=============================================================================== 020173b8 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20173b8: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20173bc: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20173c0: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20173c4: 80 a6 80 01 cmp %i2, %g1 20173c8: 18 80 00 16 bgu 2017420 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 20173cc: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 20173d0: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 20173d4: 80 a0 60 00 cmp %g1, 0 20173d8: 02 80 00 0b be 2017404 <_CORE_message_queue_Broadcast+0x4c> 20173dc: a2 10 20 00 clr %l1 *count = 0; 20173e0: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 20173e4: 81 c7 e0 08 ret 20173e8: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 20173ec: 92 10 00 19 mov %i1, %o1 20173f0: 40 00 21 38 call 201f8d0 20173f4: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 20173f8: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 20173fc: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 2017400: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 2017404: 40 00 0b 5b call 201a170 <_Thread_queue_Dequeue> 2017408: 90 10 00 10 mov %l0, %o0 201740c: a4 92 20 00 orcc %o0, 0, %l2 2017410: 32 bf ff f7 bne,a 20173ec <_CORE_message_queue_Broadcast+0x34> 2017414: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 2017418: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 201741c: b0 10 20 00 clr %i0 } 2017420: 81 c7 e0 08 ret 2017424: 81 e8 00 00 restore =============================================================================== 0200fca8 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fca8: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fcac: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fcb0: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fcb4: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fcb8: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fcbc: 80 8e e0 03 btst 3, %i3 200fcc0: 02 80 00 07 be 200fcdc <_CORE_message_queue_Initialize+0x34> 200fcc4: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 200fcc8: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fccc: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 200fcd0: 80 a4 80 1b cmp %l2, %i3 200fcd4: 0a 80 00 22 bcs 200fd5c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fcd8: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 200fcdc: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 200fce0: 92 10 00 1a mov %i2, %o1 200fce4: 90 10 00 11 mov %l1, %o0 200fce8: 40 00 3f 11 call 201f92c <.umul> 200fcec: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 200fcf0: 80 a2 00 12 cmp %o0, %l2 200fcf4: 0a 80 00 1a bcs 200fd5c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fcf8: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fcfc: 40 00 0c 13 call 2012d48 <_Workspace_Allocate> 200fd00: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fd04: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fd08: 80 a2 20 00 cmp %o0, 0 200fd0c: 02 80 00 14 be 200fd5c <_CORE_message_queue_Initialize+0xb4> 200fd10: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fd14: 90 04 20 60 add %l0, 0x60, %o0 200fd18: 94 10 00 1a mov %i2, %o2 200fd1c: 40 00 14 64 call 2014eac <_Chain_Initialize> 200fd20: 96 10 00 11 mov %l1, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fd24: 82 04 20 54 add %l0, 0x54, %g1 head->next = tail; 200fd28: c2 24 20 50 st %g1, [ %l0 + 0x50 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 200fd2c: 82 04 20 50 add %l0, 0x50, %g1 Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 200fd30: c0 24 20 54 clr [ %l0 + 0x54 ] tail->previous = head; 200fd34: c2 24 20 58 st %g1, [ %l0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200fd38: c2 06 40 00 ld [ %i1 ], %g1 200fd3c: 90 10 00 10 mov %l0, %o0 200fd40: 82 18 60 01 xor %g1, 1, %g1 200fd44: 80 a0 00 01 cmp %g0, %g1 200fd48: 94 10 20 80 mov 0x80, %o2 200fd4c: 92 60 3f ff subx %g0, -1, %o1 200fd50: 96 10 20 06 mov 6, %o3 200fd54: 40 00 09 82 call 201235c <_Thread_queue_Initialize> 200fd58: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fd5c: 81 c7 e0 08 ret 200fd60: 81 e8 00 00 restore =============================================================================== 0200fd64 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fd64: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 200fd68: 27 00 80 91 sethi %hi(0x2024400), %l3 200fd6c: a6 14 e0 5c or %l3, 0x5c, %l3 ! 202445c <_Per_CPU_Information> 200fd70: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fd74: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 200fd78: 7f ff dd e2 call 2007500 200fd7c: c0 24 a0 34 clr [ %l2 + 0x34 ] 200fd80: 82 10 00 08 mov %o0, %g1 executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 200fd84: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200fd88: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 200fd8c: 80 a4 40 02 cmp %l1, %g2 200fd90: 02 80 00 15 be 200fde4 <_CORE_message_queue_Seize+0x80> 200fd94: 86 06 20 50 add %i0, 0x50, %g3 Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 200fd98: c4 04 40 00 ld [ %l1 ], %g2 head->next = new_first; 200fd9c: c4 26 20 50 st %g2, [ %i0 + 0x50 ] executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 200fda0: 80 a4 60 00 cmp %l1, 0 200fda4: 02 80 00 10 be 200fde4 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 200fda8: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 200fdac: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200fdb0: 82 00 7f ff add %g1, -1, %g1 200fdb4: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 200fdb8: 7f ff dd d6 call 2007510 200fdbc: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 200fdc0: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 200fdc4: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 200fdc8: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 200fdcc: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 200fdd0: 90 10 00 1a mov %i2, %o0 200fdd4: 40 00 1e ab call 2017880 200fdd8: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 200fddc: 7f ff ff 83 call 200fbe8 <_Chain_Append> 200fde0: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 200fde4: 80 8f 20 ff btst 0xff, %i4 200fde8: 32 80 00 08 bne,a 200fe08 <_CORE_message_queue_Seize+0xa4> 200fdec: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 200fdf0: 7f ff dd c8 call 2007510 200fdf4: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 200fdf8: 82 10 20 04 mov 4, %g1 200fdfc: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 200fe00: 81 c7 e0 08 ret 200fe04: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 200fe08: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 200fe0c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 200fe10: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 200fe14: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 200fe18: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 200fe1c: 90 10 00 01 mov %g1, %o0 200fe20: 7f ff dd bc call 2007510 200fe24: 35 00 80 49 sethi %hi(0x2012400), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 200fe28: b2 10 00 1d mov %i5, %i1 200fe2c: 40 00 08 a2 call 20120b4 <_Thread_queue_Enqueue_with_handler> 200fe30: 95 ee a0 3c restore %i2, 0x3c, %o2 =============================================================================== 02006b18 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2006b18: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2006b1c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006b20: c2 00 61 40 ld [ %g1 + 0x140 ], %g1 ! 2014d40 <_Thread_Dispatch_disable_level> 2006b24: 80 a0 60 00 cmp %g1, 0 2006b28: 02 80 00 0d be 2006b5c <_CORE_mutex_Seize+0x44> 2006b2c: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006b30: 80 8e a0 ff btst 0xff, %i2 2006b34: 02 80 00 0b be 2006b60 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 2006b38: 90 10 00 18 mov %i0, %o0 2006b3c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006b40: c2 00 62 9c ld [ %g1 + 0x29c ], %g1 ! 2014e9c <_System_state_Current> 2006b44: 80 a0 60 01 cmp %g1, 1 2006b48: 08 80 00 05 bleu 2006b5c <_CORE_mutex_Seize+0x44> 2006b4c: 90 10 20 00 clr %o0 2006b50: 92 10 20 00 clr %o1 2006b54: 40 00 01 da call 20072bc <_Internal_error_Occurred> 2006b58: 94 10 20 12 mov 0x12, %o2 2006b5c: 90 10 00 18 mov %i0, %o0 2006b60: 40 00 13 80 call 200b960 <_CORE_mutex_Seize_interrupt_trylock> 2006b64: 92 07 a0 54 add %fp, 0x54, %o1 2006b68: 80 a2 20 00 cmp %o0, 0 2006b6c: 02 80 00 0a be 2006b94 <_CORE_mutex_Seize+0x7c> 2006b70: 80 8e a0 ff btst 0xff, %i2 2006b74: 35 00 80 53 sethi %hi(0x2014c00), %i2 2006b78: 12 80 00 09 bne 2006b9c <_CORE_mutex_Seize+0x84> 2006b7c: b4 16 a3 6c or %i2, 0x36c, %i2 ! 2014f6c <_Per_CPU_Information> 2006b80: 7f ff ec dd call 2001ef4 2006b84: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006b88: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006b8c: 84 10 20 01 mov 1, %g2 2006b90: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006b94: 81 c7 e0 08 ret 2006b98: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2006b9c: 82 10 20 01 mov 1, %g1 2006ba0: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006ba4: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006ba8: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006bac: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006bb0: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006bb4: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 2014d40 <_Thread_Dispatch_disable_level> 2006bb8: 84 00 a0 01 inc %g2 2006bbc: c4 20 61 40 st %g2, [ %g1 + 0x140 ] 2006bc0: 7f ff ec cd call 2001ef4 2006bc4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006bc8: 90 10 00 18 mov %i0, %o0 2006bcc: 7f ff ff ba call 2006ab4 <_CORE_mutex_Seize_interrupt_blocking> 2006bd0: 92 10 00 1b mov %i3, %o1 2006bd4: 81 c7 e0 08 ret 2006bd8: 81 e8 00 00 restore =============================================================================== 02006d58 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2006d58: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2006d5c: 90 10 00 18 mov %i0, %o0 2006d60: 40 00 07 17 call 20089bc <_Thread_queue_Dequeue> 2006d64: a0 10 00 18 mov %i0, %l0 2006d68: 80 a2 20 00 cmp %o0, 0 2006d6c: 12 80 00 0e bne 2006da4 <_CORE_semaphore_Surrender+0x4c> 2006d70: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2006d74: 7f ff ec 5c call 2001ee4 2006d78: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2006d7c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006d80: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006d84: 80 a0 40 02 cmp %g1, %g2 2006d88: 1a 80 00 05 bcc 2006d9c <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2006d8c: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2006d90: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2006d94: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2006d98: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2006d9c: 7f ff ec 56 call 2001ef4 2006da0: 01 00 00 00 nop } return status; } 2006da4: 81 c7 e0 08 ret 2006da8: 81 e8 00 00 restore =============================================================================== 02005b14 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005b14: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005b18: e2 06 21 58 ld [ %i0 + 0x158 ], %l1 option_set = (rtems_option) the_thread->Wait.option; 2005b1c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 2005b20: 7f ff f0 f1 call 2001ee4 2005b24: a0 10 00 18 mov %i0, %l0 2005b28: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2005b2c: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2005b30: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2005b34: 82 88 c0 02 andcc %g3, %g2, %g1 2005b38: 12 80 00 03 bne 2005b44 <_Event_Surrender+0x30> 2005b3c: 09 00 80 53 sethi %hi(0x2014c00), %g4 _ISR_Enable( level ); 2005b40: 30 80 00 42 b,a 2005c48 <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2005b44: 88 11 23 6c or %g4, 0x36c, %g4 ! 2014f6c <_Per_CPU_Information> 2005b48: da 01 20 08 ld [ %g4 + 8 ], %o5 2005b4c: 80 a3 60 00 cmp %o5, 0 2005b50: 22 80 00 1d be,a 2005bc4 <_Event_Surrender+0xb0> 2005b54: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005b58: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005b5c: 80 a4 00 04 cmp %l0, %g4 2005b60: 32 80 00 19 bne,a 2005bc4 <_Event_Surrender+0xb0> 2005b64: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005b68: 09 00 80 53 sethi %hi(0x2014c00), %g4 2005b6c: da 01 23 c0 ld [ %g4 + 0x3c0 ], %o5 ! 2014fc0 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2005b70: 80 a3 60 02 cmp %o5, 2 2005b74: 02 80 00 07 be 2005b90 <_Event_Surrender+0x7c> <== NEVER TAKEN 2005b78: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2005b7c: c8 01 23 c0 ld [ %g4 + 0x3c0 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005b80: 80 a1 20 01 cmp %g4, 1 2005b84: 32 80 00 10 bne,a 2005bc4 <_Event_Surrender+0xb0> 2005b88: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2005b8c: 80 a0 40 03 cmp %g1, %g3 2005b90: 02 80 00 04 be 2005ba0 <_Event_Surrender+0x8c> 2005b94: 80 8c a0 02 btst 2, %l2 2005b98: 02 80 00 0a be 2005bc0 <_Event_Surrender+0xac> <== NEVER TAKEN 2005b9c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2005ba0: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2005ba4: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005ba8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2005bac: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005bb0: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2005bb4: 84 10 20 03 mov 3, %g2 2005bb8: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005bbc: c4 20 63 c0 st %g2, [ %g1 + 0x3c0 ] ! 2014fc0 <_Event_Sync_state> } _ISR_Enable( level ); 2005bc0: 30 80 00 22 b,a 2005c48 <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2005bc4: 80 89 21 00 btst 0x100, %g4 2005bc8: 02 80 00 20 be 2005c48 <_Event_Surrender+0x134> 2005bcc: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005bd0: 02 80 00 04 be 2005be0 <_Event_Surrender+0xcc> 2005bd4: 80 8c a0 02 btst 2, %l2 2005bd8: 02 80 00 1c be 2005c48 <_Event_Surrender+0x134> <== NEVER TAKEN 2005bdc: 01 00 00 00 nop 2005be0: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2005be4: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005be8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2005bec: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005bf0: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2005bf4: 7f ff f0 c0 call 2001ef4 2005bf8: 90 10 00 18 mov %i0, %o0 2005bfc: 7f ff f0 ba call 2001ee4 2005c00: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2005c04: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005c08: 80 a0 60 02 cmp %g1, 2 2005c0c: 02 80 00 06 be 2005c24 <_Event_Surrender+0x110> 2005c10: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2005c14: 7f ff f0 b8 call 2001ef4 2005c18: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005c1c: 10 80 00 08 b 2005c3c <_Event_Surrender+0x128> 2005c20: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2005c24: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2005c28: 7f ff f0 b3 call 2001ef4 2005c2c: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 2005c30: 40 00 0e 80 call 2009630 <_Watchdog_Remove> 2005c34: 90 04 20 48 add %l0, 0x48, %o0 2005c38: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005c3c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2005c40: 40 00 09 b1 call 2008304 <_Thread_Clear_state> 2005c44: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2005c48: 7f ff f0 ab call 2001ef4 2005c4c: 81 e8 00 00 restore =============================================================================== 02005c54 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2005c54: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2005c58: 90 10 00 18 mov %i0, %o0 2005c5c: 40 00 0a 95 call 20086b0 <_Thread_Get> 2005c60: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2005c64: c2 07 bf fc ld [ %fp + -4 ], %g1 2005c68: 80 a0 60 00 cmp %g1, 0 2005c6c: 12 80 00 1c bne 2005cdc <_Event_Timeout+0x88> <== NEVER TAKEN 2005c70: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2005c74: 7f ff f0 9c call 2001ee4 2005c78: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2005c7c: 03 00 80 53 sethi %hi(0x2014c00), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2005c80: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 2014f78 <_Per_CPU_Information+0xc> 2005c84: 80 a4 00 01 cmp %l0, %g1 2005c88: 12 80 00 09 bne 2005cac <_Event_Timeout+0x58> 2005c8c: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2005c90: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005c94: c4 00 63 c0 ld [ %g1 + 0x3c0 ], %g2 ! 2014fc0 <_Event_Sync_state> 2005c98: 80 a0 a0 01 cmp %g2, 1 2005c9c: 32 80 00 05 bne,a 2005cb0 <_Event_Timeout+0x5c> 2005ca0: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2005ca4: 84 10 20 02 mov 2, %g2 2005ca8: c4 20 63 c0 st %g2, [ %g1 + 0x3c0 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2005cac: 82 10 20 06 mov 6, %g1 2005cb0: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2005cb4: 7f ff f0 90 call 2001ef4 2005cb8: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005cbc: 90 10 00 10 mov %l0, %o0 2005cc0: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005cc4: 40 00 09 90 call 2008304 <_Thread_Clear_state> 2005cc8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2005ccc: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005cd0: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 2014d40 <_Thread_Dispatch_disable_level> 2005cd4: 84 00 bf ff add %g2, -1, %g2 2005cd8: c4 20 61 40 st %g2, [ %g1 + 0x140 ] 2005cdc: 81 c7 e0 08 ret 2005ce0: 81 e8 00 00 restore =============================================================================== 0200bfbc <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfbc: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bfc0: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200bfc4: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfc8: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200bfcc: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200bfd0: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200bfd4: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200bfd8: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 200bfdc: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfe0: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200bfe4: 80 a4 40 19 cmp %l1, %i1 200bfe8: 0a 80 00 9f bcs 200c264 <_Heap_Extend+0x2a8> 200bfec: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200bff0: 90 10 00 19 mov %i1, %o0 200bff4: 94 10 00 13 mov %l3, %o2 200bff8: 98 07 bf fc add %fp, -4, %o4 200bffc: 7f ff ec cc call 200732c <_Heap_Get_first_and_last_block> 200c000: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c004: 80 8a 20 ff btst 0xff, %o0 200c008: 02 80 00 97 be 200c264 <_Heap_Extend+0x2a8> 200c00c: aa 10 00 12 mov %l2, %l5 200c010: ba 10 20 00 clr %i5 200c014: b8 10 20 00 clr %i4 200c018: b0 10 20 00 clr %i0 200c01c: ae 10 20 00 clr %l7 200c020: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c024: 80 a0 40 11 cmp %g1, %l1 200c028: 1a 80 00 05 bcc 200c03c <_Heap_Extend+0x80> 200c02c: ec 05 40 00 ld [ %l5 ], %l6 200c030: 80 a6 40 16 cmp %i1, %l6 200c034: 2a 80 00 8c bcs,a 200c264 <_Heap_Extend+0x2a8> 200c038: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c03c: 80 a4 40 01 cmp %l1, %g1 200c040: 02 80 00 06 be 200c058 <_Heap_Extend+0x9c> 200c044: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c048: 2a 80 00 05 bcs,a 200c05c <_Heap_Extend+0xa0> 200c04c: b8 10 00 15 mov %l5, %i4 200c050: 10 80 00 04 b 200c060 <_Heap_Extend+0xa4> 200c054: 90 10 00 16 mov %l6, %o0 200c058: ae 10 00 15 mov %l5, %l7 200c05c: 90 10 00 16 mov %l6, %o0 200c060: 40 00 16 73 call 2011a2c <.urem> 200c064: 92 10 00 13 mov %l3, %o1 200c068: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c06c: 80 a5 80 19 cmp %l6, %i1 200c070: 12 80 00 05 bne 200c084 <_Heap_Extend+0xc8> 200c074: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 200c078: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200c07c: 10 80 00 04 b 200c08c <_Heap_Extend+0xd0> 200c080: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c084: 2a 80 00 02 bcs,a 200c08c <_Heap_Extend+0xd0> 200c088: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c08c: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c090: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c094: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c098: 80 a5 40 12 cmp %l5, %l2 200c09c: 12 bf ff e2 bne 200c024 <_Heap_Extend+0x68> 