=============================================================================== 02017534 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 2017534: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017538: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 201753c: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017540: 80 a6 80 01 cmp %i2, %g1 2017544: 18 80 00 16 bgu 201759c <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 2017548: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 201754c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2017550: 80 a0 60 00 cmp %g1, 0 2017554: 02 80 00 0b be 2017580 <_CORE_message_queue_Broadcast+0x4c> 2017558: a2 10 20 00 clr %l1 *count = 0; 201755c: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 2017560: 81 c7 e0 08 ret 2017564: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 2017568: 92 10 00 19 mov %i1, %o1 201756c: 40 00 21 64 call 201fafc 2017570: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 2017574: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 2017578: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 201757c: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 2017580: 40 00 0b 07 call 201a19c <_Thread_queue_Dequeue> 2017584: 90 10 00 10 mov %l0, %o0 2017588: a4 92 20 00 orcc %o0, 0, %l2 201758c: 32 bf ff f7 bne,a 2017568 <_CORE_message_queue_Broadcast+0x34> 2017590: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 2017594: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 2017598: b0 10 20 00 clr %i0 } 201759c: 81 c7 e0 08 ret 20175a0: 81 e8 00 00 restore =============================================================================== 0200fe24 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fe24: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fe28: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fe2c: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fe30: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fe34: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fe38: 80 8e e0 03 btst 3, %i3 200fe3c: 02 80 00 07 be 200fe58 <_CORE_message_queue_Initialize+0x34> 200fe40: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 200fe44: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fe48: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 200fe4c: 80 a4 80 1b cmp %l2, %i3 200fe50: 0a 80 00 22 bcs 200fed8 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fe54: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 200fe58: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 200fe5c: 92 10 00 1a mov %i2, %o1 200fe60: 90 10 00 11 mov %l1, %o0 200fe64: 40 00 3f 3b call 201fb50 <.umul> 200fe68: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 200fe6c: 80 a2 00 12 cmp %o0, %l2 200fe70: 0a 80 00 1a bcs 200fed8 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fe74: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fe78: 40 00 0b dd call 2012dec <_Workspace_Allocate> 200fe7c: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fe80: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fe84: 80 a2 20 00 cmp %o0, 0 200fe88: 02 80 00 14 be 200fed8 <_CORE_message_queue_Initialize+0xb4> 200fe8c: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fe90: 90 04 20 60 add %l0, 0x60, %o0 200fe94: 94 10 00 1a mov %i2, %o2 200fe98: 40 00 14 2e call 2014f50 <_Chain_Initialize> 200fe9c: 96 10 00 11 mov %l1, %o3 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200fea0: 82 04 20 54 add %l0, 0x54, %g1 head->next = tail; 200fea4: c2 24 20 50 st %g1, [ %l0 + 0x50 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 200fea8: 82 04 20 50 add %l0, 0x50, %g1 Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 200feac: c0 24 20 54 clr [ %l0 + 0x54 ] tail->previous = head; 200feb0: c2 24 20 58 st %g1, [ %l0 + 0x58 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 200feb4: c2 06 40 00 ld [ %i1 ], %g1 200feb8: 90 10 00 10 mov %l0, %o0 200febc: 82 18 60 01 xor %g1, 1, %g1 200fec0: 80 a0 00 01 cmp %g0, %g1 200fec4: 94 10 20 80 mov 0x80, %o2 200fec8: 92 60 3f ff subx %g0, -1, %o1 200fecc: 96 10 20 06 mov 6, %o3 200fed0: 40 00 09 31 call 2012394 <_Thread_queue_Initialize> 200fed4: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200fed8: 81 c7 e0 08 ret 200fedc: 81 e8 00 00 restore =============================================================================== 0200fee0 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fee0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 200fee4: 27 00 80 91 sethi %hi(0x2024400), %l3 200fee8: a6 14 e3 8c or %l3, 0x38c, %l3 ! 202478c <_Per_CPU_Information> 200feec: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fef0: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 200fef4: 7f ff de 3a call 20077dc 200fef8: c0 24 a0 34 clr [ %l2 + 0x34 ] 200fefc: 82 10 00 08 mov %o0, %g1 executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 200ff00: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200ff04: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 200ff08: 80 a4 40 02 cmp %l1, %g2 200ff0c: 02 80 00 15 be 200ff60 <_CORE_message_queue_Seize+0x80> 200ff10: 86 06 20 50 add %i0, 0x50, %g3 Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 200ff14: c4 04 40 00 ld [ %l1 ], %g2 head->next = new_first; 200ff18: c4 26 20 50 st %g2, [ %i0 + 0x50 ] executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 200ff1c: 80 a4 60 00 cmp %l1, 0 200ff20: 02 80 00 10 be 200ff60 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 200ff24: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 200ff28: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200ff2c: 82 00 7f ff add %g1, -1, %g1 200ff30: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 200ff34: 7f ff de 2e call 20077ec 200ff38: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 200ff3c: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 200ff40: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 200ff44: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 200ff48: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 200ff4c: 90 10 00 1a mov %i2, %o0 200ff50: 40 00 1e d5 call 2017aa4 200ff54: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 200ff58: 7f ff ff 83 call 200fd64 <_Chain_Append> 200ff5c: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 200ff60: 80 8f 20 ff btst 0xff, %i4 200ff64: 32 80 00 08 bne,a 200ff84 <_CORE_message_queue_Seize+0xa4> 200ff68: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 200ff6c: 7f ff de 20 call 20077ec 200ff70: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 200ff74: 82 10 20 04 mov 4, %g1 200ff78: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 200ff7c: 81 c7 e0 08 ret 200ff80: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 200ff84: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 200ff88: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 200ff8c: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 200ff90: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 200ff94: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 200ff98: 90 10 00 01 mov %g1, %o0 200ff9c: 7f ff de 14 call 20077ec 200ffa0: 35 00 80 49 sethi %hi(0x2012400), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 200ffa4: b2 10 00 1d mov %i5, %i1 200ffa8: 40 00 08 51 call 20120ec <_Thread_queue_Enqueue_with_handler> 200ffac: 95 ee a0 74 restore %i2, 0x74, %o2 =============================================================================== 02006c94 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2006c94: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2006c98: 03 00 80 54 sethi %hi(0x2015000), %g1 2006c9c: c2 00 60 70 ld [ %g1 + 0x70 ], %g1 ! 2015070 <_Thread_Dispatch_disable_level> 2006ca0: 80 a0 60 00 cmp %g1, 0 2006ca4: 02 80 00 0d be 2006cd8 <_CORE_mutex_Seize+0x44> 2006ca8: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006cac: 80 8e a0 ff btst 0xff, %i2 2006cb0: 02 80 00 0b be 2006cdc <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 2006cb4: 90 10 00 18 mov %i0, %o0 2006cb8: 03 00 80 54 sethi %hi(0x2015000), %g1 2006cbc: c2 00 61 ec ld [ %g1 + 0x1ec ], %g1 ! 20151ec <_System_state_Current> 2006cc0: 80 a0 60 01 cmp %g1, 1 2006cc4: 08 80 00 05 bleu 2006cd8 <_CORE_mutex_Seize+0x44> 2006cc8: 90 10 20 00 clr %o0 2006ccc: 92 10 20 00 clr %o1 2006cd0: 40 00 01 da call 2007438 <_Internal_error_Occurred> 2006cd4: 94 10 20 12 mov 0x12, %o2 2006cd8: 90 10 00 18 mov %i0, %o0 2006cdc: 40 00 13 4a call 200ba04 <_CORE_mutex_Seize_interrupt_trylock> 2006ce0: 92 07 a0 54 add %fp, 0x54, %o1 2006ce4: 80 a2 20 00 cmp %o0, 0 2006ce8: 02 80 00 0a be 2006d10 <_CORE_mutex_Seize+0x7c> 2006cec: 80 8e a0 ff btst 0xff, %i2 2006cf0: 35 00 80 54 sethi %hi(0x2015000), %i2 2006cf4: 12 80 00 09 bne 2006d18 <_CORE_mutex_Seize+0x84> 2006cf8: b4 16 a2 bc or %i2, 0x2bc, %i2 ! 20152bc <_Per_CPU_Information> 2006cfc: 7f ff ed 35 call 20021d0 2006d00: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d04: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d08: 84 10 20 01 mov 1, %g2 2006d0c: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006d10: 81 c7 e0 08 ret 2006d14: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2006d18: 82 10 20 01 mov 1, %g1 2006d1c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006d20: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d24: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006d28: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006d2c: 03 00 80 54 sethi %hi(0x2015000), %g1 2006d30: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 2006d34: 84 00 a0 01 inc %g2 2006d38: c4 20 60 70 st %g2, [ %g1 + 0x70 ] 2006d3c: 7f ff ed 25 call 20021d0 2006d40: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d44: 90 10 00 18 mov %i0, %o0 2006d48: 7f ff ff ba call 2006c30 <_CORE_mutex_Seize_interrupt_blocking> 2006d4c: 92 10 00 1b mov %i3, %o1 2006d50: 81 c7 e0 08 ret 2006d54: 81 e8 00 00 restore =============================================================================== 0200ba04 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 200ba04: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 200ba08: 03 00 80 54 sethi %hi(0x2015000), %g1 200ba0c: c2 00 62 c8 ld [ %g1 + 0x2c8 ], %g1 ! 20152c8 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200ba10: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 200ba14: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200ba18: 80 a0 a0 00 cmp %g2, 0 200ba1c: 02 80 00 2f be 200bad8 <_CORE_mutex_Seize_interrupt_trylock+0xd4> 200ba20: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200ba24: c4 00 60 08 ld [ %g1 + 8 ], %g2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 200ba28: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200ba2c: c4 26 20 60 st %g2, [ %i0 + 0x60 ] the_mutex->nest_count = 1; 200ba30: 84 10 20 01 mov 1, %g2 200ba34: c4 26 20 54 st %g2, [ %i0 + 0x54 ] return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 200ba38: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 200ba3c: 80 a0 a0 02 cmp %g2, 2 200ba40: 02 80 00 05 be 200ba54 <_CORE_mutex_Seize_interrupt_trylock+0x50> 200ba44: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 200ba48: 80 a0 a0 03 cmp %g2, 3 200ba4c: 12 80 00 07 bne 200ba68 <_CORE_mutex_Seize_interrupt_trylock+0x64> 200ba50: 01 00 00 00 nop _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200ba54: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200ba58: 80 a0 a0 03 cmp %g2, 3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200ba5c: 88 00 e0 01 add %g3, 1, %g4 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200ba60: 02 80 00 03 be 200ba6c <_CORE_mutex_Seize_interrupt_trylock+0x68> 200ba64: c8 20 60 1c st %g4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200ba68: 30 80 00 2b b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 200ba6c: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 current = executing->current_priority; 200ba70: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 if ( current == ceiling ) { 200ba74: 80 a1 00 02 cmp %g4, %g2 200ba78: 12 80 00 03 bne 200ba84 <_CORE_mutex_Seize_interrupt_trylock+0x80> 200ba7c: 01 00 00 00 nop _ISR_Enable( *level_p ); 200ba80: 30 80 00 25 b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110> return 0; } if ( current > ceiling ) { 200ba84: 08 80 00 0f bleu 200bac0 <_CORE_mutex_Seize_interrupt_trylock+0xbc> 200ba88: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200ba8c: 03 00 80 54 sethi %hi(0x2015000), %g1 200ba90: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 200ba94: 84 00 a0 01 inc %g2 200ba98: c4 20 60 70 st %g2, [ %g1 + 0x70 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 200ba9c: 7f ff d9 cd call 20021d0 200baa0: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 200baa4: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 200baa8: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 200baac: 7f ff f1 a6 call 2008144 <_Thread_Change_priority> 200bab0: 94 10 20 00 clr %o2 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 200bab4: 7f ff f2 eb call 2008660 <_Thread_Enable_dispatch> 200bab8: b0 10 20 00 clr %i0 200babc: 30 80 00 1d b,a 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 200bac0: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */ 200bac4: c0 24 20 54 clr [ %l0 + 0x54 ] _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED; 200bac8: 84 10 20 01 mov 1, %g2 200bacc: c4 24 20 50 st %g2, [ %l0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */ 200bad0: c6 20 60 1c st %g3, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200bad4: 30 80 00 10 b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110> /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 200bad8: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200badc: 80 a0 80 01 cmp %g2, %g1 200bae0: 12 80 00 14 bne 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c> 200bae4: b0 10 20 01 mov 1, %i0 switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200bae8: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 200baec: 80 a0 60 00 cmp %g1, 0 200baf0: 22 80 00 07 be,a 200bb0c <_CORE_mutex_Seize_interrupt_trylock+0x108> 200baf4: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200baf8: 80 a0 60 01 cmp %g1, 1 200bafc: 12 80 00 0d bne 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN 200bb00: 82 10 20 02 mov 2, %g1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 200bb04: 10 80 00 08 b 200bb24 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 200bb08: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 200bb0c: 82 00 60 01 inc %g1 200bb10: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 200bb14: 7f ff d9 af call 20021d0 200bb18: d0 06 40 00 ld [ %i1 ], %o0 return 0; 200bb1c: 81 c7 e0 08 ret 200bb20: 91 e8 20 00 restore %g0, 0, %o0 case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p ); 200bb24: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200bb28: 7f ff d9 aa call 20021d0 <== NOT EXECUTED 200bb2c: b0 10 20 00 clr %i0 <== NOT EXECUTED 200bb30: 81 c7 e0 08 ret 200bb34: 81 e8 00 00 restore =============================================================================== 02006ed4 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2006ed4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2006ed8: 90 10 00 18 mov %i0, %o0 2006edc: 40 00 06 c6 call 20089f4 <_Thread_queue_Dequeue> 2006ee0: a0 10 00 18 mov %i0, %l0 2006ee4: 80 a2 20 00 cmp %o0, 0 2006ee8: 12 80 00 0e bne 2006f20 <_CORE_semaphore_Surrender+0x4c> 2006eec: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2006ef0: 7f ff ec b4 call 20021c0 2006ef4: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2006ef8: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006efc: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006f00: 80 a0 40 02 cmp %g1, %g2 2006f04: 1a 80 00 05 bcc 2006f18 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2006f08: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2006f0c: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2006f10: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2006f14: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2006f18: 7f ff ec ae call 20021d0 2006f1c: 01 00 00 00 nop } return status; } 2006f20: 81 c7 e0 08 ret 2006f24: 81 e8 00 00 restore =============================================================================== 02005c88 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005c88: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005c8c: e2 06 21 58 ld [ %i0 + 0x158 ], %l1 option_set = (rtems_option) the_thread->Wait.option; 2005c90: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 2005c94: 7f ff f1 4b call 20021c0 2005c98: a0 10 00 18 mov %i0, %l0 2005c9c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2005ca0: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2005ca4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2005ca8: 82 88 c0 02 andcc %g3, %g2, %g1 2005cac: 12 80 00 03 bne 2005cb8 <_Event_Surrender+0x30> 2005cb0: 09 00 80 54 sethi %hi(0x2015000), %g4 _ISR_Enable( level ); 2005cb4: 30 80 00 42 b,a 2005dbc <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2005cb8: 88 11 22 bc or %g4, 0x2bc, %g4 ! 