RTEMS 4.11Annotated Report
Fri Feb 11 14:52:56 2011
0201754c <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
201754c: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017550: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017554: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017558: 80 a6 80 01 cmp %i2, %g1
201755c: 18 80 00 16 bgu 20175b4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
2017560: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
2017564: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2017568: 80 a0 60 00 cmp %g1, 0
201756c: 02 80 00 0b be 2017598 <_CORE_message_queue_Broadcast+0x4c>
2017570: a2 10 20 00 clr %l1
*count = 0;
2017574: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017578: 81 c7 e0 08 ret
201757c: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
2017580: 92 10 00 19 mov %i1, %o1
2017584: 40 00 21 64 call 201fb14 <memcpy>
2017588: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
201758c: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
2017590: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
2017594: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
2017598: 40 00 0b 07 call 201a1b4 <_Thread_queue_Dequeue>
201759c: 90 10 00 10 mov %l0, %o0
20175a0: a4 92 20 00 orcc %o0, 0, %l2
20175a4: 32 bf ff f7 bne,a 2017580 <_CORE_message_queue_Broadcast+0x34>
20175a8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
20175ac: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
20175b0: b0 10 20 00 clr %i0
}
20175b4: 81 c7 e0 08 ret
20175b8: 81 e8 00 00 restore
0200fe3c <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fe3c: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fe40: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fe44: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fe48: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fe4c: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fe50: 80 8e e0 03 btst 3, %i3
200fe54: 02 80 00 07 be 200fe70 <_CORE_message_queue_Initialize+0x34>
200fe58: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fe5c: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fe60: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
200fe64: 80 a4 80 1b cmp %l2, %i3
200fe68: 0a 80 00 22 bcs 200fef0 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe6c: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fe70: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
200fe74: 92 10 00 1a mov %i2, %o1
200fe78: 90 10 00 11 mov %l1, %o0
200fe7c: 40 00 3f 3b call 201fb68 <.umul>
200fe80: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
200fe84: 80 a2 00 12 cmp %o0, %l2
200fe88: 0a 80 00 1a bcs 200fef0 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe8c: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fe90: 40 00 0b dd call 2012e04 <_Workspace_Allocate>
200fe94: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fe98: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fe9c: 80 a2 20 00 cmp %o0, 0
200fea0: 02 80 00 14 be 200fef0 <_CORE_message_queue_Initialize+0xb4>
200fea4: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fea8: 90 04 20 60 add %l0, 0x60, %o0
200feac: 94 10 00 1a mov %i2, %o2
200feb0: 40 00 14 2e call 2014f68 <_Chain_Initialize>
200feb4: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200feb8: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
200febc: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
200fec0: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
200fec4: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
200fec8: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
200fecc: c2 06 40 00 ld [ %i1 ], %g1
200fed0: 90 10 00 10 mov %l0, %o0
200fed4: 82 18 60 01 xor %g1, 1, %g1
200fed8: 80 a0 00 01 cmp %g0, %g1
200fedc: 94 10 20 80 mov 0x80, %o2
200fee0: 92 60 3f ff subx %g0, -1, %o1
200fee4: 96 10 20 06 mov 6, %o3
200fee8: 40 00 09 31 call 20123ac <_Thread_queue_Initialize>
200feec: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200fef0: 81 c7 e0 08 ret
200fef4: 81 e8 00 00 restore
0200fef8 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200fef8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
200fefc: 27 00 80 91 sethi %hi(0x2024400), %l3
200ff00: a6 14 e3 ac or %l3, 0x3ac, %l3 ! 20247ac <_Per_CPU_Information>
200ff04: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200ff08: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
200ff0c: 7f ff de 3a call 20077f4 <sparc_disable_interrupts>
200ff10: c0 24 a0 34 clr [ %l2 + 0x34 ]
200ff14: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
200ff18: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200ff1c: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
200ff20: 80 a4 40 02 cmp %l1, %g2
200ff24: 02 80 00 15 be 200ff78 <_CORE_message_queue_Seize+0x80>
200ff28: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
200ff2c: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
200ff30: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
200ff34: 80 a4 60 00 cmp %l1, 0
200ff38: 02 80 00 10 be 200ff78 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200ff3c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200ff40: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
200ff44: 82 00 7f ff add %g1, -1, %g1
200ff48: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200ff4c: 7f ff de 2e call 2007804 <sparc_enable_interrupts>
200ff50: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200ff54: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200ff58: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
200ff5c: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200ff60: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
200ff64: 90 10 00 1a mov %i2, %o0
200ff68: 40 00 1e d5 call 2017abc <memcpy>
200ff6c: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200ff70: 7f ff ff 83 call 200fd7c <_Chain_Append>
200ff74: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
200ff78: 80 8f 20 ff btst 0xff, %i4
200ff7c: 32 80 00 08 bne,a 200ff9c <_CORE_message_queue_Seize+0xa4>
200ff80: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200ff84: 7f ff de 20 call 2007804 <sparc_enable_interrupts>
200ff88: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
200ff8c: 82 10 20 04 mov 4, %g1
200ff90: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
200ff94: 81 c7 e0 08 ret
200ff98: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
200ff9c: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
200ffa0: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
200ffa4: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
200ffa8: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
200ffac: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
200ffb0: 90 10 00 01 mov %g1, %o0
200ffb4: 7f ff de 14 call 2007804 <sparc_enable_interrupts>
200ffb8: 35 00 80 49 sethi %hi(0x2012400), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
200ffbc: b2 10 00 1d mov %i5, %i1
200ffc0: 40 00 08 51 call 2012104 <_Thread_queue_Enqueue_with_handler>
200ffc4: 95 ee a0 8c restore %i2, 0x8c, %o2
02006cac <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2006cac: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006cb0: 03 00 80 54 sethi %hi(0x2015000), %g1
2006cb4: c2 00 60 90 ld [ %g1 + 0x90 ], %g1 ! 2015090 <_Thread_Dispatch_disable_level>
2006cb8: 80 a0 60 00 cmp %g1, 0
2006cbc: 02 80 00 0d be 2006cf0 <_CORE_mutex_Seize+0x44>
2006cc0: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2006cc4: 80 8e a0 ff btst 0xff, %i2
2006cc8: 02 80 00 0b be 2006cf4 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006ccc: 90 10 00 18 mov %i0, %o0
2006cd0: 03 00 80 54 sethi %hi(0x2015000), %g1
2006cd4: c2 00 62 0c ld [ %g1 + 0x20c ], %g1 ! 201520c <_System_state_Current>
2006cd8: 80 a0 60 01 cmp %g1, 1
2006cdc: 08 80 00 05 bleu 2006cf0 <_CORE_mutex_Seize+0x44>
2006ce0: 90 10 20 00 clr %o0
2006ce4: 92 10 20 00 clr %o1
2006ce8: 40 00 01 da call 2007450 <_Internal_error_Occurred>
2006cec: 94 10 20 12 mov 0x12, %o2
2006cf0: 90 10 00 18 mov %i0, %o0
2006cf4: 40 00 13 4a call 200ba1c <_CORE_mutex_Seize_interrupt_trylock>
2006cf8: 92 07 a0 54 add %fp, 0x54, %o1
2006cfc: 80 a2 20 00 cmp %o0, 0
2006d00: 02 80 00 0a be 2006d28 <_CORE_mutex_Seize+0x7c>
2006d04: 80 8e a0 ff btst 0xff, %i2
2006d08: 35 00 80 54 sethi %hi(0x2015000), %i2
2006d0c: 12 80 00 09 bne 2006d30 <_CORE_mutex_Seize+0x84>
2006d10: b4 16 a2 dc or %i2, 0x2dc, %i2 ! 20152dc <_Per_CPU_Information>
2006d14: 7f ff ed 35 call 20021e8 <sparc_enable_interrupts>
2006d18: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006d1c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006d20: 84 10 20 01 mov 1, %g2
2006d24: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2006d28: 81 c7 e0 08 ret
2006d2c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006d30: 82 10 20 01 mov 1, %g1
2006d34: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
2006d38: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006d3c: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2006d40: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2006d44: 03 00 80 54 sethi %hi(0x2015000), %g1
2006d48: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
2006d4c: 84 00 a0 01 inc %g2
2006d50: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
2006d54: 7f ff ed 25 call 20021e8 <sparc_enable_interrupts>
2006d58: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006d5c: 90 10 00 18 mov %i0, %o0
2006d60: 7f ff ff ba call 2006c48 <_CORE_mutex_Seize_interrupt_blocking>
2006d64: 92 10 00 1b mov %i3, %o1
2006d68: 81 c7 e0 08 ret
2006d6c: 81 e8 00 00 restore
0200ba1c <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
200ba1c: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
200ba20: 03 00 80 54 sethi %hi(0x2015000), %g1
200ba24: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 20152e8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200ba28: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200ba2c: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200ba30: 80 a0 a0 00 cmp %g2, 0
200ba34: 02 80 00 2f be 200baf0 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
200ba38: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200ba3c: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
200ba40: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200ba44: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
200ba48: 84 10 20 01 mov 1, %g2
200ba4c: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
200ba50: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200ba54: 80 a0 a0 02 cmp %g2, 2
200ba58: 02 80 00 05 be 200ba6c <_CORE_mutex_Seize_interrupt_trylock+0x50>
200ba5c: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
200ba60: 80 a0 a0 03 cmp %g2, 3
200ba64: 12 80 00 07 bne 200ba80 <_CORE_mutex_Seize_interrupt_trylock+0x64>
200ba68: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200ba6c: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200ba70: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200ba74: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200ba78: 02 80 00 03 be 200ba84 <_CORE_mutex_Seize_interrupt_trylock+0x68>
200ba7c: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200ba80: 30 80 00 2b b,a 200bb2c <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
200ba84: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
200ba88: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
200ba8c: 80 a1 00 02 cmp %g4, %g2
200ba90: 12 80 00 03 bne 200ba9c <_CORE_mutex_Seize_interrupt_trylock+0x80>
200ba94: 01 00 00 00 nop
_ISR_Enable( *level_p );
200ba98: 30 80 00 25 b,a 200bb2c <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
200ba9c: 08 80 00 0f bleu 200bad8 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
200baa0: 84 10 20 07 mov 7, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200baa4: 03 00 80 54 sethi %hi(0x2015000), %g1
200baa8: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
200baac: 84 00 a0 01 inc %g2
200bab0: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
200bab4: 7f ff d9 cd call 20021e8 <sparc_enable_interrupts>
200bab8: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200babc: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
200bac0: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
200bac4: 7f ff f1 a6 call 200815c <_Thread_Change_priority>
200bac8: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
200bacc: 7f ff f2 eb call 2008678 <_Thread_Enable_dispatch>
200bad0: b0 10 20 00 clr %i0
200bad4: 30 80 00 1d b,a 200bb48 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200bad8: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
200badc: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
200bae0: 84 10 20 01 mov 1, %g2
200bae4: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
200bae8: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200baec: 30 80 00 10 b,a 200bb2c <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
200baf0: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
200baf4: 80 a0 80 01 cmp %g2, %g1
200baf8: 12 80 00 14 bne 200bb48 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200bafc: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200bb00: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
200bb04: 80 a0 60 00 cmp %g1, 0
200bb08: 22 80 00 07 be,a 200bb24 <_CORE_mutex_Seize_interrupt_trylock+0x108>
200bb0c: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
200bb10: 80 a0 60 01 cmp %g1, 1
200bb14: 12 80 00 0d bne 200bb48 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
200bb18: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200bb1c: 10 80 00 08 b 200bb3c <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
200bb20: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
200bb24: 82 00 60 01 inc %g1
200bb28: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200bb2c: 7f ff d9 af call 20021e8 <sparc_enable_interrupts>
200bb30: d0 06 40 00 ld [ %i1 ], %o0
return 0;
200bb34: 81 c7 e0 08 ret
200bb38: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
200bb3c: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
200bb40: 7f ff d9 aa call 20021e8 <sparc_enable_interrupts> <== NOT EXECUTED
200bb44: b0 10 20 00 clr %i0 <== NOT EXECUTED
200bb48: 81 c7 e0 08 ret
200bb4c: 81 e8 00 00 restore
02006eec <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2006eec: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006ef0: 90 10 00 18 mov %i0, %o0
2006ef4: 40 00 06 c6 call 2008a0c <_Thread_queue_Dequeue>
2006ef8: a0 10 00 18 mov %i0, %l0
2006efc: 80 a2 20 00 cmp %o0, 0
2006f00: 12 80 00 0e bne 2006f38 <_CORE_semaphore_Surrender+0x4c>
2006f04: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2006f08: 7f ff ec b4 call 20021d8 <sparc_disable_interrupts>
2006f0c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006f10: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2006f14: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2006f18: 80 a0 40 02 cmp %g1, %g2
2006f1c: 1a 80 00 05 bcc 2006f30 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006f20: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006f24: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006f28: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2006f2c: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2006f30: 7f ff ec ae call 20021e8 <sparc_enable_interrupts>
2006f34: 01 00 00 00 nop
}
return status;
}
2006f38: 81 c7 e0 08 ret
2006f3c: 81 e8 00 00 restore
02005ca0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005ca0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005ca4: e2 06 21 58 ld [ %i0 + 0x158 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005ca8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005cac: 7f ff f1 4b call 20021d8 <sparc_disable_interrupts>
2005cb0: a0 10 00 18 mov %i0, %l0
2005cb4: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005cb8: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005cbc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2005cc0: 82 88 c0 02 andcc %g3, %g2, %g1
2005cc4: 12 80 00 03 bne 2005cd0 <_Event_Surrender+0x30>
2005cc8: 09 00 80 54 sethi %hi(0x2015000), %g4
_ISR_Enable( level );
2005ccc: 30 80 00 42 b,a 2005dd4 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2005cd0: 88 11 22 dc or %g4, 0x2dc, %g4 ! 20152dc <_Per_CPU_Information>
2005cd4: da 01 20 08 ld [ %g4 + 8 ], %o5
2005cd8: 80 a3 60 00 cmp %o5, 0
2005cdc: 22 80 00 1d be,a 2005d50 <_Event_Surrender+0xb0>
2005ce0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
2005ce4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2005ce8: 80 a4 00 04 cmp %l0, %g4
2005cec: 32 80 00 19 bne,a 2005d50 <_Event_Surrender+0xb0>
2005cf0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cf4: 09 00 80 54 sethi %hi(0x2015000), %g4
2005cf8: da 01 23 30 ld [ %g4 + 0x330 ], %o5 ! 2015330 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2005cfc: 80 a3 60 02 cmp %o5, 2
2005d00: 02 80 00 07 be 2005d1c <_Event_Surrender+0x7c> <== NEVER TAKEN
2005d04: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005d08: c8 01 23 30 ld [ %g4 + 0x330 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005d0c: 80 a1 20 01 cmp %g4, 1
2005d10: 32 80 00 10 bne,a 2005d50 <_Event_Surrender+0xb0>
2005d14: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005d18: 80 a0 40 03 cmp %g1, %g3
2005d1c: 02 80 00 04 be 2005d2c <_Event_Surrender+0x8c>
2005d20: 80 8c a0 02 btst 2, %l2
2005d24: 02 80 00 0a be 2005d4c <_Event_Surrender+0xac> <== NEVER TAKEN
2005d28: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005d2c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005d30: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d34: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2005d38: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d3c: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005d40: 84 10 20 03 mov 3, %g2
2005d44: 03 00 80 54 sethi %hi(0x2015000), %g1
2005d48: c4 20 63 30 st %g2, [ %g1 + 0x330 ] ! 2015330 <_Event_Sync_state>
}
_ISR_Enable( level );
2005d4c: 30 80 00 22 b,a 2005dd4 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005d50: 80 89 21 00 btst 0x100, %g4
2005d54: 02 80 00 20 be 2005dd4 <_Event_Surrender+0x134>
2005d58: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2005d5c: 02 80 00 04 be 2005d6c <_Event_Surrender+0xcc>
2005d60: 80 8c a0 02 btst 2, %l2
2005d64: 02 80 00 1c be 2005dd4 <_Event_Surrender+0x134> <== NEVER TAKEN
2005d68: 01 00 00 00 nop
2005d6c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005d70: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d74: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2005d78: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d7c: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005d80: 7f ff f1 1a call 20021e8 <sparc_enable_interrupts>
2005d84: 90 10 00 18 mov %i0, %o0
2005d88: 7f ff f1 14 call 20021d8 <sparc_disable_interrupts>
2005d8c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005d90: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
2005d94: 80 a0 60 02 cmp %g1, 2
2005d98: 02 80 00 06 be 2005db0 <_Event_Surrender+0x110>
2005d9c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005da0: 7f ff f1 12 call 20021e8 <sparc_enable_interrupts>
2005da4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005da8: 10 80 00 08 b 2005dc8 <_Event_Surrender+0x128>
2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2005db0: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2005db4: 7f ff f1 0d call 20021e8 <sparc_enable_interrupts>
2005db8: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005dbc: 40 00 0e 4c call 20096ec <_Watchdog_Remove>
2005dc0: 90 04 20 48 add %l0, 0x48, %o0
2005dc4: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2005dc8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2005dcc: 40 00 09 45 call 20082e0 <_Thread_Clear_state>
2005dd0: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2005dd4: 7f ff f1 05 call 20021e8 <sparc_enable_interrupts>
2005dd8: 81 e8 00 00 restore
02005de0 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2005de0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2005de4: 90 10 00 18 mov %i0, %o0
2005de8: 40 00 0a 31 call 20086ac <_Thread_Get>
2005dec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005df0: c2 07 bf fc ld [ %fp + -4 ], %g1
2005df4: 80 a0 60 00 cmp %g1, 0
2005df8: 12 80 00 1c bne 2005e68 <_Event_Timeout+0x88> <== NEVER TAKEN
2005dfc: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2005e00: 7f ff f0 f6 call 20021d8 <sparc_disable_interrupts>
2005e04: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2005e08: 03 00 80 54 sethi %hi(0x2015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2005e0c: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 20152e8 <_Per_CPU_Information+0xc>
2005e10: 80 a4 00 01 cmp %l0, %g1
2005e14: 12 80 00 09 bne 2005e38 <_Event_Timeout+0x58>
2005e18: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005e1c: 03 00 80 54 sethi %hi(0x2015000), %g1
2005e20: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 2015330 <_Event_Sync_state>
2005e24: 80 a0 a0 01 cmp %g2, 1
2005e28: 32 80 00 05 bne,a 2005e3c <_Event_Timeout+0x5c>
2005e2c: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005e30: 84 10 20 02 mov 2, %g2
2005e34: c4 20 63 30 st %g2, [ %g1 + 0x330 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005e38: 82 10 20 06 mov 6, %g1
2005e3c: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005e40: 7f ff f0 ea call 20021e8 <sparc_enable_interrupts>
2005e44: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005e48: 90 10 00 10 mov %l0, %o0