200c0a0: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 200c0a4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c0a8: 80 a6 40 01 cmp %i1, %g1 200c0ac: 3a 80 00 04 bcc,a 200c0bc <_Heap_Extend+0x100> 200c0b0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c0b4: 10 80 00 05 b 200c0c8 <_Heap_Extend+0x10c> 200c0b8: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200c0bc: 80 a0 40 11 cmp %g1, %l1 200c0c0: 2a 80 00 02 bcs,a 200c0c8 <_Heap_Extend+0x10c> 200c0c4: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c0c8: c4 07 bf fc ld [ %fp + -4 ], %g2 200c0cc: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 200c0d0: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c0d4: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c0d8: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200c0dc: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c0e0: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c0e4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c0e8: 80 a0 c0 02 cmp %g3, %g2 200c0ec: 08 80 00 04 bleu 200c0fc <_Heap_Extend+0x140> 200c0f0: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200c0f4: 10 80 00 06 b 200c10c <_Heap_Extend+0x150> 200c0f8: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200c0fc: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c100: 80 a0 80 01 cmp %g2, %g1 200c104: 2a 80 00 02 bcs,a 200c10c <_Heap_Extend+0x150> 200c108: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c10c: 80 a5 e0 00 cmp %l7, 0 200c110: 02 80 00 14 be 200c160 <_Heap_Extend+0x1a4> 200c114: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200c118: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200c11c: 92 10 00 12 mov %l2, %o1 200c120: 40 00 16 43 call 2011a2c <.urem> 200c124: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200c128: 80 a2 20 00 cmp %o0, 0 200c12c: 02 80 00 04 be 200c13c <_Heap_Extend+0x180> <== ALWAYS TAKEN 200c130: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 200c134: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c138: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200c13c: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200c140: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200c144: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200c148: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200c14c: 90 10 00 10 mov %l0, %o0 200c150: 7f ff ff 90 call 200bf90 <_Heap_Free_block> 200c154: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c158: 10 80 00 09 b 200c17c <_Heap_Extend+0x1c0> 200c15c: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200c160: 80 a7 20 00 cmp %i4, 0 200c164: 02 80 00 05 be 200c178 <_Heap_Extend+0x1bc> 200c168: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200c16c: b8 27 00 01 sub %i4, %g1, %i4 200c170: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200c174: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c178: 80 a6 20 00 cmp %i0, 0 200c17c: 02 80 00 15 be 200c1d0 <_Heap_Extend+0x214> 200c180: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c184: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200c188: a2 24 40 18 sub %l1, %i0, %l1 200c18c: 40 00 16 28 call 2011a2c <.urem> 200c190: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200c194: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c198: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c19c: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 200c1a0: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 200c1a4: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c1a8: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c1ac: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200c1b0: 90 10 00 10 mov %l0, %o0 200c1b4: 82 08 60 01 and %g1, 1, %g1 200c1b8: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 200c1bc: a2 14 40 01 or %l1, %g1, %l1 200c1c0: 7f ff ff 74 call 200bf90 <_Heap_Free_block> 200c1c4: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c1c8: 10 80 00 0f b 200c204 <_Heap_Extend+0x248> 200c1cc: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200c1d0: 80 a7 60 00 cmp %i5, 0 200c1d4: 02 80 00 0b be 200c200 <_Heap_Extend+0x244> 200c1d8: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c1dc: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 200c1e0: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200c1e4: 86 20 c0 1d sub %g3, %i5, %g3 200c1e8: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c1ec: 84 10 c0 02 or %g3, %g2, %g2 200c1f0: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200c1f4: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c1f8: 84 10 a0 01 or %g2, 1, %g2 200c1fc: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c200: 80 a6 20 00 cmp %i0, 0 200c204: 32 80 00 09 bne,a 200c228 <_Heap_Extend+0x26c> 200c208: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c20c: 80 a5 e0 00 cmp %l7, 0 200c210: 32 80 00 06 bne,a 200c228 <_Heap_Extend+0x26c> 200c214: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200c218: d2 07 bf fc ld [ %fp + -4 ], %o1 200c21c: 7f ff ff 5d call 200bf90 <_Heap_Free_block> 200c220: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200c224: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c228: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c22c: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c230: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c234: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c238: 84 10 c0 02 or %g3, %g2, %g2 200c23c: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c240: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200c244: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c248: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 200c24c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200c250: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200c254: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 200c258: 02 80 00 03 be 200c264 <_Heap_Extend+0x2a8> <== NEVER TAKEN 200c25c: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 200c260: e8 26 c0 00 st %l4, [ %i3 ] 200c264: 81 c7 e0 08 ret 200c268: 81 e8 00 00 restore =============================================================================== 0200bcbc <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200bcbc: 9d e3 bf a0 save %sp, -96, %sp 200bcc0: a0 10 00 18 mov %i0, %l0 200bcc4: 90 10 00 19 mov %i1, %o0 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200bcc8: 80 a6 60 00 cmp %i1, 0 200bccc: 02 80 00 78 be 200beac <_Heap_Free+0x1f0> 200bcd0: b0 10 20 01 mov 1, %i0 200bcd4: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 200bcd8: 40 00 16 17 call 2011534 <.urem> 200bcdc: a2 06 7f f8 add %i1, -8, %l1 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200bce0: d8 04 20 20 ld [ %l0 + 0x20 ], %o4 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200bce4: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bce8: 80 a2 00 0c cmp %o0, %o4 200bcec: 0a 80 00 05 bcs 200bd00 <_Heap_Free+0x44> 200bcf0: 82 10 20 00 clr %g1 200bcf4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200bcf8: 80 a0 40 08 cmp %g1, %o0 200bcfc: 82 60 3f ff subx %g0, -1, %g1 } alloc_begin = (uintptr_t) alloc_begin_ptr; block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200bd00: 80 a0 60 00 cmp %g1, 0 200bd04: 02 80 00 6a be 200beac <_Heap_Free+0x1f0> 200bd08: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bd0c: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bd10: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd14: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bd18: 80 a0 40 0c cmp %g1, %o4 200bd1c: 0a 80 00 05 bcs 200bd30 <_Heap_Free+0x74> <== NEVER TAKEN 200bd20: 86 10 20 00 clr %g3 200bd24: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bd28: 80 a0 c0 01 cmp %g3, %g1 200bd2c: 86 60 3f ff subx %g0, -1, %g3 _Heap_Protection_block_check( heap, block ); block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200bd30: 80 a0 e0 00 cmp %g3, 0 200bd34: 02 80 00 5e be 200beac <_Heap_Free+0x1f0> <== NEVER TAKEN 200bd38: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bd3c: c8 00 60 04 ld [ %g1 + 4 ], %g4 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200bd40: 80 89 20 01 btst 1, %g4 200bd44: 02 80 00 5a be 200beac <_Heap_Free+0x1f0> <== NEVER TAKEN 200bd48: 88 09 3f fe and %g4, -2, %g4 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200bd4c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bd50: 80 a0 40 09 cmp %g1, %o1 200bd54: 02 80 00 07 be 200bd70 <_Heap_Free+0xb4> 200bd58: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bd5c: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bd60: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200bd64: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bd68: 80 a0 00 03 cmp %g0, %g3 200bd6c: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 200bd70: 80 8b 60 01 btst 1, %o5 200bd74: 12 80 00 26 bne 200be0c <_Heap_Free+0x150> 200bd78: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 200bd7c: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd80: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bd84: 80 a0 c0 0c cmp %g3, %o4 200bd88: 0a 80 00 04 bcs 200bd98 <_Heap_Free+0xdc> <== NEVER TAKEN 200bd8c: 94 10 20 00 clr %o2 200bd90: 80 a2 40 03 cmp %o1, %g3 200bd94: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200bd98: 80 a2 a0 00 cmp %o2, 0 200bd9c: 02 80 00 44 be 200beac <_Heap_Free+0x1f0> <== NEVER TAKEN 200bda0: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bda4: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200bda8: 80 8b 20 01 btst 1, %o4 200bdac: 02 80 00 40 be 200beac <_Heap_Free+0x1f0> <== NEVER TAKEN 200bdb0: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200bdb4: 22 80 00 0f be,a 200bdf0 <_Heap_Free+0x134> 200bdb8: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 200bdbc: 88 00 80 04 add %g2, %g4, %g4 200bdc0: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200bdc4: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200bdc8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200bdcc: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200bdd0: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200bdd4: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200bdd8: 82 00 7f ff add %g1, -1, %g1 200bddc: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200bde0: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bde4: 82 13 60 01 or %o5, 1, %g1 200bde8: 10 80 00 27 b 200be84 <_Heap_Free+0x1c8> 200bdec: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bdf0: 88 13 60 01 or %o5, 1, %g4 200bdf4: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bdf8: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200bdfc: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200be00: 86 08 ff fe and %g3, -2, %g3 200be04: 10 80 00 20 b 200be84 <_Heap_Free+0x1c8> 200be08: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200be0c: 22 80 00 0d be,a 200be40 <_Heap_Free+0x184> 200be10: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 200be14: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200be18: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200be1c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200be20: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200be24: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 200be28: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200be2c: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be30: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200be34: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be38: 10 80 00 13 b 200be84 <_Heap_Free+0x1c8> 200be3c: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200be40: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200be44: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200be48: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200be4c: 86 10 a0 01 or %g2, 1, %g3 200be50: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200be54: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200be58: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200be5c: 86 08 ff fe and %g3, -2, %g3 200be60: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200be64: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200be68: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200be6c: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200be70: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200be74: 80 a0 c0 01 cmp %g3, %g1 200be78: 1a 80 00 03 bcc 200be84 <_Heap_Free+0x1c8> 200be7c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200be80: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200be84: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200be88: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200be8c: 82 00 7f ff add %g1, -1, %g1 200be90: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 200be94: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200be98: 82 00 60 01 inc %g1 200be9c: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200bea0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200bea4: 84 00 40 02 add %g1, %g2, %g2 200bea8: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 200beac: 81 c7 e0 08 ret 200beb0: 81 e8 00 00 restore =============================================================================== 02012e24 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2012e24: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2012e28: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2012e2c: 7f ff f9 c2 call 2011534 <.urem> 2012e30: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2012e34: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2012e38: a2 06 7f f8 add %i1, -8, %l1 2012e3c: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2012e40: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2012e44: 80 a2 00 02 cmp %o0, %g2 2012e48: 0a 80 00 05 bcs 2012e5c <_Heap_Size_of_alloc_area+0x38> 2012e4c: 82 10 20 00 clr %g1 2012e50: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2012e54: 80 a0 40 08 cmp %g1, %o0 2012e58: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 2012e5c: 80 a0 60 00 cmp %g1, 0 2012e60: 02 80 00 15 be 2012eb4 <_Heap_Size_of_alloc_area+0x90> 2012e64: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2012e68: e2 02 20 04 ld [ %o0 + 4 ], %l1 2012e6c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2012e70: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2012e74: 80 a4 40 02 cmp %l1, %g2 2012e78: 0a 80 00 05 bcs 2012e8c <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 2012e7c: 82 10 20 00 clr %g1 2012e80: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 2012e84: 80 a0 40 11 cmp %g1, %l1 2012e88: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 2012e8c: 80 a0 60 00 cmp %g1, 0 2012e90: 02 80 00 09 be 2012eb4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 2012e94: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2012e98: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2012e9c: 80 88 60 01 btst 1, %g1 2012ea0: 02 80 00 05 be 2012eb4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 2012ea4: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2012ea8: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2012eac: a2 04 60 04 add %l1, 4, %l1 2012eb0: e2 26 80 00 st %l1, [ %i2 ] return true; } 2012eb4: 81 c7 e0 08 ret 2012eb8: 81 e8 00 00 restore =============================================================================== 02008140 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008140: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008144: 23 00 80 20 sethi %hi(0x2008000), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008148: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 200814c: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 2008150: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 2008154: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 2008158: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 200815c: 80 8e a0 ff btst 0xff, %i2 2008160: 02 80 00 04 be 2008170 <_Heap_Walk+0x30> 2008164: a2 14 60 ec or %l1, 0xec, %l1 2008168: 23 00 80 20 sethi %hi(0x2008000), %l1 200816c: a2 14 60 f4 or %l1, 0xf4, %l1 ! 20080f4 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008170: 03 00 80 5d sethi %hi(0x2017400), %g1 2008174: c2 00 61 2c ld [ %g1 + 0x12c ], %g1 ! 201752c <_System_state_Current> 2008178: 80 a0 60 03 cmp %g1, 3 200817c: 12 80 01 2d bne 2008630 <_Heap_Walk+0x4f0> 2008180: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008184: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2008188: da 04 20 18 ld [ %l0 + 0x18 ], %o5 200818c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2008190: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008194: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 2008198: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 200819c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20081a0: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 20081a4: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 20081a8: 90 10 00 19 mov %i1, %o0 20081ac: 92 10 20 00 clr %o1 20081b0: 15 00 80 52 sethi %hi(0x2014800), %o2 20081b4: 96 10 00 12 mov %l2, %o3 20081b8: 94 12 a2 e0 or %o2, 0x2e0, %o2 20081bc: 9f c4 40 00 call %l1 20081c0: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 20081c4: 80 a4 a0 00 cmp %l2, 0 20081c8: 12 80 00 07 bne 20081e4 <_Heap_Walk+0xa4> 20081cc: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 20081d0: 15 00 80 52 sethi %hi(0x2014800), %o2 20081d4: 90 10 00 19 mov %i1, %o0 20081d8: 92 10 20 01 mov 1, %o1 20081dc: 10 80 00 38 b 20082bc <_Heap_Walk+0x17c> 20081e0: 94 12 a3 78 or %o2, 0x378, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 20081e4: 22 80 00 08 be,a 2008204 <_Heap_Walk+0xc4> 20081e8: 90 10 00 14 mov %l4, %o0 (*printer)( 20081ec: 15 00 80 52 sethi %hi(0x2014800), %o2 20081f0: 90 10 00 19 mov %i1, %o0 20081f4: 92 10 20 01 mov 1, %o1 20081f8: 94 12 a3 90 or %o2, 0x390, %o2 20081fc: 10 80 01 0b b 2008628 <_Heap_Walk+0x4e8> 2008200: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008204: 7f ff e6 30 call 2001ac4 <.urem> 2008208: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 200820c: 80 a2 20 00 cmp %o0, 0 2008210: 22 80 00 08 be,a 2008230 <_Heap_Walk+0xf0> 2008214: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 2008218: 15 00 80 52 sethi %hi(0x2014800), %o2 200821c: 90 10 00 19 mov %i1, %o0 2008220: 92 10 20 01 mov 1, %o1 2008224: 94 12 a3 b0 or %o2, 0x3b0, %o2 2008228: 10 80 01 00 b 2008628 <_Heap_Walk+0x4e8> 200822c: 96 10 00 14 mov %l4, %o3 2008230: 7f ff e6 25 call 2001ac4 <.urem> 2008234: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 2008238: 80 a2 20 00 cmp %o0, 0 200823c: 22 80 00 08 be,a 200825c <_Heap_Walk+0x11c> 2008240: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008244: 15 00 80 52 sethi %hi(0x2014800), %o2 2008248: 90 10 00 19 mov %i1, %o0 200824c: 92 10 20 01 mov 1, %o1 2008250: 94 12 a3 d8 or %o2, 0x3d8, %o2 2008254: 10 80 00 f5 b 2008628 <_Heap_Walk+0x4e8> 2008258: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 200825c: 80 88 60 01 btst 1, %g1 2008260: 32 80 00 07 bne,a 200827c <_Heap_Walk+0x13c> 2008264: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 2008268: 15 00 80 53 sethi %hi(0x2014c00), %o2 200826c: 90 10 00 19 mov %i1, %o0 2008270: 92 10 20 01 mov 1, %o1 2008274: 10 80 00 12 b 20082bc <_Heap_Walk+0x17c> 2008278: 94 12 a0 10 or %o2, 0x10, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200827c: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008280: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008284: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2008288: 80 88 60 01 btst 1, %g1 200828c: 12 80 00 07 bne 20082a8 <_Heap_Walk+0x168> 2008290: 80 a5 80 13 cmp %l6, %l3 (*printer)( 2008294: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008298: 90 10 00 19 mov %i1, %o0 200829c: 92 10 20 01 mov 1, %o1 20082a0: 10 80 00 07 b 20082bc <_Heap_Walk+0x17c> 20082a4: 94 12 a0 40 or %o2, 0x40, %o2 ); return false; } if ( 20082a8: 02 80 00 08 be 20082c8 <_Heap_Walk+0x188> <== ALWAYS TAKEN 20082ac: 15 00 80 53 sethi %hi(0x2014c00), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20082b0: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20082b4: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 20082b8: 94 12 a0 58 or %o2, 0x58, %o2 <== NOT EXECUTED 20082bc: 9f c4 40 00 call %l1 20082c0: b0 10 20 00 clr %i0 20082c4: 30 80 00 db b,a 2008630 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 20082c8: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20082cc: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 20082d0: ae 10 00 10 mov %l0, %l7 20082d4: 10 80 00 32 b 200839c <_Heap_Walk+0x25c> 