20152bc <_Per_CPU_Information> 2005cbc: da 01 20 08 ld [ %g4 + 8 ], %o5 2005cc0: 80 a3 60 00 cmp %o5, 0 2005cc4: 22 80 00 1d be,a 2005d38 <_Event_Surrender+0xb0> 2005cc8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005ccc: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005cd0: 80 a4 00 04 cmp %l0, %g4 2005cd4: 32 80 00 19 bne,a 2005d38 <_Event_Surrender+0xb0> 2005cd8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005cdc: 09 00 80 54 sethi %hi(0x2015000), %g4 2005ce0: da 01 23 10 ld [ %g4 + 0x310 ], %o5 ! 2015310 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2005ce4: 80 a3 60 02 cmp %o5, 2 2005ce8: 02 80 00 07 be 2005d04 <_Event_Surrender+0x7c> <== NEVER TAKEN 2005cec: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2005cf0: c8 01 23 10 ld [ %g4 + 0x310 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005cf4: 80 a1 20 01 cmp %g4, 1 2005cf8: 32 80 00 10 bne,a 2005d38 <_Event_Surrender+0xb0> 2005cfc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2005d00: 80 a0 40 03 cmp %g1, %g3 2005d04: 02 80 00 04 be 2005d14 <_Event_Surrender+0x8c> 2005d08: 80 8c a0 02 btst 2, %l2 2005d0c: 02 80 00 0a be 2005d34 <_Event_Surrender+0xac> <== NEVER TAKEN 2005d10: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2005d14: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2005d18: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d1c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2005d20: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d24: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2005d28: 84 10 20 03 mov 3, %g2 2005d2c: 03 00 80 54 sethi %hi(0x2015000), %g1 2005d30: c4 20 63 10 st %g2, [ %g1 + 0x310 ] ! 2015310 <_Event_Sync_state> } _ISR_Enable( level ); 2005d34: 30 80 00 22 b,a 2005dbc <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2005d38: 80 89 21 00 btst 0x100, %g4 2005d3c: 02 80 00 20 be 2005dbc <_Event_Surrender+0x134> 2005d40: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005d44: 02 80 00 04 be 2005d54 <_Event_Surrender+0xcc> 2005d48: 80 8c a0 02 btst 2, %l2 2005d4c: 02 80 00 1c be 2005dbc <_Event_Surrender+0x134> <== NEVER TAKEN 2005d50: 01 00 00 00 nop 2005d54: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2005d58: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d5c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2005d60: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d64: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2005d68: 7f ff f1 1a call 20021d0 2005d6c: 90 10 00 18 mov %i0, %o0 2005d70: 7f ff f1 14 call 20021c0 2005d74: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2005d78: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005d7c: 80 a0 60 02 cmp %g1, 2 2005d80: 02 80 00 06 be 2005d98 <_Event_Surrender+0x110> 2005d84: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2005d88: 7f ff f1 12 call 20021d0 2005d8c: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005d90: 10 80 00 08 b 2005db0 <_Event_Surrender+0x128> 2005d94: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2005d98: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2005d9c: 7f ff f1 0d call 20021d0 2005da0: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 2005da4: 40 00 0e 4c call 20096d4 <_Watchdog_Remove> 2005da8: 90 04 20 48 add %l0, 0x48, %o0 2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005db0: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2005db4: 40 00 09 45 call 20082c8 <_Thread_Clear_state> 2005db8: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2005dbc: 7f ff f1 05 call 20021d0 2005dc0: 81 e8 00 00 restore =============================================================================== 02005dc8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2005dc8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2005dcc: 90 10 00 18 mov %i0, %o0 2005dd0: 40 00 0a 31 call 2008694 <_Thread_Get> 2005dd4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2005ddc: 80 a0 60 00 cmp %g1, 0 2005de0: 12 80 00 1c bne 2005e50 <_Event_Timeout+0x88> <== NEVER TAKEN 2005de4: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2005de8: 7f ff f0 f6 call 20021c0 2005dec: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2005df0: 03 00 80 54 sethi %hi(0x2015000), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2005df4: c2 00 62 c8 ld [ %g1 + 0x2c8 ], %g1 ! 20152c8 <_Per_CPU_Information+0xc> 2005df8: 80 a4 00 01 cmp %l0, %g1 2005dfc: 12 80 00 09 bne 2005e20 <_Event_Timeout+0x58> 2005e00: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2005e04: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e08: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 2015310 <_Event_Sync_state> 2005e0c: 80 a0 a0 01 cmp %g2, 1 2005e10: 32 80 00 05 bne,a 2005e24 <_Event_Timeout+0x5c> 2005e14: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2005e18: 84 10 20 02 mov 2, %g2 2005e1c: c4 20 63 10 st %g2, [ %g1 + 0x310 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2005e20: 82 10 20 06 mov 6, %g1 2005e24: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2005e28: 7f ff f0 ea call 20021d0 2005e2c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005e30: 90 10 00 10 mov %l0, %o0 2005e34: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005e38: 40 00 09 24 call 20082c8 <_Thread_Clear_state> 2005e3c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2005e40: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e44: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 2005e48: 84 00 bf ff add %g2, -1, %g2 2005e4c: c4 20 60 70 st %g2, [ %g1 + 0x70 ] 2005e50: 81 c7 e0 08 ret 2005e54: 81 e8 00 00 restore =============================================================================== 0200c074 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c074: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200c078: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200c07c: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c080: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200c084: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200c088: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200c08c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200c090: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 200c094: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c098: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200c09c: 80 a4 40 19 cmp %l1, %i1 200c0a0: 0a 80 00 9f bcs 200c31c <_Heap_Extend+0x2a8> 200c0a4: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200c0a8: 90 10 00 19 mov %i1, %o0 200c0ac: 94 10 00 13 mov %l3, %o2 200c0b0: 98 07 bf fc add %fp, -4, %o4 200c0b4: 7f ff ec fd call 20074a8 <_Heap_Get_first_and_last_block> 200c0b8: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c0bc: 80 8a 20 ff btst 0xff, %o0 200c0c0: 02 80 00 97 be 200c31c <_Heap_Extend+0x2a8> 200c0c4: aa 10 00 12 mov %l2, %l5 200c0c8: ba 10 20 00 clr %i5 200c0cc: b8 10 20 00 clr %i4 200c0d0: b0 10 20 00 clr %i0 200c0d4: ae 10 20 00 clr %l7 200c0d8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c0dc: 80 a0 40 11 cmp %g1, %l1 200c0e0: 1a 80 00 05 bcc 200c0f4 <_Heap_Extend+0x80> 200c0e4: ec 05 40 00 ld [ %l5 ], %l6 200c0e8: 80 a6 40 16 cmp %i1, %l6 200c0ec: 2a 80 00 8c bcs,a 200c31c <_Heap_Extend+0x2a8> 200c0f0: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c0f4: 80 a4 40 01 cmp %l1, %g1 200c0f8: 02 80 00 06 be 200c110 <_Heap_Extend+0x9c> 200c0fc: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c100: 2a 80 00 05 bcs,a 200c114 <_Heap_Extend+0xa0> 200c104: b8 10 00 15 mov %l5, %i4 200c108: 10 80 00 04 b 200c118 <_Heap_Extend+0xa4> 200c10c: 90 10 00 16 mov %l6, %o0 200c110: ae 10 00 15 mov %l5, %l7 200c114: 90 10 00 16 mov %l6, %o0 200c118: 40 00 16 ce call 2011c50 <.urem> 200c11c: 92 10 00 13 mov %l3, %o1 200c120: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c124: 80 a5 80 19 cmp %l6, %i1 200c128: 12 80 00 05 bne 200c13c <_Heap_Extend+0xc8> 200c12c: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 200c130: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200c134: 10 80 00 04 b 200c144 <_Heap_Extend+0xd0> 200c138: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c13c: 2a 80 00 02 bcs,a 200c144 <_Heap_Extend+0xd0> 200c140: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c144: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c148: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c14c: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c150: 80 a5 40 12 cmp %l5, %l2 200c154: 12 bf ff e2 bne 200c0dc <_Heap_Extend+0x68> 200c158: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 200c15c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c160: 80 a6 40 01 cmp %i1, %g1 200c164: 3a 80 00 04 bcc,a 200c174 <_Heap_Extend+0x100> 200c168: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c16c: 10 80 00 05 b 200c180 <_Heap_Extend+0x10c> 200c170: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200c174: 80 a0 40 11 cmp %g1, %l1 200c178: 2a 80 00 02 bcs,a 200c180 <_Heap_Extend+0x10c> 200c17c: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c180: c4 07 bf fc ld [ %fp + -4 ], %g2 200c184: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 200c188: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c18c: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c190: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200c194: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c198: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c19c: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c1a0: 80 a0 c0 02 cmp %g3, %g2 200c1a4: 08 80 00 04 bleu 200c1b4 <_Heap_Extend+0x140> 200c1a8: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200c1ac: 10 80 00 06 b 200c1c4 <_Heap_Extend+0x150> 200c1b0: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200c1b4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c1b8: 80 a0 80 01 cmp %g2, %g1 200c1bc: 2a 80 00 02 bcs,a 200c1c4 <_Heap_Extend+0x150> 200c1c0: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c1c4: 80 a5 e0 00 cmp %l7, 0 200c1c8: 02 80 00 14 be 200c218 <_Heap_Extend+0x1a4> 200c1cc: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200c1d0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200c1d4: 92 10 00 12 mov %l2, %o1 200c1d8: 40 00 16 9e call 2011c50 <.urem> 200c1dc: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200c1e0: 80 a2 20 00 cmp %o0, 0 200c1e4: 02 80 00 04 be 200c1f4 <_Heap_Extend+0x180> <== ALWAYS TAKEN 200c1e8: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 200c1ec: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c1f0: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200c1f4: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200c1f8: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200c1fc: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200c200: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200c204: 90 10 00 10 mov %l0, %o0 200c208: 7f ff ff 90 call 200c048 <_Heap_Free_block> 200c20c: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c210: 10 80 00 09 b 200c234 <_Heap_Extend+0x1c0> 200c214: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200c218: 80 a7 20 00 cmp %i4, 0 200c21c: 02 80 00 05 be 200c230 <_Heap_Extend+0x1bc> 200c220: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200c224: b8 27 00 01 sub %i4, %g1, %i4 200c228: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200c22c: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c230: 80 a6 20 00 cmp %i0, 0 200c234: 02 80 00 15 be 200c288 <_Heap_Extend+0x214> 200c238: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c23c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200c240: a2 24 40 18 sub %l1, %i0, %l1 200c244: 40 00 16 83 call 2011c50 <.urem> 200c248: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200c24c: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c250: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c254: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 200c258: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 200c25c: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c260: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c264: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200c268: 90 10 00 10 mov %l0, %o0 200c26c: 82 08 60 01 and %g1, 1, %g1 200c270: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 200c274: a2 14 40 01 or %l1, %g1, %l1 200c278: 7f ff ff 74 call 200c048 <_Heap_Free_block> 200c27c: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c280: 10 80 00 0f b 200c2bc <_Heap_Extend+0x248> 200c284: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200c288: 80 a7 60 00 cmp %i5, 0 200c28c: 02 80 00 0b be 200c2b8 <_Heap_Extend+0x244> 200c290: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c294: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 200c298: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200c29c: 86 20 c0 1d sub %g3, %i5, %g3 200c2a0: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c2a4: 84 10 c0 02 or %g3, %g2, %g2 200c2a8: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200c2ac: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c2b0: 84 10 a0 01 or %g2, 1, %g2 200c2b4: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c2b8: 80 a6 20 00 cmp %i0, 0 200c2bc: 32 80 00 09 bne,a 200c2e0 <_Heap_Extend+0x26c> 200c2c0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c2c4: 80 a5 e0 00 cmp %l7, 0 200c2c8: 32 80 00 06 bne,a 200c2e0 <_Heap_Extend+0x26c> 200c2cc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200c2d0: d2 07 bf fc ld [ %fp + -4 ], %o1 200c2d4: 7f ff ff 5d call 200c048 <_Heap_Free_block> 200c2d8: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200c2dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c2e0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c2e4: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c2e8: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c2ec: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c2f0: 84 10 c0 02 or %g3, %g2, %g2 200c2f4: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c2f8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200c2fc: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c300: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 200c304: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200c308: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200c30c: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 200c310: 02 80 00 03 be 200c31c <_Heap_Extend+0x2a8> <== NEVER TAKEN 200c314: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 200c318: e8 26 c0 00 st %l4, [ %i3 ] 200c31c: 81 c7 e0 08 ret 200c320: 81 e8 00 00 restore =============================================================================== 0200bd74 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200bd74: 9d e3 bf a0 save %sp, -96, %sp 200bd78: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200bd7c: 40 00 16 77 call 2011758 <.urem> 200bd80: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200bd84: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bd88: a2 06 7f f8 add %i1, -8, %l1 200bd8c: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200bd90: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bd94: 80 a2 00 0c cmp %o0, %o4 200bd98: 0a 80 00 05 bcs 200bdac <_Heap_Free+0x38> 200bd9c: 82 10 20 00 clr %g1 200bda0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bda4: 80 a0 40 08 cmp %g1, %o0 200bda8: 82 60 3f ff subx %g0, -1, %g1 uintptr_t next_block_size = 0; bool next_is_free = false; _Heap_Protection_block_check( heap, block ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200bdac: 80 a0 60 00 cmp %g1, 0 200bdb0: 02 80 00 6a be 200bf58 <_Heap_Free+0x1e4> 200bdb4: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bdb8: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bdbc: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bdc0: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bdc4: 80 a0 40 0c cmp %g1, %o4 200bdc8: 0a 80 00 05 bcs 200bddc <_Heap_Free+0x68> <== NEVER TAKEN 200bdcc: 86 10 20 00 clr %g3 200bdd0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bdd4: 80 a0 c0 01 cmp %g3, %g1 200bdd8: 86 60 3f ff subx %g0, -1, %g3 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200bddc: 80 a0 e0 00 cmp %g3, 0 200bde0: 02 80 00 5e be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bde4: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bde8: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200bdec: 80 89 20 01 btst 1, %g4 200bdf0: 02 80 00 5a be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bdf4: 88 09 3f fe and %g4, -2, %g4 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200bdf8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bdfc: 80 a0 40 09 cmp %g1, %o1 200be00: 02 80 00 07 be 200be1c <_Heap_Free+0xa8> 200be04: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200be08: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be0c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200be10: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200be14: 