2005e4c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2005e50: 40 00 09 24 call 20082e0 <_Thread_Clear_state>
2005e54: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2005e58: 03 00 80 54 sethi %hi(0x2015000), %g1
2005e5c: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
2005e60: 84 00 bf ff add %g2, -1, %g2
2005e64: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
2005e68: 81 c7 e0 08 ret
2005e6c: 81 e8 00 00 restore
0200c08c <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c08c: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200c090: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200c094: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c098: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200c09c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200c0a0: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200c0a4: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c0a8: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200c0ac: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c0b0: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200c0b4: 80 a4 40 19 cmp %l1, %i1
200c0b8: 0a 80 00 9f bcs 200c334 <_Heap_Extend+0x2a8>
200c0bc: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200c0c0: 90 10 00 19 mov %i1, %o0
200c0c4: 94 10 00 13 mov %l3, %o2
200c0c8: 98 07 bf fc add %fp, -4, %o4
200c0cc: 7f ff ec fd call 20074c0 <_Heap_Get_first_and_last_block>
200c0d0: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200c0d4: 80 8a 20 ff btst 0xff, %o0
200c0d8: 02 80 00 97 be 200c334 <_Heap_Extend+0x2a8>
200c0dc: aa 10 00 12 mov %l2, %l5
200c0e0: ba 10 20 00 clr %i5
200c0e4: b8 10 20 00 clr %i4
200c0e8: b0 10 20 00 clr %i0
200c0ec: ae 10 20 00 clr %l7
200c0f0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c0f4: 80 a0 40 11 cmp %g1, %l1
200c0f8: 1a 80 00 05 bcc 200c10c <_Heap_Extend+0x80>
200c0fc: ec 05 40 00 ld [ %l5 ], %l6
200c100: 80 a6 40 16 cmp %i1, %l6
200c104: 2a 80 00 8c bcs,a 200c334 <_Heap_Extend+0x2a8>
200c108: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c10c: 80 a4 40 01 cmp %l1, %g1
200c110: 02 80 00 06 be 200c128 <_Heap_Extend+0x9c>
200c114: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c118: 2a 80 00 05 bcs,a 200c12c <_Heap_Extend+0xa0>
200c11c: b8 10 00 15 mov %l5, %i4
200c120: 10 80 00 04 b 200c130 <_Heap_Extend+0xa4>
200c124: 90 10 00 16 mov %l6, %o0
200c128: ae 10 00 15 mov %l5, %l7
200c12c: 90 10 00 16 mov %l6, %o0
200c130: 40 00 16 ce call 2011c68 <.urem>
200c134: 92 10 00 13 mov %l3, %o1
200c138: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c13c: 80 a5 80 19 cmp %l6, %i1
200c140: 12 80 00 05 bne 200c154 <_Heap_Extend+0xc8>
200c144: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c148: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c14c: 10 80 00 04 b 200c15c <_Heap_Extend+0xd0>
200c150: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c154: 2a 80 00 02 bcs,a 200c15c <_Heap_Extend+0xd0>
200c158: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c15c: ea 02 20 04 ld [ %o0 + 4 ], %l5
200c160: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c164: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c168: 80 a5 40 12 cmp %l5, %l2
200c16c: 12 bf ff e2 bne 200c0f4 <_Heap_Extend+0x68>
200c170: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c174: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200c178: 80 a6 40 01 cmp %i1, %g1
200c17c: 3a 80 00 04 bcc,a 200c18c <_Heap_Extend+0x100>
200c180: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c184: 10 80 00 05 b 200c198 <_Heap_Extend+0x10c>
200c188: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c18c: 80 a0 40 11 cmp %g1, %l1
200c190: 2a 80 00 02 bcs,a 200c198 <_Heap_Extend+0x10c>
200c194: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c198: c4 07 bf fc ld [ %fp + -4 ], %g2
200c19c: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c1a0: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c1a4: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c1a8: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200c1ac: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c1b0: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c1b4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
200c1b8: 80 a0 c0 02 cmp %g3, %g2
200c1bc: 08 80 00 04 bleu 200c1cc <_Heap_Extend+0x140>
200c1c0: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c1c4: 10 80 00 06 b 200c1dc <_Heap_Extend+0x150>
200c1c8: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c1cc: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
200c1d0: 80 a0 80 01 cmp %g2, %g1
200c1d4: 2a 80 00 02 bcs,a 200c1dc <_Heap_Extend+0x150>
200c1d8: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c1dc: 80 a5 e0 00 cmp %l7, 0
200c1e0: 02 80 00 14 be 200c230 <_Heap_Extend+0x1a4>
200c1e4: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200c1e8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200c1ec: 92 10 00 12 mov %l2, %o1
200c1f0: 40 00 16 9e call 2011c68 <.urem>
200c1f4: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c1f8: 80 a2 20 00 cmp %o0, 0
200c1fc: 02 80 00 04 be 200c20c <_Heap_Extend+0x180> <== ALWAYS TAKEN
200c200: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c204: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
200c208: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200c20c: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200c210: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200c214: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c218: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c21c: 90 10 00 10 mov %l0, %o0
200c220: 7f ff ff 90 call 200c060 <_Heap_Free_block>
200c224: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c228: 10 80 00 09 b 200c24c <_Heap_Extend+0x1c0>
200c22c: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200c230: 80 a7 20 00 cmp %i4, 0
200c234: 02 80 00 05 be 200c248 <_Heap_Extend+0x1bc>
200c238: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c23c: b8 27 00 01 sub %i4, %g1, %i4
200c240: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200c244: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c248: 80 a6 20 00 cmp %i0, 0
200c24c: 02 80 00 15 be 200c2a0 <_Heap_Extend+0x214>
200c250: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c254: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200c258: a2 24 40 18 sub %l1, %i0, %l1
200c25c: 40 00 16 83 call 2011c68 <.urem>
200c260: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200c264: c4 06 20 04 ld [ %i0 + 4 ], %g2
200c268: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c26c: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c270: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c274: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c278: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c27c: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200c280: 90 10 00 10 mov %l0, %o0
200c284: 82 08 60 01 and %g1, 1, %g1
200c288: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c28c: a2 14 40 01 or %l1, %g1, %l1
200c290: 7f ff ff 74 call 200c060 <_Heap_Free_block>
200c294: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c298: 10 80 00 0f b 200c2d4 <_Heap_Extend+0x248>
200c29c: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200c2a0: 80 a7 60 00 cmp %i5, 0
200c2a4: 02 80 00 0b be 200c2d0 <_Heap_Extend+0x244>
200c2a8: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c2ac: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c2b0: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200c2b4: 86 20 c0 1d sub %g3, %i5, %g3
200c2b8: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c2bc: 84 10 c0 02 or %g3, %g2, %g2
200c2c0: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c2c4: c4 00 60 04 ld [ %g1 + 4 ], %g2
200c2c8: 84 10 a0 01 or %g2, 1, %g2
200c2cc: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c2d0: 80 a6 20 00 cmp %i0, 0
200c2d4: 32 80 00 09 bne,a 200c2f8 <_Heap_Extend+0x26c>
200c2d8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200c2dc: 80 a5 e0 00 cmp %l7, 0
200c2e0: 32 80 00 06 bne,a 200c2f8 <_Heap_Extend+0x26c>
200c2e4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c2e8: d2 07 bf fc ld [ %fp + -4 ], %o1
200c2ec: 7f ff ff 5d call 200c060 <_Heap_Free_block>
200c2f0: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c2f4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c2f8: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c2fc: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c300: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c304: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c308: 84 10 c0 02 or %g3, %g2, %g2
200c30c: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c310: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200c314: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c318: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
200c31c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c320: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200c324: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c328: 02 80 00 03 be 200c334 <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c32c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c330: e8 26 c0 00 st %l4, [ %i3 ]
200c334: 81 c7 e0 08 ret
200c338: 81 e8 00 00 restore
0200bd8c <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200bd8c: 9d e3 bf a0 save %sp, -96, %sp
200bd90: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200bd94: 40 00 16 77 call 2011770 <.urem>
200bd98: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200bd9c: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bda0: a2 06 7f f8 add %i1, -8, %l1
200bda4: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200bda8: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bdac: 80 a2 00 0c cmp %o0, %o4
200bdb0: 0a 80 00 05 bcs 200bdc4 <_Heap_Free+0x38>
200bdb4: 82 10 20 00 clr %g1
200bdb8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200bdbc: 80 a0 40 08 cmp %g1, %o0
200bdc0: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0;
bool next_is_free = false;
_Heap_Protection_block_check( heap, block );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bdc4: 80 a0 60 00 cmp %g1, 0
200bdc8: 02 80 00 6a be 200bf70 <_Heap_Free+0x1e4>
200bdcc: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bdd0: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bdd4: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bdd8: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bddc: 80 a0 40 0c cmp %g1, %o4
200bde0: 0a 80 00 05 bcs 200bdf4 <_Heap_Free+0x68> <== NEVER TAKEN
200bde4: 86 10 20 00 clr %g3
200bde8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200bdec: 80 a0 c0 01 cmp %g3, %g1
200bdf0: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bdf4: 80 a0 e0 00 cmp %g3, 0
200bdf8: 02 80 00 5e be 200bf70 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bdfc: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200be00: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200be04: 80 89 20 01 btst 1, %g4
200be08: 02 80 00 5a be 200bf70 <_Heap_Free+0x1e4> <== NEVER TAKEN
200be0c: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200be10: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200be14: 80 a0 40 09 cmp %g1, %o1
200be18: 02 80 00 07 be 200be34 <_Heap_Free+0xa8>
200be1c: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200be20: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be24: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200be28: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200be2c: 80 a0 00 03 cmp %g0, %g3
200be30: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200be34: 80 8b 60 01 btst 1, %o5
200be38: 12 80 00 26 bne 200bed0 <_Heap_Free+0x144>
200be3c: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200be40: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200be44: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200be48: 80 a0 c0 0c cmp %g3, %o4
200be4c: 0a 80 00 04 bcs 200be5c <_Heap_Free+0xd0> <== NEVER TAKEN
200be50: 94 10 20 00 clr %o2
200be54: 80 a2 40 03 cmp %o1, %g3
200be58: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200be5c: 80 a2 a0 00 cmp %o2, 0
200be60: 02 80 00 44 be 200bf70 <_Heap_Free+0x1e4> <== NEVER TAKEN
200be64: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be68: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200be6c: 80 8b 20 01 btst 1, %o4
200be70: 02 80 00 40 be 200bf70 <_Heap_Free+0x1e4> <== NEVER TAKEN
200be74: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200be78: 22 80 00 0f be,a 200beb4 <_Heap_Free+0x128>
200be7c: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200be80: 88 00 80 04 add %g2, %g4, %g4
200be84: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200be88: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200be8c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200be90: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200be94: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200be98: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
200be9c: 82 00 7f ff add %g1, -1, %g1
200bea0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200bea4: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bea8: 82 13 60 01 or %o5, 1, %g1
200beac: 10 80 00 27 b 200bf48 <_Heap_Free+0x1bc>
200beb0: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200beb4: 88 13 60 01 or %o5, 1, %g4
200beb8: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bebc: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200bec0: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bec4: 86 08 ff fe and %g3, -2, %g3
200bec8: 10 80 00 20 b 200bf48 <_Heap_Free+0x1bc>
200becc: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200bed0: 22 80 00 0d be,a 200bf04 <_Heap_Free+0x178>
200bed4: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200bed8: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200bedc: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200bee0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200bee4: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200bee8: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
200beec: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200bef0: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bef4: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200bef8: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200befc: 10 80 00 13 b 200bf48 <_Heap_Free+0x1bc>
200bf00: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200bf04: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200bf08: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200bf0c: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200bf10: 86 10 a0 01 or %g2, 1, %g3
200bf14: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bf18: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200bf1c: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bf20: 86 08 ff fe and %g3, -2, %g3
200bf24: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200bf28: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200bf2c: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200bf30: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200bf34: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200bf38: 80 a0 c0 01 cmp %g3, %g1
200bf3c: 1a 80 00 03 bcc 200bf48 <_Heap_Free+0x1bc>
200bf40: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200bf44: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200bf48: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200bf4c: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200bf50: 82 00 7f ff add %g1, -1, %g1
200bf54: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200bf58: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
200bf5c: 82 00 60 01 inc %g1
200bf60: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200bf64: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
200bf68: 84 00 40 02 add %g1, %g2, %g2
200bf6c: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
200bf70: 81 c7 e0 08 ret
200bf74: 81 e8 00 00 restore
02013184 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2013184: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013188: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
201318c: 7f ff f9 79 call 2011770 <.urem>
2013190: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2013194: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013198: a2 06 7f f8 add %i1, -8, %l1
201319c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20131a0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20131a4: 80 a2 00 02 cmp %o0, %g2
20131a8: 0a 80 00 05 bcs 20131bc <_Heap_Size_of_alloc_area+0x38>
20131ac: 82 10 20 00 clr %g1
20131b0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20131b4: 80 a0 40 08 cmp %g1, %o0
20131b8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
20131bc: 80 a0 60 00 cmp %g1, 0
20131c0: 02 80 00 15 be 2013214 <_Heap_Size_of_alloc_area+0x90>
20131c4: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20131c8: e2 02 20 04 ld [ %o0 + 4 ], %l1
20131cc: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20131d0: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20131d4: 80 a4 40 02 cmp %l1, %g2
20131d8: 0a 80 00 05 bcs 20131ec <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
20131dc: 82 10 20 00 clr %g1
20131e0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
20131e4: 80 a0 40 11 cmp %g1, %l1
20131e8: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
20131ec: 80 a0 60 00 cmp %g1, 0
20131f0: 02 80 00 09 be 2013214 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
20131f4: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20131f8: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
20131fc: 80 88 60 01 btst 1, %g1
2013200: 02 80 00 05 be 2013214 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2013204: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2013208: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
201320c: a2 04 60 04 add %l1, 4, %l1
2013210: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
2013214: 81 c7 e0 08 ret
2013218: 81 e8 00 00 restore
020082c8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20082c8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20082cc: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20082d0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20082d4: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
20082d8: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
20082dc: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
20082e0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20082e4: 80 8e a0 ff btst 0xff, %i2
20082e8: 02 80 00 04 be 20082f8 <_Heap_Walk+0x30>
20082ec: a2 14 62 74 or %l1, 0x274, %l1
20082f0: 23 00 80 20 sethi %hi(0x2008000), %l1
20082f4: a2 14 62 7c or %l1, 0x27c, %l1 ! 200827c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20082f8: 03 00 80 5e sethi %hi(0x2017800), %g1
20082fc: c2 00 60 9c ld [ %g1 + 0x9c ], %g1 ! 201789c <_System_state_Current>
2008300: 80 a0 60 03 cmp %g1, 3
2008304: 12 80 01 2d bne 20087b8 <_Heap_Walk+0x4f0>
2008308: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
200830c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2008310: da 04 20 18 ld [ %l0 + 0x18 ], %o5
2008314: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2008318: c2 04 20 08 ld [ %l0 + 8 ], %g1
200831c: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
2008320: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008324: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2008328: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
200832c: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008330: 90 10 00 19 mov %i1, %o0
2008334: 92 10 20 00 clr %o1
2008338: 15 00 80 53 sethi %hi(0x2014c00), %o2
200833c: 96 10 00 12 mov %l2, %o3
2008340: 94 12 a2 50 or %o2, 0x250, %o2
2008344: 9f c4 40 00 call %l1
2008348: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
200834c: 80 a4 a0 00 cmp %l2, 0
2008350: 12 80 00 07 bne 200836c <_Heap_Walk+0xa4>
2008354: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
2008358: 15 00 80 53 sethi %hi(0x2014c00), %o2
200835c: 90 10 00 19 mov %i1, %o0
2008360: 92 10 20 01 mov 1, %o1
2008364: 10 80 00 38 b 2008444 <_Heap_Walk+0x17c>
2008368: 94 12 a2 e8 or %o2, 0x2e8, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
200836c: 22 80 00 08 be,a 200838c <_Heap_Walk+0xc4>
2008370: 90 10 00 14 mov %l4, %o0
(*printer)(
2008374: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008378: 90 10 00 19 mov %i1, %o0
200837c: 92 10 20 01 mov 1, %o1
2008380: 94 12 a3 00 or %o2, 0x300, %o2
2008384: 10 80 01 0b b 20087b0 <_Heap_Walk+0x4e8>
2008388: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200838c: 7f ff e5 ce call 2001ac4 <.urem>
2008390: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008394: 80 a2 20 00 cmp %o0, 0
2008398: 22 80 00 08 be,a 20083b8 <_Heap_Walk+0xf0>
200839c: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
20083a0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083a4: 90 10 00 19 mov %i1, %o0
20083a8: 92 10 20 01 mov 1, %o1
20083ac: 94 12 a3 20 or %o2, 0x320, %o2
20083b0: 10 80 01 00 b 20087b0 <_Heap_Walk+0x4e8>
20083b4: 96 10 00 14 mov %l4, %o3
20083b8: 7f ff e5 c3 call 2001ac4 <.urem>
20083bc: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
20083c0: 80 a2 20 00 cmp %o0, 0
20083c4: 22 80 00 08 be,a 20083e4 <_Heap_Walk+0x11c>
20083c8: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
20083cc: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083d0: 90 10 00 19 mov %i1, %o0
20083d4: 92 10 20 01 mov 1, %o1
20083d8: 94 12 a3 48 or %o2, 0x348, %o2
20083dc: 10 80 00 f5 b 20087b0 <_Heap_Walk+0x4e8>
