RTEMS 4.11
Annotated Report
Fri Mar 11 15:15:52 2011
0200fca8 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fca8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fcac: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fcb0: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fcb4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fcb8: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fcbc: 80 8e e0 03 btst 3, %i3
200fcc0: 02 80 00 07 be 200fcdc <_CORE_message_queue_Initialize+0x34>
200fcc4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fcc8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fccc: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
200fcd0: 80 a4 80 1b cmp %l2, %i3
200fcd4: 0a 80 00 22 bcs 200fd5c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fcd8: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fcdc: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
200fce0: 92 10 00 1a mov %i2, %o1
200fce4: 90 10 00 11 mov %l1, %o0
200fce8: 40 00 3f 0d call 201f91c <.umul>
200fcec: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
200fcf0: 80 a2 00 12 cmp %o0, %l2
200fcf4: 0a 80 00 1a bcs 200fd5c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fcf8: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fcfc: 40 00 0c 0f call 2012d38 <_Workspace_Allocate>
200fd00: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fd04: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fd08: 80 a2 20 00 cmp %o0, 0
200fd0c: 02 80 00 14 be 200fd5c <_CORE_message_queue_Initialize+0xb4>
200fd10: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fd14: 90 04 20 60 add %l0, 0x60, %o0
200fd18: 94 10 00 1a mov %i2, %o2
200fd1c: 40 00 14 60 call 2014e9c <_Chain_Initialize>
200fd20: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200fd24: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
200fd28: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
200fd2c: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
200fd30: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
200fd34: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
200fd38: c2 06 40 00 ld [ %i1 ], %g1
200fd3c: 90 10 00 10 mov %l0, %o0
200fd40: 82 18 60 01 xor %g1, 1, %g1
200fd44: 80 a0 00 01 cmp %g0, %g1
200fd48: 94 10 20 80 mov 0x80, %o2
200fd4c: 92 60 3f ff subx %g0, -1, %o1
200fd50: 96 10 20 06 mov 6, %o3
200fd54: 40 00 09 7e call 201234c <_Thread_queue_Initialize>
200fd58: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200fd5c: 81 c7 e0 08 ret
200fd60: 81 e8 00 00 restore
0200fd64 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200fd64: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
200fd68: 27 00 80 91 sethi %hi(0x2024400), %l3
200fd6c: a6 14 e0 4c or %l3, 0x4c, %l3 ! 202444c <_Per_CPU_Information>
200fd70: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200fd74: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
200fd78: 7f ff dd e2 call 2007500 <sparc_disable_interrupts>
200fd7c: c0 24 a0 34 clr [ %l2 + 0x34 ]
200fd80: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
200fd84: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200fd88: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
200fd8c: 80 a4 40 02 cmp %l1, %g2
200fd90: 02 80 00 15 be 200fde4 <_CORE_message_queue_Seize+0x80>
200fd94: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
200fd98: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
200fd9c: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
200fda0: 80 a4 60 00 cmp %l1, 0
200fda4: 02 80 00 10 be 200fde4 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200fda8: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200fdac: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
200fdb0: 82 00 7f ff add %g1, -1, %g1
200fdb4: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200fdb8: 7f ff dd d6 call 2007510 <sparc_enable_interrupts>
200fdbc: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200fdc0: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200fdc4: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
200fdc8: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200fdcc: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
200fdd0: 90 10 00 1a mov %i2, %o0
200fdd4: 40 00 1e a7 call 2017870 <memcpy>
200fdd8: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200fddc: 7f ff ff 83 call 200fbe8 <_Chain_Append>
200fde0: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
200fde4: 80 8f 20 ff btst 0xff, %i4
200fde8: 32 80 00 08 bne,a 200fe08 <_CORE_message_queue_Seize+0xa4>
200fdec: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200fdf0: 7f ff dd c8 call 2007510 <sparc_enable_interrupts>
200fdf4: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
200fdf8: 82 10 20 04 mov 4, %g1
200fdfc: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
200fe00: 81 c7 e0 08 ret
200fe04: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
200fe08: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
200fe0c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
200fe10: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
200fe14: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
200fe18: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
200fe1c: 90 10 00 01 mov %g1, %o0
200fe20: 7f ff dd bc call 2007510 <sparc_enable_interrupts>
200fe24: 35 00 80 49 sethi %hi(0x2012400), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
200fe28: b2 10 00 1d mov %i5, %i1
200fe2c: 40 00 08 9e call 20120a4 <_Thread_queue_Enqueue_with_handler>
200fe30: 95 ee a0 2c restore %i2, 0x2c, %o2
02006b18 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2006b18: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006b1c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006b20: c2 00 61 30 ld [ %g1 + 0x130 ], %g1 ! 2014d30 <_Thread_Dispatch_disable_level>
2006b24: 80 a0 60 00 cmp %g1, 0
2006b28: 02 80 00 0d be 2006b5c <_CORE_mutex_Seize+0x44>
2006b2c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2006b30: 80 8e a0 ff btst 0xff, %i2
2006b34: 02 80 00 0b be 2006b60 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006b38: 90 10 00 18 mov %i0, %o0
2006b3c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006b40: c2 00 62 8c ld [ %g1 + 0x28c ], %g1 ! 2014e8c <_System_state_Current>
2006b44: 80 a0 60 01 cmp %g1, 1
2006b48: 08 80 00 05 bleu 2006b5c <_CORE_mutex_Seize+0x44>
2006b4c: 90 10 20 00 clr %o0
2006b50: 92 10 20 00 clr %o1
2006b54: 40 00 01 da call 20072bc <_Internal_error_Occurred>
2006b58: 94 10 20 12 mov 0x12, %o2
2006b5c: 90 10 00 18 mov %i0, %o0
2006b60: 40 00 13 7c call 200b950 <_CORE_mutex_Seize_interrupt_trylock>
2006b64: 92 07 a0 54 add %fp, 0x54, %o1
2006b68: 80 a2 20 00 cmp %o0, 0
2006b6c: 02 80 00 0a be 2006b94 <_CORE_mutex_Seize+0x7c>
2006b70: 80 8e a0 ff btst 0xff, %i2
2006b74: 35 00 80 53 sethi %hi(0x2014c00), %i2
2006b78: 12 80 00 09 bne 2006b9c <_CORE_mutex_Seize+0x84>
2006b7c: b4 16 a3 5c or %i2, 0x35c, %i2 ! 2014f5c <_Per_CPU_Information>
2006b80: 7f ff ec dd call 2001ef4 <sparc_enable_interrupts>
2006b84: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006b88: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006b8c: 84 10 20 01 mov 1, %g2
2006b90: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2006b94: 81 c7 e0 08 ret
2006b98: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006b9c: 82 10 20 01 mov 1, %g1
2006ba0: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
2006ba4: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006ba8: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2006bac: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2006bb0: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006bb4: c4 00 61 30 ld [ %g1 + 0x130 ], %g2 ! 2014d30 <_Thread_Dispatch_disable_level>
2006bb8: 84 00 a0 01 inc %g2
2006bbc: c4 20 61 30 st %g2, [ %g1 + 0x130 ]
2006bc0: 7f ff ec cd call 2001ef4 <sparc_enable_interrupts>
2006bc4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006bc8: 90 10 00 18 mov %i0, %o0
2006bcc: 7f ff ff ba call 2006ab4 <_CORE_mutex_Seize_interrupt_blocking>
2006bd0: 92 10 00 1b mov %i3, %o1
2006bd4: 81 c7 e0 08 ret
2006bd8: 81 e8 00 00 restore
02006d58 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2006d58: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006d5c: 90 10 00 18 mov %i0, %o0
2006d60: 40 00 07 13 call 20089ac <_Thread_queue_Dequeue>
2006d64: a0 10 00 18 mov %i0, %l0
2006d68: 80 a2 20 00 cmp %o0, 0
2006d6c: 12 80 00 0e bne 2006da4 <_CORE_semaphore_Surrender+0x4c>
2006d70: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2006d74: 7f ff ec 5c call 2001ee4 <sparc_disable_interrupts>
2006d78: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006d7c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2006d80: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2006d84: 80 a0 40 02 cmp %g1, %g2
2006d88: 1a 80 00 05 bcc 2006d9c <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006d8c: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006d90: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006d94: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2006d98: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2006d9c: 7f ff ec 56 call 2001ef4 <sparc_enable_interrupts>
2006da0: 01 00 00 00 nop
}
return status;
}
2006da4: 81 c7 e0 08 ret
2006da8: 81 e8 00 00 restore
02005b14 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005b14: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005b18: e2 06 21 58 ld [ %i0 + 0x158 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005b1c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005b20: 7f ff f0 f1 call 2001ee4 <sparc_disable_interrupts>
2005b24: a0 10 00 18 mov %i0, %l0
2005b28: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005b2c: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005b30: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2005b34: 82 88 c0 02 andcc %g3, %g2, %g1
2005b38: 12 80 00 03 bne 2005b44 <_Event_Surrender+0x30>
2005b3c: 09 00 80 53 sethi %hi(0x2014c00), %g4
_ISR_Enable( level );
2005b40: 30 80 00 42 b,a 2005c48 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2005b44: 88 11 23 5c or %g4, 0x35c, %g4 ! 2014f5c <_Per_CPU_Information>
2005b48: da 01 20 08 ld [ %g4 + 8 ], %o5
2005b4c: 80 a3 60 00 cmp %o5, 0
2005b50: 22 80 00 1d be,a 2005bc4 <_Event_Surrender+0xb0>
2005b54: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
2005b58: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2005b5c: 80 a4 00 04 cmp %l0, %g4
2005b60: 32 80 00 19 bne,a 2005bc4 <_Event_Surrender+0xb0>
2005b64: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005b68: 09 00 80 53 sethi %hi(0x2014c00), %g4
2005b6c: da 01 23 b0 ld [ %g4 + 0x3b0 ], %o5 ! 2014fb0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2005b70: 80 a3 60 02 cmp %o5, 2
2005b74: 02 80 00 07 be 2005b90 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005b78: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005b7c: c8 01 23 b0 ld [ %g4 + 0x3b0 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005b80: 80 a1 20 01 cmp %g4, 1
2005b84: 32 80 00 10 bne,a 2005bc4 <_Event_Surrender+0xb0>
2005b88: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005b8c: 80 a0 40 03 cmp %g1, %g3
2005b90: 02 80 00 04 be 2005ba0 <_Event_Surrender+0x8c>
2005b94: 80 8c a0 02 btst 2, %l2
2005b98: 02 80 00 0a be 2005bc0 <_Event_Surrender+0xac> <== NEVER TAKEN
2005b9c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005ba0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005ba4: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005ba8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2005bac: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005bb0: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005bb4: 84 10 20 03 mov 3, %g2
2005bb8: 03 00 80 53 sethi %hi(0x2014c00), %g1
2005bbc: c4 20 63 b0 st %g2, [ %g1 + 0x3b0 ] ! 2014fb0 <_Event_Sync_state>
}
_ISR_Enable( level );
2005bc0: 30 80 00 22 b,a 2005c48 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005bc4: 80 89 21 00 btst 0x100, %g4
2005bc8: 02 80 00 20 be 2005c48 <_Event_Surrender+0x134>
2005bcc: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2005bd0: 02 80 00 04 be 2005be0 <_Event_Surrender+0xcc>
2005bd4: 80 8c a0 02 btst 2, %l2
2005bd8: 02 80 00 1c be 2005c48 <_Event_Surrender+0x134> <== NEVER TAKEN
2005bdc: 01 00 00 00 nop
2005be0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005be4: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005be8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2005bec: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005bf0: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005bf4: 7f ff f0 c0 call 2001ef4 <sparc_enable_interrupts>
2005bf8: 90 10 00 18 mov %i0, %o0
2005bfc: 7f ff f0 ba call 2001ee4 <sparc_disable_interrupts>
2005c00: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005c04: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
2005c08: 80 a0 60 02 cmp %g1, 2
2005c0c: 02 80 00 06 be 2005c24 <_Event_Surrender+0x110>
2005c10: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005c14: 7f ff f0 b8 call 2001ef4 <sparc_enable_interrupts>
2005c18: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005c1c: 10 80 00 08 b 2005c3c <_Event_Surrender+0x128>
2005c20: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2005c24: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2005c28: 7f ff f0 b3 call 2001ef4 <sparc_enable_interrupts>
2005c2c: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005c30: 40 00 0e 7c call 2009620 <_Watchdog_Remove>
2005c34: 90 04 20 48 add %l0, 0x48, %o0
2005c38: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2005c3c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2005c40: 40 00 09 ad call 20082f4 <_Thread_Clear_state>
2005c44: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2005c48: 7f ff f0 ab call 2001ef4 <sparc_enable_interrupts>
2005c4c: 81 e8 00 00 restore
02005c54 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2005c54: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2005c58: 90 10 00 18 mov %i0, %o0
2005c5c: 40 00 0a 91 call 20086a0 <_Thread_Get>
2005c60: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005c64: c2 07 bf fc ld [ %fp + -4 ], %g1
2005c68: 80 a0 60 00 cmp %g1, 0
2005c6c: 12 80 00 1c bne 2005cdc <_Event_Timeout+0x88> <== NEVER TAKEN
2005c70: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2005c74: 7f ff f0 9c call 2001ee4 <sparc_disable_interrupts>
2005c78: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2005c7c: 03 00 80 53 sethi %hi(0x2014c00), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2005c80: c2 00 63 68 ld [ %g1 + 0x368 ], %g1 ! 2014f68 <_Per_CPU_Information+0xc>
2005c84: 80 a4 00 01 cmp %l0, %g1
2005c88: 12 80 00 09 bne 2005cac <_Event_Timeout+0x58>
2005c8c: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005c90: 03 00 80 53 sethi %hi(0x2014c00), %g1
2005c94: c4 00 63 b0 ld [ %g1 + 0x3b0 ], %g2 ! 2014fb0 <_Event_Sync_state>
2005c98: 80 a0 a0 01 cmp %g2, 1
2005c9c: 32 80 00 05 bne,a 2005cb0 <_Event_Timeout+0x5c>
2005ca0: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005ca4: 84 10 20 02 mov 2, %g2
2005ca8: c4 20 63 b0 st %g2, [ %g1 + 0x3b0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005cac: 82 10 20 06 mov 6, %g1
2005cb0: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005cb4: 7f ff f0 90 call 2001ef4 <sparc_enable_interrupts>
2005cb8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005cbc: 90 10 00 10 mov %l0, %o0
2005cc0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2005cc4: 40 00 09 8c call 20082f4 <_Thread_Clear_state>
2005cc8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2005ccc: 03 00 80 53 sethi %hi(0x2014c00), %g1
2005cd0: c4 00 61 30 ld [ %g1 + 0x130 ], %g2 ! 2014d30 <_Thread_Dispatch_disable_level>
2005cd4: 84 00 bf ff add %g2, -1, %g2
2005cd8: c4 20 61 30 st %g2, [ %g1 + 0x130 ]
2005cdc: 81 c7 e0 08 ret
2005ce0: 81 e8 00 00 restore
0200bfac <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfac: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200bfb0: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200bfb4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfb8: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200bfbc: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200bfc0: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200bfc4: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200bfc8: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200bfcc: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfd0: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200bfd4: 80 a4 40 19 cmp %l1, %i1
200bfd8: 0a 80 00 9f bcs 200c254 <_Heap_Extend+0x2a8>
200bfdc: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200bfe0: 90 10 00 19 mov %i1, %o0
200bfe4: 94 10 00 13 mov %l3, %o2
200bfe8: 98 07 bf fc add %fp, -4, %o4
200bfec: 7f ff ec d0 call 200732c <_Heap_Get_first_and_last_block>
200bff0: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200bff4: 80 8a 20 ff btst 0xff, %o0
200bff8: 02 80 00 97 be 200c254 <_Heap_Extend+0x2a8>
200bffc: aa 10 00 12 mov %l2, %l5
200c000: ba 10 20 00 clr %i5
200c004: b8 10 20 00 clr %i4
200c008: b0 10 20 00 clr %i0
200c00c: ae 10 20 00 clr %l7
200c010: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c014: 80 a0 40 11 cmp %g1, %l1
200c018: 1a 80 00 05 bcc 200c02c <_Heap_Extend+0x80>
200c01c: ec 05 40 00 ld [ %l5 ], %l6
200c020: 80 a6 40 16 cmp %i1, %l6
200c024: 2a 80 00 8c bcs,a 200c254 <_Heap_Extend+0x2a8>
200c028: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c02c: 80 a4 40 01 cmp %l1, %g1
200c030: 02 80 00 06 be 200c048 <_Heap_Extend+0x9c>
200c034: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c038: 2a 80 00 05 bcs,a 200c04c <_Heap_Extend+0xa0>
200c03c: b8 10 00 15 mov %l5, %i4
200c040: 10 80 00 04 b 200c050 <_Heap_Extend+0xa4>
200c044: 90 10 00 16 mov %l6, %o0
200c048: ae 10 00 15 mov %l5, %l7
200c04c: 90 10 00 16 mov %l6, %o0
200c050: 40 00 16 73 call 2011a1c <.urem>
200c054: 92 10 00 13 mov %l3, %o1
200c058: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c05c: 80 a5 80 19 cmp %l6, %i1
200c060: 12 80 00 05 bne 200c074 <_Heap_Extend+0xc8>
200c064: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c068: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c06c: 10 80 00 04 b 200c07c <_Heap_Extend+0xd0>
200c070: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c074: 2a 80 00 02 bcs,a 200c07c <_Heap_Extend+0xd0>
200c078: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c07c: ea 02 20 04 ld [ %o0 + 4 ], %l5
200c080: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c084: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c088: 80 a5 40 12 cmp %l5, %l2
200c08c: 12 bf ff e2 bne 200c014 <_Heap_Extend+0x68>
200c090: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c094: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200c098: 80 a6 40 01 cmp %i1, %g1
200c09c: 3a 80 00 04 bcc,a 200c0ac <_Heap_Extend+0x100>
