RTEMS 4.11Annotated Report
Mon Apr 4 14:20:25 2011
0200fb54 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fb54: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fb58: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fb5c: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fb60: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fb64: 80 8e e0 03 btst 3, %i3
200fb68: 02 80 00 07 be 200fb84 <_CORE_message_queue_Initialize+0x30>
200fb6c: b8 10 00 1b mov %i3, %i4
allocated_message_size += sizeof(uint32_t);
200fb70: b8 06 e0 04 add %i3, 4, %i4
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fb74: b8 0f 3f fc and %i4, -4, %i4
}
if (allocated_message_size < maximum_message_size)
200fb78: 80 a7 00 1b cmp %i4, %i3
200fb7c: 0a 80 00 22 bcs 200fc04 <_CORE_message_queue_Initialize+0xb0><== NEVER TAKEN
200fb80: a0 10 20 00 clr %l0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fb84: ba 07 20 10 add %i4, 0x10, %i5
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
200fb88: 92 10 00 1a mov %i2, %o1
200fb8c: 90 10 00 1d mov %i5, %o0
200fb90: 40 00 3d 06 call 201efa8 <.umul>
200fb94: a0 10 20 00 clr %l0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
200fb98: 80 a2 00 1c cmp %o0, %i4
200fb9c: 2a 80 00 1b bcs,a 200fc08 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fba0: b0 0c 20 01 and %l0, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fba4: 40 00 0b e6 call 2012b3c <_Workspace_Allocate>
200fba8: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fbac: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fbb0: 80 a2 20 00 cmp %o0, 0
200fbb4: 02 80 00 14 be 200fc04 <_CORE_message_queue_Initialize+0xb0>
200fbb8: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fbbc: 90 06 20 60 add %i0, 0x60, %o0
200fbc0: 94 10 00 1a mov %i2, %o2
200fbc4: 40 00 13 6d call 2014978 <_Chain_Initialize>
200fbc8: 96 10 00 1d mov %i5, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fbcc: 82 06 20 50 add %i0, 0x50, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
200fbd0: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
200fbd4: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fbd8: 84 06 20 54 add %i0, 0x54, %g2
200fbdc: 82 18 60 01 xor %g1, 1, %g1
200fbe0: 80 a0 00 01 cmp %g0, %g1
head->next = tail;
200fbe4: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
head->previous = NULL;
200fbe8: c0 26 20 54 clr [ %i0 + 0x54 ]
200fbec: 90 10 00 18 mov %i0, %o0
200fbf0: 92 60 3f ff subx %g0, -1, %o1
200fbf4: 94 10 20 80 mov 0x80, %o2
200fbf8: 96 10 20 06 mov 6, %o3
200fbfc: 40 00 09 5f call 2012178 <_Thread_queue_Initialize>
200fc00: a0 10 20 01 mov 1, %l0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200fc04: b0 0c 20 01 and %l0, 1, %i0
200fc08: 81 c7 e0 08 ret
200fc0c: 81 e8 00 00 restore
020069fc <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
20069fc: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006a00: 03 00 80 52 sethi %hi(0x2014800), %g1
2006a04: c2 00 60 e0 ld [ %g1 + 0xe0 ], %g1 ! 20148e0 <_Thread_Dispatch_disable_level>
2006a08: 80 a0 60 00 cmp %g1, 0
2006a0c: 02 80 00 0d be 2006a40 <_CORE_mutex_Seize+0x44>
2006a10: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2006a14: 80 a6 a0 00 cmp %i2, 0
2006a18: 02 80 00 0b be 2006a44 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006a1c: 90 10 00 18 mov %i0, %o0
2006a20: 03 00 80 52 sethi %hi(0x2014800), %g1
2006a24: c2 00 62 3c ld [ %g1 + 0x23c ], %g1 ! 2014a3c <_System_state_Current>
2006a28: 80 a0 60 01 cmp %g1, 1
2006a2c: 08 80 00 05 bleu 2006a40 <_CORE_mutex_Seize+0x44>
2006a30: 90 10 20 00 clr %o0
2006a34: 92 10 20 00 clr %o1
2006a38: 40 00 01 dc call 20071a8 <_Internal_error_Occurred>
2006a3c: 94 10 20 12 mov 0x12, %o2
2006a40: 90 10 00 18 mov %i0, %o0
2006a44: 40 00 12 8f call 200b480 <_CORE_mutex_Seize_interrupt_trylock>
2006a48: 92 07 a0 54 add %fp, 0x54, %o1
2006a4c: 80 a2 20 00 cmp %o0, 0
2006a50: 02 80 00 0a be 2006a78 <_CORE_mutex_Seize+0x7c>
2006a54: 80 a6 a0 00 cmp %i2, 0
2006a58: 12 80 00 0a bne 2006a80 <_CORE_mutex_Seize+0x84>
2006a5c: 82 10 20 01 mov 1, %g1
2006a60: 7f ff ed 1c call 2001ed0 <sparc_enable_interrupts>
2006a64: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006a68: 03 00 80 52 sethi %hi(0x2014800), %g1
2006a6c: c2 00 63 18 ld [ %g1 + 0x318 ], %g1 ! 2014b18 <_Per_CPU_Information+0xc>
2006a70: 84 10 20 01 mov 1, %g2
2006a74: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2006a78: 81 c7 e0 08 ret
2006a7c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006a80: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
2006a84: 03 00 80 52 sethi %hi(0x2014800), %g1
2006a88: c2 00 63 18 ld [ %g1 + 0x318 ], %g1 ! 2014b18 <_Per_CPU_Information+0xc>
2006a8c: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2006a90: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2006a94: 03 00 80 52 sethi %hi(0x2014800), %g1
2006a98: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 20148e0 <_Thread_Dispatch_disable_level>
2006a9c: 84 00 a0 01 inc %g2
2006aa0: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
2006aa4: 7f ff ed 0b call 2001ed0 <sparc_enable_interrupts>
2006aa8: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006aac: 90 10 00 18 mov %i0, %o0
2006ab0: 7f ff ff bb call 200699c <_CORE_mutex_Seize_interrupt_blocking>
2006ab4: 92 10 00 1b mov %i3, %o1
2006ab8: 81 c7 e0 08 ret
2006abc: 81 e8 00 00 restore
02006c34 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2006c34: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006c38: 90 10 00 18 mov %i0, %o0
2006c3c: 40 00 07 07 call 2008858 <_Thread_queue_Dequeue>
2006c40: ba 10 00 18 mov %i0, %i5
2006c44: 80 a2 20 00 cmp %o0, 0
2006c48: 12 80 00 0e bne 2006c80 <_CORE_semaphore_Surrender+0x4c>
2006c4c: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2006c50: 7f ff ec 9c call 2001ec0 <sparc_disable_interrupts>
2006c54: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006c58: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2006c5c: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
2006c60: 80 a0 40 02 cmp %g1, %g2
2006c64: 1a 80 00 05 bcc 2006c78 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006c68: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006c6c: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006c70: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2006c74: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2006c78: 7f ff ec 96 call 2001ed0 <sparc_enable_interrupts>
2006c7c: 01 00 00 00 nop
}
return status;
}
2006c80: 81 c7 e0 08 ret
2006c84: 81 e8 00 00 restore
02005a44 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005a44: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005a48: f8 06 21 58 ld [ %i0 + 0x158 ], %i4
option_set = (rtems_option) the_thread->Wait.option;
2005a4c: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
_ISR_Disable( level );
2005a50: 7f ff f1 1c call 2001ec0 <sparc_disable_interrupts>
2005a54: ba 10 00 18 mov %i0, %i5
2005a58: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005a5c: c4 07 00 00 ld [ %i4 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005a60: c6 07 60 24 ld [ %i5 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2005a64: 82 88 c0 02 andcc %g3, %g2, %g1
2005a68: 02 80 00 44 be 2005b78 <_Event_Surrender+0x134>
2005a6c: 01 00 00 00 nop
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2005a70: 09 00 80 52 sethi %hi(0x2014800), %g4
2005a74: 88 11 23 0c or %g4, 0x30c, %g4 ! 2014b0c <_Per_CPU_Information>
2005a78: f2 01 20 08 ld [ %g4 + 8 ], %i1
2005a7c: 80 a6 60 00 cmp %i1, 0
2005a80: 22 80 00 1d be,a 2005af4 <_Event_Surrender+0xb0>
2005a84: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
2005a88: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2005a8c: 80 a7 40 04 cmp %i5, %g4
2005a90: 32 80 00 19 bne,a 2005af4 <_Event_Surrender+0xb0>
2005a94: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005a98: 09 00 80 52 sethi %hi(0x2014800), %g4
2005a9c: f2 01 23 60 ld [ %g4 + 0x360 ], %i1 ! 2014b60 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2005aa0: 80 a6 60 02 cmp %i1, 2
2005aa4: 02 80 00 07 be 2005ac0 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005aa8: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005aac: c8 01 23 60 ld [ %g4 + 0x360 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005ab0: 80 a1 20 01 cmp %g4, 1
2005ab4: 32 80 00 10 bne,a 2005af4 <_Event_Surrender+0xb0>
2005ab8: c8 07 60 10 ld [ %i5 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005abc: 80 a0 40 03 cmp %g1, %g3
2005ac0: 02 80 00 04 be 2005ad0 <_Event_Surrender+0x8c>
2005ac4: 80 8e e0 02 btst 2, %i3
2005ac8: 02 80 00 2c be 2005b78 <_Event_Surrender+0x134> <== NEVER TAKEN
2005acc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005ad0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005ad4: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005ad8: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2005adc: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005ae0: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005ae4: 84 10 20 03 mov 3, %g2
2005ae8: 03 00 80 52 sethi %hi(0x2014800), %g1
2005aec: c4 20 63 60 st %g2, [ %g1 + 0x360 ] ! 2014b60 <_Event_Sync_state>
2005af0: 30 80 00 22 b,a 2005b78 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005af4: 80 89 21 00 btst 0x100, %g4
2005af8: 02 80 00 20 be 2005b78 <_Event_Surrender+0x134>
2005afc: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2005b00: 02 80 00 04 be 2005b10 <_Event_Surrender+0xcc>
2005b04: 80 8e e0 02 btst 2, %i3
2005b08: 02 80 00 1c be 2005b78 <_Event_Surrender+0x134> <== NEVER TAKEN
2005b0c: 01 00 00 00 nop
2005b10: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005b14: c4 27 00 00 st %g2, [ %i4 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005b18: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2005b1c: c0 27 60 24 clr [ %i5 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005b20: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005b24: 7f ff f0 eb call 2001ed0 <sparc_enable_interrupts>
2005b28: 90 10 00 18 mov %i0, %o0
2005b2c: 7f ff f0 e5 call 2001ec0 <sparc_disable_interrupts>
2005b30: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005b34: c2 07 60 50 ld [ %i5 + 0x50 ], %g1
2005b38: 80 a0 60 02 cmp %g1, 2
2005b3c: 02 80 00 06 be 2005b54 <_Event_Surrender+0x110>
2005b40: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005b44: 7f ff f0 e3 call 2001ed0 <sparc_enable_interrupts>
2005b48: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005b4c: 10 80 00 08 b 2005b6c <_Event_Surrender+0x128>
2005b50: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2005b54: c2 27 60 50 st %g1, [ %i5 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2005b58: 7f ff f0 de call 2001ed0 <sparc_enable_interrupts>
2005b5c: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005b60: 40 00 0e 46 call 2009478 <_Watchdog_Remove>
2005b64: 90 07 60 48 add %i5, 0x48, %o0
2005b68: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2005b6c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2005b70: 40 00 09 93 call 20081bc <_Thread_Clear_state>
2005b74: 91 e8 00 1d restore %g0, %i5, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2005b78: 7f ff f0 d6 call 2001ed0 <sparc_enable_interrupts>
2005b7c: 81 e8 00 00 restore
02005b80 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2005b80: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2005b84: 90 10 00 18 mov %i0, %o0
2005b88: 40 00 0a 71 call 200854c <_Thread_Get>
2005b8c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005b90: c2 07 bf fc ld [ %fp + -4 ], %g1
2005b94: 80 a0 60 00 cmp %g1, 0
2005b98: 12 80 00 1c bne 2005c08 <_Event_Timeout+0x88> <== NEVER TAKEN
2005b9c: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2005ba0: 7f ff f0 c8 call 2001ec0 <sparc_disable_interrupts>
2005ba4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2005ba8: 03 00 80 52 sethi %hi(0x2014800), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2005bac: c2 00 63 18 ld [ %g1 + 0x318 ], %g1 ! 2014b18 <_Per_CPU_Information+0xc>
2005bb0: 80 a7 40 01 cmp %i5, %g1
2005bb4: 12 80 00 09 bne 2005bd8 <_Event_Timeout+0x58>
2005bb8: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005bbc: 03 00 80 52 sethi %hi(0x2014800), %g1
2005bc0: c4 00 63 60 ld [ %g1 + 0x360 ], %g2 ! 2014b60 <_Event_Sync_state>
2005bc4: 80 a0 a0 01 cmp %g2, 1
2005bc8: 32 80 00 05 bne,a 2005bdc <_Event_Timeout+0x5c>
2005bcc: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005bd0: 84 10 20 02 mov 2, %g2
2005bd4: c4 20 63 60 st %g2, [ %g1 + 0x360 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005bd8: 82 10 20 06 mov 6, %g1
2005bdc: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
2005be0: 7f ff f0 bc call 2001ed0 <sparc_enable_interrupts>
2005be4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005be8: 90 10 00 1d mov %i5, %o0
2005bec: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2005bf0: 40 00 09 73 call 20081bc <_Thread_Clear_state>
2005bf4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2005bf8: 03 00 80 52 sethi %hi(0x2014800), %g1
2005bfc: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 20148e0 <_Thread_Dispatch_disable_level>
2005c00: 84 00 bf ff add %g2, -1, %g2
2005c04: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
2005c08: 81 c7 e0 08 ret
2005c0c: 81 e8 00 00 restore
0200bad0 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bad0: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200bad4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200bad8: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200badc: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200bae0: e0 06 20 20 ld [ %i0 + 0x20 ], %l0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200bae4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
uintptr_t const min_block_size = heap->min_block_size;
200bae8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200baec: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200baf0: 80 a7 40 19 cmp %i5, %i1
200baf4: 0a 80 00 9f bcs 200bd70 <_Heap_Extend+0x2a0>
200baf8: b8 10 20 00 clr %i4
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200bafc: 90 10 00 19 mov %i1, %o0
200bb00: 92 10 00 1a mov %i2, %o1
200bb04: 94 10 00 11 mov %l1, %o2
200bb08: 98 07 bf f8 add %fp, -8, %o4
200bb0c: 7f ff ed be call 2007204 <_Heap_Get_first_and_last_block>
200bb10: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200bb14: 80 8a 20 ff btst 0xff, %o0
200bb18: 02 80 00 96 be 200bd70 <_Heap_Extend+0x2a0>
200bb1c: b4 10 00 10 mov %l0, %i2
200bb20: aa 10 20 00 clr %l5
200bb24: ac 10 20 00 clr %l6
200bb28: b8 10 20 00 clr %i4
200bb2c: a8 10 20 00 clr %l4
200bb30: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200bb34: 80 a0 40 1d cmp %g1, %i5
200bb38: 1a 80 00 05 bcc 200bb4c <_Heap_Extend+0x7c>
200bb3c: e6 06 80 00 ld [ %i2 ], %l3
200bb40: 80 a6 40 13 cmp %i1, %l3
200bb44: 2a 80 00 8b bcs,a 200bd70 <_Heap_Extend+0x2a0>
200bb48: b8 10 20 00 clr %i4
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200bb4c: 80 a7 40 01 cmp %i5, %g1
200bb50: 02 80 00 06 be 200bb68 <_Heap_Extend+0x98>
200bb54: 80 a7 40 13 cmp %i5, %l3
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200bb58: 2a 80 00 05 bcs,a 200bb6c <_Heap_Extend+0x9c>
200bb5c: ac 10 00 1a mov %i2, %l6
200bb60: 10 80 00 04 b 200bb70 <_Heap_Extend+0xa0>
200bb64: 90 10 00 13 mov %l3, %o0
200bb68: a8 10 00 1a mov %i2, %l4
200bb6c: 90 10 00 13 mov %l3, %o0
200bb70: 40 00 16 02 call 2011378 <.urem>
200bb74: 92 10 00 11 mov %l1, %o1
200bb78: ae 04 ff f8 add %l3, -8, %l7
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200bb7c: 80 a4 c0 19 cmp %l3, %i1
200bb80: 12 80 00 05 bne 200bb94 <_Heap_Extend+0xc4>
200bb84: 90 25 c0 08 sub %l7, %o0, %o0
start_block->prev_size = extend_area_end;
200bb88: fa 26 80 00 st %i5, [ %i2 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200bb8c: 10 80 00 04 b 200bb9c <_Heap_Extend+0xcc>
200bb90: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200bb94: 2a 80 00 02 bcs,a 200bb9c <_Heap_Extend+0xcc>
200bb98: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bb9c: f4 02 20 04 ld [ %o0 + 4 ], %i2
200bba0: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bba4: b4 06 80 08 add %i2, %o0, %i2
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200bba8: 80 a6 80 10 cmp %i2, %l0
200bbac: 12 bf ff e2 bne 200bb34 <_Heap_Extend+0x64>
200bbb0: 82 10 00 1a mov %i2, %g1
if ( extend_area_begin < heap->area_begin ) {
200bbb4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200bbb8: 80 a6 40 01 cmp %i1, %g1
200bbbc: 3a 80 00 04 bcc,a 200bbcc <_Heap_Extend+0xfc>
200bbc0: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200bbc4: 10 80 00 05 b 200bbd8 <_Heap_Extend+0x108>
200bbc8: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200bbcc: 80 a0 40 1d cmp %g1, %i5
200bbd0: 2a 80 00 02 bcs,a 200bbd8 <_Heap_Extend+0x108>
200bbd4: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200bbd8: c4 07 bf f8 ld [ %fp + -8 ], %g2
200bbdc: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
200bbe0: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200bbe4: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200bbe8: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200bbec: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200bbf0: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200bbf4: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
200bbf8: 80 a0 c0 02 cmp %g3, %g2
200bbfc: 08 80 00 04 bleu 200bc0c <_Heap_Extend+0x13c>
200bc00: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200bc04: 10 80 00 06 b 200bc1c <_Heap_Extend+0x14c>
200bc08: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200bc0c: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
200bc10: 80 a0 80 01 cmp %g2, %g1
200bc14: 2a 80 00 02 bcs,a 200bc1c <_Heap_Extend+0x14c>
200bc18: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200bc1c: 80 a5 20 00 cmp %l4, 0
200bc20: 02 80 00 14 be 200bc70 <_Heap_Extend+0x1a0>
200bc24: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200bc28: f4 06 20 10 ld [ %i0 + 0x10 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200bc2c: 92 10 00 1a mov %i2, %o1
200bc30: 40 00 15 d2 call 2011378 <.urem>
200bc34: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200bc38: 80 a2 20 00 cmp %o0, 0
200bc3c: 02 80 00 04 be 200bc4c <_Heap_Extend+0x17c>
200bc40: c2 05 00 00 ld [ %l4 ], %g1
return value - remainder + alignment;
200bc44: b2 06 40 1a add %i1, %i2, %i1
200bc48: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200bc4c: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200bc50: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200bc54: 82 25 00 09 sub %l4, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200bc58: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200bc5c: 90 10 00 18 mov %i0, %o0
200bc60: 7f ff ff 92 call 200baa8 <_Heap_Free_block>
200bc64: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200bc68: 10 80 00 08 b 200bc88 <_Heap_Extend+0x1b8>
200bc6c: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200bc70: 80 a5 a0 00 cmp %l6, 0
200bc74: 02 80 00 04 be 200bc84 <_Heap_Extend+0x1b4>
200bc78: ac 25 80 01 sub %l6, %g1, %l6
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200bc7c: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200bc80: ec 20 60 04 st %l6, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200bc84: 80 a7 20 00 cmp %i4, 0
200bc88: 02 80 00 15 be 200bcdc <_Heap_Extend+0x20c>
200bc8c: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bc90: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200bc94: ba 27 40 1c sub %i5, %i4, %i5
200bc98: 40 00 15 b8 call 2011378 <.urem>
200bc9c: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200bca0: c4 07 20 04 ld [ %i4 + 4 ], %g2
200bca4: ba 27 40 08 sub %i5, %o0, %i5
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200bca8: 82 07 40 1c add %i5, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
200bcac: 84 20 80 1d sub %g2, %i5, %g2
| HEAP_PREV_BLOCK_USED;
200bcb0: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200bcb4: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bcb8: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200bcbc: 90 10 00 18 mov %i0, %o0
200bcc0: 82 08 60 01 and %g1, 1, %g1
200bcc4: 92 10 00 1c mov %i4, %o1
block->size_and_flag = size | flag;
200bcc8: ba 17 40 01 or %i5, %g1, %i5
200bccc: 7f ff ff 77 call 200baa8 <_Heap_Free_block>
200bcd0: fa 27 20 04 st %i5, [ %i4 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200bcd4: 10 80 00 0f b 200bd10 <_Heap_Extend+0x240>
200bcd8: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200bcdc: 80 a5 60 00 cmp %l5, 0