20083e0: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20083e4: 80 88 60 01 btst 1, %g1
20083e8: 32 80 00 07 bne,a 2008404 <_Heap_Walk+0x13c>
20083ec: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
20083f0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083f4: 90 10 00 19 mov %i1, %o0
20083f8: 92 10 20 01 mov 1, %o1
20083fc: 10 80 00 12 b 2008444 <_Heap_Walk+0x17c>
2008400: 94 12 a3 80 or %o2, 0x380, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008404: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008408: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200840c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
2008410: 80 88 60 01 btst 1, %g1
2008414: 12 80 00 07 bne 2008430 <_Heap_Walk+0x168>
2008418: 80 a5 80 13 cmp %l6, %l3
(*printer)(
200841c: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008420: 90 10 00 19 mov %i1, %o0
2008424: 92 10 20 01 mov 1, %o1
2008428: 10 80 00 07 b 2008444 <_Heap_Walk+0x17c>
200842c: 94 12 a3 b0 or %o2, 0x3b0, %o2
);
return false;
}
if (
2008430: 02 80 00 08 be 2008450 <_Heap_Walk+0x188> <== ALWAYS TAKEN
2008434: 15 00 80 53 sethi %hi(0x2014c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008438: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
200843c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
2008440: 94 12 a3 c8 or %o2, 0x3c8, %o2 <== NOT EXECUTED
2008444: 9f c4 40 00 call %l1
2008448: b0 10 20 00 clr %i0
200844c: 30 80 00 db b,a 20087b8 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
2008450: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008454: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008458: ae 10 00 10 mov %l0, %l7
200845c: 10 80 00 32 b 2008524 <_Heap_Walk+0x25c>
2008460: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008464: 80 a0 80 1c cmp %g2, %i4
2008468: 18 80 00 05 bgu 200847c <_Heap_Walk+0x1b4>
200846c: 82 10 20 00 clr %g1
2008470: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
2008474: 80 a0 40 1c cmp %g1, %i4
2008478: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
200847c: 80 a0 60 00 cmp %g1, 0
2008480: 32 80 00 08 bne,a 20084a0 <_Heap_Walk+0x1d8>
2008484: 90 07 20 08 add %i4, 8, %o0
(*printer)(
2008488: 15 00 80 53 sethi %hi(0x2014c00), %o2
200848c: 96 10 00 1c mov %i4, %o3
2008490: 90 10 00 19 mov %i1, %o0
2008494: 92 10 20 01 mov 1, %o1
2008498: 10 80 00 c6 b 20087b0 <_Heap_Walk+0x4e8>
200849c: 94 12 a3 f8 or %o2, 0x3f8, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20084a0: 7f ff e5 89 call 2001ac4 <.urem>
20084a4: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
20084a8: 80 a2 20 00 cmp %o0, 0
20084ac: 22 80 00 08 be,a 20084cc <_Heap_Walk+0x204>
20084b0: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
20084b4: 15 00 80 54 sethi %hi(0x2015000), %o2
20084b8: 96 10 00 1c mov %i4, %o3
20084bc: 90 10 00 19 mov %i1, %o0
20084c0: 92 10 20 01 mov 1, %o1
20084c4: 10 80 00 bb b 20087b0 <_Heap_Walk+0x4e8>
20084c8: 94 12 a0 18 or %o2, 0x18, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20084cc: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
20084d0: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20084d4: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20084d8: 80 88 60 01 btst 1, %g1
20084dc: 22 80 00 08 be,a 20084fc <_Heap_Walk+0x234>
20084e0: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
20084e4: 15 00 80 54 sethi %hi(0x2015000), %o2
20084e8: 96 10 00 1c mov %i4, %o3
20084ec: 90 10 00 19 mov %i1, %o0
20084f0: 92 10 20 01 mov 1, %o1
20084f4: 10 80 00 af b 20087b0 <_Heap_Walk+0x4e8>
20084f8: 94 12 a0 48 or %o2, 0x48, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
20084fc: 80 a3 00 17 cmp %o4, %l7
2008500: 22 80 00 08 be,a 2008520 <_Heap_Walk+0x258>
2008504: ae 10 00 1c mov %i4, %l7
(*printer)(
2008508: 15 00 80 54 sethi %hi(0x2015000), %o2
200850c: 96 10 00 1c mov %i4, %o3
2008510: 90 10 00 19 mov %i1, %o0
2008514: 92 10 20 01 mov 1, %o1
2008518: 10 80 00 49 b 200863c <_Heap_Walk+0x374>
200851c: 94 12 a0 68 or %o2, 0x68, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
2008520: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008524: 80 a7 00 10 cmp %i4, %l0
2008528: 32 bf ff cf bne,a 2008464 <_Heap_Walk+0x19c>
200852c: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
2008530: 35 00 80 54 sethi %hi(0x2015000), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008534: 31 00 80 54 sethi %hi(0x2015000), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008538: b4 16 a2 28 or %i2, 0x228, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200853c: b0 16 22 10 or %i0, 0x210, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008540: 37 00 80 54 sethi %hi(0x2015000), %i3
block = next_block;
} while ( block != first_block );
return true;
}
2008544: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008548: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200854c: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008550: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008554: 80 a0 c0 1d cmp %g3, %i5
2008558: 18 80 00 05 bgu 200856c <_Heap_Walk+0x2a4> <== NEVER TAKEN
200855c: 84 10 20 00 clr %g2
2008560: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
2008564: 80 a0 80 1d cmp %g2, %i5
2008568: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200856c: 80 a0 a0 00 cmp %g2, 0
2008570: 12 80 00 07 bne 200858c <_Heap_Walk+0x2c4>
2008574: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
2008578: 15 00 80 54 sethi %hi(0x2015000), %o2
200857c: 90 10 00 19 mov %i1, %o0
2008580: 92 10 20 01 mov 1, %o1
2008584: 10 80 00 2c b 2008634 <_Heap_Walk+0x36c>
2008588: 94 12 a0 a0 or %o2, 0xa0, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
200858c: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008590: c2 27 bf fc st %g1, [ %fp + -4 ]
2008594: b8 40 20 00 addx %g0, 0, %i4
2008598: 90 10 00 17 mov %l7, %o0
200859c: 7f ff e5 4a call 2001ac4 <.urem>
20085a0: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
20085a4: 80 a2 20 00 cmp %o0, 0
20085a8: 02 80 00 0c be 20085d8 <_Heap_Walk+0x310>
20085ac: c2 07 bf fc ld [ %fp + -4 ], %g1
20085b0: 80 8f 20 ff btst 0xff, %i4
20085b4: 02 80 00 0a be 20085dc <_Heap_Walk+0x314>
20085b8: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
20085bc: 15 00 80 54 sethi %hi(0x2015000), %o2
20085c0: 90 10 00 19 mov %i1, %o0
20085c4: 92 10 20 01 mov 1, %o1
20085c8: 94 12 a0 d0 or %o2, 0xd0, %o2
20085cc: 96 10 00 16 mov %l6, %o3
20085d0: 10 80 00 1b b 200863c <_Heap_Walk+0x374>
20085d4: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
20085d8: 80 a5 c0 14 cmp %l7, %l4
20085dc: 1a 80 00 0d bcc 2008610 <_Heap_Walk+0x348>
20085e0: 80 a7 40 16 cmp %i5, %l6
20085e4: 80 8f 20 ff btst 0xff, %i4
20085e8: 02 80 00 0a be 2008610 <_Heap_Walk+0x348> <== NEVER TAKEN
20085ec: 80 a7 40 16 cmp %i5, %l6
(*printer)(
20085f0: 15 00 80 54 sethi %hi(0x2015000), %o2
20085f4: 90 10 00 19 mov %i1, %o0
20085f8: 92 10 20 01 mov 1, %o1
20085fc: 94 12 a1 00 or %o2, 0x100, %o2
2008600: 96 10 00 16 mov %l6, %o3
2008604: 98 10 00 17 mov %l7, %o4
2008608: 10 80 00 3f b 2008704 <_Heap_Walk+0x43c>
200860c: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008610: 38 80 00 0e bgu,a 2008648 <_Heap_Walk+0x380>
2008614: b8 08 60 01 and %g1, 1, %i4
2008618: 80 8f 20 ff btst 0xff, %i4
200861c: 02 80 00 0b be 2008648 <_Heap_Walk+0x380>
2008620: b8 08 60 01 and %g1, 1, %i4
(*printer)(
2008624: 15 00 80 54 sethi %hi(0x2015000), %o2
2008628: 90 10 00 19 mov %i1, %o0
200862c: 92 10 20 01 mov 1, %o1
2008630: 94 12 a1 30 or %o2, 0x130, %o2
2008634: 96 10 00 16 mov %l6, %o3
2008638: 98 10 00 1d mov %i5, %o4
200863c: 9f c4 40 00 call %l1
2008640: b0 10 20 00 clr %i0
2008644: 30 80 00 5d b,a 20087b8 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008648: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200864c: 80 88 60 01 btst 1, %g1
2008650: 12 80 00 3f bne 200874c <_Heap_Walk+0x484>
2008654: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008658: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200865c: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008660: 05 00 80 53 sethi %hi(0x2014c00), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008664: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008668: 80 a3 40 01 cmp %o5, %g1
200866c: 02 80 00 07 be 2008688 <_Heap_Walk+0x3c0>
2008670: 86 10 a2 10 or %g2, 0x210, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008674: 80 a3 40 10 cmp %o5, %l0
2008678: 12 80 00 04 bne 2008688 <_Heap_Walk+0x3c0>
200867c: 86 16 e1 d8 or %i3, 0x1d8, %g3
2008680: 19 00 80 53 sethi %hi(0x2014c00), %o4
2008684: 86 13 22 20 or %o4, 0x220, %g3 ! 2014e20 <C.0.4238+0x44>
block->next,
block->next == last_free_block ?
2008688: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200868c: 19 00 80 53 sethi %hi(0x2014c00), %o4
2008690: 80 a0 80 04 cmp %g2, %g4
2008694: 02 80 00 07 be 20086b0 <_Heap_Walk+0x3e8>
2008698: 82 13 22 30 or %o4, 0x230, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200869c: 80 a0 80 10 cmp %g2, %l0
20086a0: 12 80 00 04 bne 20086b0 <_Heap_Walk+0x3e8>
20086a4: 82 16 e1 d8 or %i3, 0x1d8, %g1
20086a8: 09 00 80 53 sethi %hi(0x2014c00), %g4
20086ac: 82 11 22 40 or %g4, 0x240, %g1 ! 2014e40 <C.0.4238+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20086b0: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
20086b4: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
20086b8: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
20086bc: 90 10 00 19 mov %i1, %o0
20086c0: 92 10 20 00 clr %o1
20086c4: 15 00 80 54 sethi %hi(0x2015000), %o2
20086c8: 96 10 00 16 mov %l6, %o3
20086cc: 94 12 a1 68 or %o2, 0x168, %o2
20086d0: 9f c4 40 00 call %l1
20086d4: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
20086d8: da 07 40 00 ld [ %i5 ], %o5
20086dc: 80 a5 c0 0d cmp %l7, %o5
20086e0: 02 80 00 0c be 2008710 <_Heap_Walk+0x448>
20086e4: 80 a7 20 00 cmp %i4, 0
(*printer)(
20086e8: 15 00 80 54 sethi %hi(0x2015000), %o2
20086ec: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
20086f0: 90 10 00 19 mov %i1, %o0
20086f4: 92 10 20 01 mov 1, %o1
20086f8: 94 12 a1 a0 or %o2, 0x1a0, %o2
20086fc: 96 10 00 16 mov %l6, %o3
2008700: 98 10 00 17 mov %l7, %o4
2008704: 9f c4 40 00 call %l1
2008708: b0 10 20 00 clr %i0
200870c: 30 80 00 2b b,a 20087b8 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
2008710: 32 80 00 0a bne,a 2008738 <_Heap_Walk+0x470>
2008714: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
2008718: 15 00 80 54 sethi %hi(0x2015000), %o2
200871c: 90 10 00 19 mov %i1, %o0
2008720: 92 10 20 01 mov 1, %o1
2008724: 10 80 00 22 b 20087ac <_Heap_Walk+0x4e4>
2008728: 94 12 a1 e0 or %o2, 0x1e0, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
200872c: 02 80 00 19 be 2008790 <_Heap_Walk+0x4c8>
2008730: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
2008734: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008738: 80 a0 40 10 cmp %g1, %l0
200873c: 12 bf ff fc bne 200872c <_Heap_Walk+0x464>
2008740: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008744: 10 80 00 17 b 20087a0 <_Heap_Walk+0x4d8>
2008748: 15 00 80 54 sethi %hi(0x2015000), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
200874c: 22 80 00 0a be,a 2008774 <_Heap_Walk+0x4ac>
2008750: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
2008754: 90 10 00 19 mov %i1, %o0
2008758: 92 10 20 00 clr %o1
200875c: 94 10 00 18 mov %i0, %o2
2008760: 96 10 00 16 mov %l6, %o3
2008764: 9f c4 40 00 call %l1
2008768: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200876c: 10 80 00 09 b 2008790 <_Heap_Walk+0x4c8>
2008770: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008774: 90 10 00 19 mov %i1, %o0
2008778: 92 10 20 00 clr %o1
200877c: 94 10 00 1a mov %i2, %o2
2008780: 96 10 00 16 mov %l6, %o3
2008784: 9f c4 40 00 call %l1
2008788: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200878c: 80 a7 40 13 cmp %i5, %l3
2008790: 12 bf ff 6d bne 2008544 <_Heap_Walk+0x27c>
2008794: ac 10 00 1d mov %i5, %l6
return true;
}
2008798: 81 c7 e0 08 ret
200879c: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
20087a0: 90 10 00 19 mov %i1, %o0
20087a4: 92 10 20 01 mov 1, %o1
20087a8: 94 12 a2 50 or %o2, 0x250, %o2
20087ac: 96 10 00 16 mov %l6, %o3
20087b0: 9f c4 40 00 call %l1
20087b4: b0 10 20 00 clr %i0
20087b8: 81 c7 e0 08 ret
20087bc: 81 e8 00 00 restore
02007500 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007500: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007504: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007508: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
200750c: 80 a0 60 00 cmp %g1, 0
2007510: 02 80 00 20 be 2007590 <_Objects_Allocate+0x90> <== NEVER TAKEN
2007514: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007518: a2 04 20 20 add %l0, 0x20, %l1
200751c: 7f ff fd 8b call 2006b48 <_Chain_Get>
2007520: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007524: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
2007528: 80 a0 60 00 cmp %g1, 0
200752c: 02 80 00 19 be 2007590 <_Objects_Allocate+0x90>
2007530: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007534: 80 a2 20 00 cmp %o0, 0
2007538: 32 80 00 0a bne,a 2007560 <_Objects_Allocate+0x60>
200753c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
2007540: 40 00 00 1e call 20075b8 <_Objects_Extend_information>
2007544: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007548: 7f ff fd 80 call 2006b48 <_Chain_Get>
200754c: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
2007550: b0 92 20 00 orcc %o0, 0, %i0
2007554: 02 80 00 0f be 2007590 <_Objects_Allocate+0x90>
2007558: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
200755c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
2007560: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007564: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
2007568: 40 00 27 d6 call 20114c0 <.udiv>
200756c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007570: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2007574: 91 2a 20 02 sll %o0, 2, %o0
2007578: c4 00 40 08 ld [ %g1 + %o0 ], %g2
200757c: 84 00 bf ff add %g2, -1, %g2
2007580: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007584: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
2007588: 82 00 7f ff add %g1, -1, %g1
200758c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
2007590: 81 c7 e0 08 ret
2007594: 81 e8 00 00 restore
02007914 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007914: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007918: b3 2e 60 10 sll %i1, 0x10, %i1
200791c: b3 36 60 10 srl %i1, 0x10, %i1
2007920: 80 a6 60 00 cmp %i1, 0
2007924: 02 80 00 17 be 2007980 <_Objects_Get_information+0x6c>
2007928: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
200792c: 40 00 11 93 call 200bf78 <_Objects_API_maximum_class>
2007930: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007934: 80 a2 20 00 cmp %o0, 0
2007938: 02 80 00 12 be 2007980 <_Objects_Get_information+0x6c>
200793c: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007940: 18 80 00 10 bgu 2007980 <_Objects_Get_information+0x6c>
2007944: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007948: b1 2e 20 02 sll %i0, 2, %i0
200794c: 82 10 63 f8 or %g1, 0x3f8, %g1
2007950: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2007954: 80 a0 60 00 cmp %g1, 0
2007958: 02 80 00 0a be 2007980 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200795c: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2007960: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
2007964: 80 a4 20 00 cmp %l0, 0
2007968: 02 80 00 06 be 2007980 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200796c: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2007970: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
2007974: 80 a0 00 01 cmp %g0, %g1
2007978: 82 60 20 00 subx %g0, 0, %g1
200797c: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
2007980: 81 c7 e0 08 ret
2007984: 91 e8 00 10 restore %g0, %l0, %o0
0201915c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201915c: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
2019160: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019164: 82 22 40 01 sub %o1, %g1, %g1
2019168: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
201916c: 80 a0 80 01 cmp %g2, %g1
2019170: 0a 80 00 09 bcs 2019194 <_Objects_Get_no_protection+0x38>
2019174: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
2019178: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
201917c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
2019180: 80 a2 20 00 cmp %o0, 0
2019184: 02 80 00 05 be 2019198 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
2019188: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
201918c: 81 c3 e0 08 retl
2019190: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
2019194: 82 10 20 01 mov 1, %g1
return NULL;
2019198: 90 10 20 00 clr %o0
}
201919c: 81 c3 e0 08 retl
20191a0: c2 22 80 00 st %g1, [ %o2 ]
020091f0 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
20091f0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20091f4: 92 96 20 00 orcc %i0, 0, %o1
20091f8: 12 80 00 06 bne 2009210 <_Objects_Id_to_name+0x20>
20091fc: 83 32 60 18 srl %o1, 0x18, %g1
2009200: 03 00 80 75 sethi %hi(0x201d400), %g1
2009204: c2 00 62 b8 ld [ %g1 + 0x2b8 ], %g1 ! 201d6b8 <_Per_CPU_Information+0xc>
2009208: d2 00 60 08 ld [ %g1 + 8 ], %o1
200920c: 83 32 60 18 srl %o1, 0x18, %g1
2009210: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2009214: 84 00 7f ff add %g1, -1, %g2
2009218: 80 a0 a0 02 cmp %g2, 2
200921c: 18 80 00 12 bgu 2009264 <_Objects_Id_to_name+0x74>
2009220: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009224: 10 80 00 12 b 200926c <_Objects_Id_to_name+0x7c>
2009228: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200922c: 85 28 a0 02 sll %g2, 2, %g2
2009230: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009234: 80 a2 20 00 cmp %o0, 0
2009238: 02 80 00 0b be 2009264 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
200923c: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2009240: 7f ff ff cf call 200917c <_Objects_Get>
2009244: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2009248: 80 a2 20 00 cmp %o0, 0
200924c: 02 80 00 06 be 2009264 <_Objects_Id_to_name+0x74>
2009250: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2009254: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2009258: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200925c: 40 00 03 0d call 2009e90 <_Thread_Enable_dispatch>
2009260: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2009264: 81 c7 e0 08 ret
2009268: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200926c: 05 00 80 74 sethi %hi(0x201d000), %g2
2009270: 84 10 a3 c8 or %g2, 0x3c8, %g2 ! 201d3c8 <_Objects_Information_table>
2009274: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2009278: 80 a0 60 00 cmp %g1, 0
200927c: 12 bf ff ec bne 200922c <_Objects_Id_to_name+0x3c>
2009280: 85 32 60 1b srl %o1, 0x1b, %g2
2009284: 30 bf ff f8 b,a 2009264 <_Objects_Id_to_name+0x74>
02007a70 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007a70: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007a74: 85 2f 20 10 sll %i4, 0x10, %g2
2007a78: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007a7c: 07 00 80 53 sethi %hi(0x2014c00), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007a80: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007a84: 86 10 e3 f8 or %g3, 0x3f8, %g3
2007a88: 85 2e 60 02 sll %i1, 2, %g2
2007a8c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
2007a90: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
2007a94: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
information->local_table = 0;
2007a98: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
2007a9c: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
2007aa0: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
2007aa4: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
2007aa8: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007aac: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007ab0: b5 2e a0 10 sll %i2, 0x10, %i2
2007ab4: b5 36 a0 10 srl %i2, 0x10, %i2
2007ab8: 85 2e a0 02 sll %i2, 2, %g2
2007abc: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2007ac0: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
2007ac4: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2007ac8: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
2007acc: 80 a0 a0 00 cmp %g2, 0
2007ad0: 02 80 00 09 be 2007af4 <_Objects_Initialize_information+0x84>
2007ad4: b6 2e c0 03 andn %i3, %g3, %i3
2007ad8: 80 a6 e0 00 cmp %i3, 0
2007adc: 12 80 00 07 bne 2007af8 <_Objects_Initialize_information+0x88>
2007ae0: 05 00 80 53 sethi %hi(0x2014c00), %g2
_Internal_error_Occurred(
2007ae4: 90 10 20 00 clr %o0
2007ae8: 92 10 20 01 mov 1, %o1
2007aec: 7f ff fe 59 call 2007450 <_Internal_error_Occurred>
2007af0: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
2007af4: 05 00 80 53 sethi %hi(0x2014c00), %g2
2007af8: 84 10 a1 44 or %g2, 0x144, %g2 ! 2014d44 <null_local_table.3316>
2007afc: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b00: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007b04: 80 a0 00 1b cmp %g0, %i3
2007b08: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007b0c: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b10: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
2007b14: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007b18: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007b1c: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b20: b4 16 80 02 or %i2, %g2, %i2
* lengths that may be an odd number of bytes.
