOT EXECUTED the_node->parent->child[dir] = target; 2008800: 87 28 e0 02 sll %g3, 2, %g3 <== NOT EXECUTED 2008804: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED 2008808: fa 20 a0 04 st %i5, [ %g2 + 4 ] <== NOT EXECUTED /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 200880c: c4 06 60 08 ld [ %i1 + 8 ], %g2 <== NOT EXECUTED 2008810: c4 27 60 08 st %g2, [ %i5 + 8 ] <== NOT EXECUTED the_node->child[RBT_RIGHT]->parent = target; 2008814: c4 06 60 08 ld [ %i1 + 8 ], %g2 <== NOT EXECUTED 2008818: fa 20 80 00 st %i5, [ %g2 ] <== NOT EXECUTED target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 200881c: c4 06 60 04 ld [ %i1 + 4 ], %g2 <== NOT EXECUTED 2008820: c4 27 60 04 st %g2, [ %i5 + 4 ] <== NOT EXECUTED the_node->child[RBT_LEFT]->parent = target; 2008824: c4 06 60 04 ld [ %i1 + 4 ], %g2 <== NOT EXECUTED 2008828: fa 20 80 00 st %i5, [ %g2 ] <== NOT EXECUTED /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200882c: c4 06 40 00 ld [ %i1 ], %g2 <== NOT EXECUTED 2008830: c4 27 40 00 st %g2, [ %i5 ] <== NOT EXECUTED target->color = the_node->color; 2008834: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 <== NOT EXECUTED 2008838: 10 80 00 14 b 2008888 <_RBTree_Extract_unprotected+0x190> <== NOT EXECUTED 200883c: c4 27 60 10 st %g2, [ %i5 + 0x10 ] <== NOT EXECUTED * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 2008840: 80 a7 20 00 cmp %i4, 0 2008844: 32 80 00 04 bne,a 2008854 <_RBTree_Extract_unprotected+0x15c> 2008848: c2 06 40 00 ld [ %i1 ], %g1 200884c: 30 80 00 04 b,a 200885c <_RBTree_Extract_unprotected+0x164> leaf->parent = the_node->parent; 2008850: c2 06 40 00 ld [ %i1 ], %g1 2008854: 10 80 00 04 b 2008864 <_RBTree_Extract_unprotected+0x16c> 2008858: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 200885c: 7f ff ff 29 call 2008500 <_RBTree_Extract_validate_unprotected> 2008860: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008864: c4 06 40 00 ld [ %i1 ], %g2 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 2008868: c2 06 60 10 ld [ %i1 + 0x10 ], %g1 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200886c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 2008870: 86 1e 40 03 xor %i1, %g3, %g3 2008874: 80 a0 00 03 cmp %g0, %g3 2008878: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 200887c: 87 28 e0 02 sll %g3, 2, %g3 2008880: 84 00 80 03 add %g2, %g3, %g2 2008884: f8 20 a0 04 st %i4, [ %g2 + 4 ] * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node and the child is red. Paint child black. * 3. Deleted a black node and its child is black. This requires some * care and rotations. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 2008888: 80 a0 60 00 cmp %g1, 0 200888c: 32 80 00 0e bne,a 20088c4 <_RBTree_Extract_unprotected+0x1cc> 2008890: c2 06 20 04 ld [ %i0 + 4 ], %g1 2008894: 80 a7 20 00 cmp %i4, 0 2008898: 22 80 00 0b be,a 20088c4 <_RBTree_Extract_unprotected+0x1cc> 200889c: c2 06 20 04 ld [ %i0 + 4 ], %g1 20088a0: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 20088a4: 80 a0 60 01 cmp %g1, 1 20088a8: 12 80 00 04 bne 20088b8 <_RBTree_Extract_unprotected+0x1c0><== NEVER TAKEN 20088ac: 01 00 00 00 nop if (_RBTree_Is_red(leaf)) leaf->color = RBT_BLACK; /* case 2 */ 20088b0: 10 80 00 04 b 20088c0 <_RBTree_Extract_unprotected+0x1c8> 20088b4: c0 27 20 10 clr [ %i4 + 0x10 ] else if(leaf) _RBTree_Extract_validate_unprotected(leaf); /* case 3 */ 20088b8: 7f ff ff 12 call 2008500 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED 20088bc: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 20088c0: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 20088c4: c0 26 60 08 clr [ %i1 + 8 ] 20088c8: c0 26 60 04 clr [ %i1 + 4 ] 20088cc: 80 a0 60 00 cmp %g1, 0 20088d0: 02 80 00 03 be 20088dc <_RBTree_Extract_unprotected+0x1e4> 20088d4: c0 26 40 00 clr [ %i1 ] 20088d8: c0 20 60 10 clr [ %g1 + 0x10 ] 20088dc: 81 c7 e0 08 ret 20088e0: 81 e8 00 00 restore =============================================================================== 02008500 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2008500: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 2008504: fa 06 00 00 ld [ %i0 ], %i5 if(!parent->parent) return; 2008508: c2 07 40 00 ld [ %i5 ], %g1 200850c: 80 a0 60 00 cmp %g1, 0 2008510: 02 80 00 71 be 20086d4 <_RBTree_Extract_validate_unprotected+0x1d4> 2008514: 90 10 00 18 mov %i0, %o0 sibling = _RBTree_Sibling(the_node); 2008518: 7f ff ff ca call 2008440 <_RBTree_Sibling> 200851c: b4 10 20 01 mov 1, %i2 /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008520: 10 80 00 60 b 20086a0 <_RBTree_Extract_validate_unprotected+0x1a0> 2008524: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008528: 22 80 00 5e be,a 20086a0 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN 200852c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED 2008530: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 2008534: 80 a0 60 01 cmp %g1, 1 2008538: 32 80 00 14 bne,a 2008588 <_RBTree_Extract_validate_unprotected+0x88> 200853c: c4 02 20 08 ld [ %o0 + 8 ], %g2 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2008540: c2 27 60 10 st %g1, [ %i5 + 0x10 ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008544: c2 07 60 04 ld [ %i5 + 4 ], %g1 * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; 2008548: c0 22 20 10 clr [ %o0 + 0x10 ] dir = the_node != parent->child[0]; 200854c: 82 1e 00 01 xor %i0, %g1, %g1 2008550: 80 a0 00 01 cmp %g0, %g1 _RBTree_Rotate(parent, dir); 2008554: 90 10 00 1d mov %i5, %o0 * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008558: b8 40 20 00 addx %g0, 0, %i4 _RBTree_Rotate(parent, dir); 200855c: 7f ff ff ca call 2008484 <_RBTree_Rotate> 2008560: 92 10 00 1c mov %i4, %o1 sibling = parent->child[!dir]; 2008564: 80 a0 00 1c cmp %g0, %i4 2008568: 82 60 3f ff subx %g0, -1, %g1 200856c: 83 28 60 02 sll %g1, 2, %g1 2008570: 82 07 40 01 add %i5, %g1, %g1 2008574: d0 00 60 04 ld [ %g1 + 4 ], %o0 } /* sibling is black, see if both of its children are also black. */ if (sibling && 2008578: 80 a2 20 00 cmp %o0, 0 200857c: 22 80 00 49 be,a 20086a0 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN 2008580: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2008584: c4 02 20 08 ld [ %o0 + 8 ], %g2 2008588: 80 a0 a0 00 cmp %g2, 0 200858c: 02 80 00 06 be 20085a4 <_RBTree_Extract_validate_unprotected+0xa4> 2008590: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2008594: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 2008598: 82 18 60 01 xor %g1, 1, %g1 200859c: 80 a0 00 01 cmp %g0, %g1 20085a0: 82 60 3f ff subx %g0, -1, %g1 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (sibling && 20085a4: 80 a0 60 00 cmp %g1, 0 20085a8: 32 80 00 14 bne,a 20085f8 <_RBTree_Extract_validate_unprotected+0xf8> 20085ac: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 20085b0: c4 02 20 04 ld [ %o0 + 4 ], %g2 20085b4: 80 a0 a0 00 cmp %g2, 0 20085b8: 02 80 00 07 be 20085d4 <_RBTree_Extract_validate_unprotected+0xd4> 20085bc: 80 a0 60 00 cmp %g1, 0 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 20085c0: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 20085c4: 82 18 60 01 xor %g1, 1, %g1 20085c8: 80 a0 00 01 cmp %g0, %g1 20085cc: 82 60 3f ff subx %g0, -1, %g1 sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (sibling && !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 20085d0: 80 a0 60 00 cmp %g1, 0 20085d4: 32 80 00 09 bne,a 20085f8 <_RBTree_Extract_validate_unprotected+0xf8> 20085d8: c2 07 60 04 ld [ %i5 + 4 ], %g1 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 20085dc: f4 22 20 10 st %i2, [ %o0 + 0x10 ] 20085e0: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 20085e4: 80 a0 60 01 cmp %g1, 1 20085e8: 32 80 00 3d bne,a 20086dc <_RBTree_Extract_validate_unprotected+0x1dc> 20085ec: f8 07 40 00 ld [ %i5 ], %i4 if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; 20085f0: 10 80 00 33 b 20086bc <_RBTree_Extract_validate_unprotected+0x1bc> 20085f4: c0 27 60 10 clr [ %i5 + 0x10 ] * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 20085f8: 82 1e 00 01 xor %i0, %g1, %g1 20085fc: 80 a0 00 01 cmp %g0, %g1 2008600: b8 40 20 00 addx %g0, 0, %i4 if (!_RBTree_Is_red(sibling->child[!dir])) { 2008604: 80 a0 00 1c cmp %g0, %i4 2008608: b6 60 3f ff subx %g0, -1, %i3 200860c: 83 2e e0 02 sll %i3, 2, %g1 2008610: 82 02 00 01 add %o0, %g1, %g1 2008614: c4 00 60 04 ld [ %g1 + 4 ], %g2 2008618: 80 a0 a0 00 cmp %g2, 0 200861c: 02 80 00 06 be 2008634 <_RBTree_Extract_validate_unprotected+0x134> 2008620: 82 10 20 00 clr %g1 * This function maintains the properties of the red-black tree. * * @note It does NOT disable interrupts to ensure the atomicity * of the extract operation. */ void _RBTree_Extract_validate_unprotected( 2008624: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 2008628: 82 18 60 01 xor %g1, 1, %g1 200862c: 80 a0 00 01 cmp %g0, %g1 2008630: 82 60 3f ff subx %g0, -1, %g1 * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { 2008634: 80 a0 60 00 cmp %g1, 0 2008638: 32 80 00 0e bne,a 2008670 <_RBTree_Extract_validate_unprotected+0x170> 200863c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 sibling->color = RBT_RED; 2008640: 82 10 20 01 mov 1, %g1 2008644: c2 22 20 10 st %g1, [ %o0 + 0x10 ] sibling->child[dir]->color = RBT_BLACK; 2008648: 83 2f 20 02 sll %i4, 2, %g1 200864c: 82 02 00 01 add %o0, %g1, %g1 2008650: c2 00 60 04 ld [ %g1 + 4 ], %g1 _RBTree_Rotate(sibling, !dir); 2008654: 92 1f 20 01 xor %i4, 1, %o1 2008658: 7f ff ff 8b call 2008484 <_RBTree_Rotate> 200865c: c0 20 60 10 clr [ %g1 + 0x10 ] sibling = parent->child[!dir]; 2008660: 83 2e e0 02 sll %i3, 2, %g1 2008664: 82 07 40 01 add %i5, %g1, %g1 2008668: d0 00 60 04 ld [ %g1 + 4 ], %o0 } sibling->color = parent->color; 200866c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008670: b7 2e e0 02 sll %i3, 2, %i3 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; 2008674: c2 22 20 10 st %g1, [ %o0 + 0x10 ] parent->color = RBT_BLACK; sibling->child[!dir]->color = RBT_BLACK; 2008678: 90 02 00 1b add %o0, %i3, %o0 200867c: c2 02 20 04 ld [ %o0 + 4 ], %g1 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; } sibling->color = parent->color; parent->color = RBT_BLACK; 2008680: c0 27 60 10 clr [ %i5 + 0x10 ] sibling->child[!dir]->color = RBT_BLACK; 2008684: c0 20 60 10 clr [ %g1 + 0x10 ] _RBTree_Rotate(parent, dir); 2008688: 90 10 00 1d mov %i5, %o0 200868c: 7f ff ff 7e call 2008484 <_RBTree_Rotate> 2008690: 92 10 00 1c mov %i4, %o1 break; /* done */ 2008694: 10 80 00 0b b 20086c0 <_RBTree_Extract_validate_unprotected+0x1c0> 2008698: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 200869c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 20086a0: 80 a0 60 01 cmp %g1, 1 20086a4: 22 80 00 07 be,a 20086c0 <_RBTree_Extract_validate_unprotected+0x1c0> 20086a8: c2 06 00 00 ld [ %i0 ], %g1 20086ac: c2 07 40 00 ld [ %i5 ], %g1 20086b0: 80 a0 60 00 cmp %g1, 0 20086b4: 12 bf ff 9d bne 2008528 <_RBTree_Extract_validate_unprotected+0x28> 20086b8: 80 a2 20 00 cmp %o0, 0 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 20086bc: c2 06 00 00 ld [ %i0 ], %g1 20086c0: c2 00 40 00 ld [ %g1 ], %g1 20086c4: 80 a0 60 00 cmp %g1, 0 20086c8: 12 80 00 0a bne 20086f0 <_RBTree_Extract_validate_unprotected+0x1f0> 20086cc: 01 00 00 00 nop 20086d0: c0 26 20 10 clr [ %i0 + 0x10 ] 20086d4: 81 c7 e0 08 ret 20086d8: 81 e8 00 00 restore parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; sibling = _RBTree_Sibling(the_node); 20086dc: 90 10 00 1d mov %i5, %o0 20086e0: 7f ff ff 58 call 2008440 <_RBTree_Sibling> 20086e4: b0 10 00 1d mov %i5, %i0 20086e8: 10 bf ff ed b 200869c <_RBTree_Extract_validate_unprotected+0x19c> 20086ec: ba 10 00 1c mov %i4, %i5 20086f0: 81 c7 e0 08 ret 20086f4: 81 e8 00 00 restore =============================================================================== 02008958 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, unsigned int the_value ) { 2008958: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 200895c: 7f ff e8 1e call 20029d4 2008960: 01 00 00 00 nop RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { if (the_value == iter_node->value) return(iter_node); RBTree_Direction dir = the_value > iter_node->value; iter_node = iter_node->child[dir]; 2008964: 10 80 00 09 b 2008988 <_RBTree_Find+0x30> 2008968: f0 06 20 04 ld [ %i0 + 4 ], %i0 unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { if (the_value == iter_node->value) return(iter_node); 200896c: 80 a6 40 01 cmp %i1, %g1 2008970: 02 80 00 09 be 2008994 <_RBTree_Find+0x3c> 2008974: 80 a0 40 19 cmp %g1, %i1 RBTree_Direction dir = the_value > iter_node->value; 2008978: 82 40 20 00 addx %g0, 0, %g1 iter_node = iter_node->child[dir]; 200897c: 83 28 60 02 sll %g1, 2, %g1 2008980: b0 06 00 01 add %i0, %g1, %i0 2008984: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Control *the_rbtree, unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { 2008988: 80 a6 20 00 cmp %i0, 0 200898c: 32 bf ff f8 bne,a 200896c <_RBTree_Find+0x14> <== ALWAYS TAKEN 2008990: c2 06 20 0c ld [ %i0 + 0xc ], %g1 return_node = _RBTree_Find_unprotected( the_rbtree, the_value ); _ISR_Enable( level ); 2008994: 7f ff e8 14 call 20029e4 2008998: 01 00 00 00 nop return return_node; } 200899c: 81 c7 e0 08 ret 20089a0: 81 e8 00 00 restore =============================================================================== 02008908 <_RBTree_Find_header>: */ RBTree_Control *_RBTree_Find_header( RBTree_Node *the_node ) { 2008908: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Control *return_header; return_header = NULL; _ISR_Disable( level ); 200890c: 7f ff e8 32 call 20029d4 2008910: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected( RBTree_Node *the_node ) { if(!the_node) return NULL; 2008914: 80 a7 60 00 cmp %i5, 0 2008918: 02 80 00 0c be 2008948 <_RBTree_Find_header+0x40> <== NEVER TAKEN 200891c: b0 10 20 00 clr %i0 if(!