80 a0 00 03 cmp %g0, %g3 200be18: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 200be1c: 80 8b 60 01 btst 1, %o5 200be20: 12 80 00 26 bne 200beb8 <_Heap_Free+0x144> 200be24: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 200be28: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200be2c: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200be30: 80 a0 c0 0c cmp %g3, %o4 200be34: 0a 80 00 04 bcs 200be44 <_Heap_Free+0xd0> <== NEVER TAKEN 200be38: 94 10 20 00 clr %o2 200be3c: 80 a2 40 03 cmp %o1, %g3 200be40: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200be44: 80 a2 a0 00 cmp %o2, 0 200be48: 02 80 00 44 be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN 200be4c: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200be50: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200be54: 80 8b 20 01 btst 1, %o4 200be58: 02 80 00 40 be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN 200be5c: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200be60: 22 80 00 0f be,a 200be9c <_Heap_Free+0x128> 200be64: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 200be68: 88 00 80 04 add %g2, %g4, %g4 200be6c: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200be70: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200be74: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200be78: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200be7c: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200be80: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200be84: 82 00 7f ff add %g1, -1, %g1 200be88: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200be8c: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be90: 82 13 60 01 or %o5, 1, %g1 200be94: 10 80 00 27 b 200bf30 <_Heap_Free+0x1bc> 200be98: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be9c: 88 13 60 01 or %o5, 1, %g4 200bea0: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bea4: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200bea8: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200beac: 86 08 ff fe and %g3, -2, %g3 200beb0: 10 80 00 20 b 200bf30 <_Heap_Free+0x1bc> 200beb4: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200beb8: 22 80 00 0d be,a 200beec <_Heap_Free+0x178> 200bebc: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 200bec0: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200bec4: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200bec8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200becc: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200bed0: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 200bed4: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200bed8: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bedc: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200bee0: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bee4: 10 80 00 13 b 200bf30 <_Heap_Free+0x1bc> 200bee8: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200beec: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200bef0: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200bef4: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200bef8: 86 10 a0 01 or %g2, 1, %g3 200befc: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bf00: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200bf04: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bf08: 86 08 ff fe and %g3, -2, %g3 200bf0c: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200bf10: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200bf14: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200bf18: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200bf1c: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200bf20: 80 a0 c0 01 cmp %g3, %g1 200bf24: 1a 80 00 03 bcc 200bf30 <_Heap_Free+0x1bc> 200bf28: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200bf2c: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200bf30: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200bf34: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200bf38: 82 00 7f ff add %g1, -1, %g1 200bf3c: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 200bf40: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200bf44: 82 00 60 01 inc %g1 200bf48: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200bf4c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200bf50: 84 00 40 02 add %g1, %g2, %g2 200bf54: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 200bf58: 81 c7 e0 08 ret 200bf5c: 81 e8 00 00 restore =============================================================================== 0201316c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 201316c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013170: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2013174: 7f ff f9 79 call 2011758 <.urem> 2013178: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 201317c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013180: a2 06 7f f8 add %i1, -8, %l1 2013184: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2013188: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 201318c: 80 a2 00 02 cmp %o0, %g2 2013190: 0a 80 00 05 bcs 20131a4 <_Heap_Size_of_alloc_area+0x38> 2013194: 82 10 20 00 clr %g1 2013198: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 201319c: 80 a0 40 08 cmp %g1, %o0 20131a0: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 20131a4: 80 a0 60 00 cmp %g1, 0 20131a8: 02 80 00 15 be 20131fc <_Heap_Size_of_alloc_area+0x90> 20131ac: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20131b0: e2 02 20 04 ld [ %o0 + 4 ], %l1 20131b4: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20131b8: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20131bc: 80 a4 40 02 cmp %l1, %g2 20131c0: 0a 80 00 05 bcs 20131d4 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 20131c4: 82 10 20 00 clr %g1 20131c8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 20131cc: 80 a0 40 11 cmp %g1, %l1 20131d0: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 20131d4: 80 a0 60 00 cmp %g1, 0 20131d8: 02 80 00 09 be 20131fc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 20131dc: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20131e0: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 20131e4: 80 88 60 01 btst 1, %g1 20131e8: 02 80 00 05 be 20131fc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 20131ec: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 20131f0: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 20131f4: a2 04 60 04 add %l1, 4, %l1 20131f8: e2 26 80 00 st %l1, [ %i2 ] return true; } 20131fc: 81 c7 e0 08 ret 2013200: 81 e8 00 00 restore =============================================================================== 020082b0 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20082b0: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20082b4: 23 00 80 20 sethi %hi(0x2008000), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20082b8: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 20082bc: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 20082c0: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 20082c4: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 20082c8: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20082cc: 80 8e a0 ff btst 0xff, %i2 20082d0: 02 80 00 04 be 20082e0 <_Heap_Walk+0x30> 20082d4: a2 14 62 5c or %l1, 0x25c, %l1 20082d8: 23 00 80 20 sethi %hi(0x2008000), %l1 20082dc: a2 14 62 64 or %l1, 0x264, %l1 ! 2008264 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20082e0: 03 00 80 5e sethi %hi(0x2017800), %g1 20082e4: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 ! 201787c <_System_state_Current> 20082e8: 80 a0 60 03 cmp %g1, 3 20082ec: 12 80 01 2d bne 20087a0 <_Heap_Walk+0x4f0> 20082f0: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 20082f4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20082f8: da 04 20 18 ld [ %l0 + 0x18 ], %o5 20082fc: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2008300: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008304: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 2008308: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 200830c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008310: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 2008314: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008318: 90 10 00 19 mov %i1, %o0 200831c: 92 10 20 00 clr %o1 2008320: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008324: 96 10 00 12 mov %l2, %o3 2008328: 94 12 a2 30 or %o2, 0x230, %o2 200832c: 9f c4 40 00 call %l1 2008330: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008334: 80 a4 a0 00 cmp %l2, 0 2008338: 12 80 00 07 bne 2008354 <_Heap_Walk+0xa4> 200833c: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 2008340: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008344: 90 10 00 19 mov %i1, %o0 2008348: 92 10 20 01 mov 1, %o1 200834c: 10 80 00 38 b 200842c <_Heap_Walk+0x17c> 2008350: 94 12 a2 c8 or %o2, 0x2c8, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008354: 22 80 00 08 be,a 2008374 <_Heap_Walk+0xc4> 2008358: 90 10 00 14 mov %l4, %o0 (*printer)( 200835c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008360: 90 10 00 19 mov %i1, %o0 2008364: 92 10 20 01 mov 1, %o1 2008368: 94 12 a2 e0 or %o2, 0x2e0, %o2 200836c: 10 80 01 0b b 2008798 <_Heap_Walk+0x4e8> 2008370: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008374: 7f ff e5 d4 call 2001ac4 <.urem> 2008378: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 200837c: 80 a2 20 00 cmp %o0, 0 2008380: 22 80 00 08 be,a 20083a0 <_Heap_Walk+0xf0> 2008384: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 2008388: 15 00 80 53 sethi %hi(0x2014c00), %o2 200838c: 90 10 00 19 mov %i1, %o0 2008390: 92 10 20 01 mov 1, %o1 2008394: 94 12 a3 00 or %o2, 0x300, %o2 2008398: 10 80 01 00 b 2008798 <_Heap_Walk+0x4e8> 200839c: 96 10 00 14 mov %l4, %o3 20083a0: 7f ff e5 c9 call 2001ac4 <.urem> 20083a4: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 20083a8: 80 a2 20 00 cmp %o0, 0 20083ac: 22 80 00 08 be,a 20083cc <_Heap_Walk+0x11c> 20083b0: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20083b4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083b8: 90 10 00 19 mov %i1, %o0 20083bc: 92 10 20 01 mov 1, %o1 20083c0: 94 12 a3 28 or %o2, 0x328, %o2 20083c4: 10 80 00 f5 b 2008798 <_Heap_Walk+0x4e8> 20083c8: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20083cc: 80 88 60 01 btst 1, %g1 20083d0: 32 80 00 07 bne,a 20083ec <_Heap_Walk+0x13c> 20083d4: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 20083d8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083dc: 90 10 00 19 mov %i1, %o0 20083e0: 92 10 20 01 mov 1, %o1 20083e4: 10 80 00 12 b 200842c <_Heap_Walk+0x17c> 20083e8: 94 12 a3 60 or %o2, 0x360, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20083ec: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20083f0: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20083f4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20083f8: 80 88 60 01 btst 1, %g1 20083fc: 12 80 00 07 bne 2008418 <_Heap_Walk+0x168> 2008400: 80 a5 80 13 cmp %l6, %l3 (*printer)( 2008404: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008408: 90 10 00 19 mov %i1, %o0 200840c: 92 10 20 01 mov 1, %o1 2008410: 10 80 00 07 b 200842c <_Heap_Walk+0x17c> 2008414: 94 12 a3 90 or %o2, 0x390, %o2 ); return false; } if ( 2008418: 02 80 00 08 be 2008438 <_Heap_Walk+0x188> <== ALWAYS TAKEN 200841c: 15 00 80 53 sethi %hi(0x2014c00), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008420: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008424: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008428: 94 12 a3 a8 or %o2, 0x3a8, %o2 <== NOT EXECUTED 200842c: 9f c4 40 00 call %l1 2008430: b0 10 20 00 clr %i0 2008434: 30 80 00 db b,a 20087a0 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 2008438: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 200843c: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008440: ae 10 00 10 mov %l0, %l7 2008444: 10 80 00 32 b 200850c <_Heap_Walk+0x25c> 2008448: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200844c: 80 a0 80 1c cmp %g2, %i4 2008450: 18 80 00 05 bgu 2008464 <_Heap_Walk+0x1b4> 2008454: 82 10 20 00 clr %g1 2008458: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200845c: 80 a0 40 1c cmp %g1, %i4 2008460: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 2008464: 80 a0 60 00 cmp %g1, 0 2008468: 32 80 00 08 bne,a 2008488 <_Heap_Walk+0x1d8> 200846c: 90 07 20 08 add %i4, 8, %o0 (*printer)( 2008470: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008474: 96 10 00 1c mov %i4, %o3 2008478: 90 10 00 19 mov %i1, %o0 200847c: 92 10 20 01 mov 1, %o1 2008480: 10 80 00 c6 b 2008798 <_Heap_Walk+0x4e8> 2008484: 94 12 a3 d8 or %o2, 0x3d8, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008488: 7f ff e5 8f call 2001ac4 <.urem> 200848c: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 2008490: 80 a2 20 00 cmp %o0, 0 2008494: 22 80 00 08 be,a 20084b4 <_Heap_Walk+0x204> 2008498: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084a0: 96 10 00 1c mov %i4, %o3 20084a4: 90 10 00 19 mov %i1, %o0 20084a8: 92 10 20 01 mov 1, %o1 20084ac: 10 80 00 bb b 2008798 <_Heap_Walk+0x4e8> 20084b0: 94 12 a3 f8 or %o2, 0x3f8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20084b4: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 20084b8: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20084bc: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20084c0: 80 88 60 01 btst 1, %g1 20084c4: 22 80 00 08 be,a 20084e4 <_Heap_Walk+0x234> 20084c8: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 20084cc: 15 00 80 54 sethi %hi(0x2015000), %o2 20084d0: 96 10 00 1c mov %i4, %o3 20084d4: 90 10 00 19 mov %i1, %o0 20084d8: 92 10 20 01 mov 1, %o1 20084dc: 10 80 00 af b 2008798 <_Heap_Walk+0x4e8> 20084e0: 94 12 a0 28 or %o2, 0x28, %o2 ); return false; } if ( free_block->prev != prev_block ) { 20084e4: 80 a3 00 17 cmp %o4, %l7 20084e8: 22 80 00 08 be,a 2008508 <_Heap_Walk+0x258> 20084ec: ae 10 00 1c mov %i4, %l7 (*printer)( 20084f0: 15 00 80 54 sethi %hi(0x2015000), %o2 20084f4: 96 10 00 1c mov %i4, %o3 20084f8: 90 10 00 19 mov %i1, %o0 20084fc: 92 10 20 01 mov 1, %o1 2008500: 10 80 00 49 b 2008624 <_Heap_Walk+0x374> 2008504: 94 12 a0 48 or %o2, 0x48, %o2 return false; } prev_block = free_block; free_block = free_block->next; 2008508: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 200850c: 80 a7 00 10 cmp %i4, %l0 2008510: 32 bf ff cf bne,a 200844c <_Heap_Walk+0x19c> 2008514: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 2008518: 35 00 80 54 sethi %hi(0x2015000), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200851c: 31 00 80 54 sethi %hi(0x2015000), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008520: b4 16 a2 08 or %i2, 0x208, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008524: b0 16 21 f0 or %i0, 0x1f0, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008528: 37 00 80 54 sethi %hi(0x2015000), %i3 block = next_block; } while ( block != first_block ); return true; } 200852c: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008530: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008534: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008538: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200853c: 80 a0 c0 1d cmp %g3, %i5 2008540: 18 80 00 05 bgu 2008554 <_Heap_Walk+0x2a4> <== NEVER TAKEN 2008544: 84 10 20 00 clr %g2 2008548: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200854c: 80 a0 80 1d cmp %g2, %i5 2008550: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 2008554: 80 a0 a0 00 cmp %g2, 0 2008558: 12 80 00 07 bne 2008574 <_Heap_Walk+0x2c4> 200855c: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 2008560: 15 00 80 54 sethi %hi(0x2015000), %o2 2008564: 90 10 00 19 mov %i1, %o0 2008568: 92 10 20 01 mov 1, %o1 200856c: 10 80 00 2c b 200861c <_Heap_Walk+0x36c> 2008570: 94 12 a0 80 or %o2, 0x80, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008574: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008578: c2 27 bf fc st %g1, [ %fp + -4 ] 200857c: b8 40 20 00 addx %g0, 0, %i4 2008580: 90 10 00 17 mov %l7, %o0 2008584: 7f ff e5 50 call 2001ac4 <.urem> 2008588: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 200858c: 80 a2 20 00 cmp %o0, 0 2008590: 02 80 00 0c be 20085c0 <_Heap_Walk+0x310> 2008594: c2 07 bf fc ld [ %fp + -4 ], %g1 2008598: 80 8f 20 ff btst 0xff, %i4 200859c: 02 80 00 0a be 20085c4 <_Heap_Walk+0x314> 20085a0: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 20085a4: 15 00 80 54 sethi %hi(0x2015000), %o2 20085a8: 90 10 00 19 mov %i1, %o0 20085ac: 92 10 20 01 mov 1, %o1 20085b0: 94 12 a0 b0 or %o2, 0xb0, %o2 20085b4: 96 10 00 16 mov %l6, %o3 20085b8: 10 80 00 1b b 2008624 <_Heap_Walk+0x374> 20085bc: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20085c0: 80 a5 c0 14 cmp %l7, %l4 20085c4: 1a 80 00 0d bcc 20085f8 <_Heap_Walk+0x348> 20085c8: 80 a7 40 16 cmp %i5, %l6 20085cc: 80 8f 20 ff btst 0xff, %i4 20085d0: 02 80 00 0a be 20085f8 <_Heap_Walk+0x348> <== NEVER TAKEN 20085d4: 80 a7 40 16 cmp %i5, %l6 (*printer)( 20085d8: 15 00 80 54 sethi %hi(0x2015000), %o2 20085dc: 90 10 00 19 mov %i1, %o0 20085e0: 92 10 20 01 mov 1, %o1 20085e4: 94 12 a0 e0 or %o2, 0xe0, %o2 20085e8: 96 10 00 16 mov %l6, %o3 20085ec: 98 10 00 17 mov %l7, %o4 20085f0: 10 80 00 3f b 20086ec <_Heap_Walk+0x43c> 20085f4: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20085f8: 38 80 00 0e bgu,a 2008630 <_Heap_Walk+0x380> 20085fc: b8 08 60 01 and %g1, 1, %i4 2008600: 80 8f 20 ff btst 0xff, %i4 2008604: 02 80 00 0b be 2008630 <_Heap_Walk+0x380> 2008608: b8 08 60 01 and %g1, 1, %i4 (*printer)( 200860c: 15 00 80 54 sethi %hi(0x2015000), %o2 2008610: 90 10 00 19 mov %i1, %o0 2008614: 92 10 20 01 mov 1, %o1 2008618: 94 12 a1 10 or %o2, 0x110, %o2 200861c: 96 10 00 16 mov %l6, %o3 2008620: 98 10 00 1d mov %i5, %o4 2008624: 9f c4 40 00 call %l1 2008628: b0 10 20 00 clr %i0 200862c: 30 80 00 5d b,a 20087a0 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008630: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008634: 80 88 60 01 btst 1, %g1 2008638: 12 80 00 3f bne 2008734 <_Heap_Walk+0x484> 200863c: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008640: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008644: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008648: 05 00 80 53 sethi %hi(0x2014c00), %g2 block = next_block; } while ( block != first_block ); return true; } 200864c: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008650: 80 a3 40 01 cmp %o5, %g1 2008654: 02 80 00 07 be 2008670 <_Heap_Walk+0x3c0> 2008658: 86 10 a1 f0 or %g2, 0x1f0, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200865c: 80 a3 40 10 cmp %o5, %l0 2008660: 12 80 00 04 bne 2008670 <_Heap_Walk+0x3c0> 2008664: 86 16 e1 b8 or %i3, 0x1b8, %g3 2008668: 19 00 80 53 sethi %hi(0x2014c00), %o4 200866c: 86 13 22 00 or %o4, 0x200, %g3 ! 