*/
name_length = maximum_name_length;
#if !defined(RTEMS_POSIX_API)
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2007b24: 80 88 60 03 btst 3, %g1
2007b28: 02 80 00 04 be 2007b38 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
2007b2c: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2007b30: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
2007b34: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
#endif
information->name_length = name_length;
2007b38: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2007b3c: 82 06 20 24 add %i0, 0x24, %g1
head->next = tail;
head->previous = NULL;
2007b40: c0 26 20 24 clr [ %i0 + 0x24 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2007b44: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
2007b48: 82 06 20 20 add %i0, 0x20, %g1
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
2007b4c: 80 a6 e0 00 cmp %i3, 0
2007b50: 02 80 00 04 be 2007b60 <_Objects_Initialize_information+0xf0>
2007b54: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
2007b58: 7f ff fe 98 call 20075b8 <_Objects_Extend_information>
2007b5c: 81 e8 00 00 restore
2007b60: 81 c7 e0 08 ret
2007b64: 81 e8 00 00 restore
0200b74c <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200b74c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b750: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
if ( !api )
200b754: 80 a4 20 00 cmp %l0, 0
200b758: 02 80 00 1d be 200b7cc <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b75c: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200b760: 7f ff da 9e call 20021d8 <sparc_disable_interrupts>
200b764: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b768: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b76c: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b770: 7f ff da 9e call 20021e8 <sparc_enable_interrupts>
200b774: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b778: 80 a4 e0 00 cmp %l3, 0
200b77c: 02 80 00 14 be 200b7cc <_RTEMS_tasks_Post_switch_extension+0x80>
200b780: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
200b784: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b788: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200b78c: 82 00 60 01 inc %g1
200b790: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b794: 94 10 00 11 mov %l1, %o2
200b798: 25 00 00 3f sethi %hi(0xfc00), %l2
200b79c: 40 00 07 ac call 200d64c <rtems_task_mode>
200b7a0: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b7a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200b7a8: 9f c0 40 00 call %g1
200b7ac: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b7b0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b7b4: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b7b8: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b7bc: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b7c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b7c4: 40 00 07 a2 call 200d64c <rtems_task_mode>
200b7c8: 94 10 00 11 mov %l1, %o2
200b7cc: 81 c7 e0 08 ret
200b7d0: 81 e8 00 00 restore
02007850 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007850: 9d e3 bf 98 save %sp, -104, %sp
2007854: 11 00 80 76 sethi %hi(0x201d800), %o0
2007858: 92 10 00 18 mov %i0, %o1
200785c: 90 12 21 64 or %o0, 0x164, %o0
2007860: 40 00 07 c7 call 200977c <_Objects_Get>
2007864: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007868: c2 07 bf fc ld [ %fp + -4 ], %g1
200786c: 80 a0 60 00 cmp %g1, 0
2007870: 12 80 00 24 bne 2007900 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
2007874: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007878: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
200787c: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007880: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007884: 80 88 80 01 btst %g2, %g1
2007888: 22 80 00 0b be,a 20078b4 <_Rate_monotonic_Timeout+0x64>
200788c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007890: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007894: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007898: 80 a0 80 01 cmp %g2, %g1
200789c: 32 80 00 06 bne,a 20078b4 <_Rate_monotonic_Timeout+0x64>
20078a0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20078a4: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20078a8: 40 00 09 ee call 200a060 <_Thread_Clear_state>
20078ac: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
20078b0: 30 80 00 06 b,a 20078c8 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
20078b4: 80 a0 60 01 cmp %g1, 1
20078b8: 12 80 00 0d bne 20078ec <_Rate_monotonic_Timeout+0x9c>
20078bc: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20078c0: 82 10 20 03 mov 3, %g1
20078c4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20078c8: 7f ff fe 66 call 2007260 <_Rate_monotonic_Initiate_statistics>
20078cc: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20078d0: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078d4: 11 00 80 76 sethi %hi(0x201d800), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20078d8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078dc: 90 12 23 b4 or %o0, 0x3b4, %o0
20078e0: 40 00 0e ff call 200b4dc <_Watchdog_Insert>
20078e4: 92 04 20 10 add %l0, 0x10, %o1
20078e8: 30 80 00 02 b,a 20078f0 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
20078ec: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
20078f0: 03 00 80 76 sethi %hi(0x201d800), %g1
20078f4: c4 00 62 d0 ld [ %g1 + 0x2d0 ], %g2 ! 201dad0 <_Thread_Dispatch_disable_level>
20078f8: 84 00 bf ff add %g2, -1, %g2
20078fc: c4 20 62 d0 st %g2, [ %g1 + 0x2d0 ]
2007900: 81 c7 e0 08 ret
2007904: 81 e8 00 00 restore
0200bfa0 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
200bfa0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
200bfa4: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
200bfa8: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
200bfac: c6 00 40 00 ld [ %g1 ], %g3
200bfb0: c4 00 60 08 ld [ %g1 + 8 ], %g2
200bfb4: 80 a0 c0 02 cmp %g3, %g2
200bfb8: 32 80 00 17 bne,a 200c014 <_Scheduler_priority_Block+0x74>
200bfbc: c4 06 40 00 ld [ %i1 ], %g2
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
200bfc0: c0 20 60 04 clr [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200bfc4: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
200bfc8: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200bfcc: c4 20 40 00 st %g2, [ %g1 ]
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
200bfd0: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
200bfd4: c6 00 60 04 ld [ %g1 + 4 ], %g3
200bfd8: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
200bfdc: c8 10 c0 00 lduh [ %g3 ], %g4
200bfe0: 84 09 00 02 and %g4, %g2, %g2
200bfe4: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
200bfe8: 85 28 a0 10 sll %g2, 0x10, %g2
200bfec: 80 a0 a0 00 cmp %g2, 0
200bff0: 32 80 00 0d bne,a 200c024 <_Scheduler_priority_Block+0x84>
200bff4: 03 00 80 54 sethi %hi(0x2015000), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
200bff8: 05 00 80 54 sethi %hi(0x2015000), %g2
200bffc: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
200c000: c6 10 a3 00 lduh [ %g2 + 0x300 ], %g3
200c004: 82 08 40 03 and %g1, %g3, %g1
200c008: c2 30 a3 00 sth %g1, [ %g2 + 0x300 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
200c00c: 10 80 00 06 b 200c024 <_Scheduler_priority_Block+0x84>
200c010: 03 00 80 54 sethi %hi(0x2015000), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200c014: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
200c018: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200c01c: c4 20 40 00 st %g2, [ %g1 ]
200c020: 03 00 80 54 sethi %hi(0x2015000), %g1
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
200c024: c2 00 62 ec ld [ %g1 + 0x2ec ], %g1 ! 20152ec <_Per_CPU_Information+0x10>
200c028: 80 a6 40 01 cmp %i1, %g1
200c02c: 32 80 00 32 bne,a 200c0f4 <_Scheduler_priority_Block+0x154>
200c030: 03 00 80 54 sethi %hi(0x2015000), %g1
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
200c034: 03 00 80 54 sethi %hi(0x2015000), %g1
200c038: c4 10 63 00 lduh [ %g1 + 0x300 ], %g2 ! 2015300 <_Priority_Major_bit_map>
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
200c03c: c6 06 00 00 ld [ %i0 ], %g3
200c040: 85 28 a0 10 sll %g2, 0x10, %g2
200c044: 03 00 80 4e sethi %hi(0x2013800), %g1
200c048: 89 30 a0 10 srl %g2, 0x10, %g4
200c04c: 80 a1 20 ff cmp %g4, 0xff
200c050: 18 80 00 05 bgu 200c064 <_Scheduler_priority_Block+0xc4>
200c054: 82 10 62 f8 or %g1, 0x2f8, %g1
200c058: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
200c05c: 10 80 00 04 b 200c06c <_Scheduler_priority_Block+0xcc>
200c060: 84 00 a0 08 add %g2, 8, %g2
200c064: 85 30 a0 18 srl %g2, 0x18, %g2
200c068: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200c06c: 83 28 a0 10 sll %g2, 0x10, %g1
200c070: 09 00 80 54 sethi %hi(0x2015000), %g4
200c074: 83 30 60 0f srl %g1, 0xf, %g1
200c078: 88 11 23 10 or %g4, 0x310, %g4
200c07c: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
200c080: 03 00 80 4e sethi %hi(0x2013800), %g1
200c084: 89 29 20 10 sll %g4, 0x10, %g4
200c088: 9b 31 20 10 srl %g4, 0x10, %o5
200c08c: 80 a3 60 ff cmp %o5, 0xff
200c090: 18 80 00 05 bgu 200c0a4 <_Scheduler_priority_Block+0x104>
200c094: 82 10 62 f8 or %g1, 0x2f8, %g1
200c098: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
200c09c: 10 80 00 04 b 200c0ac <_Scheduler_priority_Block+0x10c>
200c0a0: 82 00 60 08 add %g1, 8, %g1
200c0a4: 89 31 20 18 srl %g4, 0x18, %g4
200c0a8: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
200c0ac: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
200c0b0: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
200c0b4: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
200c0b8: 85 30 a0 0c srl %g2, 0xc, %g2
200c0bc: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
200c0c0: 89 28 a0 02 sll %g2, 2, %g4
200c0c4: 83 28 a0 04 sll %g2, 4, %g1
200c0c8: 82 20 40 04 sub %g1, %g4, %g1
200c0cc: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
200c0d0: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c0d4: 86 01 20 04 add %g4, 4, %g3
200c0d8: 80 a0 80 03 cmp %g2, %g3
200c0dc: 02 80 00 03 be 200c0e8 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
200c0e0: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
200c0e4: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
200c0e8: 05 00 80 54 sethi %hi(0x2015000), %g2
200c0ec: c2 20 a2 ec st %g1, [ %g2 + 0x2ec ] ! 20152ec <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
200c0f0: 03 00 80 54 sethi %hi(0x2015000), %g1
200c0f4: 82 10 62 dc or %g1, 0x2dc, %g1 ! 20152dc <_Per_CPU_Information>
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
200c0f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200c0fc: 80 a6 40 02 cmp %i1, %g2
200c100: 12 80 00 03 bne 200c10c <_Scheduler_priority_Block+0x16c>
200c104: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
200c108: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200c10c: 81 c7 e0 08 ret
200c110: 81 e8 00 00 restore
02007e54 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
2007e54: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007e58: 03 00 80 54 sethi %hi(0x2015000), %g1
2007e5c: c4 10 63 00 lduh [ %g1 + 0x300 ], %g2 ! 2015300 <_Priority_Major_bit_map>
_Scheduler_priority_Schedule_body( the_scheduler );
}
2007e60: c6 06 00 00 ld [ %i0 ], %g3
2007e64: 85 28 a0 10 sll %g2, 0x10, %g2
2007e68: 03 00 80 4e sethi %hi(0x2013800), %g1
2007e6c: 89 30 a0 10 srl %g2, 0x10, %g4
2007e70: 80 a1 20 ff cmp %g4, 0xff
2007e74: 18 80 00 05 bgu 2007e88 <_Scheduler_priority_Schedule+0x34>
2007e78: 82 10 62 f8 or %g1, 0x2f8, %g1
2007e7c: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
2007e80: 10 80 00 04 b 2007e90 <_Scheduler_priority_Schedule+0x3c>
2007e84: 84 00 a0 08 add %g2, 8, %g2
2007e88: 85 30 a0 18 srl %g2, 0x18, %g2
2007e8c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007e90: 83 28 a0 10 sll %g2, 0x10, %g1
2007e94: 09 00 80 54 sethi %hi(0x2015000), %g4
2007e98: 83 30 60 0f srl %g1, 0xf, %g1
2007e9c: 88 11 23 10 or %g4, 0x310, %g4
2007ea0: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
2007ea4: 03 00 80 4e sethi %hi(0x2013800), %g1
2007ea8: 89 29 20 10 sll %g4, 0x10, %g4
2007eac: 9b 31 20 10 srl %g4, 0x10, %o5
2007eb0: 80 a3 60 ff cmp %o5, 0xff
2007eb4: 18 80 00 05 bgu 2007ec8 <_Scheduler_priority_Schedule+0x74>
2007eb8: 82 10 62 f8 or %g1, 0x2f8, %g1
2007ebc: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
2007ec0: 10 80 00 04 b 2007ed0 <_Scheduler_priority_Schedule+0x7c>
2007ec4: 82 00 60 08 add %g1, 8, %g1
2007ec8: 89 31 20 18 srl %g4, 0x18, %g4
2007ecc: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
2007ed0: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007ed4: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
2007ed8: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007edc: 85 30 a0 0c srl %g2, 0xc, %g2
2007ee0: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
2007ee4: 89 28 a0 02 sll %g2, 2, %g4
2007ee8: 83 28 a0 04 sll %g2, 4, %g1
2007eec: 82 20 40 04 sub %g1, %g4, %g1
2007ef0: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
2007ef4: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2007ef8: 86 01 20 04 add %g4, 4, %g3
2007efc: 80 a0 80 03 cmp %g2, %g3
2007f00: 02 80 00 03 be 2007f0c <_Scheduler_priority_Schedule+0xb8><== NEVER TAKEN
2007f04: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2007f08: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007f0c: 05 00 80 54 sethi %hi(0x2015000), %g2
2007f10: c2 20 a2 ec st %g1, [ %g2 + 0x2ec ] ! 20152ec <_Per_CPU_Information+0x10>
2007f14: 81 c7 e0 08 ret
2007f18: 81 e8 00 00 restore
02008058 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
2008058: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
200805c: 25 00 80 54 sethi %hi(0x2015000), %l2
2008060: a4 14 a2 dc or %l2, 0x2dc, %l2 ! 20152dc <_Per_CPU_Information>
2008064: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
2008068: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
200806c: 7f ff e8 5b call 20021d8 <sparc_disable_interrupts>
2008070: e2 00 40 00 ld [ %g1 ], %l1
2008074: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
2008078: c4 04 40 00 ld [ %l1 ], %g2
200807c: c2 04 60 08 ld [ %l1 + 8 ], %g1
2008080: 80 a0 80 01 cmp %g2, %g1
2008084: 22 80 00 1a be,a 20080ec <_Scheduler_priority_Yield+0x94>
2008088: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
200808c: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
2008090: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
2008094: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2008098: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
200809c: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
20080a0: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
20080a4: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
20080a8: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
20080ac: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
20080b0: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
20080b4: 7f ff e8 4d call 20021e8 <sparc_enable_interrupts>
20080b8: 01 00 00 00 nop
20080bc: 7f ff e8 47 call 20021d8 <sparc_disable_interrupts>
20080c0: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20080c4: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
20080c8: 80 a4 00 01 cmp %l0, %g1
20080cc: 12 80 00 04 bne 20080dc <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
20080d0: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
20080d4: c2 04 40 00 ld [ %l1 ], %g1
20080d8: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
20080dc: 03 00 80 54 sethi %hi(0x2015000), %g1
20080e0: 82 10 62 dc or %g1, 0x2dc, %g1 ! 20152dc <_Per_CPU_Information>
20080e4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
20080e8: 30 80 00 05 b,a 20080fc <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
20080ec: 80 a4 00 01 cmp %l0, %g1
20080f0: 02 80 00 03 be 20080fc <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
20080f4: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
20080f8: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
20080fc: 7f ff e8 3b call 20021e8 <sparc_enable_interrupts>
2008100: 81 e8 00 00 restore
02007278 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007278: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
200727c: 03 00 80 75 sethi %hi(0x201d400), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007280: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007284: d2 00 63 24 ld [ %g1 + 0x324 ], %o1
if ((!the_tod) ||
2007288: 80 a4 20 00 cmp %l0, 0
200728c: 02 80 00 2b be 2007338 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007290: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007294: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007298: 40 00 48 5e call 2019410 <.udiv>
200729c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20072a0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
20072a4: 80 a0 40 08 cmp %g1, %o0
20072a8: 1a 80 00 24 bcc 2007338 <_TOD_Validate+0xc0>
20072ac: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
20072b0: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20072b4: 80 a0 60 3b cmp %g1, 0x3b
20072b8: 18 80 00 20 bgu 2007338 <_TOD_Validate+0xc0>
20072bc: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20072c0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
20072c4: 80 a0 60 3b cmp %g1, 0x3b
20072c8: 18 80 00 1c bgu 2007338 <_TOD_Validate+0xc0>
20072cc: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20072d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20072d4: 80 a0 60 17 cmp %g1, 0x17
20072d8: 18 80 00 18 bgu 2007338 <_TOD_Validate+0xc0>
20072dc: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20072e0: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
20072e4: 80 a0 60 00 cmp %g1, 0
20072e8: 02 80 00 14 be 2007338 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072ec: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20072f0: 18 80 00 12 bgu 2007338 <_TOD_Validate+0xc0>
20072f4: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20072f8: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20072fc: 80 a0 e7 c3 cmp %g3, 0x7c3
2007300: 08 80 00 0e bleu 2007338 <_TOD_Validate+0xc0>
2007304: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007308: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
200730c: 80 a0 a0 00 cmp %g2, 0
2007310: 02 80 00 0a be 2007338 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007314: 80 88 e0 03 btst 3, %g3
2007318: 07 00 80 70 sethi %hi(0x201c000), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
200731c: 12 80 00 03 bne 2007328 <_TOD_Validate+0xb0>
2007320: 86 10 e3 88 or %g3, 0x388, %g3 ! 201c388 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2007324: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2007328: 83 28 60 02 sll %g1, 2, %g1
200732c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007330: 80 a0 40 02 cmp %g1, %g2
2007334: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
2007338: 81 c7 e0 08 ret
200733c: 81 e8 00 00 restore
0200815c <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
200815c: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
2008160: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008164: 40 00 03 9b call 2008fd0 <_Thread_Set_transient>
2008168: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
200816c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008170: 80 a0 40 19 cmp %g1, %i1
2008174: 02 80 00 05 be 2008188 <_Thread_Change_priority+0x2c>
2008178: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
200817c: 90 10 00 18 mov %i0, %o0
2008180: 40 00 03 78 call 2008f60 <_Thread_Set_priority>
2008184: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2008188: 7f ff e8 14 call 20021d8 <sparc_disable_interrupts>
200818c: 01 00 00 00 nop
2008190: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008194: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2008198: 80 a6 60 04 cmp %i1, 4
200819c: 02 80 00 10 be 20081dc <_Thread_Change_priority+0x80>
20081a0: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
20081a4: 80 a4 60 00 cmp %l1, 0
20081a8: 12 80 00 03 bne 20081b4 <_Thread_Change_priority+0x58> <== NEVER TAKEN
20081ac: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20081b0: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
20081b4: 7f ff e8 0d call 20021e8 <sparc_enable_interrupts>
20081b8: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
20081bc: 03 00 00 ef sethi %hi(0x3bc00), %g1
20081c0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
20081c4: 80 8e 40 01 btst %i1, %g1
20081c8: 02 80 00 44 be 20082d8 <_Thread_Change_priority+0x17c>
20081cc: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
20081d0: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
20081d4: 40 00 03 36 call 2008eac <_Thread_queue_Requeue>
20081d8: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
20081dc: 80 a4 60 00 cmp %l1, 0
20081e0: 12 80 00 26 bne 2008278 <_Thread_Change_priority+0x11c> <== NEVER TAKEN
20081e4: 80 8e a0 ff btst 0xff, %i2
* Ready Queue with interrupts off.