200bce0: 02 80 00 0b be 200bd0c <_Heap_Extend+0x23c>
200bce4: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bce8: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200bcec: c2 07 bf fc ld [ %fp + -4 ], %g1
200bcf0: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200bcf4: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200bcf8: 84 10 c0 02 or %g3, %g2, %g2
200bcfc: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200bd00: c4 00 60 04 ld [ %g1 + 4 ], %g2
200bd04: 84 10 a0 01 or %g2, 1, %g2
200bd08: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200bd0c: 80 a7 20 00 cmp %i4, 0
200bd10: 32 80 00 09 bne,a 200bd34 <_Heap_Extend+0x264>
200bd14: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200bd18: 80 a5 20 00 cmp %l4, 0
200bd1c: 32 80 00 06 bne,a 200bd34 <_Heap_Extend+0x264>
200bd20: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200bd24: d2 07 bf f8 ld [ %fp + -8 ], %o1
200bd28: 7f ff ff 60 call 200baa8 <_Heap_Free_block>
200bd2c: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200bd30: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200bd34: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd38: c6 00 60 04 ld [ %g1 + 4 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200bd3c: 84 20 80 01 sub %g2, %g1, %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd40: 86 08 e0 01 and %g3, 1, %g3
block->size_and_flag = size | flag;
200bd44: 84 10 c0 02 or %g3, %g2, %g2
200bd48: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200bd4c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200bd50: b8 10 20 01 mov 1, %i4
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200bd54: a4 20 40 12 sub %g1, %l2, %l2
/* Statistics */
stats->size += extended_size;
200bd58: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200bd5c: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200bd60: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200bd64: 02 80 00 03 be 200bd70 <_Heap_Extend+0x2a0> <== NEVER TAKEN
200bd68: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
200bd6c: e4 26 c0 00 st %l2, [ %i3 ]
*extended_size_ptr = extended_size;
return true;
}
200bd70: b0 0f 20 01 and %i4, 1, %i0
200bd74: 81 c7 e0 08 ret
200bd78: 81 e8 00 00 restore
0200b7cc <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200b7cc: 9d e3 bf a0 save %sp, -96, %sp
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
200b7d0: 88 10 20 01 mov 1, %g4
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200b7d4: 80 a6 60 00 cmp %i1, 0
200b7d8: 02 80 00 77 be 200b9b4 <_Heap_Free+0x1e8>
200b7dc: 90 10 00 19 mov %i1, %o0
200b7e0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200b7e4: 40 00 15 a6 call 2010e7c <.urem>
200b7e8: ba 06 7f f8 add %i1, -8, %i5
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200b7ec: da 06 20 20 ld [ %i0 + 0x20 ], %o5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200b7f0: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200b7f4: 80 a7 40 0d cmp %i5, %o5
200b7f8: 0a 80 00 05 bcs 200b80c <_Heap_Free+0x40>
200b7fc: 82 10 20 00 clr %g1
200b800: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200b804: 80 a0 40 1d cmp %g1, %i5
200b808: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200b80c: 80 a0 60 00 cmp %g1, 0
200b810: 02 80 00 69 be 200b9b4 <_Heap_Free+0x1e8>
200b814: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200b818: d6 07 60 04 ld [ %i5 + 4 ], %o3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200b81c: 84 0a ff fe and %o3, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200b820: 82 00 80 1d add %g2, %i5, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200b824: 80 a0 40 0d cmp %g1, %o5
200b828: 0a 80 00 05 bcs 200b83c <_Heap_Free+0x70> <== NEVER TAKEN
200b82c: 86 10 20 00 clr %g3
200b830: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200b834: 80 a0 c0 01 cmp %g3, %g1
200b838: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200b83c: 80 a0 e0 00 cmp %g3, 0
200b840: 02 80 00 5d be 200b9b4 <_Heap_Free+0x1e8> <== NEVER TAKEN
200b844: 88 10 20 00 clr %g4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200b848: de 00 60 04 ld [ %g1 + 4 ], %o7
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200b84c: 80 8b e0 01 btst 1, %o7
200b850: 02 80 00 59 be 200b9b4 <_Heap_Free+0x1e8> <== NEVER TAKEN
200b854: 9e 0b ff fe and %o7, -2, %o7
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200b858: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200b85c: 80 a0 40 04 cmp %g1, %g4
200b860: 02 80 00 07 be 200b87c <_Heap_Free+0xb0>
200b864: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200b868: 86 00 40 0f add %g1, %o7, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200b86c: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200b870: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200b874: 80 a0 00 03 cmp %g0, %g3
200b878: 98 60 3f ff subx %g0, -1, %o4
if ( !_Heap_Is_prev_used( block ) ) {
200b87c: 80 8a e0 01 btst 1, %o3
200b880: 12 80 00 25 bne 200b914 <_Heap_Free+0x148>
200b884: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200b888: d6 07 40 00 ld [ %i5 ], %o3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200b88c: 86 27 40 0b sub %i5, %o3, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200b890: 80 a0 c0 0d cmp %g3, %o5
200b894: 0a 80 00 04 bcs 200b8a4 <_Heap_Free+0xd8> <== NEVER TAKEN
200b898: 94 10 20 00 clr %o2
200b89c: 80 a1 00 03 cmp %g4, %g3
200b8a0: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200b8a4: 80 a2 a0 00 cmp %o2, 0
200b8a8: 02 80 00 43 be 200b9b4 <_Heap_Free+0x1e8> <== NEVER TAKEN
200b8ac: 88 10 20 00 clr %g4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200b8b0: da 00 e0 04 ld [ %g3 + 4 ], %o5
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200b8b4: 80 8b 60 01 btst 1, %o5
200b8b8: 02 80 00 3f be 200b9b4 <_Heap_Free+0x1e8> <== NEVER TAKEN
200b8bc: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200b8c0: 02 80 00 0e be 200b8f8 <_Heap_Free+0x12c>
200b8c4: 88 00 80 0b add %g2, %o3, %g4
uintptr_t const size = block_size + prev_size + next_block_size;
200b8c8: 9e 01 00 0f add %g4, %o7, %o7
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200b8cc: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200b8d0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200b8d4: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200b8d8: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200b8dc: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
200b8e0: 82 00 7f ff add %g1, -1, %g1
200b8e4: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200b8e8: de 23 c0 03 st %o7, [ %o7 + %g3 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200b8ec: 82 13 e0 01 or %o7, 1, %g1
200b8f0: 10 80 00 27 b 200b98c <_Heap_Free+0x1c0>
200b8f4: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200b8f8: 9e 11 20 01 or %g4, 1, %o7
200b8fc: de 20 e0 04 st %o7, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200b900: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200b904: c8 20 80 1d st %g4, [ %g2 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200b908: 86 08 ff fe and %g3, -2, %g3
200b90c: 10 80 00 20 b 200b98c <_Heap_Free+0x1c0>
200b910: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200b914: 22 80 00 0d be,a 200b948 <_Heap_Free+0x17c>
200b918: c6 06 20 08 ld [ %i0 + 8 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200b91c: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200b920: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200b924: c8 27 60 08 st %g4, [ %i5 + 8 ]
new_block->prev = prev;
200b928: c2 27 60 0c st %g1, [ %i5 + 0xc ]
uintptr_t const size = block_size + next_block_size;
200b92c: 86 03 c0 02 add %o7, %g2, %g3
next->prev = new_block;
prev->next = new_block;
200b930: fa 20 60 08 st %i5, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200b934: fa 21 20 0c st %i5, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200b938: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200b93c: c6 20 c0 1d st %g3, [ %g3 + %i5 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200b940: 10 80 00 13 b 200b98c <_Heap_Free+0x1c0>
200b944: c2 27 60 04 st %g1, [ %i5 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200b948: f0 27 60 0c st %i0, [ %i5 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200b94c: c6 27 60 08 st %g3, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200b950: fa 20 e0 0c st %i5, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200b954: 86 10 a0 01 or %g2, 1, %g3
200b958: c6 27 60 04 st %g3, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200b95c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200b960: c4 20 80 1d st %g2, [ %g2 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200b964: 86 08 ff fe and %g3, -2, %g3
200b968: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200b96c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200b970: c6 06 20 3c ld [ %i0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200b974: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200b978: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200b97c: 80 a0 c0 01 cmp %g3, %g1
200b980: 1a 80 00 03 bcc 200b98c <_Heap_Free+0x1c0>
200b984: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200b988: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200b98c: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200b990: 88 10 20 01 mov 1, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200b994: 82 00 7f ff add %g1, -1, %g1
200b998: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
200b99c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200b9a0: 82 00 60 01 inc %g1
200b9a4: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200b9a8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
200b9ac: 84 00 40 02 add %g1, %g2, %g2
200b9b0: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
return( true );
}
200b9b4: b0 09 20 01 and %g4, 1, %i0
200b9b8: 81 c7 e0 08 ret
200b9bc: 81 e8 00 00 restore
020129dc <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
20129dc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20129e0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
20129e4: 7f ff f9 26 call 2010e7c <.urem>
20129e8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
20129ec: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20129f0: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20129f4: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20129f8: 80 a2 00 03 cmp %o0, %g3
20129fc: 0a 80 00 05 bcs 2012a10 <_Heap_Size_of_alloc_area+0x34>
2012a00: 84 10 20 00 clr %g2
2012a04: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2012a08: 80 a0 40 08 cmp %g1, %o0
2012a0c: 84 60 3f ff subx %g0, -1, %g2
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
2012a10: 80 a0 a0 00 cmp %g2, 0
2012a14: 02 80 00 15 be 2012a68 <_Heap_Size_of_alloc_area+0x8c>
2012a18: 82 10 20 00 clr %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2012a1c: fa 02 20 04 ld [ %o0 + 4 ], %i5
2012a20: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2012a24: ba 07 40 08 add %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2012a28: 80 a7 40 03 cmp %i5, %g3
2012a2c: 0a 80 00 05 bcs 2012a40 <_Heap_Size_of_alloc_area+0x64> <== NEVER TAKEN
2012a30: 84 10 20 00 clr %g2
2012a34: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2012a38: 80 a0 40 1d cmp %g1, %i5
2012a3c: 84 60 3f ff subx %g0, -1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
2012a40: 80 a0 a0 00 cmp %g2, 0
2012a44: 02 80 00 09 be 2012a68 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
2012a48: 82 10 20 00 clr %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2012a4c: c4 07 60 04 ld [ %i5 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2012a50: 80 88 a0 01 btst 1, %g2
2012a54: 02 80 00 05 be 2012a68 <_Heap_Size_of_alloc_area+0x8c> <== NEVER TAKEN
2012a58: ba 27 40 19 sub %i5, %i1, %i5
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2012a5c: 82 10 20 01 mov 1, %g1
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2012a60: ba 07 60 04 add %i5, 4, %i5
2012a64: fa 26 80 00 st %i5, [ %i2 ]
return true;
}
2012a68: b0 08 60 01 and %g1, 1, %i0
2012a6c: 81 c7 e0 08 ret
2012a70: 81 e8 00 00 restore
02008038 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2008038: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
200803c: 3b 00 80 1f sethi %hi(0x2007c00), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
2008040: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
2008044: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
2008048: f6 06 20 20 ld [ %i0 + 0x20 ], %i3
Heap_Block *const last_block = heap->last_block;
200804c: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008050: 80 a6 a0 00 cmp %i2, 0
2008054: 02 80 00 04 be 2008064 <_Heap_Walk+0x2c>
2008058: ba 17 63 e4 or %i5, 0x3e4, %i5
200805c: 3b 00 80 1f sethi %hi(0x2007c00), %i5
2008060: ba 17 63 ec or %i5, 0x3ec, %i5 ! 2007fec <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2008064: 03 00 80 5c sethi %hi(0x2017000), %g1
2008068: c4 00 61 0c ld [ %g1 + 0x10c ], %g2 ! 201710c <_System_state_Current>
200806c: 80 a0 a0 03 cmp %g2, 3
2008070: 12 80 01 24 bne 2008500 <_Heap_Walk+0x4c8>
2008074: 82 10 20 01 mov 1, %g1
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008078: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
200807c: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2008080: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2008084: f6 23 a0 60 st %i3, [ %sp + 0x60 ]
2008088: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
200808c: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008090: 90 10 00 19 mov %i1, %o0
2008094: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008098: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200809c: 92 10 20 00 clr %o1
20080a0: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
20080a4: 15 00 80 51 sethi %hi(0x2014400), %o2
20080a8: 96 10 00 1c mov %i4, %o3
20080ac: 94 12 a2 c0 or %o2, 0x2c0, %o2
20080b0: 9f c7 40 00 call %i5
20080b4: 98 10 00 10 mov %l0, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
20080b8: 80 a7 20 00 cmp %i4, 0
20080bc: 12 80 00 07 bne 20080d8 <_Heap_Walk+0xa0>
20080c0: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
20080c4: 15 00 80 51 sethi %hi(0x2014400), %o2
20080c8: 90 10 00 19 mov %i1, %o0
20080cc: 92 10 20 01 mov 1, %o1
20080d0: 10 80 00 32 b 2008198 <_Heap_Walk+0x160>
20080d4: 94 12 a3 58 or %o2, 0x358, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
20080d8: 22 80 00 08 be,a 20080f8 <_Heap_Walk+0xc0>
20080dc: 90 10 00 10 mov %l0, %o0
(*printer)(
20080e0: 15 00 80 51 sethi %hi(0x2014400), %o2
20080e4: 90 10 00 19 mov %i1, %o0
20080e8: 92 10 20 01 mov 1, %o1
20080ec: 94 12 a3 70 or %o2, 0x370, %o2
20080f0: 10 80 01 0b b 200851c <_Heap_Walk+0x4e4>
20080f4: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20080f8: 7f ff e6 7a call 2001ae0 <.urem>
20080fc: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008100: 80 a2 20 00 cmp %o0, 0
2008104: 22 80 00 08 be,a 2008124 <_Heap_Walk+0xec>
2008108: 90 06 e0 08 add %i3, 8, %o0
(*printer)(
200810c: 15 00 80 51 sethi %hi(0x2014400), %o2
2008110: 90 10 00 19 mov %i1, %o0
2008114: 92 10 20 01 mov 1, %o1
2008118: 94 12 a3 90 or %o2, 0x390, %o2
200811c: 10 80 01 00 b 200851c <_Heap_Walk+0x4e4>
2008120: 96 10 00 10 mov %l0, %o3
2008124: 7f ff e6 6f call 2001ae0 <.urem>
2008128: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
200812c: 80 a2 20 00 cmp %o0, 0
2008130: 22 80 00 08 be,a 2008150 <_Heap_Walk+0x118>
2008134: c2 06 e0 04 ld [ %i3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008138: 15 00 80 51 sethi %hi(0x2014400), %o2
200813c: 90 10 00 19 mov %i1, %o0
2008140: 92 10 20 01 mov 1, %o1
2008144: 94 12 a3 b8 or %o2, 0x3b8, %o2
2008148: 10 80 00 f5 b 200851c <_Heap_Walk+0x4e4>
200814c: 96 10 00 1b mov %i3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008150: 80 88 60 01 btst 1, %g1
2008154: 32 80 00 07 bne,a 2008170 <_Heap_Walk+0x138>
2008158: f4 04 60 04 ld [ %l1 + 4 ], %i2
(*printer)(
200815c: 15 00 80 51 sethi %hi(0x2014400), %o2
2008160: 90 10 00 19 mov %i1, %o0
2008164: 92 10 20 01 mov 1, %o1
2008168: 10 80 00 0c b 2008198 <_Heap_Walk+0x160>
200816c: 94 12 a3 f0 or %o2, 0x3f0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008170: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008174: b4 04 40 1a add %l1, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008178: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
200817c: 80 88 60 01 btst 1, %g1
2008180: 12 80 00 0a bne 20081a8 <_Heap_Walk+0x170>
2008184: 80 a6 80 1b cmp %i2, %i3
(*printer)(
2008188: 15 00 80 52 sethi %hi(0x2014800), %o2
200818c: 90 10 00 19 mov %i1, %o0
2008190: 92 10 20 01 mov 1, %o1
2008194: 94 12 a0 20 or %o2, 0x20, %o2
2008198: 9f c7 40 00 call %i5
200819c: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20081a0: 10 80 00 d8 b 2008500 <_Heap_Walk+0x4c8>
20081a4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if (
20081a8: 02 80 00 06 be 20081c0 <_Heap_Walk+0x188>
20081ac: 15 00 80 52 sethi %hi(0x2014800), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20081b0: 90 10 00 19 mov %i1, %o0
20081b4: 92 10 20 01 mov 1, %o1
20081b8: 10 bf ff f8 b 2008198 <_Heap_Walk+0x160>
20081bc: 94 12 a0 38 or %o2, 0x38, %o2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
20081c0: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
20081c4: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
20081c8: 10 80 00 33 b 2008294 <_Heap_Walk+0x25c>
20081cc: a4 10 00 18 mov %i0, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20081d0: 80 a0 80 0b cmp %g2, %o3
20081d4: 18 80 00 05 bgu 20081e8 <_Heap_Walk+0x1b0>
20081d8: 82 10 20 00 clr %g1
20081dc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20081e0: 80 a0 40 0b cmp %g1, %o3
20081e4: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
20081e8: 80 a0 60 00 cmp %g1, 0
20081ec: 32 80 00 07 bne,a 2008208 <_Heap_Walk+0x1d0>
20081f0: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
20081f4: 15 00 80 52 sethi %hi(0x2014800), %o2
20081f8: 90 10 00 19 mov %i1, %o0
20081fc: 92 10 20 01 mov 1, %o1
2008200: 10 80 00 c7 b 200851c <_Heap_Walk+0x4e4>
2008204: 94 12 a0 68 or %o2, 0x68, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008208: d6 27 bf fc st %o3, [ %fp + -4 ]
200820c: 7f ff e6 35 call 2001ae0 <.urem>
2008210: 92 10 00 13 mov %l3, %o1
);
return false;
}
if (
2008214: 80 a2 20 00 cmp %o0, 0
2008218: 02 80 00 07 be 2008234 <_Heap_Walk+0x1fc>
200821c: d6 07 bf fc ld [ %fp + -4 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008220: 15 00 80 52 sethi %hi(0x2014800), %o2
2008224: 90 10 00 19 mov %i1, %o0
2008228: 92 10 20 01 mov 1, %o1
200822c: 10 80 00 bc b 200851c <_Heap_Walk+0x4e4>
2008230: 94 12 a0 88 or %o2, 0x88, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008234: c2 02 e0 04 ld [ %o3 + 4 ], %g1
2008238: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
200823c: 82 02 c0 01 add %o3, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008240: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008244: 80 88 60 01 btst 1, %g1
2008248: 22 80 00 07 be,a 2008264 <_Heap_Walk+0x22c>
200824c: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
2008250: 15 00 80 52 sethi %hi(0x2014800), %o2
2008254: 90 10 00 19 mov %i1, %o0
2008258: 92 10 20 01 mov 1, %o1
200825c: 10 80 00 b0 b 200851c <_Heap_Walk+0x4e4>
2008260: 94 12 a0 b8 or %o2, 0xb8, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
2008264: 80 a3 00 12 cmp %o4, %l2
2008268: 22 80 00 0a be,a 2008290 <_Heap_Walk+0x258>
200826c: a4 10 00 0b mov %o3, %l2
(*printer)(
2008270: 15 00 80 52 sethi %hi(0x2014800), %o2
2008274: 90 10 00 19 mov %i1, %o0
2008278: 92 10 20 01 mov 1, %o1
200827c: 94 12 a0 d8 or %o2, 0xd8, %o2
2008280: 9f c7 40 00 call %i5
2008284: 01 00 00 00 nop
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008288: 10 80 00 9e b 2008500 <_Heap_Walk+0x4c8>
200828c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
return false;
}
prev_block = free_block;
free_block = free_block->next;
2008290: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008294: 80 a2 c0 18 cmp %o3, %i0
2008298: 32 bf ff ce bne,a 20081d0 <_Heap_Walk+0x198>
200829c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
20082a0: 2d 00 80 52 sethi %hi(0x2014800), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20082a4: 2f 00 80 52 sethi %hi(0x2014800), %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20082a8: ac 15 a2 98 or %l6, 0x298, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20082ac: ae 15 e2 80 or %l7, 0x280, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