200c0a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c0a4: 10 80 00 05 b 200c0b8 <_Heap_Extend+0x10c>
200c0a8: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c0ac: 80 a0 40 11 cmp %g1, %l1
200c0b0: 2a 80 00 02 bcs,a 200c0b8 <_Heap_Extend+0x10c>
200c0b4: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c0b8: c4 07 bf fc ld [ %fp + -4 ], %g2
200c0bc: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c0c0: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c0c4: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c0c8: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200c0cc: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c0d0: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c0d4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
200c0d8: 80 a0 c0 02 cmp %g3, %g2
200c0dc: 08 80 00 04 bleu 200c0ec <_Heap_Extend+0x140>
200c0e0: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c0e4: 10 80 00 06 b 200c0fc <_Heap_Extend+0x150>
200c0e8: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c0ec: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
200c0f0: 80 a0 80 01 cmp %g2, %g1
200c0f4: 2a 80 00 02 bcs,a 200c0fc <_Heap_Extend+0x150>
200c0f8: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c0fc: 80 a5 e0 00 cmp %l7, 0
200c100: 02 80 00 14 be 200c150 <_Heap_Extend+0x1a4>
200c104: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200c108: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200c10c: 92 10 00 12 mov %l2, %o1
200c110: 40 00 16 43 call 2011a1c <.urem>
200c114: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c118: 80 a2 20 00 cmp %o0, 0
200c11c: 02 80 00 04 be 200c12c <_Heap_Extend+0x180>
200c120: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c124: b2 06 40 12 add %i1, %l2, %i1
200c128: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200c12c: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200c130: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200c134: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c138: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c13c: 90 10 00 10 mov %l0, %o0
200c140: 7f ff ff 90 call 200bf80 <_Heap_Free_block>
200c144: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c148: 10 80 00 09 b 200c16c <_Heap_Extend+0x1c0>
200c14c: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200c150: 80 a7 20 00 cmp %i4, 0
200c154: 02 80 00 05 be 200c168 <_Heap_Extend+0x1bc>
200c158: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c15c: b8 27 00 01 sub %i4, %g1, %i4
200c160: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200c164: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c168: 80 a6 20 00 cmp %i0, 0
200c16c: 02 80 00 15 be 200c1c0 <_Heap_Extend+0x214>
200c170: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c174: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200c178: a2 24 40 18 sub %l1, %i0, %l1
200c17c: 40 00 16 28 call 2011a1c <.urem>
200c180: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200c184: c4 06 20 04 ld [ %i0 + 4 ], %g2
200c188: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c18c: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c190: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c194: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c198: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c19c: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200c1a0: 90 10 00 10 mov %l0, %o0
200c1a4: 82 08 60 01 and %g1, 1, %g1
200c1a8: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c1ac: a2 14 40 01 or %l1, %g1, %l1
200c1b0: 7f ff ff 74 call 200bf80 <_Heap_Free_block>
200c1b4: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1b8: 10 80 00 0f b 200c1f4 <_Heap_Extend+0x248>
200c1bc: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200c1c0: 80 a7 60 00 cmp %i5, 0
200c1c4: 02 80 00 0b be 200c1f0 <_Heap_Extend+0x244>
200c1c8: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c1cc: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c1d0: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200c1d4: 86 20 c0 1d sub %g3, %i5, %g3
200c1d8: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c1dc: 84 10 c0 02 or %g3, %g2, %g2
200c1e0: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c1e4: c4 00 60 04 ld [ %g1 + 4 ], %g2
200c1e8: 84 10 a0 01 or %g2, 1, %g2
200c1ec: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1f0: 80 a6 20 00 cmp %i0, 0
200c1f4: 32 80 00 09 bne,a 200c218 <_Heap_Extend+0x26c>
200c1f8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200c1fc: 80 a5 e0 00 cmp %l7, 0
200c200: 32 80 00 06 bne,a 200c218 <_Heap_Extend+0x26c>
200c204: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c208: d2 07 bf fc ld [ %fp + -4 ], %o1
200c20c: 7f ff ff 5d call 200bf80 <_Heap_Free_block>
200c210: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c214: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c218: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c21c: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c220: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c224: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c228: 84 10 c0 02 or %g3, %g2, %g2
200c22c: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c230: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200c234: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c238: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
200c23c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c240: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200c244: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c248: 02 80 00 03 be 200c254 <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c24c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c250: e8 26 c0 00 st %l4, [ %i3 ]
200c254: 81 c7 e0 08 ret
200c258: 81 e8 00 00 restore
0200bcac <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200bcac: 9d e3 bf a0 save %sp, -96, %sp
200bcb0: a0 10 00 18 mov %i0, %l0
200bcb4: 90 10 00 19 mov %i1, %o0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200bcb8: 80 a6 60 00 cmp %i1, 0
200bcbc: 02 80 00 78 be 200be9c <_Heap_Free+0x1f0>
200bcc0: b0 10 20 01 mov 1, %i0
200bcc4: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
200bcc8: 40 00 16 17 call 2011524 <.urem>
200bccc: a2 06 7f f8 add %i1, -8, %l1
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200bcd0: d8 04 20 20 ld [ %l0 + 0x20 ], %o4
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200bcd4: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bcd8: 80 a2 00 0c cmp %o0, %o4
200bcdc: 0a 80 00 05 bcs 200bcf0 <_Heap_Free+0x44>
200bce0: 82 10 20 00 clr %g1
200bce4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200bce8: 80 a0 40 08 cmp %g1, %o0
200bcec: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bcf0: 80 a0 60 00 cmp %g1, 0
200bcf4: 02 80 00 6a be 200be9c <_Heap_Free+0x1f0>
200bcf8: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bcfc: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bd00: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd04: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd08: 80 a0 40 0c cmp %g1, %o4
200bd0c: 0a 80 00 05 bcs 200bd20 <_Heap_Free+0x74> <== NEVER TAKEN
200bd10: 86 10 20 00 clr %g3
200bd14: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200bd18: 80 a0 c0 01 cmp %g3, %g1
200bd1c: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bd20: 80 a0 e0 00 cmp %g3, 0
200bd24: 02 80 00 5e be 200be9c <_Heap_Free+0x1f0> <== NEVER TAKEN
200bd28: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bd2c: c8 00 60 04 ld [ %g1 + 4 ], %g4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200bd30: 80 89 20 01 btst 1, %g4
200bd34: 02 80 00 5a be 200be9c <_Heap_Free+0x1f0> <== NEVER TAKEN
200bd38: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200bd3c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd40: 80 a0 40 09 cmp %g1, %o1
200bd44: 02 80 00 07 be 200bd60 <_Heap_Free+0xb4>
200bd48: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bd4c: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd50: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200bd54: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd58: 80 a0 00 03 cmp %g0, %g3
200bd5c: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200bd60: 80 8b 60 01 btst 1, %o5
200bd64: 12 80 00 26 bne 200bdfc <_Heap_Free+0x150>
200bd68: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200bd6c: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd70: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd74: 80 a0 c0 0c cmp %g3, %o4
200bd78: 0a 80 00 04 bcs 200bd88 <_Heap_Free+0xdc> <== NEVER TAKEN
200bd7c: 94 10 20 00 clr %o2
200bd80: 80 a2 40 03 cmp %o1, %g3
200bd84: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200bd88: 80 a2 a0 00 cmp %o2, 0
200bd8c: 02 80 00 44 be 200be9c <_Heap_Free+0x1f0> <== NEVER TAKEN
200bd90: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd94: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200bd98: 80 8b 20 01 btst 1, %o4
200bd9c: 02 80 00 40 be 200be9c <_Heap_Free+0x1f0> <== NEVER TAKEN
200bda0: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200bda4: 22 80 00 0f be,a 200bde0 <_Heap_Free+0x134>
200bda8: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200bdac: 88 00 80 04 add %g2, %g4, %g4
200bdb0: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200bdb4: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200bdb8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200bdbc: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200bdc0: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200bdc4: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
200bdc8: 82 00 7f ff add %g1, -1, %g1
200bdcc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200bdd0: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bdd4: 82 13 60 01 or %o5, 1, %g1
200bdd8: 10 80 00 27 b 200be74 <_Heap_Free+0x1c8>
200bddc: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bde0: 88 13 60 01 or %o5, 1, %g4
200bde4: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bde8: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200bdec: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bdf0: 86 08 ff fe and %g3, -2, %g3
200bdf4: 10 80 00 20 b 200be74 <_Heap_Free+0x1c8>
200bdf8: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200bdfc: 22 80 00 0d be,a 200be30 <_Heap_Free+0x184>
200be00: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200be04: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200be08: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200be0c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200be10: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200be14: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
200be18: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200be1c: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be20: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200be24: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be28: 10 80 00 13 b 200be74 <_Heap_Free+0x1c8>
200be2c: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200be30: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200be34: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200be38: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200be3c: 86 10 a0 01 or %g2, 1, %g3
200be40: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be44: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200be48: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be4c: 86 08 ff fe and %g3, -2, %g3
200be50: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200be54: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200be58: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200be5c: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200be60: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200be64: 80 a0 c0 01 cmp %g3, %g1
200be68: 1a 80 00 03 bcc 200be74 <_Heap_Free+0x1c8>
200be6c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200be70: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200be74: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200be78: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200be7c: 82 00 7f ff add %g1, -1, %g1
200be80: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200be84: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
200be88: 82 00 60 01 inc %g1
200be8c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200be90: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
200be94: 84 00 40 02 add %g1, %g2, %g2
200be98: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
200be9c: 81 c7 e0 08 ret
200bea0: 81 e8 00 00 restore
02012e14 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2012e14: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2012e18: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2012e1c: 7f ff f9 c2 call 2011524 <.urem>
2012e20: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2012e24: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2012e28: a2 06 7f f8 add %i1, -8, %l1
2012e2c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2012e30: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2012e34: 80 a2 00 02 cmp %o0, %g2
2012e38: 0a 80 00 05 bcs 2012e4c <_Heap_Size_of_alloc_area+0x38>
2012e3c: 82 10 20 00 clr %g1
2012e40: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2012e44: 80 a0 40 08 cmp %g1, %o0
2012e48: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
2012e4c: 80 a0 60 00 cmp %g1, 0
2012e50: 02 80 00 15 be 2012ea4 <_Heap_Size_of_alloc_area+0x90>
2012e54: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2012e58: e2 02 20 04 ld [ %o0 + 4 ], %l1
2012e5c: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2012e60: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2012e64: 80 a4 40 02 cmp %l1, %g2
2012e68: 0a 80 00 05 bcs 2012e7c <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
2012e6c: 82 10 20 00 clr %g1
2012e70: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
2012e74: 80 a0 40 11 cmp %g1, %l1
2012e78: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
2012e7c: 80 a0 60 00 cmp %g1, 0
2012e80: 02 80 00 09 be 2012ea4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012e84: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2012e88: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2012e8c: 80 88 60 01 btst 1, %g1
2012e90: 02 80 00 05 be 2012ea4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012e94: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2012e98: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2012e9c: a2 04 60 04 add %l1, 4, %l1
2012ea0: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
2012ea4: 81 c7 e0 08 ret
2012ea8: 81 e8 00 00 restore
02008174 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2008174: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008178: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
200817c: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
2008180: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
2008184: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
2008188: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
200818c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008190: 80 8e a0 ff btst 0xff, %i2
2008194: 02 80 00 04 be 20081a4 <_Heap_Walk+0x30>
2008198: a2 14 61 20 or %l1, 0x120, %l1
200819c: 23 00 80 20 sethi %hi(0x2008000), %l1
20081a0: a2 14 61 28 or %l1, 0x128, %l1 ! 2008128 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20081a4: 03 00 80 5d sethi %hi(0x2017400), %g1
20081a8: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201756c <_System_state_Current>
20081ac: 80 a0 60 03 cmp %g1, 3
20081b0: 12 80 01 2d bne 2008664 <_Heap_Walk+0x4f0>
20081b4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20081b8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
20081bc: da 04 20 18 ld [ %l0 + 0x18 ], %o5
20081c0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20081c4: c2 04 20 08 ld [ %l0 + 8 ], %g1
20081c8: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
20081cc: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
20081d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20081d4: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
20081d8: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
20081dc: 90 10 00 19 mov %i1, %o0
20081e0: 92 10 20 00 clr %o1
20081e4: 15 00 80 52 sethi %hi(0x2014800), %o2
20081e8: 96 10 00 12 mov %l2, %o3
20081ec: 94 12 a3 20 or %o2, 0x320, %o2
20081f0: 9f c4 40 00 call %l1
20081f4: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
20081f8: 80 a4 a0 00 cmp %l2, 0
20081fc: 12 80 00 07 bne 2008218 <_Heap_Walk+0xa4>
2008200: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
2008204: 15 00 80 52 sethi %hi(0x2014800), %o2
2008208: 90 10 00 19 mov %i1, %o0
200820c: 92 10 20 01 mov 1, %o1
2008210: 10 80 00 38 b 20082f0 <_Heap_Walk+0x17c>
2008214: 94 12 a3 b8 or %o2, 0x3b8, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008218: 22 80 00 08 be,a 2008238 <_Heap_Walk+0xc4>
200821c: 90 10 00 14 mov %l4, %o0
(*printer)(
2008220: 15 00 80 52 sethi %hi(0x2014800), %o2
2008224: 90 10 00 19 mov %i1, %o0
2008228: 92 10 20 01 mov 1, %o1
200822c: 94 12 a3 d0 or %o2, 0x3d0, %o2
2008230: 10 80 01 0b b 200865c <_Heap_Walk+0x4e8>
2008234: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008238: 7f ff e6 30 call 2001af8 <.urem>
200823c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008240: 80 a2 20 00 cmp %o0, 0
2008244: 22 80 00 08 be,a 2008264 <_Heap_Walk+0xf0>
2008248: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
200824c: 15 00 80 52 sethi %hi(0x2014800), %o2
2008250: 90 10 00 19 mov %i1, %o0
2008254: 92 10 20 01 mov 1, %o1
2008258: 94 12 a3 f0 or %o2, 0x3f0, %o2
200825c: 10 80 01 00 b 200865c <_Heap_Walk+0x4e8>
2008260: 96 10 00 14 mov %l4, %o3
2008264: 7f ff e6 25 call 2001af8 <.urem>
2008268: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
200826c: 80 a2 20 00 cmp %o0, 0
2008270: 22 80 00 08 be,a 2008290 <_Heap_Walk+0x11c>
2008274: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008278: 15 00 80 53 sethi %hi(0x2014c00), %o2
200827c: 90 10 00 19 mov %i1, %o0
2008280: 92 10 20 01 mov 1, %o1
2008284: 94 12 a0 18 or %o2, 0x18, %o2
2008288: 10 80 00 f5 b 200865c <_Heap_Walk+0x4e8>
200828c: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008290: 80 88 60 01 btst 1, %g1
2008294: 32 80 00 07 bne,a 20082b0 <_Heap_Walk+0x13c>
2008298: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
200829c: 15 00 80 53 sethi %hi(0x2014c00), %o2
20082a0: 90 10 00 19 mov %i1, %o0
20082a4: 92 10 20 01 mov 1, %o1
20082a8: 10 80 00 12 b 20082f0 <_Heap_Walk+0x17c>
20082ac: 94 12 a0 50 or %o2, 0x50, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20082b0: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20082b4: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20082b8: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20082bc: 80 88 60 01 btst 1, %g1
20082c0: 12 80 00 07 bne 20082dc <_Heap_Walk+0x168>
20082c4: 80 a5 80 13 cmp %l6, %l3
(*printer)(