2014e00 block->next, block->next == last_free_block ? 2008670: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008674: 19 00 80 53 sethi %hi(0x2014c00), %o4 2008678: 80 a0 80 04 cmp %g2, %g4 200867c: 02 80 00 07 be 2008698 <_Heap_Walk+0x3e8> 2008680: 82 13 22 10 or %o4, 0x210, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008684: 80 a0 80 10 cmp %g2, %l0 2008688: 12 80 00 04 bne 2008698 <_Heap_Walk+0x3e8> 200868c: 82 16 e1 b8 or %i3, 0x1b8, %g1 2008690: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008694: 82 11 22 20 or %g4, 0x220, %g1 ! 2014e20 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008698: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200869c: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 20086a0: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 20086a4: 90 10 00 19 mov %i1, %o0 20086a8: 92 10 20 00 clr %o1 20086ac: 15 00 80 54 sethi %hi(0x2015000), %o2 20086b0: 96 10 00 16 mov %l6, %o3 20086b4: 94 12 a1 48 or %o2, 0x148, %o2 20086b8: 9f c4 40 00 call %l1 20086bc: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20086c0: da 07 40 00 ld [ %i5 ], %o5 20086c4: 80 a5 c0 0d cmp %l7, %o5 20086c8: 02 80 00 0c be 20086f8 <_Heap_Walk+0x448> 20086cc: 80 a7 20 00 cmp %i4, 0 (*printer)( 20086d0: 15 00 80 54 sethi %hi(0x2015000), %o2 20086d4: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 20086d8: 90 10 00 19 mov %i1, %o0 20086dc: 92 10 20 01 mov 1, %o1 20086e0: 94 12 a1 80 or %o2, 0x180, %o2 20086e4: 96 10 00 16 mov %l6, %o3 20086e8: 98 10 00 17 mov %l7, %o4 20086ec: 9f c4 40 00 call %l1 20086f0: b0 10 20 00 clr %i0 20086f4: 30 80 00 2b b,a 20087a0 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 20086f8: 32 80 00 0a bne,a 2008720 <_Heap_Walk+0x470> 20086fc: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 2008700: 15 00 80 54 sethi %hi(0x2015000), %o2 2008704: 90 10 00 19 mov %i1, %o0 2008708: 92 10 20 01 mov 1, %o1 200870c: 10 80 00 22 b 2008794 <_Heap_Walk+0x4e4> 2008710: 94 12 a1 c0 or %o2, 0x1c0, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008714: 02 80 00 19 be 2008778 <_Heap_Walk+0x4c8> 2008718: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 200871c: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008720: 80 a0 40 10 cmp %g1, %l0 2008724: 12 bf ff fc bne 2008714 <_Heap_Walk+0x464> 2008728: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 200872c: 10 80 00 17 b 2008788 <_Heap_Walk+0x4d8> 2008730: 15 00 80 54 sethi %hi(0x2015000), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008734: 22 80 00 0a be,a 200875c <_Heap_Walk+0x4ac> 2008738: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 200873c: 90 10 00 19 mov %i1, %o0 2008740: 92 10 20 00 clr %o1 2008744: 94 10 00 18 mov %i0, %o2 2008748: 96 10 00 16 mov %l6, %o3 200874c: 9f c4 40 00 call %l1 2008750: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008754: 10 80 00 09 b 2008778 <_Heap_Walk+0x4c8> 2008758: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 200875c: 90 10 00 19 mov %i1, %o0 2008760: 92 10 20 00 clr %o1 2008764: 94 10 00 1a mov %i2, %o2 2008768: 96 10 00 16 mov %l6, %o3 200876c: 9f c4 40 00 call %l1 2008770: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008774: 80 a7 40 13 cmp %i5, %l3 2008778: 12 bf ff 6d bne 200852c <_Heap_Walk+0x27c> 200877c: ac 10 00 1d mov %i5, %l6 return true; } 2008780: 81 c7 e0 08 ret 2008784: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008788: 90 10 00 19 mov %i1, %o0 200878c: 92 10 20 01 mov 1, %o1 2008790: 94 12 a2 30 or %o2, 0x230, %o2 2008794: 96 10 00 16 mov %l6, %o3 2008798: 9f c4 40 00 call %l1 200879c: b0 10 20 00 clr %i0 20087a0: 81 c7 e0 08 ret 20087a4: 81 e8 00 00 restore =============================================================================== 020074e8 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20074e8: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20074ec: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20074f0: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20074f4: 80 a0 60 00 cmp %g1, 0 20074f8: 02 80 00 20 be 2007578 <_Objects_Allocate+0x90> <== NEVER TAKEN 20074fc: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007500: a2 04 20 20 add %l0, 0x20, %l1 2007504: 7f ff fd 8b call 2006b30 <_Chain_Get> 2007508: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 200750c: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007510: 80 a0 60 00 cmp %g1, 0 2007514: 02 80 00 19 be 2007578 <_Objects_Allocate+0x90> 2007518: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 200751c: 80 a2 20 00 cmp %o0, 0 2007520: 32 80 00 0a bne,a 2007548 <_Objects_Allocate+0x60> 2007524: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 2007528: 40 00 00 1e call 20075a0 <_Objects_Extend_information> 200752c: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007530: 7f ff fd 80 call 2006b30 <_Chain_Get> 2007534: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 2007538: b0 92 20 00 orcc %o0, 0, %i0 200753c: 02 80 00 0f be 2007578 <_Objects_Allocate+0x90> 2007540: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007544: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007548: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 200754c: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007550: 40 00 27 d6 call 20114a8 <.udiv> 2007554: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007558: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200755c: 91 2a 20 02 sll %o0, 2, %o0 2007560: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2007564: 84 00 bf ff add %g2, -1, %g2 2007568: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 200756c: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 2007570: 82 00 7f ff add %g1, -1, %g1 2007574: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 2007578: 81 c7 e0 08 ret 200757c: 81 e8 00 00 restore =============================================================================== 020078fc <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 20078fc: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007900: b3 2e 60 10 sll %i1, 0x10, %i1 2007904: b3 36 60 10 srl %i1, 0x10, %i1 2007908: 80 a6 60 00 cmp %i1, 0 200790c: 02 80 00 17 be 2007968 <_Objects_Get_information+0x6c> 2007910: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007914: 40 00 11 93 call 200bf60 <_Objects_API_maximum_class> 2007918: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 200791c: 80 a2 20 00 cmp %o0, 0 2007920: 02 80 00 12 be 2007968 <_Objects_Get_information+0x6c> 2007924: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007928: 18 80 00 10 bgu 2007968 <_Objects_Get_information+0x6c> 200792c: 03 00 80 53 sethi %hi(0x2014c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007930: b1 2e 20 02 sll %i0, 2, %i0 2007934: 82 10 63 d8 or %g1, 0x3d8, %g1 2007938: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200793c: 80 a0 60 00 cmp %g1, 0 2007940: 02 80 00 0a be 2007968 <_Objects_Get_information+0x6c> <== NEVER TAKEN 2007944: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007948: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 200794c: 80 a4 20 00 cmp %l0, 0 2007950: 02 80 00 06 be 2007968 <_Objects_Get_information+0x6c> <== NEVER TAKEN 2007954: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007958: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 200795c: 80 a0 00 01 cmp %g0, %g1 2007960: 82 60 20 00 subx %g0, 0, %g1 2007964: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 2007968: 81 c7 e0 08 ret 200796c: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02019144 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019144: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 2019148: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201914c: 82 22 40 01 sub %o1, %g1, %g1 2019150: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 2019154: 80 a0 80 01 cmp %g2, %g1 2019158: 0a 80 00 09 bcs 201917c <_Objects_Get_no_protection+0x38> 201915c: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 2019160: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 2019164: d0 00 80 01 ld [ %g2 + %g1 ], %o0 2019168: 80 a2 20 00 cmp %o0, 0 201916c: 02 80 00 05 be 2019180 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 2019170: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 2019174: 81 c3 e0 08 retl 2019178: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 201917c: 82 10 20 01 mov 1, %g1 return NULL; 2019180: 90 10 20 00 clr %o0 } 2019184: 81 c3 e0 08 retl 2019188: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 020091d8 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20091d8: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20091dc: 92 96 20 00 orcc %i0, 0, %o1 20091e0: 12 80 00 06 bne 20091f8 <_Objects_Id_to_name+0x20> 20091e4: 83 32 60 18 srl %o1, 0x18, %g1 20091e8: 03 00 80 75 sethi %hi(0x201d400), %g1 20091ec: c2 00 62 98 ld [ %g1 + 0x298 ], %g1 ! 201d698 <_Per_CPU_Information+0xc> 20091f0: d2 00 60 08 ld [ %g1 + 8 ], %o1 20091f4: 83 32 60 18 srl %o1, 0x18, %g1 20091f8: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20091fc: 84 00 7f ff add %g1, -1, %g2 2009200: 80 a0 a0 02 cmp %g2, 2 2009204: 18 80 00 12 bgu 200924c <_Objects_Id_to_name+0x74> 2009208: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200920c: 10 80 00 12 b 2009254 <_Objects_Id_to_name+0x7c> 2009210: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2009214: 85 28 a0 02 sll %g2, 2, %g2 2009218: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 200921c: 80 a2 20 00 cmp %o0, 0 2009220: 02 80 00 0b be 200924c <_Objects_Id_to_name+0x74> <== NEVER TAKEN 2009224: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2009228: 7f ff ff cf call 2009164 <_Objects_Get> 200922c: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2009230: 80 a2 20 00 cmp %o0, 0 2009234: 02 80 00 06 be 200924c <_Objects_Id_to_name+0x74> 2009238: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200923c: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2009240: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2009244: 40 00 03 0d call 2009e78 <_Thread_Enable_dispatch> 2009248: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 200924c: 81 c7 e0 08 ret 2009250: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2009254: 05 00 80 74 sethi %hi(0x201d000), %g2 2009258: 84 10 a3 a8 or %g2, 0x3a8, %g2 ! 201d3a8 <_Objects_Information_table> 200925c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009260: 80 a0 60 00 cmp %g1, 0 2009264: 12 bf ff ec bne 2009214 <_Objects_Id_to_name+0x3c> 2009268: 85 32 60 1b srl %o1, 0x1b, %g2 200926c: 30 bf ff f8 b,a 200924c <_Objects_Id_to_name+0x74> =============================================================================== 02007a58 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007a58: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007a5c: 85 2f 20 10 sll %i4, 0x10, %g2 2007a60: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a64: 07 00 80 53 sethi %hi(0x2014c00), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007a68: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a6c: 86 10 e3 d8 or %g3, 0x3d8, %g3 2007a70: 85 2e 60 02 sll %i1, 2, %g2 2007a74: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 2007a78: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 2007a7c: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; information->local_table = 0; 2007a80: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 2007a84: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 2007a88: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 2007a8c: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 2007a90: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007a94: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a98: b5 2e a0 10 sll %i2, 0x10, %i2 2007a9c: b5 36 a0 10 srl %i2, 0x10, %i2 2007aa0: 85 2e a0 02 sll %i2, 2, %g2 2007aa4: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2007aa8: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 2007aac: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2007ab0: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2007ab4: 80 a0 a0 00 cmp %g2, 0 2007ab8: 02 80 00 09 be 2007adc <_Objects_Initialize_information+0x84> 2007abc: b6 2e c0 03 andn %i3, %g3, %i3 2007ac0: 80 a6 e0 00 cmp %i3, 0 2007ac4: 12 80 00 07 bne 2007ae0 <_Objects_Initialize_information+0x88> 2007ac8: 05 00 80 53 sethi %hi(0x2014c00), %g2 _Internal_error_Occurred( 2007acc: 90 10 20 00 clr %o0 2007ad0: 92 10 20 01 mov 1, %o1 2007ad4: 7f ff fe 59 call 2007438 <_Internal_error_Occurred> 2007ad8: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 2007adc: 05 00 80 53 sethi %hi(0x2014c00), %g2 2007ae0: 84 10 a1 24 or %g2, 0x124, %g2 ! 