(the_node->parent)) return NULL; 2008920: c2 07 40 00 ld [ %i5 ], %g1 2008924: 80 a0 60 00 cmp %g1, 0 2008928: 32 80 00 03 bne,a 2008934 <_RBTree_Find_header+0x2c> <== ALWAYS TAKEN 200892c: ba 10 00 01 mov %g1, %i5 2008930: 30 80 00 06 b,a 2008948 <_RBTree_Find_header+0x40> <== NOT EXECUTED while(the_node->parent) the_node = the_node->parent; 2008934: c2 07 40 00 ld [ %i5 ], %g1 2008938: 80 a0 60 00 cmp %g1, 0 200893c: 32 bf ff fe bne,a 2008934 <_RBTree_Find_header+0x2c> 2008940: ba 10 00 01 mov %g1, %i5 2008944: b0 10 00 1d mov %i5, %i0 return_header = _RBTree_Find_header_unprotected( the_node ); _ISR_Enable( level ); 2008948: 7f ff e8 27 call 20029e4 200894c: 01 00 00 00 nop return return_header; } 2008950: 81 c7 e0 08 ret 2008954: 81 e8 00 00 restore =============================================================================== 02008b40 <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 2008b40: 9d e3 bf a0 save %sp, -96, %sp 2008b44: 82 10 00 18 mov %i0, %g1 2008b48: 90 10 00 19 mov %i1, %o0 if(!the_node) return (RBTree_Node*)-1; 2008b4c: 80 a6 60 00 cmp %i1, 0 2008b50: 02 80 00 0d be 2008b84 <_RBTree_Insert_unprotected+0x44> <== NEVER TAKEN 2008b54: b0 10 3f ff mov -1, %i0 RBTree_Node *iter_node = the_rbtree->root; 2008b58: f0 00 60 04 ld [ %g1 + 4 ], %i0 if (!iter_node) { /* special case: first node inserted */ 2008b5c: 80 a6 20 00 cmp %i0, 0 2008b60: 32 80 00 1f bne,a 2008bdc <_RBTree_Insert_unprotected+0x9c> 2008b64: c4 06 60 0c ld [ %i1 + 0xc ], %g2 the_node->color = RBT_BLACK; 2008b68: c0 26 60 10 clr [ %i1 + 0x10 ] the_rbtree->root = the_node; 2008b6c: f2 20 60 04 st %i1, [ %g1 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 2008b70: f2 20 60 0c st %i1, [ %g1 + 0xc ] 2008b74: f2 20 60 08 st %i1, [ %g1 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 2008b78: c2 26 40 00 st %g1, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 2008b7c: c0 26 60 08 clr [ %i1 + 8 ] 2008b80: c0 26 60 04 clr [ %i1 + 4 ] 2008b84: 81 c7 e0 08 ret 2008b88: 81 e8 00 00 restore } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; 2008b8c: 86 40 20 00 addx %g0, 0, %g3 if (!iter_node->child[dir]) { 2008b90: 89 28 e0 02 sll %g3, 2, %g4 2008b94: 88 06 00 04 add %i0, %g4, %g4 2008b98: de 01 20 04 ld [ %g4 + 4 ], %o7 2008b9c: 80 a3 e0 00 cmp %o7, 0 2008ba0: 32 80 00 0f bne,a 2008bdc <_RBTree_Insert_unprotected+0x9c> 2008ba4: b0 10 00 0f mov %o7, %i0 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 2008ba8: 84 10 20 01 mov 1, %g2 /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 2008bac: c0 22 20 08 clr [ %o0 + 8 ] 2008bb0: c0 22 20 04 clr [ %o0 + 4 ] the_node->color = RBT_RED; 2008bb4: c4 22 20 10 st %g2, [ %o0 + 0x10 ] RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 2008bb8: 84 00 e0 02 add %g3, 2, %g2 2008bbc: 85 28 a0 02 sll %g2, 2, %g2 iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 2008bc0: c6 00 40 02 ld [ %g1 + %g2 ], %g3 if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; iter_node->child[dir] = the_node; 2008bc4: d0 21 20 04 st %o0, [ %g4 + 4 ] the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 2008bc8: 80 a6 00 03 cmp %i0, %g3 2008bcc: 12 80 00 0a bne 2008bf4 <_RBTree_Insert_unprotected+0xb4> 2008bd0: f0 22 00 00 st %i0, [ %o0 ] the_rbtree->first[dir] = the_node; 2008bd4: 10 80 00 08 b 2008bf4 <_RBTree_Insert_unprotected+0xb4> 2008bd8: d0 20 40 02 st %o0, [ %g1 + %g2 ] the_node->parent = (RBTree_Node *) the_rbtree; the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); 2008bdc: c6 06 20 0c ld [ %i0 + 0xc ], %g3 2008be0: 80 a0 80 03 cmp %g2, %g3 2008be4: 12 bf ff ea bne 2008b8c <_RBTree_Insert_unprotected+0x4c> 2008be8: 80 a0 c0 02 cmp %g3, %g2 2008bec: 81 c7 e0 08 ret 2008bf0: 81 e8 00 00 restore } } /* while(iter_node) */ /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); 2008bf4: 7f ff ff 9a call 2008a5c <_RBTree_Validate_insert_unprotected> 2008bf8: b0 10 20 00 clr %i0 } return (RBTree_Node*)0; } 2008bfc: 81 c7 e0 08 ret 2008c00: 81 e8 00 00 restore =============================================================================== 02008484 <_RBTree_Rotate>: RBTree_Node *the_node, RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; 2008484: 80 a2 20 00 cmp %o0, 0 2008488: 02 80 00 1c be 20084f8 <_RBTree_Rotate+0x74> <== NEVER TAKEN 200848c: 86 10 20 01 mov 1, %g3 if (the_node->child[(1-dir)] == NULL) return; 2008490: 86 20 c0 09 sub %g3, %o1, %g3 2008494: 87 28 e0 02 sll %g3, 2, %g3 2008498: 86 02 00 03 add %o0, %g3, %g3 200849c: c2 00 e0 04 ld [ %g3 + 4 ], %g1 20084a0: 80 a0 60 00 cmp %g1, 0 20084a4: 02 80 00 15 be 20084f8 <_RBTree_Rotate+0x74> <== NEVER TAKEN 20084a8: 93 2a 60 02 sll %o1, 2, %o1 c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 20084ac: 84 00 40 09 add %g1, %o1, %g2 20084b0: c8 00 a0 04 ld [ %g2 + 4 ], %g4 20084b4: c8 20 e0 04 st %g4, [ %g3 + 4 ] if (c->child[dir]) 20084b8: c4 00 a0 04 ld [ %g2 + 4 ], %g2 20084bc: 80 a0 a0 00 cmp %g2, 0 20084c0: 32 80 00 02 bne,a 20084c8 <_RBTree_Rotate+0x44> 20084c4: d0 20 80 00 st %o0, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20084c8: c4 02 00 00 ld [ %o0 ], %g2 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 20084cc: 92 00 40 09 add %g1, %o1, %o1 20084d0: d0 22 60 04 st %o0, [ %o1 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20084d4: c6 00 a0 04 ld [ %g2 + 4 ], %g3 c->parent = the_node->parent; 20084d8: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20084dc: 86 1a 00 03 xor %o0, %g3, %g3 c->parent = the_node->parent; the_node->parent = c; 20084e0: c2 22 00 00 st %g1, [ %o0 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20084e4: 80 a0 00 03 cmp %g0, %g3 20084e8: 86 40 20 00 addx %g0, 0, %g3 20084ec: 87 28 e0 02 sll %g3, 2, %g3 20084f0: 86 00 80 03 add %g2, %g3, %g3 20084f4: c2 20 e0 04 st %g1, [ %g3 + 4 ] 20084f8: 81 c3 e0 08 retl =============================================================================== 02008440 <_RBTree_Sibling>: */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; 2008440: 80 a2 20 00 cmp %o0, 0 2008444: 02 80 00 0e be 200847c <_RBTree_Sibling+0x3c> <== NEVER TAKEN 2008448: 82 10 20 00 clr %g1 if(!(the_node->parent)) return NULL; 200844c: c4 02 00 00 ld [ %o0 ], %g2 2008450: 80 a0 a0 00 cmp %g2, 0 2008454: 02 80 00 0a be 200847c <_RBTree_Sibling+0x3c> <== NEVER TAKEN 2008458: 01 00 00 00 nop if(!(the_node->parent->parent)) return NULL; 200845c: c6 00 80 00 ld [ %g2 ], %g3 2008460: 80 a0 e0 00 cmp %g3, 0 2008464: 02 80 00 06 be 200847c <_RBTree_Sibling+0x3c> 2008468: 01 00 00 00 nop if(the_node == the_node->parent->child[RBT_LEFT]) 200846c: c2 00 a0 04 ld [ %g2 + 4 ], %g1 2008470: 80 a2 00 01 cmp %o0, %g1 2008474: 22 80 00 02 be,a 200847c <_RBTree_Sibling+0x3c> 2008478: c2 00 a0 08 ld [ %g2 + 8 ], %g1 return the_node->parent->child[RBT_RIGHT]; else return the_node->parent->child[RBT_LEFT]; } 200847c: 81 c3 e0 08 retl 2008480: 90 10 00 01 mov %g1, %o0 =============================================================================== 02008a5c <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 2008a5c: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *u,*g; /* note: the insert root case is handled already */ /* if the parent is black, nothing needs to be done * otherwise may need to loop a few times */ while (_RBTree_Is_red(_RBTree_Parent(the_node))) { 2008a60: 10 80 00 1f b 2008adc <_RBTree_Validate_insert_unprotected+0x80> 2008a64: b6 10 20 01 mov 1, %i3 ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2008a68: 80 a0 60 00 cmp %g1, 0 2008a6c: 02 80 00 27 be 2008b08 <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN 2008a70: c2 07 60 04 ld [ %i5 + 4 ], %g1 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2008a74: 80 a2 00 01 cmp %o0, %g1 2008a78: 22 80 00 02 be,a 2008a80 <_RBTree_Validate_insert_unprotected+0x24> 2008a7c: c2 07 60 08 ld [ %i5 + 8 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008a80: 80 a0 60 00 cmp %g1, 0 2008a84: 22 80 00 21 be,a 2008b08 <_RBTree_Validate_insert_unprotected+0xac> 2008a88: c2 07 60 04 ld [ %i5 + 4 ], %g1 2008a8c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 2008a90: 80 a0 a0 01 cmp %g2, 1 2008a94: 32 80 00 1d bne,a 2008b08 <_RBTree_Validate_insert_unprotected+0xac> 2008a98: c2 07 60 04 ld [ %i5 + 4 ], %g1 u = _RBTree_Parent_sibling(the_node); g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; 2008a9c: c0 22 20 10 clr [ %o0 + 0x10 ] u->color = RBT_BLACK; 2008aa0: c0 20 60 10 clr [ %g1 + 0x10 ] g->color = RBT_RED; 2008aa4: c4 27 60 10 st %g2, [ %i5 + 0x10 ] 2008aa8: 10 80 00 0d b 2008adc <_RBTree_Validate_insert_unprotected+0x80> 2008aac: b0 10 00 1d mov %i5, %i0 RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); 2008ab0: 7f ff ff cc call 20089e0 <_RBTree_Rotate> 2008ab4: 92 10 00 1c mov %i4, %o1 the_node = the_node->child[pdir]; 2008ab8: 83 2f 20 02 sll %i4, 2, %g1 2008abc: b0 06 00 01 add %i0, %g1, %i0 2008ac0: f0 06 20 04 ld [ %i0 + 4 ], %i0 } the_node->parent->color = RBT_BLACK; 2008ac4: c2 06 00 00 ld [ %i0 ], %g1 g->color = RBT_RED; /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2008ac8: 90 10 00 1d mov %i5, %o0 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2008acc: c0 20 60 10 clr [ %g1 + 0x10 ] g->color = RBT_RED; 2008ad0: f6 27 60 10 st %i3, [ %i5 + 0x10 ] /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 2008ad4: 7f ff ff c3 call 20089e0 <_RBTree_Rotate> 2008ad8: 92 26 c0 1c sub %i3, %i4, %o1 ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 2008adc: d0 06 00 00 ld [ %i0 ], %o0 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2008ae0: fa 02 00 00 ld [ %o0 ], %i5 2008ae4: 80 a7 60 00 cmp %i5, 0 2008ae8: 22 80 00 14 be,a 2008b38 <_RBTree_Validate_insert_unprotected+0xdc> 2008aec: c0 26 20 10 clr [ %i0 + 0x10 ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008af0: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 2008af4: 80 a0 60 01 cmp %g1, 1 2008af8: 12 80 00 10 bne 2008b38 <_RBTree_Validate_insert_unprotected+0xdc> 2008afc: 01 00 00 00 nop ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2008b00: 10 bf ff da b 2008a68 <_RBTree_Validate_insert_unprotected+0xc> 2008b04: c2 07 40 00 ld [ %i5 ], %g1 u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; 2008b08: 82 1a 00 01 xor %o0, %g1, %g1 2008b0c: 80 a0 00 01 cmp %g0, %g1 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2008b10: c2 02 20 04 ld [ %o0 + 4 ], %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; 2008b14: b8 40 20 00 addx %g0, 0, %i4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2008b18: 82 1e 00 01 xor %i0, %g1, %g1 2008b1c: 80 a0 00 01 cmp %g0, %g1 2008b20: 82 40 20 00 addx %g0, 0, %g1 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 2008b24: 80 a0 40 1c cmp %g1, %i4 2008b28: 12 bf ff e2 bne 2008ab0 <_RBTree_Validate_insert_unprotected+0x54> 2008b2c: 01 00 00 00 nop _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; 2008b30: 10 bf ff e6 b 2008ac8 <_RBTree_Validate_insert_unprotected+0x6c> 2008b34: c2 06 00 00 ld [ %i0 ], %g1 2008b38: 81 c7 e0 08 ret 2008b3c: 81 e8 00 00 restore =============================================================================== 0200ba14 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200ba14: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200ba18: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200ba1c: 80 a7 60 00 cmp %i5, 0 200ba20: 02 80 00 1c be 200ba90 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN 200ba24: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200ba28: 7f ff d9 d5 call 200217c 200ba2c: 01 00 00 00 nop signal_set = asr->signals_posted; 200ba30: f6 07 60 14 ld [ %i5 + 0x14 ], %i3 asr->signals_posted = 0; 200ba34: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200ba38: 7f ff d9 d5 call 200218c 200ba3c: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200ba40: 80 a6 e0 00 cmp %i3, 0 200ba44: 02 80 00 13 be 200ba90 <_RTEMS_tasks_Post_switch_extension+0x7c> 200ba48: 94 07 bf fc add %fp, -4, %o2 return; asr->nest_level += 1; 200ba4c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba50: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200ba54: 82 00 60 01 inc %g1 200ba58: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba5c: 39 00 00 3f sethi %hi(0xfc00), %i4 200ba60: 40 00 07 31 call 200d724 200ba64: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200ba68: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200ba6c: 9f c0 40 00 call %g1 200ba70: 90 10 00 1b mov %i3, %o0 asr->nest_level -= 1; 200ba74: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba78: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200ba7c: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba80: 92 17 23 ff or %i4, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200ba84: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200ba88: 40 00 07 27 call 200d724 200ba8c: 94 07 bf fc add %fp, -4, %o2 200ba90: 81 c7 e0 08 ret 200ba94: 81 e8 00 00 restore =============================================================================== 02007698 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007698: 9d e3 bf 98 save %sp, -104, %sp 200769c: 11 00 80 74 sethi %hi(0x201d000), %o0 20076a0: 92 10 00 18 mov %i0, %o1 20076a4: 90 12 21 24 or %o0, 0x124, %o0 20076a8: 40 00 07 b7 call 2009584 <_Objects_Get> 20076ac: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20076b0: c2 07 bf fc ld [ %fp + -4 ], %g1 20076b4: 80 a0 60 00 cmp %g1, 0 20076b8: 12 80 00 25 bne 200774c <_Rate_monotonic_Timeout+0xb4> <== NEVER TAKEN 20076bc: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 20076c0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20076c4: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 20076c8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 20076cc: 80 88 80 01 btst %g2, %g1 20076d0: 22 80 00 0b be,a 20076fc <_Rate_monotonic_Timeout+0x64> 20076d4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 20076d8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 20076dc: c2 07 60 08 ld [ %i5 + 8 ], %g1 20076e0: 80 a0 80 01 cmp %g2, %g1 20076e4: 32 80 00 06 bne,a 20076fc <_Rate_monotonic_Timeout+0x64> 20076e8: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20076ec: 13 04 00 ff sethi %hi(0x1003fc00), %o1 20076f0: 40 00 0a 67 call 200a08c <_Thread_Clear_state> 20076f4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 20076f8: 30 80 00 06 b,a 2007710 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 20076fc: 80 a0 60 01 cmp %g1, 1 2007700: 12 80 00 0d bne 2007734 <_Rate_monotonic_Timeout+0x9c> 2007704: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007708: 82 10 20 03 mov 3, %g1 200770c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007710: 7f ff fe 70 call 20070d0 <_Rate_monotonic_Initiate_statistics> 2007714: 90 10 00 1d mov %i5, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007718: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200771c: 11 00 80 74 sethi %hi(0x201d000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007720: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007724: 90 12 23 4c or %o0, 0x34c, %o0 2007728: 40 00 0e fc call 200b318 <_Watchdog_Insert> 200772c: 92 07 60 10 add %i5, 0x10, %o1 2007730: 30 80 00 02 b,a 2007738 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007734: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007738: 03 00 80 74 sethi %hi(0x201d000), %g1 200773c: c4 00 62 90 ld [ %g1 + 0x290 ], %g2 ! 