20082c8: 15 00 80 53 sethi %hi(0x2014c00), %o2
20082cc: 90 10 00 19 mov %i1, %o0
20082d0: 92 10 20 01 mov 1, %o1
20082d4: 10 80 00 07 b 20082f0 <_Heap_Walk+0x17c>
20082d8: 94 12 a0 80 or %o2, 0x80, %o2
);
return false;
}
if (
20082dc: 02 80 00 08 be 20082fc <_Heap_Walk+0x188>
20082e0: 15 00 80 53 sethi %hi(0x2014c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20082e4: 90 10 00 19 mov %i1, %o0
20082e8: 92 10 20 01 mov 1, %o1
20082ec: 94 12 a0 98 or %o2, 0x98, %o2
20082f0: 9f c4 40 00 call %l1
20082f4: b0 10 20 00 clr %i0
20082f8: 30 80 00 db b,a 2008664 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
20082fc: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008300: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008304: ae 10 00 10 mov %l0, %l7
2008308: 10 80 00 32 b 20083d0 <_Heap_Walk+0x25c>
200830c: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008310: 80 a0 80 1c cmp %g2, %i4
2008314: 18 80 00 05 bgu 2008328 <_Heap_Walk+0x1b4>
2008318: 82 10 20 00 clr %g1
200831c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
2008320: 80 a0 40 1c cmp %g1, %i4
2008324: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
2008328: 80 a0 60 00 cmp %g1, 0
200832c: 32 80 00 08 bne,a 200834c <_Heap_Walk+0x1d8>
2008330: 90 07 20 08 add %i4, 8, %o0
(*printer)(
2008334: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008338: 96 10 00 1c mov %i4, %o3
200833c: 90 10 00 19 mov %i1, %o0
2008340: 92 10 20 01 mov 1, %o1
2008344: 10 80 00 c6 b 200865c <_Heap_Walk+0x4e8>
2008348: 94 12 a0 c8 or %o2, 0xc8, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200834c: 7f ff e5 eb call 2001af8 <.urem>
2008350: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
2008354: 80 a2 20 00 cmp %o0, 0
2008358: 22 80 00 08 be,a 2008378 <_Heap_Walk+0x204>
200835c: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008360: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008364: 96 10 00 1c mov %i4, %o3
2008368: 90 10 00 19 mov %i1, %o0
200836c: 92 10 20 01 mov 1, %o1
2008370: 10 80 00 bb b 200865c <_Heap_Walk+0x4e8>
2008374: 94 12 a0 e8 or %o2, 0xe8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008378: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
200837c: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008380: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008384: 80 88 60 01 btst 1, %g1
2008388: 22 80 00 08 be,a 20083a8 <_Heap_Walk+0x234>
200838c: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
2008390: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008394: 96 10 00 1c mov %i4, %o3
2008398: 90 10 00 19 mov %i1, %o0
200839c: 92 10 20 01 mov 1, %o1
20083a0: 10 80 00 af b 200865c <_Heap_Walk+0x4e8>
20083a4: 94 12 a1 18 or %o2, 0x118, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
20083a8: 80 a3 00 17 cmp %o4, %l7
20083ac: 22 80 00 08 be,a 20083cc <_Heap_Walk+0x258>
20083b0: ae 10 00 1c mov %i4, %l7
(*printer)(
20083b4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083b8: 96 10 00 1c mov %i4, %o3
20083bc: 90 10 00 19 mov %i1, %o0
20083c0: 92 10 20 01 mov 1, %o1
20083c4: 10 80 00 49 b 20084e8 <_Heap_Walk+0x374>
20083c8: 94 12 a1 38 or %o2, 0x138, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
20083cc: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
20083d0: 80 a7 00 10 cmp %i4, %l0
20083d4: 32 bf ff cf bne,a 2008310 <_Heap_Walk+0x19c>
20083d8: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
20083dc: 35 00 80 53 sethi %hi(0x2014c00), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20083e0: 31 00 80 53 sethi %hi(0x2014c00), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20083e4: b4 16 a2 f8 or %i2, 0x2f8, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20083e8: b0 16 22 e0 or %i0, 0x2e0, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
20083ec: 37 00 80 53 sethi %hi(0x2014c00), %i3
block = next_block;
} while ( block != first_block );
return true;
}
20083f0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20083f4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20083f8: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20083fc: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008400: 80 a0 c0 1d cmp %g3, %i5
2008404: 18 80 00 05 bgu 2008418 <_Heap_Walk+0x2a4> <== NEVER TAKEN
2008408: 84 10 20 00 clr %g2
200840c: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
2008410: 80 a0 80 1d cmp %g2, %i5
2008414: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
2008418: 80 a0 a0 00 cmp %g2, 0
200841c: 12 80 00 07 bne 2008438 <_Heap_Walk+0x2c4>
2008420: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
2008424: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008428: 90 10 00 19 mov %i1, %o0
200842c: 92 10 20 01 mov 1, %o1
2008430: 10 80 00 2c b 20084e0 <_Heap_Walk+0x36c>
2008434: 94 12 a1 70 or %o2, 0x170, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008438: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200843c: c2 27 bf fc st %g1, [ %fp + -4 ]
2008440: b8 40 20 00 addx %g0, 0, %i4
2008444: 90 10 00 17 mov %l7, %o0
2008448: 7f ff e5 ac call 2001af8 <.urem>
200844c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008450: 80 a2 20 00 cmp %o0, 0
2008454: 02 80 00 0c be 2008484 <_Heap_Walk+0x310>
2008458: c2 07 bf fc ld [ %fp + -4 ], %g1
200845c: 80 8f 20 ff btst 0xff, %i4
2008460: 02 80 00 0a be 2008488 <_Heap_Walk+0x314>
2008464: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
2008468: 15 00 80 53 sethi %hi(0x2014c00), %o2
200846c: 90 10 00 19 mov %i1, %o0
2008470: 92 10 20 01 mov 1, %o1
2008474: 94 12 a1 a0 or %o2, 0x1a0, %o2
2008478: 96 10 00 16 mov %l6, %o3
200847c: 10 80 00 1b b 20084e8 <_Heap_Walk+0x374>
2008480: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008484: 80 a5 c0 14 cmp %l7, %l4
2008488: 1a 80 00 0d bcc 20084bc <_Heap_Walk+0x348>
200848c: 80 a7 40 16 cmp %i5, %l6
2008490: 80 8f 20 ff btst 0xff, %i4
2008494: 02 80 00 0a be 20084bc <_Heap_Walk+0x348> <== NEVER TAKEN
2008498: 80 a7 40 16 cmp %i5, %l6
(*printer)(
200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084a0: 90 10 00 19 mov %i1, %o0
20084a4: 92 10 20 01 mov 1, %o1
20084a8: 94 12 a1 d0 or %o2, 0x1d0, %o2
20084ac: 96 10 00 16 mov %l6, %o3
20084b0: 98 10 00 17 mov %l7, %o4
20084b4: 10 80 00 3f b 20085b0 <_Heap_Walk+0x43c>
20084b8: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
20084bc: 38 80 00 0e bgu,a 20084f4 <_Heap_Walk+0x380>
20084c0: b8 08 60 01 and %g1, 1, %i4
20084c4: 80 8f 20 ff btst 0xff, %i4
20084c8: 02 80 00 0b be 20084f4 <_Heap_Walk+0x380>
20084cc: b8 08 60 01 and %g1, 1, %i4
(*printer)(
20084d0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084d4: 90 10 00 19 mov %i1, %o0
20084d8: 92 10 20 01 mov 1, %o1
20084dc: 94 12 a2 00 or %o2, 0x200, %o2
20084e0: 96 10 00 16 mov %l6, %o3
20084e4: 98 10 00 1d mov %i5, %o4
20084e8: 9f c4 40 00 call %l1
20084ec: b0 10 20 00 clr %i0
20084f0: 30 80 00 5d b,a 2008664 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20084f4: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
20084f8: 80 88 60 01 btst 1, %g1
20084fc: 12 80 00 3f bne 20085f8 <_Heap_Walk+0x484>
2008500: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008504: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008508: c2 04 20 08 ld [ %l0 + 8 ], %g1
200850c: 05 00 80 52 sethi %hi(0x2014800), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008510: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008514: 80 a3 40 01 cmp %o5, %g1
2008518: 02 80 00 07 be 2008534 <_Heap_Walk+0x3c0>
200851c: 86 10 a2 e0 or %g2, 0x2e0, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008520: 80 a3 40 10 cmp %o5, %l0
2008524: 12 80 00 04 bne 2008534 <_Heap_Walk+0x3c0>
2008528: 86 16 e2 a8 or %i3, 0x2a8, %g3
200852c: 19 00 80 52 sethi %hi(0x2014800), %o4
2008530: 86 13 22 f0 or %o4, 0x2f0, %g3 ! 2014af0 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
2008534: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008538: 19 00 80 52 sethi %hi(0x2014800), %o4
200853c: 80 a0 80 04 cmp %g2, %g4
2008540: 02 80 00 07 be 200855c <_Heap_Walk+0x3e8>
2008544: 82 13 23 00 or %o4, 0x300, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008548: 80 a0 80 10 cmp %g2, %l0
200854c: 12 80 00 04 bne 200855c <_Heap_Walk+0x3e8>
2008550: 82 16 e2 a8 or %i3, 0x2a8, %g1
2008554: 09 00 80 52 sethi %hi(0x2014800), %g4
2008558: 82 11 23 10 or %g4, 0x310, %g1 ! 2014b10 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200855c: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008560: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2008564: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
2008568: 90 10 00 19 mov %i1, %o0
200856c: 92 10 20 00 clr %o1
2008570: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008574: 96 10 00 16 mov %l6, %o3
2008578: 94 12 a2 38 or %o2, 0x238, %o2
200857c: 9f c4 40 00 call %l1
2008580: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008584: da 07 40 00 ld [ %i5 ], %o5
2008588: 80 a5 c0 0d cmp %l7, %o5
200858c: 02 80 00 0c be 20085bc <_Heap_Walk+0x448>
2008590: 80 a7 20 00 cmp %i4, 0
(*printer)(
2008594: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008598: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
200859c: 90 10 00 19 mov %i1, %o0
20085a0: 92 10 20 01 mov 1, %o1
20085a4: 94 12 a2 70 or %o2, 0x270, %o2
20085a8: 96 10 00 16 mov %l6, %o3
20085ac: 98 10 00 17 mov %l7, %o4
20085b0: 9f c4 40 00 call %l1
20085b4: b0 10 20 00 clr %i0
20085b8: 30 80 00 2b b,a 2008664 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
20085bc: 32 80 00 0a bne,a 20085e4 <_Heap_Walk+0x470>
20085c0: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
20085c4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20085c8: 90 10 00 19 mov %i1, %o0
20085cc: 92 10 20 01 mov 1, %o1
20085d0: 10 80 00 22 b 2008658 <_Heap_Walk+0x4e4>
20085d4: 94 12 a2 b0 or %o2, 0x2b0, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
20085d8: 02 80 00 19 be 200863c <_Heap_Walk+0x4c8>
20085dc: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
20085e0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
20085e4: 80 a0 40 10 cmp %g1, %l0
20085e8: 12 bf ff fc bne 20085d8 <_Heap_Walk+0x464>
20085ec: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
20085f0: 10 80 00 17 b 200864c <_Heap_Walk+0x4d8>
20085f4: 15 00 80 53 sethi %hi(0x2014c00), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
20085f8: 22 80 00 0a be,a 2008620 <_Heap_Walk+0x4ac>
20085fc: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
2008600: 90 10 00 19 mov %i1, %o0
2008604: 92 10 20 00 clr %o1
2008608: 94 10 00 18 mov %i0, %o2
200860c: 96 10 00 16 mov %l6, %o3
2008610: 9f c4 40 00 call %l1
2008614: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008618: 10 80 00 09 b 200863c <_Heap_Walk+0x4c8>
200861c: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008620: 90 10 00 19 mov %i1, %o0
2008624: 92 10 20 00 clr %o1
2008628: 94 10 00 1a mov %i2, %o2
200862c: 96 10 00 16 mov %l6, %o3
2008630: 9f c4 40 00 call %l1
2008634: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008638: 80 a7 40 13 cmp %i5, %l3
200863c: 12 bf ff 6d bne 20083f0 <_Heap_Walk+0x27c>
2008640: ac 10 00 1d mov %i5, %l6
return true;
}
2008644: 81 c7 e0 08 ret
2008648: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200864c: 90 10 00 19 mov %i1, %o0
2008650: 92 10 20 01 mov 1, %o1
2008654: 94 12 a3 20 or %o2, 0x320, %o2
2008658: 96 10 00 16 mov %l6, %o3
200865c: 9f c4 40 00 call %l1
2008660: b0 10 20 00 clr %i0
2008664: 81 c7 e0 08 ret
2008668: 81 e8 00 00 restore
0200736c <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
200736c: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007370: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007374: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007378: 80 a0 60 00 cmp %g1, 0
200737c: 02 80 00 20 be 20073fc <_Objects_Allocate+0x90> <== NEVER TAKEN
2007380: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007384: a2 04 20 20 add %l0, 0x20, %l1
2007388: 7f ff fd 8b call 20069b4 <_Chain_Get>
200738c: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007390: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
2007394: 80 a0 60 00 cmp %g1, 0
2007398: 02 80 00 19 be 20073fc <_Objects_Allocate+0x90>
200739c: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
20073a0: 80 a2 20 00 cmp %o0, 0
20073a4: 32 80 00 0a bne,a 20073cc <_Objects_Allocate+0x60>
20073a8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
20073ac: 40 00 00 1e call 2007424 <_Objects_Extend_information>
20073b0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20073b4: 7f ff fd 80 call 20069b4 <_Chain_Get>
20073b8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
20073bc: b0 92 20 00 orcc %o0, 0, %i0
20073c0: 02 80 00 0f be 20073fc <_Objects_Allocate+0x90>
20073c4: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
20073c8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
20073cc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
20073d0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
20073d4: 40 00 27 a8 call 2011274 <.udiv>
20073d8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20073dc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
20073e0: 91 2a 20 02 sll %o0, 2, %o0
20073e4: c4 00 40 08 ld [ %g1 + %o0 ], %g2
20073e8: 84 00 bf ff add %g2, -1, %g2
20073ec: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
20073f0: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
20073f4: 82 00 7f ff add %g1, -1, %g1
20073f8: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
20073fc: 81 c7 e0 08 ret
2007400: 81 e8 00 00 restore
02007774 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007774: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007778: b3 2e 60 10 sll %i1, 0x10, %i1
200777c: b3 36 60 10 srl %i1, 0x10, %i1
2007780: 80 a6 60 00 cmp %i1, 0
2007784: 02 80 00 17 be 20077e0 <_Objects_Get_information+0x6c>
2007788: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
200778c: 40 00 11 c6 call 200bea4 <_Objects_API_maximum_class>
2007790: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007794: 80 a2 20 00 cmp %o0, 0
2007798: 02 80 00 12 be 20077e0 <_Objects_Get_information+0x6c>
200779c: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20077a0: 18 80 00 10 bgu 20077e0 <_Objects_Get_information+0x6c>
20077a4: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20077a8: b1 2e 20 02 sll %i0, 2, %i0
20077ac: 82 10 60 98 or %g1, 0x98, %g1
20077b0: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20077b4: 80 a0 60 00 cmp %g1, 0
20077b8: 02 80 00 0a be 20077e0 <_Objects_Get_information+0x6c> <== NEVER TAKEN
20077bc: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20077c0: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
20077c4: 80 a4 20 00 cmp %l0, 0
20077c8: 02 80 00 06 be 20077e0 <_Objects_Get_information+0x6c> <== NEVER TAKEN
20077cc: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20077d0: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
20077d4: 80 a0 00 01 cmp %g0, %g1
20077d8: 82 60 20 00 subx %g0, 0, %g1
20077dc: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
20077e0: 81 c7 e0 08 ret
20077e4: 91 e8 00 10 restore %g0, %l0, %o0
020190a4 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
20190a4: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
20190a8: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
20190ac: 82 22 40 01 sub %o1, %g1, %g1
20190b0: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
20190b4: 80 a0 80 01 cmp %g2, %g1
20190b8: 0a 80 00 09 bcs 20190dc <_Objects_Get_no_protection+0x38>
20190bc: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
20190c0: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
20190c4: d0 00 80 01 ld [ %g2 + %g1 ], %o0
20190c8: 80 a2 20 00 cmp %o0, 0
20190cc: 02 80 00 05 be 20190e0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
20190d0: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
20190d4: 81 c3 e0 08 retl
20190d8: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
20190dc: 82 10 20 01 mov 1, %g1
return NULL;
20190e0: 90 10 20 00 clr %o0
}
20190e4: 81 c3 e0 08 retl
20190e8: c2 22 80 00 st %g1, [ %o2 ]
02009050 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2009050: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009054: 92 96 20 00 orcc %i0, 0, %o1
2009058: 12 80 00 06 bne 2009070 <_Objects_Id_to_name+0x20>
200905c: 83 32 60 18 srl %o1, 0x18, %g1
2009060: 03 00 80 74 sethi %hi(0x201d000), %g1
2009064: c2 00 63 48 ld [ %g1 + 0x348 ], %g1 ! 201d348 <_Per_CPU_Information+0xc>
2009068: d2 00 60 08 ld [ %g1 + 8 ], %o1
200906c: 83 32 60 18 srl %o1, 0x18, %g1
2009070: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2009074: 84 00 7f ff add %g1, -1, %g2
2009078: 80 a0 a0 02 cmp %g2, 2
200907c: 18 80 00 12 bgu 20090c4 <_Objects_Id_to_name+0x74>
2009080: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009084: 10 80 00 12 b 20090cc <_Objects_Id_to_name+0x7c>
2009088: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200908c: 85 28 a0 02 sll %g2, 2, %g2
2009090: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009094: 80 a2 20 00 cmp %o0, 0
2009098: 02 80 00 0b be 20090c4 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
200909c: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
20090a0: 7f ff ff cf call 2008fdc <_Objects_Get>
20090a4: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
20090a8: 80 a2 20 00 cmp %o0, 0
20090ac: 02 80 00 06 be 20090c4 <_Objects_Id_to_name+0x74>
20090b0: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
20090b4: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
20090b8: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
20090bc: 40 00 03 72 call 2009e84 <_Thread_Enable_dispatch>
20090c0: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
20090c4: 81 c7 e0 08 ret
20090c8: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20090cc: 05 00 80 74 sethi %hi(0x201d000), %g2
20090d0: 84 10 a0 78 or %g2, 0x78, %g2 ! 201d078 <_Objects_Information_table>
20090d4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
20090d8: 80 a0 60 00 cmp %g1, 0
20090dc: 12 bf ff ec bne 200908c <_Objects_Id_to_name+0x3c>
20090e0: 85 32 60 1b srl %o1, 0x1b, %g2
20090e4: 30 bf ff f8 b,a 20090c4 <_Objects_Id_to_name+0x74>
0200b680 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200b680: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b684: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
if ( !api )
200b688: 80 a4 20 00 cmp %l0, 0
200b68c: 02 80 00 1d be 200b700 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b690: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200b694: 7f ff da 14 call 2001ee4 <sparc_disable_interrupts>
200b698: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b69c: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b6a0: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b6a4: 7f ff da 14 call 2001ef4 <sparc_enable_interrupts>
200b6a8: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b6ac: 80 a4 e0 00 cmp %l3, 0