20082d8: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20082dc: 80 a0 80 1c cmp %g2, %i4 20082e0: 18 80 00 05 bgu 20082f4 <_Heap_Walk+0x1b4> 20082e4: 82 10 20 00 clr %g1 20082e8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 20082ec: 80 a0 40 1c cmp %g1, %i4 20082f0: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 20082f4: 80 a0 60 00 cmp %g1, 0 20082f8: 32 80 00 08 bne,a 2008318 <_Heap_Walk+0x1d8> 20082fc: 90 07 20 08 add %i4, 8, %o0 (*printer)( 2008300: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008304: 96 10 00 1c mov %i4, %o3 2008308: 90 10 00 19 mov %i1, %o0 200830c: 92 10 20 01 mov 1, %o1 2008310: 10 80 00 c6 b 2008628 <_Heap_Walk+0x4e8> 2008314: 94 12 a0 88 or %o2, 0x88, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008318: 7f ff e5 eb call 2001ac4 <.urem> 200831c: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 2008320: 80 a2 20 00 cmp %o0, 0 2008324: 22 80 00 08 be,a 2008344 <_Heap_Walk+0x204> 2008328: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 200832c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008330: 96 10 00 1c mov %i4, %o3 2008334: 90 10 00 19 mov %i1, %o0 2008338: 92 10 20 01 mov 1, %o1 200833c: 10 80 00 bb b 2008628 <_Heap_Walk+0x4e8> 2008340: 94 12 a0 a8 or %o2, 0xa8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008344: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 2008348: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200834c: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008350: 80 88 60 01 btst 1, %g1 2008354: 22 80 00 08 be,a 2008374 <_Heap_Walk+0x234> 2008358: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 200835c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008360: 96 10 00 1c mov %i4, %o3 2008364: 90 10 00 19 mov %i1, %o0 2008368: 92 10 20 01 mov 1, %o1 200836c: 10 80 00 af b 2008628 <_Heap_Walk+0x4e8> 2008370: 94 12 a0 d8 or %o2, 0xd8, %o2 ); return false; } if ( free_block->prev != prev_block ) { 2008374: 80 a3 00 17 cmp %o4, %l7 2008378: 22 80 00 08 be,a 2008398 <_Heap_Walk+0x258> 200837c: ae 10 00 1c mov %i4, %l7 (*printer)( 2008380: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008384: 96 10 00 1c mov %i4, %o3 2008388: 90 10 00 19 mov %i1, %o0 200838c: 92 10 20 01 mov 1, %o1 2008390: 10 80 00 49 b 20084b4 <_Heap_Walk+0x374> 2008394: 94 12 a0 f8 or %o2, 0xf8, %o2 return false; } prev_block = free_block; free_block = free_block->next; 2008398: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 200839c: 80 a7 00 10 cmp %i4, %l0 20083a0: 32 bf ff cf bne,a 20082dc <_Heap_Walk+0x19c> 20083a4: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 20083a8: 35 00 80 53 sethi %hi(0x2014c00), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20083ac: 31 00 80 53 sethi %hi(0x2014c00), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20083b0: b4 16 a2 b8 or %i2, 0x2b8, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20083b4: b0 16 22 a0 or %i0, 0x2a0, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20083b8: 37 00 80 53 sethi %hi(0x2014c00), %i3 block = next_block; } while ( block != first_block ); return true; } 20083bc: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20083c0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20083c4: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20083c8: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20083cc: 80 a0 c0 1d cmp %g3, %i5 20083d0: 18 80 00 05 bgu 20083e4 <_Heap_Walk+0x2a4> <== NEVER TAKEN 20083d4: 84 10 20 00 clr %g2 20083d8: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 20083dc: 80 a0 80 1d cmp %g2, %i5 20083e0: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 20083e4: 80 a0 a0 00 cmp %g2, 0 20083e8: 12 80 00 07 bne 2008404 <_Heap_Walk+0x2c4> 20083ec: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 20083f0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083f4: 90 10 00 19 mov %i1, %o0 20083f8: 92 10 20 01 mov 1, %o1 20083fc: 10 80 00 2c b 20084ac <_Heap_Walk+0x36c> 2008400: 94 12 a1 30 or %o2, 0x130, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008404: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008408: c2 27 bf fc st %g1, [ %fp + -4 ] 200840c: b8 40 20 00 addx %g0, 0, %i4 2008410: 90 10 00 17 mov %l7, %o0 2008414: 7f ff e5 ac call 2001ac4 <.urem> 2008418: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 200841c: 80 a2 20 00 cmp %o0, 0 2008420: 02 80 00 0c be 2008450 <_Heap_Walk+0x310> 2008424: c2 07 bf fc ld [ %fp + -4 ], %g1 2008428: 80 8f 20 ff btst 0xff, %i4 200842c: 02 80 00 0a be 2008454 <_Heap_Walk+0x314> 2008430: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 2008434: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008438: 90 10 00 19 mov %i1, %o0 200843c: 92 10 20 01 mov 1, %o1 2008440: 94 12 a1 60 or %o2, 0x160, %o2 2008444: 96 10 00 16 mov %l6, %o3 2008448: 10 80 00 1b b 20084b4 <_Heap_Walk+0x374> 200844c: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008450: 80 a5 c0 14 cmp %l7, %l4 2008454: 1a 80 00 0d bcc 2008488 <_Heap_Walk+0x348> 2008458: 80 a7 40 16 cmp %i5, %l6 200845c: 80 8f 20 ff btst 0xff, %i4 2008460: 02 80 00 0a be 2008488 <_Heap_Walk+0x348> <== NEVER TAKEN 2008464: 80 a7 40 16 cmp %i5, %l6 (*printer)( 2008468: 15 00 80 53 sethi %hi(0x2014c00), %o2 200846c: 90 10 00 19 mov %i1, %o0 2008470: 92 10 20 01 mov 1, %o1 2008474: 94 12 a1 90 or %o2, 0x190, %o2 2008478: 96 10 00 16 mov %l6, %o3 200847c: 98 10 00 17 mov %l7, %o4 2008480: 10 80 00 3f b 200857c <_Heap_Walk+0x43c> 2008484: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008488: 38 80 00 0e bgu,a 20084c0 <_Heap_Walk+0x380> 200848c: b8 08 60 01 and %g1, 1, %i4 2008490: 80 8f 20 ff btst 0xff, %i4 2008494: 02 80 00 0b be 20084c0 <_Heap_Walk+0x380> 2008498: b8 08 60 01 and %g1, 1, %i4 (*printer)( 200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084a0: 90 10 00 19 mov %i1, %o0 20084a4: 92 10 20 01 mov 1, %o1 20084a8: 94 12 a1 c0 or %o2, 0x1c0, %o2 20084ac: 96 10 00 16 mov %l6, %o3 20084b0: 98 10 00 1d mov %i5, %o4 20084b4: 9f c4 40 00 call %l1 20084b8: b0 10 20 00 clr %i0 20084bc: 30 80 00 5d b,a 2008630 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20084c0: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 20084c4: 80 88 60 01 btst 1, %g1 20084c8: 12 80 00 3f bne 20085c4 <_Heap_Walk+0x484> 20084cc: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 20084d0: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20084d4: c2 04 20 08 ld [ %l0 + 8 ], %g1 20084d8: 05 00 80 52 sethi %hi(0x2014800), %g2 block = next_block; } while ( block != first_block ); return true; } 20084dc: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20084e0: 80 a3 40 01 cmp %o5, %g1 20084e4: 02 80 00 07 be 2008500 <_Heap_Walk+0x3c0> 20084e8: 86 10 a2 a0 or %g2, 0x2a0, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 20084ec: 80 a3 40 10 cmp %o5, %l0 20084f0: 12 80 00 04 bne 2008500 <_Heap_Walk+0x3c0> 20084f4: 86 16 e2 68 or %i3, 0x268, %g3 20084f8: 19 00 80 52 sethi %hi(0x2014800), %o4 20084fc: 86 13 22 b0 or %o4, 0x2b0, %g3 ! 2014ab0 <_Status_Object_name_errors_to_status+0x48> block->next, block->next == last_free_block ? 2008500: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008504: 19 00 80 52 sethi %hi(0x2014800), %o4 2008508: 80 a0 80 04 cmp %g2, %g4 200850c: 02 80 00 07 be 2008528 <_Heap_Walk+0x3e8> 2008510: 82 13 22 c0 or %o4, 0x2c0, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008514: 80 a0 80 10 cmp %g2, %l0 2008518: 12 80 00 04 bne 2008528 <_Heap_Walk+0x3e8> 200851c: 82 16 e2 68 or %i3, 0x268, %g1 2008520: 09 00 80 52 sethi %hi(0x2014800), %g4 2008524: 82 11 22 d0 or %g4, 0x2d0, %g1 ! 2014ad0 <_Status_Object_name_errors_to_status+0x68> Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008528: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200852c: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008530: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 2008534: 90 10 00 19 mov %i1, %o0 2008538: 92 10 20 00 clr %o1 200853c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008540: 96 10 00 16 mov %l6, %o3 2008544: 94 12 a1 f8 or %o2, 0x1f8, %o2 2008548: 9f c4 40 00 call %l1 200854c: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008550: da 07 40 00 ld [ %i5 ], %o5 2008554: 80 a5 c0 0d cmp %l7, %o5 2008558: 02 80 00 0c be 2008588 <_Heap_Walk+0x448> 200855c: 80 a7 20 00 cmp %i4, 0 (*printer)( 2008560: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008564: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 2008568: 90 10 00 19 mov %i1, %o0 200856c: 92 10 20 01 mov 1, %o1 2008570: 94 12 a2 30 or %o2, 0x230, %o2 2008574: 96 10 00 16 mov %l6, %o3 2008578: 98 10 00 17 mov %l7, %o4 200857c: 9f c4 40 00 call %l1 2008580: b0 10 20 00 clr %i0 2008584: 30 80 00 2b b,a 2008630 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 2008588: 32 80 00 0a bne,a 20085b0 <_Heap_Walk+0x470> 200858c: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 2008590: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008594: 90 10 00 19 mov %i1, %o0 2008598: 92 10 20 01 mov 1, %o1 200859c: 10 80 00 22 b 2008624 <_Heap_Walk+0x4e4> 20085a0: 94 12 a2 70 or %o2, 0x270, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 20085a4: 02 80 00 19 be 2008608 <_Heap_Walk+0x4c8> 20085a8: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 20085ac: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 20085b0: 80 a0 40 10 cmp %g1, %l0 20085b4: 12 bf ff fc bne 20085a4 <_Heap_Walk+0x464> 20085b8: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 20085bc: 10 80 00 17 b 2008618 <_Heap_Walk+0x4d8> 20085c0: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 20085c4: 22 80 00 0a be,a 20085ec <_Heap_Walk+0x4ac> 20085c8: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 20085cc: 90 10 00 19 mov %i1, %o0 20085d0: 92 10 20 00 clr %o1 20085d4: 94 10 00 18 mov %i0, %o2 20085d8: 96 10 00 16 mov %l6, %o3 20085dc: 9f c4 40 00 call %l1 20085e0: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20085e4: 10 80 00 09 b 2008608 <_Heap_Walk+0x4c8> 20085e8: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20085ec: 90 10 00 19 mov %i1, %o0 20085f0: 92 10 20 00 clr %o1 20085f4: 94 10 00 1a mov %i2, %o2 20085f8: 96 10 00 16 mov %l6, %o3 20085fc: 9f c4 40 00 call %l1 2008600: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008604: 80 a7 40 13 cmp %i5, %l3 2008608: 12 bf ff 6d bne 20083bc <_Heap_Walk+0x27c> 200860c: ac 10 00 1d mov %i5, %l6 return true; } 2008610: 81 c7 e0 08 ret 2008614: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008618: 90 10 00 19 mov %i1, %o0 200861c: 92 10 20 01 mov 1, %o1 2008620: 94 12 a2 e0 or %o2, 0x2e0, %o2 2008624: 96 10 00 16 mov %l6, %o3 2008628: 9f c4 40 00 call %l1 200862c: b0 10 20 00 clr %i0 2008630: 81 c7 e0 08 ret 2008634: 81 e8 00 00 restore =============================================================================== 0200736c <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 200736c: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007370: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007374: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007378: 80 a0 60 00 cmp %g1, 0 200737c: 02 80 00 20 be 20073fc <_Objects_Allocate+0x90> <== NEVER TAKEN 2007380: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007384: a2 04 20 20 add %l0, 0x20, %l1 2007388: 7f ff fd 8b call 20069b4 <_Chain_Get> 200738c: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 2007390: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007394: 80 a0 60 00 cmp %g1, 0 2007398: 02 80 00 19 be 20073fc <_Objects_Allocate+0x90> 200739c: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 20073a0: 80 a2 20 00 cmp %o0, 0 20073a4: 32 80 00 0a bne,a 20073cc <_Objects_Allocate+0x60> 20073a8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 20073ac: 40 00 00 1e call 2007424 <_Objects_Extend_information> 20073b0: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20073b4: 7f ff fd 80 call 20069b4 <_Chain_Get> 20073b8: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 20073bc: b0 92 20 00 orcc %o0, 0, %i0 20073c0: 02 80 00 0f be 20073fc <_Objects_Allocate+0x90> 20073c4: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 20073c8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 20073cc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 20073d0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 20073d4: 40 00 27 ac call 2011284 <.udiv> 20073d8: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 20073dc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 20073e0: 91 2a 20 02 sll %o0, 2, %o0 20073e4: c4 00 40 08 ld [ %g1 + %o0 ], %g2 20073e8: 84 00 bf ff add %g2, -1, %g2 20073ec: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 20073f0: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 20073f4: 82 00 7f ff add %g1, -1, %g1 20073f8: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 20073fc: 81 c7 e0 08 ret 2007400: 81 e8 00 00 restore =============================================================================== 02007774 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007774: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007778: b3 2e 60 10 sll %i1, 0x10, %i1 200777c: b3 36 60 10 srl %i1, 0x10, %i1 2007780: 80 a6 60 00 cmp %i1, 0 2007784: 02 80 00 17 be 20077e0 <_Objects_Get_information+0x6c> 2007788: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 200778c: 40 00 11 ca call 200beb4 <_Objects_API_maximum_class> 2007790: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007794: 80 a2 20 00 cmp %o0, 0 2007798: 02 80 00 12 be 20077e0 <_Objects_Get_information+0x6c> 200779c: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20077a0: 18 80 00 10 bgu 20077e0 <_Objects_Get_information+0x6c> 20077a4: 03 00 80 53 sethi %hi(0x2014c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20077a8: b1 2e 20 02 sll %i0, 2, %i0 20077ac: 82 10 60 a8 or %g1, 0xa8, %g1 20077b0: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20077b4: 80 a0 60 00 cmp %g1, 0 20077b8: 02 80 00 0a be 20077e0 <_Objects_Get_information+0x6c> <== NEVER TAKEN 20077bc: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20077c0: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 20077c4: 80 a4 20 00 cmp %l0, 0 20077c8: 02 80 00 06 be 20077e0 <_Objects_Get_information+0x6c> <== NEVER TAKEN 20077cc: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 20077d0: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 20077d4: 80 a0 00 01 cmp %g0, %g1 20077d8: 82 60 20 00 subx %g0, 0, %g1 20077dc: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 20077e0: 81 c7 e0 08 ret 20077e4: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02018fc8 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2018fc8: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 2018fcc: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2018fd0: 82 22 40 01 sub %o1, %g1, %g1 2018fd4: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 2018fd8: 80 a0 80 01 cmp %g2, %g1 2018fdc: 0a 80 00 09 bcs 2019000 <_Objects_Get_no_protection+0x38> 2018fe0: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 2018fe4: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 2018fe8: d0 00 80 01 ld [ %g2 + %g1 ], %o0 2018fec: 80 a2 20 00 cmp %o0, 0 2018ff0: 02 80 00 05 be 2019004 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 2018ff4: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 2018ff8: 81 c3 e0 08 retl 2018ffc: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 2019000: 82 10 20 01 mov 1, %g1 return NULL; 2019004: 90 10 20 00 clr %o0 } 2019008: 81 c3 e0 08 retl 201900c: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 02009050 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2009050: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009054: 92 96 20 00 orcc %i0, 0, %o1 2009058: 12 80 00 06 bne 2009070 <_Objects_Id_to_name+0x20> 200905c: 83 32 60 18 srl %o1, 0x18, %g1 2009060: 03 00 80 74 sethi %hi(0x201d000), %g1 2009064: c2 00 63 58 ld [ %g1 + 0x358 ], %g1 ! 201d358 <_Per_CPU_Information+0xc> 2009068: d2 00 60 08 ld [ %g1 + 8 ], %o1 200906c: 83 32 60 18 srl %o1, 0x18, %g1 2009070: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2009074: 84 00 7f ff add %g1, -1, %g2 2009078: 80 a0 a0 02 cmp %g2, 2 200907c: 18 80 00 12 bgu 20090c4 <_Objects_Id_to_name+0x74> 2009080: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2009084: 10 80 00 12 b 20090cc <_Objects_Id_to_name+0x7c> 2009088: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 200908c: 85 28 a0 02 sll %g2, 2, %g2 2009090: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2009094: 80 a2 20 00 cmp %o0, 0 2009098: 02 80 00 0b be 20090c4 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 200909c: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 20090a0: 7f ff ff cf call 2008fdc <_Objects_Get> 20090a4: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 20090a8: 80 a2 20 00 cmp %o0, 0 20090ac: 02 80 00 06 be 20090c4 <_Objects_Id_to_name+0x74> 20090b0: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 20090b4: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 20090b8: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 20090bc: 40 00 03 76 call 2009e94 <_Thread_Enable_dispatch> 20090c0: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 20090c4: 81 c7 e0 08 ret 20090c8: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20090cc: 05 00 80 74 sethi %hi(0x201d000), %g2 20090d0: 84 10 a0 88 or %g2, 0x88, %g2 ! 201d088 <_Objects_Information_table> 20090d4: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20090d8: 80 a0 60 00 cmp %g1, 0 20090dc: 12 bf ff ec bne 200908c <_Objects_Id_to_name+0x3c> 20090e0: 85 32 60 1b srl %o1, 0x1b, %g2 20090e4: 30 bf ff f8 b,a 20090c4 <_Objects_Id_to_name+0x74> =============================================================================== 020078d0 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 20078d0: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 20078d4: 85 2f 20 10 sll %i4, 0x10, %g2 20078d8: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 20078dc: 07 00 80 53 sethi %hi(0x2014c00), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 20078e0: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 20078e4: 86 10 e0 a8 or %g3, 0xa8, %g3 20078e8: 85 2e 60 02 sll %i1, 2, %g2 20078ec: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 20078f0: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 20078f4: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; information->local_table = 0; 20078f8: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 20078fc: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 2007900: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 2007904: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 2007908: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 200790c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007910: b5 2e a0 10 sll %i2, 0x10, %i2 2007914: b5 36 a0 10 srl %i2, 0x10, %i2 2007918: 85 2e a0 02 sll %i2, 2, %g2 200791c: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2007920: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 2007924: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2007928: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 200792c: 80 a0 a0 00 cmp %g2, 0 2007930: 02 80 00 09 be 2007954 <_Objects_Initialize_information+0x84> 2007934: b6 2e c0 03 andn %i3, %g3, %i3 2007938: 80 a6 e0 00 cmp %i3, 0 200793c: 12 80 00 07 bne 2007958 <_Objects_Initialize_information+0x88> 2007940: 05 00 80 52 sethi %hi(0x2014800), %g2 _Internal_error_Occurred( 2007944: 90 10 20 00 clr %o0 2007948: 92 10 20 01 mov 1, %o1 200794c: 7f ff fe 5c call 20072bc <_Internal_error_Occurred> 2007950: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 2007954: 05 00 80 52 sethi %hi(0x2014800), %g2 2007958: 84 10 a1 f8 or %g2, 0x1f8, %g2 ! 