2014d24 2007ae4: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007ae8: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007aec: 80 a0 00 1b cmp %g0, %i3 2007af0: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007af4: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007af8: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 2007afc: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007b00: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007b04: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007b08: b4 16 80 02 or %i2, %g2, %i2 /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 2007b0c: 80 88 60 03 btst 3, %g1 2007b10: 02 80 00 04 be 2007b20 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN 2007b14: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 2007b18: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007b1c: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 2007b20: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2007b24: 82 06 20 24 add %i0, 0x24, %g1 head->next = tail; head->previous = NULL; 2007b28: c0 26 20 24 clr [ %i0 + 0x24 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2007b2c: c2 26 20 20 st %g1, [ %i0 + 0x20 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 2007b30: 82 06 20 20 add %i0, 0x20, %g1 _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 2007b34: 80 a6 e0 00 cmp %i3, 0 2007b38: 02 80 00 04 be 2007b48 <_Objects_Initialize_information+0xf0> 2007b3c: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 2007b40: 7f ff fe 98 call 20075a0 <_Objects_Extend_information> 2007b44: 81 e8 00 00 restore 2007b48: 81 c7 e0 08 ret 2007b4c: 81 e8 00 00 restore =============================================================================== 0200b734 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200b734: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200b738: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 if ( !api ) 200b73c: 80 a4 20 00 cmp %l0, 0 200b740: 02 80 00 1d be 200b7b4 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 200b744: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200b748: 7f ff da 9e call 20021c0 200b74c: 01 00 00 00 nop signal_set = asr->signals_posted; 200b750: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 200b754: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200b758: 7f ff da 9e call 20021d0 200b75c: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200b760: 80 a4 e0 00 cmp %l3, 0 200b764: 02 80 00 14 be 200b7b4 <_RTEMS_tasks_Post_switch_extension+0x80> 200b768: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 200b76c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b770: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200b774: 82 00 60 01 inc %g1 200b778: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b77c: 94 10 00 11 mov %l1, %o2 200b780: 25 00 00 3f sethi %hi(0xfc00), %l2 200b784: 40 00 07 ac call 200d634 200b788: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200b78c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b790: 9f c0 40 00 call %g1 200b794: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 200b798: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b79c: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b7a0: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b7a4: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b7a8: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b7ac: 40 00 07 a2 call 200d634 200b7b0: 94 10 00 11 mov %l1, %o2 200b7b4: 81 c7 e0 08 ret 200b7b8: 81 e8 00 00 restore =============================================================================== 02007838 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007838: 9d e3 bf 98 save %sp, -104, %sp 200783c: 11 00 80 76 sethi %hi(0x201d800), %o0 2007840: 92 10 00 18 mov %i0, %o1 2007844: 90 12 21 44 or %o0, 0x144, %o0 2007848: 40 00 07 c7 call 2009764 <_Objects_Get> 200784c: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007850: c2 07 bf fc ld [ %fp + -4 ], %g1 2007854: 80 a0 60 00 cmp %g1, 0 2007858: 12 80 00 24 bne 20078e8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 200785c: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007860: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007864: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007868: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 200786c: 80 88 80 01 btst %g2, %g1 2007870: 22 80 00 0b be,a 200789c <_Rate_monotonic_Timeout+0x64> 2007874: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007878: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 200787c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007880: 80 a0 80 01 cmp %g2, %g1 2007884: 32 80 00 06 bne,a 200789c <_Rate_monotonic_Timeout+0x64> 2007888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200788c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007890: 40 00 09 ee call 200a048 <_Thread_Clear_state> 2007894: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007898: 30 80 00 06 b,a 20078b0 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 200789c: 80 a0 60 01 cmp %g1, 1 20078a0: 12 80 00 0d bne 20078d4 <_Rate_monotonic_Timeout+0x9c> 20078a4: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 20078a8: 82 10 20 03 mov 3, %g1 20078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 20078b0: 7f ff fe 66 call 2007248 <_Rate_monotonic_Initiate_statistics> 20078b4: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20078b8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20078bc: 11 00 80 76 sethi %hi(0x201d800), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20078c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20078c4: 90 12 23 94 or %o0, 0x394, %o0 20078c8: 40 00 0e ff call 200b4c4 <_Watchdog_Insert> 20078cc: 92 04 20 10 add %l0, 0x10, %o1 20078d0: 30 80 00 02 b,a 20078d8 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 20078d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 20078d8: 03 00 80 76 sethi %hi(0x201d800), %g1 20078dc: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 201dab0 <_Thread_Dispatch_disable_level> 20078e0: 84 00 bf ff add %g2, -1, %g2 20078e4: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ] 20078e8: 81 c7 e0 08 ret 20078ec: 81 e8 00 00 restore =============================================================================== 0200bf88 <_Scheduler_priority_Block>: void _Scheduler_priority_Block( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { 200bf88: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract( Thread_Control *the_thread ) { Chain_Control *ready = the_thread->scheduler.priority->ready_chain; 200bf8c: c2 06 60 8c ld [ %i1 + 0x8c ], %g1 200bf90: c2 00 40 00 ld [ %g1 ], %g1 if ( _Chain_Has_only_one_node( ready ) ) { 200bf94: c6 00 40 00 ld [ %g1 ], %g3 200bf98: c4 00 60 08 ld [ %g1 + 8 ], %g2 200bf9c: 80 a0 c0 02 cmp %g3, %g2 200bfa0: 32 80 00 17 bne,a 200bffc <_Scheduler_priority_Block+0x74> 200bfa4: c4 06 40 00 ld [ %i1 ], %g2 { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 200bfa8: c0 20 60 04 clr [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200bfac: 84 00 60 04 add %g1, 4, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 200bfb0: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 200bfb4: c4 20 40 00 st %g2, [ %g1 ] _Chain_Initialize_empty( ready ); _Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map ); 200bfb8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor &= the_priority_map->block_minor; 200bfbc: c6 00 60 04 ld [ %g1 + 4 ], %g3 200bfc0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2 200bfc4: c8 10 c0 00 lduh [ %g3 ], %g4 200bfc8: 84 09 00 02 and %g4, %g2, %g2 200bfcc: c4 30 c0 00 sth %g2, [ %g3 ] if ( *the_priority_map->minor == 0 ) 200bfd0: 85 28 a0 10 sll %g2, 0x10, %g2 200bfd4: 80 a0 a0 00 cmp %g2, 0 200bfd8: 32 80 00 0d bne,a 200c00c <_Scheduler_priority_Block+0x84> 200bfdc: 03 00 80 54 sethi %hi(0x2015000), %g1 _Priority_Major_bit_map &= the_priority_map->block_major; 200bfe0: 05 00 80 54 sethi %hi(0x2015000), %g2 200bfe4: c2 10 60 0c lduh [ %g1 + 0xc ], %g1 200bfe8: c6 10 a2 e0 lduh [ %g2 + 0x2e0 ], %g3 200bfec: 82 08 40 03 and %g1, %g3, %g1 200bff0: c2 30 a2 e0 sth %g1, [ %g2 + 0x2e0 ] RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir ); 200bff4: 10 80 00 06 b 200c00c <_Scheduler_priority_Block+0x84> 200bff8: 03 00 80 54 sethi %hi(0x2015000), %g1 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200bffc: c2 06 60 04 ld [ %i1 + 4 ], %g1 next->previous = previous; 200c000: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 200c004: c4 20 40 00 st %g2, [ %g1 ] 200c008: 03 00 80 54 sethi %hi(0x2015000), %g1 { _Scheduler_priority_Ready_queue_extract(the_thread); /* TODO: flash critical section */ if ( _Thread_Is_heir( the_thread ) ) 200c00c: c2 00 62 cc ld [ %g1 + 0x2cc ], %g1 ! 20152cc <_Per_CPU_Information+0x10> 200c010: 80 a6 40 01 cmp %i1, %g1 200c014: 32 80 00 32 bne,a 200c0dc <_Scheduler_priority_Block+0x154> 200c018: 03 00 80 54 sethi %hi(0x2015000), %g1 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 200c01c: 03 00 80 54 sethi %hi(0x2015000), %g1 200c020: c4 10 62 e0 lduh [ %g1 + 0x2e0 ], %g2 ! 20152e0 <_Priority_Major_bit_map> _Scheduler_priority_Block_body(the_scheduler, the_thread); } 200c024: c6 06 00 00 ld [ %i0 ], %g3 200c028: 85 28 a0 10 sll %g2, 0x10, %g2 200c02c: 03 00 80 4e sethi %hi(0x2013800), %g1 200c030: 89 30 a0 10 srl %g2, 0x10, %g4 200c034: 80 a1 20 ff cmp %g4, 0xff 200c038: 18 80 00 05 bgu 200c04c <_Scheduler_priority_Block+0xc4> 200c03c: 82 10 62 d8 or %g1, 0x2d8, %g1 200c040: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 200c044: 10 80 00 04 b 200c054 <_Scheduler_priority_Block+0xcc> 200c048: 84 00 a0 08 add %g2, 8, %g2 200c04c: 85 30 a0 18 srl %g2, 0x18, %g2 200c050: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 200c054: 83 28 a0 10 sll %g2, 0x10, %g1 200c058: 09 00 80 54 sethi %hi(0x2015000), %g4 200c05c: 83 30 60 0f srl %g1, 0xf, %g1 200c060: 88 11 22 f0 or %g4, 0x2f0, %g4 200c064: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 200c068: 03 00 80 4e sethi %hi(0x2013800), %g1 200c06c: 89 29 20 10 sll %g4, 0x10, %g4 200c070: 9b 31 20 10 srl %g4, 0x10, %o5 200c074: 80 a3 60 ff cmp %o5, 0xff 200c078: 18 80 00 05 bgu 200c08c <_Scheduler_priority_Block+0x104> 200c07c: 82 10 62 d8 or %g1, 0x2d8, %g1 200c080: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 200c084: 10 80 00 04 b 200c094 <_Scheduler_priority_Block+0x10c> 200c088: 82 00 60 08 add %g1, 8, %g1 200c08c: 89 31 20 18 srl %g4, 0x18, %g4 200c090: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 200c094: 83 28 60 10 sll %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 200c098: 85 28 a0 10 sll %g2, 0x10, %g2 _Priority_Bits_index( minor ); 200c09c: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 200c0a0: 85 30 a0 0c srl %g2, 0xc, %g2 200c0a4: 84 00 40 02 add %g1, %g2, %g2 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 200c0a8: 89 28 a0 02 sll %g2, 2, %g4 200c0ac: 83 28 a0 04 sll %g2, 4, %g1 200c0b0: 82 20 40 04 sub %g1, %g4, %g1 200c0b4: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 200c0b8: 88 00 c0 01 add %g3, %g1, %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200c0bc: 86 01 20 04 add %g4, 4, %g3 200c0c0: 80 a0 80 03 cmp %g2, %g3 200c0c4: 02 80 00 03 be 200c0d0 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN 200c0c8: 82 10 20 00 clr %g1 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 200c0cc: 82 10 00 02 mov %g2, %g1 RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 200c0d0: 05 00 80 54 sethi %hi(0x2015000), %g2 200c0d4: c2 20 a2 cc st %g1, [ %g2 + 0x2cc ] ! 20152cc <_Per_CPU_Information+0x10> RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200c0d8: 03 00 80 54 sethi %hi(0x2015000), %g1 200c0dc: 82 10 62 bc or %g1, 0x2bc, %g1 ! 20152bc <_Per_CPU_Information> /* TODO: flash critical section */ if ( _Thread_Is_heir( the_thread ) ) _Scheduler_priority_Schedule_body(the_scheduler); if ( _Thread_Is_executing( the_thread ) ) 200c0e0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200c0e4: 80 a6 40 02 cmp %i1, %g2 200c0e8: 12 80 00 03 bne 200c0f4 <_Scheduler_priority_Block+0x16c> 200c0ec: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 200c0f0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200c0f4: 81 c7 e0 08 ret 200c0f8: 81 e8 00 00 restore =============================================================================== 02007e3c <_Scheduler_priority_Schedule>: */ void _Scheduler_priority_Schedule( Scheduler_Control *the_scheduler ) { 2007e3c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2007e40: 03 00 80 54 sethi %hi(0x2015000), %g1 2007e44: c4 10 62 e0 lduh [ %g1 + 0x2e0 ], %g2 ! 20152e0 <_Priority_Major_bit_map> _Scheduler_priority_Schedule_body( the_scheduler ); } 2007e48: c6 06 00 00 ld [ %i0 ], %g3 2007e4c: 85 28 a0 10 sll %g2, 0x10, %g2 2007e50: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e54: 89 30 a0 10 srl %g2, 0x10, %g4 2007e58: 80 a1 20 ff cmp %g4, 0xff 2007e5c: 18 80 00 05 bgu 2007e70 <_Scheduler_priority_Schedule+0x34> 2007e60: 82 10 62 d8 or %g1, 0x2d8, %g1 2007e64: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 2007e68: 10 80 00 04 b 2007e78 <_Scheduler_priority_Schedule+0x3c> 2007e6c: 84 00 a0 08 add %g2, 8, %g2 2007e70: 85 30 a0 18 srl %g2, 0x18, %g2 2007e74: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2007e78: 83 28 a0 10 sll %g2, 0x10, %g1 2007e7c: 09 00 80 54 sethi %hi(0x2015000), %g4 2007e80: 83 30 60 0f srl %g1, 0xf, %g1 2007e84: 88 11 22 f0 or %g4, 0x2f0, %g4 2007e88: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 2007e8c: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e90: 89 29 20 10 sll %g4, 0x10, %g4 2007e94: 9b 31 20 10 srl %g4, 0x10, %o5 2007e98: 80 a3 60 ff cmp %o5, 0xff 2007e9c: 18 80 00 05 bgu 2007eb0 <_Scheduler_priority_Schedule+0x74> 2007ea0: 82 10 62 d8 or %g1, 0x2d8, %g1 2007ea4: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 2007ea8: 10 80 00 04 b 2007eb8 <_Scheduler_priority_Schedule+0x7c> 2007eac: 82 00 60 08 add %g1, 8, %g1 2007eb0: 89 31 20 18 srl %g4, 0x18, %g4 2007eb4: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 2007eb8: 83 28 60 10 sll %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007ebc: 85 28 a0 10 sll %g2, 0x10, %g2 _Priority_Bits_index( minor ); 2007ec0: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007ec4: 85 30 a0 0c srl %g2, 0xc, %g2 2007ec8: 84 00 40 02 add %g1, %g2, %g2 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 2007ecc: 89 28 a0 02 sll %g2, 2, %g4 2007ed0: 83 28 a0 04 sll %g2, 4, %g1 2007ed4: 82 20 40 04 sub %g1, %g4, %g1 2007ed8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 2007edc: 88 00 c0 01 add %g3, %g1, %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2007ee0: 86 01 20 04 add %g4, 4, %g3 2007ee4: 80 a0 80 03 cmp %g2, %g3 2007ee8: 02 80 00 03 be 2007ef4 <_Scheduler_priority_Schedule+0xb8><== NEVER TAKEN 2007eec: 82 10 20 00 clr %g1 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2007ef0: 82 10 00 02 mov %g2, %g1 RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2007ef4: 05 00 80 54 sethi %hi(0x2015000), %g2 2007ef8: c2 20 a2 cc st %g1, [ %g2 + 0x2cc ] ! 20152cc <_Per_CPU_Information+0x10> 2007efc: 81 c7 e0 08 ret 2007f00: 81 e8 00 00 restore =============================================================================== 02008040 <_Scheduler_priority_Yield>: */ void _Scheduler_priority_Yield( Scheduler_Control *the_scheduler __attribute__((unused)) ) { 2008040: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2008044: 25 00 80 54 sethi %hi(0x2015000), %l2 2008048: a4 14 a2 bc or %l2, 0x2bc, %l2 ! 20152bc <_Per_CPU_Information> 200804c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 ready = executing->scheduler.priority->ready_chain; 2008050: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 _ISR_Disable( level ); 2008054: 7f ff e8 5b call 20021c0 2008058: e2 00 40 00 ld [ %g1 ], %l1 200805c: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 2008060: c4 04 40 00 ld [ %l1 ], %g2 2008064: c2 04 60 08 ld [ %l1 + 8 ], %g1 2008068: 80 a0 80 01 cmp %g2, %g1 200806c: 22 80 00 1a be,a 20080d4 <_Scheduler_priority_Yield+0x94> 2008070: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2008074: c4 04 00 00 ld [ %l0 ], %g2 previous = the_node->previous; 2008078: c2 04 20 04 ld [ %l0 + 4 ], %g1 next->previous = previous; 200807c: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2008080: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008084: c2 04 60 08 ld [ %l1 + 8 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); 2008088: 84 04 60 04 add %l1, 4, %g2 Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node; 200808c: e0 24 60 08 st %l0, [ %l1 + 8 ] ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail; 2008090: c4 24 00 00 st %g2, [ %l0 ] tail->previous = the_node; old_last->next = the_node; 2008094: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last; 2008098: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 200809c: 7f ff e8 4d call 20021d0 20080a0: 01 00 00 00 nop 20080a4: 7f ff e8 47 call 20021c0 20080a8: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 20080ac: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 20080b0: 80 a4 00 01 cmp %l0, %g1 20080b4: 12 80 00 04 bne 20080c4 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN 20080b8: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 20080bc: c2 04 40 00 ld [ %l1 ], %g1 20080c0: c2 24 a0 10 st %g1, [ %l2 + 0x10 ] _Thread_Dispatch_necessary = true; 20080c4: 03 00 80 54 sethi %hi(0x2015000), %g1 20080c8: 82 10 62 bc or %g1, 0x2bc, %g1 ! 20152bc <_Per_CPU_Information> 20080cc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20080d0: 30 80 00 05 b,a 20080e4 <_Scheduler_priority_Yield+0xa4> } else if ( !_Thread_Is_heir( executing ) ) 20080d4: 80 a4 00 01 cmp %l0, %g1 20080d8: 02 80 00 03 be 20080e4 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN 20080dc: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 20080e0: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 20080e4: 7f ff e8 3b call 20021d0 20080e8: 81 e8 00 00 restore =============================================================================== 02007260 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007260: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007264: 03 00 80 75 sethi %hi(0x201d400), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007268: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 200726c: d2 00 63 14 ld [ %g1 + 0x314 ], %o1 if ((!the_tod) || 2007270: 80 a4 20 00 cmp %l0, 0 2007274: 02 80 00 2b be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007278: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 200727c: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007280: 40 00 48 5e call 20193f8 <.udiv> 2007284: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007288: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200728c: 80 a0 40 08 cmp %g1, %o0 2007290: 1a 80 00 24 bcc 2007320 <_TOD_Validate+0xc0> 2007294: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 2007298: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 200729c: 80 a0 60 3b cmp %g1, 0x3b 20072a0: 18 80 00 20 bgu 2007320 <_TOD_Validate+0xc0> 20072a4: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20072a8: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 20072ac: 80 a0 60 3b cmp %g1, 0x3b 20072b0: 18 80 00 1c bgu 2007320 <_TOD_Validate+0xc0> 20072b4: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20072b8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20072bc: 80 a0 60 17 cmp %g1, 0x17 20072c0: 18 80 00 18 bgu 2007320 <_TOD_Validate+0xc0> 20072c4: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20072c8: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 20072cc: 80 a0 60 00 cmp %g1, 0 20072d0: 02 80 00 14 be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN 20072d4: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20072d8: 18 80 00 12 bgu 2007320 <_TOD_Validate+0xc0> 20072dc: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20072e0: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20072e4: 80 a0 e7 c3 cmp %g3, 0x7c3 20072e8: 08 80 00 0e bleu 2007320 <_TOD_Validate+0xc0> 20072ec: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20072f0: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20072f4: 80 a0 a0 00 cmp %g2, 0 20072f8: 02 80 00 0a be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN 20072fc: 80 88 e0 03 btst 3, %g3 2007300: 07 00 80 70 sethi %hi(0x201c000), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007304: 12 80 00 03 bne 2007310 <_TOD_Validate+0xb0> 2007308: 86 10 e3 78 or %g3, 0x378, %g3 ! 