20082b0: 2b 00 80 52 sethi %hi(0x2014800), %l5
block = next_block;
} while ( block != first_block );
return true;
}
20082b4: c2 06 a0 04 ld [ %i2 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20082b8: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20082bc: a4 08 7f fe and %g1, -2, %l2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20082c0: a6 04 80 1a add %l2, %i2, %l3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20082c4: 80 a0 c0 13 cmp %g3, %l3
20082c8: 18 80 00 05 bgu 20082dc <_Heap_Walk+0x2a4> <== NEVER TAKEN
20082cc: 84 10 20 00 clr %g2
20082d0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
20082d4: 80 a0 80 13 cmp %g2, %l3
20082d8: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
20082dc: 80 a0 a0 00 cmp %g2, 0
20082e0: 12 80 00 07 bne 20082fc <_Heap_Walk+0x2c4>
20082e4: 84 1e 80 11 xor %i2, %l1, %g2
(*printer)(
20082e8: 15 00 80 52 sethi %hi(0x2014800), %o2
20082ec: 90 10 00 19 mov %i1, %o0
20082f0: 92 10 20 01 mov 1, %o1
20082f4: 10 80 00 2c b 20083a4 <_Heap_Walk+0x36c>
20082f8: 94 12 a1 10 or %o2, 0x110, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
20082fc: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008300: c2 27 bf fc st %g1, [ %fp + -4 ]
2008304: a8 40 20 00 addx %g0, 0, %l4
2008308: 90 10 00 12 mov %l2, %o0
200830c: 7f ff e5 f5 call 2001ae0 <.urem>
2008310: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008314: 80 a2 20 00 cmp %o0, 0
2008318: 02 80 00 0c be 2008348 <_Heap_Walk+0x310>
200831c: c2 07 bf fc ld [ %fp + -4 ], %g1
2008320: 80 8d 20 ff btst 0xff, %l4
2008324: 02 80 00 0a be 200834c <_Heap_Walk+0x314>
2008328: 80 a4 80 10 cmp %l2, %l0
(*printer)(
200832c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008330: 90 10 00 19 mov %i1, %o0
2008334: 92 10 20 01 mov 1, %o1
2008338: 94 12 a1 40 or %o2, 0x140, %o2
200833c: 96 10 00 1a mov %i2, %o3
2008340: 10 bf ff d0 b 2008280 <_Heap_Walk+0x248>
2008344: 98 10 00 12 mov %l2, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008348: 80 a4 80 10 cmp %l2, %l0
200834c: 1a 80 00 0d bcc 2008380 <_Heap_Walk+0x348>
2008350: 80 a4 c0 1a cmp %l3, %i2
2008354: 80 8d 20 ff btst 0xff, %l4
2008358: 02 80 00 0a be 2008380 <_Heap_Walk+0x348> <== NEVER TAKEN
200835c: 80 a4 c0 1a cmp %l3, %i2
(*printer)(
2008360: 15 00 80 52 sethi %hi(0x2014800), %o2
2008364: 90 10 00 19 mov %i1, %o0
2008368: 92 10 20 01 mov 1, %o1
200836c: 94 12 a1 70 or %o2, 0x170, %o2
2008370: 96 10 00 1a mov %i2, %o3
2008374: 98 10 00 12 mov %l2, %o4
2008378: 10 80 00 3d b 200846c <_Heap_Walk+0x434>
200837c: 9a 10 00 10 mov %l0, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008380: 38 80 00 0c bgu,a 20083b0 <_Heap_Walk+0x378>
2008384: a8 08 60 01 and %g1, 1, %l4
2008388: 80 8d 20 ff btst 0xff, %l4
200838c: 02 80 00 09 be 20083b0 <_Heap_Walk+0x378>
2008390: a8 08 60 01 and %g1, 1, %l4
(*printer)(
2008394: 15 00 80 52 sethi %hi(0x2014800), %o2
2008398: 90 10 00 19 mov %i1, %o0
200839c: 92 10 20 01 mov 1, %o1
20083a0: 94 12 a1 a0 or %o2, 0x1a0, %o2
20083a4: 96 10 00 1a mov %i2, %o3
20083a8: 10 bf ff b6 b 2008280 <_Heap_Walk+0x248>
20083ac: 98 10 00 13 mov %l3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20083b0: c2 04 e0 04 ld [ %l3 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
20083b4: 80 88 60 01 btst 1, %g1
20083b8: 12 80 00 40 bne 20084b8 <_Heap_Walk+0x480>
20083bc: 90 10 00 19 mov %i1, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
20083c0: da 06 a0 0c ld [ %i2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20083c4: c2 06 20 08 ld [ %i0 + 8 ], %g1
20083c8: 05 00 80 51 sethi %hi(0x2014400), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
20083cc: c8 06 20 0c ld [ %i0 + 0xc ], %g4
20083d0: 80 a3 40 01 cmp %o5, %g1
20083d4: 02 80 00 07 be 20083f0 <_Heap_Walk+0x3b8>
20083d8: 86 10 a2 80 or %g2, 0x280, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
20083dc: 80 a3 40 18 cmp %o5, %i0
20083e0: 12 80 00 04 bne 20083f0 <_Heap_Walk+0x3b8>
20083e4: 86 15 62 48 or %l5, 0x248, %g3
20083e8: 07 00 80 51 sethi %hi(0x2014400), %g3
20083ec: 86 10 e2 90 or %g3, 0x290, %g3 ! 2014690 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
20083f0: c4 06 a0 08 ld [ %i2 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20083f4: 1f 00 80 51 sethi %hi(0x2014400), %o7
20083f8: 80 a0 80 04 cmp %g2, %g4
20083fc: 02 80 00 07 be 2008418 <_Heap_Walk+0x3e0>
2008400: 82 13 e2 a0 or %o7, 0x2a0, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008404: 80 a0 80 18 cmp %g2, %i0
2008408: 12 80 00 04 bne 2008418 <_Heap_Walk+0x3e0>
200840c: 82 15 62 48 or %l5, 0x248, %g1
2008410: 03 00 80 51 sethi %hi(0x2014400), %g1
2008414: 82 10 62 b0 or %g1, 0x2b0, %g1 ! 20146b0 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008418: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
200841c: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2008420: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
2008424: 90 10 00 19 mov %i1, %o0
2008428: 92 10 20 00 clr %o1
200842c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008430: 96 10 00 1a mov %i2, %o3
2008434: 94 12 a1 d8 or %o2, 0x1d8, %o2
2008438: 9f c7 40 00 call %i5
200843c: 98 10 00 12 mov %l2, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008440: da 04 c0 00 ld [ %l3 ], %o5
2008444: 80 a4 80 0d cmp %l2, %o5
2008448: 02 80 00 0d be 200847c <_Heap_Walk+0x444>
200844c: 80 a5 20 00 cmp %l4, 0
(*printer)(
2008450: 15 00 80 52 sethi %hi(0x2014800), %o2
2008454: e6 23 a0 5c st %l3, [ %sp + 0x5c ]
2008458: 90 10 00 19 mov %i1, %o0
200845c: 92 10 20 01 mov 1, %o1
2008460: 94 12 a2 10 or %o2, 0x210, %o2
2008464: 96 10 00 1a mov %i2, %o3
2008468: 98 10 00 12 mov %l2, %o4
200846c: 9f c7 40 00 call %i5
2008470: 01 00 00 00 nop
2008474: 10 80 00 23 b 2008500 <_Heap_Walk+0x4c8>
2008478: 82 10 20 00 clr %g1 ! 0 <PROM_START>
);
return false;
}
if ( !prev_used ) {
200847c: 32 80 00 0a bne,a 20084a4 <_Heap_Walk+0x46c>
2008480: c2 06 20 08 ld [ %i0 + 8 ], %g1
(*printer)(
2008484: 15 00 80 52 sethi %hi(0x2014800), %o2
2008488: 90 10 00 19 mov %i1, %o0
200848c: 92 10 20 01 mov 1, %o1
2008490: 10 80 00 22 b 2008518 <_Heap_Walk+0x4e0>
2008494: 94 12 a2 50 or %o2, 0x250, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2008498: 02 80 00 17 be 20084f4 <_Heap_Walk+0x4bc>
200849c: 80 a4 c0 1b cmp %l3, %i3
return true;
}
free_block = free_block->next;
20084a0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
20084a4: 80 a0 40 18 cmp %g1, %i0
20084a8: 12 bf ff fc bne 2008498 <_Heap_Walk+0x460>
20084ac: 80 a0 40 1a cmp %g1, %i2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
20084b0: 10 80 00 17 b 200850c <_Heap_Walk+0x4d4>
20084b4: 15 00 80 52 sethi %hi(0x2014800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
20084b8: 80 a5 20 00 cmp %l4, 0
20084bc: 02 80 00 08 be 20084dc <_Heap_Walk+0x4a4>
20084c0: 92 10 20 00 clr %o1
(*printer)(
20084c4: 94 10 00 17 mov %l7, %o2
20084c8: 96 10 00 1a mov %i2, %o3
20084cc: 9f c7 40 00 call %i5
20084d0: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20084d4: 10 80 00 08 b 20084f4 <_Heap_Walk+0x4bc>
20084d8: 80 a4 c0 1b cmp %l3, %i3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20084dc: da 06 80 00 ld [ %i2 ], %o5
20084e0: 94 10 00 16 mov %l6, %o2
20084e4: 96 10 00 1a mov %i2, %o3
20084e8: 9f c7 40 00 call %i5
20084ec: 98 10 00 12 mov %l2, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20084f0: 80 a4 c0 1b cmp %l3, %i3
20084f4: 12 bf ff 70 bne 20082b4 <_Heap_Walk+0x27c>
20084f8: b4 10 00 13 mov %l3, %i2
return true;
20084fc: 82 10 20 01 mov 1, %g1
}
2008500: b0 08 60 01 and %g1, 1, %i0
2008504: 81 c7 e0 08 ret
2008508: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200850c: 90 10 00 19 mov %i1, %o0
2008510: 92 10 20 01 mov 1, %o1
2008514: 94 12 a2 c0 or %o2, 0x2c0, %o2
2008518: 96 10 00 1a mov %i2, %o3
200851c: 9f c7 40 00 call %i5
2008520: 01 00 00 00 nop
2008524: 10 bf ff f7 b 2008500 <_Heap_Walk+0x4c8>
2008528: 82 10 20 00 clr %g1 ! 0 <PROM_START>
02007258 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007258: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
200725c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007260: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007264: 80 a0 60 00 cmp %g1, 0
2007268: 02 80 00 20 be 20072e8 <_Objects_Allocate+0x90> <== NEVER TAKEN
200726c: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007270: b8 07 60 20 add %i5, 0x20, %i4
2007274: 7f ff fd 8b call 20068a0 <_Chain_Get>
2007278: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
200727c: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2007280: 80 a0 60 00 cmp %g1, 0
2007284: 02 80 00 19 be 20072e8 <_Objects_Allocate+0x90>
2007288: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
200728c: 80 a2 20 00 cmp %o0, 0
2007290: 32 80 00 0a bne,a 20072b8 <_Objects_Allocate+0x60>
2007294: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
_Objects_Extend_information( information );
2007298: 40 00 00 1d call 200730c <_Objects_Extend_information>
200729c: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20072a0: 7f ff fd 80 call 20068a0 <_Chain_Get>
20072a4: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
20072a8: b0 92 20 00 orcc %o0, 0, %i0
20072ac: 02 80 00 0f be 20072e8 <_Objects_Allocate+0x90>
20072b0: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
20072b4: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
20072b8: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
20072bc: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
20072c0: 40 00 26 43 call 2010bcc <.udiv>
20072c4: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20072c8: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
20072cc: 91 2a 20 02 sll %o0, 2, %o0
20072d0: c4 00 40 08 ld [ %g1 + %o0 ], %g2
20072d4: 84 00 bf ff add %g2, -1, %g2
20072d8: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
20072dc: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
20072e0: 82 00 7f ff add %g1, -1, %g1
20072e4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
20072e8: 81 c7 e0 08 ret
20072ec: 81 e8 00 00 restore
02007664 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007664: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007668: 80 a6 60 00 cmp %i1, 0
200766c: 02 80 00 17 be 20076c8 <_Objects_Get_information+0x64>
2007670: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007674: 40 00 10 d3 call 200b9c0 <_Objects_API_maximum_class>
2007678: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
200767c: 80 a2 20 00 cmp %o0, 0
2007680: 02 80 00 12 be 20076c8 <_Objects_Get_information+0x64>
2007684: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007688: 18 80 00 10 bgu 20076c8 <_Objects_Get_information+0x64>
200768c: 03 00 80 52 sethi %hi(0x2014800), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007690: b1 2e 20 02 sll %i0, 2, %i0
2007694: 82 10 60 48 or %g1, 0x48, %g1
2007698: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200769c: 80 a0 60 00 cmp %g1, 0
20076a0: 02 80 00 0a be 20076c8 <_Objects_Get_information+0x64> <== NEVER TAKEN
20076a4: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20076a8: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
20076ac: 80 a7 60 00 cmp %i5, 0
20076b0: 02 80 00 06 be 20076c8 <_Objects_Get_information+0x64> <== NEVER TAKEN
20076b4: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20076b8: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
20076bc: 80 a0 00 01 cmp %g0, %g1
20076c0: 82 60 20 00 subx %g0, 0, %g1
20076c4: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
20076c8: 81 c7 e0 08 ret
20076cc: 91 e8 00 1d restore %g0, %i5, %o0
02008f28 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2008f28: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2008f2c: 92 96 20 00 orcc %i0, 0, %o1
2008f30: 12 80 00 06 bne 2008f48 <_Objects_Id_to_name+0x20>
2008f34: 83 32 60 18 srl %o1, 0x18, %g1
2008f38: 03 00 80 73 sethi %hi(0x201cc00), %g1
2008f3c: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 ! 201cc18 <_Per_CPU_Information+0xc>
2008f40: d2 00 60 08 ld [ %g1 + 8 ], %o1
2008f44: 83 32 60 18 srl %o1, 0x18, %g1
2008f48: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008f4c: 84 00 7f ff add %g1, -1, %g2
2008f50: 80 a0 a0 02 cmp %g2, 2
2008f54: 18 80 00 12 bgu 2008f9c <_Objects_Id_to_name+0x74>
2008f58: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2008f5c: 10 80 00 12 b 2008fa4 <_Objects_Id_to_name+0x7c>
2008f60: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2008f64: 85 28 a0 02 sll %g2, 2, %g2
2008f68: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2008f6c: 80 a2 20 00 cmp %o0, 0
2008f70: 02 80 00 0b be 2008f9c <_Objects_Id_to_name+0x74> <== NEVER TAKEN
2008f74: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2008f78: 7f ff ff cf call 2008eb4 <_Objects_Get>
2008f7c: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2008f80: 80 a2 20 00 cmp %o0, 0
2008f84: 02 80 00 06 be 2008f9c <_Objects_Id_to_name+0x74>
2008f88: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2008f8c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2008f90: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2008f94: 40 00 03 64 call 2009d24 <_Thread_Enable_dispatch>
2008f98: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2008f9c: 81 c7 e0 08 ret
2008fa0: 91 e8 00 1d restore %g0, %i5, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2008fa4: 05 00 80 72 sethi %hi(0x201c800), %g2
2008fa8: 84 10 a1 48 or %g2, 0x148, %g2 ! 201c948 <_Objects_Information_table>
2008fac: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2008fb0: 80 a0 60 00 cmp %g1, 0
2008fb4: 12 bf ff ec bne 2008f64 <_Objects_Id_to_name+0x3c>
2008fb8: 85 32 60 1b srl %o1, 0x1b, %g2
2008fbc: 30 bf ff f8 b,a 2008f9c <_Objects_Id_to_name+0x74>
0200869c <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200869c: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if(!the_node) return;
20086a0: 80 a6 60 00 cmp %i1, 0
20086a4: 02 80 00 77 be 2008880 <_RBTree_Extract_unprotected+0x1e4>
20086a8: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
20086ac: c2 06 20 08 ld [ %i0 + 8 ], %g1
20086b0: 80 a6 40 01 cmp %i1, %g1
20086b4: 32 80 00 0d bne,a 20086e8 <_RBTree_Extract_unprotected+0x4c>
20086b8: c2 06 20 0c ld [ %i0 + 0xc ], %g1
if (the_node->child[RBT_RIGHT])
20086bc: c2 06 60 08 ld [ %i1 + 8 ], %g1
20086c0: 80 a0 60 00 cmp %g1, 0
20086c4: 22 80 00 04 be,a 20086d4 <_RBTree_Extract_unprotected+0x38>
20086c8: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
20086cc: 10 80 00 06 b 20086e4 <_RBTree_Extract_unprotected+0x48>
20086d0: c2 26 20 08 st %g1, [ %i0 + 8 ]
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
20086d4: 80 a6 00 01 cmp %i0, %g1
20086d8: 12 80 00 03 bne 20086e4 <_RBTree_Extract_unprotected+0x48>
20086dc: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
20086e0: c0 26 20 08 clr [ %i0 + 8 ]
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
20086e4: c2 06 20 0c ld [ %i0 + 0xc ], %g1
20086e8: 80 a6 40 01 cmp %i1, %g1
20086ec: 12 80 00 0b bne 2008718 <_RBTree_Extract_unprotected+0x7c>
20086f0: c2 06 60 04 ld [ %i1 + 4 ], %g1
if (the_node->child[RBT_LEFT])
20086f4: 80 a0 60 00 cmp %g1, 0
20086f8: 22 80 00 04 be,a 2008708 <_RBTree_Extract_unprotected+0x6c>
20086fc: c4 06 40 00 ld [ %i1 ], %g2
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
2008700: 10 80 00 06 b 2008718 <_RBTree_Extract_unprotected+0x7c>
2008704: c2 26 20 0c st %g1, [ %i0 + 0xc ]
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
2008708: 80 a6 00 02 cmp %i0, %g2
200870c: 12 80 00 03 bne 2008718 <_RBTree_Extract_unprotected+0x7c>
2008710: c4 26 20 0c st %g2, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
2008714: c0 26 20 0c clr [ %i0 + 0xc ]
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
2008718: ba 90 60 00 orcc %g1, 0, %i5
200871c: 02 80 00 32 be 20087e4 <_RBTree_Extract_unprotected+0x148>
2008720: f8 06 60 08 ld [ %i1 + 8 ], %i4
2008724: 80 a7 20 00 cmp %i4, 0
2008728: 32 80 00 05 bne,a 200873c <_RBTree_Extract_unprotected+0xa0><== NEVER TAKEN
200872c: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
2008730: 10 80 00 31 b 20087f4 <_RBTree_Extract_unprotected+0x158>
2008734: b8 10 00 01 mov %g1, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
2008738: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
200873c: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
2008740: 32 bf ff fe bne,a 2008738 <_RBTree_Extract_unprotected+0x9c><== NOT EXECUTED
2008744: ba 10 00 01 mov %g1, %i5 <== NOT EXECUTED
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
2008748: f8 07 60 04 ld [ %i5 + 4 ], %i4 <== NOT EXECUTED
if(leaf) {
200874c: 80 a7 20 00 cmp %i4, 0 <== NOT EXECUTED
2008750: 02 80 00 05 be 2008764 <_RBTree_Extract_unprotected+0xc8> <== NOT EXECUTED
2008754: 01 00 00 00 nop <== NOT EXECUTED
leaf->parent = target->parent;
2008758: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED
200875c: 10 80 00 04 b 200876c <_RBTree_Extract_unprotected+0xd0> <== NOT EXECUTED
2008760: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
2008764: 7f ff ff 50 call 20084a4 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED
2008768: 90 10 00 1d mov %i5, %o0 <== NOT EXECUTED
}
victim_color = target->color;
dir = target != target->parent->child[0];
200876c: c4 07 40 00 ld [ %i5 ], %g2 <== NOT EXECUTED
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
2008770: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED
dir = target != target->parent->child[0];
2008774: c6 00 a0 04 ld [ %g2 + 4 ], %g3 <== NOT EXECUTED
2008778: 86 1f 40 03 xor %i5, %g3, %g3 <== NOT EXECUTED
200877c: 80 a0 00 03 cmp %g0, %g3 <== NOT EXECUTED
2008780: 86 40 20 00 addx %g0, 0, %g3 <== NOT EXECUTED
target->parent->child[dir] = leaf;
2008784: 87 28 e0 02 sll %g3, 2, %g3 <== NOT EXECUTED
2008788: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED
200878c: f8 20 a0 04 st %i4, [ %g2 + 4 ] <== NOT EXECUTED
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
2008790: c4 06 40 00 ld [ %i1 ], %g2 <== NOT EXECUTED
2008794: c6 00 a0 04 ld [ %g2 + 4 ], %g3 <== NOT EXECUTED
2008798: 86 1e 40 03 xor %i1, %g3, %g3 <== NOT EXECUTED
200879c: 80 a0 00 03 cmp %g0, %g3 <== NOT EXECUTED
20087a0: 86 40 20 00 addx %g0, 0, %g3 <== NOT EXECUTED
the_node->parent->child[dir] = target;
20087a4: 87 28 e0 02 sll %g3, 2, %g3 <== NOT EXECUTED
20087a8: 84 00 80 03 add %g2, %g3, %g2 <== NOT EXECUTED
20087ac: fa 20 a0 04 st %i5, [ %g2 + 4 ] <== NOT EXECUTED
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
20087b0: c4 06 60 08 ld [ %i1 + 8 ], %g2 <== NOT EXECUTED
20087b4: c4 27 60 08 st %g2, [ %i5 + 8 ] <== NOT EXECUTED
the_node->child[RBT_RIGHT]->parent = target;
20087b8: c4 06 60 08 ld [ %i1 + 8 ], %g2 <== NOT EXECUTED
20087bc: fa 20 80 00 st %i5, [ %g2 ] <== NOT EXECUTED
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
20087c0: c4 06 60 04 ld [ %i1 + 4 ], %g2 <== NOT EXECUTED
20087c4: c4 27 60 04 st %g2, [ %i5 + 4 ] <== NOT EXECUTED
the_node->child[RBT_LEFT]->parent = target;
20087c8: c4 06 60 04 ld [ %i1 + 4 ], %g2 <== NOT EXECUTED
20087cc: fa 20 80 00 st %i5, [ %g2 ] <== NOT EXECUTED
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
20087d0: c4 06 40 00 ld [ %i1 ], %g2 <== NOT EXECUTED
20087d4: c4 27 40 00 st %g2, [ %i5 ] <== NOT EXECUTED
target->color = the_node->color;
20087d8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 <== NOT EXECUTED
20087dc: 10 80 00 14 b 200882c <_RBTree_Extract_unprotected+0x190> <== NOT EXECUTED
20087e0: c4 27 60 10 st %g2, [ %i5 + 0x10 ] <== NOT EXECUTED
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
20087e4: 80 a7 20 00 cmp %i4, 0
20087e8: 32 80 00 04 bne,a 20087f8 <_RBTree_Extract_unprotected+0x15c>
20087ec: c2 06 40 00 ld [ %i1 ], %g1
20087f0: 30 80 00 04 b,a 2008800 <_RBTree_Extract_unprotected+0x164>
leaf->parent = the_node->parent;
20087f4: c2 06 40 00 ld [ %i1 ], %g1
20087f8: 10 80 00 04 b 2008808 <_RBTree_Extract_unprotected+0x16c>
20087fc: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
2008800: 7f ff ff 29 call 20084a4 <_RBTree_Extract_validate_unprotected>
2008804: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2008808: c4 06 40 00 ld [ %i1 ], %g2
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200880c: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2008810: c6 00 a0 04 ld [ %g2 + 4 ], %g3
2008814: 86 1e 40 03 xor %i1, %g3, %g3
2008818: 80 a0 00 03 cmp %g0, %g3
200881c: 86 40 20 00 addx %g0, 0, %g3
the_node->parent->child[dir] = leaf;
2008820: 87 28 e0 02 sll %g3, 2, %g3
2008824: 84 00 80 03 add %g2, %g3, %g2
2008828: f8 20 a0 04 st %i4, [ %g2 + 4 ]
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node and the child is red. Paint child black.