*
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20081e8: c0 24 20 10 clr [ %l0 + 0x10 ]
20081ec: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
if ( prepend_it )
20081f0: 02 80 00 12 be 2008238 <_Thread_Change_priority+0xdc>
20081f4: 05 00 80 54 sethi %hi(0x2015000), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
20081f8: c6 00 60 04 ld [ %g1 + 4 ], %g3
20081fc: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
2008200: da 10 c0 00 lduh [ %g3 ], %o5
2008204: 88 13 40 04 or %o5, %g4, %g4
2008208: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200820c: c6 10 a3 00 lduh [ %g2 + 0x300 ], %g3
2008210: c8 10 60 08 lduh [ %g1 + 8 ], %g4
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
2008214: c2 00 40 00 ld [ %g1 ], %g1
2008218: 86 11 00 03 or %g4, %g3, %g3
200821c: c6 30 a3 00 sth %g3, [ %g2 + 0x300 ]
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008220: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008224: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008228: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
200822c: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
2008230: 10 80 00 12 b 2008278 <_Thread_Change_priority+0x11c>
2008234: e0 20 a0 04 st %l0, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2008238: c6 00 60 04 ld [ %g1 + 4 ], %g3
200823c: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
2008240: da 10 c0 00 lduh [ %g3 ], %o5
2008244: 88 13 40 04 or %o5, %g4, %g4
2008248: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200824c: c8 10 60 08 lduh [ %g1 + 8 ], %g4
2008250: c6 10 a3 00 lduh [ %g2 + 0x300 ], %g3
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
2008254: c2 00 40 00 ld [ %g1 ], %g1
2008258: 86 11 00 03 or %g4, %g3, %g3
200825c: c6 30 a3 00 sth %g3, [ %g2 + 0x300 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
2008260: c4 00 60 08 ld [ %g1 + 8 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
2008264: 86 00 60 04 add %g1, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
2008268: e0 20 60 08 st %l0, [ %g1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
200826c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
2008270: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last;
2008274: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
2008278: 7f ff e7 dc call 20021e8 <sparc_enable_interrupts>
200827c: 90 10 00 18 mov %i0, %o0
2008280: 7f ff e7 d6 call 20021d8 <sparc_disable_interrupts>
2008284: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
2008288: 11 00 80 54 sethi %hi(0x2015000), %o0
200828c: 90 12 21 18 or %o0, 0x118, %o0 ! 2015118 <_Scheduler>
2008290: c2 02 20 04 ld [ %o0 + 4 ], %g1
2008294: 9f c0 40 00 call %g1
2008298: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
200829c: 03 00 80 54 sethi %hi(0x2015000), %g1
20082a0: 82 10 62 dc or %g1, 0x2dc, %g1 ! 20152dc <_Per_CPU_Information>
20082a4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
20082a8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20082ac: 80 a0 80 03 cmp %g2, %g3
20082b0: 02 80 00 08 be 20082d0 <_Thread_Change_priority+0x174>
20082b4: 01 00 00 00 nop
20082b8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
20082bc: 80 a0 a0 00 cmp %g2, 0
20082c0: 02 80 00 04 be 20082d0 <_Thread_Change_priority+0x174>
20082c4: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20082c8: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
20082cc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20082d0: 7f ff e7 c6 call 20021e8 <sparc_enable_interrupts>
20082d4: 81 e8 00 00 restore
20082d8: 81 c7 e0 08 ret
20082dc: 81 e8 00 00 restore
020084ec <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20084ec: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
20084f0: 90 10 00 18 mov %i0, %o0
20084f4: 40 00 00 6e call 20086ac <_Thread_Get>
20084f8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20084fc: c2 07 bf fc ld [ %fp + -4 ], %g1
2008500: 80 a0 60 00 cmp %g1, 0
2008504: 12 80 00 08 bne 2008524 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
2008508: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
200850c: 7f ff ff 75 call 20082e0 <_Thread_Clear_state>
2008510: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
2008514: 03 00 80 54 sethi %hi(0x2015000), %g1
2008518: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
200851c: 84 00 bf ff add %g2, -1, %g2
2008520: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
2008524: 81 c7 e0 08 ret
2008528: 81 e8 00 00 restore
0200852c <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
200852c: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
2008530: 2d 00 80 54 sethi %hi(0x2015000), %l6
2008534: 82 15 a2 dc or %l6, 0x2dc, %g1 ! 20152dc <_Per_CPU_Information>
_ISR_Disable( level );
2008538: 7f ff e7 28 call 20021d8 <sparc_disable_interrupts>
200853c: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008540: 25 00 80 54 sethi %hi(0x2015000), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008544: 37 00 80 54 sethi %hi(0x2015000), %i3
2008548: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200854c: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008550: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
2008554: a8 07 bf f0 add %fp, -16, %l4
2008558: a4 14 a1 60 or %l2, 0x160, %l2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200855c: 2f 00 80 54 sethi %hi(0x2015000), %l7
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008560: 10 80 00 39 b 2008644 <_Thread_Dispatch+0x118>
2008564: 27 00 80 54 sethi %hi(0x2015000), %l3
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008568: f8 26 e0 90 st %i4, [ %i3 + 0x90 ]
_Thread_Dispatch_necessary = false;
200856c: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008570: 80 a4 40 10 cmp %l1, %l0
2008574: 02 80 00 39 be 2008658 <_Thread_Dispatch+0x12c>
2008578: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
200857c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008580: 80 a0 60 01 cmp %g1, 1
2008584: 12 80 00 03 bne 2008590 <_Thread_Dispatch+0x64>
2008588: c2 07 63 f4 ld [ %i5 + 0x3f4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200858c: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008590: 7f ff e7 16 call 20021e8 <sparc_enable_interrupts>
2008594: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008598: 40 00 0d 6e call 200bb50 <_TOD_Get_uptime>
200859c: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
20085a0: 90 10 00 12 mov %l2, %o0
20085a4: 92 10 00 15 mov %l5, %o1
20085a8: 40 00 03 36 call 2009280 <_Timespec_Subtract>
20085ac: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
20085b0: 90 04 20 84 add %l0, 0x84, %o0
20085b4: 40 00 03 1a call 200921c <_Timespec_Add_to>
20085b8: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
20085bc: c2 07 bf f8 ld [ %fp + -8 ], %g1
20085c0: c2 24 80 00 st %g1, [ %l2 ]
20085c4: c2 07 bf fc ld [ %fp + -4 ], %g1
20085c8: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20085cc: c2 05 e1 38 ld [ %l7 + 0x138 ], %g1
20085d0: 80 a0 60 00 cmp %g1, 0
20085d4: 02 80 00 06 be 20085ec <_Thread_Dispatch+0xc0> <== NEVER TAKEN
20085d8: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
20085dc: c4 00 40 00 ld [ %g1 ], %g2
20085e0: c4 24 21 54 st %g2, [ %l0 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
20085e4: c4 04 61 54 ld [ %l1 + 0x154 ], %g2
20085e8: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
20085ec: 40 00 03 d5 call 2009540 <_User_extensions_Thread_switch>
20085f0: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
20085f4: 90 04 20 c8 add %l0, 0xc8, %o0
20085f8: 40 00 05 00 call 20099f8 <_CPU_Context_switch>
20085fc: 92 04 60 c8 add %l1, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008600: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
2008604: 80 a0 60 00 cmp %g1, 0
2008608: 02 80 00 0c be 2008638 <_Thread_Dispatch+0x10c>
200860c: d0 04 e1 14 ld [ %l3 + 0x114 ], %o0
2008610: 80 a4 00 08 cmp %l0, %o0
2008614: 02 80 00 09 be 2008638 <_Thread_Dispatch+0x10c>
2008618: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200861c: 02 80 00 04 be 200862c <_Thread_Dispatch+0x100>
2008620: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008624: 40 00 04 bb call 2009910 <_CPU_Context_save_fp>
2008628: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
200862c: 40 00 04 d6 call 2009984 <_CPU_Context_restore_fp>
2008630: 90 04 21 50 add %l0, 0x150, %o0
_Thread_Allocated_fp = executing;
2008634: e0 24 e1 14 st %l0, [ %l3 + 0x114 ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
2008638: 82 15 a2 dc or %l6, 0x2dc, %g1
_ISR_Disable( level );
200863c: 7f ff e6 e7 call 20021d8 <sparc_disable_interrupts>
2008640: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008644: 82 15 a2 dc or %l6, 0x2dc, %g1
2008648: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
200864c: 80 a0 a0 00 cmp %g2, 0
2008650: 32 bf ff c6 bne,a 2008568 <_Thread_Dispatch+0x3c>
2008654: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
2008658: 03 00 80 54 sethi %hi(0x2015000), %g1
200865c: c0 20 60 90 clr [ %g1 + 0x90 ] ! 2015090 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008660: 7f ff e6 e2 call 20021e8 <sparc_enable_interrupts>
2008664: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008668: 7f ff f8 d7 call 20069c4 <_API_extensions_Run_postswitch>
200866c: 01 00 00 00 nop
}
2008670: 81 c7 e0 08 ret
2008674: 81 e8 00 00 restore
020086ac <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
20086ac: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
20086b0: 80 a2 20 00 cmp %o0, 0
20086b4: 12 80 00 0a bne 20086dc <_Thread_Get+0x30>
20086b8: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
20086bc: 03 00 80 54 sethi %hi(0x2015000), %g1
20086c0: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
20086c4: 84 00 a0 01 inc %g2
20086c8: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
20086cc: 03 00 80 54 sethi %hi(0x2015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
20086d0: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
20086d4: 81 c3 e0 08 retl
20086d8: d0 00 62 e8 ld [ %g1 + 0x2e8 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
20086dc: 87 32 20 18 srl %o0, 0x18, %g3
20086e0: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
20086e4: 84 00 ff ff add %g3, -1, %g2
20086e8: 80 a0 a0 02 cmp %g2, 2
20086ec: 28 80 00 16 bleu,a 2008744 <_Thread_Get+0x98>
20086f0: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
20086f4: 82 10 20 01 mov 1, %g1
20086f8: 10 80 00 09 b 200871c <_Thread_Get+0x70>
20086fc: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
2008700: 09 00 80 53 sethi %hi(0x2014c00), %g4
2008704: 88 11 23 f8 or %g4, 0x3f8, %g4 ! 2014ff8 <_Objects_Information_table>
2008708: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
200870c: 80 a0 e0 00 cmp %g3, 0
2008710: 32 80 00 05 bne,a 2008724 <_Thread_Get+0x78> <== ALWAYS TAKEN
2008714: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
2008718: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
200871c: 81 c3 e0 08 retl
2008720: 90 10 20 00 clr %o0
}
#endif
information = api_information[ the_class ];
if ( !information ) {
2008724: 80 a2 20 00 cmp %o0, 0
2008728: 12 80 00 04 bne 2008738 <_Thread_Get+0x8c>
200872c: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
2008730: 81 c3 e0 08 retl
2008734: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
2008738: 82 13 c0 00 mov %o7, %g1
200873c: 7f ff fc b0 call 20079fc <_Objects_Get>
2008740: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
2008744: 80 a0 a0 01 cmp %g2, 1
2008748: 22 bf ff ee be,a 2008700 <_Thread_Get+0x54>
200874c: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
2008750: 10 bf ff ea b 20086f8 <_Thread_Get+0x4c>
2008754: 82 10 20 01 mov 1, %g1
0200d97c <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200d97c: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200d980: 03 00 80 54 sethi %hi(0x2015000), %g1
200d984: e0 00 62 e8 ld [ %g1 + 0x2e8 ], %l0 ! 20152e8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200d988: 3f 00 80 36 sethi %hi(0x200d800), %i7
200d98c: be 17 e1 7c or %i7, 0x17c, %i7 ! 200d97c <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200d990: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
200d994: 7f ff d2 15 call 20021e8 <sparc_enable_interrupts>
200d998: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d99c: 03 00 80 53 sethi %hi(0x2014c00), %g1
doneConstructors = 1;
200d9a0: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d9a4: e2 08 61 4c ldub [ %g1 + 0x14c ], %l1
doneConstructors = 1;
200d9a8: c4 28 61 4c stb %g2, [ %g1 + 0x14c ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200d9ac: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
200d9b0: 80 a0 60 00 cmp %g1, 0
200d9b4: 02 80 00 0c be 200d9e4 <_Thread_Handler+0x68>
200d9b8: 03 00 80 54 sethi %hi(0x2015000), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200d9bc: d0 00 61 14 ld [ %g1 + 0x114 ], %o0 ! 2015114 <_Thread_Allocated_fp>
200d9c0: 80 a4 00 08 cmp %l0, %o0
200d9c4: 02 80 00 08 be 200d9e4 <_Thread_Handler+0x68>
200d9c8: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200d9cc: 22 80 00 06 be,a 200d9e4 <_Thread_Handler+0x68>
200d9d0: e0 20 61 14 st %l0, [ %g1 + 0x114 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d9d4: 7f ff ef cf call 2009910 <_CPU_Context_save_fp>
200d9d8: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200d9dc: 03 00 80 54 sethi %hi(0x2015000), %g1
200d9e0: e0 20 61 14 st %l0, [ %g1 + 0x114 ] ! 2015114 <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200d9e4: 7f ff ee 67 call 2009380 <_User_extensions_Thread_begin>
200d9e8: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200d9ec: 7f ff eb 23 call 2008678 <_Thread_Enable_dispatch>
200d9f0: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200d9f4: 80 a4 60 00 cmp %l1, 0
200d9f8: 32 80 00 05 bne,a 200da0c <_Thread_Handler+0x90>
200d9fc: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
200da00: 40 00 1a 70 call 20143c0 <_init>
200da04: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200da08: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200da0c: 80 a0 60 00 cmp %g1, 0
200da10: 12 80 00 06 bne 200da28 <_Thread_Handler+0xac> <== NEVER TAKEN
200da14: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200da18: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200da1c: 9f c0 40 00 call %g1
200da20: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200da24: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200da28: 7f ff ee 67 call 20093c4 <_User_extensions_Thread_exitted>
200da2c: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200da30: 90 10 20 00 clr %o0
200da34: 92 10 20 01 mov 1, %o1
200da38: 7f ff e6 86 call 2007450 <_Internal_error_Occurred>
200da3c: 94 10 20 05 mov 5, %o2
02008758 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008758: 9d e3 bf a0 save %sp, -96, %sp
200875c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008760: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2
2008764: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008768: c0 26 61 58 clr [ %i1 + 0x158 ]
200876c: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008770: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008774: 90 10 00 19 mov %i1, %o0
2008778: 40 00 02 3e call 2009070 <_Thread_Stack_Allocate>
200877c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008780: 80 a2 00 1b cmp %o0, %i3
2008784: 0a 80 00 78 bcs 2008964 <_Thread_Initialize+0x20c>
2008788: 80 a2 20 00 cmp %o0, 0
200878c: 02 80 00 76 be 2008964 <_Thread_Initialize+0x20c> <== NEVER TAKEN
2008790: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008794: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008798: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200879c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
20087a0: 02 80 00 07 be 20087bc <_Thread_Initialize+0x64>
20087a4: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
20087a8: 40 00 04 3c call 2009898 <_Workspace_Allocate>
20087ac: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
20087b0: a2 92 20 00 orcc %o0, 0, %l1
20087b4: 02 80 00 45 be 20088c8 <_Thread_Initialize+0x170>
20087b8: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20087bc: 03 00 80 54 sethi %hi(0x2015000), %g1
20087c0: d0 00 61 44 ld [ %g1 + 0x144 ], %o0 ! 2015144 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
20087c4: e2 26 61 50 st %l1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
20087c8: e2 26 60 bc st %l1, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20087cc: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20087d0: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20087d4: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
20087d8: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20087dc: 80 a2 20 00 cmp %o0, 0
20087e0: 02 80 00 08 be 2008800 <_Thread_Initialize+0xa8>
20087e4: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
20087e8: 90 02 20 01 inc %o0
20087ec: 40 00 04 2b call 2009898 <_Workspace_Allocate>
20087f0: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
20087f4: b6 92 20 00 orcc %o0, 0, %i3
20087f8: 22 80 00 35 be,a 20088cc <_Thread_Initialize+0x174>
20087fc: a4 10 20 00 clr %l2
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
2008800: 80 a6 e0 00 cmp %i3, 0
2008804: 02 80 00 0b be 2008830 <_Thread_Initialize+0xd8>
2008808: f6 26 61 60 st %i3, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200880c: 03 00 80 54 sethi %hi(0x2015000), %g1
2008810: c4 00 61 44 ld [ %g1 + 0x144 ], %g2 ! 2015144 <_Thread_Maximum_extensions>
2008814: 10 80 00 04 b 2008824 <_Thread_Initialize+0xcc>
2008818: 82 10 20 00 clr %g1
200881c: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008820: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008824: 80 a0 40 02 cmp %g1, %g2
2008828: 08 bf ff fd bleu 200881c <_Thread_Initialize+0xc4>
200882c: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008830: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
2008834: 11 00 80 54 sethi %hi(0x2015000), %o0
2008838: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
200883c: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
2008840: 90 12 21 18 or %o0, 0x118, %o0
2008844: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008848: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200884c: e4 2e 60 a0 stb %l2, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008850: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008854: 82 10 20 01 mov 1, %g1
2008858: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
200885c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
the_thread->Wait.queue = NULL;
2008860: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
2008864: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008868: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200886c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008870: 9f c0 40 00 call %g1
2008874: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
2008878: a4 92 20 00 orcc %o0, 0, %l2
200887c: 02 80 00 14 be 20088cc <_Thread_Initialize+0x174>
2008880: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008884: 40 00 01 b7 call 2008f60 <_Thread_Set_priority>
2008888: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
200888c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008890: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008894: c0 26 60 84 clr [ %i1 + 0x84 ]
2008898: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200889c: 83 28 60 02 sll %g1, 2, %g1
20088a0: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20088a4: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
20088a8: 90 10 00 19 mov %i1, %o0
20088ac: 40 00 02 e8 call 200944c <_User_extensions_Thread_create>
20088b0: b0 10 20 01 mov 1, %i0
if ( extension_status )
20088b4: 80 8a 20 ff btst 0xff, %o0
20088b8: 22 80 00 06 be,a 20088d0 <_Thread_Initialize+0x178>
20088bc: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20088c0: 81 c7 e0 08 ret
20088c4: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
20088c8: a4 10 20 00 clr %l2
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
return true;
failed:
if ( the_thread->libc_reent )
20088cc: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20088d0: 80 a2 20 00 cmp %o0, 0
20088d4: 22 80 00 05 be,a 20088e8 <_Thread_Initialize+0x190>
20088d8: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
_Workspace_Free( the_thread->libc_reent );
20088dc: 40 00 03 f8 call 20098bc <_Workspace_Free>
20088e0: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
20088e4: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
20088e8: 80 a2 20 00 cmp %o0, 0
20088ec: 22 80 00 05 be,a 2008900 <_Thread_Initialize+0x1a8>
20088f0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
20088f4: 40 00 03 f2 call 20098bc <_Workspace_Free>
20088f8: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
20088fc: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
2008900: 80 a2 20 00 cmp %o0, 0