201c378 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200730c: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 2007310: 83 28 60 02 sll %g1, 2, %g1 2007314: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 2007318: 80 a0 40 02 cmp %g1, %g2 200731c: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 2007320: 81 c7 e0 08 ret 2007324: 81 e8 00 00 restore =============================================================================== 02008144 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008144: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 2008148: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 200814c: 40 00 03 9b call 2008fb8 <_Thread_Set_transient> 2008150: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008154: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008158: 80 a0 40 19 cmp %g1, %i1 200815c: 02 80 00 05 be 2008170 <_Thread_Change_priority+0x2c> 2008160: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 2008164: 90 10 00 18 mov %i0, %o0 2008168: 40 00 03 78 call 2008f48 <_Thread_Set_priority> 200816c: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2008170: 7f ff e8 14 call 20021c0 2008174: 01 00 00 00 nop 2008178: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 200817c: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 2008180: 80 a6 60 04 cmp %i1, 4 2008184: 02 80 00 10 be 20081c4 <_Thread_Change_priority+0x80> 2008188: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 200818c: 80 a4 60 00 cmp %l1, 0 2008190: 12 80 00 03 bne 200819c <_Thread_Change_priority+0x58> <== NEVER TAKEN 2008194: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008198: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 200819c: 7f ff e8 0d call 20021d0 20081a0: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 20081a4: 03 00 00 ef sethi %hi(0x3bc00), %g1 20081a8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 20081ac: 80 8e 40 01 btst %i1, %g1 20081b0: 02 80 00 44 be 20082c0 <_Thread_Change_priority+0x17c> 20081b4: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 20081b8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 20081bc: 40 00 03 36 call 2008e94 <_Thread_queue_Requeue> 20081c0: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 20081c4: 80 a4 60 00 cmp %l1, 0 20081c8: 12 80 00 26 bne 2008260 <_Thread_Change_priority+0x11c> <== NEVER TAKEN 20081cc: 80 8e a0 ff btst 0xff, %i2 * Ready Queue with interrupts off. * * FIXME: hard-coded for priority scheduling. Might be ok since this * function is specific to priority scheduling? */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20081d0: c0 24 20 10 clr [ %l0 + 0x10 ] 20081d4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 if ( prepend_it ) 20081d8: 02 80 00 12 be 2008220 <_Thread_Change_priority+0xdc> 20081dc: 05 00 80 54 sethi %hi(0x2015000), %g2 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 20081e0: c6 00 60 04 ld [ %g1 + 4 ], %g3 20081e4: c8 10 60 0a lduh [ %g1 + 0xa ], %g4 20081e8: da 10 c0 00 lduh [ %g3 ], %o5 20081ec: 88 13 40 04 or %o5, %g4, %g4 20081f0: c8 30 c0 00 sth %g4, [ %g3 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 20081f4: c6 10 a2 e0 lduh [ %g2 + 0x2e0 ], %g3 20081f8: c8 10 60 08 lduh [ %g1 + 8 ], %g4 Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); _Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain, 20081fc: c2 00 40 00 ld [ %g1 ], %g1 2008200: 86 11 00 03 or %g4, %g3, %g3 2008204: c6 30 a2 e0 sth %g3, [ %g2 + 0x2e0 ] ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008208: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 200820c: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008210: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 2008214: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 2008218: 10 80 00 12 b 2008260 <_Thread_Change_priority+0x11c> 200821c: e0 20 a0 04 st %l0, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2008220: c6 00 60 04 ld [ %g1 + 4 ], %g3 2008224: c8 10 60 0a lduh [ %g1 + 0xa ], %g4 2008228: da 10 c0 00 lduh [ %g3 ], %o5 200822c: 88 13 40 04 or %o5, %g4, %g4 2008230: c8 30 c0 00 sth %g4, [ %g3 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2008234: c8 10 60 08 lduh [ %g1 + 8 ], %g4 2008238: c6 10 a2 e0 lduh [ %g2 + 0x2e0 ], %g3 Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); _Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain, 200823c: c2 00 40 00 ld [ %g1 ], %g1 2008240: 86 11 00 03 or %g4, %g3, %g3 2008244: c6 30 a2 e0 sth %g3, [ %g2 + 0x2e0 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008248: c4 00 60 08 ld [ %g1 + 8 ], %g2 RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); 200824c: 86 00 60 04 add %g1, 4, %g3 Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node; 2008250: e0 20 60 08 st %l0, [ %g1 + 8 ] ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail; 2008254: c6 24 00 00 st %g3, [ %l0 ] tail->previous = the_node; old_last->next = the_node; 2008258: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last; 200825c: c4 24 20 04 st %g2, [ %l0 + 4 ] _Scheduler_priority_Ready_queue_enqueue_first( the_thread ); else _Scheduler_priority_Ready_queue_enqueue( the_thread ); } _ISR_Flash( level ); 2008260: 7f ff e7 dc call 20021d0 2008264: 90 10 00 18 mov %i0, %o0 2008268: 7f ff e7 d6 call 20021c0 200826c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( Scheduler_Control *the_scheduler ) { the_scheduler->Operations.schedule( the_scheduler ); 2008270: 11 00 80 54 sethi %hi(0x2015000), %o0 2008274: 90 12 20 f8 or %o0, 0xf8, %o0 ! 20150f8 <_Scheduler> 2008278: c2 02 20 04 ld [ %o0 + 4 ], %g1 200827c: 9f c0 40 00 call %g1 2008280: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008284: 03 00 80 54 sethi %hi(0x2015000), %g1 2008288: 82 10 62 bc or %g1, 0x2bc, %g1 ! 20152bc <_Per_CPU_Information> 200828c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(&_Scheduler); if ( !_Thread_Is_executing_also_the_heir() && 2008290: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008294: 80 a0 80 03 cmp %g2, %g3 2008298: 02 80 00 08 be 20082b8 <_Thread_Change_priority+0x174> 200829c: 01 00 00 00 nop 20082a0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20082a4: 80 a0 a0 00 cmp %g2, 0 20082a8: 02 80 00 04 be 20082b8 <_Thread_Change_priority+0x174> 20082ac: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 20082b0: 84 10 20 01 mov 1, %g2 ! 1 20082b4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 20082b8: 7f ff e7 c6 call 20021d0 20082bc: 81 e8 00 00 restore 20082c0: 81 c7 e0 08 ret 20082c4: 81 e8 00 00 restore =============================================================================== 020084d4 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 20084d4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20084d8: 90 10 00 18 mov %i0, %o0 20084dc: 40 00 00 6e call 2008694 <_Thread_Get> 20084e0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20084e4: c2 07 bf fc ld [ %fp + -4 ], %g1 20084e8: 80 a0 60 00 cmp %g1, 0 20084ec: 12 80 00 08 bne 200850c <_Thread_Delay_ended+0x38> <== NEVER TAKEN 20084f0: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 20084f4: 7f ff ff 75 call 20082c8 <_Thread_Clear_state> 20084f8: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 20084fc: 03 00 80 54 sethi %hi(0x2015000), %g1 2008500: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 2008504: 84 00 bf ff add %g2, -1, %g2 2008508: c4 20 60 70 st %g2, [ %g1 + 0x70 ] 200850c: 81 c7 e0 08 ret 2008510: 81 e8 00 00 restore =============================================================================== 02008514 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008514: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008518: 2d 00 80 54 sethi %hi(0x2015000), %l6 200851c: 82 15 a2 bc or %l6, 0x2bc, %g1 ! 20152bc <_Per_CPU_Information> _ISR_Disable( level ); 2008520: 7f ff e7 28 call 20021c0 2008524: e0 00 60 0c ld [ %g1 + 0xc ], %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008528: 25 00 80 54 sethi %hi(0x2015000), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 200852c: 37 00 80 54 sethi %hi(0x2015000), %i3 2008530: b8 10 20 01 mov 1, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008534: 3b 00 80 53 sethi %hi(0x2014c00), %i5 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008538: aa 07 bf f8 add %fp, -8, %l5 _Timestamp_Subtract( 200853c: a8 07 bf f0 add %fp, -16, %l4 2008540: a4 14 a1 40 or %l2, 0x140, %l2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008544: 2f 00 80 54 sethi %hi(0x2015000), %l7 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008548: 10 80 00 39 b 200862c <_Thread_Dispatch+0x118> 200854c: 27 00 80 54 sethi %hi(0x2015000), %l3 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 2008550: f8 26 e0 70 st %i4, [ %i3 + 0x70 ] _Thread_Dispatch_necessary = false; 2008554: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008558: 80 a4 40 10 cmp %l1, %l0 200855c: 02 80 00 39 be 2008640 <_Thread_Dispatch+0x12c> 2008560: e2 20 60 0c st %l1, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008564: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008568: 80 a0 60 01 cmp %g1, 1 200856c: 12 80 00 03 bne 2008578 <_Thread_Dispatch+0x64> 2008570: c2 07 63 d4 ld [ %i5 + 0x3d4 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008574: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Enable( level ); 2008578: 7f ff e7 16 call 20021d0 200857c: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008580: 40 00 0d 6e call 200bb38 <_TOD_Get_uptime> 2008584: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 2008588: 90 10 00 12 mov %l2, %o0 200858c: 92 10 00 15 mov %l5, %o1 2008590: 40 00 03 36 call 2009268 <_Timespec_Subtract> 2008594: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008598: 90 04 20 84 add %l0, 0x84, %o0 200859c: 40 00 03 1a call 2009204 <_Timespec_Add_to> 20085a0: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 20085a4: c2 07 bf f8 ld [ %fp + -8 ], %g1 20085a8: c2 24 80 00 st %g1, [ %l2 ] 20085ac: c2 07 bf fc ld [ %fp + -4 ], %g1 20085b0: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20085b4: c2 05 e1 18 ld [ %l7 + 0x118 ], %g1 20085b8: 80 a0 60 00 cmp %g1, 0 20085bc: 02 80 00 06 be 20085d4 <_Thread_Dispatch+0xc0> <== NEVER TAKEN 20085c0: 90 10 00 10 mov %l0, %o0 executing->libc_reent = *_Thread_libc_reent; 20085c4: c4 00 40 00 ld [ %g1 ], %g2 20085c8: c4 24 21 54 st %g2, [ %l0 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 20085cc: c4 04 61 54 ld [ %l1 + 0x154 ], %g2 20085d0: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 20085d4: 40 00 03 d5 call 2009528 <_User_extensions_Thread_switch> 20085d8: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 20085dc: 90 04 20 c8 add %l0, 0xc8, %o0 20085e0: 40 00 05 00 call 20099e0 <_CPU_Context_switch> 20085e4: 92 04 60 c8 add %l1, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 20085e8: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 20085ec: 80 a0 60 00 cmp %g1, 0 20085f0: 02 80 00 0c be 2008620 <_Thread_Dispatch+0x10c> 20085f4: d0 04 e0 f4 ld [ %l3 + 0xf4 ], %o0 20085f8: 80 a4 00 08 cmp %l0, %o0 20085fc: 02 80 00 09 be 2008620 <_Thread_Dispatch+0x10c> 2008600: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008604: 02 80 00 04 be 2008614 <_Thread_Dispatch+0x100> 2008608: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200860c: 40 00 04 bb call 20098f8 <_CPU_Context_save_fp> 2008610: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008614: 40 00 04 d6 call 200996c <_CPU_Context_restore_fp> 2008618: 90 04 21 50 add %l0, 0x150, %o0 _Thread_Allocated_fp = executing; 200861c: e0 24 e0 f4 st %l0, [ %l3 + 0xf4 ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 2008620: 82 15 a2 bc or %l6, 0x2bc, %g1 _ISR_Disable( level ); 2008624: 7f ff e6 e7 call 20021c0 2008628: e0 00 60 0c ld [ %g1 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 200862c: 82 15 a2 bc or %l6, 0x2bc, %g1 2008630: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008634: 80 a0 a0 00 cmp %g2, 0 2008638: 32 bf ff c6 bne,a 2008550 <_Thread_Dispatch+0x3c> 200863c: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 2008640: 03 00 80 54 sethi %hi(0x2015000), %g1 2008644: c0 20 60 70 clr [ %g1 + 0x70 ] ! 2015070 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 2008648: 7f ff e6 e2 call 20021d0 200864c: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008650: 7f ff f8 d7 call 20069ac <_API_extensions_Run_postswitch> 2008654: 01 00 00 00 nop } 2008658: 81 c7 e0 08 ret 200865c: 81 e8 00 00 restore =============================================================================== 02008694 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 2008694: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 2008698: 80 a2 20 00 cmp %o0, 0 200869c: 12 80 00 0a bne 20086c4 <_Thread_Get+0x30> 20086a0: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 20086a4: 03 00 80 54 sethi %hi(0x2015000), %g1 20086a8: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 20086ac: 84 00 a0 01 inc %g2 20086b0: c4 20 60 70 st %g2, [ %g1 + 0x70 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 20086b4: 03 00 80 54 sethi %hi(0x2015000), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 20086b8: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 20086bc: 81 c3 e0 08 retl 20086c0: d0 00 62 c8 ld [ %g1 + 0x2c8 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 20086c4: 87 32 20 18 srl %o0, 0x18, %g3 20086c8: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20086cc: 84 00 ff ff add %g3, -1, %g2 20086d0: 80 a0 a0 02 cmp %g2, 2 20086d4: 28 80 00 16 bleu,a 200872c <_Thread_Get+0x98> 20086d8: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 20086dc: 82 10 20 01 mov 1, %g1 20086e0: 10 80 00 09 b 2008704 <_Thread_Get+0x70> 20086e4: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 20086e8: 09 00 80 53 sethi %hi(0x2014c00), %g4 20086ec: 88 11 23 d8 or %g4, 0x3d8, %g4 ! 2014fd8 <_Objects_Information_table> 20086f0: c6 01 00 03 ld [ %g4 + %g3 ], %g3 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 20086f4: 80 a0 e0 00 cmp %g3, 0 20086f8: 32 80 00 05 bne,a 200870c <_Thread_Get+0x78> <== ALWAYS TAKEN 20086fc: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 2008700: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 2008704: 81 c3 e0 08 retl 2008708: 90 10 20 00 clr %o0 } #endif information = api_information[ the_class ]; if ( !information ) { 200870c: 80 a2 20 00 cmp %o0, 0 2008710: 12 80 00 04 bne 2008720 <_Thread_Get+0x8c> 2008714: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 2008718: 81 c3 e0 08 retl 200871c: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 2008720: 82 13 c0 00 mov %o7, %g1 2008724: 7f ff fc b0 call 20079e4 <_Objects_Get> 2008728: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 200872c: 80 a0 a0 01 cmp %g2, 1 2008730: 22 bf ff ee be,a 20086e8 <_Thread_Get+0x54> 2008734: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 2008738: 10 bf ff ea b 20086e0 <_Thread_Get+0x4c> 200873c: 82 10 20 01 mov 1, %g1 =============================================================================== 0200d964 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200d964: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200d968: 03 00 80 54 sethi %hi(0x2015000), %g1 200d96c: e0 00 62 c8 ld [ %g1 + 0x2c8 ], %l0 ! 20152c8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200d970: 3f 00 80 36 sethi %hi(0x200d800), %i7 200d974: be 17 e1 64 or %i7, 0x164, %i7 ! 