20149f8 200795c: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007960: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007964: 80 a0 00 1b cmp %g0, %i3 2007968: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 200796c: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007970: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 2007974: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007978: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 200797c: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007980: b4 16 80 02 or %i2, %g2, %i2 * lengths that may be an odd number of bytes. */ name_length = maximum_name_length; #if !defined(RTEMS_POSIX_API) if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 2007984: 80 88 60 03 btst 3, %g1 2007988: 02 80 00 04 be 2007998 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN 200798c: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 2007990: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007994: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); #endif information->name_length = name_length; 2007998: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200799c: 82 06 20 24 add %i0, 0x24, %g1 head->next = tail; head->previous = NULL; 20079a0: c0 26 20 24 clr [ %i0 + 0x24 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20079a4: c2 26 20 20 st %g1, [ %i0 + 0x20 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 20079a8: 82 06 20 20 add %i0, 0x20, %g1 _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 20079ac: 80 a6 e0 00 cmp %i3, 0 20079b0: 02 80 00 04 be 20079c0 <_Objects_Initialize_information+0xf0> 20079b4: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 20079b8: 7f ff fe 9b call 2007424 <_Objects_Extend_information> 20079bc: 81 e8 00 00 restore 20079c0: 81 c7 e0 08 ret 20079c4: 81 e8 00 00 restore =============================================================================== 0200b690 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200b690: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200b694: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 if ( !api ) 200b698: 80 a4 20 00 cmp %l0, 0 200b69c: 02 80 00 1d be 200b710 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 200b6a0: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200b6a4: 7f ff da 10 call 2001ee4 200b6a8: 01 00 00 00 nop signal_set = asr->signals_posted; 200b6ac: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 200b6b0: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200b6b4: 7f ff da 10 call 2001ef4 200b6b8: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200b6bc: 80 a4 e0 00 cmp %l3, 0 200b6c0: 02 80 00 14 be 200b710 <_RTEMS_tasks_Post_switch_extension+0x80> 200b6c4: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 200b6c8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6cc: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200b6d0: 82 00 60 01 inc %g1 200b6d4: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6d8: 94 10 00 11 mov %l1, %o2 200b6dc: 25 00 00 3f sethi %hi(0xfc00), %l2 200b6e0: 40 00 07 4c call 200d410 200b6e4: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200b6e8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b6ec: 9f c0 40 00 call %g1 200b6f0: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 200b6f4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6f8: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b6fc: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b700: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b704: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b708: 40 00 07 42 call 200d410 200b70c: 94 10 00 11 mov %l1, %o2 200b710: 81 c7 e0 08 ret 200b714: 81 e8 00 00 restore =============================================================================== 020076c4 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 20076c4: 9d e3 bf 98 save %sp, -104, %sp 20076c8: 11 00 80 75 sethi %hi(0x201d400), %o0 20076cc: 92 10 00 18 mov %i0, %o1 20076d0: 90 12 22 04 or %o0, 0x204, %o0 20076d4: 40 00 07 c2 call 20095dc <_Objects_Get> 20076d8: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20076dc: c2 07 bf fc ld [ %fp + -4 ], %g1 20076e0: 80 a0 60 00 cmp %g1, 0 20076e4: 12 80 00 24 bne 2007774 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 20076e8: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 20076ec: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20076f0: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 20076f4: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 20076f8: 80 88 80 01 btst %g2, %g1 20076fc: 22 80 00 0b be,a 2007728 <_Rate_monotonic_Timeout+0x64> 2007700: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007704: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007708: c2 04 20 08 ld [ %l0 + 8 ], %g1 200770c: 80 a0 80 01 cmp %g2, %g1 2007710: 32 80 00 06 bne,a 2007728 <_Rate_monotonic_Timeout+0x64> 2007714: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007718: 13 04 00 ff sethi %hi(0x1003fc00), %o1 200771c: 40 00 0a 5a call 200a084 <_Thread_Clear_state> 2007720: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007724: 30 80 00 06 b,a 200773c <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007728: 80 a0 60 01 cmp %g1, 1 200772c: 12 80 00 0d bne 2007760 <_Rate_monotonic_Timeout+0x9c> 2007730: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007734: 82 10 20 03 mov 3, %g1 2007738: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 200773c: 7f ff fe 66 call 20070d4 <_Rate_monotonic_Initiate_statistics> 2007740: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007744: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007748: 11 00 80 76 sethi %hi(0x201d800), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200774c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007750: 90 12 20 34 or %o0, 0x34, %o0 2007754: 40 00 0f 32 call 200b41c <_Watchdog_Insert> 2007758: 92 04 20 10 add %l0, 0x10, %o1 200775c: 30 80 00 02 b,a 2007764 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007760: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2007764: 03 00 80 75 sethi %hi(0x201d400), %g1 2007768: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201d770 <_Thread_Dispatch_disable_level> 200776c: 84 00 bf ff add %g2, -1, %g2 2007770: c4 20 63 70 st %g2, [ %g1 + 0x370 ] 2007774: 81 c7 e0 08 ret 2007778: 81 e8 00 00 restore =============================================================================== 02007be4 <_Scheduler_priority_Block>: #include void _Scheduler_priority_Block( Thread_Control *the_thread ) { 2007be4: 9d e3 bf a0 save %sp, -96, %sp ) { Scheduler_priority_Per_thread *sched_info; Chain_Control *ready; sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info; 2007be8: c4 06 20 8c ld [ %i0 + 0x8c ], %g2 ready = sched_info->ready_chain; 2007bec: c2 00 80 00 ld [ %g2 ], %g1 if ( _Chain_Has_only_one_node( ready ) ) { 2007bf0: c8 00 40 00 ld [ %g1 ], %g4 2007bf4: c6 00 60 08 ld [ %g1 + 8 ], %g3 2007bf8: 80 a1 00 03 cmp %g4, %g3 2007bfc: 32 80 00 16 bne,a 2007c54 <_Scheduler_priority_Block+0x70> 2007c00: c4 06 00 00 ld [ %i0 ], %g2 Chain_Node *tail = _Chain_Tail( the_chain ); 2007c04: 86 00 60 04 add %g1, 4, %g3 head->next = tail; 2007c08: c6 20 40 00 st %g3, [ %g1 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor &= the_priority_map->block_minor; 2007c0c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 head->previous = NULL; 2007c10: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2007c14: c2 20 60 08 st %g1, [ %g1 + 8 ] 2007c18: c2 10 a0 0e lduh [ %g2 + 0xe ], %g1 2007c1c: c8 10 c0 00 lduh [ %g3 ], %g4 2007c20: 82 09 00 01 and %g4, %g1, %g1 2007c24: c2 30 c0 00 sth %g1, [ %g3 ] if ( *the_priority_map->minor == 0 ) 2007c28: 83 28 60 10 sll %g1, 0x10, %g1 2007c2c: 80 a0 60 00 cmp %g1, 0 2007c30: 32 80 00 0d bne,a 2007c64 <_Scheduler_priority_Block+0x80> 2007c34: 03 00 80 53 sethi %hi(0x2014c00), %g1 _Priority_Major_bit_map &= the_priority_map->block_major; 2007c38: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007c3c: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2 2007c40: c6 10 63 90 lduh [ %g1 + 0x390 ], %g3 2007c44: 84 08 80 03 and %g2, %g3, %g2 2007c48: c4 30 63 90 sth %g2, [ %g1 + 0x390 ] RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir ); 2007c4c: 10 80 00 06 b 2007c64 <_Scheduler_priority_Block+0x80> 2007c50: 03 00 80 53 sethi %hi(0x2014c00), %g1 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2007c54: c2 06 20 04 ld [ %i0 + 4 ], %g1 next->previous = previous; 2007c58: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2007c5c: c4 20 40 00 st %g2, [ %g1 ] 2007c60: 03 00 80 53 sethi %hi(0x2014c00), %g1 _Scheduler_priority_Ready_queue_extract( the_thread ); /* TODO: flash critical section? */ if ( _Thread_Is_heir( the_thread ) ) 2007c64: c2 00 63 7c ld [ %g1 + 0x37c ], %g1 ! 2014f7c <_Per_CPU_Information+0x10> 2007c68: 80 a6 00 01 cmp %i0, %g1 2007c6c: 32 80 00 33 bne,a 2007d38 <_Scheduler_priority_Block+0x154> 2007c70: 03 00 80 53 sethi %hi(0x2014c00), %g1 * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( (Chain_Control *) _Scheduler.information 2007c74: 03 00 80 50 sethi %hi(0x2014000), %g1 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2007c78: c6 00 60 a0 ld [ %g1 + 0xa0 ], %g3 ! 20140a0 <_Scheduler> RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2007c7c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007c80: c4 10 63 90 lduh [ %g1 + 0x390 ], %g2 ! 2014f90 <_Priority_Major_bit_map> 2007c84: 03 00 80 4d sethi %hi(0x2013400), %g1 2007c88: 85 28 a0 10 sll %g2, 0x10, %g2 2007c8c: 89 30 a0 10 srl %g2, 0x10, %g4 2007c90: 80 a1 20 ff cmp %g4, 0xff 2007c94: 18 80 00 05 bgu 2007ca8 <_Scheduler_priority_Block+0xc4> 2007c98: 82 10 63 98 or %g1, 0x398, %g1 2007c9c: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 2007ca0: 10 80 00 04 b 2007cb0 <_Scheduler_priority_Block+0xcc> 2007ca4: 84 00 a0 08 add %g2, 8, %g2 2007ca8: 85 30 a0 18 srl %g2, 0x18, %g2 2007cac: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2007cb0: 83 28 a0 10 sll %g2, 0x10, %g1 2007cb4: 09 00 80 53 sethi %hi(0x2014c00), %g4 2007cb8: 83 30 60 0f srl %g1, 0xf, %g1 2007cbc: 88 11 23 a0 or %g4, 0x3a0, %g4 2007cc0: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 2007cc4: 03 00 80 4d sethi %hi(0x2013400), %g1 2007cc8: 89 29 20 10 sll %g4, 0x10, %g4 2007ccc: 9b 31 20 10 srl %g4, 0x10, %o5 2007cd0: 80 a3 60 ff cmp %o5, 0xff 2007cd4: 18 80 00 05 bgu 2007ce8 <_Scheduler_priority_Block+0x104> 2007cd8: 82 10 63 98 or %g1, 0x398, %g1 2007cdc: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 2007ce0: 10 80 00 04 b 2007cf0 <_Scheduler_priority_Block+0x10c> 2007ce4: 82 00 60 08 add %g1, 8, %g1 2007ce8: 89 31 20 18 srl %g4, 0x18, %g4 2007cec: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 2007cf0: 83 28 60 10 sll %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007cf4: 85 28 a0 10 sll %g2, 0x10, %g2 _Priority_Bits_index( minor ); 2007cf8: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007cfc: 85 30 a0 0c srl %g2, 0xc, %g2 2007d00: 84 00 40 02 add %g1, %g2, %g2 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 2007d04: 89 28 a0 02 sll %g2, 2, %g4 2007d08: 83 28 a0 04 sll %g2, 4, %g1 2007d0c: 82 20 40 04 sub %g1, %g4, %g1 _Scheduler_priority_Schedule_body(); if ( _Thread_Is_executing( the_thread ) ) _Thread_Dispatch_necessary = true; } 2007d10: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 2007d14: 88 00 c0 01 add %g3, %g1, %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2007d18: 86 01 20 04 add %g4, 4, %g3 2007d1c: 80 a0 80 03 cmp %g2, %g3 2007d20: 02 80 00 03 be 2007d2c <_Scheduler_priority_Block+0x148> <== NEVER TAKEN 2007d24: 82 10 20 00 clr %g1 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2007d28: 82 10 00 02 mov %g2, %g1 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2007d2c: 05 00 80 53 sethi %hi(0x2014c00), %g2 2007d30: c2 20 a3 7c st %g1, [ %g2 + 0x37c ] ! 2014f7c <_Per_CPU_Information+0x10> RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007d34: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007d38: 82 10 63 6c or %g1, 0x36c, %g1 ! 2014f6c <_Per_CPU_Information> /* TODO: flash critical section? */ if ( _Thread_Is_heir( the_thread ) ) _Scheduler_priority_Schedule_body(); if ( _Thread_Is_executing( the_thread ) ) 2007d3c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2007d40: 80 a6 00 02 cmp %i0, %g2 2007d44: 12 80 00 03 bne 2007d50 <_Scheduler_priority_Block+0x16c> 2007d48: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2007d4c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2007d50: 81 c7 e0 08 ret 2007d54: 81 e8 00 00 restore =============================================================================== 02007f08 <_Scheduler_priority_Schedule>: #include #include #include void _Scheduler_priority_Schedule(void) { 2007f08: 9d e3 bf a0 save %sp, -96, %sp * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( (Chain_Control *) _Scheduler.information 2007f0c: 03 00 80 50 sethi %hi(0x2014000), %g1 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2007f10: c6 00 60 a0 ld [ %g1 + 0xa0 ], %g3 ! 20140a0 <_Scheduler> RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2007f14: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007f18: c4 10 63 90 lduh [ %g1 + 0x390 ], %g2 ! 2014f90 <_Priority_Major_bit_map> 2007f1c: 03 00 80 4d sethi %hi(0x2013400), %g1 2007f20: 85 28 a0 10 sll %g2, 0x10, %g2 2007f24: 89 30 a0 10 srl %g2, 0x10, %g4 2007f28: 80 a1 20 ff cmp %g4, 0xff 2007f2c: 18 80 00 05 bgu 2007f40 <_Scheduler_priority_Schedule+0x38> 2007f30: 82 10 63 98 or %g1, 0x398, %g1 2007f34: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 2007f38: 10 80 00 04 b 2007f48 <_Scheduler_priority_Schedule+0x40> 2007f3c: 84 00 a0 08 add %g2, 8, %g2 2007f40: 85 30 a0 18 srl %g2, 0x18, %g2 2007f44: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2007f48: 83 28 a0 10 sll %g2, 0x10, %g1 2007f4c: 09 00 80 53 sethi %hi(0x2014c00), %g4 2007f50: 83 30 60 0f srl %g1, 0xf, %g1 2007f54: 88 11 23 a0 or %g4, 0x3a0, %g4 2007f58: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 2007f5c: 03 00 80 4d sethi %hi(0x2013400), %g1 2007f60: 89 29 20 10 sll %g4, 0x10, %g4 2007f64: 9b 31 20 10 srl %g4, 0x10, %o5 2007f68: 80 a3 60 ff cmp %o5, 0xff 2007f6c: 18 80 00 05 bgu 2007f80 <_Scheduler_priority_Schedule+0x78> 2007f70: 82 10 63 98 or %g1, 0x398, %g1 2007f74: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 2007f78: 10 80 00 04 b 2007f88 <_Scheduler_priority_Schedule+0x80> 2007f7c: 82 00 60 08 add %g1, 8, %g1 2007f80: 89 31 20 18 srl %g4, 0x18, %g4 2007f84: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 2007f88: 83 28 60 10 sll %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007f8c: 85 28 a0 10 sll %g2, 0x10, %g2 _Priority_Bits_index( minor ); 2007f90: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007f94: 85 30 a0 0c srl %g2, 0xc, %g2 2007f98: 84 00 40 02 add %g1, %g2, %g2 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 2007f9c: 89 28 a0 02 sll %g2, 2, %g4 2007fa0: 83 28 a0 04 sll %g2, 4, %g1 2007fa4: 82 20 40 04 sub %g1, %g4, %g1 _Scheduler_priority_Schedule_body(); } 2007fa8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 2007fac: 88 00 c0 01 add %g3, %g1, %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2007fb0: 86 01 20 04 add %g4, 4, %g3 2007fb4: 80 a0 80 03 cmp %g2, %g3 2007fb8: 02 80 00 03 be 2007fc4 <_Scheduler_priority_Schedule+0xbc><== NEVER TAKEN 2007fbc: 82 10 20 00 clr %g1 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2007fc0: 82 10 00 02 mov %g2, %g1 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2007fc4: 05 00 80 53 sethi %hi(0x2014c00), %g2 2007fc8: c2 20 a3 7c st %g1, [ %g2 + 0x37c ] ! 2014f7c <_Per_CPU_Information+0x10> 2007fcc: 81 c7 e0 08 ret 2007fd0: 81 e8 00 00 restore =============================================================================== 020080ec <_Scheduler_priority_Yield>: * ready chain * select heir */ void _Scheduler_priority_Yield(void) { 20080ec: 9d e3 bf a0 save %sp, -96, %sp Scheduler_priority_Per_thread *sched_info; ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 20080f0: 25 00 80 53 sethi %hi(0x2014c00), %l2 20080f4: a4 14 a3 6c or %l2, 0x36c, %l2 ! 2014f6c <_Per_CPU_Information> 20080f8: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info; ready = sched_info->ready_chain; 20080fc: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 _ISR_Disable( level ); 2008100: 7f ff e7 79 call 2001ee4 2008104: e2 00 40 00 ld [ %g1 ], %l1 2008108: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 200810c: c4 04 40 00 ld [ %l1 ], %g2 2008110: c2 04 60 08 ld [ %l1 + 8 ], %g1 2008114: 80 a0 80 01 cmp %g2, %g1 2008118: 22 80 00 1a be,a 2008180 <_Scheduler_priority_Yield+0x94> 200811c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2008120: c4 04 00 00 ld [ %l0 ], %g2 previous = the_node->previous; 2008124: c2 04 20 04 ld [ %l0 + 4 ], %g1 next->previous = previous; 2008128: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 200812c: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008130: c2 04 60 08 ld [ %l1 + 8 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); 2008134: 84 04 60 04 add %l1, 4, %g2 Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node; 2008138: e0 24 60 08 st %l0, [ %l1 + 8 ] ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail; 200813c: c4 24 00 00 st %g2, [ %l0 ] tail->previous = the_node; old_last->next = the_node; 2008140: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last; 2008144: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 2008148: 7f ff e7 6b call 2001ef4 200814c: 01 00 00 00 nop 2008150: 7f ff e7 65 call 2001ee4 2008154: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 2008158: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 200815c: 80 a4 00 01 cmp %l0, %g1 2008160: 12 80 00 04 bne 2008170 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN 2008164: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 2008168: c2 04 40 00 ld [ %l1 ], %g1 200816c: c2 24 a0 10 st %g1, [ %l2 + 0x10 ] _Thread_Dispatch_necessary = true; 2008170: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008174: 82 10 63 6c or %g1, 0x36c, %g1 ! 2014f6c <_Per_CPU_Information> 2008178: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200817c: 30 80 00 05 b,a 2008190 <_Scheduler_priority_Yield+0xa4> } else if ( !_Thread_Is_heir( executing ) ) 2008180: 80 a4 00 01 cmp %l0, %g1 2008184: 02 80 00 03 be 2008190 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN 2008188: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 200818c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2008190: 7f ff e7 59 call 2001ef4 2008194: 81 e8 00 00 restore =============================================================================== 02007104 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007104: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007108: 03 00 80 74 sethi %hi(0x201d000), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 200710c: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007110: d2 00 63 f4 ld [ %g1 + 0x3f4 ], %o1 if ((!the_tod) || 2007114: 80 a4 20 00 cmp %l0, 0 2007118: 02 80 00 2b be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN 200711c: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007120: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007124: 40 00 48 30 call 20191e4 <.udiv> 2007128: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200712c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2007130: 80 a0 40 08 cmp %g1, %o0 2007134: 1a 80 00 24 bcc 20071c4 <_TOD_Validate+0xc0> 2007138: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 200713c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2007140: 80 a0 60 3b cmp %g1, 0x3b 2007144: 18 80 00 20 bgu 20071c4 <_TOD_Validate+0xc0> 2007148: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 200714c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 2007150: 80 a0 60 3b cmp %g1, 0x3b 2007154: 18 80 00 1c bgu 20071c4 <_TOD_Validate+0xc0> 2007158: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 200715c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2007160: 80 a0 60 17 cmp %g1, 0x17 2007164: 18 80 00 18 bgu 20071c4 <_TOD_Validate+0xc0> 2007168: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 200716c: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007170: 80 a0 60 00 cmp %g1, 0 2007174: 02 80 00 14 be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007178: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200717c: 18 80 00 12 bgu 20071c4 <_TOD_Validate+0xc0> 2007180: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007184: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007188: 80 a0 e7 c3 cmp %g3, 0x7c3 200718c: 08 80 00 0e bleu 20071c4 <_TOD_Validate+0xc0> 2007190: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007194: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007198: 80 a0 a0 00 cmp %g2, 0 200719c: 02 80 00 0a be 20071c4 <_TOD_Validate+0xc0> <== NEVER TAKEN 20071a0: 80 88 e0 03 btst 3, %g3 20071a4: 07 00 80 70 sethi %hi(0x201c000), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20071a8: 12 80 00 03 bne 20071b4 <_TOD_Validate+0xb0> 20071ac: 86 10 e0 40 or %g3, 0x40, %g3 ! 