2008904: 02 80 00 05 be 2008918 <_Thread_Initialize+0x1c0> <== ALWAYS TAKEN
2008908: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
200890c: 40 00 03 ec call 20098bc <_Workspace_Free> <== NOT EXECUTED
2008910: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
2008914: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008918: 02 80 00 05 be 200892c <_Thread_Initialize+0x1d4>
200891c: 80 a4 60 00 cmp %l1, 0
(void) _Workspace_Free( extensions_area );
2008920: 40 00 03 e7 call 20098bc <_Workspace_Free>
2008924: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
2008928: 80 a4 60 00 cmp %l1, 0
200892c: 02 80 00 05 be 2008940 <_Thread_Initialize+0x1e8>
2008930: 80 a4 a0 00 cmp %l2, 0
(void) _Workspace_Free( fp_area );
2008934: 40 00 03 e2 call 20098bc <_Workspace_Free>
2008938: 90 10 00 11 mov %l1, %o0
#endif
if ( sched )
200893c: 80 a4 a0 00 cmp %l2, 0
2008940: 02 80 00 05 be 2008954 <_Thread_Initialize+0x1fc>
2008944: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
2008948: 40 00 03 dd call 20098bc <_Workspace_Free>
200894c: 90 10 00 12 mov %l2, %o0
_Thread_Stack_Free( the_thread );
2008950: 90 10 00 19 mov %i1, %o0
2008954: 40 00 01 de call 20090cc <_Thread_Stack_Free>
2008958: b0 10 20 00 clr %i0
return false;
200895c: 81 c7 e0 08 ret
2008960: 81 e8 00 00 restore
}
2008964: 81 c7 e0 08 ret
2008968: 91 e8 20 00 restore %g0, 0, %o0
0200c568 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200c568: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200c56c: 7f ff d7 97 call 20023c8 <sparc_disable_interrupts>
200c570: 01 00 00 00 nop
200c574: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
200c578: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c57c: 80 88 60 02 btst 2, %g1
200c580: 02 80 00 0a be 200c5a8 <_Thread_Resume+0x40> <== NEVER TAKEN
200c584: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200c588: 80 a0 60 00 cmp %g1, 0
200c58c: 12 80 00 07 bne 200c5a8 <_Thread_Resume+0x40>
200c590: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
200c594: 11 00 80 63 sethi %hi(0x2018c00), %o0
200c598: 90 12 20 08 or %o0, 8, %o0 ! 2018c08 <_Scheduler>
200c59c: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
200c5a0: 9f c0 40 00 call %g1
200c5a4: 92 10 00 18 mov %i0, %o1
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
200c5a8: 7f ff d7 8c call 20023d8 <sparc_enable_interrupts>
200c5ac: 91 e8 00 10 restore %g0, %l0, %o0
02008eac <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2008eac: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2008eb0: 80 a6 20 00 cmp %i0, 0
2008eb4: 02 80 00 19 be 2008f18 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008eb8: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008ebc: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
2008ec0: 80 a4 60 01 cmp %l1, 1
2008ec4: 12 80 00 15 bne 2008f18 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008ec8: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2008ecc: 7f ff e4 c3 call 20021d8 <sparc_disable_interrupts>
2008ed0: 01 00 00 00 nop
2008ed4: a0 10 00 08 mov %o0, %l0
2008ed8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008edc: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008ee0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008ee4: 80 88 80 01 btst %g2, %g1
2008ee8: 02 80 00 0a be 2008f10 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008eec: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008ef0: 92 10 00 19 mov %i1, %o1
2008ef4: 94 10 20 01 mov 1, %o2
2008ef8: 40 00 0c e6 call 200c290 <_Thread_queue_Extract_priority_helper>
2008efc: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008f00: 90 10 00 18 mov %i0, %o0
2008f04: 92 10 00 19 mov %i1, %o1
2008f08: 7f ff ff 49 call 2008c2c <_Thread_queue_Enqueue_priority>
2008f0c: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2008f10: 7f ff e4 b6 call 20021e8 <sparc_enable_interrupts>
2008f14: 90 10 00 10 mov %l0, %o0
2008f18: 81 c7 e0 08 ret
2008f1c: 81 e8 00 00 restore
02008f20 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008f20: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008f24: 90 10 00 18 mov %i0, %o0
2008f28: 7f ff fd e1 call 20086ac <_Thread_Get>
2008f2c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008f30: c2 07 bf fc ld [ %fp + -4 ], %g1
2008f34: 80 a0 60 00 cmp %g1, 0
2008f38: 12 80 00 08 bne 2008f58 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008f3c: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2008f40: 40 00 0d 0c call 200c370 <_Thread_queue_Process_timeout>
2008f44: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2008f48: 03 00 80 54 sethi %hi(0x2015000), %g1
2008f4c: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 2015090 <_Thread_Dispatch_disable_level>
2008f50: 84 00 bf ff add %g2, -1, %g2
2008f54: c4 20 60 90 st %g2, [ %g1 + 0x90 ]
2008f58: 81 c7 e0 08 ret
2008f5c: 81 e8 00 00 restore
02016930 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2016930: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016934: 39 00 80 f2 sethi %hi(0x203c800), %i4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016938: b6 07 bf f4 add %fp, -12, %i3
201693c: ae 07 bf f8 add %fp, -8, %l7
2016940: a4 07 bf e8 add %fp, -24, %l2
2016944: a6 07 bf ec add %fp, -20, %l3
2016948: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
201694c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2016950: f6 27 bf fc st %i3, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016954: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
2016958: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
201695c: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016960: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016964: 3b 00 80 f2 sethi %hi(0x203c800), %i5
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016968: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201696c: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016970: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016974: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016978: c2 07 21 a4 ld [ %i4 + 0x1a4 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201697c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016980: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016984: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016988: 90 10 00 14 mov %l4, %o0
201698c: 40 00 11 8d call 201afc0 <_Watchdog_Adjust_to_chain>
2016990: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016994: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016998: e0 07 61 1c ld [ %i5 + 0x11c ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201699c: 80 a4 00 0a cmp %l0, %o2
20169a0: 08 80 00 06 bleu 20169b8 <_Timer_server_Body+0x88>
20169a4: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20169a8: 90 10 00 11 mov %l1, %o0
20169ac: 40 00 11 85 call 201afc0 <_Watchdog_Adjust_to_chain>
20169b0: 94 10 00 12 mov %l2, %o2
20169b4: 30 80 00 06 b,a 20169cc <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
20169b8: 1a 80 00 05 bcc 20169cc <_Timer_server_Body+0x9c>
20169bc: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20169c0: 92 10 20 01 mov 1, %o1
20169c4: 40 00 11 57 call 201af20 <_Watchdog_Adjust>
20169c8: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
20169cc: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20169d0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
20169d4: 40 00 02 c1 call 20174d8 <_Chain_Get>
20169d8: 01 00 00 00 nop
if ( timer == NULL ) {
20169dc: 92 92 20 00 orcc %o0, 0, %o1
20169e0: 02 80 00 0c be 2016a10 <_Timer_server_Body+0xe0>
20169e4: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20169e8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
20169ec: 80 a0 60 01 cmp %g1, 1
20169f0: 02 80 00 05 be 2016a04 <_Timer_server_Body+0xd4>
20169f4: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20169f8: 80 a0 60 03 cmp %g1, 3
20169fc: 12 bf ff f5 bne 20169d0 <_Timer_server_Body+0xa0> <== NEVER TAKEN
2016a00: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016a04: 40 00 11 a3 call 201b090 <_Watchdog_Insert>
2016a08: 92 02 60 10 add %o1, 0x10, %o1
2016a0c: 30 bf ff f1 b,a 20169d0 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016a10: 7f ff e3 a6 call 200f8a8 <sparc_disable_interrupts>
2016a14: 01 00 00 00 nop
tmp = ts->insert_chain;
2016a18: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
2016a1c: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016a20: 80 a0 40 17 cmp %g1, %l7
2016a24: 12 80 00 04 bne 2016a34 <_Timer_server_Body+0x104> <== NEVER TAKEN
2016a28: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
2016a2c: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
2016a30: a0 10 20 00 clr %l0
}
_ISR_Enable( level );
2016a34: 7f ff e3 a1 call 200f8b8 <sparc_enable_interrupts>
2016a38: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
2016a3c: 80 8c 20 ff btst 0xff, %l0
2016a40: 12 bf ff ce bne 2016978 <_Timer_server_Body+0x48> <== NEVER TAKEN
2016a44: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016a48: 80 a0 40 13 cmp %g1, %l3
2016a4c: 02 80 00 18 be 2016aac <_Timer_server_Body+0x17c>
2016a50: 01 00 00 00 nop
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016a54: 7f ff e3 95 call 200f8a8 <sparc_disable_interrupts>
2016a58: 01 00 00 00 nop
2016a5c: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
2016a60: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016a64: 80 a4 00 13 cmp %l0, %l3
2016a68: 02 80 00 0e be 2016aa0 <_Timer_server_Body+0x170>
2016a6c: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
2016a70: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
2016a74: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
2016a78: 02 80 00 0a be 2016aa0 <_Timer_server_Body+0x170> <== NEVER TAKEN
2016a7c: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
2016a80: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016a84: 7f ff e3 8d call 200f8b8 <sparc_enable_interrupts>
2016a88: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2016a8c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2016a90: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
2016a94: 9f c0 40 00 call %g1
2016a98: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
2016a9c: 30 bf ff ee b,a 2016a54 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016aa0: 7f ff e3 86 call 200f8b8 <sparc_enable_interrupts>
2016aa4: 90 10 00 02 mov %g2, %o0
2016aa8: 30 bf ff b3 b,a 2016974 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016aac: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
2016ab0: 7f ff ff 70 call 2016870 <_Thread_Disable_dispatch>
2016ab4: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016ab8: d0 06 00 00 ld [ %i0 ], %o0
2016abc: 40 00 0f 52 call 201a804 <_Thread_Set_state>
2016ac0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016ac4: 7f ff ff 71 call 2016888 <_Timer_server_Reset_interval_system_watchdog>
2016ac8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016acc: 7f ff ff 84 call 20168dc <_Timer_server_Reset_tod_system_watchdog>
2016ad0: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016ad4: 40 00 0c d3 call 2019e20 <_Thread_Enable_dispatch>
2016ad8: 01 00 00 00 nop
ts->active = true;
2016adc: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ae0: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016ae4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ae8: 40 00 11 c6 call 201b200 <_Watchdog_Remove>
2016aec: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016af0: 40 00 11 c4 call 201b200 <_Watchdog_Remove>
2016af4: 90 10 00 15 mov %l5, %o0
2016af8: 30 bf ff 9f b,a 2016974 <_Timer_server_Body+0x44>
02016afc <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016afc: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016b00: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016b04: 80 a0 60 00 cmp %g1, 0
2016b08: 12 80 00 49 bne 2016c2c <_Timer_server_Schedule_operation_method+0x130>
2016b0c: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2016b10: 7f ff ff 58 call 2016870 <_Thread_Disable_dispatch>
2016b14: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016b18: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016b1c: 80 a0 60 01 cmp %g1, 1
2016b20: 12 80 00 1f bne 2016b9c <_Timer_server_Schedule_operation_method+0xa0>
2016b24: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016b28: 7f ff e3 60 call 200f8a8 <sparc_disable_interrupts>
2016b2c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016b30: 03 00 80 f2 sethi %hi(0x203c800), %g1
2016b34: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 203c9a4 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
2016b38: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016b3c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016b40: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016b44: 80 a0 40 03 cmp %g1, %g3
2016b48: 02 80 00 08 be 2016b68 <_Timer_server_Schedule_operation_method+0x6c>
2016b4c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016b50: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016b54: 80 a3 40 04 cmp %o5, %g4
2016b58: 08 80 00 03 bleu 2016b64 <_Timer_server_Schedule_operation_method+0x68>
2016b5c: 86 10 20 00 clr %g3
delta_interval -= delta;
2016b60: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016b64: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016b68: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016b6c: 7f ff e3 53 call 200f8b8 <sparc_enable_interrupts>
2016b70: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016b74: 90 06 20 30 add %i0, 0x30, %o0
2016b78: 40 00 11 46 call 201b090 <_Watchdog_Insert>
2016b7c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b80: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016b84: 80 a0 60 00 cmp %g1, 0
2016b88: 12 80 00 27 bne 2016c24 <_Timer_server_Schedule_operation_method+0x128>
2016b8c: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016b90: 7f ff ff 3e call 2016888 <_Timer_server_Reset_interval_system_watchdog>
2016b94: 90 10 00 18 mov %i0, %o0
2016b98: 30 80 00 23 b,a 2016c24 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016b9c: 12 80 00 22 bne 2016c24 <_Timer_server_Schedule_operation_method+0x128>
2016ba0: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016ba4: 7f ff e3 41 call 200f8a8 <sparc_disable_interrupts>
2016ba8: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016bac: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016bb0: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016bb4: 03 00 80 f2 sethi %hi(0x203c800), %g1
2016bb8: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016bbc: 80 a0 80 03 cmp %g2, %g3
2016bc0: 02 80 00 0d be 2016bf4 <_Timer_server_Schedule_operation_method+0xf8>
2016bc4: c2 00 61 1c ld [ %g1 + 0x11c ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016bc8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016bcc: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016bd0: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016bd4: 08 80 00 07 bleu 2016bf0 <_Timer_server_Schedule_operation_method+0xf4>
2016bd8: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016bdc: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016be0: 80 a1 00 0d cmp %g4, %o5
2016be4: 08 80 00 03 bleu 2016bf0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016be8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016bec: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016bf0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016bf4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016bf8: 7f ff e3 30 call 200f8b8 <sparc_enable_interrupts>
2016bfc: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016c00: 90 06 20 68 add %i0, 0x68, %o0
2016c04: 40 00 11 23 call 201b090 <_Watchdog_Insert>
2016c08: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016c0c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016c10: 80 a0 60 00 cmp %g1, 0
2016c14: 12 80 00 04 bne 2016c24 <_Timer_server_Schedule_operation_method+0x128>
2016c18: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016c1c: 7f ff ff 30 call 20168dc <_Timer_server_Reset_tod_system_watchdog>
2016c20: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016c24: 40 00 0c 7f call 2019e20 <_Thread_Enable_dispatch>
2016c28: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016c2c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016c30: 40 00 02 14 call 2017480 <_Chain_Append>
2016c34: 81 e8 00 00 restore
0200b158 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
200b158: c6 02 00 00 ld [ %o0 ], %g3
200b15c: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
200b160: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200b164: 80 a0 c0 02 cmp %g3, %g2
200b168: 14 80 00 0b bg 200b194 <_Timespec_Greater_than+0x3c>
200b16c: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
200b170: 80 a0 c0 02 cmp %g3, %g2
200b174: 06 80 00 08 bl 200b194 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
200b178: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
200b17c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200b180: c2 02 60 04 ld [ %o1 + 4 ], %g1
200b184: 80 a0 80 01 cmp %g2, %g1
200b188: 14 80 00 03 bg 200b194 <_Timespec_Greater_than+0x3c>
200b18c: 90 10 20 01 mov 1, %o0
200b190: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
200b194: 81 c3 e0 08 retl
020092c8 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
20092c8: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
20092cc: 03 00 80 51 sethi %hi(0x2014400), %g1
20092d0: 82 10 60 b8 or %g1, 0xb8, %g1 ! 20144b8 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20092d4: 05 00 80 54 sethi %hi(0x2015000), %g2
initial_extensions = Configuration.User_extension_table;
20092d8: e6 00 60 40 ld [ %g1 + 0x40 ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
20092dc: e4 00 60 3c ld [ %g1 + 0x3c ], %l2
20092e0: 82 10 a2 98 or %g2, 0x298, %g1
20092e4: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
20092e8: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
20092ec: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20092f0: c6 20 a2 98 st %g3, [ %g2 + 0x298 ]
20092f4: 05 00 80 54 sethi %hi(0x2015000), %g2
20092f8: 82 10 a0 94 or %g2, 0x94, %g1 ! 2015094 <_User_extensions_Switches_list>
20092fc: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
2009300: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009304: c6 20 a0 94 st %g3, [ %g2 + 0x94 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009308: 80 a4 e0 00 cmp %l3, 0
200930c: 02 80 00 1b be 2009378 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009310: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009314: 83 2c a0 02 sll %l2, 2, %g1
2009318: a1 2c a0 04 sll %l2, 4, %l0
200931c: a0 24 00 01 sub %l0, %g1, %l0
2009320: a0 04 00 12 add %l0, %l2, %l0
2009324: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009328: 40 00 01 6c call 20098d8 <_Workspace_Allocate_or_fatal_error>
200932c: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009330: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009334: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009338: 92 10 20 00 clr %o1
200933c: 40 00 14 a8 call 200e5dc <memset>
2009340: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009344: 10 80 00 0b b 2009370 <_User_extensions_Handler_initialization+0xa8>
2009348: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
200934c: 90 04 60 14 add %l1, 0x14, %o0
2009350: 92 04 c0 09 add %l3, %o1, %o1
2009354: 40 00 14 69 call 200e4f8 <memcpy>
2009358: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
200935c: 90 10 00 11 mov %l1, %o0
2009360: 40 00 0c 2a call 200c408 <_User_extensions_Add_set>
2009364: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
2009368: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200936c: 80 a4 00 12 cmp %l0, %l2
2009370: 0a bf ff f7 bcs 200934c <_User_extensions_Handler_initialization+0x84>
2009374: 93 2c 20 05 sll %l0, 5, %o1
2009378: 81 c7 e0 08 ret
200937c: 81 e8 00 00 restore
020093c4 <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
20093c4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
20093c8: 23 00 80 54 sethi %hi(0x2015000), %l1
20093cc: a2 14 62 98 or %l1, 0x298, %l1 ! 2015298 <_User_extensions_List>
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
20093d0: 10 80 00 08 b 20093f0 <_User_extensions_Thread_exitted+0x2c>
20093d4: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
20093d8: 80 a0 60 00 cmp %g1, 0
20093dc: 22 80 00 05 be,a 20093f0 <_User_extensions_Thread_exitted+0x2c>
20093e0: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
20093e4: 9f c0 40 00 call %g1
20093e8: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
20093ec: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
20093f0: 80 a4 00 11 cmp %l0, %l1
20093f4: 32 bf ff f9 bne,a 20093d8 <_User_extensions_Thread_exitted+0x14>
20093f8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
20093fc: 81 c7 e0 08 ret
2009400: 81 e8 00 00 restore