* 3. Deleted a black node and its child is black. This requires some
* care and rotations.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200882c: 80 a0 60 00 cmp %g1, 0
2008830: 32 80 00 0e bne,a 2008868 <_RBTree_Extract_unprotected+0x1cc>
2008834: c2 06 20 04 ld [ %i0 + 4 ], %g1
2008838: 80 a7 20 00 cmp %i4, 0
200883c: 22 80 00 0b be,a 2008868 <_RBTree_Extract_unprotected+0x1cc>
2008840: c2 06 20 04 ld [ %i0 + 4 ], %g1
2008844: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2008848: 80 a0 60 01 cmp %g1, 1
200884c: 12 80 00 04 bne 200885c <_RBTree_Extract_unprotected+0x1c0><== NEVER TAKEN
2008850: 01 00 00 00 nop
if (_RBTree_Is_red(leaf))
leaf->color = RBT_BLACK; /* case 2 */
2008854: 10 80 00 04 b 2008864 <_RBTree_Extract_unprotected+0x1c8>
2008858: c0 27 20 10 clr [ %i4 + 0x10 ]
else if(leaf)
_RBTree_Extract_validate_unprotected(leaf); /* case 3 */
200885c: 7f ff ff 12 call 20084a4 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED
2008860: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
2008864: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
2008868: c0 26 60 08 clr [ %i1 + 8 ]
200886c: c0 26 60 04 clr [ %i1 + 4 ]
2008870: 80 a0 60 00 cmp %g1, 0
2008874: 02 80 00 03 be 2008880 <_RBTree_Extract_unprotected+0x1e4>
2008878: c0 26 40 00 clr [ %i1 ]
200887c: c0 20 60 10 clr [ %g1 + 0x10 ]
2008880: 81 c7 e0 08 ret
2008884: 81 e8 00 00 restore
020084a4 <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
20084a4: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
20084a8: fa 06 00 00 ld [ %i0 ], %i5
if(!parent->parent) return;
20084ac: c2 07 40 00 ld [ %i5 ], %g1
20084b0: 80 a0 60 00 cmp %g1, 0
20084b4: 02 80 00 71 be 2008678 <_RBTree_Extract_validate_unprotected+0x1d4>
20084b8: 90 10 00 18 mov %i0, %o0
sibling = _RBTree_Sibling(the_node);
20084bc: 7f ff ff ca call 20083e4 <_RBTree_Sibling>
20084c0: b4 10 20 01 mov 1, %i2
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
20084c4: 10 80 00 60 b 2008644 <_RBTree_Extract_validate_unprotected+0x1a0>
20084c8: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
20084cc: 22 80 00 5e be,a 2008644 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN
20084d0: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED
20084d4: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
20084d8: 80 a0 60 01 cmp %g1, 1
20084dc: 32 80 00 14 bne,a 200852c <_RBTree_Extract_validate_unprotected+0x88>
20084e0: c4 02 20 08 ld [ %o0 + 8 ], %g2
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
20084e4: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
20084e8: c2 07 60 04 ld [ %i5 + 4 ], %g1
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
20084ec: c0 22 20 10 clr [ %o0 + 0x10 ]
dir = the_node != parent->child[0];
20084f0: 82 1e 00 01 xor %i0, %g1, %g1
20084f4: 80 a0 00 01 cmp %g0, %g1
_RBTree_Rotate(parent, dir);
20084f8: 90 10 00 1d mov %i5, %o0
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
20084fc: b8 40 20 00 addx %g0, 0, %i4
_RBTree_Rotate(parent, dir);
2008500: 7f ff ff ca call 2008428 <_RBTree_Rotate>
2008504: 92 10 00 1c mov %i4, %o1
sibling = parent->child[!dir];
2008508: 80 a0 00 1c cmp %g0, %i4
200850c: 82 60 3f ff subx %g0, -1, %g1
2008510: 83 28 60 02 sll %g1, 2, %g1
2008514: 82 07 40 01 add %i5, %g1, %g1
2008518: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
200851c: 80 a2 20 00 cmp %o0, 0
2008520: 22 80 00 49 be,a 2008644 <_RBTree_Extract_validate_unprotected+0x1a0><== NEVER TAKEN
2008524: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 <== NOT EXECUTED
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
2008528: c4 02 20 08 ld [ %o0 + 8 ], %g2
200852c: 80 a0 a0 00 cmp %g2, 0
2008530: 02 80 00 06 be 2008548 <_RBTree_Extract_validate_unprotected+0xa4>
2008534: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
2008538: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
200853c: 82 18 60 01 xor %g1, 1, %g1
2008540: 80 a0 00 01 cmp %g0, %g1
2008544: 82 60 3f ff subx %g0, -1, %g1
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
2008548: 80 a0 60 00 cmp %g1, 0
200854c: 32 80 00 14 bne,a 200859c <_RBTree_Extract_validate_unprotected+0xf8>
2008550: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
2008554: c4 02 20 04 ld [ %o0 + 4 ], %g2
2008558: 80 a0 a0 00 cmp %g2, 0
200855c: 02 80 00 07 be 2008578 <_RBTree_Extract_validate_unprotected+0xd4>
2008560: 80 a0 60 00 cmp %g1, 0
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
2008564: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
2008568: 82 18 60 01 xor %g1, 1, %g1
200856c: 80 a0 00 01 cmp %g0, %g1
2008570: 82 60 3f ff subx %g0, -1, %g1
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
2008574: 80 a0 60 00 cmp %g1, 0
2008578: 32 80 00 09 bne,a 200859c <_RBTree_Extract_validate_unprotected+0xf8>
200857c: c2 07 60 04 ld [ %i5 + 4 ], %g1
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
2008580: f4 22 20 10 st %i2, [ %o0 + 0x10 ]
2008584: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
2008588: 80 a0 60 01 cmp %g1, 1
200858c: 32 80 00 3d bne,a 2008680 <_RBTree_Extract_validate_unprotected+0x1dc>
2008590: f8 07 40 00 ld [ %i5 ], %i4
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
2008594: 10 80 00 33 b 2008660 <_RBTree_Extract_validate_unprotected+0x1bc>
2008598: c0 27 60 10 clr [ %i5 + 0x10 ]
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
200859c: 82 1e 00 01 xor %i0, %g1, %g1
20085a0: 80 a0 00 01 cmp %g0, %g1
20085a4: b8 40 20 00 addx %g0, 0, %i4
if (!_RBTree_Is_red(sibling->child[!dir])) {
20085a8: 80 a0 00 1c cmp %g0, %i4
20085ac: b6 60 3f ff subx %g0, -1, %i3
20085b0: 83 2e e0 02 sll %i3, 2, %g1
20085b4: 82 02 00 01 add %o0, %g1, %g1
20085b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
20085bc: 80 a0 a0 00 cmp %g2, 0
20085c0: 02 80 00 06 be 20085d8 <_RBTree_Extract_validate_unprotected+0x134>
20085c4: 82 10 20 00 clr %g1
* This function maintains the properties of the red-black tree.
*
* @note It does NOT disable interrupts to ensure the atomicity
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
20085c8: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
20085cc: 82 18 60 01 xor %g1, 1, %g1
20085d0: 80 a0 00 01 cmp %g0, %g1
20085d4: 82 60 3f ff subx %g0, -1, %g1
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
20085d8: 80 a0 60 00 cmp %g1, 0
20085dc: 32 80 00 0e bne,a 2008614 <_RBTree_Extract_validate_unprotected+0x170>
20085e0: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
sibling->color = RBT_RED;
20085e4: 82 10 20 01 mov 1, %g1
20085e8: c2 22 20 10 st %g1, [ %o0 + 0x10 ]
sibling->child[dir]->color = RBT_BLACK;
20085ec: 83 2f 20 02 sll %i4, 2, %g1
20085f0: 82 02 00 01 add %o0, %g1, %g1
20085f4: c2 00 60 04 ld [ %g1 + 4 ], %g1
_RBTree_Rotate(sibling, !dir);
20085f8: 92 1f 20 01 xor %i4, 1, %o1
20085fc: 7f ff ff 8b call 2008428 <_RBTree_Rotate>
2008600: c0 20 60 10 clr [ %g1 + 0x10 ]
sibling = parent->child[!dir];
2008604: 83 2e e0 02 sll %i3, 2, %g1
2008608: 82 07 40 01 add %i5, %g1, %g1
200860c: d0 00 60 04 ld [ %g1 + 4 ], %o0
}
sibling->color = parent->color;
2008610: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
2008614: b7 2e e0 02 sll %i3, 2, %i3
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
2008618: c2 22 20 10 st %g1, [ %o0 + 0x10 ]
parent->color = RBT_BLACK;
sibling->child[!dir]->color = RBT_BLACK;
200861c: 90 02 00 1b add %o0, %i3, %o0
2008620: c2 02 20 04 ld [ %o0 + 4 ], %g1
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
}
sibling->color = parent->color;
parent->color = RBT_BLACK;
2008624: c0 27 60 10 clr [ %i5 + 0x10 ]
sibling->child[!dir]->color = RBT_BLACK;
2008628: c0 20 60 10 clr [ %g1 + 0x10 ]
_RBTree_Rotate(parent, dir);
200862c: 90 10 00 1d mov %i5, %o0
2008630: 7f ff ff 7e call 2008428 <_RBTree_Rotate>
2008634: 92 10 00 1c mov %i4, %o1
break; /* done */
2008638: 10 80 00 0b b 2008664 <_RBTree_Extract_validate_unprotected+0x1c0>
200863c: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2008640: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
2008644: 80 a0 60 01 cmp %g1, 1
2008648: 22 80 00 07 be,a 2008664 <_RBTree_Extract_validate_unprotected+0x1c0>
200864c: c2 06 00 00 ld [ %i0 ], %g1
2008650: c2 07 40 00 ld [ %i5 ], %g1
2008654: 80 a0 60 00 cmp %g1, 0
2008658: 12 bf ff 9d bne 20084cc <_RBTree_Extract_validate_unprotected+0x28>
200865c: 80 a2 20 00 cmp %o0, 0
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
2008660: c2 06 00 00 ld [ %i0 ], %g1
2008664: c2 00 40 00 ld [ %g1 ], %g1
2008668: 80 a0 60 00 cmp %g1, 0
200866c: 12 80 00 0a bne 2008694 <_RBTree_Extract_validate_unprotected+0x1f0>
2008670: 01 00 00 00 nop
2008674: c0 26 20 10 clr [ %i0 + 0x10 ]
2008678: 81 c7 e0 08 ret
200867c: 81 e8 00 00 restore
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
sibling = _RBTree_Sibling(the_node);
2008680: 90 10 00 1d mov %i5, %o0
2008684: 7f ff ff 58 call 20083e4 <_RBTree_Sibling>
2008688: b0 10 00 1d mov %i5, %i0
200868c: 10 bf ff ed b 2008640 <_RBTree_Extract_validate_unprotected+0x19c>
2008690: ba 10 00 1c mov %i4, %i5
2008694: 81 c7 e0 08 ret
2008698: 81 e8 00 00 restore
020088fc <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
20088fc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
2008900: 7f ff e8 28 call 20029a0 <sparc_disable_interrupts>
2008904: 01 00 00 00 nop
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
if (the_value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_value > iter_node->value;
iter_node = iter_node->child[dir];
2008908: 10 80 00 09 b 200892c <_RBTree_Find+0x30>
200890c: f0 06 20 04 ld [ %i0 + 4 ], %i0
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
if (the_value == iter_node->value) return(iter_node);
2008910: 80 a6 40 01 cmp %i1, %g1
2008914: 02 80 00 09 be 2008938 <_RBTree_Find+0x3c>
2008918: 80 a0 40 19 cmp %g1, %i1
RBTree_Direction dir = the_value > iter_node->value;
200891c: 82 40 20 00 addx %g0, 0, %g1
iter_node = iter_node->child[dir];
2008920: 83 28 60 02 sll %g1, 2, %g1
2008924: b0 06 00 01 add %i0, %g1, %i0
2008928: f0 06 20 04 ld [ %i0 + 4 ], %i0
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
200892c: 80 a6 20 00 cmp %i0, 0
2008930: 32 bf ff f8 bne,a 2008910 <_RBTree_Find+0x14> <== ALWAYS TAKEN
2008934: c2 06 20 0c ld [ %i0 + 0xc ], %g1
return_node = _RBTree_Find_unprotected( the_rbtree, the_value );
_ISR_Enable( level );
2008938: 7f ff e8 1e call 20029b0 <sparc_enable_interrupts>
200893c: 01 00 00 00 nop
return return_node;
}
2008940: 81 c7 e0 08 ret
2008944: 81 e8 00 00 restore
020088ac <_RBTree_Find_header>:
*/
RBTree_Control *_RBTree_Find_header(
RBTree_Node *the_node
)
{
20088ac: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Control *return_header;
return_header = NULL;
_ISR_Disable( level );
20088b0: 7f ff e8 3c call 20029a0 <sparc_disable_interrupts>
20088b4: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
20088b8: 80 a7 60 00 cmp %i5, 0
20088bc: 02 80 00 0c be 20088ec <_RBTree_Find_header+0x40> <== NEVER TAKEN
20088c0: b0 10 20 00 clr %i0
if(!(the_node->parent)) return NULL;
20088c4: c2 07 40 00 ld [ %i5 ], %g1
20088c8: 80 a0 60 00 cmp %g1, 0
20088cc: 32 80 00 03 bne,a 20088d8 <_RBTree_Find_header+0x2c> <== ALWAYS TAKEN
20088d0: ba 10 00 01 mov %g1, %i5
20088d4: 30 80 00 06 b,a 20088ec <_RBTree_Find_header+0x40> <== NOT EXECUTED
while(the_node->parent) the_node = the_node->parent;
20088d8: c2 07 40 00 ld [ %i5 ], %g1
20088dc: 80 a0 60 00 cmp %g1, 0
20088e0: 32 bf ff fe bne,a 20088d8 <_RBTree_Find_header+0x2c>
20088e4: ba 10 00 01 mov %g1, %i5
20088e8: b0 10 00 1d mov %i5, %i0
return_header = _RBTree_Find_header_unprotected( the_node );
_ISR_Enable( level );
20088ec: 7f ff e8 31 call 20029b0 <sparc_enable_interrupts>
20088f0: 01 00 00 00 nop
return return_header;
}
20088f4: 81 c7 e0 08 ret
20088f8: 81 e8 00 00 restore
02008ae4 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
2008ae4: 9d e3 bf a0 save %sp, -96, %sp
2008ae8: 82 10 00 18 mov %i0, %g1
2008aec: 90 10 00 19 mov %i1, %o0
if(!the_node) return (RBTree_Node*)-1;
2008af0: 80 a6 60 00 cmp %i1, 0
2008af4: 02 80 00 0d be 2008b28 <_RBTree_Insert_unprotected+0x44> <== NEVER TAKEN
2008af8: b0 10 3f ff mov -1, %i0
RBTree_Node *iter_node = the_rbtree->root;
2008afc: f0 00 60 04 ld [ %g1 + 4 ], %i0
if (!iter_node) { /* special case: first node inserted */
2008b00: 80 a6 20 00 cmp %i0, 0
2008b04: 32 80 00 1f bne,a 2008b80 <_RBTree_Insert_unprotected+0x9c>
2008b08: c4 06 60 0c ld [ %i1 + 0xc ], %g2
the_node->color = RBT_BLACK;
2008b0c: c0 26 60 10 clr [ %i1 + 0x10 ]
the_rbtree->root = the_node;
2008b10: f2 20 60 04 st %i1, [ %g1 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
2008b14: f2 20 60 0c st %i1, [ %g1 + 0xc ]
2008b18: f2 20 60 08 st %i1, [ %g1 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
2008b1c: c2 26 40 00 st %g1, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
2008b20: c0 26 60 08 clr [ %i1 + 8 ]
2008b24: c0 26 60 04 clr [ %i1 + 4 ]
2008b28: 81 c7 e0 08 ret
2008b2c: 81 e8 00 00 restore
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
2008b30: 86 40 20 00 addx %g0, 0, %g3
if (!iter_node->child[dir]) {
2008b34: 89 28 e0 02 sll %g3, 2, %g4
2008b38: 88 06 00 04 add %i0, %g4, %g4
2008b3c: de 01 20 04 ld [ %g4 + 4 ], %o7
2008b40: 80 a3 e0 00 cmp %o7, 0
2008b44: 32 80 00 0f bne,a 2008b80 <_RBTree_Insert_unprotected+0x9c>
2008b48: b0 10 00 0f mov %o7, %i0
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
2008b4c: 84 10 20 01 mov 1, %g2
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
2008b50: c0 22 20 08 clr [ %o0 + 8 ]
2008b54: c0 22 20 04 clr [ %o0 + 4 ]
the_node->color = RBT_RED;
2008b58: c4 22 20 10 st %g2, [ %o0 + 0x10 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
2008b5c: 84 00 e0 02 add %g3, 2, %g2
2008b60: 85 28 a0 02 sll %g2, 2, %g2
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
2008b64: c6 00 40 02 ld [ %g1 + %g2 ], %g3
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
2008b68: d0 21 20 04 st %o0, [ %g4 + 4 ]
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
2008b6c: 80 a6 00 03 cmp %i0, %g3
2008b70: 12 80 00 0a bne 2008b98 <_RBTree_Insert_unprotected+0xb4>
2008b74: f0 22 00 00 st %i0, [ %o0 ]
the_rbtree->first[dir] = the_node;
2008b78: 10 80 00 08 b 2008b98 <_RBTree_Insert_unprotected+0xb4>
2008b7c: d0 20 40 02 st %o0, [ %g1 + %g2 ]
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
2008b80: c6 06 20 0c ld [ %i0 + 0xc ], %g3
2008b84: 80 a0 80 03 cmp %g2, %g3
2008b88: 12 bf ff ea bne 2008b30 <_RBTree_Insert_unprotected+0x4c>
2008b8c: 80 a0 c0 02 cmp %g3, %g2
2008b90: 81 c7 e0 08 ret
2008b94: 81 e8 00 00 restore
}
} /* while(iter_node) */
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
2008b98: 7f ff ff 9a call 2008a00 <_RBTree_Validate_insert_unprotected>
2008b9c: b0 10 20 00 clr %i0
}
return (RBTree_Node*)0;
}
2008ba0: 81 c7 e0 08 ret
2008ba4: 81 e8 00 00 restore
02008428 <_RBTree_Rotate>:
RBTree_Node *the_node,
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
2008428: 80 a2 20 00 cmp %o0, 0
200842c: 02 80 00 1c be 200849c <_RBTree_Rotate+0x74> <== NEVER TAKEN
2008430: 86 10 20 01 mov 1, %g3
if (the_node->child[(1-dir)] == NULL) return;
2008434: 86 20 c0 09 sub %g3, %o1, %g3
2008438: 87 28 e0 02 sll %g3, 2, %g3
200843c: 86 02 00 03 add %o0, %g3, %g3
2008440: c2 00 e0 04 ld [ %g3 + 4 ], %g1
2008444: 80 a0 60 00 cmp %g1, 0
2008448: 02 80 00 15 be 200849c <_RBTree_Rotate+0x74> <== NEVER TAKEN
200844c: 93 2a 60 02 sll %o1, 2, %o1
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
2008450: 84 00 40 09 add %g1, %o1, %g2
2008454: c8 00 a0 04 ld [ %g2 + 4 ], %g4
2008458: c8 20 e0 04 st %g4, [ %g3 + 4 ]
if (c->child[dir])
200845c: c4 00 a0 04 ld [ %g2 + 4 ], %g2
2008460: 80 a0 a0 00 cmp %g2, 0
2008464: 32 80 00 02 bne,a 200846c <_RBTree_Rotate+0x44>
2008468: d0 20 80 00 st %o0, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200846c: c4 02 00 00 ld [ %o0 ], %g2
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
2008470: 92 00 40 09 add %g1, %o1, %o1
2008474: d0 22 60 04 st %o0, [ %o1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008478: c6 00 a0 04 ld [ %g2 + 4 ], %g3
c->parent = the_node->parent;
200847c: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008480: 86 1a 00 03 xor %o0, %g3, %g3
c->parent = the_node->parent;
the_node->parent = c;
2008484: c2 22 00 00 st %g1, [ %o0 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008488: 80 a0 00 03 cmp %g0, %g3
200848c: 86 40 20 00 addx %g0, 0, %g3
2008490: 87 28 e0 02 sll %g3, 2, %g3
2008494: 86 00 80 03 add %g2, %g3, %g3
2008498: c2 20 e0 04 st %g1, [ %g3 + 4 ]
200849c: 81 c3 e0 08 retl
020083e4 <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
20083e4: 80 a2 20 00 cmp %o0, 0
20083e8: 02 80 00 0e be 2008420 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
20083ec: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
20083f0: c4 02 00 00 ld [ %o0 ], %g2
20083f4: 80 a0 a0 00 cmp %g2, 0
20083f8: 02 80 00 0a be 2008420 <_RBTree_Sibling+0x3c> <== NEVER TAKEN
20083fc: 01 00 00 00 nop
if(!(the_node->parent->parent)) return NULL;
2008400: c6 00 80 00 ld [ %g2 ], %g3
2008404: 80 a0 e0 00 cmp %g3, 0
2008408: 02 80 00 06 be 2008420 <_RBTree_Sibling+0x3c>
200840c: 01 00 00 00 nop
if(the_node == the_node->parent->child[RBT_LEFT])
2008410: c2 00 a0 04 ld [ %g2 + 4 ], %g1
2008414: 80 a2 00 01 cmp %o0, %g1
2008418: 22 80 00 02 be,a 2008420 <_RBTree_Sibling+0x3c>
200841c: c2 00 a0 08 ld [ %g2 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
else
return the_node->parent->child[RBT_LEFT];
}
2008420: 81 c3 e0 08 retl
2008424: 90 10 00 01 mov %g1, %o0
02008a00 <_RBTree_Validate_insert_unprotected>:
* append operation.