201c040 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20071b0: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20071b4: 83 28 60 02 sll %g1, 2, %g1 20071b8: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20071bc: 80 a0 40 02 cmp %g1, %g2 20071c0: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 20071c4: 81 c7 e0 08 ret 20071c8: 81 e8 00 00 restore =============================================================================== 020081f0 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 20081f0: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 20081f4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 20081f8: 40 00 03 60 call 2008f78 <_Thread_Set_transient> 20081fc: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008200: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008204: 80 a0 40 19 cmp %g1, %i1 2008208: 02 80 00 05 be 200821c <_Thread_Change_priority+0x2c> 200820c: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 2008210: 90 10 00 18 mov %i0, %o0 2008214: 40 00 03 3f call 2008f10 <_Thread_Set_priority> 2008218: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 200821c: 7f ff e7 32 call 2001ee4 2008220: 01 00 00 00 nop 2008224: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2008228: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 200822c: 80 a6 60 04 cmp %i1, 4 2008230: 02 80 00 10 be 2008270 <_Thread_Change_priority+0x80> 2008234: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008238: 80 a4 60 00 cmp %l1, 0 200823c: 12 80 00 03 bne 2008248 <_Thread_Change_priority+0x58> <== NEVER TAKEN 2008240: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008244: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 2008248: 7f ff e7 2b call 2001ef4 200824c: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008250: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008254: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008258: 80 8e 40 01 btst %i1, %g1 200825c: 02 80 00 28 be 20082fc <_Thread_Change_priority+0x10c> 2008260: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008264: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2008268: 40 00 02 fd call 2008e5c <_Thread_queue_Requeue> 200826c: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008270: 80 a4 60 00 cmp %l1, 0 2008274: 12 80 00 0b bne 20082a0 <_Thread_Change_priority+0xb0> <== NEVER TAKEN 2008278: 03 00 80 50 sethi %hi(0x2014000), %g1 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200827c: c0 24 20 10 clr [ %l0 + 0x10 ] if ( prepend_it ) 2008280: 80 8e a0 ff btst 0xff, %i2 2008284: 02 80 00 04 be 2008294 <_Thread_Change_priority+0xa4> 2008288: 82 10 60 a0 or %g1, 0xa0, %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 200828c: 10 80 00 03 b 2008298 <_Thread_Change_priority+0xa8> 2008290: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008294: c2 00 60 24 ld [ %g1 + 0x24 ], %g1 2008298: 9f c0 40 00 call %g1 200829c: 90 10 00 10 mov %l0, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 20082a0: 7f ff e7 15 call 2001ef4 20082a4: 90 10 00 18 mov %i0, %o0 20082a8: 7f ff e7 0f call 2001ee4 20082ac: 01 00 00 00 nop * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 20082b0: 03 00 80 50 sethi %hi(0x2014000), %g1 20082b4: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20140a8 <_Scheduler+0x8> 20082b8: 9f c0 40 00 call %g1 20082bc: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 20082c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20082c4: 82 10 63 6c or %g1, 0x36c, %g1 ! 2014f6c <_Per_CPU_Information> 20082c8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 20082cc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 20082d0: 80 a0 80 03 cmp %g2, %g3 20082d4: 02 80 00 08 be 20082f4 <_Thread_Change_priority+0x104> 20082d8: 01 00 00 00 nop 20082dc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20082e0: 80 a0 a0 00 cmp %g2, 0 20082e4: 02 80 00 04 be 20082f4 <_Thread_Change_priority+0x104> 20082e8: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 20082ec: 84 10 20 01 mov 1, %g2 ! 1 20082f0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 20082f4: 7f ff e7 00 call 2001ef4 20082f8: 81 e8 00 00 restore 20082fc: 81 c7 e0 08 ret 2008300: 81 e8 00 00 restore =============================================================================== 020084f0 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 20084f0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20084f4: 90 10 00 18 mov %i0, %o0 20084f8: 40 00 00 6e call 20086b0 <_Thread_Get> 20084fc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008500: c2 07 bf fc ld [ %fp + -4 ], %g1 2008504: 80 a0 60 00 cmp %g1, 0 2008508: 12 80 00 08 bne 2008528 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 200850c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008510: 7f ff ff 7d call 2008304 <_Thread_Clear_state> 2008514: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 2008518: 03 00 80 53 sethi %hi(0x2014c00), %g1 200851c: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 2014d40 <_Thread_Dispatch_disable_level> 2008520: 84 00 bf ff add %g2, -1, %g2 2008524: c4 20 61 40 st %g2, [ %g1 + 0x140 ] 2008528: 81 c7 e0 08 ret 200852c: 81 e8 00 00 restore =============================================================================== 02008530 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008530: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008534: 2d 00 80 53 sethi %hi(0x2014c00), %l6 2008538: 82 15 a3 6c or %l6, 0x36c, %g1 ! 2014f6c <_Per_CPU_Information> _ISR_Disable( level ); 200853c: 7f ff e6 6a call 2001ee4 2008540: e0 00 60 0c ld [ %g1 + 0xc ], %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008544: 25 00 80 53 sethi %hi(0x2014c00), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 2008548: 37 00 80 53 sethi %hi(0x2014c00), %i3 200854c: b8 10 20 01 mov 1, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008550: 3b 00 80 53 sethi %hi(0x2014c00), %i5 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008554: aa 07 bf f8 add %fp, -8, %l5 _Timestamp_Subtract( 2008558: a8 07 bf f0 add %fp, -16, %l4 200855c: a4 14 a1 f0 or %l2, 0x1f0, %l2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008560: 2f 00 80 53 sethi %hi(0x2014c00), %l7 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008564: 10 80 00 39 b 2008648 <_Thread_Dispatch+0x118> 2008568: 27 00 80 53 sethi %hi(0x2014c00), %l3 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 200856c: f8 26 e1 40 st %i4, [ %i3 + 0x140 ] _Thread_Dispatch_necessary = false; 2008570: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008574: 80 a4 40 10 cmp %l1, %l0 2008578: 02 80 00 39 be 200865c <_Thread_Dispatch+0x12c> 200857c: e2 20 60 0c st %l1, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008580: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008584: 80 a0 60 01 cmp %g1, 1 2008588: 12 80 00 03 bne 2008594 <_Thread_Dispatch+0x64> 200858c: c2 07 60 a4 ld [ %i5 + 0xa4 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008590: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Enable( level ); 2008594: 7f ff e6 58 call 2001ef4 2008598: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 200859c: 40 00 0d 39 call 200ba80 <_TOD_Get_uptime> 20085a0: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 20085a4: 90 10 00 12 mov %l2, %o0 20085a8: 92 10 00 15 mov %l5, %o1 20085ac: 40 00 03 06 call 20091c4 <_Timespec_Subtract> 20085b0: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 20085b4: 90 04 20 84 add %l0, 0x84, %o0 20085b8: 40 00 02 ea call 2009160 <_Timespec_Add_to> 20085bc: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 20085c0: c2 07 bf f8 ld [ %fp + -8 ], %g1 20085c4: c2 24 80 00 st %g1, [ %l2 ] 20085c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20085cc: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20085d0: c2 05 e1 c8 ld [ %l7 + 0x1c8 ], %g1 20085d4: 80 a0 60 00 cmp %g1, 0 20085d8: 02 80 00 06 be 20085f0 <_Thread_Dispatch+0xc0> <== NEVER TAKEN 20085dc: 90 10 00 10 mov %l0, %o0 executing->libc_reent = *_Thread_libc_reent; 20085e0: c4 00 40 00 ld [ %g1 ], %g2 20085e4: c4 24 21 54 st %g2, [ %l0 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 20085e8: c4 04 61 54 ld [ %l1 + 0x154 ], %g2 20085ec: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 20085f0: 40 00 03 a5 call 2009484 <_User_extensions_Thread_switch> 20085f4: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 20085f8: 90 04 20 c8 add %l0, 0xc8, %o0 20085fc: 40 00 04 d0 call 200993c <_CPU_Context_switch> 2008600: 92 04 60 c8 add %l1, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008604: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 2008608: 80 a0 60 00 cmp %g1, 0 200860c: 02 80 00 0c be 200863c <_Thread_Dispatch+0x10c> 2008610: d0 04 e1 c4 ld [ %l3 + 0x1c4 ], %o0 2008614: 80 a4 00 08 cmp %l0, %o0 2008618: 02 80 00 09 be 200863c <_Thread_Dispatch+0x10c> 200861c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008620: 02 80 00 04 be 2008630 <_Thread_Dispatch+0x100> 2008624: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008628: 40 00 04 8b call 2009854 <_CPU_Context_save_fp> 200862c: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008630: 40 00 04 a6 call 20098c8 <_CPU_Context_restore_fp> 2008634: 90 04 21 50 add %l0, 0x150, %o0 _Thread_Allocated_fp = executing; 2008638: e0 24 e1 c4 st %l0, [ %l3 + 0x1c4 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 200863c: 82 15 a3 6c or %l6, 0x36c, %g1 _ISR_Disable( level ); 2008640: 7f ff e6 29 call 2001ee4 2008644: e0 00 60 0c ld [ %g1 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008648: 82 15 a3 6c or %l6, 0x36c, %g1 200864c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008650: 80 a0 a0 00 cmp %g2, 0 2008654: 32 bf ff c6 bne,a 200856c <_Thread_Dispatch+0x3c> 2008658: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 200865c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008660: c0 20 61 40 clr [ %g1 + 0x140 ] ! 2014d40 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 2008664: 7f ff e6 24 call 2001ef4 2008668: 01 00 00 00 nop _API_extensions_Run_postswitch(); 200866c: 7f ff f8 72 call 2006834 <_API_extensions_Run_postswitch> 2008670: 01 00 00 00 nop } 2008674: 81 c7 e0 08 ret 2008678: 81 e8 00 00 restore =============================================================================== 020086b0 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 20086b0: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 20086b4: 80 a2 20 00 cmp %o0, 0 20086b8: 12 80 00 0a bne 20086e0 <_Thread_Get+0x30> 20086bc: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 20086c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20086c4: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 2014d40 <_Thread_Dispatch_disable_level> 20086c8: 84 00 a0 01 inc %g2 20086cc: c4 20 61 40 st %g2, [ %g1 + 0x140 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 20086d0: 03 00 80 53 sethi %hi(0x2014c00), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 20086d4: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 20086d8: 81 c3 e0 08 retl 20086dc: d0 00 63 78 ld [ %g1 + 0x378 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 20086e0: 87 32 20 18 srl %o0, 0x18, %g3 20086e4: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20086e8: 84 00 ff ff add %g3, -1, %g2 20086ec: 80 a0 a0 02 cmp %g2, 2 20086f0: 28 80 00 16 bleu,a 2008748 <_Thread_Get+0x98> 20086f4: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 20086f8: 82 10 20 01 mov 1, %g1 20086fc: 10 80 00 09 b 2008720 <_Thread_Get+0x70> 2008700: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 2008704: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008708: 88 11 20 a8 or %g4, 0xa8, %g4 ! 2014ca8 <_Objects_Information_table> 200870c: c6 01 00 03 ld [ %g4 + %g3 ], %g3 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 2008710: 80 a0 e0 00 cmp %g3, 0 2008714: 32 80 00 05 bne,a 2008728 <_Thread_Get+0x78> <== ALWAYS TAKEN 2008718: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 200871c: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 2008720: 81 c3 e0 08 retl 2008724: 90 10 20 00 clr %o0 } #endif information = api_information[ the_class ]; if ( !information ) { 2008728: 80 a2 20 00 cmp %o0, 0 200872c: 12 80 00 04 bne 200873c <_Thread_Get+0x8c> 2008730: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 2008734: 81 c3 e0 08 retl 2008738: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 200873c: 82 13 c0 00 mov %o7, %g1 2008740: 7f ff fc 47 call 200785c <_Objects_Get> 2008744: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 2008748: 80 a0 a0 01 cmp %g2, 1 200874c: 22 bf ff ee be,a 2008704 <_Thread_Get+0x54> 2008750: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 2008754: 10 bf ff ea b 20086fc <_Thread_Get+0x4c> 2008758: 82 10 20 01 mov 1, %g1 =============================================================================== 0200d740 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200d740: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200d744: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d748: e0 00 63 78 ld [ %g1 + 0x378 ], %l0 ! 2014f78 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200d74c: 3f 00 80 35 sethi %hi(0x200d400), %i7 200d750: be 17 e3 40 or %i7, 0x340, %i7 ! 200d740 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200d754: d0 04 20 ac ld [ %l0 + 0xac ], %o0 _ISR_Set_level(level); 200d758: 7f ff d1 e7 call 2001ef4 200d75c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d760: 03 00 80 52 sethi %hi(0x2014800), %g1 doneConstructors = 1; 200d764: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d768: e2 08 62 00 ldub [ %g1 + 0x200 ], %l1 doneConstructors = 1; 200d76c: c4 28 62 00 stb %g2, [ %g1 + 0x200 ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200d770: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 200d774: 80 a0 60 00 cmp %g1, 0 200d778: 02 80 00 0c be 200d7a8 <_Thread_Handler+0x68> 200d77c: 03 00 80 53 sethi %hi(0x2014c00), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200d780: d0 00 61 c4 ld [ %g1 + 0x1c4 ], %o0 ! 2014dc4 <_Thread_Allocated_fp> 200d784: 80 a4 00 08 cmp %l0, %o0 200d788: 02 80 00 08 be 200d7a8 <_Thread_Handler+0x68> 200d78c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200d790: 22 80 00 06 be,a 200d7a8 <_Thread_Handler+0x68> 200d794: e0 20 61 c4 st %l0, [ %g1 + 0x1c4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200d798: 7f ff f0 2f call 2009854 <_CPU_Context_save_fp> 200d79c: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200d7a0: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d7a4: e0 20 61 c4 st %l0, [ %g1 + 0x1c4 ] ! 2014dc4 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200d7a8: 7f ff ee c7 call 20092c4 <_User_extensions_Thread_begin> 200d7ac: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200d7b0: 7f ff eb b3 call 200867c <_Thread_Enable_dispatch> 200d7b4: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200d7b8: 80 a4 60 00 cmp %l1, 0 200d7bc: 32 80 00 05 bne,a 200d7d0 <_Thread_Handler+0x90> 200d7c0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 INIT_NAME (); 200d7c4: 40 00 1a 23 call 2014050 <_init> 200d7c8: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200d7cc: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200d7d0: 80 a0 60 00 cmp %g1, 0 200d7d4: 12 80 00 06 bne 200d7ec <_Thread_Handler+0xac> <== NEVER TAKEN 200d7d8: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200d7dc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200d7e0: 9f c0 40 00 call %g1 200d7e4: d0 04 20 9c ld [ %l0 + 0x9c ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200d7e8: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200d7ec: 7f ff ee c7 call 2009308 <_User_extensions_Thread_exitted> 200d7f0: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200d7f4: 90 10 20 00 clr %o0 200d7f8: 92 10 20 01 mov 1, %o1 200d7fc: 7f ff e6 b0 call 20072bc <_Internal_error_Occurred> 200d800: 94 10 20 05 mov 5, %o2 =============================================================================== 0200875c <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 200875c: 9d e3 bf a0 save %sp, -96, %sp 2008760: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008764: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 2008768: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 200876c: c0 26 61 58 clr [ %i1 + 0x158 ] 2008770: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008774: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008778: 90 10 00 19 mov %i1, %o0 200877c: 40 00 02 0f call 2008fb8 <_Thread_Stack_Allocate> 2008780: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008784: 80 a2 00 1b cmp %o0, %i3 2008788: 0a 80 00 63 bcs 2008914 <_Thread_Initialize+0x1b8> 200878c: 80 a2 20 00 cmp %o0, 0 2008790: 02 80 00 61 be 2008914 <_Thread_Initialize+0x1b8> <== NEVER TAKEN 2008794: 80 8f 20 ff btst 0xff, %i4 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008798: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 200879c: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20087a0: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 20087a4: 02 80 00 07 be 20087c0 <_Thread_Initialize+0x64> 20087a8: a2 10 20 00 clr %l1 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 20087ac: 40 00 04 0c call 20097dc <_Workspace_Allocate> 20087b0: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 20087b4: a2 92 20 00 orcc %o0, 0, %l1 20087b8: 02 80 00 45 be 20088cc <_Thread_Initialize+0x170> 20087bc: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20087c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20087c4: d0 00 61 d4 ld [ %g1 + 0x1d4 ], %o0 ! 2014dd4 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 20087c8: e2 26 61 50 st %l1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 20087cc: e2 26 60 bc st %l1, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20087d0: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 20087d4: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 20087d8: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 20087dc: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20087e0: 80 a2 20 00 cmp %o0, 0 20087e4: 02 80 00 08 be 2008804 <_Thread_Initialize+0xa8> 20087e8: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 20087ec: 90 02 20 01 inc %o0 20087f0: 40 00 03 fb call 20097dc <_Workspace_Allocate> 20087f4: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 20087f8: b6 92 20 00 orcc %o0, 0, %i3 20087fc: 22 80 00 35 be,a 20088d0 <_Thread_Initialize+0x174> 2008800: a4 10 20 00 clr %l2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008804: 80 a6 e0 00 cmp %i3, 0 2008808: 02 80 00 0b be 2008834 <_Thread_Initialize+0xd8> 200880c: f6 26 61 60 st %i3, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008810: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008814: c4 00 61 d4 ld [ %g1 + 0x1d4 ], %g2 ! 2014dd4 <_Thread_Maximum_extensions> 2008818: 10 80 00 04 b 2008828 <_Thread_Initialize+0xcc> 200881c: 82 10 20 00 clr %g1 2008820: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008824: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008828: 80 a0 40 02 cmp %g1, %g2 200882c: 08 bf ff fd bleu 2008820 <_Thread_Initialize+0xc4> 2008830: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008834: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008838: e4 2e 60 a0 stb %l2, [ %i1 + 0xa0 ] the_thread->Start.budget_algorithm = budget_algorithm; 200883c: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008840: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008844: c0 26 60 44 clr [ %i1 + 0x44 ] * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008848: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200884c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008850: c0 26 60 1c clr [ %i1 + 0x1c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008854: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008858: 82 10 20 01 mov 1, %g1 200885c: c2 26 60 10 st %g1, [ %i1 + 0x10 ] */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008860: 03 00 80 50 sethi %hi(0x2014000), %g1 2008864: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1 ! 