201d290 <_Thread_Dispatch_disable_level> 2007740: 84 00 bf ff add %g2, -1, %g2 2007744: c4 20 62 90 st %g2, [ %g1 + 0x290 ] return _Thread_Dispatch_disable_level; 2007748: c2 00 62 90 ld [ %g1 + 0x290 ], %g1 200774c: 81 c7 e0 08 ret 2007750: 81 e8 00 00 restore =============================================================================== 02008644 <_Scheduler_priority_Yield>: * ready chain * select heir */ void _Scheduler_priority_Yield(void) { 2008644: 9d e3 bf a0 save %sp, -96, %sp Scheduler_priority_Per_thread *sched_info; ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2008648: 37 00 80 6d sethi %hi(0x201b400), %i3 200864c: b6 16 e2 1c or %i3, 0x21c, %i3 ! 201b61c <_Per_CPU_Information> 2008650: fa 06 e0 0c ld [ %i3 + 0xc ], %i5 sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info; ready = sched_info->ready_chain; 2008654: c2 07 60 8c ld [ %i5 + 0x8c ], %g1 _ISR_Disable( level ); 2008658: 7f ff e6 c9 call 200217c 200865c: f8 00 40 00 ld [ %g1 ], %i4 2008660: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 2008664: c4 07 00 00 ld [ %i4 ], %g2 2008668: c2 07 20 08 ld [ %i4 + 8 ], %g1 200866c: 80 a0 80 01 cmp %g2, %g1 2008670: 22 80 00 1b be,a 20086dc <_Scheduler_priority_Yield+0x98> 2008674: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2008678: c4 07 40 00 ld [ %i5 ], %g2 previous = the_node->previous; 200867c: c2 07 60 04 ld [ %i5 + 4 ], %g1 next->previous = previous; 2008680: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2008684: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008688: c2 07 20 08 ld [ %i4 + 8 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); 200868c: 84 07 20 04 add %i4, 4, %g2 Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node; 2008690: fa 27 20 08 st %i5, [ %i4 + 8 ] ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail; 2008694: c4 27 40 00 st %g2, [ %i5 ] tail->previous = the_node; old_last->next = the_node; 2008698: fa 20 40 00 st %i5, [ %g1 ] the_node->previous = old_last; 200869c: c2 27 60 04 st %g1, [ %i5 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 20086a0: 7f ff e6 bb call 200218c 20086a4: 01 00 00 00 nop 20086a8: 7f ff e6 b5 call 200217c 20086ac: 01 00 00 00 nop 20086b0: b0 10 00 08 mov %o0, %i0 if ( _Thread_Is_heir( executing ) ) 20086b4: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1 20086b8: 80 a7 40 01 cmp %i5, %g1 20086bc: 12 80 00 04 bne 20086cc <_Scheduler_priority_Yield+0x88> <== NEVER TAKEN 20086c0: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 20086c4: c2 07 00 00 ld [ %i4 ], %g1 20086c8: c2 26 e0 10 st %g1, [ %i3 + 0x10 ] _Thread_Dispatch_necessary = true; 20086cc: 03 00 80 6d sethi %hi(0x201b400), %g1 20086d0: 82 10 62 1c or %g1, 0x21c, %g1 ! 201b61c <_Per_CPU_Information> 20086d4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20086d8: 30 80 00 05 b,a 20086ec <_Scheduler_priority_Yield+0xa8> } else if ( !_Thread_Is_heir( executing ) ) 20086dc: 80 a7 40 01 cmp %i5, %g1 20086e0: 02 80 00 03 be 20086ec <_Scheduler_priority_Yield+0xa8> <== ALWAYS TAKEN 20086e4: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 20086e8: c2 2e e0 18 stb %g1, [ %i3 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 20086ec: 7f ff e6 a8 call 200218c 20086f0: 81 e8 00 00 restore =============================================================================== 02007130 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007130: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007134: 03 00 80 73 sethi %hi(0x201cc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007138: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200713c: 80 a6 20 00 cmp %i0, 0 2007140: 02 80 00 2b be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 2007144: d2 00 62 88 ld [ %g1 + 0x288 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007148: 11 00 03 d0 sethi %hi(0xf4000), %o0 200714c: 40 00 46 47 call 2018a68 <.udiv> 2007150: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007154: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007158: 80 a0 40 08 cmp %g1, %o0 200715c: 3a 80 00 25 bcc,a 20071f0 <_TOD_Validate+0xc0> 2007160: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2007164: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007168: 80 a0 60 3b cmp %g1, 0x3b 200716c: 38 80 00 21 bgu,a 20071f0 <_TOD_Validate+0xc0> 2007170: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007174: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 2007178: 80 a0 60 3b cmp %g1, 0x3b 200717c: 38 80 00 1d bgu,a 20071f0 <_TOD_Validate+0xc0> 2007180: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007184: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2007188: 80 a0 60 17 cmp %g1, 0x17 200718c: 38 80 00 19 bgu,a 20071f0 <_TOD_Validate+0xc0> 2007190: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2007194: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007198: 80 a0 60 00 cmp %g1, 0 200719c: 02 80 00 14 be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 20071a0: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20071a4: 38 80 00 13 bgu,a 20071f0 <_TOD_Validate+0xc0> 20071a8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071ac: c6 06 00 00 ld [ %i0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20071b0: 80 a0 e7 c3 cmp %g3, 0x7c3 20071b4: 28 80 00 0f bleu,a 20071f0 <_TOD_Validate+0xc0> 20071b8: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20071bc: c4 06 20 08 ld [ %i0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20071c0: 80 a0 a0 00 cmp %g2, 0 20071c4: 02 80 00 0a be 20071ec <_TOD_Validate+0xbc> <== NEVER TAKEN 20071c8: 80 88 e0 03 btst 3, %g3 20071cc: 07 00 80 6e sethi %hi(0x201b800), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20071d0: 12 80 00 03 bne 20071dc <_TOD_Validate+0xac> 20071d4: 86 10 e3 a8 or %g3, 0x3a8, %g3 ! 201bba8 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20071d8: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20071dc: 83 28 60 02 sll %g1, 2, %g1 20071e0: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20071e4: 80 a0 40 02 cmp %g1, %g2 20071e8: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 20071ec: b0 0f 60 01 and %i5, 1, %i0 20071f0: 81 c7 e0 08 ret 20071f4: 81 e8 00 00 restore =============================================================================== 02008744 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008744: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008748: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 200874c: 40 00 03 55 call 20094a0 <_Thread_Set_transient> 2008750: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008754: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008758: 80 a0 40 19 cmp %g1, %i1 200875c: 02 80 00 05 be 2008770 <_Thread_Change_priority+0x2c> 2008760: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 2008764: 90 10 00 18 mov %i0, %o0 2008768: 40 00 03 35 call 200943c <_Thread_Set_priority> 200876c: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2008770: 7f ff e6 83 call 200217c 2008774: 01 00 00 00 nop 2008778: b6 10 00 08 mov %o0, %i3 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 200877c: f2 07 60 10 ld [ %i5 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 2008780: 80 a6 60 04 cmp %i1, 4 2008784: 02 80 00 10 be 20087c4 <_Thread_Change_priority+0x80> 2008788: b8 0f 20 04 and %i4, 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 200878c: 80 a7 20 00 cmp %i4, 0 2008790: 12 80 00 03 bne 200879c <_Thread_Change_priority+0x58> <== NEVER TAKEN 2008794: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008798: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 200879c: 7f ff e6 7c call 200218c 20087a0: 90 10 00 1b mov %i3, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 20087a4: 03 00 00 ef sethi %hi(0x3bc00), %g1 20087a8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20087ac: 80 8e 40 01 btst %i1, %g1 20087b0: 02 80 00 29 be 2008854 <_Thread_Change_priority+0x110> 20087b4: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 20087b8: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 20087bc: 40 00 02 f2 call 2009384 <_Thread_queue_Requeue> 20087c0: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 20087c4: 80 a7 20 00 cmp %i4, 0 20087c8: 12 80 00 0b bne 20087f4 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 20087cc: 03 00 80 69 sethi %hi(0x201a400), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20087d0: c0 27 60 10 clr [ %i5 + 0x10 ] if ( prepend_it ) 20087d4: 80 a6 a0 00 cmp %i2, 0 20087d8: 02 80 00 04 be 20087e8 <_Thread_Change_priority+0xa4> 20087dc: 82 10 63 f4 or %g1, 0x3f4, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 20087e0: 10 80 00 03 b 20087ec <_Thread_Change_priority+0xa8> 20087e4: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 20087e8: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 20087ec: 9f c0 40 00 call %g1 20087f0: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 20087f4: 7f ff e6 66 call 200218c 20087f8: 90 10 00 1b mov %i3, %o0 20087fc: 7f ff e6 60 call 200217c 2008800: 01 00 00 00 nop 2008804: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008808: 03 00 80 69 sethi %hi(0x201a400), %g1 200880c: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1 ! 201a7fc <_Scheduler+0x8> 2008810: 9f c0 40 00 call %g1 2008814: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008818: 03 00 80 6d sethi %hi(0x201b400), %g1 200881c: 82 10 62 1c or %g1, 0x21c, %g1 ! 201b61c <_Per_CPU_Information> 2008820: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008824: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008828: 80 a0 80 03 cmp %g2, %g3 200882c: 02 80 00 08 be 200884c <_Thread_Change_priority+0x108> 2008830: 01 00 00 00 nop 2008834: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008838: 80 a0 a0 00 cmp %g2, 0 200883c: 02 80 00 04 be 200884c <_Thread_Change_priority+0x108> 2008840: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008844: 84 10 20 01 mov 1, %g2 ! 1 2008848: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 200884c: 7f ff e6 50 call 200218c 2008850: 81 e8 00 00 restore 2008854: 81 c7 e0 08 ret 2008858: 81 e8 00 00 restore =============================================================================== 02008a48 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008a48: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008a4c: 90 10 00 18 mov %i0, %o0 2008a50: 40 00 00 6d call 2008c04 <_Thread_Get> 2008a54: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008a58: c2 07 bf fc ld [ %fp + -4 ], %g1 2008a5c: 80 a0 60 00 cmp %g1, 0 2008a60: 12 80 00 09 bne 2008a84 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2008a64: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008a68: 7f ff ff 7d call 200885c <_Thread_Clear_state> 2008a6c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2008a70: 03 00 80 6c sethi %hi(0x201b000), %g1 2008a74: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201b3f0 <_Thread_Dispatch_disable_level> 2008a78: 84 00 bf ff add %g2, -1, %g2 2008a7c: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 2008a80: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 2008a84: 81 c7 e0 08 ret 2008a88: 81 e8 00 00 restore =============================================================================== 02008a8c <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008a8c: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2008a90: 03 00 80 6c sethi %hi(0x201b000), %g1 2008a94: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201b3f0 <_Thread_Dispatch_disable_level> 2008a98: 84 00 a0 01 inc %g2 2008a9c: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 2008aa0: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2008aa4: 33 00 80 6d sethi %hi(0x201b400), %i1 2008aa8: b4 16 62 1c or %i1, 0x21c, %i2 ! 