*/
void _RBTree_Validate_insert_unprotected(
RBTree_Node *the_node
)
{
2008a00: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
2008a04: 10 80 00 1f b 2008a80 <_RBTree_Validate_insert_unprotected+0x80>
2008a08: b6 10 20 01 mov 1, %i3
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2008a0c: 80 a0 60 00 cmp %g1, 0
2008a10: 02 80 00 27 be 2008aac <_RBTree_Validate_insert_unprotected+0xac><== NEVER TAKEN
2008a14: c2 07 60 04 ld [ %i5 + 4 ], %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
2008a18: 80 a2 00 01 cmp %o0, %g1
2008a1c: 22 80 00 02 be,a 2008a24 <_RBTree_Validate_insert_unprotected+0x24>
2008a20: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008a24: 80 a0 60 00 cmp %g1, 0
2008a28: 22 80 00 21 be,a 2008aac <_RBTree_Validate_insert_unprotected+0xac>
2008a2c: c2 07 60 04 ld [ %i5 + 4 ], %g1
2008a30: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
2008a34: 80 a0 a0 01 cmp %g2, 1
2008a38: 32 80 00 1d bne,a 2008aac <_RBTree_Validate_insert_unprotected+0xac>
2008a3c: c2 07 60 04 ld [ %i5 + 4 ], %g1
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
2008a40: c0 22 20 10 clr [ %o0 + 0x10 ]
u->color = RBT_BLACK;
2008a44: c0 20 60 10 clr [ %g1 + 0x10 ]
g->color = RBT_RED;
2008a48: c4 27 60 10 st %g2, [ %i5 + 0x10 ]
2008a4c: 10 80 00 0d b 2008a80 <_RBTree_Validate_insert_unprotected+0x80>
2008a50: b0 10 00 1d mov %i5, %i0
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
2008a54: 7f ff ff cc call 2008984 <_RBTree_Rotate>
2008a58: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
2008a5c: 83 2f 20 02 sll %i4, 2, %g1
2008a60: b0 06 00 01 add %i0, %g1, %i0
2008a64: f0 06 20 04 ld [ %i0 + 4 ], %i0
}
the_node->parent->color = RBT_BLACK;
2008a68: c2 06 00 00 ld [ %i0 ], %g1
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2008a6c: 90 10 00 1d mov %i5, %o0
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2008a70: c0 20 60 10 clr [ %g1 + 0x10 ]
g->color = RBT_RED;
2008a74: f6 27 60 10 st %i3, [ %i5 + 0x10 ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
2008a78: 7f ff ff c3 call 2008984 <_RBTree_Rotate>
2008a7c: 92 26 c0 1c sub %i3, %i4, %o1
ISR_Level level;
_ISR_Disable( level );
_RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
2008a80: d0 06 00 00 ld [ %i0 ], %o0
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
2008a84: fa 02 00 00 ld [ %o0 ], %i5
2008a88: 80 a7 60 00 cmp %i5, 0
2008a8c: 22 80 00 14 be,a 2008adc <_RBTree_Validate_insert_unprotected+0xdc>
2008a90: c0 26 20 10 clr [ %i0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008a94: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
2008a98: 80 a0 60 01 cmp %g1, 1
2008a9c: 12 80 00 10 bne 2008adc <_RBTree_Validate_insert_unprotected+0xdc>
2008aa0: 01 00 00 00 nop
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2008aa4: 10 bf ff da b 2008a0c <_RBTree_Validate_insert_unprotected+0xc>
2008aa8: c2 07 40 00 ld [ %i5 ], %g1
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
2008aac: 82 1a 00 01 xor %o0, %g1, %g1
2008ab0: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2008ab4: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
2008ab8: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2008abc: 82 1e 00 01 xor %i0, %g1, %g1
2008ac0: 80 a0 00 01 cmp %g0, %g1
2008ac4: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
2008ac8: 80 a0 40 1c cmp %g1, %i4
2008acc: 12 bf ff e2 bne 2008a54 <_RBTree_Validate_insert_unprotected+0x54>
2008ad0: 01 00 00 00 nop
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
2008ad4: 10 bf ff e6 b 2008a6c <_RBTree_Validate_insert_unprotected+0x6c>
2008ad8: c2 06 00 00 ld [ %i0 ], %g1
2008adc: 81 c7 e0 08 ret
2008ae0: 81 e8 00 00 restore
0200b1bc <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200b1bc: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b1c0: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
if ( !api )
200b1c4: 80 a7 60 00 cmp %i5, 0
200b1c8: 02 80 00 1c be 200b238 <_RTEMS_tasks_Post_switch_extension+0x7c><== NEVER TAKEN
200b1cc: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200b1d0: 7f ff db 3c call 2001ec0 <sparc_disable_interrupts>
200b1d4: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b1d8: f6 07 60 14 ld [ %i5 + 0x14 ], %i3
asr->signals_posted = 0;
200b1dc: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200b1e0: 7f ff db 3c call 2001ed0 <sparc_enable_interrupts>
200b1e4: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b1e8: 80 a6 e0 00 cmp %i3, 0
200b1ec: 02 80 00 13 be 200b238 <_RTEMS_tasks_Post_switch_extension+0x7c>
200b1f0: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
200b1f4: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b1f8: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200b1fc: 82 00 60 01 inc %g1
200b200: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b204: 39 00 00 3f sethi %hi(0xfc00), %i4
200b208: 40 00 07 2e call 200cec0 <rtems_task_mode>
200b20c: 92 17 23 ff or %i4, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b210: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200b214: 9f c0 40 00 call %g1
200b218: 90 10 00 1b mov %i3, %o0
asr->nest_level -= 1;
200b21c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b220: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b224: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b228: 92 17 23 ff or %i4, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b22c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b230: 40 00 07 24 call 200cec0 <rtems_task_mode>
200b234: 94 07 bf fc add %fp, -4, %o2
200b238: 81 c7 e0 08 ret
200b23c: 81 e8 00 00 restore
020075b8 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
20075b8: 9d e3 bf 98 save %sp, -104, %sp
20075bc: 11 00 80 73 sethi %hi(0x201cc00), %o0
20075c0: 92 10 00 18 mov %i0, %o1
20075c4: 90 12 22 84 or %o0, 0x284, %o0
20075c8: 40 00 07 ae call 2009480 <_Objects_Get>
20075cc: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20075d0: c2 07 bf fc ld [ %fp + -4 ], %g1
20075d4: 80 a0 60 00 cmp %g1, 0
20075d8: 12 80 00 24 bne 2007668 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
20075dc: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
20075e0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
20075e4: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
20075e8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
20075ec: 80 88 80 01 btst %g2, %g1
20075f0: 22 80 00 0b be,a 200761c <_Rate_monotonic_Timeout+0x64>
20075f4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
20075f8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
20075fc: c2 07 60 08 ld [ %i5 + 8 ], %g1
2007600: 80 a0 80 01 cmp %g2, %g1
2007604: 32 80 00 06 bne,a 200761c <_Rate_monotonic_Timeout+0x64>
2007608: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
200760c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2007610: 40 00 0a 3a call 2009ef8 <_Thread_Clear_state>
2007614: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
2007618: 30 80 00 06 b,a 2007630 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
200761c: 80 a0 60 01 cmp %g1, 1
2007620: 12 80 00 0d bne 2007654 <_Rate_monotonic_Timeout+0x9c>
2007624: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007628: 82 10 20 03 mov 3, %g1
200762c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007630: 7f ff fe 71 call 2006ff4 <_Rate_monotonic_Initiate_statistics>
2007634: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007638: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200763c: 11 00 80 74 sethi %hi(0x201d000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007640: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007644: 90 12 20 b4 or %o0, 0xb4, %o0
2007648: 40 00 0e e2 call 200b1d0 <_Watchdog_Insert>
200764c: 92 07 60 10 add %i5, 0x10, %o1
2007650: 30 80 00 02 b,a 2007658 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007654: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007658: 03 00 80 73 sethi %hi(0x201cc00), %g1
200765c: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 201cff0 <_Thread_Dispatch_disable_level>
2007660: 84 00 bf ff add %g2, -1, %g2
2007664: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ]
2007668: 81 c7 e0 08 ret
200766c: 81 e8 00 00 restore
02007fac <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
2007fac: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
2007fb0: 37 00 80 52 sethi %hi(0x2014800), %i3
2007fb4: b6 16 e3 0c or %i3, 0x30c, %i3 ! 2014b0c <_Per_CPU_Information>
2007fb8: fa 06 e0 0c ld [ %i3 + 0xc ], %i5
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
2007fbc: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
_ISR_Disable( level );
2007fc0: 7f ff e7 c0 call 2001ec0 <sparc_disable_interrupts>
2007fc4: f8 00 40 00 ld [ %g1 ], %i4
2007fc8: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
2007fcc: c4 07 00 00 ld [ %i4 ], %g2
2007fd0: c2 07 20 08 ld [ %i4 + 8 ], %g1
2007fd4: 80 a0 80 01 cmp %g2, %g1
2007fd8: 22 80 00 1a be,a 2008040 <_Scheduler_priority_Yield+0x94>
2007fdc: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
2007fe0: c4 07 40 00 ld [ %i5 ], %g2
previous = the_node->previous;
2007fe4: c2 07 60 04 ld [ %i5 + 4 ], %g1
next->previous = previous;
2007fe8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2007fec: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
2007ff0: c2 07 20 08 ld [ %i4 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
2007ff4: 84 07 20 04 add %i4, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
2007ff8: fa 27 20 08 st %i5, [ %i4 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
2007ffc: c4 27 40 00 st %g2, [ %i5 ]
tail->previous = the_node;
old_last->next = the_node;
2008000: fa 20 40 00 st %i5, [ %g1 ]
the_node->previous = old_last;
2008004: c2 27 60 04 st %g1, [ %i5 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
2008008: 7f ff e7 b2 call 2001ed0 <sparc_enable_interrupts>
200800c: 01 00 00 00 nop
2008010: 7f ff e7 ac call 2001ec0 <sparc_disable_interrupts>
2008014: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
2008018: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1
200801c: 80 a7 40 01 cmp %i5, %g1
2008020: 12 80 00 04 bne 2008030 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
2008024: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
2008028: c2 07 00 00 ld [ %i4 ], %g1
200802c: c2 26 e0 10 st %g1, [ %i3 + 0x10 ]
_Thread_Dispatch_necessary = true;
2008030: 03 00 80 52 sethi %hi(0x2014800), %g1
2008034: 82 10 63 0c or %g1, 0x30c, %g1 ! 2014b0c <_Per_CPU_Information>
2008038: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200803c: 30 80 00 05 b,a 2008050 <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
2008040: 80 a7 40 01 cmp %i5, %g1
2008044: 02 80 00 03 be 2008050 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
2008048: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
200804c: c2 2e e0 18 stb %g1, [ %i3 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
2008050: 7f ff e7 a0 call 2001ed0 <sparc_enable_interrupts>
2008054: 81 e8 00 00 restore
02007024 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007024: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007028: 03 00 80 72 sethi %hi(0x201c800), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
200702c: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007030: 80 a6 20 00 cmp %i0, 0
2007034: 02 80 00 2b be 20070e0 <_TOD_Validate+0xbc> <== NEVER TAKEN
2007038: d2 00 63 d8 ld [ %g1 + 0x3d8 ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
200703c: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007040: 40 00 45 fd call 2018834 <.udiv>
2007044: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007048: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200704c: 80 a0 40 08 cmp %g1, %o0
2007050: 3a 80 00 25 bcc,a 20070e4 <_TOD_Validate+0xc0>
2007054: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
2007058: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200705c: 80 a0 60 3b cmp %g1, 0x3b
2007060: 38 80 00 21 bgu,a 20070e4 <_TOD_Validate+0xc0>
2007064: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2007068: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
200706c: 80 a0 60 3b cmp %g1, 0x3b
2007070: 38 80 00 1d bgu,a 20070e4 <_TOD_Validate+0xc0>
2007074: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2007078: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200707c: 80 a0 60 17 cmp %g1, 0x17
2007080: 38 80 00 19 bgu,a 20070e4 <_TOD_Validate+0xc0>
2007084: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2007088: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
200708c: 80 a0 60 00 cmp %g1, 0
2007090: 02 80 00 14 be 20070e0 <_TOD_Validate+0xbc> <== NEVER TAKEN
2007094: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
2007098: 38 80 00 13 bgu,a 20070e4 <_TOD_Validate+0xc0>
200709c: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20070a0: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20070a4: 80 a0 e7 c3 cmp %g3, 0x7c3
20070a8: 28 80 00 0f bleu,a 20070e4 <_TOD_Validate+0xc0>
20070ac: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20070b0: c4 06 20 08 ld [ %i0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20070b4: 80 a0 a0 00 cmp %g2, 0
20070b8: 02 80 00 0a be 20070e0 <_TOD_Validate+0xbc> <== NEVER TAKEN
20070bc: 80 88 e0 03 btst 3, %g3
20070c0: 07 00 80 6e sethi %hi(0x201b800), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
20070c4: 12 80 00 03 bne 20070d0 <_TOD_Validate+0xac>
20070c8: 86 10 e0 f0 or %g3, 0xf0, %g3 ! 201b8f0 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20070cc: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20070d0: 83 28 60 02 sll %g1, 2, %g1
20070d4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20070d8: 80 a0 40 02 cmp %g1, %g2
20070dc: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
20070e0: b0 0f 60 01 and %i5, 1, %i0
20070e4: 81 c7 e0 08 ret
20070e8: 81 e8 00 00 restore
020080a8 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
20080a8: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
20080ac: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
20080b0: 40 00 03 4a call 2008dd8 <_Thread_Set_transient>
20080b4: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
20080b8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20080bc: 80 a0 40 19 cmp %g1, %i1
20080c0: 02 80 00 05 be 20080d4 <_Thread_Change_priority+0x2c>
20080c4: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
20080c8: 90 10 00 18 mov %i0, %o0
20080cc: 40 00 03 2a call 2008d74 <_Thread_Set_priority>
20080d0: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
20080d4: 7f ff e7 7b call 2001ec0 <sparc_disable_interrupts>
20080d8: 01 00 00 00 nop
20080dc: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
20080e0: f2 07 60 10 ld [ %i5 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
20080e4: 80 a6 60 04 cmp %i1, 4
20080e8: 02 80 00 10 be 2008128 <_Thread_Change_priority+0x80>
20080ec: b8 0f 20 04 and %i4, 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
20080f0: 80 a7 20 00 cmp %i4, 0
20080f4: 12 80 00 03 bne 2008100 <_Thread_Change_priority+0x58> <== NEVER TAKEN
20080f8: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20080fc: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2008100: 7f ff e7 74 call 2001ed0 <sparc_enable_interrupts>
2008104: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008108: 03 00 00 ef sethi %hi(0x3bc00), %g1
200810c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008110: 80 8e 40 01 btst %i1, %g1
2008114: 02 80 00 28 be 20081b4 <_Thread_Change_priority+0x10c>
2008118: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
200811c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2008120: 40 00 02 e8 call 2008cc0 <_Thread_queue_Requeue>
2008124: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008128: 80 a7 20 00 cmp %i4, 0
200812c: 12 80 00 0b bne 2008158 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2008130: 03 00 80 4f sethi %hi(0x2013c00), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008134: c0 27 60 10 clr [ %i5 + 0x10 ]
if ( prepend_it )
2008138: 80 a6 a0 00 cmp %i2, 0
200813c: 02 80 00 04 be 200814c <_Thread_Change_priority+0xa4>
2008140: 82 10 61 14 or %g1, 0x114, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2008144: 10 80 00 03 b 2008150 <_Thread_Change_priority+0xa8>
2008148: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
200814c: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2008150: 9f c0 40 00 call %g1
2008154: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008158: 7f ff e7 5e call 2001ed0 <sparc_enable_interrupts>
200815c: 90 10 00 18 mov %i0, %o0
2008160: 7f ff e7 58 call 2001ec0 <sparc_disable_interrupts>
2008164: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2008168: 03 00 80 4f sethi %hi(0x2013c00), %g1
200816c: c2 00 61 1c ld [ %g1 + 0x11c ], %g1 ! 2013d1c <_Scheduler+0x8>
2008170: 9f c0 40 00 call %g1
2008174: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008178: 03 00 80 52 sethi %hi(0x2014800), %g1
200817c: 82 10 63 0c or %g1, 0x30c, %g1 ! 2014b0c <_Per_CPU_Information>
2008180: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2008184: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2008188: 80 a0 80 03 cmp %g2, %g3
200818c: 02 80 00 08 be 20081ac <_Thread_Change_priority+0x104>
2008190: 01 00 00 00 nop
2008194: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2008198: 80 a0 a0 00 cmp %g2, 0
200819c: 02 80 00 04 be 20081ac <_Thread_Change_priority+0x104>
20081a0: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20081a4: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
20081a8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20081ac: 7f ff e7 49 call 2001ed0 <sparc_enable_interrupts>
20081b0: 81 e8 00 00 restore
20081b4: 81 c7 e0 08 ret
20081b8: 81 e8 00 00 restore
02008398 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008398: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200839c: 90 10 00 18 mov %i0, %o0
20083a0: 40 00 00 6b call 200854c <_Thread_Get>
20083a4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20083a8: c2 07 bf fc ld [ %fp + -4 ], %g1
20083ac: 80 a0 60 00 cmp %g1, 0
20083b0: 12 80 00 08 bne 20083d0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
20083b4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
20083b8: 7f ff ff 81 call 20081bc <_Thread_Clear_state>
20083bc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
20083c0: 03 00 80 52 sethi %hi(0x2014800), %g1
20083c4: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 20148e0 <_Thread_Dispatch_disable_level>
20083c8: 84 00 bf ff add %g2, -1, %g2
20083cc: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
20083d0: 81 c7 e0 08 ret
20083d4: 81 e8 00 00 restore
020083d8 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
20083d8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
20083dc: 33 00 80 52 sethi %hi(0x2014800), %i1
20083e0: 82 16 63 0c or %i1, 0x30c, %g1 ! 2014b0c <_Per_CPU_Information>
_ISR_Disable( level );
20083e4: 7f ff e6 b7 call 2001ec0 <sparc_disable_interrupts>
20083e8: fa 00 60 0c ld [ %g1 + 0xc ], %i5
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20083ec: 37 00 80 52 sethi %hi(0x2014800), %i3
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
20083f0: 23 00 80 52 sethi %hi(0x2014800), %l1
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
20083f4: 21 00 80 52 sethi %hi(0x2014800), %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20083f8: b6 16 e1 90 or %i3, 0x190, %i3
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20083fc: 31 00 80 52 sethi %hi(0x2014800), %i0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008400: 10 80 00 3a b 20084e8 <_Thread_Dispatch+0x110>
2008404: 35 00 80 52 sethi %hi(0x2014800), %i2
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008408: 84 10 20 01 mov 1, %g2
200840c: c4 24 60 e0 st %g2, [ %l1 + 0xe0 ]
_Thread_Dispatch_necessary = false;
2008410: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008414: 80 a7 00 1d cmp %i4, %i5
2008418: 02 80 00 39 be 20084fc <_Thread_Dispatch+0x124>
200841c: f8 20 60 0c st %i4, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008420: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
2008424: 80 a0 60 01 cmp %g1, 1
2008428: 12 80 00 03 bne 2008434 <_Thread_Dispatch+0x5c>
200842c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008430: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
_ISR_Enable( level );
2008434: 7f ff e6 a7 call 2001ed0 <sparc_enable_interrupts>
2008438: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
200843c: 40 00 0c 58 call 200b59c <_TOD_Get_uptime>
2008440: 90 07 bf f0 add %fp, -16, %o0
_Timestamp_Subtract(
2008444: 90 10 00 1b mov %i3, %o0
2008448: 92 07 bf f0 add %fp, -16, %o1
200844c: 40 00 02 f3 call 2009018 <_Timespec_Subtract>
2008450: 94 07 bf f8 add %fp, -8, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008454: 90 07 60 84 add %i5, 0x84, %o0
2008458: 40 00 02 d7 call 2008fb4 <_Timespec_Add_to>
200845c: 92 07 bf f8 add %fp, -8, %o1
_Thread_Time_of_last_context_switch = uptime;
2008460: c2 07 bf f0 ld [ %fp + -16 ], %g1
2008464: c2 26 c0 00 st %g1, [ %i3 ]
2008468: c2 07 bf f4 ld [ %fp + -12 ], %g1
200846c: c2 26 e0 04 st %g1, [ %i3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008470: c2 06 21 68 ld [ %i0 + 0x168 ], %g1
2008474: 80 a0 60 00 cmp %g1, 0
2008478: 02 80 00 06 be 2008490 <_Thread_Dispatch+0xb8> <== NEVER TAKEN
200847c: 90 10 00 1d mov %i5, %o0
executing->libc_reent = *_Thread_libc_reent;
2008480: c4 00 40 00 ld [ %g1 ], %g2
2008484: c4 27 61 54 st %g2, [ %i5 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2008488: c4 07 21 54 ld [ %i4 + 0x154 ], %g2
200848c: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008490: 40 00 03 90 call 20092d0 <_User_extensions_Thread_switch>
2008494: 92 10 00 1c mov %i4, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008498: 90 07 60 c8 add %i5, 0xc8, %o0
200849c: 40 00 04 b7 call 2009778 <_CPU_Context_switch>
20084a0: 92 07 20 c8 add %i4, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
20084a4: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
20084a8: 80 a0 60 00 cmp %g1, 0
20084ac: 02 80 00 0c be 20084dc <_Thread_Dispatch+0x104>
20084b0: d0 06 a1 64 ld [ %i2 + 0x164 ], %o0
20084b4: 80 a7 40 08 cmp %i5, %o0
20084b8: 02 80 00 09 be 20084dc <_Thread_Dispatch+0x104>
20084bc: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
20084c0: 02 80 00 04 be 20084d0 <_Thread_Dispatch+0xf8>
20084c4: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
20084c8: 40 00 04 72 call 2009690 <_CPU_Context_save_fp>
20084cc: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
20084d0: 40 00 04 8d call 2009704 <_CPU_Context_restore_fp>
20084d4: 90 07 61 50 add %i5, 0x150, %o0
_Thread_Allocated_fp = executing;
20084d8: fa 26 a1 64 st %i5, [ %i2 + 0x164 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
20084dc: 82 16 63 0c or %i1, 0x30c, %g1
_ISR_Disable( level );
20084e0: 7f ff e6 78 call 2001ec0 <sparc_disable_interrupts>
20084e4: fa 00 60 0c ld [ %g1 + 0xc ], %i5
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
20084e8: 82 16 63 0c or %i1, 0x30c, %g1
20084ec: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