200b6b0: 02 80 00 14 be 200b700 <_RTEMS_tasks_Post_switch_extension+0x80>
200b6b4: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
200b6b8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6bc: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200b6c0: 82 00 60 01 inc %g1
200b6c4: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6c8: 94 10 00 11 mov %l1, %o2
200b6cc: 25 00 00 3f sethi %hi(0xfc00), %l2
200b6d0: 40 00 07 4c call 200d400 <rtems_task_mode>
200b6d4: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b6d8: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200b6dc: 9f c0 40 00 call %g1
200b6e0: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b6e4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6e8: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b6ec: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6f0: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b6f4: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6f8: 40 00 07 42 call 200d400 <rtems_task_mode>
200b6fc: 94 10 00 11 mov %l1, %o2
200b700: 81 c7 e0 08 ret
200b704: 81 e8 00 00 restore
020076c4 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
20076c4: 9d e3 bf 98 save %sp, -104, %sp
20076c8: 11 00 80 75 sethi %hi(0x201d400), %o0
20076cc: 92 10 00 18 mov %i0, %o1
20076d0: 90 12 21 f4 or %o0, 0x1f4, %o0
20076d4: 40 00 07 c2 call 20095dc <_Objects_Get>
20076d8: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20076dc: c2 07 bf fc ld [ %fp + -4 ], %g1
20076e0: 80 a0 60 00 cmp %g1, 0
20076e4: 12 80 00 24 bne 2007774 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
20076e8: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
20076ec: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
20076f0: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
20076f4: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
20076f8: 80 88 80 01 btst %g2, %g1
20076fc: 22 80 00 0b be,a 2007728 <_Rate_monotonic_Timeout+0x64>
2007700: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007704: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007708: c2 04 20 08 ld [ %l0 + 8 ], %g1
200770c: 80 a0 80 01 cmp %g2, %g1
2007710: 32 80 00 06 bne,a 2007728 <_Rate_monotonic_Timeout+0x64>
2007714: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007718: 13 04 00 ff sethi %hi(0x1003fc00), %o1
200771c: 40 00 0a 56 call 200a074 <_Thread_Clear_state>
2007720: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
2007724: 30 80 00 06 b,a 200773c <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007728: 80 a0 60 01 cmp %g1, 1
200772c: 12 80 00 0d bne 2007760 <_Rate_monotonic_Timeout+0x9c>
2007730: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007734: 82 10 20 03 mov 3, %g1
2007738: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
200773c: 7f ff fe 66 call 20070d4 <_Rate_monotonic_Initiate_statistics>
2007740: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007744: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007748: 11 00 80 76 sethi %hi(0x201d800), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
200774c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007750: 90 12 20 24 or %o0, 0x24, %o0
2007754: 40 00 0f 2e call 200b40c <_Watchdog_Insert>
2007758: 92 04 20 10 add %l0, 0x10, %o1
200775c: 30 80 00 02 b,a 2007764 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007760: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007764: 03 00 80 75 sethi %hi(0x201d400), %g1
2007768: c4 00 63 60 ld [ %g1 + 0x360 ], %g2 ! 201d760 <_Thread_Dispatch_disable_level>
200776c: 84 00 bf ff add %g2, -1, %g2
2007770: c4 20 63 60 st %g2, [ %g1 + 0x360 ]
2007774: 81 c7 e0 08 ret
2007778: 81 e8 00 00 restore
02007bd4 <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
2007bd4: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
2007bd8: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
2007bdc: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
2007be0: c8 00 40 00 ld [ %g1 ], %g4
2007be4: c6 00 60 08 ld [ %g1 + 8 ], %g3
2007be8: 80 a1 00 03 cmp %g4, %g3
2007bec: 32 80 00 16 bne,a 2007c44 <_Scheduler_priority_Block+0x70>
2007bf0: c4 06 00 00 ld [ %i0 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2007bf4: 86 00 60 04 add %g1, 4, %g3
head->next = tail;
2007bf8: c6 20 40 00 st %g3, [ %g1 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
2007bfc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
head->previous = NULL;
2007c00: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2007c04: c2 20 60 08 st %g1, [ %g1 + 8 ]
2007c08: c2 10 a0 0e lduh [ %g2 + 0xe ], %g1
2007c0c: c8 10 c0 00 lduh [ %g3 ], %g4
2007c10: 82 09 00 01 and %g4, %g1, %g1
2007c14: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
2007c18: 83 28 60 10 sll %g1, 0x10, %g1
2007c1c: 80 a0 60 00 cmp %g1, 0
2007c20: 32 80 00 0d bne,a 2007c54 <_Scheduler_priority_Block+0x80>
2007c24: 03 00 80 53 sethi %hi(0x2014c00), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
2007c28: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007c2c: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
2007c30: c6 10 63 80 lduh [ %g1 + 0x380 ], %g3
2007c34: 84 08 80 03 and %g2, %g3, %g2
2007c38: c4 30 63 80 sth %g2, [ %g1 + 0x380 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
2007c3c: 10 80 00 06 b 2007c54 <_Scheduler_priority_Block+0x80>
2007c40: 03 00 80 53 sethi %hi(0x2014c00), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2007c44: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
2007c48: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2007c4c: c4 20 40 00 st %g2, [ %g1 ]
2007c50: 03 00 80 53 sethi %hi(0x2014c00), %g1
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
2007c54: c2 00 63 6c ld [ %g1 + 0x36c ], %g1 ! 2014f6c <_Per_CPU_Information+0x10>
2007c58: 80 a6 00 01 cmp %i0, %g1
2007c5c: 32 80 00 33 bne,a 2007d28 <_Scheduler_priority_Block+0x154>
2007c60: 03 00 80 53 sethi %hi(0x2014c00), %g1
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
2007c64: 03 00 80 50 sethi %hi(0x2014000), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007c68: c6 00 60 90 ld [ %g1 + 0x90 ], %g3 ! 2014090 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007c6c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007c70: c4 10 63 80 lduh [ %g1 + 0x380 ], %g2 ! 2014f80 <_Priority_Major_bit_map>
2007c74: 03 00 80 4d sethi %hi(0x2013400), %g1
2007c78: 85 28 a0 10 sll %g2, 0x10, %g2
2007c7c: 89 30 a0 10 srl %g2, 0x10, %g4
2007c80: 80 a1 20 ff cmp %g4, 0xff
2007c84: 18 80 00 05 bgu 2007c98 <_Scheduler_priority_Block+0xc4>
2007c88: 82 10 63 88 or %g1, 0x388, %g1
2007c8c: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
2007c90: 10 80 00 04 b 2007ca0 <_Scheduler_priority_Block+0xcc>
2007c94: 84 00 a0 08 add %g2, 8, %g2
2007c98: 85 30 a0 18 srl %g2, 0x18, %g2
2007c9c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007ca0: 83 28 a0 10 sll %g2, 0x10, %g1
2007ca4: 09 00 80 53 sethi %hi(0x2014c00), %g4
2007ca8: 83 30 60 0f srl %g1, 0xf, %g1
2007cac: 88 11 23 90 or %g4, 0x390, %g4
2007cb0: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
2007cb4: 03 00 80 4d sethi %hi(0x2013400), %g1
2007cb8: 89 29 20 10 sll %g4, 0x10, %g4
2007cbc: 9b 31 20 10 srl %g4, 0x10, %o5
2007cc0: 80 a3 60 ff cmp %o5, 0xff
2007cc4: 18 80 00 05 bgu 2007cd8 <_Scheduler_priority_Block+0x104>
2007cc8: 82 10 63 88 or %g1, 0x388, %g1
2007ccc: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
2007cd0: 10 80 00 04 b 2007ce0 <_Scheduler_priority_Block+0x10c>
2007cd4: 82 00 60 08 add %g1, 8, %g1
2007cd8: 89 31 20 18 srl %g4, 0x18, %g4
2007cdc: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
2007ce0: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007ce4: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
2007ce8: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007cec: 85 30 a0 0c srl %g2, 0xc, %g2
2007cf0: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
2007cf4: 89 28 a0 02 sll %g2, 2, %g4
2007cf8: 83 28 a0 04 sll %g2, 4, %g1
2007cfc: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
2007d00: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
2007d04: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2007d08: 86 01 20 04 add %g4, 4, %g3
2007d0c: 80 a0 80 03 cmp %g2, %g3
2007d10: 02 80 00 03 be 2007d1c <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
2007d14: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2007d18: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007d1c: 05 00 80 53 sethi %hi(0x2014c00), %g2
2007d20: c2 20 a3 6c st %g1, [ %g2 + 0x36c ] ! 2014f6c <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007d24: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007d28: 82 10 63 5c or %g1, 0x35c, %g1 ! 2014f5c <_Per_CPU_Information>
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
2007d2c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2007d30: 80 a6 00 02 cmp %i0, %g2
2007d34: 12 80 00 03 bne 2007d40 <_Scheduler_priority_Block+0x16c>
2007d38: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2007d3c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2007d40: 81 c7 e0 08 ret
2007d44: 81 e8 00 00 restore
02007ef8 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
2007ef8: 9d e3 bf a0 save %sp, -96, %sp
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
2007efc: 03 00 80 50 sethi %hi(0x2014000), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007f00: c6 00 60 90 ld [ %g1 + 0x90 ], %g3 ! 2014090 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007f04: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007f08: c4 10 63 80 lduh [ %g1 + 0x380 ], %g2 ! 2014f80 <_Priority_Major_bit_map>
2007f0c: 03 00 80 4d sethi %hi(0x2013400), %g1
2007f10: 85 28 a0 10 sll %g2, 0x10, %g2
2007f14: 89 30 a0 10 srl %g2, 0x10, %g4
2007f18: 80 a1 20 ff cmp %g4, 0xff
2007f1c: 18 80 00 05 bgu 2007f30 <_Scheduler_priority_Schedule+0x38>
2007f20: 82 10 63 88 or %g1, 0x388, %g1
2007f24: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
2007f28: 10 80 00 04 b 2007f38 <_Scheduler_priority_Schedule+0x40>
2007f2c: 84 00 a0 08 add %g2, 8, %g2
2007f30: 85 30 a0 18 srl %g2, 0x18, %g2
2007f34: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007f38: 83 28 a0 10 sll %g2, 0x10, %g1
2007f3c: 09 00 80 53 sethi %hi(0x2014c00), %g4
2007f40: 83 30 60 0f srl %g1, 0xf, %g1
2007f44: 88 11 23 90 or %g4, 0x390, %g4
2007f48: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
2007f4c: 03 00 80 4d sethi %hi(0x2013400), %g1
2007f50: 89 29 20 10 sll %g4, 0x10, %g4
2007f54: 9b 31 20 10 srl %g4, 0x10, %o5
2007f58: 80 a3 60 ff cmp %o5, 0xff
2007f5c: 18 80 00 05 bgu 2007f70 <_Scheduler_priority_Schedule+0x78>
2007f60: 82 10 63 88 or %g1, 0x388, %g1
2007f64: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
2007f68: 10 80 00 04 b 2007f78 <_Scheduler_priority_Schedule+0x80>
2007f6c: 82 00 60 08 add %g1, 8, %g1
2007f70: 89 31 20 18 srl %g4, 0x18, %g4
2007f74: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
2007f78: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007f7c: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
2007f80: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007f84: 85 30 a0 0c srl %g2, 0xc, %g2
2007f88: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
2007f8c: 89 28 a0 02 sll %g2, 2, %g4
2007f90: 83 28 a0 04 sll %g2, 4, %g1
2007f94: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
2007f98: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
2007f9c: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2007fa0: 86 01 20 04 add %g4, 4, %g3
2007fa4: 80 a0 80 03 cmp %g2, %g3
2007fa8: 02 80 00 03 be 2007fb4 <_Scheduler_priority_Schedule+0xbc><== NEVER TAKEN
2007fac: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2007fb0: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007fb4: 05 00 80 53 sethi %hi(0x2014c00), %g2
2007fb8: c2 20 a3 6c st %g1, [ %g2 + 0x36c ] ! 2014f6c <_Per_CPU_Information+0x10>
2007fbc: 81 c7 e0 08 ret
2007fc0: 81 e8 00 00 restore
020080dc <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
20080dc: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
20080e0: 25 00 80 53 sethi %hi(0x2014c00), %l2
20080e4: a4 14 a3 5c or %l2, 0x35c, %l2 ! 2014f5c <_Per_CPU_Information>
20080e8: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
20080ec: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
20080f0: 7f ff e7 7d call 2001ee4 <sparc_disable_interrupts>
20080f4: e2 00 40 00 ld [ %g1 ], %l1
20080f8: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
20080fc: c4 04 40 00 ld [ %l1 ], %g2
2008100: c2 04 60 08 ld [ %l1 + 8 ], %g1
2008104: 80 a0 80 01 cmp %g2, %g1
2008108: 22 80 00 1a be,a 2008170 <_Scheduler_priority_Yield+0x94>
200810c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
2008110: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
2008114: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
2008118: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200811c: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
2008120: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
2008124: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
2008128: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
200812c: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
2008130: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
2008134: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
2008138: 7f ff e7 6f call 2001ef4 <sparc_enable_interrupts>
200813c: 01 00 00 00 nop
2008140: 7f ff e7 69 call 2001ee4 <sparc_disable_interrupts>
2008144: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
2008148: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
200814c: 80 a4 00 01 cmp %l0, %g1
2008150: 12 80 00 04 bne 2008160 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
2008154: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
2008158: c2 04 40 00 ld [ %l1 ], %g1
200815c: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
2008160: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008164: 82 10 63 5c or %g1, 0x35c, %g1 ! 2014f5c <_Per_CPU_Information>
2008168: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200816c: 30 80 00 05 b,a 2008180 <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
2008170: 80 a4 00 01 cmp %l0, %g1
2008174: 02 80 00 03 be 2008180 <_Scheduler_priority_Yield+0xa4>
2008178: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
200817c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
_ISR_Enable( level );
2008180: 7f ff e7 5d call 2001ef4 <sparc_enable_interrupts>
2008184: 81 e8 00 00 restore
02007104 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007104: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007108: 03 00 80 74 sethi %hi(0x201d000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
200710c: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007110: d2 00 63 e4 ld [ %g1 + 0x3e4 ], %o1
if ((!the_tod) ||
2007114: 80 a4 20 00 cmp %l0, 0
2007118: 02 80 00 2b be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN
200711c: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007120: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007124: 40 00 48 2c call 20191d4 <.udiv>
2007128: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200712c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2007130: 80 a0 40 08 cmp %g1, %o0
2007134: 1a 80 00 24 bcc 20071c4 <_TOD_Validate+0xc0>
2007138: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
200713c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2007140: 80 a0 60 3b cmp %g1, 0x3b
2007144: 18 80 00 20 bgu 20071c4 <_TOD_Validate+0xc0>
2007148: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
200714c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
2007150: 80 a0 60 3b cmp %g1, 0x3b
2007154: 18 80 00 1c bgu 20071c4 <_TOD_Validate+0xc0>
2007158: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
200715c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2007160: 80 a0 60 17 cmp %g1, 0x17
2007164: 18 80 00 18 bgu 20071c4 <_TOD_Validate+0xc0>
2007168: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
200716c: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007170: 80 a0 60 00 cmp %g1, 0
2007174: 02 80 00 14 be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007178: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
200717c: 18 80 00 12 bgu 20071c4 <_TOD_Validate+0xc0>
2007180: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007184: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007188: 80 a0 e7 c3 cmp %g3, 0x7c3
200718c: 08 80 00 0e bleu 20071c4 <_TOD_Validate+0xc0>
2007190: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007194: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007198: 80 a0 a0 00 cmp %g2, 0
200719c: 02 80 00 0a be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN
20071a0: 80 88 e0 03 btst 3, %g3
20071a4: 07 00 80 70 sethi %hi(0x201c000), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
20071a8: 12 80 00 03 bne 20071b4 <_TOD_Validate+0xb0>
20071ac: 86 10 e0 30 or %g3, 0x30, %g3 ! 201c030 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20071b0: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20071b4: 83 28 60 02 sll %g1, 2, %g1
20071b8: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20071bc: 80 a0 40 02 cmp %g1, %g2
20071c0: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
20071c4: 81 c7 e0 08 ret
20071c8: 81 e8 00 00 restore
020081e0 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
20081e0: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
20081e4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
20081e8: 40 00 03 60 call 2008f68 <_Thread_Set_transient>
20081ec: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
20081f0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20081f4: 80 a0 40 19 cmp %g1, %i1
20081f8: 02 80 00 05 be 200820c <_Thread_Change_priority+0x2c>
20081fc: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2008200: 90 10 00 18 mov %i0, %o0
2008204: 40 00 03 3f call 2008f00 <_Thread_Set_priority>
2008208: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
200820c: 7f ff e7 36 call 2001ee4 <sparc_disable_interrupts>
2008210: 01 00 00 00 nop
2008214: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008218: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
200821c: 80 a6 60 04 cmp %i1, 4
2008220: 02 80 00 10 be 2008260 <_Thread_Change_priority+0x80>
2008224: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2008228: 80 a4 60 00 cmp %l1, 0
200822c: 12 80 00 03 bne 2008238 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2008230: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008234: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
2008238: 7f ff e7 2f call 2001ef4 <sparc_enable_interrupts>
200823c: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008240: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008244: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008248: 80 8e 40 01 btst %i1, %g1
200824c: 02 80 00 28 be 20082ec <_Thread_Change_priority+0x10c>