20140b8 <_Scheduler+0x18> the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; 2008868: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 200886c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008870: 9f c0 40 00 call %g1 2008874: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008878: a4 92 20 00 orcc %o0, 0, %l2 200887c: 22 80 00 16 be,a 20088d4 <_Thread_Initialize+0x178> 2008880: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008884: 90 10 00 19 mov %i1, %o0 2008888: 40 00 01 a2 call 2008f10 <_Thread_Set_priority> 200888c: 92 10 00 1d mov %i5, %o1 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008890: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008894: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008898: c0 26 60 84 clr [ %i1 + 0x84 ] 200889c: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20088a0: 83 28 60 02 sll %g1, 2, %g1 20088a4: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 20088a8: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 20088ac: 90 10 00 19 mov %i1, %o0 20088b0: 40 00 02 b8 call 2009390 <_User_extensions_Thread_create> 20088b4: b0 10 20 01 mov 1, %i0 if ( extension_status ) 20088b8: 80 8a 20 ff btst 0xff, %o0 20088bc: 22 80 00 06 be,a 20088d4 <_Thread_Initialize+0x178> 20088c0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088c4: 81 c7 e0 08 ret 20088c8: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 20088cc: a4 10 20 00 clr %l2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: _Workspace_Free( the_thread->libc_reent ); 20088d0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088d4: 40 00 03 cb call 2009800 <_Workspace_Free> 20088d8: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 20088dc: 40 00 03 c9 call 2009800 <_Workspace_Free> 20088e0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20088e4: 40 00 03 c7 call 2009800 <_Workspace_Free> 20088e8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 20088ec: 40 00 03 c5 call 2009800 <_Workspace_Free> 20088f0: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 20088f4: 40 00 03 c3 call 2009800 <_Workspace_Free> 20088f8: 90 10 00 11 mov %l1, %o0 #endif _Workspace_Free( sched ); 20088fc: 40 00 03 c1 call 2009800 <_Workspace_Free> 2008900: 90 10 00 12 mov %l2, %o0 _Thread_Stack_Free( the_thread ); 2008904: 40 00 01 c4 call 2009014 <_Thread_Stack_Free> 2008908: 90 10 00 19 mov %i1, %o0 return false; 200890c: 81 c7 e0 08 ret 2008910: 81 e8 00 00 restore } 2008914: 81 c7 e0 08 ret 2008918: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200c4ec <_Thread_Resume>: */ void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200c4ec: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200c4f0: 7f ff d6 cd call 2002024 200c4f4: a0 10 00 18 mov %i0, %l0 200c4f8: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 200c4fc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200c500: 80 88 60 02 btst 2, %g1 200c504: 02 80 00 09 be 200c528 <_Thread_Resume+0x3c> <== NEVER TAKEN 200c508: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200c50c: 80 a0 60 00 cmp %g1, 0 200c510: 12 80 00 06 bne 200c528 <_Thread_Resume+0x3c> 200c514: c2 24 20 10 st %g1, [ %l0 + 0x10 ] */ RTEMS_INLINE_ROUTINE void _Scheduler_Unblock( Thread_Control *the_thread ) { _Scheduler.Operations.unblock( the_thread ); 200c518: 03 00 80 5e sethi %hi(0x2017800), %g1 200c51c: c2 00 62 a4 ld [ %g1 + 0x2a4 ], %g1 ! 2017aa4 <_Scheduler+0x14> 200c520: 9f c0 40 00 call %g1 200c524: 90 10 00 10 mov %l0, %o0 _Scheduler_Unblock( the_thread ); } } _ISR_Enable( level ); 200c528: 7f ff d6 c3 call 2002034 200c52c: 81 e8 00 00 restore =============================================================================== 02008e5c <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2008e5c: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2008e60: 80 a6 20 00 cmp %i0, 0 2008e64: 02 80 00 19 be 2008ec8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008e68: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2008e6c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008e70: 80 a4 60 01 cmp %l1, 1 2008e74: 12 80 00 15 bne 2008ec8 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008e78: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2008e7c: 7f ff e4 1a call 2001ee4 2008e80: 01 00 00 00 nop 2008e84: a0 10 00 08 mov %o0, %l0 2008e88: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2008e8c: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008e90: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008e94: 80 88 80 01 btst %g2, %g1 2008e98: 02 80 00 0a be 2008ec0 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2008e9c: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2008ea0: 92 10 00 19 mov %i1, %o1 2008ea4: 94 10 20 01 mov 1, %o2 2008ea8: 40 00 0c 6c call 200c058 <_Thread_queue_Extract_priority_helper> 2008eac: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2008eb0: 90 10 00 18 mov %i0, %o0 2008eb4: 92 10 00 19 mov %i1, %o1 2008eb8: 7f ff ff 49 call 2008bdc <_Thread_queue_Enqueue_priority> 2008ebc: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2008ec0: 7f ff e4 0d call 2001ef4 2008ec4: 90 10 00 10 mov %l0, %o0 2008ec8: 81 c7 e0 08 ret 2008ecc: 81 e8 00 00 restore =============================================================================== 02008ed0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008ed0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008ed4: 90 10 00 18 mov %i0, %o0 2008ed8: 7f ff fd f6 call 20086b0 <_Thread_Get> 2008edc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008ee0: c2 07 bf fc ld [ %fp + -4 ], %g1 2008ee4: 80 a0 60 00 cmp %g1, 0 2008ee8: 12 80 00 08 bne 2008f08 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 2008eec: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2008ef0: 40 00 0c 92 call 200c138 <_Thread_queue_Process_timeout> 2008ef4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2008ef8: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008efc: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 2014d40 <_Thread_Dispatch_disable_level> 2008f00: 84 00 bf ff add %g2, -1, %g2 2008f04: c4 20 61 40 st %g2, [ %g1 + 0x140 ] 2008f08: 81 c7 e0 08 ret 2008f0c: 81 e8 00 00 restore =============================================================================== 020167a0 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20167a0: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20167a4: 39 00 80 f1 sethi %hi(0x203c400), %i4 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20167a8: b6 07 bf f4 add %fp, -12, %i3 20167ac: ae 07 bf f8 add %fp, -8, %l7 20167b0: a4 07 bf e8 add %fp, -24, %l2 20167b4: a6 07 bf ec add %fp, -20, %l3 20167b8: ee 27 bf f4 st %l7, [ %fp + -12 ] head->previous = NULL; 20167bc: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20167c0: f6 27 bf fc st %i3, [ %fp + -4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20167c4: e6 27 bf e8 st %l3, [ %fp + -24 ] head->previous = NULL; 20167c8: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20167cc: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20167d0: a8 06 20 30 add %i0, 0x30, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20167d4: 3b 00 80 f1 sethi %hi(0x203c400), %i5 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20167d8: a2 06 20 68 add %i0, 0x68, %l1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20167dc: ac 06 20 08 add %i0, 8, %l6 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20167e0: aa 06 20 40 add %i0, 0x40, %l5 Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20167e4: f6 26 20 78 st %i3, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20167e8: c2 07 22 24 ld [ %i4 + 0x224 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20167ec: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20167f0: 94 10 00 12 mov %l2, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20167f4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20167f8: 90 10 00 14 mov %l4, %o0 20167fc: 40 00 11 c3 call 201af08 <_Watchdog_Adjust_to_chain> 2016800: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016804: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016808: e0 07 61 9c ld [ %i5 + 0x19c ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201680c: 80 a4 00 0a cmp %l0, %o2 2016810: 08 80 00 06 bleu 2016828 <_Timer_server_Body+0x88> 2016814: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016818: 90 10 00 11 mov %l1, %o0 201681c: 40 00 11 bb call 201af08 <_Watchdog_Adjust_to_chain> 2016820: 94 10 00 12 mov %l2, %o2 2016824: 30 80 00 06 b,a 201683c <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 2016828: 1a 80 00 05 bcc 201683c <_Timer_server_Body+0x9c> 201682c: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016830: 92 10 20 01 mov 1, %o1 2016834: 40 00 11 8d call 201ae68 <_Watchdog_Adjust> 2016838: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 201683c: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016840: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016844: 40 00 02 c0 call 2017344 <_Chain_Get> 2016848: 01 00 00 00 nop if ( timer == NULL ) { 201684c: 92 92 20 00 orcc %o0, 0, %o1 2016850: 02 80 00 0c be 2016880 <_Timer_server_Body+0xe0> 2016854: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016858: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 201685c: 80 a0 60 01 cmp %g1, 1 2016860: 02 80 00 05 be 2016874 <_Timer_server_Body+0xd4> 2016864: 90 10 00 14 mov %l4, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016868: 80 a0 60 03 cmp %g1, 3 201686c: 12 bf ff f5 bne 2016840 <_Timer_server_Body+0xa0> <== NEVER TAKEN 2016870: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016874: 40 00 11 d9 call 201afd8 <_Watchdog_Insert> 2016878: 92 02 60 10 add %o1, 0x10, %o1 201687c: 30 bf ff f1 b,a 2016840 <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016880: 7f ff e3 4d call 200f5b4 2016884: 01 00 00 00 nop tmp = ts->insert_chain; 2016888: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 if ( _Chain_Is_empty( insert_chain ) ) { 201688c: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016890: 80 a0 40 17 cmp %g1, %l7 2016894: 12 80 00 04 bne 20168a4 <_Timer_server_Body+0x104> <== NEVER TAKEN 2016898: a0 10 20 01 mov 1, %l0 ts->insert_chain = NULL; 201689c: c0 26 20 78 clr [ %i0 + 0x78 ] do_loop = false; 20168a0: a0 10 20 00 clr %l0 } _ISR_Enable( level ); 20168a4: 7f ff e3 48 call 200f5c4 20168a8: 01 00 00 00 nop * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) { 20168ac: 80 8c 20 ff btst 0xff, %l0 20168b0: 12 bf ff ce bne 20167e8 <_Timer_server_Body+0x48> <== NEVER TAKEN 20168b4: c2 07 bf e8 ld [ %fp + -24 ], %g1 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 20168b8: 80 a0 40 13 cmp %g1, %l3 20168bc: 02 80 00 18 be 201691c <_Timer_server_Body+0x17c> 20168c0: 01 00 00 00 nop /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 20168c4: 7f ff e3 3c call 200f5b4 20168c8: 01 00 00 00 nop 20168cc: 84 10 00 08 mov %o0, %g2 initialized = false; } #endif return status; } 20168d0: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 20168d4: 80 a4 00 13 cmp %l0, %l3 20168d8: 02 80 00 0e be 2016910 <_Timer_server_Body+0x170> 20168dc: 80 a4 20 00 cmp %l0, 0 Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 20168e0: c2 04 00 00 ld [ %l0 ], %g1 head->next = new_first; 20168e4: c2 27 bf e8 st %g1, [ %fp + -24 ] * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 20168e8: 02 80 00 0a be 2016910 <_Timer_server_Body+0x170> <== NEVER TAKEN 20168ec: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 20168f0: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 20168f4: 7f ff e3 34 call 200f5c4 20168f8: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20168fc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016900: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016904: 9f c0 40 00 call %g1 2016908: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 201690c: 30 bf ff ee b,a 20168c4 <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016910: 7f ff e3 2d call 200f5c4 2016914: 90 10 00 02 mov %g2, %o0 2016918: 30 bf ff b3 b,a 20167e4 <_Timer_server_Body+0x44> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 201691c: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 2016920: 7f ff ff 70 call 20166e0 <_Thread_Disable_dispatch> 2016924: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016928: d0 06 00 00 ld [ %i0 ], %o0 201692c: 40 00 0f a3 call 201a7b8 <_Thread_Set_state> 2016930: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016934: 7f ff ff 71 call 20166f8 <_Timer_server_Reset_interval_system_watchdog> 2016938: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 201693c: 7f ff ff 84 call 201674c <_Timer_server_Reset_tod_system_watchdog> 2016940: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016944: 40 00 0d 3b call 2019e30 <_Thread_Enable_dispatch> 2016948: 01 00 00 00 nop ts->active = true; 201694c: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016950: 90 10 00 16 mov %l6, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016954: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016958: 40 00 11 fc call 201b148 <_Watchdog_Remove> 201695c: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016960: 40 00 11 fa call 201b148 <_Watchdog_Remove> 2016964: 90 10 00 15 mov %l5, %o0 2016968: 30 bf ff 9f b,a 20167e4 <_Timer_server_Body+0x44> =============================================================================== 0201696c <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 201696c: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016970: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016974: 80 a0 60 00 cmp %g1, 0 2016978: 12 80 00 49 bne 2016a9c <_Timer_server_Schedule_operation_method+0x130> 201697c: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2016980: 7f ff ff 58 call 20166e0 <_Thread_Disable_dispatch> 2016984: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016988: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 201698c: 80 a0 60 01 cmp %g1, 1 2016990: 12 80 00 1f bne 2016a0c <_Timer_server_Schedule_operation_method+0xa0> 2016994: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016998: 7f ff e3 07 call 200f5b4 201699c: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 20169a0: 03 00 80 f1 sethi %hi(0x203c400), %g1 20169a4: c4 00 62 24 ld [ %g1 + 0x224 ], %g2 ! 203c624 <_Watchdog_Ticks_since_boot> initialized = false; } #endif return status; } 20169a8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = _Watchdog_Ticks_since_boot; last_snapshot = ts->Interval_watchdogs.last_snapshot; 20169ac: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20169b0: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 20169b4: 80 a0 40 03 cmp %g1, %g3 20169b8: 02 80 00 08 be 20169d8 <_Timer_server_Schedule_operation_method+0x6c> 20169bc: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 20169c0: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 20169c4: 80 a3 40 04 cmp %o5, %g4 20169c8: 08 80 00 03 bleu 20169d4 <_Timer_server_Schedule_operation_method+0x68> 20169cc: 86 10 20 00 clr %g3 delta_interval -= delta; 20169d0: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 20169d4: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 20169d8: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 20169dc: 7f ff e2 fa call 200f5c4 20169e0: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20169e4: 90 06 20 30 add %i0, 0x30, %o0 20169e8: 40 00 11 7c call 201afd8 <_Watchdog_Insert> 20169ec: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 20169f0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20169f4: 80 a0 60 00 cmp %g1, 0 20169f8: 12 80 00 27 bne 2016a94 <_Timer_server_Schedule_operation_method+0x128> 20169fc: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016a00: 7f ff ff 3e call 20166f8 <_Timer_server_Reset_interval_system_watchdog> 2016a04: 90 10 00 18 mov %i0, %o0 2016a08: 30 80 00 23 b,a 2016a94 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016a0c: 12 80 00 22 bne 2016a94 <_Timer_server_Schedule_operation_method+0x128> 2016a10: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016a14: 7f ff e2 e8 call 200f5b4 2016a18: 01 00 00 00 nop initialized = false; } #endif return status; } 2016a1c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016a20: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016a24: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016a28: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016a2c: 80 a0 80 03 cmp %g2, %g3 2016a30: 02 80 00 0d be 2016a64 <_Timer_server_Schedule_operation_method+0xf8> 2016a34: c2 00 61 9c ld [ %g1 + 0x19c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016a38: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2016a3c: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016a40: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016a44: 08 80 00 07 bleu 2016a60 <_Timer_server_Schedule_operation_method+0xf4> 2016a48: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016a4c: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 2016a50: 80 a1 00 0d cmp %g4, %o5 2016a54: 08 80 00 03 bleu 2016a60 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 2016a58: 86 10 20 00 clr %g3 delta_interval -= delta; 2016a5c: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016a60: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016a64: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016a68: 7f ff e2 d7 call 200f5c4 2016a6c: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016a70: 90 06 20 68 add %i0, 0x68, %o0 2016a74: 40 00 11 59 call 201afd8 <_Watchdog_Insert> 2016a78: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016a7c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016a80: 80 a0 60 00 cmp %g1, 0 2016a84: 12 80 00 04 bne 2016a94 <_Timer_server_Schedule_operation_method+0x128> 2016a88: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016a8c: 7f ff ff 30 call 201674c <_Timer_server_Reset_tod_system_watchdog> 2016a90: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016a94: 40 00 0c e7 call 2019e30 <_Thread_Enable_dispatch> 2016a98: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016a9c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016aa0: 40 00 02 13 call 20172ec <_Chain_Append> 2016aa4: 81 e8 00 00 restore =============================================================================== 0200b098 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200b098: c6 02 00 00 ld [ %o0 ], %g3 200b09c: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200b0a0: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200b0a4: 80 a0 c0 02 cmp %g3, %g2 200b0a8: 14 80 00 0b bg 200b0d4 <_Timespec_Greater_than+0x3c> 200b0ac: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200b0b0: 80 a0 c0 02 cmp %g3, %g2 200b0b4: 06 80 00 08 bl 200b0d4 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 200b0b8: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200b0bc: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b0c0: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b0c4: 80 a0 80 01 cmp %g2, %g1 200b0c8: 14 80 00 03 bg 200b0d4 <_Timespec_Greater_than+0x3c> 200b0cc: 90 10 20 01 mov 1, %o0 200b0d0: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200b0d4: 81 c3 e0 08 retl =============================================================================== 0200920c <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 200920c: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009210: 03 00 80 50 sethi %hi(0x2014000), %g1 2009214: 82 10 61 78 or %g1, 0x178, %g1 ! 2014178 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009218: 05 00 80 53 sethi %hi(0x2014c00), %g2 initial_extensions = Configuration.User_extension_table; 200921c: e6 00 60 3c ld [ %g1 + 0x3c ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009220: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 2009224: 82 10 a3 28 or %g2, 0x328, %g1 2009228: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 200922c: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009230: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009234: c6 20 a3 28 st %g3, [ %g2 + 0x328 ] 2009238: 05 00 80 53 sethi %hi(0x2014c00), %g2 200923c: 82 10 a1 44 or %g2, 0x144, %g1 ! 2014d44 <_User_extensions_Switches_list> 2009240: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 2009244: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009248: c6 20 a1 44 st %g3, [ %g2 + 0x144 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 200924c: 80 a4 e0 00 cmp %l3, 0 2009250: 02 80 00 1b be 20092bc <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009254: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009258: 83 2c a0 02 sll %l2, 2, %g1 200925c: a1 2c a0 04 sll %l2, 4, %l0 2009260: a0 24 00 01 sub %l0, %g1, %l0 2009264: a0 04 00 12 add %l0, %l2, %l0 2009268: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 200926c: 40 00 01 6c call 200981c <_Workspace_Allocate_or_fatal_error> 2009270: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009274: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009278: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 200927c: 92 10 20 00 clr %o1 2009280: 40 00 14 48 call 200e3a0 2009284: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009288: 10 80 00 0b b 20092b4 <_User_extensions_Handler_initialization+0xa8> 200928c: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009290: 90 04 60 14 add %l1, 0x14, %o0 2009294: 92 04 c0 09 add %l3, %o1, %o1 2009298: 40 00 14 09 call 200e2bc 200929c: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 20092a0: 90 10 00 11 mov %l1, %o0 20092a4: 40 00 0b ca call 200c1cc <_User_extensions_Add_set> 20092a8: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 20092ac: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 20092b0: 80 a4 00 12 cmp %l0, %l2 20092b4: 0a bf ff f7 bcs 2009290 <_User_extensions_Handler_initialization+0x84> 20092b8: 93 2c 20 05 sll %l0, 5, %o1 20092bc: 81 c7 e0 08 ret 20092c0: 81 e8 00 00 restore =============================================================================== 02009308 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009308: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 200930c: 23 00 80 53 sethi %hi(0x2014c00), %l1 2009310: a2 14 63 28 or %l1, 0x328, %l1 ! 