200d964 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200d978: d0 04 20 ac ld [ %l0 + 0xac ], %o0 _ISR_Set_level(level); 200d97c: 7f ff d2 15 call 20021d0 200d980: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d984: 03 00 80 53 sethi %hi(0x2014c00), %g1 doneConstructors = 1; 200d988: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d98c: e2 08 61 2c ldub [ %g1 + 0x12c ], %l1 doneConstructors = 1; 200d990: c4 28 61 2c stb %g2, [ %g1 + 0x12c ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200d994: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 200d998: 80 a0 60 00 cmp %g1, 0 200d99c: 02 80 00 0c be 200d9cc <_Thread_Handler+0x68> 200d9a0: 03 00 80 54 sethi %hi(0x2015000), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200d9a4: d0 00 60 f4 ld [ %g1 + 0xf4 ], %o0 ! 20150f4 <_Thread_Allocated_fp> 200d9a8: 80 a4 00 08 cmp %l0, %o0 200d9ac: 02 80 00 08 be 200d9cc <_Thread_Handler+0x68> 200d9b0: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200d9b4: 22 80 00 06 be,a 200d9cc <_Thread_Handler+0x68> 200d9b8: e0 20 60 f4 st %l0, [ %g1 + 0xf4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200d9bc: 7f ff ef cf call 20098f8 <_CPU_Context_save_fp> 200d9c0: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200d9c4: 03 00 80 54 sethi %hi(0x2015000), %g1 200d9c8: e0 20 60 f4 st %l0, [ %g1 + 0xf4 ] ! 20150f4 <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200d9cc: 7f ff ee 67 call 2009368 <_User_extensions_Thread_begin> 200d9d0: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200d9d4: 7f ff eb 23 call 2008660 <_Thread_Enable_dispatch> 200d9d8: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200d9dc: 80 a4 60 00 cmp %l1, 0 200d9e0: 32 80 00 05 bne,a 200d9f4 <_Thread_Handler+0x90> 200d9e4: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 INIT_NAME (); 200d9e8: 40 00 1a 6e call 20143a0 <_init> 200d9ec: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200d9f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200d9f4: 80 a0 60 00 cmp %g1, 0 200d9f8: 12 80 00 06 bne 200da10 <_Thread_Handler+0xac> <== NEVER TAKEN 200d9fc: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200da00: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200da04: 9f c0 40 00 call %g1 200da08: d0 04 20 9c ld [ %l0 + 0x9c ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200da0c: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200da10: 7f ff ee 67 call 20093ac <_User_extensions_Thread_exitted> 200da14: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200da18: 90 10 20 00 clr %o0 200da1c: 92 10 20 01 mov 1, %o1 200da20: 7f ff e6 86 call 2007438 <_Internal_error_Occurred> 200da24: 94 10 20 05 mov 5, %o2 =============================================================================== 02008740 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008740: 9d e3 bf a0 save %sp, -96, %sp 2008744: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008748: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 200874c: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008750: c0 26 61 58 clr [ %i1 + 0x158 ] 2008754: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008758: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 200875c: 90 10 00 19 mov %i1, %o0 2008760: 40 00 02 3e call 2009058 <_Thread_Stack_Allocate> 2008764: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008768: 80 a2 00 1b cmp %o0, %i3 200876c: 0a 80 00 78 bcs 200894c <_Thread_Initialize+0x20c> 2008770: 80 a2 20 00 cmp %o0, 0 2008774: 02 80 00 76 be 200894c <_Thread_Initialize+0x20c> <== NEVER TAKEN 2008778: 80 8f 20 ff btst 0xff, %i4 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200877c: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008780: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008784: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008788: 02 80 00 07 be 20087a4 <_Thread_Initialize+0x64> 200878c: a2 10 20 00 clr %l1 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008790: 40 00 04 3c call 2009880 <_Workspace_Allocate> 2008794: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008798: a2 92 20 00 orcc %o0, 0, %l1 200879c: 02 80 00 45 be 20088b0 <_Thread_Initialize+0x170> 20087a0: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20087a4: 03 00 80 54 sethi %hi(0x2015000), %g1 20087a8: d0 00 61 24 ld [ %g1 + 0x124 ], %o0 ! 2015124 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 20087ac: e2 26 61 50 st %l1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 20087b0: e2 26 60 bc st %l1, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20087b4: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 20087b8: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 20087bc: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 20087c0: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20087c4: 80 a2 20 00 cmp %o0, 0 20087c8: 02 80 00 08 be 20087e8 <_Thread_Initialize+0xa8> 20087cc: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 20087d0: 90 02 20 01 inc %o0 20087d4: 40 00 04 2b call 2009880 <_Workspace_Allocate> 20087d8: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 20087dc: b6 92 20 00 orcc %o0, 0, %i3 20087e0: 22 80 00 35 be,a 20088b4 <_Thread_Initialize+0x174> 20087e4: a4 10 20 00 clr %l2 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 20087e8: 80 a6 e0 00 cmp %i3, 0 20087ec: 02 80 00 0b be 2008818 <_Thread_Initialize+0xd8> 20087f0: f6 26 61 60 st %i3, [ %i1 + 0x160 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 20087f4: 03 00 80 54 sethi %hi(0x2015000), %g1 20087f8: c4 00 61 24 ld [ %g1 + 0x124 ], %g2 ! 2015124 <_Thread_Maximum_extensions> 20087fc: 10 80 00 04 b 200880c <_Thread_Initialize+0xcc> 2008800: 82 10 20 00 clr %g1 2008804: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008808: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200880c: 80 a0 40 02 cmp %g1, %g2 2008810: 08 bf ff fd bleu 2008804 <_Thread_Initialize+0xc4> 2008814: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008818: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread ); 200881c: 11 00 80 54 sethi %hi(0x2015000), %o0 2008820: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008824: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 2008828: 90 12 20 f8 or %o0, 0xf8, %o0 200882c: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008830: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008834: e4 2e 60 a0 stb %l2, [ %i1 + 0xa0 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008838: c2 26 60 ac st %g1, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 200883c: 82 10 20 01 mov 1, %g1 2008840: c2 26 60 10 st %g1, [ %i1 + 0x10 ] RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return 2008844: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 the_thread->Wait.queue = NULL; 2008848: c0 26 60 44 clr [ %i1 + 0x44 ] the_thread->resource_count = 0; 200884c: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2008850: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008854: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008858: 9f c0 40 00 call %g1 200885c: 92 10 00 19 mov %i1, %o1 sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread ); if ( !sched ) 2008860: a4 92 20 00 orcc %o0, 0, %l2 2008864: 02 80 00 14 be 20088b4 <_Thread_Initialize+0x174> 2008868: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 200886c: 40 00 01 b7 call 2008f48 <_Thread_Set_priority> 2008870: 92 10 00 1d mov %i5, %o1 _Thread_Stack_Free( the_thread ); return false; } 2008874: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008878: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 200887c: c0 26 60 84 clr [ %i1 + 0x84 ] 2008880: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008884: 83 28 60 02 sll %g1, 2, %g1 2008888: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200888c: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008890: 90 10 00 19 mov %i1, %o0 2008894: 40 00 02 e8 call 2009434 <_User_extensions_Thread_create> 2008898: b0 10 20 01 mov 1, %i0 if ( extension_status ) 200889c: 80 8a 20 ff btst 0xff, %o0 20088a0: 22 80 00 06 be,a 20088b8 <_Thread_Initialize+0x178> 20088a4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088a8: 81 c7 e0 08 ret 20088ac: 81 e8 00 00 restore size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 20088b0: a4 10 20 00 clr %l2 extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: if ( the_thread->libc_reent ) 20088b4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088b8: 80 a2 20 00 cmp %o0, 0 20088bc: 22 80 00 05 be,a 20088d0 <_Thread_Initialize+0x190> 20088c0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 _Workspace_Free( the_thread->libc_reent ); 20088c4: 40 00 03 f8 call 20098a4 <_Workspace_Free> 20088c8: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 20088cc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20088d0: 80 a2 20 00 cmp %o0, 0 20088d4: 22 80 00 05 be,a 20088e8 <_Thread_Initialize+0x1a8> 20088d8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 20088dc: 40 00 03 f2 call 20098a4 <_Workspace_Free> 20088e0: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 20088e4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20088e8: 80 a2 20 00 cmp %o0, 0 20088ec: 02 80 00 05 be 2008900 <_Thread_Initialize+0x1c0> <== ALWAYS TAKEN 20088f0: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 20088f4: 40 00 03 ec call 20098a4 <_Workspace_Free> <== NOT EXECUTED 20088f8: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 20088fc: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 2008900: 02 80 00 05 be 2008914 <_Thread_Initialize+0x1d4> 2008904: 80 a4 60 00 cmp %l1, 0 (void) _Workspace_Free( extensions_area ); 2008908: 40 00 03 e7 call 20098a4 <_Workspace_Free> 200890c: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) 2008910: 80 a4 60 00 cmp %l1, 0 2008914: 02 80 00 05 be 2008928 <_Thread_Initialize+0x1e8> 2008918: 80 a4 a0 00 cmp %l2, 0 (void) _Workspace_Free( fp_area ); 200891c: 40 00 03 e2 call 20098a4 <_Workspace_Free> 2008920: 90 10 00 11 mov %l1, %o0 #endif if ( sched ) 2008924: 80 a4 a0 00 cmp %l2, 0 2008928: 02 80 00 05 be 200893c <_Thread_Initialize+0x1fc> 200892c: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( sched ); 2008930: 40 00 03 dd call 20098a4 <_Workspace_Free> 2008934: 90 10 00 12 mov %l2, %o0 _Thread_Stack_Free( the_thread ); 2008938: 90 10 00 19 mov %i1, %o0 200893c: 40 00 01 de call 20090b4 <_Thread_Stack_Free> 2008940: b0 10 20 00 clr %i0 return false; 2008944: 81 c7 e0 08 ret 2008948: 81 e8 00 00 restore } 200894c: 81 c7 e0 08 ret 2008950: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200c550 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200c550: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200c554: 7f ff d7 97 call 20023b0 200c558: 01 00 00 00 nop 200c55c: a0 10 00 08 mov %o0, %l0 current_state = the_thread->current_state; 200c560: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200c564: 80 88 60 02 btst 2, %g1 200c568: 02 80 00 0a be 200c590 <_Thread_Resume+0x40> <== NEVER TAKEN 200c56c: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200c570: 80 a0 60 00 cmp %g1, 0 200c574: 12 80 00 07 bne 200c590 <_Thread_Resume+0x40> 200c578: c2 26 20 10 st %g1, [ %i0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Scheduler_Unblock( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { the_scheduler->Operations.unblock( the_scheduler, the_thread ); 200c57c: 11 00 80 62 sethi %hi(0x2018800), %o0 200c580: 90 12 23 e8 or %o0, 0x3e8, %o0 ! 2018be8 <_Scheduler> 200c584: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 200c588: 9f c0 40 00 call %g1 200c58c: 92 10 00 18 mov %i0, %o1 _Scheduler_Unblock( &_Scheduler, the_thread ); } } _ISR_Enable( level ); 200c590: 7f ff d7 8c call 20023c0 200c594: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02008e94 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2008e94: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2008e98: 80 a6 20 00 cmp %i0, 0 2008e9c: 02 80 00 19 be 2008f00 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008ea0: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2008ea4: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008ea8: 80 a4 60 01 cmp %l1, 1 2008eac: 12 80 00 15 bne 2008f00 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008eb0: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2008eb4: 7f ff e4 c3 call 20021c0 2008eb8: 01 00 00 00 nop 2008ebc: a0 10 00 08 mov %o0, %l0 2008ec0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2008ec4: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008ec8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008ecc: 80 88 80 01 btst %g2, %g1 2008ed0: 02 80 00 0a be 2008ef8 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2008ed4: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2008ed8: 92 10 00 19 mov %i1, %o1 2008edc: 94 10 20 01 mov 1, %o2 2008ee0: 40 00 0c e6 call 200c278 <_Thread_queue_Extract_priority_helper> 2008ee4: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2008ee8: 90 10 00 18 mov %i0, %o0 2008eec: 92 10 00 19 mov %i1, %o1 2008ef0: 7f ff ff 49 call 2008c14 <_Thread_queue_Enqueue_priority> 2008ef4: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2008ef8: 7f ff e4 b6 call 20021d0 2008efc: 90 10 00 10 mov %l0, %o0 2008f00: 81 c7 e0 08 ret 2008f04: 81 e8 00 00 restore =============================================================================== 02008f08 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008f08: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008f0c: 90 10 00 18 mov %i0, %o0 2008f10: 7f ff fd e1 call 2008694 <_Thread_Get> 2008f14: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008f18: c2 07 bf fc ld [ %fp + -4 ], %g1 2008f1c: 80 a0 60 00 cmp %g1, 0 2008f20: 12 80 00 08 bne 2008f40 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 2008f24: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2008f28: 40 00 0d 0c call 200c358 <_Thread_queue_Process_timeout> 2008f2c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2008f30: 03 00 80 54 sethi %hi(0x2015000), %g1 2008f34: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 2015070 <_Thread_Dispatch_disable_level> 2008f38: 84 00 bf ff add %g2, -1, %g2 2008f3c: c4 20 60 70 st %g2, [ %g1 + 0x70 ] 2008f40: 81 c7 e0 08 ret 2008f44: 81 e8 00 00 restore =============================================================================== 02016918 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 2016918: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 201691c: 39 00 80 f2 sethi %hi(0x203c800), %i4 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2016920: b6 07 bf f4 add %fp, -12, %i3 2016924: ae 07 bf f8 add %fp, -8, %l7 2016928: a4 07 bf e8 add %fp, -24, %l2 201692c: a6 07 bf ec add %fp, -20, %l3 2016930: ee 27 bf f4 st %l7, [ %fp + -12 ] head->previous = NULL; 2016934: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2016938: f6 27 bf fc st %i3, [ %fp + -4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 201693c: e6 27 bf e8 st %l3, [ %fp + -24 ] head->previous = NULL; 2016940: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 2016944: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016948: a8 06 20 30 add %i0, 0x30, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 201694c: 3b 00 80 f2 sethi %hi(0x203c800), %i5 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016950: a2 06 20 68 add %i0, 0x68, %l1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016954: ac 06 20 08 add %i0, 8, %l6 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016958: aa 06 20 40 add %i0, 0x40, %l5 Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 201695c: f6 26 20 78 st %i3, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016960: c2 07 21 84 ld [ %i4 + 0x184 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2016964: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016968: 94 10 00 12 mov %l2, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 201696c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016970: 90 10 00 14 mov %l4, %o0 2016974: 40 00 11 8d call 201afa8 <_Watchdog_Adjust_to_chain> 2016978: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 201697c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016980: e0 07 60 fc ld [ %i5 + 0xfc ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2016984: 80 a4 00 0a cmp %l0, %o2 2016988: 08 80 00 06 bleu 20169a0 <_Timer_server_Body+0x88> 201698c: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016990: 90 10 00 11 mov %l1, %o0 2016994: 40 00 11 85 call 201afa8 <_Watchdog_Adjust_to_chain> 2016998: 94 10 00 12 mov %l2, %o2 201699c: 30 80 00 06 b,a 20169b4 <_Timer_server_Body+0x9c> } else if ( snapshot < last_snapshot ) { 20169a0: 1a 80 00 05 bcc 20169b4 <_Timer_server_Body+0x9c> 20169a4: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20169a8: 92 10 20 01 mov 1, %o1 20169ac: 40 00 11 57 call 201af08 <_Watchdog_Adjust> 20169b0: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 20169b4: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20169b8: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20169bc: 40 00 02 c1 call 20174c0 <_Chain_Get> 20169c0: 01 00 00 00 nop if ( timer == NULL ) { 20169c4: 92 92 20 00 orcc %o0, 0, %o1 20169c8: 02 80 00 0c be 20169f8 <_Timer_server_Body+0xe0> 20169cc: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20169d0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20169d4: 80 