20084f0: 80 a0 a0 00 cmp %g2, 0
20084f4: 32 bf ff c5 bne,a 2008408 <_Thread_Dispatch+0x30>
20084f8: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
20084fc: 03 00 80 52 sethi %hi(0x2014800), %g1
2008500: c0 20 60 e0 clr [ %g1 + 0xe0 ] ! 20148e0 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008504: 7f ff e6 73 call 2001ed0 <sparc_enable_interrupts>
2008508: 01 00 00 00 nop
_API_extensions_Run_postswitch();
200850c: 7f ff f8 89 call 2006730 <_API_extensions_Run_postswitch>
2008510: 01 00 00 00 nop
}
2008514: 81 c7 e0 08 ret
2008518: 81 e8 00 00 restore
0200d1f0 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200d1f0: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200d1f4: 03 00 80 52 sethi %hi(0x2014800), %g1
200d1f8: fa 00 63 18 ld [ %g1 + 0x318 ], %i5 ! 2014b18 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200d1fc: 3f 00 80 34 sethi %hi(0x200d000), %i7
200d200: be 17 e1 f0 or %i7, 0x1f0, %i7 ! 200d1f0 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200d204: d0 07 60 ac ld [ %i5 + 0xac ], %o0
_ISR_Set_level(level);
200d208: 7f ff d3 32 call 2001ed0 <sparc_enable_interrupts>
200d20c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d210: 03 00 80 51 sethi %hi(0x2014400), %g1
doneConstructors = 1;
200d214: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d218: f8 08 61 a0 ldub [ %g1 + 0x1a0 ], %i4
doneConstructors = 1;
200d21c: c4 28 61 a0 stb %g2, [ %g1 + 0x1a0 ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200d220: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
200d224: 80 a0 60 00 cmp %g1, 0
200d228: 02 80 00 0c be 200d258 <_Thread_Handler+0x68>
200d22c: 03 00 80 52 sethi %hi(0x2014800), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200d230: d0 00 61 64 ld [ %g1 + 0x164 ], %o0 ! 2014964 <_Thread_Allocated_fp>
200d234: 80 a7 40 08 cmp %i5, %o0
200d238: 02 80 00 08 be 200d258 <_Thread_Handler+0x68>
200d23c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200d240: 22 80 00 06 be,a 200d258 <_Thread_Handler+0x68>
200d244: fa 20 61 64 st %i5, [ %g1 + 0x164 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d248: 7f ff f1 12 call 2009690 <_CPU_Context_save_fp>
200d24c: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200d250: 03 00 80 52 sethi %hi(0x2014800), %g1
200d254: fa 20 61 64 st %i5, [ %g1 + 0x164 ] ! 2014964 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200d258: 7f ff ef af call 2009114 <_User_extensions_Thread_begin>
200d25c: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200d260: 7f ff ec af call 200851c <_Thread_Enable_dispatch>
200d264: b9 2f 20 18 sll %i4, 0x18, %i4
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200d268: 80 a7 20 00 cmp %i4, 0
200d26c: 32 80 00 05 bne,a 200d280 <_Thread_Handler+0x90>
200d270: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
INIT_NAME ();
200d274: 40 00 1a 5d call 2013be8 <_init>
200d278: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200d27c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
200d280: 80 a0 60 00 cmp %g1, 0
200d284: 12 80 00 06 bne 200d29c <_Thread_Handler+0xac> <== NEVER TAKEN
200d288: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200d28c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200d290: 9f c0 40 00 call %g1
200d294: d0 07 60 9c ld [ %i5 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200d298: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200d29c: 7f ff ef af call 2009158 <_User_extensions_Thread_exitted>
200d2a0: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200d2a4: 90 10 20 00 clr %o0
200d2a8: 92 10 20 01 mov 1, %o1
200d2ac: 7f ff e7 bf call 20071a8 <_Internal_error_Occurred>
200d2b0: 94 10 20 05 mov 5, %o2
020085f8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
20085f8: 9d e3 bf a0 save %sp, -96, %sp
20085fc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008600: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
2008604: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008608: c0 26 61 58 clr [ %i1 + 0x158 ]
200860c: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008610: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008614: 90 10 00 19 mov %i1, %o0
2008618: 40 00 01 ff call 2008e14 <_Thread_Stack_Allocate>
200861c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008620: 80 a2 00 1b cmp %o0, %i3
2008624: 0a 80 00 61 bcs 20087a8 <_Thread_Initialize+0x1b0>
2008628: 80 a2 20 00 cmp %o0, 0
200862c: 02 80 00 5f be 20087a8 <_Thread_Initialize+0x1b0> <== NEVER TAKEN
2008630: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008634: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008638: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200863c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008640: 02 80 00 07 be 200865c <_Thread_Initialize+0x64>
2008644: b6 10 20 00 clr %i3
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008648: 40 00 03 f6 call 2009620 <_Workspace_Allocate>
200864c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008650: b6 92 20 00 orcc %o0, 0, %i3
2008654: 02 80 00 46 be 200876c <_Thread_Initialize+0x174>
2008658: b8 10 20 00 clr %i4
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200865c: 03 00 80 52 sethi %hi(0x2014800), %g1
2008660: d0 00 61 74 ld [ %g1 + 0x174 ], %o0 ! 2014974 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008664: f6 26 61 50 st %i3, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2008668: f6 26 60 bc st %i3, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200866c: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008670: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008674: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
2008678: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200867c: 80 a2 20 00 cmp %o0, 0
2008680: 02 80 00 08 be 20086a0 <_Thread_Initialize+0xa8>
2008684: b8 10 20 00 clr %i4
extensions_area = _Workspace_Allocate(
2008688: 90 02 20 01 inc %o0
200868c: 40 00 03 e5 call 2009620 <_Workspace_Allocate>
2008690: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2008694: b8 92 20 00 orcc %o0, 0, %i4
2008698: 22 80 00 36 be,a 2008770 <_Thread_Initialize+0x178>
200869c: b4 10 20 00 clr %i2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
20086a0: 80 a7 20 00 cmp %i4, 0
20086a4: 02 80 00 0c be 20086d4 <_Thread_Initialize+0xdc>
20086a8: f8 26 61 60 st %i4, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20086ac: 03 00 80 52 sethi %hi(0x2014800), %g1
20086b0: c4 00 61 74 ld [ %g1 + 0x174 ], %g2 ! 2014974 <_Thread_Maximum_extensions>
20086b4: 10 80 00 05 b 20086c8 <_Thread_Initialize+0xd0>
20086b8: 82 10 20 00 clr %g1
the_thread->extensions[i] = NULL;
20086bc: 87 28 60 02 sll %g1, 2, %g3
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20086c0: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
20086c4: c0 21 00 03 clr [ %g4 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20086c8: 80 a0 40 02 cmp %g1, %g2
20086cc: 28 bf ff fc bleu,a 20086bc <_Thread_Initialize+0xc4>
20086d0: c8 06 61 60 ld [ %i1 + 0x160 ], %g4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
20086d4: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
20086d8: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
20086dc: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
20086e0: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
20086e4: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
20086e8: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
20086ec: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
20086f0: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
20086f4: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
20086f8: 82 10 20 01 mov 1, %g1
20086fc: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2008700: 03 00 80 4f sethi %hi(0x2013c00), %g1
2008704: c2 00 61 2c ld [ %g1 + 0x12c ], %g1 ! 2013d2c <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
2008708: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200870c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008710: 9f c0 40 00 call %g1
2008714: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2008718: b4 92 20 00 orcc %o0, 0, %i2
200871c: 02 80 00 15 be 2008770 <_Thread_Initialize+0x178>
2008720: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008724: 40 00 01 94 call 2008d74 <_Thread_Set_priority>
2008728: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200872c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008730: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008734: c0 26 60 84 clr [ %i1 + 0x84 ]
2008738: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200873c: 83 28 60 02 sll %g1, 2, %g1
2008740: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008744: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008748: 90 10 00 19 mov %i1, %o0
200874c: 40 00 02 a4 call 20091dc <_User_extensions_Thread_create>
2008750: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008754: 80 8a 20 ff btst 0xff, %o0
2008758: 02 80 00 06 be 2008770 <_Thread_Initialize+0x178>
200875c: 01 00 00 00 nop
2008760: b0 0e 20 01 and %i0, 1, %i0
2008764: 81 c7 e0 08 ret
2008768: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200876c: b4 10 20 00 clr %i2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
2008770: 40 00 03 b4 call 2009640 <_Workspace_Free>
2008774: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
2008778: 40 00 03 b2 call 2009640 <_Workspace_Free>
200877c: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
2008780: 40 00 03 b0 call 2009640 <_Workspace_Free>
2008784: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
2008788: 40 00 03 ae call 2009640 <_Workspace_Free>
200878c: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
2008790: 40 00 03 ac call 2009640 <_Workspace_Free>
2008794: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
2008798: 40 00 03 aa call 2009640 <_Workspace_Free>
200879c: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
20087a0: 40 00 01 b4 call 2008e70 <_Thread_Stack_Free>
20087a4: 90 10 00 19 mov %i1, %o0
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
20087a8: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
20087ac: b0 0e 20 01 and %i0, 1, %i0
20087b0: 81 c7 e0 08 ret
20087b4: 81 e8 00 00 restore
02008cc0 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2008cc0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2008cc4: 80 a6 20 00 cmp %i0, 0
2008cc8: 02 80 00 19 be 2008d2c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008ccc: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008cd0: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
2008cd4: 80 a7 20 01 cmp %i4, 1
2008cd8: 12 80 00 15 bne 2008d2c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008cdc: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2008ce0: 7f ff e4 78 call 2001ec0 <sparc_disable_interrupts>
2008ce4: 01 00 00 00 nop
2008ce8: ba 10 00 08 mov %o0, %i5
2008cec: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008cf0: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008cf4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008cf8: 80 88 80 01 btst %g2, %g1
2008cfc: 02 80 00 0a be 2008d24 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008d00: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008d04: 92 10 00 19 mov %i1, %o1
2008d08: 94 10 20 01 mov 1, %o2
2008d0c: 40 00 0b 94 call 200bb5c <_Thread_queue_Extract_priority_helper>
2008d10: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008d14: 90 10 00 18 mov %i0, %o0
2008d18: 92 10 00 19 mov %i1, %o1
2008d1c: 7f ff ff 52 call 2008a64 <_Thread_queue_Enqueue_priority>
2008d20: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2008d24: 7f ff e4 6b call 2001ed0 <sparc_enable_interrupts>
2008d28: 90 10 00 1d mov %i5, %o0
2008d2c: 81 c7 e0 08 ret
2008d30: 81 e8 00 00 restore
02008d34 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008d34: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008d38: 90 10 00 18 mov %i0, %o0
2008d3c: 7f ff fe 04 call 200854c <_Thread_Get>
2008d40: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008d44: c2 07 bf fc ld [ %fp + -4 ], %g1
2008d48: 80 a0 60 00 cmp %g1, 0
2008d4c: 12 80 00 08 bne 2008d6c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008d50: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2008d54: 40 00 0b b9 call 200bc38 <_Thread_queue_Process_timeout>
2008d58: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2008d5c: 03 00 80 52 sethi %hi(0x2014800), %g1
2008d60: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 20148e0 <_Thread_Dispatch_disable_level>
2008d64: 84 00 bf ff add %g2, -1, %g2
2008d68: c4 20 60 e0 st %g2, [ %g1 + 0xe0 ]
2008d6c: 81 c7 e0 08 ret
2008d70: 81 e8 00 00 restore
02016560 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2016560: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016564: 27 00 80 ee sethi %hi(0x203b800), %l3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016568: a8 07 bf e8 add %fp, -24, %l4
201656c: a4 07 bf ec add %fp, -20, %l2
2016570: b6 07 bf f4 add %fp, -12, %i3
2016574: b4 07 bf f8 add %fp, -8, %i2
2016578: e4 27 bf e8 st %l2, [ %fp + -24 ]
head->previous = NULL;
201657c: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2016580: e8 27 bf f0 st %l4, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016584: f4 27 bf f4 st %i2, [ %fp + -12 ]
head->previous = NULL;
2016588: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
201658c: f6 27 bf fc st %i3, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016590: b2 06 20 30 add %i0, 0x30, %i1
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016594: b8 06 20 68 add %i0, 0x68, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016598: a2 06 20 08 add %i0, 8, %l1
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
201659c: a0 06 20 40 add %i0, 0x40, %l0
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
20165a0: e8 26 20 78 st %l4, [ %i0 + 0x78 ]
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20165a4: 2b 00 80 ee sethi %hi(0x203b800), %l5
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20165a8: c2 04 e1 84 ld [ %l3 + 0x184 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20165ac: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165b0: 94 10 00 1b mov %i3, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20165b4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165b8: 90 10 00 19 mov %i1, %o0
20165bc: 40 00 11 5e call 201ab34 <_Watchdog_Adjust_to_chain>
20165c0: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20165c4: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20165c8: fa 05 60 fc ld [ %l5 + 0xfc ], %i5
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20165cc: 80 a7 40 0a cmp %i5, %o2
20165d0: 08 80 00 06 bleu 20165e8 <_Timer_server_Body+0x88>
20165d4: 92 27 40 0a sub %i5, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165d8: 90 10 00 1c mov %i4, %o0
20165dc: 40 00 11 56 call 201ab34 <_Watchdog_Adjust_to_chain>
20165e0: 94 10 00 1b mov %i3, %o2
20165e4: 30 80 00 06 b,a 20165fc <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
20165e8: 1a 80 00 05 bcc 20165fc <_Timer_server_Body+0x9c>
20165ec: 90 10 00 1c mov %i4, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20165f0: 92 10 20 01 mov 1, %o1
20165f4: 40 00 11 29 call 201aa98 <_Watchdog_Adjust>
20165f8: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
20165fc: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016600: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016604: 40 00 02 bd call 20170f8 <_Chain_Get>
2016608: 01 00 00 00 nop
if ( timer == NULL ) {
201660c: 92 92 20 00 orcc %o0, 0, %o1
2016610: 02 80 00 0c be 2016640 <_Timer_server_Body+0xe0>
2016614: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016618: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
201661c: 80 a0 60 01 cmp %g1, 1
2016620: 02 80 00 05 be 2016634 <_Timer_server_Body+0xd4>
2016624: 90 10 00 19 mov %i1, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016628: 80 a0 60 03 cmp %g1, 3
201662c: 12 bf ff f5 bne 2016600 <_Timer_server_Body+0xa0> <== NEVER TAKEN
2016630: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016634: 40 00 11 73 call 201ac00 <_Watchdog_Insert>
2016638: 92 02 60 10 add %o1, 0x10, %o1
201663c: 30 bf ff f1 b,a 2016600 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016640: 7f ff e3 97 call 200f49c <sparc_disable_interrupts>
2016644: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2016648: c2 07 bf e8 ld [ %fp + -24 ], %g1
201664c: 80 a0 40 12 cmp %g1, %l2
2016650: 12 80 00 0a bne 2016678 <_Timer_server_Body+0x118> <== NEVER TAKEN
2016654: 01 00 00 00 nop
ts->insert_chain = NULL;
2016658: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
201665c: 7f ff e3 94 call 200f4ac <sparc_enable_interrupts>
2016660: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016664: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016668: 80 a0 40 1a cmp %g1, %i2
201666c: 12 80 00 06 bne 2016684 <_Timer_server_Body+0x124>
2016670: 01 00 00 00 nop
2016674: 30 80 00 18 b,a 20166d4 <_Timer_server_Body+0x174>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016678: 7f ff e3 8d call 200f4ac <sparc_enable_interrupts> <== NOT EXECUTED
201667c: 01 00 00 00 nop <== NOT EXECUTED
2016680: 30 bf ff ca b,a 20165a8 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016684: 7f ff e3 86 call 200f49c <sparc_disable_interrupts>
2016688: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201668c: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016690: 80 a7 40 1a cmp %i5, %i2
2016694: 02 80 00 0d be 20166c8 <_Timer_server_Body+0x168>
2016698: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
201669c: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
20166a0: f6 20 60 04 st %i3, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
20166a4: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
20166a8: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
20166ac: 7f ff e3 80 call 200f4ac <sparc_enable_interrupts>
20166b0: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20166b4: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
20166b8: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
20166bc: 9f c0 40 00 call %g1
20166c0: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
}
20166c4: 30 bf ff f0 b,a 2016684 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
20166c8: 7f ff e3 79 call 200f4ac <sparc_enable_interrupts>
20166cc: 01 00 00 00 nop
20166d0: 30 bf ff b4 b,a 20165a0 <_Timer_server_Body+0x40>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
20166d4: c0 2e 20 7c clrb [ %i0 + 0x7c ]
20166d8: 03 00 80 ee sethi %hi(0x203b800), %g1
20166dc: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 203b870 <_Thread_Dispatch_disable_level>
20166e0: 84 00 a0 01 inc %g2
20166e4: c4 20 60 70 st %g2, [ %g1 + 0x70 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
20166e8: d0 06 00 00 ld [ %i0 ], %o0
20166ec: 40 00 0f 5a call 201a454 <_Thread_Set_state>
20166f0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
20166f4: 7f ff ff 73 call 20164c0 <_Timer_server_Reset_interval_system_watchdog>
20166f8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
20166fc: 7f ff ff 85 call 2016510 <_Timer_server_Reset_tod_system_watchdog>
2016700: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016704: 40 00 0d 13 call 2019b50 <_Thread_Enable_dispatch>
2016708: 01 00 00 00 nop
ts->active = true;
201670c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016710: 90 10 00 11 mov %l1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016714: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016718: 40 00 11 95 call 201ad6c <_Watchdog_Remove>
201671c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016720: 40 00 11 93 call 201ad6c <_Watchdog_Remove>
2016724: 90 10 00 10 mov %l0, %o0
2016728: 30 bf ff 9e b,a 20165a0 <_Timer_server_Body+0x40>
0201672c <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
201672c: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016730: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016734: 80 a0 60 00 cmp %g1, 0
2016738: 12 80 00 4b bne 2016864 <_Timer_server_Schedule_operation_method+0x138>
201673c: ba 10 00 19 mov %i1, %i5
2016740: 03 00 80 ee sethi %hi(0x203b800), %g1
2016744: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 203b870 <_Thread_Dispatch_disable_level>
2016748: 84 00 a0 01 inc %g2
201674c: c4 20 60 70 st %g2, [ %g1 + 0x70 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016750: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016754: 80 a0 60 01 cmp %g1, 1
2016758: 12 80 00 1f bne 20167d4 <_Timer_server_Schedule_operation_method+0xa8>
201675c: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016760: 7f ff e3 4f call 200f49c <sparc_disable_interrupts>
2016764: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016768: 03 00 80 ee sethi %hi(0x203b800), %g1
201676c: c4 00 61 84 ld [ %g1 + 0x184 ], %g2 ! 203b984 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2016770: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016774: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016778: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
201677c: 80 a0 40 03 cmp %g1, %g3
2016780: 02 80 00 08 be 20167a0 <_Timer_server_Schedule_operation_method+0x74>
2016784: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016788: de 00 60 10 ld [ %g1 + 0x10 ], %o7
if (delta_interval > delta) {
201678c: 80 a3 c0 04 cmp %o7, %g4
2016790: 08 80 00 03 bleu 201679c <_Timer_server_Schedule_operation_method+0x70>
2016794: 86 10 20 00 clr %g3
delta_interval -= delta;
2016798: 86 23 c0 04 sub %o7, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
201679c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
20167a0: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
20167a4: 7f ff e3 42 call 200f4ac <sparc_enable_interrupts>
20167a8: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
20167ac: 90 06 20 30 add %i0, 0x30, %o0
20167b0: 40 00 11 14 call 201ac00 <_Watchdog_Insert>
20167b4: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20167b8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20167bc: 80 a0 60 00 cmp %g1, 0
20167c0: 12 80 00 27 bne 201685c <_Timer_server_Schedule_operation_method+0x130>
20167c4: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
20167c8: 7f ff ff 3e call 20164c0 <_Timer_server_Reset_interval_system_watchdog>
20167cc: 90 10 00 18 mov %i0, %o0
20167d0: 30 80 00 23 b,a 201685c <_Timer_server_Schedule_operation_method+0x130>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20167d4: 12 80 00 22 bne 201685c <_Timer_server_Schedule_operation_method+0x130>
20167d8: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
20167dc: 7f ff e3 30 call 200f49c <sparc_disable_interrupts>
20167e0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20167e4: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
20167e8: de 06 20 74 ld [ %i0 + 0x74 ], %o7
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20167ec: 03 00 80 ee sethi %hi(0x203b800), %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20167f0: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
20167f4: 80 a0 80 03 cmp %g2, %g3