2008250: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2008254: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
2008258: 40 00 02 fd call 2008e4c <_Thread_queue_Requeue>
200825c: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008260: 80 a4 60 00 cmp %l1, 0
2008264: 12 80 00 0b bne 2008290 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
2008268: 03 00 80 50 sethi %hi(0x2014000), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
200826c: c0 24 20 10 clr [ %l0 + 0x10 ]
if ( prepend_it )
2008270: 80 8e a0 ff btst 0xff, %i2
2008274: 02 80 00 04 be 2008284 <_Thread_Change_priority+0xa4>
2008278: 82 10 60 90 or %g1, 0x90, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
200827c: 10 80 00 03 b 2008288 <_Thread_Change_priority+0xa8>
2008280: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2008284: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
2008288: 9f c0 40 00 call %g1
200828c: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008290: 7f ff e7 19 call 2001ef4 <sparc_enable_interrupts>
2008294: 90 10 00 18 mov %i0, %o0
2008298: 7f ff e7 13 call 2001ee4 <sparc_disable_interrupts>
200829c: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
20082a0: 03 00 80 50 sethi %hi(0x2014000), %g1
20082a4: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 2014098 <_Scheduler+0x8>
20082a8: 9f c0 40 00 call %g1
20082ac: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
20082b0: 03 00 80 53 sethi %hi(0x2014c00), %g1
20082b4: 82 10 63 5c or %g1, 0x35c, %g1 ! 2014f5c <_Per_CPU_Information>
20082b8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
20082bc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20082c0: 80 a0 80 03 cmp %g2, %g3
20082c4: 02 80 00 08 be 20082e4 <_Thread_Change_priority+0x104>
20082c8: 01 00 00 00 nop
20082cc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
20082d0: 80 a0 a0 00 cmp %g2, 0
20082d4: 02 80 00 04 be 20082e4 <_Thread_Change_priority+0x104>
20082d8: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20082dc: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
20082e0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20082e4: 7f ff e7 04 call 2001ef4 <sparc_enable_interrupts>
20082e8: 81 e8 00 00 restore
20082ec: 81 c7 e0 08 ret
20082f0: 81 e8 00 00 restore
020084e0 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20084e0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
20084e4: 90 10 00 18 mov %i0, %o0
20084e8: 40 00 00 6e call 20086a0 <_Thread_Get>
20084ec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20084f0: c2 07 bf fc ld [ %fp + -4 ], %g1
20084f4: 80 a0 60 00 cmp %g1, 0
20084f8: 12 80 00 08 bne 2008518 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
20084fc: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008500: 7f ff ff 7d call 20082f4 <_Thread_Clear_state>
2008504: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
2008508: 03 00 80 53 sethi %hi(0x2014c00), %g1
200850c: c4 00 61 30 ld [ %g1 + 0x130 ], %g2 ! 2014d30 <_Thread_Dispatch_disable_level>
2008510: 84 00 bf ff add %g2, -1, %g2
2008514: c4 20 61 30 st %g2, [ %g1 + 0x130 ]
2008518: 81 c7 e0 08 ret
200851c: 81 e8 00 00 restore
02008520 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008520: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
2008524: 2d 00 80 53 sethi %hi(0x2014c00), %l6
2008528: 82 15 a3 5c or %l6, 0x35c, %g1 ! 2014f5c <_Per_CPU_Information>
_ISR_Disable( level );
200852c: 7f ff e6 6e call 2001ee4 <sparc_disable_interrupts>
2008530: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008534: 25 00 80 53 sethi %hi(0x2014c00), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008538: 37 00 80 53 sethi %hi(0x2014c00), %i3
200853c: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008540: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008544: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
2008548: a8 07 bf f0 add %fp, -16, %l4
200854c: a4 14 a1 e0 or %l2, 0x1e0, %l2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008550: 2f 00 80 53 sethi %hi(0x2014c00), %l7
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008554: 10 80 00 39 b 2008638 <_Thread_Dispatch+0x118>
2008558: 27 00 80 53 sethi %hi(0x2014c00), %l3
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
200855c: f8 26 e1 30 st %i4, [ %i3 + 0x130 ]
_Thread_Dispatch_necessary = false;
2008560: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008564: 80 a4 40 10 cmp %l1, %l0
2008568: 02 80 00 39 be 200864c <_Thread_Dispatch+0x12c>
200856c: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008570: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008574: 80 a0 60 01 cmp %g1, 1
2008578: 12 80 00 03 bne 2008584 <_Thread_Dispatch+0x64>
200857c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008580: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008584: 7f ff e6 5c call 2001ef4 <sparc_enable_interrupts>
2008588: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
200858c: 40 00 0d 39 call 200ba70 <_TOD_Get_uptime>
2008590: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008594: 90 10 00 12 mov %l2, %o0
2008598: 92 10 00 15 mov %l5, %o1
200859c: 40 00 03 06 call 20091b4 <_Timespec_Subtract>
20085a0: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
20085a4: 90 04 20 84 add %l0, 0x84, %o0
20085a8: 40 00 02 ea call 2009150 <_Timespec_Add_to>
20085ac: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
20085b0: c2 07 bf f8 ld [ %fp + -8 ], %g1
20085b4: c2 24 80 00 st %g1, [ %l2 ]
20085b8: c2 07 bf fc ld [ %fp + -4 ], %g1
20085bc: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20085c0: c2 05 e1 b8 ld [ %l7 + 0x1b8 ], %g1
20085c4: 80 a0 60 00 cmp %g1, 0
20085c8: 02 80 00 06 be 20085e0 <_Thread_Dispatch+0xc0> <== NEVER TAKEN
20085cc: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
20085d0: c4 00 40 00 ld [ %g1 ], %g2
20085d4: c4 24 21 54 st %g2, [ %l0 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
20085d8: c4 04 61 54 ld [ %l1 + 0x154 ], %g2
20085dc: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
20085e0: 40 00 03 a5 call 2009474 <_User_extensions_Thread_switch>
20085e4: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
20085e8: 90 04 20 c8 add %l0, 0xc8, %o0
20085ec: 40 00 04 d0 call 200992c <_CPU_Context_switch>
20085f0: 92 04 60 c8 add %l1, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
20085f4: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
20085f8: 80 a0 60 00 cmp %g1, 0
20085fc: 02 80 00 0c be 200862c <_Thread_Dispatch+0x10c>
2008600: d0 04 e1 b4 ld [ %l3 + 0x1b4 ], %o0
2008604: 80 a4 00 08 cmp %l0, %o0
2008608: 02 80 00 09 be 200862c <_Thread_Dispatch+0x10c>
200860c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008610: 02 80 00 04 be 2008620 <_Thread_Dispatch+0x100>
2008614: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008618: 40 00 04 8b call 2009844 <_CPU_Context_save_fp>
200861c: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008620: 40 00 04 a6 call 20098b8 <_CPU_Context_restore_fp>
2008624: 90 04 21 50 add %l0, 0x150, %o0
_Thread_Allocated_fp = executing;
2008628: e0 24 e1 b4 st %l0, [ %l3 + 0x1b4 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
200862c: 82 15 a3 5c or %l6, 0x35c, %g1
_ISR_Disable( level );
2008630: 7f ff e6 2d call 2001ee4 <sparc_disable_interrupts>
2008634: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008638: 82 15 a3 5c or %l6, 0x35c, %g1
200863c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
2008640: 80 a0 a0 00 cmp %g2, 0
2008644: 32 bf ff c6 bne,a 200855c <_Thread_Dispatch+0x3c>
2008648: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
200864c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008650: c0 20 61 30 clr [ %g1 + 0x130 ] ! 2014d30 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008654: 7f ff e6 28 call 2001ef4 <sparc_enable_interrupts>
2008658: 01 00 00 00 nop
_API_extensions_Run_postswitch();
200865c: 7f ff f8 76 call 2006834 <_API_extensions_Run_postswitch>
2008660: 01 00 00 00 nop
}
2008664: 81 c7 e0 08 ret
2008668: 81 e8 00 00 restore
0200d730 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200d730: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200d734: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d738: e0 00 63 68 ld [ %g1 + 0x368 ], %l0 ! 2014f68 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200d73c: 3f 00 80 35 sethi %hi(0x200d400), %i7
200d740: be 17 e3 30 or %i7, 0x330, %i7 ! 200d730 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200d744: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
200d748: 7f ff d1 eb call 2001ef4 <sparc_enable_interrupts>
200d74c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d750: 03 00 80 52 sethi %hi(0x2014800), %g1
doneConstructors = 1;
200d754: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d758: e2 08 61 f0 ldub [ %g1 + 0x1f0 ], %l1
doneConstructors = 1;
200d75c: c4 28 61 f0 stb %g2, [ %g1 + 0x1f0 ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200d760: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
200d764: 80 a0 60 00 cmp %g1, 0
200d768: 02 80 00 0c be 200d798 <_Thread_Handler+0x68>
200d76c: 03 00 80 53 sethi %hi(0x2014c00), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200d770: d0 00 61 b4 ld [ %g1 + 0x1b4 ], %o0 ! 2014db4 <_Thread_Allocated_fp>
200d774: 80 a4 00 08 cmp %l0, %o0
200d778: 02 80 00 08 be 200d798 <_Thread_Handler+0x68>
200d77c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200d780: 22 80 00 06 be,a 200d798 <_Thread_Handler+0x68>
200d784: e0 20 61 b4 st %l0, [ %g1 + 0x1b4 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d788: 7f ff f0 2f call 2009844 <_CPU_Context_save_fp>
200d78c: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200d790: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d794: e0 20 61 b4 st %l0, [ %g1 + 0x1b4 ] ! 2014db4 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200d798: 7f ff ee c7 call 20092b4 <_User_extensions_Thread_begin>
200d79c: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200d7a0: 7f ff eb b3 call 200866c <_Thread_Enable_dispatch>
200d7a4: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200d7a8: 80 a4 60 00 cmp %l1, 0
200d7ac: 32 80 00 05 bne,a 200d7c0 <_Thread_Handler+0x90>
200d7b0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
200d7b4: 40 00 1a 23 call 2014040 <_init>
200d7b8: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200d7bc: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200d7c0: 80 a0 60 00 cmp %g1, 0
200d7c4: 12 80 00 06 bne 200d7dc <_Thread_Handler+0xac> <== NEVER TAKEN
200d7c8: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200d7cc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200d7d0: 9f c0 40 00 call %g1
200d7d4: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200d7d8: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200d7dc: 7f ff ee c7 call 20092f8 <_User_extensions_Thread_exitted>
200d7e0: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200d7e4: 90 10 20 00 clr %o0
200d7e8: 92 10 20 01 mov 1, %o1
200d7ec: 7f ff e6 b4 call 20072bc <_Internal_error_Occurred>
200d7f0: 94 10 20 05 mov 5, %o2
0200874c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200874c: 9d e3 bf a0 save %sp, -96, %sp
2008750: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008754: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2
2008758: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200875c: c0 26 61 58 clr [ %i1 + 0x158 ]
2008760: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008764: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008768: 90 10 00 19 mov %i1, %o0
200876c: 40 00 02 0f call 2008fa8 <_Thread_Stack_Allocate>
2008770: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008774: 80 a2 00 1b cmp %o0, %i3
2008778: 0a 80 00 63 bcs 2008904 <_Thread_Initialize+0x1b8>
200877c: 80 a2 20 00 cmp %o0, 0
2008780: 02 80 00 61 be 2008904 <_Thread_Initialize+0x1b8> <== NEVER TAKEN
2008784: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008788: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
200878c: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008790: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008794: 02 80 00 07 be 20087b0 <_Thread_Initialize+0x64>
2008798: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200879c: 40 00 04 0c call 20097cc <_Workspace_Allocate>
20087a0: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
20087a4: a2 92 20 00 orcc %o0, 0, %l1
20087a8: 02 80 00 45 be 20088bc <_Thread_Initialize+0x170>
20087ac: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20087b0: 03 00 80 53 sethi %hi(0x2014c00), %g1
20087b4: d0 00 61 c4 ld [ %g1 + 0x1c4 ], %o0 ! 2014dc4 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
20087b8: e2 26 61 50 st %l1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
20087bc: e2 26 60 bc st %l1, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20087c0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20087c4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20087c8: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
20087cc: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20087d0: 80 a2 20 00 cmp %o0, 0
20087d4: 02 80 00 08 be 20087f4 <_Thread_Initialize+0xa8>
20087d8: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
20087dc: 90 02 20 01 inc %o0
20087e0: 40 00 03 fb call 20097cc <_Workspace_Allocate>
20087e4: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
20087e8: b6 92 20 00 orcc %o0, 0, %i3
20087ec: 22 80 00 35 be,a 20088c0 <_Thread_Initialize+0x174>
20087f0: a4 10 20 00 clr %l2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
20087f4: 80 a6 e0 00 cmp %i3, 0
20087f8: 02 80 00 0b be 2008824 <_Thread_Initialize+0xd8>
20087fc: f6 26 61 60 st %i3, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008800: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008804: c4 00 61 c4 ld [ %g1 + 0x1c4 ], %g2 ! 2014dc4 <_Thread_Maximum_extensions>
2008808: 10 80 00 04 b 2008818 <_Thread_Initialize+0xcc>
200880c: 82 10 20 00 clr %g1
2008810: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008814: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008818: 80 a0 40 02 cmp %g1, %g2
200881c: 08 bf ff fd bleu 2008810 <_Thread_Initialize+0xc4>
2008820: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008824: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008828: e4 2e 60 a0 stb %l2, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
200882c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008830: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
2008834: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
2008838: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200883c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008840: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008844: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008848: 82 10 20 01 mov 1, %g1
200884c: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2008850: 03 00 80 50 sethi %hi(0x2014000), %g1
2008854: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20140a8 <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
2008858: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200885c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008860: 9f c0 40 00 call %g1
2008864: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2008868: a4 92 20 00 orcc %o0, 0, %l2
200886c: 22 80 00 16 be,a 20088c4 <_Thread_Initialize+0x178>
2008870: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008874: 90 10 00 19 mov %i1, %o0
2008878: 40 00 01 a2 call 2008f00 <_Thread_Set_priority>
200887c: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
2008880: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008884: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008888: c0 26 60 84 clr [ %i1 + 0x84 ]
200888c: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008890: 83 28 60 02 sll %g1, 2, %g1
2008894: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008898: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
200889c: 90 10 00 19 mov %i1, %o0
20088a0: 40 00 02 b8 call 2009380 <_User_extensions_Thread_create>
20088a4: b0 10 20 01 mov 1, %i0
if ( extension_status )
20088a8: 80 8a 20 ff btst 0xff, %o0
20088ac: 22 80 00 06 be,a 20088c4 <_Thread_Initialize+0x178>
20088b0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20088b4: 81 c7 e0 08 ret
20088b8: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
20088bc: a4 10 20 00 clr %l2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
20088c0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20088c4: 40 00 03 cb call 20097f0 <_Workspace_Free>
20088c8: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
20088cc: 40 00 03 c9 call 20097f0 <_Workspace_Free>
20088d0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
20088d4: 40 00 03 c7 call 20097f0 <_Workspace_Free>
20088d8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
20088dc: 40 00 03 c5 call 20097f0 <_Workspace_Free>
20088e0: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
20088e4: 40 00 03 c3 call 20097f0 <_Workspace_Free>
20088e8: 90 10 00 11 mov %l1, %o0
#endif
_Workspace_Free( sched );
20088ec: 40 00 03 c1 call 20097f0 <_Workspace_Free>
20088f0: 90 10 00 12 mov %l2, %o0
_Thread_Stack_Free( the_thread );
20088f4: 40 00 01 c4 call 2009004 <_Thread_Stack_Free>
20088f8: 90 10 00 19 mov %i1, %o0
return false;
20088fc: 81 c7 e0 08 ret
2008900: 81 e8 00 00 restore
}
2008904: 81 c7 e0 08 ret
2008908: 91 e8 20 00 restore %g0, 0, %o0
0200c4dc <_Thread_Resume>:
*/
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200c4dc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200c4e0: 7f ff d6 d1 call 2002024 <sparc_disable_interrupts>
200c4e4: a0 10 00 18 mov %i0, %l0
200c4e8: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
200c4ec: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c4f0: 80 88 60 02 btst 2, %g1
200c4f4: 02 80 00 09 be 200c518 <_Thread_Resume+0x3c> <== NEVER TAKEN
200c4f8: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200c4fc: 80 a0 60 00 cmp %g1, 0
200c500: 12 80 00 06 bne 200c518 <_Thread_Resume+0x3c>
200c504: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Thread_Control *the_thread
)
{
_Scheduler.Operations.unblock( the_thread );
200c508: 03 00 80 5e sethi %hi(0x2017800), %g1
200c50c: c2 00 62 94 ld [ %g1 + 0x294 ], %g1 ! 2017a94 <_Scheduler+0x14>
200c510: 9f c0 40 00 call %g1
200c514: 90 10 00 10 mov %l0, %o0
_Scheduler_Unblock( the_thread );
}
}
_ISR_Enable( level );
200c518: 7f ff d6 c7 call 2002034 <sparc_enable_interrupts>
200c51c: 81 e8 00 00 restore
02008e4c <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2008e4c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2008e50: 80 a6 20 00 cmp %i0, 0
2008e54: 02 80 00 19 be 2008eb8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008e58: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008e5c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
2008e60: 80 a4 60 01 cmp %l1, 1