201b61c <_Per_CPU_Information> _ISR_Disable( level ); 2008aac: 7f ff e5 b4 call 200217c 2008ab0: fa 06 a0 0c ld [ %i2 + 0xc ], %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008ab4: 21 00 80 6c sethi %hi(0x201b000), %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008ab8: b4 06 a0 1c add %i2, 0x1c, %i2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008abc: 31 00 80 6d sethi %hi(0x201b400), %i0 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008ac0: 10 80 00 38 b 2008ba0 <_Thread_Dispatch+0x114> 2008ac4: 37 00 80 6d sethi %hi(0x201b400), %i3 heir = _Thread_Heir; _Thread_Dispatch_necessary = false; 2008ac8: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008acc: 80 a7 00 1d cmp %i4, %i5 2008ad0: 02 80 00 39 be 2008bb4 <_Thread_Dispatch+0x128> 2008ad4: f8 20 60 0c st %i4, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008ad8: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 2008adc: 80 a0 60 01 cmp %g1, 1 2008ae0: 12 80 00 03 bne 2008aec <_Thread_Dispatch+0x60> 2008ae4: c2 04 23 54 ld [ %l0 + 0x354 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008ae8: c2 27 20 78 st %g1, [ %i4 + 0x78 ] _ISR_Enable( level ); 2008aec: 7f ff e5 a8 call 200218c 2008af0: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008af4: 40 00 0c c1 call 200bdf8 <_TOD_Get_uptime> 2008af8: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 2008afc: 90 10 00 1a mov %i2, %o0 2008b00: 92 07 bf f0 add %fp, -16, %o1 2008b04: 40 00 02 da call 200966c <_Timespec_Subtract> 2008b08: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008b0c: 90 07 60 84 add %i5, 0x84, %o0 2008b10: 40 00 02 be call 2009608 <_Timespec_Add_to> 2008b14: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 2008b18: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b1c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008b20: c4 26 80 00 st %g2, [ %i2 ] 2008b24: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008b28: 80 a0 60 00 cmp %g1, 0 2008b2c: 02 80 00 06 be 2008b44 <_Thread_Dispatch+0xb8> <== NEVER TAKEN 2008b30: c4 26 a0 04 st %g2, [ %i2 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008b34: c4 00 40 00 ld [ %g1 ], %g2 2008b38: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008b3c: c4 07 21 54 ld [ %i4 + 0x154 ], %g2 2008b40: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008b44: 90 10 00 1d mov %i5, %o0 2008b48: 40 00 03 77 call 2009924 <_User_extensions_Thread_switch> 2008b4c: 92 10 00 1c mov %i4, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008b50: 90 07 60 c8 add %i5, 0xc8, %o0 2008b54: 40 00 04 9d call 2009dc8 <_CPU_Context_switch> 2008b58: 92 07 20 c8 add %i4, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008b5c: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2008b60: 80 a0 60 00 cmp %g1, 0 2008b64: 02 80 00 0c be 2008b94 <_Thread_Dispatch+0x108> 2008b68: d0 06 e0 74 ld [ %i3 + 0x74 ], %o0 2008b6c: 80 a7 40 08 cmp %i5, %o0 2008b70: 02 80 00 09 be 2008b94 <_Thread_Dispatch+0x108> 2008b74: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008b78: 02 80 00 04 be 2008b88 <_Thread_Dispatch+0xfc> 2008b7c: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008b80: 40 00 04 58 call 2009ce0 <_CPU_Context_save_fp> 2008b84: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008b88: 40 00 04 73 call 2009d54 <_CPU_Context_restore_fp> 2008b8c: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2008b90: fa 26 e0 74 st %i5, [ %i3 + 0x74 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2008b94: 82 16 62 1c or %i1, 0x21c, %g1 _ISR_Disable( level ); 2008b98: 7f ff e5 79 call 200217c 2008b9c: fa 00 60 0c ld [ %g1 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008ba0: 82 16 62 1c or %i1, 0x21c, %g1 2008ba4: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008ba8: 80 a0 a0 00 cmp %g2, 0 2008bac: 32 bf ff c7 bne,a 2008ac8 <_Thread_Dispatch+0x3c> 2008bb0: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 2008bb4: 03 00 80 6c sethi %hi(0x201b000), %g1 2008bb8: c0 20 63 f0 clr [ %g1 + 0x3f0 ] ! 201b3f0 <_Thread_Dispatch_disable_level> } post_switch: _Thread_Dispatch_set_disable_level( 0 ); _ISR_Enable( level ); 2008bbc: 7f ff e5 74 call 200218c 2008bc0: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008bc4: 7f ff f8 5a call 2006d2c <_API_extensions_Run_postswitch> 2008bc8: 01 00 00 00 nop } 2008bcc: 81 c7 e0 08 ret 2008bd0: 81 e8 00 00 restore =============================================================================== 0200da54 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200da54: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200da58: 03 00 80 6d sethi %hi(0x201b400), %g1 200da5c: fa 00 62 28 ld [ %g1 + 0x228 ], %i5 ! 201b628 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200da60: 3f 00 80 36 sethi %hi(0x200d800), %i7 200da64: be 17 e2 54 or %i7, 0x254, %i7 ! 200da54 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200da68: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200da6c: 7f ff d1 c8 call 200218c 200da70: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200da74: 03 00 80 6c sethi %hi(0x201b000), %g1 doneConstructors = 1; 200da78: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200da7c: f8 08 60 b0 ldub [ %g1 + 0xb0 ], %i4 doneConstructors = 1; 200da80: c4 28 60 b0 stb %g2, [ %g1 + 0xb0 ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200da84: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 200da88: 80 a0 60 00 cmp %g1, 0 200da8c: 02 80 00 0c be 200dabc <_Thread_Handler+0x68> 200da90: 03 00 80 6d sethi %hi(0x201b400), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200da94: d0 00 60 74 ld [ %g1 + 0x74 ], %o0 ! 201b474 <_Thread_Allocated_fp> 200da98: 80 a7 40 08 cmp %i5, %o0 200da9c: 02 80 00 08 be 200dabc <_Thread_Handler+0x68> 200daa0: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200daa4: 22 80 00 06 be,a 200dabc <_Thread_Handler+0x68> 200daa8: fa 20 60 74 st %i5, [ %g1 + 0x74 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200daac: 7f ff f0 8d call 2009ce0 <_CPU_Context_save_fp> 200dab0: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200dab4: 03 00 80 6d sethi %hi(0x201b400), %g1 200dab8: fa 20 60 74 st %i5, [ %g1 + 0x74 ] ! 201b474 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200dabc: 7f ff ef 2b call 2009768 <_User_extensions_Thread_begin> 200dac0: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200dac4: 7f ff ec 44 call 2008bd4 <_Thread_Enable_dispatch> 200dac8: b9 2f 20 18 sll %i4, 0x18, %i4 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200dacc: 80 a7 20 00 cmp %i4, 0 200dad0: 32 80 00 05 bne,a 200dae4 <_Thread_Handler+0x90> 200dad4: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 INIT_NAME (); 200dad8: 40 00 32 fe call 201a6d0 <_init> 200dadc: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200dae0: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200dae4: 80 a0 60 00 cmp %g1, 0 200dae8: 12 80 00 06 bne 200db00 <_Thread_Handler+0xac> <== NEVER TAKEN 200daec: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200daf0: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200daf4: 9f c0 40 00 call %g1 200daf8: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200dafc: d0 27 60 28 st %o0, [ %i5 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200db00: 7f ff ef 2b call 20097ac <_User_extensions_Thread_exitted> 200db04: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200db08: 90 10 20 00 clr %o0 200db0c: 92 10 20 01 mov 1, %o1 200db10: 7f ff e7 2a call 20077b8 <_Internal_error_Occurred> 200db14: 94 10 20 05 mov 5, %o2 =============================================================================== 02008cb4 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008cb4: 9d e3 bf a0 save %sp, -96, %sp 2008cb8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008cbc: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 2008cc0: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008cc4: c0 26 61 58 clr [ %i1 + 0x158 ] 2008cc8: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008ccc: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008cd0: 90 10 00 19 mov %i1, %o0 2008cd4: 40 00 02 02 call 20094dc <_Thread_Stack_Allocate> 2008cd8: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008cdc: 80 a2 00 1b cmp %o0, %i3 2008ce0: 0a 80 00 61 bcs 2008e64 <_Thread_Initialize+0x1b0> 2008ce4: 80 a2 20 00 cmp %o0, 0 2008ce8: 02 80 00 5f be 2008e64 <_Thread_Initialize+0x1b0> <== NEVER TAKEN 2008cec: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008cf0: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008cf4: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008cf8: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008cfc: 02 80 00 07 be 2008d18 <_Thread_Initialize+0x64> 2008d00: b6 10 20 00 clr %i3 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008d04: 40 00 03 db call 2009c70 <_Workspace_Allocate> 2008d08: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008d0c: b6 92 20 00 orcc %o0, 0, %i3 2008d10: 02 80 00 46 be 2008e28 <_Thread_Initialize+0x174> 2008d14: b8 10 20 00 clr %i4 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d18: 03 00 80 6d sethi %hi(0x201b400), %g1 2008d1c: d0 00 60 84 ld [ %g1 + 0x84 ], %o0 ! 201b484 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008d20: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008d24: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008d28: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008d2c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008d30: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 2008d34: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d38: 80 a2 20 00 cmp %o0, 0 2008d3c: 02 80 00 08 be 2008d5c <_Thread_Initialize+0xa8> 2008d40: b8 10 20 00 clr %i4 extensions_area = _Workspace_Allocate( 2008d44: 90 02 20 01 inc %o0 2008d48: 40 00 03 ca call 2009c70 <_Workspace_Allocate> 2008d4c: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008d50: b8 92 20 00 orcc %o0, 0, %i4 2008d54: 22 80 00 36 be,a 2008e2c <_Thread_Initialize+0x178> 2008d58: b4 10 20 00 clr %i2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008d5c: 80 a7 20 00 cmp %i4, 0 2008d60: 02 80 00 0c be 2008d90 <_Thread_Initialize+0xdc> 2008d64: f8 26 61 60 st %i4, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008d68: 03 00 80 6d sethi %hi(0x201b400), %g1 2008d6c: c4 00 60 84 ld [ %g1 + 0x84 ], %g2 ! 201b484 <_Thread_Maximum_extensions> 2008d70: 10 80 00 05 b 2008d84 <_Thread_Initialize+0xd0> 2008d74: 82 10 20 00 clr %g1 the_thread->extensions[i] = NULL; 2008d78: 87 28 60 02 sll %g1, 2, %g3 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008d7c: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008d80: c0 21 00 03 clr [ %g4 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008d84: 80 a0 40 02 cmp %g1, %g2 2008d88: 28 bf ff fc bleu,a 2008d78 <_Thread_Initialize+0xc4> 2008d8c: c8 06 61 60 ld [ %i1 + 0x160 ], %g4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008d90: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008d94: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] the_thread->Start.budget_algorithm = budget_algorithm; 2008d98: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008d9c: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008da0: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008da4: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008da8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008dac: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008db0: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008db4: 82 10 20 01 mov 1, %g1 2008db8: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008dbc: 03 00 80 6a sethi %hi(0x201a800), %g1 2008dc0: c2 00 60 0c ld [ %g1 + 0xc ], %g1 ! 201a80c <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 2008dc4: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008dc8: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008dcc: 9f c0 40 00 call %g1 2008dd0: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008dd4: b4 92 20 00 orcc %o0, 0, %i2 2008dd8: 02 80 00 15 be 2008e2c <_Thread_Initialize+0x178> 2008ddc: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008de0: 40 00 01 97 call 200943c <_Thread_Set_priority> 2008de4: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008de8: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008dec: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008df0: c0 26 60 84 clr [ %i1 + 0x84 ] 2008df4: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008df8: 83 28 60 02 sll %g1, 2, %g1 2008dfc: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008e00: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008e04: 90 10 00 19 mov %i1, %o0 2008e08: 40 00 02 8a call 2009830 <_User_extensions_Thread_create> 2008e0c: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008e10: 80 8a 20 ff btst 0xff, %o0 2008e14: 02 80 00 06 be 2008e2c <_Thread_Initialize+0x178> 2008e18: 01 00 00 00 nop 2008e1c: b0 0e 20 01 and %i0, 1, %i0 2008e20: 81 c7 e0 08 ret 2008e24: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2008e28: b4 10 20 00 clr %i2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 2008e2c: 40 00 03 99 call 2009c90 <_Workspace_Free> 2008e30: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 2008e34: 40 00 03 97 call 2009c90 <_Workspace_Free> 2008e38: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008e3c: 40 00 03 95 call 2009c90 <_Workspace_Free> 2008e40: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 2008e44: 40 00 03 93 call 2009c90 <_Workspace_Free> 2008e48: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2008e4c: 40 00 03 91 call 2009c90 <_Workspace_Free> 2008e50: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 2008e54: 40 00 03 8f call 2009c90 <_Workspace_Free> 2008e58: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 2008e5c: 40 00 01 b7 call 2009538 <_Thread_Stack_Free> 2008e60: 90 10 00 19 mov %i1, %o0 * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 2008e64: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008e68: b0 0e 20 01 and %i0, 1, %i0 2008e6c: 81 c7 e0 08 ret 2008e70: 81 e8 00 00 restore =============================================================================== 02009384 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009384: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009388: 80 a6 20 00 cmp %i0, 0 200938c: 02 80 00 19 be 20093f0 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2009390: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009394: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 2009398: 80 a7 20 01 cmp %i4, 1 200939c: 12 80 00 15 bne 20093f0 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 20093a0: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 20093a4: 7f ff e3 76 call 200217c 20093a8: 01 00 00 00 nop 20093ac: ba 10 00 08 mov %o0, %i5 20093b0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 20093b4: 03 00 00 ef sethi %hi(0x3bc00), %g1 