20167f8: 02 80 00 0d be 201682c <_Timer_server_Schedule_operation_method+0x100>
20167fc: c2 00 60 fc ld [ %g1 + 0xfc ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016800: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016804: 80 a0 40 0f cmp %g1, %o7
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016808: 86 01 00 0f add %g4, %o7, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
201680c: 08 80 00 07 bleu 2016828 <_Timer_server_Schedule_operation_method+0xfc>
2016810: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016814: 9e 20 40 0f sub %g1, %o7, %o7
if (delta_interval > delta) {
2016818: 80 a1 00 0f cmp %g4, %o7
201681c: 08 80 00 03 bleu 2016828 <_Timer_server_Schedule_operation_method+0xfc><== NEVER TAKEN
2016820: 86 10 20 00 clr %g3
delta_interval -= delta;
2016824: 86 21 00 0f sub %g4, %o7, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016828: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
201682c: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016830: 7f ff e3 1f call 200f4ac <sparc_enable_interrupts>
2016834: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016838: 90 06 20 68 add %i0, 0x68, %o0
201683c: 40 00 10 f1 call 201ac00 <_Watchdog_Insert>
2016840: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2016844: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016848: 80 a0 60 00 cmp %g1, 0
201684c: 12 80 00 04 bne 201685c <_Timer_server_Schedule_operation_method+0x130>
2016850: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016854: 7f ff ff 2f call 2016510 <_Timer_server_Reset_tod_system_watchdog>
2016858: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
201685c: 40 00 0c bd call 2019b50 <_Thread_Enable_dispatch>
2016860: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016864: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016868: 40 00 02 10 call 20170a8 <_Chain_Append>
201686c: 81 e8 00 00 restore
0200905c <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
200905c: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009060: 03 00 80 4f sethi %hi(0x2013c00), %g1
2009064: 82 10 60 2c or %g1, 0x2c, %g1 ! 2013c2c <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009068: 05 00 80 52 sethi %hi(0x2014800), %g2
initial_extensions = Configuration.User_extension_table;
200906c: f4 00 60 3c ld [ %g1 + 0x3c ], %i2
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009070: f6 00 60 38 ld [ %g1 + 0x38 ], %i3
2009074: 82 10 a2 c8 or %g2, 0x2c8, %g1
2009078: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200907c: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009080: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009084: c6 20 a2 c8 st %g3, [ %g2 + 0x2c8 ]
2009088: 05 00 80 52 sethi %hi(0x2014800), %g2
200908c: 82 10 a0 e4 or %g2, 0xe4, %g1 ! 20148e4 <_User_extensions_Switches_list>
2009090: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
2009094: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009098: c6 20 a0 e4 st %g3, [ %g2 + 0xe4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200909c: 80 a6 a0 00 cmp %i2, 0
20090a0: 02 80 00 1b be 200910c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
20090a4: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
20090a8: 83 2e e0 02 sll %i3, 2, %g1
20090ac: bb 2e e0 04 sll %i3, 4, %i5
20090b0: ba 27 40 01 sub %i5, %g1, %i5
20090b4: ba 07 40 1b add %i5, %i3, %i5
20090b8: bb 2f 60 02 sll %i5, 2, %i5
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
20090bc: 40 00 01 67 call 2009658 <_Workspace_Allocate_or_fatal_error>
20090c0: 90 10 00 1d mov %i5, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
20090c4: 94 10 00 1d mov %i5, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
20090c8: b8 10 00 08 mov %o0, %i4
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
20090cc: 92 10 20 00 clr %o1
20090d0: 40 00 13 42 call 200ddd8 <memset>
20090d4: ba 10 20 00 clr %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
20090d8: 10 80 00 0b b 2009104 <_User_extensions_Handler_initialization+0xa8>
20090dc: 80 a7 40 1b cmp %i5, %i3
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
20090e0: 90 07 20 14 add %i4, 0x14, %o0
20090e4: 92 06 80 09 add %i2, %o1, %o1
20090e8: 40 00 13 00 call 200dce8 <memcpy>
20090ec: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
20090f0: 90 10 00 1c mov %i4, %o0
20090f4: 40 00 0a f5 call 200bcc8 <_User_extensions_Add_set>
20090f8: ba 07 60 01 inc %i5
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
20090fc: b8 07 20 34 add %i4, 0x34, %i4
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009100: 80 a7 40 1b cmp %i5, %i3
2009104: 12 bf ff f7 bne 20090e0 <_User_extensions_Handler_initialization+0x84>
2009108: 93 2f 60 05 sll %i5, 5, %o1
200910c: 81 c7 e0 08 ret
2009110: 81 e8 00 00 restore
0200b2a4 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b2a4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b2a8: 7f ff df 14 call 2002ef8 <sparc_disable_interrupts>
200b2ac: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b2b0: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b2b4: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b2b8: 80 a0 40 1c cmp %g1, %i4
200b2bc: 02 80 00 1f be 200b338 <_Watchdog_Adjust+0x94>
200b2c0: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b2c4: 02 80 00 1a be 200b32c <_Watchdog_Adjust+0x88>
200b2c8: b6 10 20 01 mov 1, %i3
200b2cc: 80 a6 60 01 cmp %i1, 1
200b2d0: 12 80 00 1a bne 200b338 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b2d4: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b2d8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b2dc: 10 80 00 07 b 200b2f8 <_Watchdog_Adjust+0x54>
200b2e0: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b2e4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b2e8: 80 a6 80 02 cmp %i2, %g2
200b2ec: 3a 80 00 05 bcc,a 200b300 <_Watchdog_Adjust+0x5c>
200b2f0: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b2f4: b4 20 80 1a sub %g2, %i2, %i2
break;
200b2f8: 10 80 00 10 b 200b338 <_Watchdog_Adjust+0x94>
200b2fc: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
200b300: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b304: 7f ff df 01 call 2002f08 <sparc_enable_interrupts>
200b308: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b30c: 40 00 00 91 call 200b550 <_Watchdog_Tickle>
200b310: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200b314: 7f ff de f9 call 2002ef8 <sparc_disable_interrupts>
200b318: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b31c: c2 07 40 00 ld [ %i5 ], %g1
200b320: 80 a0 40 1c cmp %g1, %i4
200b324: 02 80 00 05 be 200b338 <_Watchdog_Adjust+0x94>
200b328: 01 00 00 00 nop
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b32c: 80 a6 a0 00 cmp %i2, 0
200b330: 32 bf ff ed bne,a 200b2e4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b334: c2 07 40 00 ld [ %i5 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b338: 7f ff de f4 call 2002f08 <sparc_enable_interrupts>
200b33c: 91 e8 00 08 restore %g0, %o0, %o0
02009478 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009478: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200947c: 7f ff e2 91 call 2001ec0 <sparc_disable_interrupts>
2009480: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
2009484: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009488: 80 a6 20 01 cmp %i0, 1
200948c: 22 80 00 1d be,a 2009500 <_Watchdog_Remove+0x88>
2009490: c0 27 60 08 clr [ %i5 + 8 ]
2009494: 0a 80 00 1c bcs 2009504 <_Watchdog_Remove+0x8c>
2009498: 03 00 80 52 sethi %hi(0x2014800), %g1
200949c: 80 a6 20 03 cmp %i0, 3
20094a0: 18 80 00 19 bgu 2009504 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
20094a4: 01 00 00 00 nop
20094a8: c2 07 40 00 ld [ %i5 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
20094ac: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
20094b0: c4 00 40 00 ld [ %g1 ], %g2
20094b4: 80 a0 a0 00 cmp %g2, 0
20094b8: 02 80 00 07 be 20094d4 <_Watchdog_Remove+0x5c>
20094bc: 05 00 80 52 sethi %hi(0x2014800), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
20094c0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20094c4: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
20094c8: 84 00 c0 02 add %g3, %g2, %g2
20094cc: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
20094d0: 05 00 80 52 sethi %hi(0x2014800), %g2
20094d4: c4 00 a1 f0 ld [ %g2 + 0x1f0 ], %g2 ! 20149f0 <_Watchdog_Sync_count>
20094d8: 80 a0 a0 00 cmp %g2, 0
20094dc: 22 80 00 07 be,a 20094f8 <_Watchdog_Remove+0x80>
20094e0: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
20094e4: 05 00 80 52 sethi %hi(0x2014800), %g2
20094e8: c6 00 a3 14 ld [ %g2 + 0x314 ], %g3 ! 2014b14 <_Per_CPU_Information+0x8>
20094ec: 05 00 80 52 sethi %hi(0x2014800), %g2
20094f0: c6 20 a1 88 st %g3, [ %g2 + 0x188 ] ! 2014988 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
20094f4: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
20094f8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
20094fc: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009500: 03 00 80 52 sethi %hi(0x2014800), %g1
2009504: c2 00 61 f4 ld [ %g1 + 0x1f4 ], %g1 ! 20149f4 <_Watchdog_Ticks_since_boot>
2009508: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
200950c: 7f ff e2 71 call 2001ed0 <sparc_enable_interrupts>
2009510: 01 00 00 00 nop
return( previous_state );
}
2009514: 81 c7 e0 08 ret
2009518: 81 e8 00 00 restore
0200aaac <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200aaac: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200aab0: 7f ff df e6 call 2002a48 <sparc_disable_interrupts>
200aab4: ba 10 00 18 mov %i0, %i5
200aab8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200aabc: 11 00 80 6c sethi %hi(0x201b000), %o0
200aac0: 94 10 00 19 mov %i1, %o2
200aac4: 90 12 21 a8 or %o0, 0x1a8, %o0
200aac8: 7f ff e6 89 call 20044ec <printk>
200aacc: 92 10 00 1d mov %i5, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200aad0: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200aad4: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200aad8: 80 a7 00 19 cmp %i4, %i1
200aadc: 12 80 00 04 bne 200aaec <_Watchdog_Report_chain+0x40>
200aae0: 92 10 00 1c mov %i4, %o1
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200aae4: 10 80 00 0d b 200ab18 <_Watchdog_Report_chain+0x6c>
200aae8: 11 00 80 6c sethi %hi(0x201b000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200aaec: 40 00 00 0f call 200ab28 <_Watchdog_Report>
200aaf0: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200aaf4: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200aaf8: 80 a7 00 19 cmp %i4, %i1
200aafc: 12 bf ff fc bne 200aaec <_Watchdog_Report_chain+0x40> <== NEVER TAKEN
200ab00: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200ab04: 11 00 80 6c sethi %hi(0x201b000), %o0
200ab08: 92 10 00 1d mov %i5, %o1
200ab0c: 7f ff e6 78 call 20044ec <printk>
200ab10: 90 12 21 c0 or %o0, 0x1c0, %o0
200ab14: 30 80 00 03 b,a 200ab20 <_Watchdog_Report_chain+0x74>
} else {
printk( "Chain is empty\n" );
200ab18: 7f ff e6 75 call 20044ec <printk>
200ab1c: 90 12 21 d0 or %o0, 0x1d0, %o0
}
_ISR_Enable( level );
200ab20: 7f ff df ce call 2002a58 <sparc_enable_interrupts>
200ab24: 81 e8 00 00 restore
02006ca4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006ca4: 9d e3 bf 98 save %sp, -104, %sp
2006ca8: 10 80 00 09 b 2006ccc <rtems_chain_get_with_wait+0x28>
2006cac: ba 10 00 18 mov %i0, %i5
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006cb0: 92 10 20 00 clr %o1
2006cb4: 94 10 00 1a mov %i2, %o2
2006cb8: 7f ff fd 07 call 20060d4 <rtems_event_receive>
2006cbc: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006cc0: 80 a2 20 00 cmp %o0, 0
2006cc4: 32 80 00 09 bne,a 2006ce8 <rtems_chain_get_with_wait+0x44><== ALWAYS TAKEN
2006cc8: f8 26 c0 00 st %i4, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006ccc: 40 00 01 5d call 2007240 <_Chain_Get>
2006cd0: 90 10 00 1d mov %i5, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006cd4: b8 92 20 00 orcc %o0, 0, %i4
2006cd8: 02 bf ff f6 be 2006cb0 <rtems_chain_get_with_wait+0xc>
2006cdc: 90 10 00 19 mov %i1, %o0
2006ce0: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006ce4: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
2006ce8: 81 c7 e0 08 ret
2006cec: 91 e8 00 08 restore %g0, %o0, %o0
02008e90 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2008e90: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2008e94: 80 a6 20 00 cmp %i0, 0
2008e98: 02 80 00 1e be 2008f10 <rtems_iterate_over_all_threads+0x80><== NEVER TAKEN
2008e9c: ba 10 20 01 mov 1, %i5
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2008ea0: 35 00 80 76 sethi %hi(0x201d800), %i2
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2008ea4: 83 2f 60 02 sll %i5, 2, %g1
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2008ea8: 84 16 a3 d8 or %i2, 0x3d8, %g2
2008eac: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2008eb0: 80 a0 60 00 cmp %g1, 0
2008eb4: 22 80 00 14 be,a 2008f04 <rtems_iterate_over_all_threads+0x74>
2008eb8: ba 07 60 01 inc %i5
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2008ebc: f6 00 60 04 ld [ %g1 + 4 ], %i3
if ( !information )
2008ec0: 80 a6 e0 00 cmp %i3, 0
2008ec4: 12 80 00 0b bne 2008ef0 <rtems_iterate_over_all_threads+0x60>
2008ec8: b8 10 20 01 mov 1, %i4
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2008ecc: 10 80 00 0e b 2008f04 <rtems_iterate_over_all_threads+0x74>
2008ed0: ba 07 60 01 inc %i5
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
the_thread = (Thread_Control *)information->local_table[ i ];
2008ed4: 83 2f 20 02 sll %i4, 2, %g1
2008ed8: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2008edc: 80 a2 20 00 cmp %o0, 0
2008ee0: 02 80 00 04 be 2008ef0 <rtems_iterate_over_all_threads+0x60>
2008ee4: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
2008ee8: 9f c6 00 00 call %i0
2008eec: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2008ef0: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
2008ef4: 80 a7 00 01 cmp %i4, %g1
2008ef8: 28 bf ff f7 bleu,a 2008ed4 <rtems_iterate_over_all_threads+0x44>
2008efc: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2008f00: ba 07 60 01 inc %i5
2008f04: 80 a7 60 04 cmp %i5, 4
2008f08: 12 bf ff e8 bne 2008ea8 <rtems_iterate_over_all_threads+0x18>
2008f0c: 83 2f 60 02 sll %i5, 2, %g1
2008f10: 81 c7 e0 08 ret
2008f14: 81 e8 00 00 restore
02013f80 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2013f80: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2013f84: 80 a6 20 00 cmp %i0, 0
2013f88: 02 80 00 38 be 2014068 <rtems_partition_create+0xe8>
2013f8c: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
2013f90: 80 a6 60 00 cmp %i1, 0
2013f94: 02 80 00 35 be 2014068 <rtems_partition_create+0xe8>
2013f98: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2013f9c: 80 a7 60 00 cmp %i5, 0
2013fa0: 02 80 00 32 be 2014068 <rtems_partition_create+0xe8> <== NEVER TAKEN
2013fa4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2013fa8: 02 80 00 30 be 2014068 <rtems_partition_create+0xe8>
2013fac: 82 10 20 08 mov 8, %g1
2013fb0: 80 a6 a0 00 cmp %i2, 0
2013fb4: 02 80 00 2d be 2014068 <rtems_partition_create+0xe8>
2013fb8: 80 a6 80 1b cmp %i2, %i3
2013fbc: 0a 80 00 2b bcs 2014068 <rtems_partition_create+0xe8>
2013fc0: 80 8e e0 07 btst 7, %i3
2013fc4: 12 80 00 29 bne 2014068 <rtems_partition_create+0xe8>
2013fc8: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2013fcc: 12 80 00 27 bne 2014068 <rtems_partition_create+0xe8>
2013fd0: 82 10 20 09 mov 9, %g1
2013fd4: 03 00 80 ee sethi %hi(0x203b800), %g1
2013fd8: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 203b870 <_Thread_Dispatch_disable_level>
2013fdc: 84 00 a0 01 inc %g2
2013fe0: c4 20 60 70 st %g2, [ %g1 + 0x70 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2013fe4: 23 00 80 ed sethi %hi(0x203b400), %l1
2013fe8: 40 00 12 19 call 201884c <_Objects_Allocate>
2013fec: 90 14 62 84 or %l1, 0x284, %o0 ! 203b684 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2013ff0: a0 92 20 00 orcc %o0, 0, %l0
2013ff4: 32 80 00 06 bne,a 201400c <rtems_partition_create+0x8c>
2013ff8: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2013ffc: 40 00 16 d5 call 2019b50 <_Thread_Enable_dispatch>
2014000: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2014004: 10 80 00 19 b 2014068 <rtems_partition_create+0xe8>
2014008: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
201400c: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014010: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2014014: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014018: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
201401c: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014020: 40 00 5e 45 call 202b934 <.udiv>
2014024: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014028: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
201402c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014030: 96 10 00 1b mov %i3, %o3
2014034: b8 04 20 24 add %l0, 0x24, %i4
2014038: 40 00 0c 3f call 2017134 <_Chain_Initialize>
201403c: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014040: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014044: a2 14 62 84 or %l1, 0x284, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014048: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
201404c: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014050: 85 28 a0 02 sll %g2, 2, %g2
2014054: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014058: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
201405c: 40 00 16 bd call 2019b50 <_Thread_Enable_dispatch>
2014060: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2014064: 82 10 20 00 clr %g1
}
2014068: 81 c7 e0 08 ret
201406c: 91 e8 00 01 restore %g0, %g1, %o0
0200714c <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
200714c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
2007150: 11 00 80 73 sethi %hi(0x201cc00), %o0
2007154: 92 10 00 18 mov %i0, %o1
2007158: 90 12 22 84 or %o0, 0x284, %o0
200715c: 40 00 08 c9 call 2009480 <_Objects_Get>
2007160: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007164: c2 07 bf fc ld [ %fp + -4 ], %g1
2007168: 80 a0 60 00 cmp %g1, 0
200716c: 12 80 00 65 bne 2007300 <rtems_rate_monotonic_period+0x1b4>
2007170: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007174: 37 00 80 74 sethi %hi(0x201d000), %i3
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007178: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
200717c: b6 16 e2 1c or %i3, 0x21c, %i3
2007180: c2 06 e0 0c ld [ %i3 + 0xc ], %g1
2007184: 80 a0 80 01 cmp %g2, %g1
2007188: 02 80 00 06 be 20071a0 <rtems_rate_monotonic_period+0x54>
200718c: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007190: 40 00 0c 32 call 200a258 <_Thread_Enable_dispatch>
2007194: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007198: 81 c7 e0 08 ret
200719c: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
20071a0: 12 80 00 0d bne 20071d4 <rtems_rate_monotonic_period+0x88>
20071a4: 01 00 00 00 nop
switch ( the_period->state ) {
20071a8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20071ac: 80 a0 60 04 cmp %g1, 4
20071b0: 18 80 00 05 bgu 20071c4 <rtems_rate_monotonic_period+0x78><== NEVER TAKEN
20071b4: b0 10 20 00 clr %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20071b8: 05 00 80 6b sethi %hi(0x201ac00), %g2
20071bc: 84 10 a2 e0 or %g2, 0x2e0, %g2 ! 201aee0 <CSWTCH.2>
20071c0: f0 08 80 01 ldub [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20071c4: 40 00 0c 25 call 200a258 <_Thread_Enable_dispatch>
20071c8: 01 00 00 00 nop
return( return_value );
20071cc: 81 c7 e0 08 ret
20071d0: 81 e8 00 00 restore
}
_ISR_Disable( level );
20071d4: 7f ff ef 00 call 2002dd4 <sparc_disable_interrupts>
20071d8: 01 00 00 00 nop
20071dc: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
20071e0: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
20071e4: 80 a7 20 00 cmp %i4, 0
20071e8: 12 80 00 15 bne 200723c <rtems_rate_monotonic_period+0xf0>
20071ec: 80 a7 20 02 cmp %i4, 2
_ISR_Enable( level );
20071f0: 7f ff ee fd call 2002de4 <sparc_enable_interrupts>
20071f4: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20071f8: 7f ff ff 7f call 2006ff4 <_Rate_monotonic_Initiate_statistics>
20071fc: 90 10 00 1d mov %i5, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007200: 82 10 20 02 mov 2, %g1
2007204: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007208: 03 00 80 1d sethi %hi(0x2007400), %g1
200720c: 82 10 61 b8 or %g1, 0x1b8, %g1 ! 20075b8 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007210: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
2007214: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
2007218: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
200721c: c0 27 60 34 clr [ %i5 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007220: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007224: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007228: 11 00 80 74 sethi %hi(0x201d000), %o0
200722c: 92 07 60 10 add %i5, 0x10, %o1
2007230: 40 00 0f e8 call 200b1d0 <_Watchdog_Insert>
2007234: 90 12 20 b4 or %o0, 0xb4, %o0
2007238: 30 80 00 1b b,a 20072a4 <rtems_rate_monotonic_period+0x158>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
200723c: 12 80 00 1e bne 20072b4 <rtems_rate_monotonic_period+0x168>
2007240: 80 a7 20 04 cmp %i4, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007244: 7f ff ff 86 call 200705c <_Rate_monotonic_Update_statistics>
2007248: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
200724c: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007250: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007254: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007258: 7f ff ee e3 call 2002de4 <sparc_enable_interrupts>
200725c: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007260: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
2007264: c2 07 60 08 ld [ %i5 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007268: 13 00 00 10 sethi %hi(0x4000), %o1
200726c: 40 00 0e 19 call 200aad0 <_Thread_Set_state>
2007270: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007274: 7f ff ee d8 call 2002dd4 <sparc_disable_interrupts>
2007278: 01 00 00 00 nop
local_state = the_period->state;
200727c: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
2007280: f8 27 60 38 st %i4, [ %i5 + 0x38 ]
_ISR_Enable( level );
2007284: 7f ff ee d8 call 2002de4 <sparc_enable_interrupts>
2007288: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
200728c: 80 a6 a0 03 cmp %i2, 3
2007290: 12 80 00 05 bne 20072a4 <rtems_rate_monotonic_period+0x158>
2007294: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007298: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
200729c: 40 00 0b 17 call 2009ef8 <_Thread_Clear_state>
20072a0: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
20072a4: 40 00 0b ed call 200a258 <_Thread_Enable_dispatch>
20072a8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20072ac: 81 c7 e0 08 ret