0200b59c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b59c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b5a0: 7f ff df 19 call 2003204 <sparc_disable_interrupts>
200b5a4: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
200b5a8: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b5ac: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b5b0: 80 a0 40 11 cmp %g1, %l1
200b5b4: 02 80 00 1f be 200b630 <_Watchdog_Adjust+0x94>
200b5b8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b5bc: 02 80 00 1a be 200b624 <_Watchdog_Adjust+0x88>
200b5c0: a4 10 20 01 mov 1, %l2
200b5c4: 80 a6 60 01 cmp %i1, 1
200b5c8: 12 80 00 1a bne 200b630 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b5cc: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b5d0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b5d4: 10 80 00 07 b 200b5f0 <_Watchdog_Adjust+0x54>
200b5d8: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b5dc: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
200b5e0: 80 a6 80 19 cmp %i2, %i1
200b5e4: 3a 80 00 05 bcc,a 200b5f8 <_Watchdog_Adjust+0x5c>
200b5e8: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b5ec: b4 26 40 1a sub %i1, %i2, %i2
break;
200b5f0: 10 80 00 10 b 200b630 <_Watchdog_Adjust+0x94>
200b5f4: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b5f8: 7f ff df 07 call 2003214 <sparc_enable_interrupts>
200b5fc: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b600: 40 00 00 94 call 200b850 <_Watchdog_Tickle>
200b604: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b608: 7f ff de ff call 2003204 <sparc_disable_interrupts>
200b60c: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b610: c2 04 00 00 ld [ %l0 ], %g1
200b614: 80 a0 40 11 cmp %g1, %l1
200b618: 02 80 00 06 be 200b630 <_Watchdog_Adjust+0x94>
200b61c: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200b620: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b624: 80 a6 a0 00 cmp %i2, 0
200b628: 32 bf ff ed bne,a 200b5dc <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b62c: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b630: 7f ff de f9 call 2003214 <sparc_enable_interrupts>
200b634: 91 e8 00 08 restore %g0, %o0, %o0
020096ec <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
20096ec: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
20096f0: 7f ff e2 ba call 20021d8 <sparc_disable_interrupts>
20096f4: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
20096f8: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
20096fc: 80 a6 20 01 cmp %i0, 1
2009700: 22 80 00 1d be,a 2009774 <_Watchdog_Remove+0x88>
2009704: c0 24 20 08 clr [ %l0 + 8 ]
2009708: 0a 80 00 1c bcs 2009778 <_Watchdog_Remove+0x8c>
200970c: 03 00 80 54 sethi %hi(0x2015000), %g1
2009710: 80 a6 20 03 cmp %i0, 3
2009714: 18 80 00 19 bgu 2009778 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009718: 01 00 00 00 nop
200971c: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009720: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009724: c4 00 40 00 ld [ %g1 ], %g2
2009728: 80 a0 a0 00 cmp %g2, 0
200972c: 02 80 00 07 be 2009748 <_Watchdog_Remove+0x5c>
2009730: 05 00 80 54 sethi %hi(0x2015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009734: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009738: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
200973c: 84 00 c0 02 add %g3, %g2, %g2
2009740: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009744: 05 00 80 54 sethi %hi(0x2015000), %g2
2009748: c4 00 a1 c0 ld [ %g2 + 0x1c0 ], %g2 ! 20151c0 <_Watchdog_Sync_count>
200974c: 80 a0 a0 00 cmp %g2, 0
2009750: 22 80 00 07 be,a 200976c <_Watchdog_Remove+0x80>
2009754: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009758: 05 00 80 54 sethi %hi(0x2015000), %g2
200975c: c6 00 a2 e4 ld [ %g2 + 0x2e4 ], %g3 ! 20152e4 <_Per_CPU_Information+0x8>
2009760: 05 00 80 54 sethi %hi(0x2015000), %g2
2009764: c6 20 a1 58 st %g3, [ %g2 + 0x158 ] ! 2015158 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009768: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
200976c: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009770: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009774: 03 00 80 54 sethi %hi(0x2015000), %g1
2009778: c2 00 61 c4 ld [ %g1 + 0x1c4 ], %g1 ! 20151c4 <_Watchdog_Ticks_since_boot>
200977c: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
2009780: 7f ff e2 9a call 20021e8 <sparc_enable_interrupts>
2009784: 01 00 00 00 nop
return( previous_state );
}
2009788: 81 c7 e0 08 ret
200978c: 81 e8 00 00 restore
0200adcc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200adcc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200add0: 7f ff df e4 call 2002d60 <sparc_disable_interrupts>
200add4: a0 10 00 18 mov %i0, %l0
200add8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200addc: 11 00 80 6f sethi %hi(0x201bc00), %o0
200ade0: 94 10 00 19 mov %i1, %o2
200ade4: 90 12 20 88 or %o0, 0x88, %o0
200ade8: 7f ff e6 40 call 20046e8 <printk>
200adec: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
200adf0: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200adf4: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
200adf8: 80 a4 40 19 cmp %l1, %i1
200adfc: 02 80 00 0e be 200ae34 <_Watchdog_Report_chain+0x68>
200ae00: 11 00 80 6f sethi %hi(0x201bc00), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200ae04: 92 10 00 11 mov %l1, %o1
200ae08: 40 00 00 10 call 200ae48 <_Watchdog_Report>
200ae0c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200ae10: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200ae14: 80 a4 40 19 cmp %l1, %i1
200ae18: 12 bf ff fc bne 200ae08 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200ae1c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200ae20: 11 00 80 6f sethi %hi(0x201bc00), %o0
200ae24: 92 10 00 10 mov %l0, %o1
200ae28: 7f ff e6 30 call 20046e8 <printk>
200ae2c: 90 12 20 a0 or %o0, 0xa0, %o0
200ae30: 30 80 00 03 b,a 200ae3c <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
200ae34: 7f ff e6 2d call 20046e8 <printk>
200ae38: 90 12 20 b0 or %o0, 0xb0, %o0
}
_ISR_Enable( level );
200ae3c: 7f ff df cd call 2002d70 <sparc_enable_interrupts>
200ae40: 81 e8 00 00 restore
02006e10 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
2006e10: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
2006e14: 90 10 00 18 mov %i0, %o0
2006e18: 40 00 01 4a call 2007340 <_Chain_Append_with_empty_check>
2006e1c: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
2006e20: 80 8a 20 ff btst 0xff, %o0
2006e24: 02 80 00 05 be 2006e38 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
2006e28: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006e2c: b0 10 00 1a mov %i2, %i0
2006e30: 7f ff fd 75 call 2006404 <rtems_event_send>
2006e34: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
2006e38: 81 c7 e0 08 ret <== NOT EXECUTED
2006e3c: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02006e70 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006e70: 9d e3 bf 98 save %sp, -104, %sp
2006e74: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006e78: 10 80 00 09 b 2006e9c <rtems_chain_get_with_wait+0x2c>
2006e7c: a4 07 bf fc add %fp, -4, %l2
2006e80: 92 10 20 00 clr %o1
2006e84: 94 10 00 1a mov %i2, %o2
2006e88: 7f ff fc fb call 2006274 <rtems_event_receive>
2006e8c: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006e90: 80 a2 20 00 cmp %o0, 0
2006e94: 32 80 00 09 bne,a 2006eb8 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
2006e98: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006e9c: 40 00 01 65 call 2007430 <_Chain_Get>
2006ea0: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006ea4: a2 92 20 00 orcc %o0, 0, %l1
2006ea8: 02 bf ff f6 be 2006e80 <rtems_chain_get_with_wait+0x10>
2006eac: 90 10 00 19 mov %i1, %o0
2006eb0: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006eb4: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
2006eb8: 81 c7 e0 08 ret
2006ebc: 91 e8 00 08 restore %g0, %o0, %o0
02006ec0 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
2006ec0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
2006ec4: 90 10 00 18 mov %i0, %o0
2006ec8: 40 00 01 74 call 2007498 <_Chain_Prepend_with_empty_check>
2006ecc: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
2006ed0: 80 8a 20 ff btst 0xff, %o0
2006ed4: 02 80 00 05 be 2006ee8 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
2006ed8: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006edc: b0 10 00 1a mov %i2, %i0
2006ee0: 7f ff fd 49 call 2006404 <rtems_event_send>
2006ee4: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
2006ee8: 81 c7 e0 08 ret
2006eec: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
0200913c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200913c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009140: 80 a6 20 00 cmp %i0, 0
2009144: 02 80 00 1d be 20091b8 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
2009148: 21 00 80 79 sethi %hi(0x201e400), %l0
200914c: a0 14 22 6c or %l0, 0x26c, %l0 ! 201e66c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009150: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2009154: c2 04 00 00 ld [ %l0 ], %g1
2009158: 80 a0 60 00 cmp %g1, 0
200915c: 22 80 00 14 be,a 20091ac <rtems_iterate_over_all_threads+0x70>
2009160: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009164: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
2009168: 80 a4 a0 00 cmp %l2, 0
200916c: 12 80 00 0b bne 2009198 <rtems_iterate_over_all_threads+0x5c>
2009170: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009174: 10 80 00 0e b 20091ac <rtems_iterate_over_all_threads+0x70>
2009178: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
200917c: 83 2c 60 02 sll %l1, 2, %g1
2009180: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009184: 80 a2 20 00 cmp %o0, 0
2009188: 02 80 00 04 be 2009198 <rtems_iterate_over_all_threads+0x5c>
200918c: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
2009190: 9f c6 00 00 call %i0
2009194: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009198: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
200919c: 80 a4 40 01 cmp %l1, %g1
20091a0: 28 bf ff f7 bleu,a 200917c <rtems_iterate_over_all_threads+0x40>
20091a4: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
20091a8: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
20091ac: 80 a4 00 13 cmp %l0, %l3
20091b0: 32 bf ff ea bne,a 2009158 <rtems_iterate_over_all_threads+0x1c>
20091b4: c2 04 00 00 ld [ %l0 ], %g1
20091b8: 81 c7 e0 08 ret
20091bc: 81 e8 00 00 restore
020142e4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
20142e4: 9d e3 bf a0 save %sp, -96, %sp
20142e8: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
20142ec: 80 a4 20 00 cmp %l0, 0
20142f0: 02 80 00 1f be 201436c <rtems_partition_create+0x88>
20142f4: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
20142f8: 80 a6 60 00 cmp %i1, 0
20142fc: 02 80 00 1c be 201436c <rtems_partition_create+0x88>
2014300: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
2014304: 80 a7 60 00 cmp %i5, 0
2014308: 02 80 00 19 be 201436c <rtems_partition_create+0x88> <== NEVER TAKEN
201430c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014310: 02 80 00 32 be 20143d8 <rtems_partition_create+0xf4>
2014314: 80 a6 a0 00 cmp %i2, 0
2014318: 02 80 00 30 be 20143d8 <rtems_partition_create+0xf4>
201431c: 80 a6 80 1b cmp %i2, %i3
2014320: 0a 80 00 13 bcs 201436c <rtems_partition_create+0x88>
2014324: b0 10 20 08 mov 8, %i0
2014328: 80 8e e0 07 btst 7, %i3
201432c: 12 80 00 10 bne 201436c <rtems_partition_create+0x88>
2014330: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2014334: 12 80 00 0e bne 201436c <rtems_partition_create+0x88>
2014338: b0 10 20 09 mov 9, %i0
201433c: 03 00 80 f2 sethi %hi(0x203c800), %g1
2014340: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 203c870 <_Thread_Dispatch_disable_level>
2014344: 84 00 a0 01 inc %g2
2014348: c4 20 60 70 st %g2, [ %g1 + 0x70 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
201434c: 25 00 80 f1 sethi %hi(0x203c400), %l2
2014350: 40 00 12 44 call 2018c60 <_Objects_Allocate>
2014354: 90 14 a2 84 or %l2, 0x284, %o0 ! 203c684 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014358: a2 92 20 00 orcc %o0, 0, %l1
201435c: 12 80 00 06 bne 2014374 <rtems_partition_create+0x90>
2014360: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
2014364: 40 00 16 af call 2019e20 <_Thread_Enable_dispatch>
2014368: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
201436c: 81 c7 e0 08 ret
2014370: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014374: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
2014378: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
201437c: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
2014380: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
2014384: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014388: 40 00 61 d7 call 202cae4 <.udiv>
201438c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014390: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2014394: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014398: 96 10 00 1b mov %i3, %o3
201439c: a6 04 60 24 add %l1, 0x24, %l3
20143a0: 40 00 0c 5d call 2017514 <_Chain_Initialize>
20143a4: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20143a8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
20143ac: a4 14 a2 84 or %l2, 0x284, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20143b0: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20143b4: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20143b8: 85 28 a0 02 sll %g2, 2, %g2
20143bc: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20143c0: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
20143c4: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
20143c8: 40 00 16 96 call 2019e20 <_Thread_Enable_dispatch>
20143cc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20143d0: 81 c7 e0 08 ret
20143d4: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
20143d8: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
20143dc: 81 c7 e0 08 ret
20143e0: 81 e8 00 00 restore
020073c8 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
20073c8: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
20073cc: 11 00 80 76 sethi %hi(0x201d800), %o0
20073d0: 92 10 00 18 mov %i0, %o1
20073d4: 90 12 21 64 or %o0, 0x164, %o0
20073d8: 40 00 08 e9 call 200977c <_Objects_Get>
20073dc: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20073e0: c2 07 bf fc ld [ %fp + -4 ], %g1
20073e4: 80 a0 60 00 cmp %g1, 0
20073e8: 12 80 00 66 bne 2007580 <rtems_rate_monotonic_period+0x1b8>
20073ec: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20073f0: 25 00 80 77 sethi %hi(0x201dc00), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
20073f4: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
20073f8: a4 14 a1 1c or %l2, 0x11c, %l2
20073fc: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
2007400: 80 a0 80 01 cmp %g2, %g1
2007404: 02 80 00 06 be 200741c <rtems_rate_monotonic_period+0x54>
2007408: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
200740c: 40 00 0b fb call 200a3f8 <_Thread_Enable_dispatch>
2007410: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007414: 81 c7 e0 08 ret
2007418: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
200741c: 12 80 00 0e bne 2007454 <rtems_rate_monotonic_period+0x8c>
2007420: 01 00 00 00 nop
switch ( the_period->state ) {
2007424: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007428: 80 a0 60 04 cmp %g1, 4
200742c: 18 80 00 06 bgu 2007444 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
2007430: b0 10 20 00 clr %i0
2007434: 83 28 60 02 sll %g1, 2, %g1
2007438: 05 00 80 6e sethi %hi(0x201b800), %g2
200743c: 84 10 a1 b4 or %g2, 0x1b4, %g2 ! 201b9b4 <CSWTCH.2>
2007440: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
2007444: 40 00 0b ed call 200a3f8 <_Thread_Enable_dispatch>
2007448: 01 00 00 00 nop
return( return_value );
200744c: 81 c7 e0 08 ret
2007450: 81 e8 00 00 restore
}
_ISR_Disable( level );
2007454: 7f ff ef 26 call 20030ec <sparc_disable_interrupts>
2007458: 01 00 00 00 nop
200745c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007460: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
2007464: 80 a4 60 00 cmp %l1, 0
2007468: 12 80 00 15 bne 20074bc <rtems_rate_monotonic_period+0xf4>
200746c: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
2007470: 7f ff ef 23 call 20030fc <sparc_enable_interrupts>
2007474: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2007478: 7f ff ff 7a call 2007260 <_Rate_monotonic_Initiate_statistics>
200747c: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007480: 82 10 20 02 mov 2, %g1
2007484: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007488: 03 00 80 1e sethi %hi(0x2007800), %g1
200748c: 82 10 60 50 or %g1, 0x50, %g1 ! 2007850 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007490: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
2007494: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
2007498: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
200749c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
20074a0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20074a4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20074a8: 11 00 80 76 sethi %hi(0x201d800), %o0
20074ac: 92 04 20 10 add %l0, 0x10, %o1
20074b0: 40 00 10 0b call 200b4dc <_Watchdog_Insert>
20074b4: 90 12 23 b4 or %o0, 0x3b4, %o0
20074b8: 30 80 00 1b b,a 2007524 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20074bc: 12 80 00 1e bne 2007534 <rtems_rate_monotonic_period+0x16c>
20074c0: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20074c4: 7f ff ff 83 call 20072d0 <_Rate_monotonic_Update_statistics>
20074c8: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074cc: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20074d0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20074d8: 7f ff ef 09 call 20030fc <sparc_enable_interrupts>
20074dc: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20074e0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
20074e4: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20074e8: 13 00 00 10 sethi %hi(0x4000), %o1
20074ec: 40 00 0e 06 call 200ad04 <_Thread_Set_state>
20074f0: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
20074f4: 7f ff ee fe call 20030ec <sparc_disable_interrupts>
20074f8: 01 00 00 00 nop
local_state = the_period->state;
20074fc: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007500: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007504: 7f ff ee fe call 20030fc <sparc_enable_interrupts>
2007508: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
200750c: 80 a4 e0 03 cmp %l3, 3
2007510: 12 80 00 05 bne 2007524 <rtems_rate_monotonic_period+0x15c>
2007514: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007518: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
200751c: 40 00 0a d1 call 200a060 <_Thread_Clear_state>
2007520: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
2007524: 40 00 0b b5 call 200a3f8 <_Thread_Enable_dispatch>
2007528: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200752c: 81 c7 e0 08 ret
2007530: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
2007534: 12 bf ff b8 bne 2007414 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2007538: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
200753c: 7f ff ff 65 call 20072d0 <_Rate_monotonic_Update_statistics>
2007540: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
2007544: 7f ff ee ee call 20030fc <sparc_enable_interrupts>
2007548: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
200754c: 82 10 20 02 mov 2, %g1
2007550: 92 04 20 10 add %l0, 0x10, %o1
2007554: 11 00 80 76 sethi %hi(0x201d800), %o0
2007558: 90 12 23 b4 or %o0, 0x3b4, %o0 ! 201dbb4 <_Watchdog_Ticks_chain>
200755c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
2007560: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007564: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007568: 40 00 0f dd call 200b4dc <_Watchdog_Insert>
200756c: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007570: 40 00 0b a2 call 200a3f8 <_Thread_Enable_dispatch>
2007574: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007578: 81 c7 e0 08 ret
200757c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2007580: b0 10 20 04 mov 4, %i0
}
2007584: 81 c7 e0 08 ret
2007588: 81 e8 00 00 restore
0200758c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
200758c: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007590: 80 a6 60 00 cmp %i1, 0
2007594: 02 80 00 79 be 2007778 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
2007598: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
200759c: 13 00 80 6e sethi %hi(0x201b800), %o1
20075a0: 9f c6 40 00 call %i1
20075a4: 92 12 61 c8 or %o1, 0x1c8, %o1 ! 201b9c8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
20075a8: 90 10 00 18 mov %i0, %o0