2008e64: 12 80 00 15 bne 2008eb8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008e68: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2008e6c: 7f ff e4 1e call 2001ee4 <sparc_disable_interrupts>
2008e70: 01 00 00 00 nop
2008e74: a0 10 00 08 mov %o0, %l0
2008e78: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008e7c: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008e80: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008e84: 80 88 80 01 btst %g2, %g1
2008e88: 02 80 00 0a be 2008eb0 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008e8c: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008e90: 92 10 00 19 mov %i1, %o1
2008e94: 94 10 20 01 mov 1, %o2
2008e98: 40 00 0c 6c call 200c048 <_Thread_queue_Extract_priority_helper>
2008e9c: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008ea0: 90 10 00 18 mov %i0, %o0
2008ea4: 92 10 00 19 mov %i1, %o1
2008ea8: 7f ff ff 49 call 2008bcc <_Thread_queue_Enqueue_priority>
2008eac: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2008eb0: 7f ff e4 11 call 2001ef4 <sparc_enable_interrupts>
2008eb4: 90 10 00 10 mov %l0, %o0
2008eb8: 81 c7 e0 08 ret
2008ebc: 81 e8 00 00 restore
02008ec0 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008ec0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008ec4: 90 10 00 18 mov %i0, %o0
2008ec8: 7f ff fd f6 call 20086a0 <_Thread_Get>
2008ecc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008ed0: c2 07 bf fc ld [ %fp + -4 ], %g1
2008ed4: 80 a0 60 00 cmp %g1, 0
2008ed8: 12 80 00 08 bne 2008ef8 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008edc: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2008ee0: 40 00 0c 92 call 200c128 <_Thread_queue_Process_timeout>
2008ee4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2008ee8: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008eec: c4 00 61 30 ld [ %g1 + 0x130 ], %g2 ! 2014d30 <_Thread_Dispatch_disable_level>
2008ef0: 84 00 bf ff add %g2, -1, %g2
2008ef4: c4 20 61 30 st %g2, [ %g1 + 0x130 ]
2008ef8: 81 c7 e0 08 ret
2008efc: 81 e8 00 00 restore
0201687c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
201687c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016880: 39 00 80 f1 sethi %hi(0x203c400), %i4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016884: b6 07 bf f4 add %fp, -12, %i3
2016888: ae 07 bf f8 add %fp, -8, %l7
201688c: a4 07 bf e8 add %fp, -24, %l2
2016890: a6 07 bf ec add %fp, -20, %l3
2016894: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
2016898: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
201689c: f6 27 bf fc st %i3, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20168a0: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
20168a4: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20168a8: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168ac: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20168b0: 3b 00 80 f1 sethi %hi(0x203c400), %i5
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20168b4: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
20168b8: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
20168bc: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
20168c0: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20168c4: c2 07 23 74 ld [ %i4 + 0x374 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20168c8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168cc: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20168d0: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168d4: 90 10 00 14 mov %l4, %o0
20168d8: 40 00 11 bf call 201afd4 <_Watchdog_Adjust_to_chain>
20168dc: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20168e0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20168e4: e0 07 62 ec ld [ %i5 + 0x2ec ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20168e8: 80 a4 00 0a cmp %l0, %o2
20168ec: 08 80 00 06 bleu 2016904 <_Timer_server_Body+0x88>
20168f0: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168f4: 90 10 00 11 mov %l1, %o0
20168f8: 40 00 11 b7 call 201afd4 <_Watchdog_Adjust_to_chain>
20168fc: 94 10 00 12 mov %l2, %o2
2016900: 30 80 00 06 b,a 2016918 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
2016904: 1a 80 00 05 bcc 2016918 <_Timer_server_Body+0x9c>
2016908: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
201690c: 92 10 20 01 mov 1, %o1
2016910: 40 00 11 89 call 201af34 <_Watchdog_Adjust>
2016914: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
2016918: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
201691c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016920: 40 00 02 c0 call 2017420 <_Chain_Get>
2016924: 01 00 00 00 nop
if ( timer == NULL ) {
2016928: 92 92 20 00 orcc %o0, 0, %o1
201692c: 02 80 00 0c be 201695c <_Timer_server_Body+0xe0>
2016930: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016934: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016938: 80 a0 60 01 cmp %g1, 1
201693c: 02 80 00 05 be 2016950 <_Timer_server_Body+0xd4>
2016940: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016944: 80 a0 60 03 cmp %g1, 3
2016948: 12 bf ff f5 bne 201691c <_Timer_server_Body+0xa0> <== NEVER TAKEN
201694c: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016950: 40 00 11 d5 call 201b0a4 <_Watchdog_Insert>
2016954: 92 02 60 10 add %o1, 0x10, %o1
2016958: 30 bf ff f1 b,a 201691c <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
201695c: 7f ff e3 4d call 200f690 <sparc_disable_interrupts>
2016960: 01 00 00 00 nop
tmp = ts->insert_chain;
2016964: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
2016968: c2 07 bf f4 ld [ %fp + -12 ], %g1
201696c: 80 a0 40 17 cmp %g1, %l7
2016970: 12 80 00 04 bne 2016980 <_Timer_server_Body+0x104> <== NEVER TAKEN
2016974: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
2016978: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
201697c: a0 10 20 00 clr %l0
}
_ISR_Enable( level );
2016980: 7f ff e3 48 call 200f6a0 <sparc_enable_interrupts>
2016984: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
2016988: 80 8c 20 ff btst 0xff, %l0
201698c: 12 bf ff ce bne 20168c4 <_Timer_server_Body+0x48> <== NEVER TAKEN
2016990: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016994: 80 a0 40 13 cmp %g1, %l3
2016998: 02 80 00 18 be 20169f8 <_Timer_server_Body+0x17c>
201699c: 01 00 00 00 nop
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
20169a0: 7f ff e3 3c call 200f690 <sparc_disable_interrupts>
20169a4: 01 00 00 00 nop
20169a8: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
20169ac: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
20169b0: 80 a4 00 13 cmp %l0, %l3
20169b4: 02 80 00 0e be 20169ec <_Timer_server_Body+0x170>
20169b8: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
20169bc: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
20169c0: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
20169c4: 02 80 00 0a be 20169ec <_Timer_server_Body+0x170> <== NEVER TAKEN
20169c8: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
20169cc: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
20169d0: 7f ff e3 34 call 200f6a0 <sparc_enable_interrupts>
20169d4: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20169d8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
20169dc: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
20169e0: 9f c0 40 00 call %g1
20169e4: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
20169e8: 30 bf ff ee b,a 20169a0 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
20169ec: 7f ff e3 2d call 200f6a0 <sparc_enable_interrupts>
20169f0: 90 10 00 02 mov %g2, %o0
20169f4: 30 bf ff b3 b,a 20168c0 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
20169f8: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
20169fc: 7f ff ff 70 call 20167bc <_Thread_Disable_dispatch>
2016a00: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016a04: d0 06 00 00 ld [ %i0 ], %o0
2016a08: 40 00 0f 9f call 201a884 <_Thread_Set_state>
2016a0c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016a10: 7f ff ff 71 call 20167d4 <_Timer_server_Reset_interval_system_watchdog>
2016a14: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016a18: 7f ff ff 84 call 2016828 <_Timer_server_Reset_tod_system_watchdog>
2016a1c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016a20: 40 00 0d 37 call 2019efc <_Thread_Enable_dispatch>
2016a24: 01 00 00 00 nop
ts->active = true;
2016a28: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016a2c: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016a30: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016a34: 40 00 11 f8 call 201b214 <_Watchdog_Remove>
2016a38: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016a3c: 40 00 11 f6 call 201b214 <_Watchdog_Remove>
2016a40: 90 10 00 15 mov %l5, %o0
2016a44: 30 bf ff 9f b,a 20168c0 <_Timer_server_Body+0x44>
02016a48 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016a48: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016a4c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016a50: 80 a0 60 00 cmp %g1, 0
2016a54: 12 80 00 49 bne 2016b78 <_Timer_server_Schedule_operation_method+0x130>
2016a58: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2016a5c: 7f ff ff 58 call 20167bc <_Thread_Disable_dispatch>
2016a60: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016a64: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016a68: 80 a0 60 01 cmp %g1, 1
2016a6c: 12 80 00 1f bne 2016ae8 <_Timer_server_Schedule_operation_method+0xa0>
2016a70: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016a74: 7f ff e3 07 call 200f690 <sparc_disable_interrupts>
2016a78: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016a7c: 03 00 80 f1 sethi %hi(0x203c400), %g1
2016a80: c4 00 63 74 ld [ %g1 + 0x374 ], %g2 ! 203c774 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
2016a84: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016a88: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016a8c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016a90: 80 a0 40 03 cmp %g1, %g3
2016a94: 02 80 00 08 be 2016ab4 <_Timer_server_Schedule_operation_method+0x6c>
2016a98: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016a9c: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016aa0: 80 a3 40 04 cmp %o5, %g4
2016aa4: 08 80 00 03 bleu 2016ab0 <_Timer_server_Schedule_operation_method+0x68>
2016aa8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016aac: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016ab0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016ab4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016ab8: 7f ff e2 fa call 200f6a0 <sparc_enable_interrupts>
2016abc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016ac0: 90 06 20 30 add %i0, 0x30, %o0
2016ac4: 40 00 11 78 call 201b0a4 <_Watchdog_Insert>
2016ac8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016acc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016ad0: 80 a0 60 00 cmp %g1, 0
2016ad4: 12 80 00 27 bne 2016b70 <_Timer_server_Schedule_operation_method+0x128>
2016ad8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016adc: 7f ff ff 3e call 20167d4 <_Timer_server_Reset_interval_system_watchdog>
2016ae0: 90 10 00 18 mov %i0, %o0
2016ae4: 30 80 00 23 b,a 2016b70 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016ae8: 12 80 00 22 bne 2016b70 <_Timer_server_Schedule_operation_method+0x128>
2016aec: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016af0: 7f ff e2 e8 call 200f690 <sparc_disable_interrupts>
2016af4: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016af8: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016afc: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b00: 03 00 80 f1 sethi %hi(0x203c400), %g1
2016b04: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016b08: 80 a0 80 03 cmp %g2, %g3
2016b0c: 02 80 00 0d be 2016b40 <_Timer_server_Schedule_operation_method+0xf8>
2016b10: c2 00 62 ec ld [ %g1 + 0x2ec ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016b14: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016b18: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016b1c: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016b20: 08 80 00 07 bleu 2016b3c <_Timer_server_Schedule_operation_method+0xf4>
2016b24: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016b28: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016b2c: 80 a1 00 0d cmp %g4, %o5
2016b30: 08 80 00 03 bleu 2016b3c <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016b34: 86 10 20 00 clr %g3
delta_interval -= delta;
2016b38: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016b3c: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016b40: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016b44: 7f ff e2 d7 call 200f6a0 <sparc_enable_interrupts>
2016b48: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016b4c: 90 06 20 68 add %i0, 0x68, %o0
2016b50: 40 00 11 55 call 201b0a4 <_Watchdog_Insert>
2016b54: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b58: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016b5c: 80 a0 60 00 cmp %g1, 0
2016b60: 12 80 00 04 bne 2016b70 <_Timer_server_Schedule_operation_method+0x128>
2016b64: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016b68: 7f ff ff 30 call 2016828 <_Timer_server_Reset_tod_system_watchdog>
2016b6c: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016b70: 40 00 0c e3 call 2019efc <_Thread_Enable_dispatch>
2016b74: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016b78: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016b7c: 40 00 02 13 call 20173c8 <_Chain_Append>
2016b80: 81 e8 00 00 restore
020091fc <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
20091fc: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009200: 03 00 80 50 sethi %hi(0x2014000), %g1
2009204: 82 10 61 68 or %g1, 0x168, %g1 ! 2014168 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009208: 05 00 80 53 sethi %hi(0x2014c00), %g2
initial_extensions = Configuration.User_extension_table;
200920c: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009210: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
2009214: 82 10 a3 18 or %g2, 0x318, %g1
2009218: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
200921c: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009220: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009224: c6 20 a3 18 st %g3, [ %g2 + 0x318 ]
2009228: 05 00 80 53 sethi %hi(0x2014c00), %g2
200922c: 82 10 a1 34 or %g2, 0x134, %g1 ! 2014d34 <_User_extensions_Switches_list>
2009230: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
2009234: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009238: c6 20 a1 34 st %g3, [ %g2 + 0x134 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200923c: 80 a4 e0 00 cmp %l3, 0
2009240: 02 80 00 1b be 20092ac <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009244: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009248: 83 2c a0 02 sll %l2, 2, %g1
200924c: a1 2c a0 04 sll %l2, 4, %l0
2009250: a0 24 00 01 sub %l0, %g1, %l0
2009254: a0 04 00 12 add %l0, %l2, %l0
2009258: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
200925c: 40 00 01 6c call 200980c <_Workspace_Allocate_or_fatal_error>
2009260: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009264: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009268: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200926c: 92 10 20 00 clr %o1
2009270: 40 00 14 48 call 200e390 <memset>
2009274: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009278: 10 80 00 0b b 20092a4 <_User_extensions_Handler_initialization+0xa8>
200927c: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009280: 90 04 60 14 add %l1, 0x14, %o0
2009284: 92 04 c0 09 add %l3, %o1, %o1
2009288: 40 00 14 09 call 200e2ac <memcpy>
200928c: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
2009290: 90 10 00 11 mov %l1, %o0
2009294: 40 00 0b ca call 200c1bc <_User_extensions_Add_set>
2009298: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
200929c: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
20092a0: 80 a4 00 12 cmp %l0, %l2
20092a4: 0a bf ff f7 bcs 2009280 <_User_extensions_Handler_initialization+0x84>
20092a8: 93 2c 20 05 sll %l0, 5, %o1
20092ac: 81 c7 e0 08 ret
20092b0: 81 e8 00 00 restore
0200b4e0 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b4e0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b4e4: 7f ff de 8b call 2002f10 <sparc_disable_interrupts>
200b4e8: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
200b4ec: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b4f0: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b4f4: 80 a0 40 11 cmp %g1, %l1
200b4f8: 02 80 00 1f be 200b574 <_Watchdog_Adjust+0x94>
200b4fc: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b500: 02 80 00 1a be 200b568 <_Watchdog_Adjust+0x88>
200b504: a4 10 20 01 mov 1, %l2
200b508: 80 a6 60 01 cmp %i1, 1
200b50c: 12 80 00 1a bne 200b574 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b510: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b514: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b518: 10 80 00 07 b 200b534 <_Watchdog_Adjust+0x54>
200b51c: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b520: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
200b524: 80 a6 80 19 cmp %i2, %i1
200b528: 3a 80 00 05 bcc,a 200b53c <_Watchdog_Adjust+0x5c>
200b52c: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b530: b4 26 40 1a sub %i1, %i2, %i2
break;
200b534: 10 80 00 10 b 200b574 <_Watchdog_Adjust+0x94>
200b538: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b53c: 7f ff de 79 call 2002f20 <sparc_enable_interrupts>
200b540: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b544: 40 00 00 94 call 200b794 <_Watchdog_Tickle>
200b548: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b54c: 7f ff de 71 call 2002f10 <sparc_disable_interrupts>
200b550: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b554: c2 04 00 00 ld [ %l0 ], %g1
200b558: 80 a0 40 11 cmp %g1, %l1
200b55c: 02 80 00 06 be 200b574 <_Watchdog_Adjust+0x94>
200b560: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200b564: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b568: 80 a6 a0 00 cmp %i2, 0
200b56c: 32 bf ff ed bne,a 200b520 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b570: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b574: 7f ff de 6b call 2002f20 <sparc_enable_interrupts>
200b578: 91 e8 00 08 restore %g0, %o0, %o0
02009620 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009620: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009624: 7f ff e2 30 call 2001ee4 <sparc_disable_interrupts>
2009628: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
200962c: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009630: 80 a6 20 01 cmp %i0, 1
2009634: 22 80 00 1d be,a 20096a8 <_Watchdog_Remove+0x88>
2009638: c0 24 20 08 clr [ %l0 + 8 ]
200963c: 0a 80 00 1c bcs 20096ac <_Watchdog_Remove+0x8c>
2009640: 03 00 80 53 sethi %hi(0x2014c00), %g1