2014f28 <_User_extensions_List> ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009314: 10 80 00 08 b 2009334 <_User_extensions_Thread_exitted+0x2c> 2009318: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 200931c: 80 a0 60 00 cmp %g1, 0 2009320: 22 80 00 05 be,a 2009334 <_User_extensions_Thread_exitted+0x2c> 2009324: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 2009328: 9f c0 40 00 call %g1 200932c: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009330: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009334: 80 a4 00 11 cmp %l0, %l1 2009338: 32 bf ff f9 bne,a 200931c <_User_extensions_Thread_exitted+0x14> 200933c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 2009340: 81 c7 e0 08 ret 2009344: 81 e8 00 00 restore =============================================================================== 0200b4f0 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b4f0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b4f4: 7f ff de 87 call 2002f10 200b4f8: a0 10 00 18 mov %i0, %l0 } } _ISR_Enable( level ); } 200b4fc: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b500: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b504: 80 a0 40 11 cmp %g1, %l1 200b508: 02 80 00 1f be 200b584 <_Watchdog_Adjust+0x94> 200b50c: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b510: 02 80 00 1a be 200b578 <_Watchdog_Adjust+0x88> 200b514: a4 10 20 01 mov 1, %l2 200b518: 80 a6 60 01 cmp %i1, 1 200b51c: 12 80 00 1a bne 200b584 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b520: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b524: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b528: 10 80 00 07 b 200b544 <_Watchdog_Adjust+0x54> 200b52c: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b530: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b534: 80 a6 80 19 cmp %i2, %i1 200b538: 3a 80 00 05 bcc,a 200b54c <_Watchdog_Adjust+0x5c> 200b53c: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b540: b4 26 40 1a sub %i1, %i2, %i2 break; 200b544: 10 80 00 10 b 200b584 <_Watchdog_Adjust+0x94> 200b548: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b54c: 7f ff de 75 call 2002f20 200b550: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b554: 40 00 00 94 call 200b7a4 <_Watchdog_Tickle> 200b558: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200b55c: 7f ff de 6d call 2002f10 200b560: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b564: c2 04 00 00 ld [ %l0 ], %g1 200b568: 80 a0 40 11 cmp %g1, %l1 200b56c: 02 80 00 06 be 200b584 <_Watchdog_Adjust+0x94> 200b570: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 200b574: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b578: 80 a6 a0 00 cmp %i2, 0 200b57c: 32 bf ff ed bne,a 200b530 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b580: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 200b584: 7f ff de 67 call 2002f20 200b588: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009630 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009630: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009634: 7f ff e2 2c call 2001ee4 2009638: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 200963c: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009640: 80 a6 20 01 cmp %i0, 1 2009644: 22 80 00 1d be,a 20096b8 <_Watchdog_Remove+0x88> 2009648: c0 24 20 08 clr [ %l0 + 8 ] 200964c: 0a 80 00 1c bcs 20096bc <_Watchdog_Remove+0x8c> 2009650: 03 00 80 53 sethi %hi(0x2014c00), %g1 2009654: 80 a6 20 03 cmp %i0, 3 2009658: 18 80 00 19 bgu 20096bc <_Watchdog_Remove+0x8c> <== NEVER TAKEN 200965c: 01 00 00 00 nop 2009660: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009664: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009668: c4 00 40 00 ld [ %g1 ], %g2 200966c: 80 a0 a0 00 cmp %g2, 0 2009670: 02 80 00 07 be 200968c <_Watchdog_Remove+0x5c> 2009674: 05 00 80 53 sethi %hi(0x2014c00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009678: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200967c: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 2009680: 84 00 c0 02 add %g3, %g2, %g2 2009684: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009688: 05 00 80 53 sethi %hi(0x2014c00), %g2 200968c: c4 00 a2 50 ld [ %g2 + 0x250 ], %g2 ! 2014e50 <_Watchdog_Sync_count> 2009690: 80 a0 a0 00 cmp %g2, 0 2009694: 22 80 00 07 be,a 20096b0 <_Watchdog_Remove+0x80> 2009698: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200969c: 05 00 80 53 sethi %hi(0x2014c00), %g2 20096a0: c6 00 a3 74 ld [ %g2 + 0x374 ], %g3 ! 2014f74 <_Per_CPU_Information+0x8> 20096a4: 05 00 80 53 sethi %hi(0x2014c00), %g2 20096a8: c6 20 a1 e8 st %g3, [ %g2 + 0x1e8 ] ! 2014de8 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 20096ac: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 20096b0: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 20096b4: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 20096b8: 03 00 80 53 sethi %hi(0x2014c00), %g1 20096bc: c2 00 62 54 ld [ %g1 + 0x254 ], %g1 ! 2014e54 <_Watchdog_Ticks_since_boot> 20096c0: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 20096c4: 7f ff e2 0c call 2001ef4 20096c8: 01 00 00 00 nop return( previous_state ); } 20096cc: 81 c7 e0 08 ret 20096d0: 81 e8 00 00 restore =============================================================================== 0200ad08 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200ad08: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200ad0c: 7f ff df 58 call 2002a6c 200ad10: a0 10 00 18 mov %i0, %l0 200ad14: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200ad18: 11 00 80 6e sethi %hi(0x201b800), %o0 200ad1c: 94 10 00 19 mov %i1, %o2 200ad20: 90 12 21 08 or %o0, 0x108, %o0 200ad24: 7f ff e6 0e call 200455c 200ad28: 92 10 00 10 mov %l0, %o1 printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); } 200ad2c: e2 06 40 00 ld [ %i1 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ad30: b2 06 60 04 add %i1, 4, %i1 ISR_Level level; Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { 200ad34: 80 a4 40 19 cmp %l1, %i1 200ad38: 02 80 00 0e be 200ad70 <_Watchdog_Report_chain+0x68> 200ad3c: 11 00 80 6e sethi %hi(0x201b800), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200ad40: 92 10 00 11 mov %l1, %o1 200ad44: 40 00 00 10 call 200ad84 <_Watchdog_Report> 200ad48: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200ad4c: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200ad50: 80 a4 40 19 cmp %l1, %i1 200ad54: 12 bf ff fc bne 200ad44 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200ad58: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200ad5c: 11 00 80 6e sethi %hi(0x201b800), %o0 200ad60: 92 10 00 10 mov %l0, %o1 200ad64: 7f ff e5 fe call 200455c 200ad68: 90 12 21 20 or %o0, 0x120, %o0 200ad6c: 30 80 00 03 b,a 200ad78 <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 200ad70: 7f ff e5 fb call 200455c 200ad74: 90 12 21 30 or %o0, 0x130, %o0 } _ISR_Enable( level ); 200ad78: 7f ff df 41 call 2002a7c 200ad7c: 81 e8 00 00 restore =============================================================================== 02006c80 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006c80: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 2006c84: 90 10 00 18 mov %i0, %o0 2006c88: 40 00 01 49 call 20071ac <_Chain_Append_with_empty_check> 2006c8c: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 2006c90: 80 8a 20 ff btst 0xff, %o0 2006c94: 02 80 00 05 be 2006ca8 <== NEVER TAKEN 2006c98: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006c9c: b0 10 00 1a mov %i2, %i0 2006ca0: 7f ff fd 76 call 2006278 2006ca4: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006ca8: 81 c7 e0 08 ret <== NOT EXECUTED 2006cac: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02006ce0 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006ce0: 9d e3 bf 98 save %sp, -104, %sp 2006ce4: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006ce8: 10 80 00 09 b 2006d0c 2006cec: a4 07 bf fc add %fp, -4, %l2 2006cf0: 92 10 20 00 clr %o1 2006cf4: 94 10 00 1a mov %i2, %o2 2006cf8: 7f ff fc fc call 20060e8 2006cfc: 96 10 00 12 mov %l2, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006d00: 80 a2 20 00 cmp %o0, 0 2006d04: 32 80 00 09 bne,a 2006d28 <== ALWAYS TAKEN 2006d08: e2 26 c0 00 st %l1, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d0c: 40 00 01 64 call 200729c <_Chain_Get> 2006d10: 90 10 00 10 mov %l0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d14: a2 92 20 00 orcc %o0, 0, %l1 2006d18: 02 bf ff f6 be 2006cf0 2006d1c: 90 10 00 19 mov %i1, %o0 2006d20: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d24: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 2006d28: 81 c7 e0 08 ret 2006d2c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02006d30 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006d30: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 2006d34: 90 10 00 18 mov %i0, %o0 2006d38: 40 00 01 73 call 2007304 <_Chain_Prepend_with_empty_check> 2006d3c: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 2006d40: 80 8a 20 ff btst 0xff, %o0 2006d44: 02 80 00 05 be 2006d58 <== NEVER TAKEN 2006d48: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006d4c: b0 10 00 1a mov %i2, %i0 2006d50: 7f ff fd 4a call 2006278 2006d54: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006d58: 81 c7 e0 08 ret <== NOT EXECUTED 2006d5c: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02008fc0 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2008fc0: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2008fc4: 80 a6 20 00 cmp %i0, 0 2008fc8: 02 80 00 1d be 200903c <== NEVER TAKEN 2008fcc: 21 00 80 78 sethi %hi(0x201e000), %l0 2008fd0: a0 14 23 2c or %l0, 0x32c, %l0 ! 201e32c <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2008fd4: a6 04 20 0c add %l0, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2008fd8: c2 04 00 00 ld [ %l0 ], %g1 2008fdc: 80 a0 60 00 cmp %g1, 0 2008fe0: 22 80 00 14 be,a 2009030 2008fe4: a0 04 20 04 add %l0, 4, %l0 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2008fe8: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 2008fec: 80 a4 a0 00 cmp %l2, 0 2008ff0: 12 80 00 0b bne 200901c 2008ff4: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2008ff8: 10 80 00 0e b 2009030 2008ffc: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 2009000: 83 2c 60 02 sll %l1, 2, %g1 2009004: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009008: 80 a2 20 00 cmp %o0, 0 200900c: 02 80 00 04 be 200901c 2009010: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 2009014: 9f c6 00 00 call %i0 2009018: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200901c: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 2009020: 80 a4 40 01 cmp %l1, %g1 2009024: 28 bf ff f7 bleu,a 2009000 2009028: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 200902c: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009030: 80 a4 00 13 cmp %l0, %l3 2009034: 32 bf ff ea bne,a 2008fdc 2009038: c2 04 00 00 ld [ %l0 ], %g1 200903c: 81 c7 e0 08 ret 2009040: 81 e8 00 00 restore =============================================================================== 02014158 : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014158: 9d e3 bf a0 save %sp, -96, %sp 201415c: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014160: 80 a4 20 00 cmp %l0, 0 2014164: 02 80 00 1f be 20141e0 2014168: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 201416c: 80 a6 60 00 cmp %i1, 0 2014170: 02 80 00 1c be 20141e0 2014174: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014178: 80 a7 60 00 cmp %i5, 0 201417c: 02 80 00 19 be 20141e0 <== NEVER TAKEN 2014180: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014184: 02 80 00 32 be 201424c 2014188: 80 a6 a0 00 cmp %i2, 0 201418c: 02 80 00 30 be 201424c 2014190: 80 a6 80 1b cmp %i2, %i3 2014194: 0a 80 00 13 bcs 20141e0 2014198: b0 10 20 08 mov 8, %i0 201419c: 80 8e e0 07 btst 7, %i3 20141a0: 12 80 00 10 bne 20141e0 20141a4: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20141a8: 12 80 00 0e bne 20141e0 20141ac: b0 10 20 09 mov 9, %i0 20141b0: 03 00 80 f1 sethi %hi(0x203c400), %g1 20141b4: c4 00 61 10 ld [ %g1 + 0x110 ], %g2 ! 203c510 <_Thread_Dispatch_disable_level> 20141b8: 84 00 a0 01 inc %g2 20141bc: c4 20 61 10 st %g2, [ %g1 + 0x110 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20141c0: 25 00 80 f0 sethi %hi(0x203c000), %l2 20141c4: 40 00 12 45 call 2018ad8 <_Objects_Allocate> 20141c8: 90 14 a3 24 or %l2, 0x324, %o0 ! 203c324 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 20141cc: a2 92 20 00 orcc %o0, 0, %l1 20141d0: 12 80 00 06 bne 20141e8 20141d4: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 20141d8: 40 00 17 16 call 2019e30 <_Thread_Enable_dispatch> 20141dc: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 20141e0: 81 c7 e0 08 ret 20141e4: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 20141e8: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 20141ec: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 20141f0: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 20141f4: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 20141f8: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 20141fc: 40 00 61 a9 call 202c8a0 <.udiv> 2014200: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014204: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2014208: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 201420c: 96 10 00 1b mov %i3, %o3 2014210: a6 04 60 24 add %l1, 0x24, %l3 2014214: 40 00 0c 5b call 2017380 <_Chain_Initialize> 2014218: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201421c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014220: a4 14 a3 24 or %l2, 0x324, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014224: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014228: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 201422c: 85 28 a0 02 sll %g2, 2, %g2 2014230: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014234: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 2014238: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 201423c: 40 00 16 fd call 2019e30 <_Thread_Enable_dispatch> 2014240: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2014244: 81 c7 e0 08 ret 2014248: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 201424c: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014250: 81 c7 e0 08 ret 2014254: 81 e8 00 00 restore =============================================================================== 0200723c : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 200723c: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 2007240: 11 00 80 75 sethi %hi(0x201d400), %o0 2007244: 92 10 00 18 mov %i0, %o1 2007248: 90 12 22 04 or %o0, 0x204, %o0 200724c: 40 00 08 e4 call 20095dc <_Objects_Get> 2007250: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007254: c2 07 bf fc ld [ %fp + -4 ], %g1 2007258: 80 a0 60 00 cmp %g1, 0 200725c: 12 80 00 66 bne 20073f4 2007260: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007264: 25 00 80 76 sethi %hi(0x201d800), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007268: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 200726c: a4 14 a1 9c or %l2, 0x19c, %l2 2007270: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 2007274: 80 a0 80 01 cmp %g2, %g1 2007278: 02 80 00 06 be 2007290 200727c: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2007280: 40 00 0c 5f call 200a3fc <_Thread_Enable_dispatch> 2007284: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007288: 81 c7 e0 08 ret 200728c: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 2007290: 12 80 00 0e bne 20072c8 2007294: 01 00 00 00 nop switch ( the_period->state ) { 2007298: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 200729c: 80 a0 60 04 cmp %g1, 4 20072a0: 18 80 00 06 bgu 20072b8 <== NEVER TAKEN 20072a4: b0 10 20 00 clr %i0 20072a8: 83 28 60 02 sll %g1, 2, %g1 20072ac: 05 00 80 6d sethi %hi(0x201b400), %g2 20072b0: 84 10 a2 4c or %g2, 0x24c, %g2 ! 201b64c 20072b4: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20072b8: 40 00 0c 51 call 200a3fc <_Thread_Enable_dispatch> 20072bc: 01 00 00 00 nop return( return_value ); 20072c0: 81 c7 e0 08 ret 20072c4: 81 e8 00 00 restore } _ISR_Disable( level ); 20072c8: 7f ff ee cc call 2002df8 20072cc: 01 00 00 00 nop 20072d0: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20072d4: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 20072d8: 80 a4 60 00 cmp %l1, 0 20072dc: 12 80 00 15 bne 2007330 20072e0: 80 a4 60 02 cmp %l1, 2 _ISR_Enable( level ); 20072e4: 7f ff ee c9 call 2002e08 20072e8: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20072ec: 7f ff ff 7a call 20070d4 <_Rate_monotonic_Initiate_statistics> 20072f0: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20072f4: 82 10 20 02 mov 2, %g1 20072f8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20072fc: 03 00 80 1d sethi %hi(0x2007400), %g1 2007300: 82 10 62 c4 or %g1, 0x2c4, %g1 ! 20076c4 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007304: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 2007308: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 200730c: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 2007310: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 2007314: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007318: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200731c: 11 00 80 76 sethi %hi(0x201d800), %o0 2007320: 92 04 20 10 add %l0, 0x10, %o1 2007324: 40 00 10 3e call 200b41c <_Watchdog_Insert> 2007328: 90 12 20 34 or %o0, 0x34, %o0 200732c: 30 80 00 1b b,a 2007398 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007330: 12 80 00 1e bne 20073a8 2007334: 80 a4 60 04 cmp %l1, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007338: 7f ff ff 83 call 2007144 <_Rate_monotonic_Update_statistics> 200733c: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007340: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007344: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007348: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 200734c: 7f ff ee af call 2002e08 2007350: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007354: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007358: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 200735c: 13 00 00 10 sethi %hi(0x4000), %o1 2007360: 40 00 0e 54 call 200acb0 <_Thread_Set_state> 2007364: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007368: 7f ff ee a4 call 2002df8 200736c: 01 00 00 00 nop local_state = the_period->state; 2007370: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 2007374: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 2007378: 7f ff ee a4 call 2002e08 200737c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007380: 80 a4 e0 03 cmp %l3, 3 2007384: 12 80 00 05 bne 2007398 2007388: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 200738c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007390: 40 00 0b 3d call 200a084 <_Thread_Clear_state> 2007394: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 2007398: 40 00 0c 19 call 200a3fc <_Thread_Enable_dispatch> 200739c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20073a0: 81 c7 e0 08 ret 20073a4: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20073a8: 12 bf ff b8 bne 2007288 <== NEVER TAKEN 20073ac: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20073b0: 7f ff ff 65 call 2007144 <_Rate_monotonic_Update_statistics> 20073b4: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 20073b8: 7f ff ee 94 call 2002e08 20073bc: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20073c0: 82 10 20 02 mov 2, %g1 20073c4: 92 04 20 10 add %l0, 0x10, %o1 20073c8: 11 00 80 76 sethi %hi(0x201d800), %o0 20073cc: 90 12 20 34 or %o0, 0x34, %o0 ! 