20093b8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20093bc: 80 88 80 01 btst %g2, %g1 20093c0: 02 80 00 0a be 20093e8 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 20093c4: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 20093c8: 92 10 00 19 mov %i1, %o1 20093cc: 94 10 20 01 mov 1, %o2 20093d0: 40 00 0b f9 call 200c3b4 <_Thread_queue_Extract_priority_helper> 20093d4: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 20093d8: 90 10 00 18 mov %i0, %o0 20093dc: 92 10 00 19 mov %i1, %o1 20093e0: 7f ff ff 50 call 2009120 <_Thread_queue_Enqueue_priority> 20093e4: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 20093e8: 7f ff e3 69 call 200218c 20093ec: 90 10 00 1d mov %i5, %o0 20093f0: 81 c7 e0 08 ret 20093f4: 81 e8 00 00 restore =============================================================================== 020093f8 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 20093f8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20093fc: 90 10 00 18 mov %i0, %o0 2009400: 7f ff fe 01 call 2008c04 <_Thread_Get> 2009404: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009408: c2 07 bf fc ld [ %fp + -4 ], %g1 200940c: 80 a0 60 00 cmp %g1, 0 2009410: 12 80 00 09 bne 2009434 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009414: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009418: 40 00 0c 1e call 200c490 <_Thread_queue_Process_timeout> 200941c: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009420: 03 00 80 6c sethi %hi(0x201b000), %g1 2009424: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201b3f0 <_Thread_Dispatch_disable_level> 2009428: 84 00 bf ff add %g2, -1, %g2 200942c: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 2009430: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 2009434: 81 c7 e0 08 ret 2009438: 81 e8 00 00 restore =============================================================================== 0201706c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201706c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2017070: 27 00 80 f1 sethi %hi(0x203c400), %l3 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017074: a8 07 bf e8 add %fp, -24, %l4 2017078: a4 07 bf ec add %fp, -20, %l2 201707c: b6 07 bf f4 add %fp, -12, %i3 2017080: b4 07 bf f8 add %fp, -8, %i2 2017084: e4 27 bf e8 st %l2, [ %fp + -24 ] head->previous = NULL; 2017088: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 201708c: e8 27 bf f0 st %l4, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2017090: f4 27 bf f4 st %i2, [ %fp + -12 ] head->previous = NULL; 2017094: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2017098: f6 27 bf fc st %i3, [ %fp + -4 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201709c: b2 06 20 30 add %i0, 0x30, %i1 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20170a0: b8 06 20 68 add %i0, 0x68, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20170a4: a2 06 20 08 add %i0, 8, %l1 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20170a8: a0 06 20 40 add %i0, 0x40, %l0 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20170ac: e8 26 20 78 st %l4, [ %i0 + 0x78 ] static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20170b0: 2b 00 80 f1 sethi %hi(0x203c400), %l5 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20170b4: c2 04 e0 fc ld [ %l3 + 0xfc ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20170b8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20170bc: 94 10 00 1b mov %i3, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20170c0: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20170c4: 90 10 00 19 mov %i1, %o0 20170c8: 40 00 11 6d call 201b67c <_Watchdog_Adjust_to_chain> 20170cc: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20170d0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20170d4: fa 05 60 7c ld [ %l5 + 0x7c ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20170d8: 80 a7 40 0a cmp %i5, %o2 20170dc: 08 80 00 06 bleu 20170f4 <_Timer_server_Body+0x88> 20170e0: 92 27 40 0a sub %i5, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20170e4: 90 10 00 1c mov %i4, %o0 20170e8: 40 00 11 65 call 201b67c <_Watchdog_Adjust_to_chain> 20170ec: 94 10 00 1b mov %i3, %o2 20170f0: 30 80 00 06 b,a 2017108 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 20170f4: 1a 80 00 05 bcc 2017108 <_Timer_server_Body+0x9c> 20170f8: 90 10 00 1c mov %i4, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20170fc: 92 10 20 01 mov 1, %o1 2017100: 40 00 11 38 call 201b5e0 <_Watchdog_Adjust> 2017104: 94 22 80 1d sub %o2, %i5, %o2 } watchdogs->last_snapshot = snapshot; 2017108: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 201710c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2017110: 40 00 02 b6 call 2017be8 <_Chain_Get> 2017114: 01 00 00 00 nop if ( timer == NULL ) { 2017118: 92 92 20 00 orcc %o0, 0, %o1 201711c: 02 80 00 0c be 201714c <_Timer_server_Body+0xe0> 2017120: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2017124: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2017128: 80 a0 60 01 cmp %g1, 1 201712c: 02 80 00 05 be 2017140 <_Timer_server_Body+0xd4> 2017130: 90 10 00 19 mov %i1, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2017134: 80 a0 60 03 cmp %g1, 3 2017138: 12 bf ff f5 bne 201710c <_Timer_server_Body+0xa0> <== NEVER TAKEN 201713c: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017140: 40 00 11 81 call 201b744 <_Watchdog_Insert> 2017144: 92 02 60 10 add %o1, 0x10, %o1 2017148: 30 bf ff f1 b,a 201710c <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 201714c: 7f ff e3 a1 call 200ffd0 2017150: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2017154: c2 07 bf e8 ld [ %fp + -24 ], %g1 2017158: 80 a0 40 12 cmp %g1, %l2 201715c: 12 80 00 0a bne 2017184 <_Timer_server_Body+0x118> <== NEVER TAKEN 2017160: 01 00 00 00 nop ts->insert_chain = NULL; 2017164: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2017168: 7f ff e3 9e call 200ffe0 201716c: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2017170: c2 07 bf f4 ld [ %fp + -12 ], %g1 2017174: 80 a0 40 1a cmp %g1, %i2 2017178: 12 80 00 06 bne 2017190 <_Timer_server_Body+0x124> 201717c: 01 00 00 00 nop 2017180: 30 80 00 18 b,a 20171e0 <_Timer_server_Body+0x174> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2017184: 7f ff e3 97 call 200ffe0 <== NOT EXECUTED 2017188: 01 00 00 00 nop <== NOT EXECUTED 201718c: 30 bf ff ca b,a 20170b4 <_Timer_server_Body+0x48> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2017190: 7f ff e3 90 call 200ffd0 2017194: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017198: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 201719c: 80 a7 40 1a cmp %i5, %i2 20171a0: 02 80 00 0d be 20171d4 <_Timer_server_Body+0x168> 20171a4: 01 00 00 00 nop Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 20171a8: c2 07 40 00 ld [ %i5 ], %g1 head->next = new_first; new_first->previous = head; 20171ac: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 20171b0: c2 27 bf f4 st %g1, [ %fp + -12 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20171b4: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 20171b8: 7f ff e3 8a call 200ffe0 20171bc: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20171c0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 20171c4: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 20171c8: 9f c0 40 00 call %g1 20171cc: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 } 20171d0: 30 bf ff f0 b,a 2017190 <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 20171d4: 7f ff e3 83 call 200ffe0 20171d8: 01 00 00 00 nop 20171dc: 30 bf ff b4 b,a 20170ac <_Timer_server_Body+0x40> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 20171e0: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 20171e4: 7f ff ff 73 call 2016fb0 <_Thread_Disable_dispatch> 20171e8: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 20171ec: d0 06 00 00 ld [ %i0 ], %o0 20171f0: 40 00 0f 88 call 201b010 <_Thread_Set_state> 20171f4: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 20171f8: 7f ff ff 75 call 2016fcc <_Timer_server_Reset_interval_system_watchdog> 20171fc: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2017200: 7f ff ff 87 call 201701c <_Timer_server_Reset_tod_system_watchdog> 2017204: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2017208: 40 00 0d 3d call 201a6fc <_Thread_Enable_dispatch> 201720c: 01 00 00 00 nop ts->active = true; 2017210: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2017214: 90 10 00 11 mov %l1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2017218: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201721c: 40 00 11 a4 call 201b8ac <_Watchdog_Remove> 2017220: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2017224: 40 00 11 a2 call 201b8ac <_Watchdog_Remove> 2017228: 90 10 00 10 mov %l0, %o0 201722c: 30 bf ff a0 b,a 20170ac <_Timer_server_Body+0x40> =============================================================================== 02017230 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2017230: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2017234: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2017238: 80 a0 60 00 cmp %g1, 0 201723c: 12 80 00 49 bne 2017360 <_Timer_server_Schedule_operation_method+0x130> 2017240: ba 10 00 19 mov %i1, %i5 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2017244: 7f ff ff 5b call 2016fb0 <_Thread_Disable_dispatch> 2017248: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201724c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2017250: 80 a0 60 01 cmp %g1, 1 2017254: 12 80 00 1f bne 20172d0 <_Timer_server_Schedule_operation_method+0xa0> 2017258: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 201725c: 7f ff e3 5d call 200ffd0 2017260: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2017264: 03 00 80 f1 sethi %hi(0x203c400), %g1 2017268: c4 00 60 fc ld [ %g1 + 0xfc ], %g2 ! 203c4fc <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201726c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2017270: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2017274: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2017278: 80 a0 40 03 cmp %g1, %g3 201727c: 02 80 00 08 be 201729c <_Timer_server_Schedule_operation_method+0x6c> 2017280: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2017284: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 2017288: 80 a3 c0 04 cmp %o7, %g4 201728c: 08 80 00 03 bleu 2017298 <_Timer_server_Schedule_operation_method+0x68> 2017290: 86 10 20 00 clr %g3 delta_interval -= delta; 2017294: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2017298: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 201729c: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 20172a0: 7f ff e3 50 call 200ffe0 20172a4: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20172a8: 90 06 20 30 add %i0, 0x30, %o0 20172ac: 40 00 11 26 call 201b744 <_Watchdog_Insert> 20172b0: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20172b4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20172b8: 80 a0 60 00 cmp %g1, 0 20172bc: 12 80 00 27 bne 2017358 <_Timer_server_Schedule_operation_method+0x128> 20172c0: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 20172c4: 7f ff ff 42 call 2016fcc <_Timer_server_Reset_interval_system_watchdog> 20172c8: 90 10 00 18 mov %i0, %o0 20172cc: 30 80 00 23 b,a 2017358 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20172d0: 12 80 00 22 bne 2017358 <_Timer_server_Schedule_operation_method+0x128> 20172d4: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20172d8: 7f ff e3 3e call 200ffd0 20172dc: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20172e0: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 20172e4: de 06 20 74 ld [ %i0 + 0x74 ], %o7 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20172e8: 03 00 80 f1 sethi %hi(0x203c400), %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20172ec: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 20172f0: 80 a0 80 03 cmp %g2, %g3 20172f4: 02 80 00 0d be 2017328 <_Timer_server_Schedule_operation_method+0xf8> 20172f8: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 20172fc: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2017300: 80 a0 40 0f cmp %g1, %o7 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2017304: 86 01 00 0f add %g4, %o7, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2017308: 08 80 00 07 bleu 2017324 <_Timer_server_Schedule_operation_method+0xf4> 201730c: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2017310: 9e 20 40 0f sub %g1, %o7, %o7 if (delta_interval > delta) { 2017314: 80 a1 00 0f cmp %g4, %o7 2017318: 08 80 00 03 bleu 2017324 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 201731c: 86 10 20 00 clr %g3 delta_interval -= delta; 2017320: 86 21 00 0f sub %g4, %o7, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2017324: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2017328: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 201732c: 7f ff e3 2d call 200ffe0 2017330: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2017334: 90 06 20 68 add %i0, 0x68, %o0 2017338: 40 00 11 03 call 201b744 <_Watchdog_Insert> 201733c: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2017340: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2017344: 80 a0 60 00 cmp %g1, 0 2017348: 12 80 00 04 bne 2017358 <_Timer_server_Schedule_operation_method+0x128> 201734c: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2017350: 7f ff ff 33 call 201701c <_Timer_server_Reset_tod_system_watchdog> 2017354: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2017358: 40 00 0c e9 call 201a6fc <_Thread_Enable_dispatch> 201735c: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2017360: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2017364: 40 00 02 0d call 2017b98 <_Chain_Append> 2017368: 81 e8 00 00 restore =============================================================================== 020096b0 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 20096b0: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20096b4: 03 00 80 69 sethi %hi(0x201a400), %g1 20096b8: 82 10 63 0c or %g1, 0x30c, %g1 ! 