2009644: 80 a6 20 03 cmp %i0, 3
2009648: 18 80 00 19 bgu 20096ac <_Watchdog_Remove+0x8c> <== NEVER TAKEN
200964c: 01 00 00 00 nop
2009650: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009654: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009658: c4 00 40 00 ld [ %g1 ], %g2
200965c: 80 a0 a0 00 cmp %g2, 0
2009660: 02 80 00 07 be 200967c <_Watchdog_Remove+0x5c>
2009664: 05 00 80 53 sethi %hi(0x2014c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009668: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200966c: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
2009670: 84 00 c0 02 add %g3, %g2, %g2
2009674: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009678: 05 00 80 53 sethi %hi(0x2014c00), %g2
200967c: c4 00 a2 40 ld [ %g2 + 0x240 ], %g2 ! 2014e40 <_Watchdog_Sync_count>
2009680: 80 a0 a0 00 cmp %g2, 0
2009684: 22 80 00 07 be,a 20096a0 <_Watchdog_Remove+0x80>
2009688: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200968c: 05 00 80 53 sethi %hi(0x2014c00), %g2
2009690: c6 00 a3 64 ld [ %g2 + 0x364 ], %g3 ! 2014f64 <_Per_CPU_Information+0x8>
2009694: 05 00 80 53 sethi %hi(0x2014c00), %g2
2009698: c6 20 a1 d8 st %g3, [ %g2 + 0x1d8 ] ! 2014dd8 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200969c: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
20096a0: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
20096a4: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
20096a8: 03 00 80 53 sethi %hi(0x2014c00), %g1
20096ac: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 2014e44 <_Watchdog_Ticks_since_boot>
20096b0: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
20096b4: 7f ff e2 10 call 2001ef4 <sparc_enable_interrupts>
20096b8: 01 00 00 00 nop
return( previous_state );
}
20096bc: 81 c7 e0 08 ret
20096c0: 81 e8 00 00 restore
0200acf8 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200acf8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200acfc: 7f ff df 5c call 2002a6c <sparc_disable_interrupts>
200ad00: a0 10 00 18 mov %i0, %l0
200ad04: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200ad08: 11 00 80 6e sethi %hi(0x201b800), %o0
200ad0c: 94 10 00 19 mov %i1, %o2
200ad10: 90 12 20 f8 or %o0, 0xf8, %o0
200ad14: 7f ff e6 12 call 200455c <printk>
200ad18: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
200ad1c: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200ad20: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
200ad24: 80 a4 40 19 cmp %l1, %i1
200ad28: 02 80 00 0e be 200ad60 <_Watchdog_Report_chain+0x68>
200ad2c: 11 00 80 6e sethi %hi(0x201b800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200ad30: 92 10 00 11 mov %l1, %o1
200ad34: 40 00 00 10 call 200ad74 <_Watchdog_Report>
200ad38: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200ad3c: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200ad40: 80 a4 40 19 cmp %l1, %i1
200ad44: 12 bf ff fc bne 200ad34 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200ad48: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200ad4c: 11 00 80 6e sethi %hi(0x201b800), %o0
200ad50: 92 10 00 10 mov %l0, %o1
200ad54: 7f ff e6 02 call 200455c <printk>
200ad58: 90 12 21 10 or %o0, 0x110, %o0
200ad5c: 30 80 00 03 b,a 200ad68 <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
200ad60: 7f ff e5 ff call 200455c <printk>
200ad64: 90 12 21 20 or %o0, 0x120, %o0
}
_ISR_Enable( level );
200ad68: 7f ff df 45 call 2002a7c <sparc_enable_interrupts>
200ad6c: 81 e8 00 00 restore
02006e10 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006e10: 9d e3 bf 98 save %sp, -104, %sp
2006e14: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006e18: 10 80 00 09 b 2006e3c <rtems_chain_get_with_wait+0x2c>
2006e1c: a4 07 bf fc add %fp, -4, %l2
2006e20: 92 10 20 00 clr %o1
2006e24: 94 10 00 1a mov %i2, %o2
2006e28: 7f ff fc fc call 2006218 <rtems_event_receive>
2006e2c: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006e30: 80 a2 20 00 cmp %o0, 0
2006e34: 32 80 00 09 bne,a 2006e58 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
2006e38: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006e3c: 40 00 01 64 call 20073cc <_Chain_Get>
2006e40: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006e44: a2 92 20 00 orcc %o0, 0, %l1
2006e48: 02 bf ff f6 be 2006e20 <rtems_chain_get_with_wait+0x10>
2006e4c: 90 10 00 19 mov %i1, %o0
2006e50: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006e54: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
2006e58: 81 c7 e0 08 ret
2006e5c: 91 e8 00 08 restore %g0, %o0, %o0
02008fc0 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2008fc0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2008fc4: 80 a6 20 00 cmp %i0, 0
2008fc8: 02 80 00 1d be 200903c <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
2008fcc: 21 00 80 78 sethi %hi(0x201e000), %l0
2008fd0: a0 14 23 1c or %l0, 0x31c, %l0 ! 201e31c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2008fd4: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2008fd8: c2 04 00 00 ld [ %l0 ], %g1
2008fdc: 80 a0 60 00 cmp %g1, 0
2008fe0: 22 80 00 14 be,a 2009030 <rtems_iterate_over_all_threads+0x70>
2008fe4: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2008fe8: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
2008fec: 80 a4 a0 00 cmp %l2, 0
2008ff0: 12 80 00 0b bne 200901c <rtems_iterate_over_all_threads+0x5c>
2008ff4: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2008ff8: 10 80 00 0e b 2009030 <rtems_iterate_over_all_threads+0x70>
2008ffc: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
2009000: 83 2c 60 02 sll %l1, 2, %g1
2009004: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009008: 80 a2 20 00 cmp %o0, 0
200900c: 02 80 00 04 be 200901c <rtems_iterate_over_all_threads+0x5c>
2009010: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
2009014: 9f c6 00 00 call %i0
2009018: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200901c: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
2009020: 80 a4 40 01 cmp %l1, %g1
2009024: 28 bf ff f7 bleu,a 2009000 <rtems_iterate_over_all_threads+0x40>
2009028: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
200902c: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009030: 80 a4 00 13 cmp %l0, %l3
2009034: 32 bf ff ea bne,a 2008fdc <rtems_iterate_over_all_threads+0x1c>
2009038: c2 04 00 00 ld [ %l0 ], %g1
200903c: 81 c7 e0 08 ret
2009040: 81 e8 00 00 restore
02014234 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2014234: 9d e3 bf a0 save %sp, -96, %sp
2014238: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
201423c: 80 a4 20 00 cmp %l0, 0
2014240: 02 80 00 1f be 20142bc <rtems_partition_create+0x88>
2014244: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
2014248: 80 a6 60 00 cmp %i1, 0
201424c: 02 80 00 1c be 20142bc <rtems_partition_create+0x88>
2014250: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
2014254: 80 a7 60 00 cmp %i5, 0
2014258: 02 80 00 19 be 20142bc <rtems_partition_create+0x88> <== NEVER TAKEN
201425c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014260: 02 80 00 32 be 2014328 <rtems_partition_create+0xf4>
2014264: 80 a6 a0 00 cmp %i2, 0
2014268: 02 80 00 30 be 2014328 <rtems_partition_create+0xf4>
201426c: 80 a6 80 1b cmp %i2, %i3
2014270: 0a 80 00 13 bcs 20142bc <rtems_partition_create+0x88>
2014274: b0 10 20 08 mov 8, %i0
2014278: 80 8e e0 07 btst 7, %i3
201427c: 12 80 00 10 bne 20142bc <rtems_partition_create+0x88>
2014280: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2014284: 12 80 00 0e bne 20142bc <rtems_partition_create+0x88>
2014288: b0 10 20 09 mov 9, %i0
201428c: 03 00 80 f1 sethi %hi(0x203c400), %g1
2014290: c4 00 62 60 ld [ %g1 + 0x260 ], %g2 ! 203c660 <_Thread_Dispatch_disable_level>
2014294: 84 00 a0 01 inc %g2
2014298: c4 20 62 60 st %g2, [ %g1 + 0x260 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
201429c: 25 00 80 f1 sethi %hi(0x203c400), %l2
20142a0: 40 00 12 45 call 2018bb4 <_Objects_Allocate>
20142a4: 90 14 a0 74 or %l2, 0x74, %o0 ! 203c474 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
20142a8: a2 92 20 00 orcc %o0, 0, %l1
20142ac: 12 80 00 06 bne 20142c4 <rtems_partition_create+0x90>
20142b0: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
20142b4: 40 00 17 12 call 2019efc <_Thread_Enable_dispatch>
20142b8: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
20142bc: 81 c7 e0 08 ret
20142c0: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
20142c4: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
20142c8: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
20142cc: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
20142d0: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
20142d4: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20142d8: 40 00 61 a5 call 202c96c <.udiv>
20142dc: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20142e0: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
20142e4: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20142e8: 96 10 00 1b mov %i3, %o3
20142ec: a6 04 60 24 add %l1, 0x24, %l3
20142f0: 40 00 0c 5b call 201745c <_Chain_Initialize>
20142f4: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20142f8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
20142fc: a4 14 a0 74 or %l2, 0x74, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014300: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014304: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014308: 85 28 a0 02 sll %g2, 2, %g2
201430c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014310: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
2014314: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2014318: 40 00 16 f9 call 2019efc <_Thread_Enable_dispatch>
201431c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2014320: 81 c7 e0 08 ret
2014324: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
2014328: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
201432c: 81 c7 e0 08 ret
2014330: 81 e8 00 00 restore
0200723c <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
200723c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
2007240: 11 00 80 75 sethi %hi(0x201d400), %o0
2007244: 92 10 00 18 mov %i0, %o1
2007248: 90 12 21 f4 or %o0, 0x1f4, %o0
200724c: 40 00 08 e4 call 20095dc <_Objects_Get>
2007250: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007254: c2 07 bf fc ld [ %fp + -4 ], %g1
2007258: 80 a0 60 00 cmp %g1, 0
200725c: 12 80 00 66 bne 20073f4 <rtems_rate_monotonic_period+0x1b8>
2007260: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007264: 25 00 80 76 sethi %hi(0x201d800), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007268: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
200726c: a4 14 a1 8c or %l2, 0x18c, %l2
2007270: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
2007274: 80 a0 80 01 cmp %g2, %g1
2007278: 02 80 00 06 be 2007290 <rtems_rate_monotonic_period+0x54>
200727c: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007280: 40 00 0c 5b call 200a3ec <_Thread_Enable_dispatch>
2007284: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007288: 81 c7 e0 08 ret
200728c: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
2007290: 12 80 00 0e bne 20072c8 <rtems_rate_monotonic_period+0x8c>
2007294: 01 00 00 00 nop
switch ( the_period->state ) {
2007298: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
200729c: 80 a0 60 04 cmp %g1, 4
20072a0: 18 80 00 06 bgu 20072b8 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
20072a4: b0 10 20 00 clr %i0
20072a8: 83 28 60 02 sll %g1, 2, %g1
20072ac: 05 00 80 6d sethi %hi(0x201b400), %g2
20072b0: 84 10 a2 3c or %g2, 0x23c, %g2 ! 201b63c <CSWTCH.2>
20072b4: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20072b8: 40 00 0c 4d call 200a3ec <_Thread_Enable_dispatch>
20072bc: 01 00 00 00 nop
return( return_value );
20072c0: 81 c7 e0 08 ret
20072c4: 81 e8 00 00 restore
}
_ISR_Disable( level );
20072c8: 7f ff ee cc call 2002df8 <sparc_disable_interrupts>
20072cc: 01 00 00 00 nop
20072d0: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
20072d4: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
20072d8: 80 a4 60 00 cmp %l1, 0
20072dc: 12 80 00 15 bne 2007330 <rtems_rate_monotonic_period+0xf4>
20072e0: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
20072e4: 7f ff ee c9 call 2002e08 <sparc_enable_interrupts>
20072e8: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20072ec: 7f ff ff 7a call 20070d4 <_Rate_monotonic_Initiate_statistics>
20072f0: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20072f4: 82 10 20 02 mov 2, %g1
20072f8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20072fc: 03 00 80 1d sethi %hi(0x2007400), %g1
2007300: 82 10 62 c4 or %g1, 0x2c4, %g1 ! 20076c4 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007304: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
2007308: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
200730c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
2007310: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007314: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007318: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200731c: 11 00 80 76 sethi %hi(0x201d800), %o0
2007320: 92 04 20 10 add %l0, 0x10, %o1
2007324: 40 00 10 3a call 200b40c <_Watchdog_Insert>
2007328: 90 12 20 24 or %o0, 0x24, %o0
200732c: 30 80 00 1b b,a 2007398 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
2007330: 12 80 00 1e bne 20073a8 <rtems_rate_monotonic_period+0x16c>
2007334: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007338: 7f ff ff 83 call 2007144 <_Rate_monotonic_Update_statistics>
200733c: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007340: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007344: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007348: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
200734c: 7f ff ee af call 2002e08 <sparc_enable_interrupts>
2007350: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007354: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
2007358: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
200735c: 13 00 00 10 sethi %hi(0x4000), %o1
2007360: 40 00 0e 50 call 200aca0 <_Thread_Set_state>
2007364: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007368: 7f ff ee a4 call 2002df8 <sparc_disable_interrupts>
200736c: 01 00 00 00 nop
local_state = the_period->state;
2007370: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007374: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007378: 7f ff ee a4 call 2002e08 <sparc_enable_interrupts>
200737c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007380: 80 a4 e0 03 cmp %l3, 3
2007384: 12 80 00 05 bne 2007398 <rtems_rate_monotonic_period+0x15c>
2007388: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
200738c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
2007390: 40 00 0b 39 call 200a074 <_Thread_Clear_state>
2007394: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
2007398: 40 00 0c 15 call 200a3ec <_Thread_Enable_dispatch>
200739c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20073a0: 81 c7 e0 08 ret
20073a4: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20073a8: 12 bf ff b8 bne 2007288 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20073ac: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20073b0: 7f ff ff 65 call 2007144 <_Rate_monotonic_Update_statistics>
20073b4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
20073b8: 7f ff ee 94 call 2002e08 <sparc_enable_interrupts>
20073bc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20073c0: 82 10 20 02 mov 2, %g1
20073c4: 92 04 20 10 add %l0, 0x10, %o1
20073c8: 11 00 80 76 sethi %hi(0x201d800), %o0
20073cc: 90 12 20 24 or %o0, 0x24, %o0 ! 201d824 <_Watchdog_Ticks_chain>
20073d0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
20073d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20073d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20073dc: 40 00 10 0c call 200b40c <_Watchdog_Insert>
20073e0: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20073e4: 40 00 0c 02 call 200a3ec <_Thread_Enable_dispatch>
20073e8: 01 00 00 00 nop
return RTEMS_TIMEOUT;
20073ec: 81 c7 e0 08 ret
20073f0: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20073f4: b0 10 20 04 mov 4, %i0
}
20073f8: 81 c7 e0 08 ret
20073fc: 81 e8 00 00 restore
02007400 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2007400: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007404: 80 a6 60 00 cmp %i1, 0
2007408: 02 80 00 79 be 20075ec <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
200740c: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2007410: 13 00 80 6d sethi %hi(0x201b400), %o1
2007414: 9f c6 40 00 call %i1
2007418: 92 12 62 50 or %o1, 0x250, %o1 ! 201b650 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
200741c: 90 10 00 18 mov %i0, %o0
2007420: 13 00 80 6d sethi %hi(0x201b400), %o1
2007424: 9f c6 40 00 call %i1
2007428: 92 12 62 70 or %o1, 0x270, %o1 ! 201b670 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
200742c: 90 10 00 18 mov %i0, %o0
2007430: 13 00 80 6d sethi %hi(0x201b400), %o1
2007434: 9f c6 40 00 call %i1
2007438: 92 12 62 98 or %o1, 0x298, %o1 ! 201b698 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
200743c: 90 10 00 18 mov %i0, %o0
2007440: 13 00 80 6d sethi %hi(0x201b400), %o1
2007444: 9f c6 40 00 call %i1
2007448: 92 12 62 c0 or %o1, 0x2c0, %o1 ! 201b6c0 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
200744c: 90 10 00 18 mov %i0, %o0
2007450: 13 00 80 6d sethi %hi(0x201b400), %o1
2007454: 9f c6 40 00 call %i1
2007458: 92 12 63 10 or %o1, 0x310, %o1 ! 201b710 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
200745c: 3b 00 80 75 sethi %hi(0x201d400), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007460: 2b 00 80 6d sethi %hi(0x201b400), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007464: 82 17 61 f4 or %i5, 0x1f4, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007468: 27 00 80 6d sethi %hi(0x201b400), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
200746c: 35 00 80 6d sethi %hi(0x201b400), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007470: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007474: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007478: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
200747c: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007480: aa 15 63 60 or %l5, 0x360, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007484: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007488: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
200748c: a6 14 e3 78 or %l3, 0x378, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
2007490: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007494: 10 80 00 52 b 20075dc <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
2007498: b4 16 a3 98 or %i2, 0x398, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
200749c: 40 00 18 22 call 200d524 <rtems_rate_monotonic_get_statistics>