20075ac: 13 00 80 6e sethi %hi(0x201b800), %o1
20075b0: 9f c6 40 00 call %i1
20075b4: 92 12 61 e8 or %o1, 0x1e8, %o1 ! 201b9e8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20075b8: 90 10 00 18 mov %i0, %o0
20075bc: 13 00 80 6e sethi %hi(0x201b800), %o1
20075c0: 9f c6 40 00 call %i1
20075c4: 92 12 62 10 or %o1, 0x210, %o1 ! 201ba10 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
20075c8: 90 10 00 18 mov %i0, %o0
20075cc: 13 00 80 6e sethi %hi(0x201b800), %o1
20075d0: 9f c6 40 00 call %i1
20075d4: 92 12 62 38 or %o1, 0x238, %o1 ! 201ba38 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
20075d8: 90 10 00 18 mov %i0, %o0
20075dc: 13 00 80 6e sethi %hi(0x201b800), %o1
20075e0: 9f c6 40 00 call %i1
20075e4: 92 12 62 88 or %o1, 0x288, %o1 ! 201ba88 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075e8: 3b 00 80 76 sethi %hi(0x201d800), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20075ec: 2b 00 80 6e sethi %hi(0x201b800), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075f0: 82 17 61 64 or %i5, 0x164, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20075f4: 27 00 80 6e sethi %hi(0x201b800), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
20075f8: 35 00 80 6e sethi %hi(0x201b800), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075fc: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007600: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007604: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007608: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200760c: aa 15 62 d8 or %l5, 0x2d8, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007610: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007614: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
2007618: a6 14 e2 f0 or %l3, 0x2f0, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
200761c: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007620: 10 80 00 52 b 2007768 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
2007624: b4 16 a3 10 or %i2, 0x310, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007628: 40 00 17 f3 call 200d5f4 <rtems_rate_monotonic_get_statistics>
200762c: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
2007630: 80 a2 20 00 cmp %o0, 0
2007634: 32 80 00 4c bne,a 2007764 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007638: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
200763c: 92 10 00 16 mov %l6, %o1
2007640: 40 00 18 1a call 200d6a8 <rtems_rate_monotonic_get_status>
2007644: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007648: d0 07 bf d8 ld [ %fp + -40 ], %o0
200764c: 92 10 20 05 mov 5, %o1
2007650: 40 00 00 ae call 2007908 <rtems_object_get_name>
2007654: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007658: d8 1f bf a0 ldd [ %fp + -96 ], %o4
200765c: 92 10 00 15 mov %l5, %o1
2007660: 90 10 00 18 mov %i0, %o0
2007664: 94 10 00 10 mov %l0, %o2
2007668: 9f c6 40 00 call %i1
200766c: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007670: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007674: 80 a2 60 00 cmp %o1, 0
2007678: 12 80 00 08 bne 2007698 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
200767c: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
2007680: 90 10 00 18 mov %i0, %o0
2007684: 13 00 80 6b sethi %hi(0x201ac00), %o1
2007688: 9f c6 40 00 call %i1
200768c: 92 12 60 d8 or %o1, 0xd8, %o1 ! 201acd8 <_rodata_start+0x158>
continue;
2007690: 10 80 00 35 b 2007764 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007694: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007698: 40 00 0e 6e call 200b050 <_Timespec_Divide_by_integer>
200769c: 90 10 00 14 mov %l4, %o0
(*print)( context,
20076a0: d0 07 bf ac ld [ %fp + -84 ], %o0
20076a4: 40 00 45 ab call 2018d50 <.div>
20076a8: 92 10 23 e8 mov 0x3e8, %o1
20076ac: 96 10 00 08 mov %o0, %o3
20076b0: d0 07 bf b4 ld [ %fp + -76 ], %o0
20076b4: d6 27 bf 9c st %o3, [ %fp + -100 ]
20076b8: 40 00 45 a6 call 2018d50 <.div>
20076bc: 92 10 23 e8 mov 0x3e8, %o1
20076c0: c2 07 bf f0 ld [ %fp + -16 ], %g1
20076c4: b6 10 00 08 mov %o0, %i3
20076c8: d0 07 bf f4 ld [ %fp + -12 ], %o0
20076cc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20076d0: 40 00 45 a0 call 2018d50 <.div>
20076d4: 92 10 23 e8 mov 0x3e8, %o1
20076d8: d8 07 bf b0 ld [ %fp + -80 ], %o4
20076dc: d6 07 bf 9c ld [ %fp + -100 ], %o3
20076e0: d4 07 bf a8 ld [ %fp + -88 ], %o2
20076e4: 9a 10 00 1b mov %i3, %o5
20076e8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20076ec: 92 10 00 13 mov %l3, %o1
20076f0: 9f c6 40 00 call %i1
20076f4: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20076f8: d2 07 bf a0 ld [ %fp + -96 ], %o1
20076fc: 94 10 00 11 mov %l1, %o2
2007700: 40 00 0e 54 call 200b050 <_Timespec_Divide_by_integer>
2007704: 90 10 00 1c mov %i4, %o0
(*print)( context,
2007708: d0 07 bf c4 ld [ %fp + -60 ], %o0
200770c: 40 00 45 91 call 2018d50 <.div>
2007710: 92 10 23 e8 mov 0x3e8, %o1
2007714: 96 10 00 08 mov %o0, %o3
2007718: d0 07 bf cc ld [ %fp + -52 ], %o0
200771c: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007720: 40 00 45 8c call 2018d50 <.div>
2007724: 92 10 23 e8 mov 0x3e8, %o1
2007728: c2 07 bf f0 ld [ %fp + -16 ], %g1
200772c: b6 10 00 08 mov %o0, %i3
2007730: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007734: 92 10 23 e8 mov 0x3e8, %o1
2007738: 40 00 45 86 call 2018d50 <.div>
200773c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007740: d4 07 bf c0 ld [ %fp + -64 ], %o2
2007744: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007748: d8 07 bf c8 ld [ %fp + -56 ], %o4
200774c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007750: 92 10 00 1a mov %i2, %o1
2007754: 90 10 00 18 mov %i0, %o0
2007758: 9f c6 40 00 call %i1
200775c: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007760: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
2007764: 82 17 61 64 or %i5, 0x164, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007768: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200776c: 80 a4 00 01 cmp %l0, %g1
2007770: 08 bf ff ae bleu 2007628 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
2007774: 90 10 00 10 mov %l0, %o0
2007778: 81 c7 e0 08 ret
200777c: 81 e8 00 00 restore
02015888 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2015888: 9d e3 bf 98 save %sp, -104, %sp
201588c: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
2015890: 80 a6 60 00 cmp %i1, 0
2015894: 02 80 00 2e be 201594c <rtems_signal_send+0xc4>
2015898: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
201589c: 40 00 11 6e call 2019e54 <_Thread_Get>
20158a0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20158a4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20158a8: a2 10 00 08 mov %o0, %l1
switch ( location ) {
20158ac: 80 a0 60 00 cmp %g1, 0
20158b0: 12 80 00 27 bne 201594c <rtems_signal_send+0xc4>
20158b4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20158b8: e0 02 21 58 ld [ %o0 + 0x158 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20158bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20158c0: 80 a0 60 00 cmp %g1, 0
20158c4: 02 80 00 24 be 2015954 <rtems_signal_send+0xcc>
20158c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
20158cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
20158d0: 80 a0 60 00 cmp %g1, 0
20158d4: 02 80 00 15 be 2015928 <rtems_signal_send+0xa0>
20158d8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20158dc: 7f ff e7 f3 call 200f8a8 <sparc_disable_interrupts>
20158e0: 01 00 00 00 nop
*signal_set |= signals;
20158e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20158e8: b2 10 40 19 or %g1, %i1, %i1
20158ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
20158f0: 7f ff e7 f2 call 200f8b8 <sparc_enable_interrupts>
20158f4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20158f8: 03 00 80 f2 sethi %hi(0x203c800), %g1
20158fc: 82 10 62 c4 or %g1, 0x2c4, %g1 ! 203cac4 <_Per_CPU_Information>
2015900: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015904: 80 a0 a0 00 cmp %g2, 0
2015908: 02 80 00 0f be 2015944 <rtems_signal_send+0xbc>
201590c: 01 00 00 00 nop
2015910: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015914: 80 a4 40 02 cmp %l1, %g2
2015918: 12 80 00 0b bne 2015944 <rtems_signal_send+0xbc> <== NEVER TAKEN
201591c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015920: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015924: 30 80 00 08 b,a 2015944 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015928: 7f ff e7 e0 call 200f8a8 <sparc_disable_interrupts>
201592c: 01 00 00 00 nop
*signal_set |= signals;
2015930: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015934: b2 10 40 19 or %g1, %i1, %i1
2015938: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
201593c: 7f ff e7 df call 200f8b8 <sparc_enable_interrupts>
2015940: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015944: 40 00 11 37 call 2019e20 <_Thread_Enable_dispatch>
2015948: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
201594c: 81 c7 e0 08 ret
2015950: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
2015954: 40 00 11 33 call 2019e20 <_Thread_Enable_dispatch>
2015958: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
201595c: 81 c7 e0 08 ret
2015960: 81 e8 00 00 restore
0200d64c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d64c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d650: 80 a6 a0 00 cmp %i2, 0
200d654: 02 80 00 5a be 200d7bc <rtems_task_mode+0x170>
200d658: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d65c: 03 00 80 54 sethi %hi(0x2015000), %g1
200d660: e2 00 62 e8 ld [ %g1 + 0x2e8 ], %l1 ! 20152e8 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d664: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d668: e0 04 61 58 ld [ %l1 + 0x158 ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d66c: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d670: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d674: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d678: 80 a0 60 00 cmp %g1, 0
200d67c: 02 80 00 03 be 200d688 <rtems_task_mode+0x3c>
200d680: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d684: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d688: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
200d68c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d690: 7f ff f1 e4 call 2009e20 <_CPU_ISR_Get_level>
200d694: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d698: a7 2c e0 0a sll %l3, 0xa, %l3
200d69c: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d6a0: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d6a4: 80 8e 61 00 btst 0x100, %i1
200d6a8: 02 80 00 06 be 200d6c0 <rtems_task_mode+0x74>
200d6ac: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d6b0: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d6b4: 80 a0 00 01 cmp %g0, %g1
200d6b8: 82 60 3f ff subx %g0, -1, %g1
200d6bc: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d6c0: 80 8e 62 00 btst 0x200, %i1
200d6c4: 02 80 00 0b be 200d6f0 <rtems_task_mode+0xa4>
200d6c8: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d6cc: 80 8e 22 00 btst 0x200, %i0
200d6d0: 22 80 00 07 be,a 200d6ec <rtems_task_mode+0xa0>
200d6d4: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d6d8: 82 10 20 01 mov 1, %g1
200d6dc: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d6e0: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d6e4: c2 00 63 f4 ld [ %g1 + 0x3f4 ], %g1 ! 2014ff4 <_Thread_Ticks_per_timeslice>
200d6e8: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d6ec: 80 8e 60 0f btst 0xf, %i1
200d6f0: 02 80 00 06 be 200d708 <rtems_task_mode+0xbc>
200d6f4: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d6f8: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d6fc: 7f ff d2 bb call 20021e8 <sparc_enable_interrupts>
200d700: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d704: 80 8e 64 00 btst 0x400, %i1
200d708: 02 80 00 14 be 200d758 <rtems_task_mode+0x10c>
200d70c: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d710: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d714: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d718: 80 a0 00 18 cmp %g0, %i0
200d71c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d720: 80 a0 40 02 cmp %g1, %g2
200d724: 22 80 00 0e be,a 200d75c <rtems_task_mode+0x110>
200d728: 03 00 80 54 sethi %hi(0x2015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d72c: 7f ff d2 ab call 20021d8 <sparc_disable_interrupts>
200d730: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d734: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d738: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d73c: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d740: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d744: 7f ff d2 a9 call 20021e8 <sparc_enable_interrupts>
200d748: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d74c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d750: 80 a0 00 01 cmp %g0, %g1
200d754: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200d758: 03 00 80 54 sethi %hi(0x2015000), %g1
200d75c: c4 00 62 0c ld [ %g1 + 0x20c ], %g2 ! 201520c <_System_state_Current>
200d760: 80 a0 a0 03 cmp %g2, 3
200d764: 12 80 00 16 bne 200d7bc <rtems_task_mode+0x170> <== NEVER TAKEN
200d768: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d76c: 07 00 80 54 sethi %hi(0x2015000), %g3
if ( are_signals_pending ||
200d770: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d774: 86 10 e2 dc or %g3, 0x2dc, %g3
if ( are_signals_pending ||
200d778: 12 80 00 0a bne 200d7a0 <rtems_task_mode+0x154>
200d77c: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200d780: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d784: 80 a0 80 03 cmp %g2, %g3
200d788: 02 80 00 0d be 200d7bc <rtems_task_mode+0x170>
200d78c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d790: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d794: 80 a0 a0 00 cmp %g2, 0
200d798: 02 80 00 09 be 200d7bc <rtems_task_mode+0x170> <== NEVER TAKEN
200d79c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d7a0: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d7a4: 03 00 80 54 sethi %hi(0x2015000), %g1
200d7a8: 82 10 62 dc or %g1, 0x2dc, %g1 ! 20152dc <_Per_CPU_Information>
200d7ac: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d7b0: 7f ff eb 5f call 200852c <_Thread_Dispatch>
200d7b4: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d7b8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d7bc: 81 c7 e0 08 ret
200d7c0: 91 e8 00 01 restore %g0, %g1, %o0
0200abd8 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200abd8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200abdc: 80 a6 60 00 cmp %i1, 0
200abe0: 02 80 00 07 be 200abfc <rtems_task_set_priority+0x24>
200abe4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200abe8: 03 00 80 63 sethi %hi(0x2018c00), %g1
200abec: c2 08 60 44 ldub [ %g1 + 0x44 ], %g1 ! 2018c44 <rtems_maximum_priority>
200abf0: 80 a6 40 01 cmp %i1, %g1
200abf4: 18 80 00 1c bgu 200ac64 <rtems_task_set_priority+0x8c>
200abf8: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200abfc: 80 a6 a0 00 cmp %i2, 0
200ac00: 02 80 00 19 be 200ac64 <rtems_task_set_priority+0x8c>
200ac04: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200ac08: 40 00 08 d0 call 200cf48 <_Thread_Get>
200ac0c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200ac10: c2 07 bf fc ld [ %fp + -4 ], %g1
200ac14: 80 a0 60 00 cmp %g1, 0
200ac18: 12 80 00 13 bne 200ac64 <rtems_task_set_priority+0x8c>
200ac1c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200ac20: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200ac24: 80 a6 60 00 cmp %i1, 0
200ac28: 02 80 00 0d be 200ac5c <rtems_task_set_priority+0x84>
200ac2c: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200ac30: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200ac34: 80 a0 60 00 cmp %g1, 0
200ac38: 02 80 00 06 be 200ac50 <rtems_task_set_priority+0x78>
200ac3c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200ac40: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200ac44: 80 a0 40 19 cmp %g1, %i1
200ac48: 08 80 00 05 bleu 200ac5c <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200ac4c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200ac50: 92 10 00 19 mov %i1, %o1
200ac54: 40 00 07 69 call 200c9f8 <_Thread_Change_priority>
200ac58: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200ac5c: 40 00 08 ae call 200cf14 <_Thread_Enable_dispatch>
200ac60: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200ac64: 81 c7 e0 08 ret
200ac68: 81 e8 00 00 restore
02016298 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2016298: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
201629c: 11 00 80 f2 sethi %hi(0x203c800), %o0
20162a0: 92 10 00 18 mov %i0, %o1
20162a4: 90 12 23 54 or %o0, 0x354, %o0
20162a8: 40 00 0b bf call 20191a4 <_Objects_Get>
20162ac: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20162b0: c2 07 bf fc ld [ %fp + -4 ], %g1
20162b4: 80 a0 60 00 cmp %g1, 0
20162b8: 12 80 00 0c bne 20162e8 <rtems_timer_cancel+0x50>
20162bc: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
20162c0: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20162c4: 80 a0 60 04 cmp %g1, 4
20162c8: 02 80 00 04 be 20162d8 <rtems_timer_cancel+0x40> <== NEVER TAKEN
20162cc: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
20162d0: 40 00 13 cc call 201b200 <_Watchdog_Remove>
20162d4: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
20162d8: 40 00 0e d2 call 2019e20 <_Thread_Enable_dispatch>
20162dc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20162e0: 81 c7 e0 08 ret
20162e4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20162e8: 81 c7 e0 08 ret
20162ec: 91 e8 20 04 restore %g0, 4, %o0
02016780 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016780: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016784: 03 00 80 f2 sethi %hi(0x203c800), %g1
2016788: e2 00 63 94 ld [ %g1 + 0x394 ], %l1 ! 203cb94 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
201678c: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2016790: 80 a4 60 00 cmp %l1, 0
2016794: 02 80 00 33 be 2016860 <rtems_timer_server_fire_when+0xe0>
2016798: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
201679c: 03 00 80 f2 sethi %hi(0x203c800), %g1
20167a0: c2 08 60 80 ldub [ %g1 + 0x80 ], %g1 ! 203c880 <_TOD_Is_set>
20167a4: 80 a0 60 00 cmp %g1, 0
20167a8: 02 80 00 2e be 2016860 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
20167ac: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
20167b0: 80 a6 a0 00 cmp %i2, 0
20167b4: 02 80 00 2b be 2016860 <rtems_timer_server_fire_when+0xe0>
20167b8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
20167bc: 90 10 00 19 mov %i1, %o0
20167c0: 7f ff f4 06 call 20137d8 <_TOD_Validate>
20167c4: b0 10 20 14 mov 0x14, %i0
20167c8: 80 8a 20 ff btst 0xff, %o0
20167cc: 02 80 00 27 be 2016868 <rtems_timer_server_fire_when+0xe8>
20167d0: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
20167d4: 7f ff f3 cd call 2013708 <_TOD_To_seconds>
20167d8: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20167dc: 27 00 80 f2 sethi %hi(0x203c800), %l3
20167e0: c2 04 e1 1c ld [ %l3 + 0x11c ], %g1 ! 203c91c <_TOD_Now>
20167e4: 80 a2 00 01 cmp %o0, %g1
20167e8: 08 80 00 1e bleu 2016860 <rtems_timer_server_fire_when+0xe0>
20167ec: a4 10 00 08 mov %o0, %l2
20167f0: 11 00 80 f2 sethi %hi(0x203c800), %o0
20167f4: 92 10 00 10 mov %l0, %o1
20167f8: 90 12 23 54 or %o0, 0x354, %o0
20167fc: 40 00 0a 6a call 20191a4 <_Objects_Get>
2016800: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016804: c2 07 bf fc ld [ %fp + -4 ], %g1
2016808: b2 10 00 08 mov %o0, %i1
201680c: 80 a0 60 00 cmp %g1, 0
2016810: 12 80 00 14 bne 2016860 <rtems_timer_server_fire_when+0xe0>
2016814: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016818: 40 00 12 7a call 201b200 <_Watchdog_Remove>
201681c: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2016820: 82 10 20 03 mov 3, %g1
2016824: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016828: c2 04 e1 1c ld [ %l3 + 0x11c ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
201682c: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016830: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016834: c2 04 60 04 ld [ %l1 + 4 ], %g1
2016838: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
201683c: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
2016840: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
2016844: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016848: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201684c: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2016850: 9f c0 40 00 call %g1
2016854: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016858: 40 00 0d 72 call 2019e20 <_Thread_Enable_dispatch>
201685c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2016860: 81 c7 e0 08 ret
2016864: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016868: 81 c7 e0 08 ret
201686c: 81 e8 00 00 restore