201a70c ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20096bc: 05 00 80 6d sethi %hi(0x201b400), %g2 initial_extensions = Configuration.User_extension_table; 20096c0: f4 00 60 3c ld [ %g1 + 0x3c ], %i2 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20096c4: f6 00 60 38 ld [ %g1 + 0x38 ], %i3 20096c8: 82 10 a1 d8 or %g2, 0x1d8, %g1 20096cc: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 20096d0: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 20096d4: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20096d8: c6 20 a1 d8 st %g3, [ %g2 + 0x1d8 ] 20096dc: 05 00 80 6c sethi %hi(0x201b000), %g2 20096e0: 82 10 a3 f4 or %g2, 0x3f4, %g1 ! 201b3f4 <_User_extensions_Switches_list> 20096e4: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 20096e8: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20096ec: c6 20 a3 f4 st %g3, [ %g2 + 0x3f4 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 20096f0: 80 a6 a0 00 cmp %i2, 0 20096f4: 02 80 00 1b be 2009760 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 20096f8: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 20096fc: 83 2e e0 02 sll %i3, 2, %g1 2009700: bb 2e e0 04 sll %i3, 4, %i5 2009704: ba 27 40 01 sub %i5, %g1, %i5 2009708: ba 07 40 1b add %i5, %i3, %i5 200970c: bb 2f 60 02 sll %i5, 2, %i5 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009710: 40 00 01 66 call 2009ca8 <_Workspace_Allocate_or_fatal_error> 2009714: 90 10 00 1d mov %i5, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009718: 94 10 00 1d mov %i5, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 200971c: b8 10 00 08 mov %o0, %i4 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009720: 92 10 20 00 clr %o1 2009724: 40 00 13 d5 call 200e678 2009728: ba 10 20 00 clr %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200972c: 10 80 00 0b b 2009758 <_User_extensions_Handler_initialization+0xa8> 2009730: 80 a7 40 1b cmp %i5, %i3 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009734: 90 07 20 14 add %i4, 0x14, %o0 2009738: 92 06 80 09 add %i2, %o1, %o1 200973c: 40 00 13 93 call 200e588 2009740: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 2009744: 90 10 00 1c mov %i4, %o0 2009748: 40 00 0b 76 call 200c520 <_User_extensions_Add_set> 200974c: ba 07 60 01 inc %i5 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009750: b8 07 20 34 add %i4, 0x34, %i4 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009754: 80 a7 40 1b cmp %i5, %i3 2009758: 12 bf ff f7 bne 2009734 <_User_extensions_Handler_initialization+0x84> 200975c: 93 2f 60 05 sll %i5, 5, %o1 2009760: 81 c7 e0 08 ret 2009764: 81 e8 00 00 restore =============================================================================== 0200b420 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b420: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b424: 7f ff de f5 call 2002ff8 200b428: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b42c: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b430: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b434: 80 a0 40 1c cmp %g1, %i4 200b438: 02 80 00 1f be 200b4b4 <_Watchdog_Adjust+0x94> 200b43c: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b440: 02 80 00 1a be 200b4a8 <_Watchdog_Adjust+0x88> 200b444: b6 10 20 01 mov 1, %i3 200b448: 80 a6 60 01 cmp %i1, 1 200b44c: 12 80 00 1a bne 200b4b4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b450: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b454: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b458: 10 80 00 07 b 200b474 <_Watchdog_Adjust+0x54> 200b45c: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b460: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b464: 80 a6 80 02 cmp %i2, %g2 200b468: 3a 80 00 05 bcc,a 200b47c <_Watchdog_Adjust+0x5c> 200b46c: f6 20 60 10 st %i3, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b470: b4 20 80 1a sub %g2, %i2, %i2 break; 200b474: 10 80 00 10 b 200b4b4 <_Watchdog_Adjust+0x94> 200b478: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; 200b47c: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b480: 7f ff de e2 call 2003008 200b484: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b488: 40 00 00 90 call 200b6c8 <_Watchdog_Tickle> 200b48c: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200b490: 7f ff de da call 2002ff8 200b494: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b498: c2 07 40 00 ld [ %i5 ], %g1 200b49c: 80 a0 40 1c cmp %g1, %i4 200b4a0: 02 80 00 05 be 200b4b4 <_Watchdog_Adjust+0x94> 200b4a4: 01 00 00 00 nop switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b4a8: 80 a6 a0 00 cmp %i2, 0 200b4ac: 32 bf ff ed bne,a 200b460 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b4b0: c2 07 40 00 ld [ %i5 ], %g1 } break; } } _ISR_Enable( level ); 200b4b4: 7f ff de d5 call 2003008 200b4b8: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009ac8 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009ac8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009acc: 7f ff e1 ac call 200217c 2009ad0: ba 10 00 18 mov %i0, %i5 previous_state = the_watchdog->state; 2009ad4: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009ad8: 80 a6 20 01 cmp %i0, 1 2009adc: 22 80 00 1d be,a 2009b50 <_Watchdog_Remove+0x88> 2009ae0: c0 27 60 08 clr [ %i5 + 8 ] 2009ae4: 0a 80 00 1c bcs 2009b54 <_Watchdog_Remove+0x8c> 2009ae8: 03 00 80 6d sethi %hi(0x201b400), %g1 2009aec: 80 a6 20 03 cmp %i0, 3 2009af0: 18 80 00 19 bgu 2009b54 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009af4: 01 00 00 00 nop 2009af8: c2 07 40 00 ld [ %i5 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009afc: c0 27 60 08 clr [ %i5 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009b00: c4 00 40 00 ld [ %g1 ], %g2 2009b04: 80 a0 a0 00 cmp %g2, 0 2009b08: 02 80 00 07 be 2009b24 <_Watchdog_Remove+0x5c> 2009b0c: 05 00 80 6d sethi %hi(0x201b400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009b10: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009b14: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 2009b18: 84 00 c0 02 add %g3, %g2, %g2 2009b1c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009b20: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b24: c4 00 a0 f8 ld [ %g2 + 0xf8 ], %g2 ! 201b4f8 <_Watchdog_Sync_count> 2009b28: 80 a0 a0 00 cmp %g2, 0 2009b2c: 22 80 00 07 be,a 2009b48 <_Watchdog_Remove+0x80> 2009b30: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009b34: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b38: c6 00 a2 24 ld [ %g2 + 0x224 ], %g3 ! 201b624 <_Per_CPU_Information+0x8> 2009b3c: 05 00 80 6d sethi %hi(0x201b400), %g2 2009b40: c6 20 a0 98 st %g3, [ %g2 + 0x98 ] ! 201b498 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009b44: c4 07 60 04 ld [ %i5 + 4 ], %g2 next->previous = previous; 2009b48: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009b4c: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009b50: 03 00 80 6d sethi %hi(0x201b400), %g1 2009b54: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 201b4fc <_Watchdog_Ticks_since_boot> 2009b58: c2 27 60 18 st %g1, [ %i5 + 0x18 ] _ISR_Enable( level ); 2009b5c: 7f ff e1 8c call 200218c 2009b60: 01 00 00 00 nop return( previous_state ); } 2009b64: 81 c7 e0 08 ret 2009b68: 81 e8 00 00 restore =============================================================================== 0200ac18 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200ac18: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200ac1c: 7f ff df c7 call 2002b38 200ac20: ba 10 00 18 mov %i0, %i5 200ac24: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200ac28: 11 00 80 6d sethi %hi(0x201b400), %o0 200ac2c: 94 10 00 19 mov %i1, %o2 200ac30: 90 12 20 60 or %o0, 0x60, %o0 200ac34: 7f ff e6 6b call 20045e0 200ac38: 92 10 00 1d mov %i5, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200ac3c: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ac40: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200ac44: 80 a7 00 19 cmp %i4, %i1 200ac48: 12 80 00 04 bne 200ac58 <_Watchdog_Report_chain+0x40> 200ac4c: 92 10 00 1c mov %i4, %o1 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200ac50: 10 80 00 0d b 200ac84 <_Watchdog_Report_chain+0x6c> 200ac54: 11 00 80 6d sethi %hi(0x201b400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200ac58: 40 00 00 0f call 200ac94 <_Watchdog_Report> 200ac5c: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200ac60: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200ac64: 80 a7 00 19 cmp %i4, %i1 200ac68: 12 bf ff fc bne 200ac58 <_Watchdog_Report_chain+0x40> <== NEVER TAKEN 200ac6c: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200ac70: 11 00 80 6d sethi %hi(0x201b400), %o0 200ac74: 92 10 00 1d mov %i5, %o1 200ac78: 7f ff e6 5a call 20045e0 200ac7c: 90 12 20 78 or %o0, 0x78, %o0 200ac80: 30 80 00 03 b,a 200ac8c <_Watchdog_Report_chain+0x74> } else { printk( "Chain is empty\n" ); 200ac84: 7f ff e6 57 call 20045e0 200ac88: 90 12 20 88 or %o0, 0x88, %o0 } _ISR_Enable( level ); 200ac8c: 7f ff df af call 2002b48 200ac90: 81 e8 00 00 restore =============================================================================== 02006cf0 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006cf0: 9d e3 bf 98 save %sp, -104, %sp 2006cf4: 10 80 00 09 b 2006d18 2006cf8: ba 10 00 18 mov %i0, %i5 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006cfc: 92 10 20 00 clr %o1 2006d00: 94 10 00 1a mov %i2, %o2 2006d04: 7f ff fd 03 call 2006110 2006d08: 96 07 bf fc add %fp, -4, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006d0c: 80 a2 20 00 cmp %o0, 0 2006d10: 32 80 00 09 bne,a 2006d34 <== ALWAYS TAKEN 2006d14: f8 26 c0 00 st %i4, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d18: 40 00 01 5e call 2007290 <_Chain_Get> 2006d1c: 90 10 00 1d mov %i5, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d20: b8 92 20 00 orcc %o0, 0, %i4 2006d24: 02 bf ff f6 be 2006cfc 2006d28: 90 10 00 19 mov %i1, %o0 2006d2c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d30: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 2006d34: 81 c7 e0 08 ret 2006d38: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02008fc8 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2008fc8: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2008fcc: 80 a6 20 00 cmp %i0, 0 2008fd0: 02 80 00 1e be 2009048 <== NEVER TAKEN 2008fd4: ba 10 20 01 mov 1, %i5 return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2008fd8: 35 00 80 77 sethi %hi(0x201dc00), %i2 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2008fdc: 83 2f 60 02 sll %i5, 2, %g1 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2008fe0: 84 16 a2 98 or %i2, 0x298, %g2 2008fe4: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2008fe8: 80 a0 60 00 cmp %g1, 0 2008fec: 22 80 00 14 be,a 200903c 2008ff0: ba 07 60 01 inc %i5 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2008ff4: f6 00 60 04 ld [ %g1 + 4 ], %i3 if ( !information ) 2008ff8: 80 a6 e0 00 cmp %i3, 0 2008ffc: 12 80 00 0b bne 2009028 2009000: b8 10 20 01 mov 1, %i4 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009004: 10 80 00 0e b 200903c 2009008: ba 07 60 01 inc %i5 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { the_thread = (Thread_Control *)information->local_table[ i ]; 200900c: 83 2f 20 02 sll %i4, 2, %g1 2009010: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009014: 80 a2 20 00 cmp %o0, 0 2009018: 02 80 00 04 be 2009028 200901c: b8 07 20 01 inc %i4 continue; (*routine)(the_thread); 2009020: 9f c6 00 00 call %i0 2009024: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009028: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1 200902c: 80 a7 00 01 cmp %i4, %g1 2009030: 28 bf ff f7 bleu,a 200900c 2009034: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009038: ba 07 60 01 inc %i5 200903c: 80 a7 60 04 cmp %i5, 4 2009040: 12 bf ff e8 bne 2008fe0 2009044: 83 2f 60 02 sll %i5, 2, %g1 2009048: 81 c7 e0 08 ret 200904c: 81 e8 00 00 restore =============================================================================== 02014a4c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014a4c: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014a50: 80 a6 20 00 cmp %i0, 0 2014a54: 02 80 00 39 be 2014b38 2014a58: 82 10 20 03 mov 3, %g1 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014a5c: 80 a6 60 00 cmp %i1, 0 2014a60: 02 80 00 36 be 2014b38 2014a64: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014a68: 80 a7 60 00 cmp %i5, 0 2014a6c: 02 80 00 33 be 2014b38 <== NEVER TAKEN 2014a70: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014a74: 02 80 00 31 be 2014b38 2014a78: 82 10 20 08 mov 8, %g1 2014a7c: 80 a6 a0 00 cmp %i2, 0 2014a80: 02 80 00 2e be 2014b38 2014a84: 80 a6 80 1b cmp %i2, %i3 2014a88: 0a 80 00 2c bcs 2014b38 2014a8c: 80 8e e0 07 btst 7, %i3 2014a90: 12 80 00 2a bne 2014b38 2014a94: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2014a98: 12 80 00 28 bne 2014b38 2014a9c: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2014aa0: 03 00 80 f0 sethi %hi(0x203c000), %g1 2014aa4: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 203c3f0 <_Thread_Dispatch_disable_level> 2014aa8: 84 00 a0 01 inc %g2 2014aac: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ] return _Thread_Dispatch_disable_level; 2014ab0: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014ab4: 23 00 80 f0 sethi %hi(0x203c000), %l1 2014ab8: 40 00 12 26 call 2019350 <_Objects_Allocate> 2014abc: 90 14 62 04 or %l1, 0x204, %o0 ! 203c204 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014ac0: a0 92 20 00 orcc %o0, 0, %l0 2014ac4: 32 80 00 06 bne,a 2014adc 2014ac8: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2014acc: 40 00 17 0c call 201a6fc <_Thread_Enable_dispatch> 2014ad0: 01 00 00 00 nop return RTEMS_TOO_MANY; 2014ad4: 10 80 00 19 b 2014b38 2014ad8: 82 10 20 05 mov 5, %g1 ! 