20072b0: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20072b4: 12 bf ff b9 bne 2007198 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20072b8: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20072bc: 7f ff ff 68 call 200705c <_Rate_monotonic_Update_statistics>
20072c0: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20072c4: 7f ff ee c8 call 2002de4 <sparc_enable_interrupts>
20072c8: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20072cc: 82 10 20 02 mov 2, %g1
20072d0: 92 07 60 10 add %i5, 0x10, %o1
20072d4: 11 00 80 74 sethi %hi(0x201d000), %o0
20072d8: 90 12 20 b4 or %o0, 0xb4, %o0 ! 201d0b4 <_Watchdog_Ticks_chain>
20072dc: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
20072e0: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20072e4: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20072e8: 40 00 0f ba call 200b1d0 <_Watchdog_Insert>
20072ec: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20072f0: 40 00 0b da call 200a258 <_Thread_Enable_dispatch>
20072f4: 01 00 00 00 nop
return RTEMS_TIMEOUT;
20072f8: 81 c7 e0 08 ret
20072fc: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2007300: b0 10 20 04 mov 4, %i0
}
2007304: 81 c7 e0 08 ret
2007308: 81 e8 00 00 restore
0200730c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
200730c: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007310: 80 a6 60 00 cmp %i1, 0
2007314: 02 80 00 75 be 20074e8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc><== NEVER TAKEN
2007318: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
200731c: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007320: 9f c6 40 00 call %i1
2007324: 92 12 62 e8 or %o1, 0x2e8, %o1 ! 201aee8 <CSWTCH.2+0x8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007328: 90 10 00 18 mov %i0, %o0
200732c: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007330: 9f c6 40 00 call %i1
2007334: 92 12 63 08 or %o1, 0x308, %o1 ! 201af08 <CSWTCH.2+0x28>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007338: 90 10 00 18 mov %i0, %o0
200733c: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007340: 9f c6 40 00 call %i1
2007344: 92 12 63 30 or %o1, 0x330, %o1 ! 201af30 <CSWTCH.2+0x50>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007348: 90 10 00 18 mov %i0, %o0
200734c: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007350: 9f c6 40 00 call %i1
2007354: 92 12 63 58 or %o1, 0x358, %o1 ! 201af58 <CSWTCH.2+0x78>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007358: 90 10 00 18 mov %i0, %o0
200735c: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007360: 9f c6 40 00 call %i1
2007364: 92 12 63 a8 or %o1, 0x3a8, %o1 ! 201afa8 <CSWTCH.2+0xc8>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007368: 03 00 80 73 sethi %hi(0x201cc00), %g1
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200736c: 21 00 80 6b sethi %hi(0x201ac00), %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007370: 35 00 80 6c sethi %hi(0x201b000), %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007374: 37 00 80 6c sethi %hi(0x201b000), %i3
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007378: 39 00 80 68 sethi %hi(0x201a000), %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
200737c: fa 00 62 8c ld [ %g1 + 0x28c ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007380: a0 14 23 f8 or %l0, 0x3f8, %l0
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007384: b4 16 a0 10 or %i2, 0x10, %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007388: b6 16 e0 30 or %i3, 0x30, %i3
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
200738c: 10 80 00 52 b 20074d4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
2007390: b8 17 21 f8 or %i4, 0x1f8, %i4
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007394: 40 00 17 0c call 200cfc4 <rtems_rate_monotonic_get_statistics>
2007398: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
200739c: 80 a2 20 00 cmp %o0, 0
20073a0: 32 80 00 4d bne,a 20074d4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20073a4: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
20073a8: 92 07 bf d8 add %fp, -40, %o1
20073ac: 40 00 17 33 call 200d078 <rtems_rate_monotonic_get_status>
20073b0: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20073b4: d0 07 bf d8 ld [ %fp + -40 ], %o0
20073b8: 92 10 20 05 mov 5, %o1
20073bc: 40 00 00 ad call 2007670 <rtems_object_get_name>
20073c0: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20073c4: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20073c8: 92 10 00 10 mov %l0, %o1
20073cc: 90 10 00 18 mov %i0, %o0
20073d0: 94 10 00 1d mov %i5, %o2
20073d4: 9f c6 40 00 call %i1
20073d8: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20073dc: d2 07 bf a0 ld [ %fp + -96 ], %o1
20073e0: 80 a2 60 00 cmp %o1, 0
20073e4: 12 80 00 07 bne 2007400 <rtems_rate_monotonic_report_statistics_with_plugin+0xf4>
20073e8: 94 07 bf f0 add %fp, -16, %o2
(*print)( context, "\n" );
20073ec: 90 10 00 18 mov %i0, %o0
20073f0: 9f c6 40 00 call %i1
20073f4: 92 10 00 1c mov %i4, %o1
continue;
20073f8: 10 80 00 37 b 20074d4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1c8>
20073fc: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007400: 40 00 0e 55 call 200ad54 <_Timespec_Divide_by_integer>
2007404: 90 07 bf b8 add %fp, -72, %o0
(*print)( context,
2007408: d0 07 bf ac ld [ %fp + -84 ], %o0
200740c: 40 00 43 4d call 2018140 <.div>
2007410: 92 10 23 e8 mov 0x3e8, %o1
2007414: a6 10 00 08 mov %o0, %l3
2007418: d0 07 bf b4 ld [ %fp + -76 ], %o0
200741c: 40 00 43 49 call 2018140 <.div>
2007420: 92 10 23 e8 mov 0x3e8, %o1
2007424: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007428: a2 10 00 08 mov %o0, %l1
200742c: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007430: e8 07 bf a8 ld [ %fp + -88 ], %l4
2007434: e4 07 bf b0 ld [ %fp + -80 ], %l2
2007438: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200743c: 40 00 43 41 call 2018140 <.div>
2007440: 92 10 23 e8 mov 0x3e8, %o1
2007444: 96 10 00 13 mov %l3, %o3
2007448: 98 10 00 12 mov %l2, %o4
200744c: 9a 10 00 11 mov %l1, %o5
2007450: 94 10 00 14 mov %l4, %o2
2007454: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007458: 92 10 00 1a mov %i2, %o1
200745c: 9f c6 40 00 call %i1
2007460: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007464: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007468: 94 07 bf f0 add %fp, -16, %o2
200746c: 40 00 0e 3a call 200ad54 <_Timespec_Divide_by_integer>
2007470: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
2007474: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007478: 40 00 43 32 call 2018140 <.div>
200747c: 92 10 23 e8 mov 0x3e8, %o1
2007480: a6 10 00 08 mov %o0, %l3
2007484: d0 07 bf cc ld [ %fp + -52 ], %o0
2007488: 40 00 43 2e call 2018140 <.div>
200748c: 92 10 23 e8 mov 0x3e8, %o1
2007490: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007494: a2 10 00 08 mov %o0, %l1
2007498: d0 07 bf f4 ld [ %fp + -12 ], %o0
200749c: e8 07 bf c0 ld [ %fp + -64 ], %l4
20074a0: e4 07 bf c8 ld [ %fp + -56 ], %l2
20074a4: 92 10 23 e8 mov 0x3e8, %o1
20074a8: 40 00 43 26 call 2018140 <.div>
20074ac: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20074b0: 92 10 00 1b mov %i3, %o1
20074b4: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20074b8: 94 10 00 14 mov %l4, %o2
20074bc: 90 10 00 18 mov %i0, %o0
20074c0: 96 10 00 13 mov %l3, %o3
20074c4: 98 10 00 12 mov %l2, %o4
20074c8: 9f c6 40 00 call %i1
20074cc: 9a 10 00 11 mov %l1, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20074d0: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
20074d4: 03 00 80 73 sethi %hi(0x201cc00), %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20074d8: c2 00 62 90 ld [ %g1 + 0x290 ], %g1 ! 201ce90 <_Rate_monotonic_Information+0xc>
20074dc: 80 a7 40 01 cmp %i5, %g1
20074e0: 08 bf ff ad bleu 2007394 <rtems_rate_monotonic_report_statistics_with_plugin+0x88>
20074e4: 90 10 00 1d mov %i5, %o0
20074e8: 81 c7 e0 08 ret
20074ec: 81 e8 00 00 restore
020154d8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20154d8: 9d e3 bf 98 save %sp, -104, %sp
20154dc: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20154e0: 80 a6 60 00 cmp %i1, 0
20154e4: 02 80 00 2e be 201559c <rtems_signal_send+0xc4>
20154e8: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20154ec: 40 00 11 a5 call 2019b80 <_Thread_Get>
20154f0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20154f4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20154f8: b8 10 00 08 mov %o0, %i4
switch ( location ) {
20154fc: 80 a0 60 00 cmp %g1, 0
2015500: 12 80 00 27 bne 201559c <rtems_signal_send+0xc4>
2015504: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2015508: fa 02 21 58 ld [ %o0 + 0x158 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
201550c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2015510: 80 a0 60 00 cmp %g1, 0
2015514: 02 80 00 24 be 20155a4 <rtems_signal_send+0xcc>
2015518: 01 00 00 00 nop
if ( asr->is_enabled ) {
201551c: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2015520: 80 a0 60 00 cmp %g1, 0
2015524: 02 80 00 15 be 2015578 <rtems_signal_send+0xa0>
2015528: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201552c: 7f ff e7 dc call 200f49c <sparc_disable_interrupts>
2015530: 01 00 00 00 nop
*signal_set |= signals;
2015534: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2015538: b2 10 40 19 or %g1, %i1, %i1
201553c: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2015540: 7f ff e7 db call 200f4ac <sparc_enable_interrupts>
2015544: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2015548: 03 00 80 ee sethi %hi(0x203b800), %g1
201554c: 82 10 62 a4 or %g1, 0x2a4, %g1 ! 203baa4 <_Per_CPU_Information>
2015550: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015554: 80 a0 a0 00 cmp %g2, 0
2015558: 02 80 00 0f be 2015594 <rtems_signal_send+0xbc>
201555c: 01 00 00 00 nop
2015560: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015564: 80 a7 00 02 cmp %i4, %g2
2015568: 12 80 00 0b bne 2015594 <rtems_signal_send+0xbc> <== NEVER TAKEN
201556c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015570: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015574: 30 80 00 08 b,a 2015594 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015578: 7f ff e7 c9 call 200f49c <sparc_disable_interrupts>
201557c: 01 00 00 00 nop
*signal_set |= signals;
2015580: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2015584: b2 10 40 19 or %g1, %i1, %i1
2015588: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
201558c: 7f ff e7 c8 call 200f4ac <sparc_enable_interrupts>
2015590: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015594: 40 00 11 6f call 2019b50 <_Thread_Enable_dispatch>
2015598: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
201559c: 81 c7 e0 08 ret
20155a0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
20155a4: 40 00 11 6b call 2019b50 <_Thread_Enable_dispatch>
20155a8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
20155ac: 81 c7 e0 08 ret
20155b0: 81 e8 00 00 restore
0200cec0 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200cec0: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200cec4: 80 a6 a0 00 cmp %i2, 0
200cec8: 02 80 00 5a be 200d030 <rtems_task_mode+0x170>
200cecc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200ced0: 03 00 80 52 sethi %hi(0x2014800), %g1
200ced4: f8 00 63 18 ld [ %g1 + 0x318 ], %i4 ! 2014b18 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200ced8: c2 0f 20 74 ldub [ %i4 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200cedc: fa 07 21 58 ld [ %i4 + 0x158 ], %i5
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200cee0: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200cee4: c2 07 20 7c ld [ %i4 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200cee8: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200ceec: 80 a0 60 00 cmp %g1, 0
200cef0: 02 80 00 03 be 200cefc <rtems_task_mode+0x3c>
200cef4: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200cef8: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200cefc: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
200cf00: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200cf04: 7f ff f2 78 call 20098e4 <_CPU_ISR_Get_level>
200cf08: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200cf0c: a1 2c 20 0a sll %l0, 0xa, %l0
200cf10: a0 14 00 08 or %l0, %o0, %l0
old_mode |= _ISR_Get_level();
200cf14: b6 14 00 1b or %l0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200cf18: 80 8e 61 00 btst 0x100, %i1
200cf1c: 02 80 00 06 be 200cf34 <rtems_task_mode+0x74>
200cf20: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200cf24: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200cf28: 80 a0 00 01 cmp %g0, %g1
200cf2c: 82 60 3f ff subx %g0, -1, %g1
200cf30: c2 2f 20 74 stb %g1, [ %i4 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200cf34: 80 8e 62 00 btst 0x200, %i1
200cf38: 02 80 00 0b be 200cf64 <rtems_task_mode+0xa4>
200cf3c: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200cf40: 80 8e 22 00 btst 0x200, %i0
200cf44: 22 80 00 07 be,a 200cf60 <rtems_task_mode+0xa0>
200cf48: c0 27 20 7c clr [ %i4 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200cf4c: 82 10 20 01 mov 1, %g1
200cf50: c2 27 20 7c st %g1, [ %i4 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200cf54: 03 00 80 52 sethi %hi(0x2014800), %g1
200cf58: c2 00 60 44 ld [ %g1 + 0x44 ], %g1 ! 2014844 <_Thread_Ticks_per_timeslice>
200cf5c: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200cf60: 80 8e 60 0f btst 0xf, %i1
200cf64: 02 80 00 06 be 200cf7c <rtems_task_mode+0xbc>
200cf68: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200cf6c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200cf70: 7f ff d3 d8 call 2001ed0 <sparc_enable_interrupts>
200cf74: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200cf78: 80 8e 64 00 btst 0x400, %i1
200cf7c: 02 80 00 14 be 200cfcc <rtems_task_mode+0x10c>
200cf80: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200cf84: c4 0f 60 08 ldub [ %i5 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200cf88: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200cf8c: 80 a0 00 18 cmp %g0, %i0
200cf90: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200cf94: 80 a0 40 02 cmp %g1, %g2
200cf98: 22 80 00 0e be,a 200cfd0 <rtems_task_mode+0x110>
200cf9c: 03 00 80 52 sethi %hi(0x2014800), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200cfa0: 7f ff d3 c8 call 2001ec0 <sparc_disable_interrupts>
200cfa4: c2 2f 60 08 stb %g1, [ %i5 + 8 ]
_signals = information->signals_pending;
200cfa8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200cfac: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
information->signals_posted = _signals;
200cfb0: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200cfb4: c4 27 60 18 st %g2, [ %i5 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200cfb8: 7f ff d3 c6 call 2001ed0 <sparc_enable_interrupts>
200cfbc: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200cfc0: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200cfc4: 80 a0 00 01 cmp %g0, %g1
200cfc8: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200cfcc: 03 00 80 52 sethi %hi(0x2014800), %g1
200cfd0: c4 00 62 3c ld [ %g1 + 0x23c ], %g2 ! 2014a3c <_System_state_Current>
200cfd4: 80 a0 a0 03 cmp %g2, 3
200cfd8: 12 80 00 16 bne 200d030 <rtems_task_mode+0x170>
200cfdc: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200cfe0: 07 00 80 52 sethi %hi(0x2014800), %g3
if ( are_signals_pending ||
200cfe4: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200cfe8: 86 10 e3 0c or %g3, 0x30c, %g3
if ( are_signals_pending ||
200cfec: 12 80 00 0a bne 200d014 <rtems_task_mode+0x154>
200cff0: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200cff4: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200cff8: 80 a0 80 03 cmp %g2, %g3
200cffc: 02 80 00 0d be 200d030 <rtems_task_mode+0x170>
200d000: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d004: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d008: 80 a0 a0 00 cmp %g2, 0
200d00c: 02 80 00 09 be 200d030 <rtems_task_mode+0x170> <== NEVER TAKEN
200d010: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d014: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d018: 03 00 80 52 sethi %hi(0x2014800), %g1
200d01c: 82 10 63 0c or %g1, 0x30c, %g1 ! 2014b0c <_Per_CPU_Information>
200d020: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d024: 7f ff ec ed call 20083d8 <_Thread_Dispatch>
200d028: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d02c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d030: 81 c7 e0 08 ret
200d034: 91 e8 00 01 restore %g0, %g1, %o0
0200a9a8 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200a9a8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200a9ac: 80 a6 60 00 cmp %i1, 0
200a9b0: 02 80 00 07 be 200a9cc <rtems_task_set_priority+0x24>
200a9b4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200a9b8: 03 00 80 60 sethi %hi(0x2018000), %g1
200a9bc: c2 08 63 bc ldub [ %g1 + 0x3bc ], %g1 ! 20183bc <rtems_maximum_priority>
200a9c0: 80 a6 40 01 cmp %i1, %g1
200a9c4: 18 80 00 1c bgu 200aa34 <rtems_task_set_priority+0x8c>
200a9c8: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200a9cc: 80 a6 a0 00 cmp %i2, 0
200a9d0: 02 80 00 19 be 200aa34 <rtems_task_set_priority+0x8c>
200a9d4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200a9d8: 40 00 09 19 call 200ce3c <_Thread_Get>
200a9dc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a9e0: c2 07 bf fc ld [ %fp + -4 ], %g1
200a9e4: 80 a0 60 00 cmp %g1, 0
200a9e8: 12 80 00 13 bne 200aa34 <rtems_task_set_priority+0x8c>
200a9ec: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200a9f0: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200a9f4: 80 a6 60 00 cmp %i1, 0
200a9f8: 02 80 00 0d be 200aa2c <rtems_task_set_priority+0x84>
200a9fc: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200aa00: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200aa04: 80 a0 60 00 cmp %g1, 0
200aa08: 02 80 00 06 be 200aa20 <rtems_task_set_priority+0x78>
200aa0c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200aa10: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200aa14: 80 a0 40 19 cmp %g1, %i1
200aa18: 08 80 00 05 bleu 200aa2c <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200aa1c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200aa20: 92 10 00 19 mov %i1, %o1
200aa24: 40 00 07 dd call 200c998 <_Thread_Change_priority>
200aa28: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200aa2c: 40 00 08 f8 call 200ce0c <_Thread_Enable_dispatch>
200aa30: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200aa34: 81 c7 e0 08 ret
200aa38: 81 e8 00 00 restore
02015ed8 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2015ed8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2015edc: 11 00 80 ee sethi %hi(0x203b800), %o0
2015ee0: 92 10 00 18 mov %i0, %o1
2015ee4: 90 12 23 34 or %o0, 0x334, %o0
2015ee8: 40 00 0b a4 call 2018d78 <_Objects_Get>
2015eec: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2015ef0: c2 07 bf fc ld [ %fp + -4 ], %g1
2015ef4: 80 a0 60 00 cmp %g1, 0
2015ef8: 12 80 00 0c bne 2015f28 <rtems_timer_cancel+0x50>
2015efc: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2015f00: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2015f04: 80 a0 60 04 cmp %g1, 4
2015f08: 02 80 00 04 be 2015f18 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2015f0c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2015f10: 40 00 13 97 call 201ad6c <_Watchdog_Remove>
2015f14: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2015f18: 40 00 0f 0e call 2019b50 <_Thread_Enable_dispatch>
2015f1c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2015f20: 81 c7 e0 08 ret
2015f24: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015f28: 81 c7 e0 08 ret
2015f2c: 91 e8 20 04 restore %g0, 4, %o0
020163d0 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20163d0: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
20163d4: 03 00 80 ee sethi %hi(0x203b800), %g1
20163d8: f8 00 63 74 ld [ %g1 + 0x374 ], %i4 ! 203bb74 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20163dc: ba 10 00 18 mov %i0, %i5
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
20163e0: 80 a7 20 00 cmp %i4, 0
20163e4: 02 80 00 32 be 20164ac <rtems_timer_server_fire_when+0xdc>
20163e8: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
20163ec: 03 00 80 ee sethi %hi(0x203b800), %g1
20163f0: c2 08 60 80 ldub [ %g1 + 0x80 ], %g1 ! 203b880 <_TOD_Is_set>
20163f4: 80 a0 60 00 cmp %g1, 0
20163f8: 02 80 00 2d be 20164ac <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
20163fc: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2016400: 80 a6 a0 00 cmp %i2, 0
2016404: 02 80 00 2a be 20164ac <rtems_timer_server_fire_when+0xdc>
2016408: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
201640c: 90 10 00 19 mov %i1, %o0
2016410: 7f ff f4 1d call 2013484 <_TOD_Validate>
2016414: b0 10 20 14 mov 0x14, %i0
2016418: 80 8a 20 ff btst 0xff, %o0
201641c: 02 80 00 27 be 20164b8 <rtems_timer_server_fire_when+0xe8>
2016420: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016424: 7f ff f3 e4 call 20133b4 <_TOD_To_seconds>
2016428: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
201642c: 21 00 80 ee sethi %hi(0x203b800), %l0
2016430: c2 04 20 fc ld [ %l0 + 0xfc ], %g1 ! 203b8fc <_TOD_Now>
2016434: 80 a2 00 01 cmp %o0, %g1
2016438: 08 80 00 1d bleu 20164ac <rtems_timer_server_fire_when+0xdc>
201643c: b2 10 00 08 mov %o0, %i1
2016440: 11 00 80 ee sethi %hi(0x203b800), %o0
2016444: 92 10 00 1d mov %i5, %o1
2016448: 90 12 23 34 or %o0, 0x334, %o0
201644c: 40 00 0a 4b call 2018d78 <_Objects_Get>
2016450: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016454: c2 07 bf fc ld [ %fp + -4 ], %g1
2016458: 80 a0 60 00 cmp %g1, 0
201645c: 12 80 00 16 bne 20164b4 <rtems_timer_server_fire_when+0xe4>
2016460: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016464: 40 00 12 42 call 201ad6c <_Watchdog_Remove>
2016468: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
201646c: 82 10 20 03 mov 3, %g1
2016470: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016474: c2 04 20 fc ld [ %l0 + 0xfc ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016478: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201647c: b2 26 40 01 sub %i1, %g1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016480: c2 07 20 04 ld [ %i4 + 4 ], %g1
2016484: 90 10 00 1c mov %i4, %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2016488: c0 26 20 18 clr [ %i0 + 0x18 ]
the_watchdog->routine = routine;
201648c: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
the_watchdog->id = id;
2016490: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
2016494: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016498: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201649c: 9f c0 40 00 call %g1
20164a0: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
20164a4: 40 00 0d ab call 2019b50 <_Thread_Enable_dispatch>
20164a8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20164ac: 81 c7 e0 08 ret
20164b0: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20164b4: b0 10 20 04 mov 4, %i0
}
20164b8: 81 c7 e0 08 ret
20164bc: 81 e8 00 00 restore