20074a0: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
20074a4: 80 a2 20 00 cmp %o0, 0
20074a8: 32 80 00 4c bne,a 20075d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
20074ac: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
20074b0: 92 10 00 16 mov %l6, %o1
20074b4: 40 00 18 49 call 200d5d8 <rtems_rate_monotonic_get_status>
20074b8: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20074bc: d0 07 bf d8 ld [ %fp + -40 ], %o0
20074c0: 92 10 20 05 mov 5, %o1
20074c4: 40 00 00 ae call 200777c <rtems_object_get_name>
20074c8: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20074cc: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20074d0: 92 10 00 15 mov %l5, %o1
20074d4: 90 10 00 18 mov %i0, %o0
20074d8: 94 10 00 10 mov %l0, %o2
20074dc: 9f c6 40 00 call %i1
20074e0: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20074e4: d2 07 bf a0 ld [ %fp + -96 ], %o1
20074e8: 80 a2 60 00 cmp %o1, 0
20074ec: 12 80 00 08 bne 200750c <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
20074f0: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
20074f4: 90 10 00 18 mov %i0, %o0
20074f8: 13 00 80 6a sethi %hi(0x201a800), %o1
20074fc: 9f c6 40 00 call %i1
2007500: 92 12 61 58 or %o1, 0x158, %o1 ! 201a958 <_rodata_start+0x158>
continue;
2007504: 10 80 00 35 b 20075d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007508: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
200750c: 40 00 0e 9d call 200af80 <_Timespec_Divide_by_integer>
2007510: 90 10 00 14 mov %l4, %o0
(*print)( context,
2007514: d0 07 bf ac ld [ %fp + -84 ], %o0
2007518: 40 00 45 7a call 2018b00 <.div>
200751c: 92 10 23 e8 mov 0x3e8, %o1
2007520: 96 10 00 08 mov %o0, %o3
2007524: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007528: d6 27 bf 9c st %o3, [ %fp + -100 ]
200752c: 40 00 45 75 call 2018b00 <.div>
2007530: 92 10 23 e8 mov 0x3e8, %o1
2007534: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007538: b6 10 00 08 mov %o0, %i3
200753c: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007540: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007544: 40 00 45 6f call 2018b00 <.div>
2007548: 92 10 23 e8 mov 0x3e8, %o1
200754c: d8 07 bf b0 ld [ %fp + -80 ], %o4
2007550: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007554: d4 07 bf a8 ld [ %fp + -88 ], %o2
2007558: 9a 10 00 1b mov %i3, %o5
200755c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007560: 92 10 00 13 mov %l3, %o1
2007564: 9f c6 40 00 call %i1
2007568: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
200756c: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007570: 94 10 00 11 mov %l1, %o2
2007574: 40 00 0e 83 call 200af80 <_Timespec_Divide_by_integer>
2007578: 90 10 00 1c mov %i4, %o0
(*print)( context,
200757c: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007580: 40 00 45 60 call 2018b00 <.div>
2007584: 92 10 23 e8 mov 0x3e8, %o1
2007588: 96 10 00 08 mov %o0, %o3
200758c: d0 07 bf cc ld [ %fp + -52 ], %o0
2007590: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007594: 40 00 45 5b call 2018b00 <.div>
2007598: 92 10 23 e8 mov 0x3e8, %o1
200759c: c2 07 bf f0 ld [ %fp + -16 ], %g1
20075a0: b6 10 00 08 mov %o0, %i3
20075a4: d0 07 bf f4 ld [ %fp + -12 ], %o0
20075a8: 92 10 23 e8 mov 0x3e8, %o1
20075ac: 40 00 45 55 call 2018b00 <.div>
20075b0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20075b4: d4 07 bf c0 ld [ %fp + -64 ], %o2
20075b8: d6 07 bf 9c ld [ %fp + -100 ], %o3
20075bc: d8 07 bf c8 ld [ %fp + -56 ], %o4
20075c0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20075c4: 92 10 00 1a mov %i2, %o1
20075c8: 90 10 00 18 mov %i0, %o0
20075cc: 9f c6 40 00 call %i1
20075d0: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20075d4: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
20075d8: 82 17 61 f4 or %i5, 0x1f4, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075dc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
20075e0: 80 a4 00 01 cmp %l0, %g1
20075e4: 08 bf ff ae bleu 200749c <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
20075e8: 90 10 00 10 mov %l0, %o0
20075ec: 81 c7 e0 08 ret
20075f0: 81 e8 00 00 restore
020157d8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20157d8: 9d e3 bf 98 save %sp, -104, %sp
20157dc: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20157e0: 80 a6 60 00 cmp %i1, 0
20157e4: 02 80 00 2e be 201589c <rtems_signal_send+0xc4>
20157e8: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20157ec: 40 00 11 d1 call 2019f30 <_Thread_Get>
20157f0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20157f4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20157f8: a2 10 00 08 mov %o0, %l1
switch ( location ) {
20157fc: 80 a0 60 00 cmp %g1, 0
2015800: 12 80 00 27 bne 201589c <rtems_signal_send+0xc4>
2015804: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2015808: e0 02 21 58 ld [ %o0 + 0x158 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
201580c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2015810: 80 a0 60 00 cmp %g1, 0
2015814: 02 80 00 24 be 20158a4 <rtems_signal_send+0xcc>
2015818: 01 00 00 00 nop
if ( asr->is_enabled ) {
201581c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
2015820: 80 a0 60 00 cmp %g1, 0
2015824: 02 80 00 15 be 2015878 <rtems_signal_send+0xa0>
2015828: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201582c: 7f ff e7 99 call 200f690 <sparc_disable_interrupts>
2015830: 01 00 00 00 nop
*signal_set |= signals;
2015834: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2015838: b2 10 40 19 or %g1, %i1, %i1
201583c: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
2015840: 7f ff e7 98 call 200f6a0 <sparc_enable_interrupts>
2015844: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2015848: 03 00 80 f2 sethi %hi(0x203c800), %g1
201584c: 82 10 60 94 or %g1, 0x94, %g1 ! 203c894 <_Per_CPU_Information>
2015850: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015854: 80 a0 a0 00 cmp %g2, 0
2015858: 02 80 00 0f be 2015894 <rtems_signal_send+0xbc>
201585c: 01 00 00 00 nop
2015860: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015864: 80 a4 40 02 cmp %l1, %g2
2015868: 12 80 00 0b bne 2015894 <rtems_signal_send+0xbc> <== NEVER TAKEN
201586c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015870: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015874: 30 80 00 08 b,a 2015894 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015878: 7f ff e7 86 call 200f690 <sparc_disable_interrupts>
201587c: 01 00 00 00 nop
*signal_set |= signals;
2015880: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015884: b2 10 40 19 or %g1, %i1, %i1
2015888: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
201588c: 7f ff e7 85 call 200f6a0 <sparc_enable_interrupts>
2015890: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015894: 40 00 11 9a call 2019efc <_Thread_Enable_dispatch>
2015898: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
201589c: 81 c7 e0 08 ret
20158a0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
20158a4: 40 00 11 96 call 2019efc <_Thread_Enable_dispatch>
20158a8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
20158ac: 81 c7 e0 08 ret
20158b0: 81 e8 00 00 restore
0200d400 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d400: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d404: 80 a6 a0 00 cmp %i2, 0
200d408: 02 80 00 5a be 200d570 <rtems_task_mode+0x170>
200d40c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d410: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d414: e2 00 63 68 ld [ %g1 + 0x368 ], %l1 ! 2014f68 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d418: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d41c: e0 04 61 58 ld [ %l1 + 0x158 ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d420: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d424: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d428: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d42c: 80 a0 60 00 cmp %g1, 0
200d430: 02 80 00 03 be 200d43c <rtems_task_mode+0x3c>
200d434: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d438: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d43c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
200d440: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d444: 7f ff f2 44 call 2009d54 <_CPU_ISR_Get_level>
200d448: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d44c: a7 2c e0 0a sll %l3, 0xa, %l3
200d450: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d454: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d458: 80 8e 61 00 btst 0x100, %i1
200d45c: 02 80 00 06 be 200d474 <rtems_task_mode+0x74>
200d460: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d464: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d468: 80 a0 00 01 cmp %g0, %g1
200d46c: 82 60 3f ff subx %g0, -1, %g1
200d470: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d474: 80 8e 62 00 btst 0x200, %i1
200d478: 02 80 00 0b be 200d4a4 <rtems_task_mode+0xa4>
200d47c: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d480: 80 8e 22 00 btst 0x200, %i0
200d484: 22 80 00 07 be,a 200d4a0 <rtems_task_mode+0xa0>
200d488: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d48c: 82 10 20 01 mov 1, %g1
200d490: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d494: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d498: c2 00 60 94 ld [ %g1 + 0x94 ], %g1 ! 2014c94 <_Thread_Ticks_per_timeslice>
200d49c: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d4a0: 80 8e 60 0f btst 0xf, %i1
200d4a4: 02 80 00 06 be 200d4bc <rtems_task_mode+0xbc>
200d4a8: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d4ac: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d4b0: 7f ff d2 91 call 2001ef4 <sparc_enable_interrupts>
200d4b4: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d4b8: 80 8e 64 00 btst 0x400, %i1
200d4bc: 02 80 00 14 be 200d50c <rtems_task_mode+0x10c>
200d4c0: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d4c4: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d4c8: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d4cc: 80 a0 00 18 cmp %g0, %i0
200d4d0: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d4d4: 80 a0 40 02 cmp %g1, %g2
200d4d8: 22 80 00 0e be,a 200d510 <rtems_task_mode+0x110>
200d4dc: 03 00 80 53 sethi %hi(0x2014c00), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d4e0: 7f ff d2 81 call 2001ee4 <sparc_disable_interrupts>
200d4e4: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d4e8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d4ec: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d4f0: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d4f4: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d4f8: 7f ff d2 7f call 2001ef4 <sparc_enable_interrupts>
200d4fc: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d500: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d504: 80 a0 00 01 cmp %g0, %g1
200d508: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200d50c: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d510: c4 00 62 8c ld [ %g1 + 0x28c ], %g2 ! 2014e8c <_System_state_Current>
200d514: 80 a0 a0 03 cmp %g2, 3
200d518: 12 80 00 16 bne 200d570 <rtems_task_mode+0x170>
200d51c: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d520: 07 00 80 53 sethi %hi(0x2014c00), %g3
if ( are_signals_pending ||
200d524: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d528: 86 10 e3 5c or %g3, 0x35c, %g3
if ( are_signals_pending ||
200d52c: 12 80 00 0a bne 200d554 <rtems_task_mode+0x154>
200d530: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200d534: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d538: 80 a0 80 03 cmp %g2, %g3
200d53c: 02 80 00 0d be 200d570 <rtems_task_mode+0x170>
200d540: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d544: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d548: 80 a0 a0 00 cmp %g2, 0
200d54c: 02 80 00 09 be 200d570 <rtems_task_mode+0x170> <== NEVER TAKEN
200d550: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d554: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d558: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d55c: 82 10 63 5c or %g1, 0x35c, %g1 ! 2014f5c <_Per_CPU_Information>
200d560: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d564: 7f ff eb ef call 2008520 <_Thread_Dispatch>
200d568: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d56c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d570: 81 c7 e0 08 ret
200d574: 91 e8 00 01 restore %g0, %g1, %o0
0200aa4c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200aa4c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200aa50: 80 a6 60 00 cmp %i1, 0
200aa54: 02 80 00 07 be 200aa70 <rtems_task_set_priority+0x24>
200aa58: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200aa5c: 03 00 80 62 sethi %hi(0x2018800), %g1
200aa60: c2 08 60 f4 ldub [ %g1 + 0xf4 ], %g1 ! 20188f4 <rtems_maximum_priority>
200aa64: 80 a6 40 01 cmp %i1, %g1
200aa68: 18 80 00 1c bgu 200aad8 <rtems_task_set_priority+0x8c>
200aa6c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200aa70: 80 a6 a0 00 cmp %i2, 0
200aa74: 02 80 00 19 be 200aad8 <rtems_task_set_priority+0x8c>
200aa78: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200aa7c: 40 00 09 30 call 200cf3c <_Thread_Get>
200aa80: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200aa84: c2 07 bf fc ld [ %fp + -4 ], %g1
200aa88: 80 a0 60 00 cmp %g1, 0
200aa8c: 12 80 00 13 bne 200aad8 <rtems_task_set_priority+0x8c>
200aa90: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200aa94: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200aa98: 80 a6 60 00 cmp %i1, 0
200aa9c: 02 80 00 0d be 200aad0 <rtems_task_set_priority+0x84>
200aaa0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200aaa4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200aaa8: 80 a0 60 00 cmp %g1, 0
200aaac: 02 80 00 06 be 200aac4 <rtems_task_set_priority+0x78>
200aab0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200aab4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200aab8: 80 a0 40 19 cmp %g1, %i1
200aabc: 08 80 00 05 bleu 200aad0 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200aac0: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200aac4: 92 10 00 19 mov %i1, %o1
200aac8: 40 00 07 ed call 200ca7c <_Thread_Change_priority>
200aacc: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200aad0: 40 00 09 0e call 200cf08 <_Thread_Enable_dispatch>
200aad4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200aad8: 81 c7 e0 08 ret
200aadc: 81 e8 00 00 restore
020161e4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
20161e4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
20161e8: 11 00 80 f2 sethi %hi(0x203c800), %o0
20161ec: 92 10 00 18 mov %i0, %o1
20161f0: 90 12 21 24 or %o0, 0x124, %o0
20161f4: 40 00 0b be call 20190ec <_Objects_Get>
20161f8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20161fc: c2 07 bf fc ld [ %fp + -4 ], %g1
2016200: 80 a0 60 00 cmp %g1, 0
2016204: 12 80 00 0c bne 2016234 <rtems_timer_cancel+0x50>
2016208: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
201620c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2016210: 80 a0 60 04 cmp %g1, 4
2016214: 02 80 00 04 be 2016224 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2016218: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
201621c: 40 00 13 fe call 201b214 <_Watchdog_Remove>
2016220: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016224: 40 00 0f 36 call 2019efc <_Thread_Enable_dispatch>
2016228: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
201622c: 81 c7 e0 08 ret
2016230: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016234: 81 c7 e0 08 ret
2016238: 91 e8 20 04 restore %g0, 4, %o0
020166cc <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20166cc: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
20166d0: 03 00 80 f2 sethi %hi(0x203c800), %g1
20166d4: e2 00 61 64 ld [ %g1 + 0x164 ], %l1 ! 203c964 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20166d8: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
20166dc: 80 a4 60 00 cmp %l1, 0
20166e0: 02 80 00 33 be 20167ac <rtems_timer_server_fire_when+0xe0>
20166e4: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
20166e8: 03 00 80 f1 sethi %hi(0x203c400), %g1
20166ec: c2 08 62 70 ldub [ %g1 + 0x270 ], %g1 ! 203c670 <_TOD_Is_set>
20166f0: 80 a0 60 00 cmp %g1, 0
20166f4: 02 80 00 2e be 20167ac <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
20166f8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
20166fc: 80 a6 a0 00 cmp %i2, 0
2016700: 02 80 00 2b be 20167ac <rtems_timer_server_fire_when+0xe0>
2016704: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016708: 90 10 00 19 mov %i1, %o0
201670c: 7f ff f4 07 call 2013728 <_TOD_Validate>
2016710: b0 10 20 14 mov 0x14, %i0
2016714: 80 8a 20 ff btst 0xff, %o0
2016718: 02 80 00 27 be 20167b4 <rtems_timer_server_fire_when+0xe8>
201671c: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016720: 7f ff f3 ce call 2013658 <_TOD_To_seconds>
2016724: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2016728: 27 00 80 f1 sethi %hi(0x203c400), %l3
201672c: c2 04 e2 ec ld [ %l3 + 0x2ec ], %g1 ! 203c6ec <_TOD_Now>
2016730: 80 a2 00 01 cmp %o0, %g1
2016734: 08 80 00 1e bleu 20167ac <rtems_timer_server_fire_when+0xe0>
2016738: a4 10 00 08 mov %o0, %l2
201673c: 11 00 80 f2 sethi %hi(0x203c800), %o0
2016740: 92 10 00 10 mov %l0, %o1
2016744: 90 12 21 24 or %o0, 0x124, %o0
2016748: 40 00 0a 69 call 20190ec <_Objects_Get>
201674c: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016750: c2 07 bf fc ld [ %fp + -4 ], %g1
2016754: b2 10 00 08 mov %o0, %i1
2016758: 80 a0 60 00 cmp %g1, 0
201675c: 12 80 00 14 bne 20167ac <rtems_timer_server_fire_when+0xe0>
2016760: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016764: 40 00 12 ac call 201b214 <_Watchdog_Remove>
2016768: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
201676c: 82 10 20 03 mov 3, %g1
2016770: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016774: c2 04 e2 ec ld [ %l3 + 0x2ec ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016778: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201677c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016780: c2 04 60 04 ld [ %l1 + 4 ], %g1
2016784: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2016788: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
201678c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
2016790: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016794: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016798: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201679c: 9f c0 40 00 call %g1
20167a0: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
20167a4: 40 00 0d d6 call 2019efc <_Thread_Enable_dispatch>
20167a8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20167ac: 81 c7 e0 08 ret
20167b0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20167b4: 81 c7 e0 08 ret
20167b8: 81 e8 00 00 restore