201d834 <_Watchdog_Ticks_chain> 20073d0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 20073d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20073d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20073dc: 40 00 10 10 call 200b41c <_Watchdog_Insert> 20073e0: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20073e4: 40 00 0c 06 call 200a3fc <_Thread_Enable_dispatch> 20073e8: 01 00 00 00 nop return RTEMS_TIMEOUT; 20073ec: 81 c7 e0 08 ret 20073f0: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20073f4: b0 10 20 04 mov 4, %i0 } 20073f8: 81 c7 e0 08 ret 20073fc: 81 e8 00 00 restore =============================================================================== 02007400 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007400: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007404: 80 a6 60 00 cmp %i1, 0 2007408: 02 80 00 79 be 20075ec <== NEVER TAKEN 200740c: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007410: 13 00 80 6d sethi %hi(0x201b400), %o1 2007414: 9f c6 40 00 call %i1 2007418: 92 12 62 60 or %o1, 0x260, %o1 ! 201b660 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 200741c: 90 10 00 18 mov %i0, %o0 2007420: 13 00 80 6d sethi %hi(0x201b400), %o1 2007424: 9f c6 40 00 call %i1 2007428: 92 12 62 80 or %o1, 0x280, %o1 ! 201b680 (*print)( context, "--- Wall times are in seconds ---\n" ); 200742c: 90 10 00 18 mov %i0, %o0 2007430: 13 00 80 6d sethi %hi(0x201b400), %o1 2007434: 9f c6 40 00 call %i1 2007438: 92 12 62 a8 or %o1, 0x2a8, %o1 ! 201b6a8 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 200743c: 90 10 00 18 mov %i0, %o0 2007440: 13 00 80 6d sethi %hi(0x201b400), %o1 2007444: 9f c6 40 00 call %i1 2007448: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 201b6d0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 200744c: 90 10 00 18 mov %i0, %o0 2007450: 13 00 80 6d sethi %hi(0x201b400), %o1 2007454: 9f c6 40 00 call %i1 2007458: 92 12 63 20 or %o1, 0x320, %o1 ! 201b720 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 200745c: 3b 00 80 75 sethi %hi(0x201d400), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007460: 2b 00 80 6d sethi %hi(0x201b400), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007464: 82 17 62 04 or %i5, 0x204, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007468: 27 00 80 6d sethi %hi(0x201b400), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 200746c: 35 00 80 6d sethi %hi(0x201b400), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007470: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007474: ae 07 bf a0 add %fp, -96, %l7 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007478: ac 07 bf d8 add %fp, -40, %l6 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 200747c: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007480: aa 15 63 70 or %l5, 0x370, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 2007484: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007488: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 200748c: a6 14 e3 88 or %l3, 0x388, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007490: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007494: 10 80 00 52 b 20075dc 2007498: b4 16 a3 a8 or %i2, 0x3a8, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 200749c: 40 00 18 26 call 200d534 20074a0: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 20074a4: 80 a2 20 00 cmp %o0, 0 20074a8: 32 80 00 4c bne,a 20075d8 20074ac: a0 04 20 01 inc %l0 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20074b0: 92 10 00 16 mov %l6, %o1 20074b4: 40 00 18 4d call 200d5e8 20074b8: 90 10 00 10 mov %l0, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20074bc: d0 07 bf d8 ld [ %fp + -40 ], %o0 20074c0: 92 10 20 05 mov 5, %o1 20074c4: 40 00 00 ae call 200777c 20074c8: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20074cc: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20074d0: 92 10 00 15 mov %l5, %o1 20074d4: 90 10 00 18 mov %i0, %o0 20074d8: 94 10 00 10 mov %l0, %o2 20074dc: 9f c6 40 00 call %i1 20074e0: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20074e4: d2 07 bf a0 ld [ %fp + -96 ], %o1 20074e8: 80 a2 60 00 cmp %o1, 0 20074ec: 12 80 00 08 bne 200750c 20074f0: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 20074f4: 90 10 00 18 mov %i0, %o0 20074f8: 13 00 80 6a sethi %hi(0x201a800), %o1 20074fc: 9f c6 40 00 call %i1 2007500: 92 12 61 68 or %o1, 0x168, %o1 ! 201a968 <_rodata_start+0x158> continue; 2007504: 10 80 00 35 b 20075d8 2007508: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 200750c: 40 00 0e a1 call 200af90 <_Timespec_Divide_by_integer> 2007510: 90 10 00 14 mov %l4, %o0 (*print)( context, 2007514: d0 07 bf ac ld [ %fp + -84 ], %o0 2007518: 40 00 45 7e call 2018b10 <.div> 200751c: 92 10 23 e8 mov 0x3e8, %o1 2007520: 96 10 00 08 mov %o0, %o3 2007524: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007528: d6 27 bf 9c st %o3, [ %fp + -100 ] 200752c: 40 00 45 79 call 2018b10 <.div> 2007530: 92 10 23 e8 mov 0x3e8, %o1 2007534: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007538: b6 10 00 08 mov %o0, %i3 200753c: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007540: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007544: 40 00 45 73 call 2018b10 <.div> 2007548: 92 10 23 e8 mov 0x3e8, %o1 200754c: d8 07 bf b0 ld [ %fp + -80 ], %o4 2007550: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007554: d4 07 bf a8 ld [ %fp + -88 ], %o2 2007558: 9a 10 00 1b mov %i3, %o5 200755c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007560: 92 10 00 13 mov %l3, %o1 2007564: 9f c6 40 00 call %i1 2007568: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 200756c: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007570: 94 10 00 11 mov %l1, %o2 2007574: 40 00 0e 87 call 200af90 <_Timespec_Divide_by_integer> 2007578: 90 10 00 1c mov %i4, %o0 (*print)( context, 200757c: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007580: 40 00 45 64 call 2018b10 <.div> 2007584: 92 10 23 e8 mov 0x3e8, %o1 2007588: 96 10 00 08 mov %o0, %o3 200758c: d0 07 bf cc ld [ %fp + -52 ], %o0 2007590: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007594: 40 00 45 5f call 2018b10 <.div> 2007598: 92 10 23 e8 mov 0x3e8, %o1 200759c: c2 07 bf f0 ld [ %fp + -16 ], %g1 20075a0: b6 10 00 08 mov %o0, %i3 20075a4: d0 07 bf f4 ld [ %fp + -12 ], %o0 20075a8: 92 10 23 e8 mov 0x3e8, %o1 20075ac: 40 00 45 59 call 2018b10 <.div> 20075b0: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20075b4: d4 07 bf c0 ld [ %fp + -64 ], %o2 20075b8: d6 07 bf 9c ld [ %fp + -100 ], %o3 20075bc: d8 07 bf c8 ld [ %fp + -56 ], %o4 20075c0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20075c4: 92 10 00 1a mov %i2, %o1 20075c8: 90 10 00 18 mov %i0, %o0 20075cc: 9f c6 40 00 call %i1 20075d0: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20075d4: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 20075d8: 82 17 62 04 or %i5, 0x204, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075dc: c2 00 60 0c ld [ %g1 + 0xc ], %g1 20075e0: 80 a4 00 01 cmp %l0, %g1 20075e4: 08 bf ff ae bleu 200749c 20075e8: 90 10 00 10 mov %l0, %o0 20075ec: 81 c7 e0 08 ret 20075f0: 81 e8 00 00 restore =============================================================================== 020156fc : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20156fc: 9d e3 bf 98 save %sp, -104, %sp 2015700: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2015704: 80 a6 60 00 cmp %i1, 0 2015708: 02 80 00 2e be 20157c0 201570c: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015710: 40 00 11 d5 call 2019e64 <_Thread_Get> 2015714: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2015718: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 201571c: a2 10 00 08 mov %o0, %l1 switch ( location ) { 2015720: 80 a0 60 00 cmp %g1, 0 2015724: 12 80 00 27 bne 20157c0 2015728: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 201572c: e0 02 21 58 ld [ %o0 + 0x158 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2015730: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2015734: 80 a0 60 00 cmp %g1, 0 2015738: 02 80 00 24 be 20157c8 201573c: 01 00 00 00 nop if ( asr->is_enabled ) { 2015740: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 2015744: 80 a0 60 00 cmp %g1, 0 2015748: 02 80 00 15 be 201579c 201574c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015750: 7f ff e7 99 call 200f5b4 2015754: 01 00 00 00 nop *signal_set |= signals; 2015758: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 201575c: b2 10 40 19 or %g1, %i1, %i1 2015760: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 2015764: 7f ff e7 98 call 200f5c4 2015768: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201576c: 03 00 80 f1 sethi %hi(0x203c400), %g1 2015770: 82 10 63 44 or %g1, 0x344, %g1 ! 203c744 <_Per_CPU_Information> 2015774: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015778: 80 a0 a0 00 cmp %g2, 0 201577c: 02 80 00 0f be 20157b8 2015780: 01 00 00 00 nop 2015784: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015788: 80 a4 40 02 cmp %l1, %g2 201578c: 12 80 00 0b bne 20157b8 <== NEVER TAKEN 2015790: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015794: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015798: 30 80 00 08 b,a 20157b8 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201579c: 7f ff e7 86 call 200f5b4 20157a0: 01 00 00 00 nop *signal_set |= signals; 20157a4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 20157a8: b2 10 40 19 or %g1, %i1, %i1 20157ac: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 20157b0: 7f ff e7 85 call 200f5c4 20157b4: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 20157b8: 40 00 11 9e call 2019e30 <_Thread_Enable_dispatch> 20157bc: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 20157c0: 81 c7 e0 08 ret 20157c4: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 20157c8: 40 00 11 9a call 2019e30 <_Thread_Enable_dispatch> 20157cc: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 20157d0: 81 c7 e0 08 ret 20157d4: 81 e8 00 00 restore =============================================================================== 0200d410 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d410: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d414: 80 a6 a0 00 cmp %i2, 0 200d418: 02 80 00 5a be 200d580 200d41c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d420: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d424: e2 00 63 78 ld [ %g1 + 0x378 ], %l1 ! 2014f78 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d428: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d42c: e0 04 61 58 ld [ %l1 + 0x158 ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d430: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d434: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d438: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d43c: 80 a0 60 00 cmp %g1, 0 200d440: 02 80 00 03 be 200d44c 200d444: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d448: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d44c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d450: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d454: 7f ff f2 44 call 2009d64 <_CPU_ISR_Get_level> 200d458: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d45c: a7 2c e0 0a sll %l3, 0xa, %l3 200d460: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 200d464: a4 14 c0 12 or %l3, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d468: 80 8e 61 00 btst 0x100, %i1 200d46c: 02 80 00 06 be 200d484 200d470: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d474: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d478: 80 a0 00 01 cmp %g0, %g1 200d47c: 82 60 3f ff subx %g0, -1, %g1 200d480: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d484: 80 8e 62 00 btst 0x200, %i1 200d488: 02 80 00 0b be 200d4b4 200d48c: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d490: 80 8e 22 00 btst 0x200, %i0 200d494: 22 80 00 07 be,a 200d4b0 200d498: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d49c: 82 10 20 01 mov 1, %g1 200d4a0: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d4a4: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d4a8: c2 00 60 a4 ld [ %g1 + 0xa4 ], %g1 ! 2014ca4 <_Thread_Ticks_per_timeslice> 200d4ac: c2 24 60 78 st %g1, [ %l1 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d4b0: 80 8e 60 0f btst 0xf, %i1 200d4b4: 02 80 00 06 be 200d4cc 200d4b8: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d4bc: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d4c0: 7f ff d2 8d call 2001ef4 200d4c4: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d4c8: 80 8e 64 00 btst 0x400, %i1 200d4cc: 02 80 00 14 be 200d51c 200d4d0: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d4d4: c4 0c 20 08 ldub [ %l0 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d4d8: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d4dc: 80 a0 00 18 cmp %g0, %i0 200d4e0: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d4e4: 80 a0 40 02 cmp %g1, %g2 200d4e8: 22 80 00 0e be,a 200d520 200d4ec: 03 00 80 53 sethi %hi(0x2014c00), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d4f0: 7f ff d2 7d call 2001ee4 200d4f4: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 200d4f8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d4fc: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 200d500: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d504: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d508: 7f ff d2 7b call 2001ef4 200d50c: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d510: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d514: 80 a0 00 01 cmp %g0, %g1 200d518: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d51c: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d520: c4 00 62 9c ld [ %g1 + 0x29c ], %g2 ! 2014e9c <_System_state_Current> 200d524: 80 a0 a0 03 cmp %g2, 3 200d528: 12 80 00 16 bne 200d580 <== NEVER TAKEN 200d52c: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d530: 07 00 80 53 sethi %hi(0x2014c00), %g3 if ( are_signals_pending || 200d534: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d538: 86 10 e3 6c or %g3, 0x36c, %g3 if ( are_signals_pending || 200d53c: 12 80 00 0a bne 200d564 200d540: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d544: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d548: 80 a0 80 03 cmp %g2, %g3 200d54c: 02 80 00 0d be 200d580 200d550: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d554: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d558: 80 a0 a0 00 cmp %g2, 0 200d55c: 02 80 00 09 be 200d580 <== NEVER TAKEN 200d560: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d564: 84 10 20 01 mov 1, %g2 ! 1 200d568: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d56c: 82 10 63 6c or %g1, 0x36c, %g1 ! 2014f6c <_Per_CPU_Information> 200d570: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d574: 7f ff eb ef call 2008530 <_Thread_Dispatch> 200d578: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d57c: 82 10 20 00 clr %g1 ! 0 } 200d580: 81 c7 e0 08 ret 200d584: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200aa4c : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200aa4c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200aa50: 80 a6 60 00 cmp %i1, 0 200aa54: 02 80 00 07 be 200aa70 200aa58: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200aa5c: 03 00 80 62 sethi %hi(0x2018800), %g1 200aa60: c2 08 61 04 ldub [ %g1 + 0x104 ], %g1 ! 2018904 200aa64: 80 a6 40 01 cmp %i1, %g1 200aa68: 18 80 00 1c bgu 200aad8 200aa6c: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200aa70: 80 a6 a0 00 cmp %i2, 0 200aa74: 02 80 00 19 be 200aad8 200aa78: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200aa7c: 40 00 09 34 call 200cf4c <_Thread_Get> 200aa80: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200aa84: c2 07 bf fc ld [ %fp + -4 ], %g1 200aa88: 80 a0 60 00 cmp %g1, 0 200aa8c: 12 80 00 13 bne 200aad8 200aa90: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200aa94: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200aa98: 80 a6 60 00 cmp %i1, 0 200aa9c: 02 80 00 0d be 200aad0 200aaa0: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200aaa4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200aaa8: 80 a0 60 00 cmp %g1, 0 200aaac: 02 80 00 06 be 200aac4 200aab0: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200aab4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200aab8: 80 a0 40 19 cmp %g1, %i1 200aabc: 08 80 00 05 bleu 200aad0 <== ALWAYS TAKEN 200aac0: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200aac4: 92 10 00 19 mov %i1, %o1 200aac8: 40 00 07 f1 call 200ca8c <_Thread_Change_priority> 200aacc: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200aad0: 40 00 09 12 call 200cf18 <_Thread_Enable_dispatch> 200aad4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200aad8: 81 c7 e0 08 ret 200aadc: 81 e8 00 00 restore =============================================================================== 02016108 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016108: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 201610c: 11 00 80 f1 sethi %hi(0x203c400), %o0 2016110: 92 10 00 18 mov %i0, %o1 2016114: 90 12 23 d4 or %o0, 0x3d4, %o0 2016118: 40 00 0b be call 2019010 <_Objects_Get> 201611c: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016120: c2 07 bf fc ld [ %fp + -4 ], %g1 2016124: 80 a0 60 00 cmp %g1, 0 2016128: 12 80 00 0c bne 2016158 201612c: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016130: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2016134: 80 a0 60 04 cmp %g1, 4 2016138: 02 80 00 04 be 2016148 <== NEVER TAKEN 201613c: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016140: 40 00 14 02 call 201b148 <_Watchdog_Remove> 2016144: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016148: 40 00 0f 3a call 2019e30 <_Thread_Enable_dispatch> 201614c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016150: 81 c7 e0 08 ret 2016154: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016158: 81 c7 e0 08 ret 201615c: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 020165f0 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20165f0: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 20165f4: 03 00 80 f2 sethi %hi(0x203c800), %g1 20165f8: e2 00 60 14 ld [ %g1 + 0x14 ], %l1 ! 203c814 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20165fc: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016600: 80 a4 60 00 cmp %l1, 0 2016604: 02 80 00 33 be 20166d0 2016608: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 201660c: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016610: c2 08 61 20 ldub [ %g1 + 0x120 ], %g1 ! 203c520 <_TOD_Is_set> 2016614: 80 a0 60 00 cmp %g1, 0 2016618: 02 80 00 2e be 20166d0 <== NEVER TAKEN 201661c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016620: 80 a6 a0 00 cmp %i2, 0 2016624: 02 80 00 2b be 20166d0 2016628: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 201662c: 90 10 00 19 mov %i1, %o0 2016630: 7f ff f4 07 call 201364c <_TOD_Validate> 2016634: b0 10 20 14 mov 0x14, %i0 2016638: 80 8a 20 ff btst 0xff, %o0 201663c: 02 80 00 27 be 20166d8 2016640: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016644: 7f ff f3 ce call 201357c <_TOD_To_seconds> 2016648: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 201664c: 27 00 80 f1 sethi %hi(0x203c400), %l3 2016650: c2 04 e1 9c ld [ %l3 + 0x19c ], %g1 ! 203c59c <_TOD_Now> 2016654: 80 a2 00 01 cmp %o0, %g1 2016658: 08 80 00 1e bleu 20166d0 201665c: a4 10 00 08 mov %o0, %l2 2016660: 11 00 80 f1 sethi %hi(0x203c400), %o0 2016664: 92 10 00 10 mov %l0, %o1 2016668: 90 12 23 d4 or %o0, 0x3d4, %o0 201666c: 40 00 0a 69 call 2019010 <_Objects_Get> 2016670: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016674: c2 07 bf fc ld [ %fp + -4 ], %g1 2016678: b2 10 00 08 mov %o0, %i1 201667c: 80 a0 60 00 cmp %g1, 0 2016680: 12 80 00 14 bne 20166d0 2016684: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016688: 40 00 12 b0 call 201b148 <_Watchdog_Remove> 201668c: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2016690: 82 10 20 03 mov 3, %g1 2016694: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016698: c2 04 e1 9c ld [ %l3 + 0x19c ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 201669c: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20166a0: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 20166a4: c2 04 60 04 ld [ %l1 + 4 ], %g1 20166a8: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20166ac: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 20166b0: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 20166b4: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 20166b8: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20166bc: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20166c0: 9f c0 40 00 call %g1 20166c4: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20166c8: 40 00 0d da call 2019e30 <_Thread_Enable_dispatch> 20166cc: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20166d0: 81 c7 e0 08 ret 20166d4: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20166d8: 81 c7 e0 08 ret 20166dc: 81 e8 00 00 restore