5 the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014adc: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014ae0: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2014ae4: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2014ae8: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2014aec: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014af0: 40 00 5e 8f call 202c52c <.udiv> 2014af4: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014af8: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2014afc: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014b00: 96 10 00 1b mov %i3, %o3 2014b04: b8 04 20 24 add %l0, 0x24, %i4 2014b08: 40 00 0c 47 call 2017c24 <_Chain_Initialize> 2014b0c: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014b10: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014b14: a2 14 62 04 or %l1, 0x204, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014b18: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014b1c: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014b20: 85 28 a0 02 sll %g2, 2, %g2 2014b24: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014b28: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014b2c: 40 00 16 f4 call 201a6fc <_Thread_Enable_dispatch> 2014b30: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2014b34: 82 10 20 00 clr %g1 } 2014b38: 81 c7 e0 08 ret 2014b3c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02007228 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007228: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 200722c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007230: 92 10 00 18 mov %i0, %o1 2007234: 90 12 21 24 or %o0, 0x124, %o0 2007238: 40 00 08 d3 call 2009584 <_Objects_Get> 200723c: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007240: c2 07 bf fc ld [ %fp + -4 ], %g1 2007244: 80 a0 60 00 cmp %g1, 0 2007248: 12 80 00 65 bne 20073dc 200724c: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007250: 37 00 80 75 sethi %hi(0x201d400), %i3 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007254: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 2007258: b6 16 e0 bc or %i3, 0xbc, %i3 200725c: c2 06 e0 0c ld [ %i3 + 0xc ], %g1 2007260: 80 a0 80 01 cmp %g2, %g1 2007264: 02 80 00 06 be 200727c 2007268: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 200726c: 40 00 0c 66 call 200a404 <_Thread_Enable_dispatch> 2007270: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007274: 81 c7 e0 08 ret 2007278: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 200727c: 12 80 00 0d bne 20072b0 2007280: 01 00 00 00 nop switch ( the_period->state ) { 2007284: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007288: 80 a0 60 04 cmp %g1, 4 200728c: 18 80 00 05 bgu 20072a0 <== NEVER TAKEN 2007290: b0 10 20 00 clr %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007294: 05 00 80 6c sethi %hi(0x201b000), %g2 2007298: 84 10 a1 68 or %g2, 0x168, %g2 ! 201b168 200729c: f0 08 80 01 ldub [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20072a0: 40 00 0c 59 call 200a404 <_Thread_Enable_dispatch> 20072a4: 01 00 00 00 nop return( return_value ); 20072a8: 81 c7 e0 08 ret 20072ac: 81 e8 00 00 restore } _ISR_Disable( level ); 20072b0: 7f ff ee fb call 2002e9c 20072b4: 01 00 00 00 nop 20072b8: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20072bc: f8 07 60 38 ld [ %i5 + 0x38 ], %i4 20072c0: 80 a7 20 00 cmp %i4, 0 20072c4: 12 80 00 15 bne 2007318 20072c8: 80 a7 20 02 cmp %i4, 2 _ISR_Enable( level ); 20072cc: 7f ff ee f8 call 2002eac 20072d0: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20072d4: 7f ff ff 7f call 20070d0 <_Rate_monotonic_Initiate_statistics> 20072d8: 90 10 00 1d mov %i5, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20072dc: 82 10 20 02 mov 2, %g1 20072e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20072e4: 03 00 80 1d sethi %hi(0x2007400), %g1 20072e8: 82 10 62 98 or %g1, 0x298, %g1 ! 2007698 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20072ec: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; 20072f0: c2 27 60 2c st %g1, [ %i5 + 0x2c ] the_watchdog->id = id; 20072f4: f0 27 60 30 st %i0, [ %i5 + 0x30 ] the_watchdog->user_data = user_data; 20072f8: c0 27 60 34 clr [ %i5 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 20072fc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007300: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007304: 11 00 80 74 sethi %hi(0x201d000), %o0 2007308: 92 07 60 10 add %i5, 0x10, %o1 200730c: 40 00 10 03 call 200b318 <_Watchdog_Insert> 2007310: 90 12 23 4c or %o0, 0x34c, %o0 2007314: 30 80 00 1b b,a 2007380 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007318: 12 80 00 1e bne 2007390 200731c: 80 a7 20 04 cmp %i4, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007320: 7f ff ff 86 call 2007138 <_Rate_monotonic_Update_statistics> 2007324: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007328: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 200732c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007330: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007334: 7f ff ee de call 2002eac 2007338: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 200733c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007340: c2 07 60 08 ld [ %i5 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007344: 13 00 00 10 sethi %hi(0x4000), %o1 2007348: 40 00 0e 51 call 200ac8c <_Thread_Set_state> 200734c: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007350: 7f ff ee d3 call 2002e9c 2007354: 01 00 00 00 nop local_state = the_period->state; 2007358: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 200735c: f8 27 60 38 st %i4, [ %i5 + 0x38 ] _ISR_Enable( level ); 2007360: 7f ff ee d3 call 2002eac 2007364: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007368: 80 a6 a0 03 cmp %i2, 3 200736c: 12 80 00 05 bne 2007380 2007370: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007374: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 2007378: 40 00 0b 45 call 200a08c <_Thread_Clear_state> 200737c: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 2007380: 40 00 0c 21 call 200a404 <_Thread_Enable_dispatch> 2007384: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007388: 81 c7 e0 08 ret 200738c: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 2007390: 12 bf ff b9 bne 2007274 <== NEVER TAKEN 2007394: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007398: 7f ff ff 68 call 2007138 <_Rate_monotonic_Update_statistics> 200739c: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20073a0: 7f ff ee c3 call 2002eac 20073a4: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20073a8: 82 10 20 02 mov 2, %g1 20073ac: 92 07 60 10 add %i5, 0x10, %o1 20073b0: 11 00 80 74 sethi %hi(0x201d000), %o0 20073b4: 90 12 23 4c or %o0, 0x34c, %o0 ! 201d34c <_Watchdog_Ticks_chain> 20073b8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 20073bc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20073c0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20073c4: 40 00 0f d5 call 200b318 <_Watchdog_Insert> 20073c8: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20073cc: 40 00 0c 0e call 200a404 <_Thread_Enable_dispatch> 20073d0: 01 00 00 00 nop return RTEMS_TIMEOUT; 20073d4: 81 c7 e0 08 ret 20073d8: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20073dc: b0 10 20 04 mov 4, %i0 } 20073e0: 81 c7 e0 08 ret 20073e4: 81 e8 00 00 restore =============================================================================== 020073e8 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20073e8: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20073ec: 80 a6 60 00 cmp %i1, 0 20073f0: 02 80 00 75 be 20075c4 <== NEVER TAKEN 20073f4: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20073f8: 13 00 80 6c sethi %hi(0x201b000), %o1 20073fc: 9f c6 40 00 call %i1 2007400: 92 12 61 70 or %o1, 0x170, %o1 ! 201b170 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007404: 90 10 00 18 mov %i0, %o0 2007408: 13 00 80 6c sethi %hi(0x201b000), %o1 200740c: 9f c6 40 00 call %i1 2007410: 92 12 61 90 or %o1, 0x190, %o1 ! 201b190 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007414: 90 10 00 18 mov %i0, %o0 2007418: 13 00 80 6c sethi %hi(0x201b000), %o1 200741c: 9f c6 40 00 call %i1 2007420: 92 12 61 b8 or %o1, 0x1b8, %o1 ! 201b1b8 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007424: 90 10 00 18 mov %i0, %o0 2007428: 13 00 80 6c sethi %hi(0x201b000), %o1 200742c: 9f c6 40 00 call %i1 2007430: 92 12 61 e0 or %o1, 0x1e0, %o1 ! 201b1e0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007434: 90 10 00 18 mov %i0, %o0 2007438: 13 00 80 6c sethi %hi(0x201b000), %o1 200743c: 9f c6 40 00 call %i1 2007440: 92 12 62 30 or %o1, 0x230, %o1 ! 201b230 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007444: 03 00 80 74 sethi %hi(0x201d000), %g1 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007448: 21 00 80 6c sethi %hi(0x201b000), %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 200744c: 35 00 80 6c sethi %hi(0x201b000), %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007450: 37 00 80 6c sethi %hi(0x201b000), %i3 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007454: 39 00 80 68 sethi %hi(0x201a000), %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007458: fa 00 61 2c ld [ %g1 + 0x12c ], %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200745c: a0 14 22 80 or %l0, 0x280, %l0 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007460: b4 16 a2 98 or %i2, 0x298, %i2 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007464: b6 16 e2 b8 or %i3, 0x2b8, %i3 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007468: 10 80 00 52 b 20075b0 200746c: b8 17 23 f8 or %i4, 0x3f8, %i4 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007470: 40 00 17 84 call 200d280 2007474: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007478: 80 a2 20 00 cmp %o0, 0 200747c: 32 80 00 4d bne,a 20075b0 2007480: ba 07 60 01 inc %i5 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007484: 92 07 bf d8 add %fp, -40, %o1 2007488: 40 00 17 ab call 200d334 200748c: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007490: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007494: 92 10 20 05 mov 5, %o1 2007498: 40 00 00 af call 2007754 200749c: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074a0: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20074a4: 92 10 00 10 mov %l0, %o1 20074a8: 90 10 00 18 mov %i0, %o0 20074ac: 94 10 00 1d mov %i5, %o2 20074b0: 9f c6 40 00 call %i1 20074b4: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20074b8: d2 07 bf a0 ld [ %fp + -96 ], %o1 20074bc: 80 a2 60 00 cmp %o1, 0 20074c0: 12 80 00 07 bne 20074dc 20074c4: 94 07 bf f0 add %fp, -16, %o2 (*print)( context, "\n" ); 20074c8: 90 10 00 18 mov %i0, %o0 20074cc: 9f c6 40 00 call %i1 20074d0: 92 10 00 1c mov %i4, %o1 continue; 20074d4: 10 80 00 37 b 20075b0 20074d8: ba 07 60 01 inc %i5 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20074dc: 40 00 0e 70 call 200ae9c <_Timespec_Divide_by_integer> 20074e0: 90 07 bf b8 add %fp, -72, %o0 (*print)( context, 20074e4: d0 07 bf ac ld [ %fp + -84 ], %o0 20074e8: 40 00 43 96 call 2018340 <.div> 20074ec: 92 10 23 e8 mov 0x3e8, %o1 20074f0: a6 10 00 08 mov %o0, %l3 20074f4: d0 07 bf b4 ld [ %fp + -76 ], %o0 20074f8: 40 00 43 92 call 2018340 <.div> 20074fc: 92 10 23 e8 mov 0x3e8, %o1 2007500: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007504: a2 10 00 08 mov %o0, %l1 2007508: d0 07 bf f4 ld [ %fp + -12 ], %o0 200750c: e8 07 bf a8 ld [ %fp + -88 ], %l4 2007510: e4 07 bf b0 ld [ %fp + -80 ], %l2 2007514: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007518: 40 00 43 8a call 2018340 <.div> 200751c: 92 10 23 e8 mov 0x3e8, %o1 2007520: 96 10 00 13 mov %l3, %o3 2007524: 98 10 00 12 mov %l2, %o4 2007528: 9a 10 00 11 mov %l1, %o5 200752c: 94 10 00 14 mov %l4, %o2 2007530: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007534: 92 10 00 1a mov %i2, %o1 2007538: 9f c6 40 00 call %i1 200753c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007540: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007544: 94 07 bf f0 add %fp, -16, %o2 2007548: 40 00 0e 55 call 200ae9c <_Timespec_Divide_by_integer> 200754c: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 2007550: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007554: 40 00 43 7b call 2018340 <.div> 2007558: 92 10 23 e8 mov 0x3e8, %o1 200755c: a6 10 00 08 mov %o0, %l3 2007560: d0 07 bf cc ld [ %fp + -52 ], %o0 2007564: 40 00 43 77 call 2018340 <.div> 2007568: 92 10 23 e8 mov 0x3e8, %o1 200756c: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007570: a2 10 00 08 mov %o0, %l1 2007574: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007578: e8 07 bf c0 ld [ %fp + -64 ], %l4 200757c: e4 07 bf c8 ld [ %fp + -56 ], %l2 2007580: 92 10 23 e8 mov 0x3e8, %o1 2007584: 40 00 43 6f call 2018340 <.div> 2007588: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200758c: 92 10 00 1b mov %i3, %o1 2007590: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007594: 94 10 00 14 mov %l4, %o2 2007598: 90 10 00 18 mov %i0, %o0 200759c: 96 10 00 13 mov %l3, %o3 20075a0: 98 10 00 12 mov %l2, %o4 20075a4: 9f c6 40 00 call %i1 20075a8: 9a 10 00 11 mov %l1, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20075ac: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 20075b0: 03 00 80 74 sethi %hi(0x201d000), %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075b4: c2 00 61 30 ld [ %g1 + 0x130 ], %g1 ! 201d130 <_Rate_monotonic_Information+0xc> 20075b8: 80 a7 40 01 cmp %i5, %g1 20075bc: 08 bf ff ad bleu 2007470 20075c0: 90 10 00 1d mov %i5, %o0 20075c4: 81 c7 e0 08 ret 20075c8: 81 e8 00 00 restore =============================================================================== 02015fbc : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2015fbc: 9d e3 bf 98 save %sp, -104, %sp 2015fc0: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2015fc4: 80 a6 60 00 cmp %i1, 0 2015fc8: 02 80 00 2e be 2016080 2015fcc: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015fd0: 40 00 11 d7 call 201a72c <_Thread_Get> 2015fd4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2015fd8: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015fdc: b8 10 00 08 mov %o0, %i4 switch ( location ) { 2015fe0: 80 a0 60 00 cmp %g1, 0 2015fe4: 12 80 00 27 bne 2016080 2015fe8: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2015fec: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2015ff0: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2015ff4: 80 a0 60 00 cmp %g1, 0 2015ff8: 02 80 00 24 be 2016088 2015ffc: 01 00 00 00 nop if ( asr->is_enabled ) { 2016000: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2016004: 80 a0 60 00 cmp %g1, 0 2016008: 02 80 00 15 be 201605c 201600c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016010: 7f ff e7 f0 call 200ffd0 2016014: 01 00 00 00 nop *signal_set |= signals; 2016018: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 201601c: b2 10 40 19 or %g1, %i1, %i1 2016020: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2016024: 7f ff e7 ef call 200ffe0 2016028: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201602c: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016030: 82 10 62 24 or %g1, 0x224, %g1 ! 203c624 <_Per_CPU_Information> 2016034: c4 00 60 08 ld [ %g1 + 8 ], %g2 2016038: 80 a0 a0 00 cmp %g2, 0 201603c: 02 80 00 0f be 2016078 2016040: 01 00 00 00 nop 2016044: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2016048: 80 a7 00 02 cmp %i4, %g2 201604c: 12 80 00 0b bne 2016078 <== NEVER TAKEN 2016050: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2016054: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2016058: 30 80 00 08 b,a 2016078 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201605c: 7f ff e7 dd call 200ffd0 2016060: 01 00 00 00 nop *signal_set |= signals; 2016064: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2016068: b2 10 40 19 or %g1, %i1, %i1 201606c: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2016070: 7f ff e7 dc call 200ffe0 2016074: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2016078: 40 00 11 a1 call 201a6fc <_Thread_Enable_dispatch> 201607c: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 2016080: 81 c7 e0 08 ret 2016084: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 2016088: 40 00 11 9d call 201a6fc <_Thread_Enable_dispatch> 201608c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2016090: 81 c7 e0 08 ret 2016094: 81 e8 00 00 restore =============================================================================== 0200d724 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d724: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d728: 80 a6 a0 00 cmp %i2, 0 200d72c: 02 80 00 5a be 200d894 200d730: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d734: 03 00 80 6d sethi %hi(0x201b400), %g1 200d738: f8 00 62 28 ld [ %g1 + 0x228 ], %i4 ! 201b628 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d73c: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d740: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d744: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d748: c2 07 20 7c ld [ %i4 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d74c: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d750: 80 a0 60 00 cmp %g1, 0 200d754: 02 80 00 03 be 200d760 200d758: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d75c: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d760: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 200d764: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d768: 7f ff f1 f3 call 2009f34 <_CPU_ISR_Get_level> 200d76c: a0 60 3f ff subx %g0, -1, %l0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d770: a1 2c 20 0a sll %l0, 0xa, %l0 200d774: a0 14 00 08 or %l0, %o0, %l0 old_mode |= _ISR_Get_level(); 200d778: b6 14 00 1b or %l0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d77c: 80 8e 61 00 btst 0x100, %i1 200d780: 02 80 00 06 be 200d798 200d784: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d788: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d78c: 80 a0 00 01 cmp %g0, %g1 200d790: 82 60 3f ff subx %g0, -1, %g1 200d794: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d798: 80 8e 62 00 btst 0x200, %i1 200d79c: 02 80 00 0b be 200d7c8 200d7a0: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d7a4: 80 8e 22 00 btst 0x200, %i0 200d7a8: 22 80 00 07 be,a 200d7c4 200d7ac: c0 27 20 7c clr [ %i4 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d7b0: 82 10 20 01 mov 1, %g1 200d7b4: c2 27 20 7c st %g1, [ %i4 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d7b8: 03 00 80 6c sethi %hi(0x201b000), %g1 200d7bc: c2 00 63 54 ld [ %g1 + 0x354 ], %g1 ! 201b354 <_Thread_Ticks_per_timeslice> 200d7c0: c2 27 20 78 st %g1, [ %i4 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d7c4: 80 8e 60 0f btst 0xf, %i1 200d7c8: 02 80 00 06 be 200d7e0 200d7cc: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d7d0: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d7d4: 7f ff d2 6e call 200218c 200d7d8: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d7dc: 80 8e 64 00 btst 0x400, %i1 200d7e0: 02 80 00 14 be 200d830 200d7e4: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d7e8: c4 0f 60 08 ldub [ %i5 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d7ec: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d7f0: 80 a0 00 18 cmp %g0, %i0 200d7f4: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d7f8: 80 a0 40 02 cmp %g1, %g2 200d7fc: 22 80 00 0e be,a 200d834 200d800: 03 00 80 6d sethi %hi(0x201b400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d804: 7f ff d2 5e call 200217c 200d808: c2 2f 60 08 stb %g1, [ %i5 + 8 ] _signals = information->signals_pending; 200d80c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d810: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 information->signals_posted = _signals; 200d814: c2 27 60 14 st %g1, [ %i5 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d818: c4 27 60 18 st %g2, [ %i5 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d81c: 7f ff d2 5c call 200218c 200d820: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d824: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d828: 80 a0 00 01 cmp %g0, %g1 200d82c: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d830: 03 00 80 6d sethi %hi(0x201b400), %g1 200d834: c4 00 61 44 ld [ %g1 + 0x144 ], %g2 ! 201b544 <_System_state_Current> 200d838: 80 a0 a0 03 cmp %g2, 3 200d83c: 12 80 00 16 bne 200d894 200d840: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d844: 07 00 80 6d sethi %hi(0x201b400), %g3 if ( are_signals_pending || 200d848: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d84c: 86 10 e2 1c or %g3, 0x21c, %g3 if ( are_signals_pending || 200d850: 12 80 00 0a bne 200d878 200d854: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d858: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d85c: 80 a0 80 03 cmp %g2, %g3 200d860: 02 80 00 0d be 200d894 200d864: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d868: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d86c: 80 a0 a0 00 cmp %g2, 0 200d870: 02 80 00 09 be 200d894 <== NEVER TAKEN 200d874: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d878: 84 10 20 01 mov 1, %g2 ! 1 200d87c: 03 00 80 6d sethi %hi(0x201b400), %g1 200d880: 82 10 62 1c or %g1, 0x21c, %g1 ! 201b61c <_Per_CPU_Information> 200d884: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d888: 7f ff ec 81 call 2008a8c <_Thread_Dispatch> 200d88c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d890: 82 10 20 00 clr %g1 ! 0 } 200d894: 81 c7 e0 08 ret 200d898: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200a9f8 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200a9f8: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200a9fc: 80 a6 60 00 cmp %i1, 0 200aa00: 02 80 00 07 be 200aa1c 200aa04: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200aa08: 03 00 80 61 sethi %hi(0x2018400), %g1 200aa0c: c2 08 62 3c ldub [ %g1 + 0x23c ], %g1 ! 201863c 200aa10: 80 a6 40 01 cmp %i1, %g1 200aa14: 18 80 00 1c bgu 200aa84 200aa18: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200aa1c: 80 a6 a0 00 cmp %i2, 0 200aa20: 02 80 00 19 be 200aa84 200aa24: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200aa28: 40 00 09 4a call 200cf50 <_Thread_Get> 200aa2c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200aa30: c2 07 bf fc ld [ %fp + -4 ], %g1 200aa34: 80 a0 60 00 cmp %g1, 0 200aa38: 12 80 00 13 bne 200aa84 200aa3c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200aa40: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200aa44: 80 a6 60 00 cmp %i1, 0 200aa48: 02 80 00 0d be 200aa7c 200aa4c: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200aa50: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200aa54: 80 a0 60 00 cmp %g1, 0 200aa58: 02 80 00 06 be 200aa70 200aa5c: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200aa60: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200aa64: 80 a0 40 19 cmp %g1, %i1 200aa68: 08 80 00 05 bleu 200aa7c <== ALWAYS TAKEN 200aa6c: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200aa70: 92 10 00 19 mov %i1, %o1 200aa74: 40 00 08 07 call 200ca90 <_Thread_Change_priority> 200aa78: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200aa7c: 40 00 09 29 call 200cf20 <_Thread_Enable_dispatch> 200aa80: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200aa84: 81 c7 e0 08 ret 200aa88: 81 e8 00 00 restore =============================================================================== 020169c4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 20169c4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 20169c8: 11 00 80 f1 sethi %hi(0x203c400), %o0 20169cc: 92 10 00 18 mov %i0, %o1 20169d0: 90 12 22 c4 or %o0, 0x2c4, %o0 20169d4: 40 00 0b aa call 201987c <_Objects_Get> 20169d8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20169dc: c2 07 bf fc ld [ %fp + -4 ], %g1 20169e0: 80 a0 60 00 cmp %g1, 0 20169e4: 12 80 00 0c bne 2016a14 20169e8: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 20169ec: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20169f0: 80 a0 60 04 cmp %g1, 4 20169f4: 02 80 00 04 be 2016a04 <== NEVER TAKEN 20169f8: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 20169fc: 40 00 13 ac call 201b8ac <_Watchdog_Remove> 2016a00: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016a04: 40 00 0f 3e call 201a6fc <_Thread_Enable_dispatch> 2016a08: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016a0c: 81 c7 e0 08 ret 2016a10: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016a14: 81 c7 e0 08 ret 2016a18: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016ec0 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016ec0: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016ec4: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016ec8: f8 00 63 04 ld [ %g1 + 0x304 ], %i4 ! 203c704 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016ecc: ba 10 00 18 mov %i0, %i5 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016ed0: 80 a7 20 00 cmp %i4, 0 2016ed4: 02 80 00 32 be 2016f9c 2016ed8: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016edc: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016ee0: c2 08 60 00 ldub [ %g1 ], %g1 2016ee4: 80 a0 60 00 cmp %g1, 0 2016ee8: 02 80 00 2d be 2016f9c <== NEVER TAKEN 2016eec: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016ef0: 80 a6 a0 00 cmp %i2, 0 2016ef4: 02 80 00 2a be 2016f9c 2016ef8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016efc: 90 10 00 19 mov %i1, %o0 2016f00: 7f ff f4 11 call 2013f44 <_TOD_Validate> 2016f04: b0 10 20 14 mov 0x14, %i0 2016f08: 80 8a 20 ff btst 0xff, %o0 2016f0c: 02 80 00 27 be 2016fa8 2016f10: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016f14: 7f ff f3 d8 call 2013e74 <_TOD_To_seconds> 2016f18: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2016f1c: 21 00 80 f1 sethi %hi(0x203c400), %l0 2016f20: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 ! 203c47c <_TOD_Now> 2016f24: 80 a2 00 01 cmp %o0, %g1 2016f28: 08 80 00 1d bleu 2016f9c 2016f2c: b2 10 00 08 mov %o0, %i1 2016f30: 11 00 80 f1 sethi %hi(0x203c400), %o0 2016f34: 92 10 00 1d mov %i5, %o1 2016f38: 90 12 22 c4 or %o0, 0x2c4, %o0 2016f3c: 40 00 0a 50 call 201987c <_Objects_Get> 2016f40: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016f44: c2 07 bf fc ld [ %fp + -4 ], %g1 2016f48: 80 a0 60 00 cmp %g1, 0 2016f4c: 12 80 00 16 bne 2016fa4 2016f50: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016f54: 40 00 12 56 call 201b8ac <_Watchdog_Remove> 2016f58: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2016f5c: 82 10 20 03 mov 3, %g1 2016f60: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016f64: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016f68: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016f6c: b2 26 40 01 sub %i1, %g1, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016f70: c2 07 20 04 ld [ %i4 + 4 ], %g1 2016f74: 90 10 00 1c mov %i4, %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016f78: c0 26 20 18 clr [ %i0 + 0x18 ] the_watchdog->routine = routine; 2016f7c: f4 26 20 2c st %i2, [ %i0 + 0x2c ] the_watchdog->id = id; 2016f80: fa 26 20 30 st %i5, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 2016f84: f6 26 20 34 st %i3, [ %i0 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016f88: f2 26 20 1c st %i1, [ %i0 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2016f8c: 9f c0 40 00 call %g1 2016f90: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016f94: 40 00 0d da call 201a6fc <_Thread_Enable_dispatch> 2016f98: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2016f9c: 81 c7 e0 08 ret 2016fa0: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2016fa4: b0 10 20 04 mov 4, %i0 } 2016fa8: 81 c7 e0 08 ret 2016fac: 81 e8 00 00 restore