a0 60 01 cmp %g1, 1 20169d8: 02 80 00 05 be 20169ec <_Timer_server_Body+0xd4> 20169dc: 90 10 00 14 mov %l4, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20169e0: 80 a0 60 03 cmp %g1, 3 20169e4: 12 bf ff f5 bne 20169b8 <_Timer_server_Body+0xa0> <== NEVER TAKEN 20169e8: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20169ec: 40 00 11 a3 call 201b078 <_Watchdog_Insert> 20169f0: 92 02 60 10 add %o1, 0x10, %o1 20169f4: 30 bf ff f1 b,a 20169b8 <_Timer_server_Body+0xa0> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20169f8: 7f ff e3 a6 call 200f890 20169fc: 01 00 00 00 nop tmp = ts->insert_chain; 2016a00: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 if ( _Chain_Is_empty( insert_chain ) ) { 2016a04: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016a08: 80 a0 40 17 cmp %g1, %l7 2016a0c: 12 80 00 04 bne 2016a1c <_Timer_server_Body+0x104> <== NEVER TAKEN 2016a10: a0 10 20 01 mov 1, %l0 ts->insert_chain = NULL; 2016a14: c0 26 20 78 clr [ %i0 + 0x78 ] do_loop = false; 2016a18: a0 10 20 00 clr %l0 } _ISR_Enable( level ); 2016a1c: 7f ff e3 a1 call 200f8a0 2016a20: 01 00 00 00 nop * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) { 2016a24: 80 8c 20 ff btst 0xff, %l0 2016a28: 12 bf ff ce bne 2016960 <_Timer_server_Body+0x48> <== NEVER TAKEN 2016a2c: c2 07 bf e8 ld [ %fp + -24 ], %g1 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016a30: 80 a0 40 13 cmp %g1, %l3 2016a34: 02 80 00 18 be 2016a94 <_Timer_server_Body+0x17c> 2016a38: 01 00 00 00 nop /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2016a3c: 7f ff e3 95 call 200f890 2016a40: 01 00 00 00 nop 2016a44: 84 10 00 08 mov %o0, %g2 initialized = false; } #endif return status; } 2016a48: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016a4c: 80 a4 00 13 cmp %l0, %l3 2016a50: 02 80 00 0e be 2016a88 <_Timer_server_Body+0x170> 2016a54: 80 a4 20 00 cmp %l0, 0 Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; 2016a58: c2 04 00 00 ld [ %l0 ], %g1 head->next = new_first; 2016a5c: c2 27 bf e8 st %g1, [ %fp + -24 ] * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 2016a60: 02 80 00 0a be 2016a88 <_Timer_server_Body+0x170> <== NEVER TAKEN 2016a64: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 2016a68: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 2016a6c: 7f ff e3 8d call 200f8a0 2016a70: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2016a74: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016a78: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016a7c: 9f c0 40 00 call %g1 2016a80: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 2016a84: 30 bf ff ee b,a 2016a3c <_Timer_server_Body+0x124> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016a88: 7f ff e3 86 call 200f8a0 2016a8c: 90 10 00 02 mov %g2, %o0 2016a90: 30 bf ff b3 b,a 201695c <_Timer_server_Body+0x44> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016a94: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 2016a98: 7f ff ff 70 call 2016858 <_Thread_Disable_dispatch> 2016a9c: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016aa0: d0 06 00 00 ld [ %i0 ], %o0 2016aa4: 40 00 0f 52 call 201a7ec <_Thread_Set_state> 2016aa8: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016aac: 7f ff ff 71 call 2016870 <_Timer_server_Reset_interval_system_watchdog> 2016ab0: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016ab4: 7f ff ff 84 call 20168c4 <_Timer_server_Reset_tod_system_watchdog> 2016ab8: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016abc: 40 00 0c d3 call 2019e08 <_Thread_Enable_dispatch> 2016ac0: 01 00 00 00 nop ts->active = true; 2016ac4: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016ac8: 90 10 00 16 mov %l6, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016acc: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016ad0: 40 00 11 c6 call 201b1e8 <_Watchdog_Remove> 2016ad4: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016ad8: 40 00 11 c4 call 201b1e8 <_Watchdog_Remove> 2016adc: 90 10 00 15 mov %l5, %o0 2016ae0: 30 bf ff 9f b,a 201695c <_Timer_server_Body+0x44> =============================================================================== 02016ae4 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016ae4: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016ae8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016aec: 80 a0 60 00 cmp %g1, 0 2016af0: 12 80 00 49 bne 2016c14 <_Timer_server_Schedule_operation_method+0x130> 2016af4: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2016af8: 7f ff ff 58 call 2016858 <_Thread_Disable_dispatch> 2016afc: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016b00: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016b04: 80 a0 60 01 cmp %g1, 1 2016b08: 12 80 00 1f bne 2016b84 <_Timer_server_Schedule_operation_method+0xa0> 2016b0c: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b10: 7f ff e3 60 call 200f890 2016b14: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016b18: 03 00 80 f2 sethi %hi(0x203c800), %g1 2016b1c: c4 00 61 84 ld [ %g1 + 0x184 ], %g2 ! 203c984 <_Watchdog_Ticks_since_boot> initialized = false; } #endif return status; } 2016b20: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = _Watchdog_Ticks_since_boot; last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016b24: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016b28: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016b2c: 80 a0 40 03 cmp %g1, %g3 2016b30: 02 80 00 08 be 2016b50 <_Timer_server_Schedule_operation_method+0x6c> 2016b34: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016b38: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016b3c: 80 a3 40 04 cmp %o5, %g4 2016b40: 08 80 00 03 bleu 2016b4c <_Timer_server_Schedule_operation_method+0x68> 2016b44: 86 10 20 00 clr %g3 delta_interval -= delta; 2016b48: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016b4c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016b50: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016b54: 7f ff e3 53 call 200f8a0 2016b58: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016b5c: 90 06 20 30 add %i0, 0x30, %o0 2016b60: 40 00 11 46 call 201b078 <_Watchdog_Insert> 2016b64: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016b68: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b6c: 80 a0 60 00 cmp %g1, 0 2016b70: 12 80 00 27 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128> 2016b74: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016b78: 7f ff ff 3e call 2016870 <_Timer_server_Reset_interval_system_watchdog> 2016b7c: 90 10 00 18 mov %i0, %o0 2016b80: 30 80 00 23 b,a 2016c0c <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016b84: 12 80 00 22 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128> 2016b88: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b8c: 7f ff e3 41 call 200f890 2016b90: 01 00 00 00 nop initialized = false; } #endif return status; } 2016b94: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016b98: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016b9c: 03 00 80 f2 sethi %hi(0x203c800), %g1 2016ba0: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016ba4: 80 a0 80 03 cmp %g2, %g3 2016ba8: 02 80 00 0d be 2016bdc <_Timer_server_Schedule_operation_method+0xf8> 2016bac: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016bb0: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2016bb4: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016bb8: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016bbc: 08 80 00 07 bleu 2016bd8 <_Timer_server_Schedule_operation_method+0xf4> 2016bc0: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016bc4: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 2016bc8: 80 a1 00 0d cmp %g4, %o5 2016bcc: 08 80 00 03 bleu 2016bd8 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 2016bd0: 86 10 20 00 clr %g3 delta_interval -= delta; 2016bd4: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016bd8: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016bdc: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016be0: 7f ff e3 30 call 200f8a0 2016be4: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016be8: 90 06 20 68 add %i0, 0x68, %o0 2016bec: 40 00 11 23 call 201b078 <_Watchdog_Insert> 2016bf0: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016bf4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016bf8: 80 a0 60 00 cmp %g1, 0 2016bfc: 12 80 00 04 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128> 2016c00: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016c04: 7f ff ff 30 call 20168c4 <_Timer_server_Reset_tod_system_watchdog> 2016c08: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016c0c: 40 00 0c 7f call 2019e08 <_Thread_Enable_dispatch> 2016c10: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016c14: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016c18: 40 00 02 14 call 2017468 <_Chain_Append> 2016c1c: 81 e8 00 00 restore =============================================================================== 0200b140 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200b140: c6 02 00 00 ld [ %o0 ], %g3 200b144: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200b148: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200b14c: 80 a0 c0 02 cmp %g3, %g2 200b150: 14 80 00 0b bg 200b17c <_Timespec_Greater_than+0x3c> 200b154: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200b158: 80 a0 c0 02 cmp %g3, %g2 200b15c: 06 80 00 08 bl 200b17c <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 200b160: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200b164: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b168: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b16c: 80 a0 80 01 cmp %g2, %g1 200b170: 14 80 00 03 bg 200b17c <_Timespec_Greater_than+0x3c> 200b174: 90 10 20 01 mov 1, %o0 200b178: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200b17c: 81 c3 e0 08 retl =============================================================================== 020092b0 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 20092b0: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20092b4: 03 00 80 51 sethi %hi(0x2014400), %g1 20092b8: 82 10 60 98 or %g1, 0x98, %g1 ! 2014498 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20092bc: 05 00 80 54 sethi %hi(0x2015000), %g2 initial_extensions = Configuration.User_extension_table; 20092c0: e6 00 60 40 ld [ %g1 + 0x40 ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20092c4: e4 00 60 3c ld [ %g1 + 0x3c ], %l2 20092c8: 82 10 a2 78 or %g2, 0x278, %g1 20092cc: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 20092d0: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 20092d4: c2 20 60 08 st %g1, [ %g1 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20092d8: c6 20 a2 78 st %g3, [ %g2 + 0x278 ] 20092dc: 05 00 80 54 sethi %hi(0x2015000), %g2 20092e0: 82 10 a0 74 or %g2, 0x74, %g1 ! 2015074 <_User_extensions_Switches_list> 20092e4: 86 00 60 04 add %g1, 4, %g3 head->previous = NULL; 20092e8: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20092ec: c6 20 a0 74 st %g3, [ %g2 + 0x74 ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 20092f0: 80 a4 e0 00 cmp %l3, 0 20092f4: 02 80 00 1b be 2009360 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 20092f8: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 20092fc: 83 2c a0 02 sll %l2, 2, %g1 2009300: a1 2c a0 04 sll %l2, 4, %l0 2009304: a0 24 00 01 sub %l0, %g1, %l0 2009308: a0 04 00 12 add %l0, %l2, %l0 200930c: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009310: 40 00 01 6c call 20098c0 <_Workspace_Allocate_or_fatal_error> 2009314: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009318: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 200931c: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009320: 92 10 20 00 clr %o1 2009324: 40 00 14 a8 call 200e5c4 2009328: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200932c: 10 80 00 0b b 2009358 <_User_extensions_Handler_initialization+0xa8> 2009330: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009334: 90 04 60 14 add %l1, 0x14, %o0 2009338: 92 04 c0 09 add %l3, %o1, %o1 200933c: 40 00 14 69 call 200e4e0 2009340: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 2009344: 90 10 00 11 mov %l1, %o0 2009348: 40 00 0c 2a call 200c3f0 <_User_extensions_Add_set> 200934c: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009350: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009354: 80 a4 00 12 cmp %l0, %l2 2009358: 0a bf ff f7 bcs 2009334 <_User_extensions_Handler_initialization+0x84> 200935c: 93 2c 20 05 sll %l0, 5, %o1 2009360: 81 c7 e0 08 ret 2009364: 81 e8 00 00 restore =============================================================================== 020093ac <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 20093ac: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 20093b0: 23 00 80 54 sethi %hi(0x2015000), %l1 20093b4: a2 14 62 78 or %l1, 0x278, %l1 ! 2015278 <_User_extensions_List> ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 20093b8: 10 80 00 08 b 20093d8 <_User_extensions_Thread_exitted+0x2c> 20093bc: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 20093c0: 80 a0 60 00 cmp %g1, 0 20093c4: 22 80 00 05 be,a 20093d8 <_User_extensions_Thread_exitted+0x2c> 20093c8: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 20093cc: 9f c0 40 00 call %g1 20093d0: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 20093d4: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 20093d8: 80 a4 00 11 cmp %l0, %l1 20093dc: 32 bf ff f9 bne,a 20093c0 <_User_extensions_Thread_exitted+0x14> 20093e0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 20093e4: 81 c7 e0 08 ret 20093e8: 81 e8 00 00 restore =============================================================================== 0200b584 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b584: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b588: 7f ff df 19 call 20031ec 200b58c: a0 10 00 18 mov %i0, %l0 } } _ISR_Enable( level ); } 200b590: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b594: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b598: 80 a0 40 11 cmp %g1, %l1 200b59c: 02 80 00 1f be 200b618 <_Watchdog_Adjust+0x94> 200b5a0: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b5a4: 02 80 00 1a be 200b60c <_Watchdog_Adjust+0x88> 200b5a8: a4 10 20 01 mov 1, %l2 200b5ac: 80 a6 60 01 cmp %i1, 1 200b5b0: 12 80 00 1a bne 200b618 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b5b4: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b5b8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b5bc: 10 80 00 07 b 200b5d8 <_Watchdog_Adjust+0x54> 200b5c0: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b5c4: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b5c8: 80 a6 80 19 cmp %i2, %i1 200b5cc: 3a 80 00 05 bcc,a 200b5e0 <_Watchdog_Adjust+0x5c> 200b5d0: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b5d4: b4 26 40 1a sub %i1, %i2, %i2 break; 200b5d8: 10 80 00 10 b 200b618 <_Watchdog_Adjust+0x94> 200b5dc: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b5e0: 7f ff df 07 call 20031fc 200b5e4: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b5e8: 40 00 00 94 call 200b838 <_Watchdog_Tickle> 200b5ec: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200b5f0: 7f ff de ff call 20031ec 200b5f4: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b5f8: c2 04 00 00 ld [ %l0 ], %g1 200b5fc: 80 a0 40 11 cmp %g1, %l1 200b600: 02 80 00 06 be 200b618 <_Watchdog_Adjust+0x94> 200b604: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 200b608: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b60c: 80 a6 a0 00 cmp %i2, 0 200b610: 32 bf ff ed bne,a 200b5c4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b614: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 200b618: 7f ff de f9 call 20031fc 200b61c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 020096d4 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 20096d4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 20096d8: 7f ff e2 ba call 20021c0 20096dc: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 20096e0: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 20096e4: 80 a6 20 01 cmp %i0, 1 20096e8: 22 80 00 1d be,a 200975c <_Watchdog_Remove+0x88> 20096ec: c0 24 20 08 clr [ %l0 + 8 ] 20096f0: 0a 80 00 1c bcs 2009760 <_Watchdog_Remove+0x8c> 20096f4: 03 00 80 54 sethi %hi(0x2015000), %g1 20096f8: 80 a6 20 03 cmp %i0, 3 20096fc: 18 80 00 19 bgu 2009760 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009700: 01 00 00 00 nop 2009704: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009708: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200970c: c4 00 40 00 ld [ %g1 ], %g2 2009710: 80 a0 a0 00 cmp %g2, 0 2009714: 02 80 00 07 be 2009730 <_Watchdog_Remove+0x5c> 2009718: 05 00 80 54 sethi %hi(0x2015000), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200971c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009720: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 2009724: 84 00 c0 02 add %g3, %g2, %g2 2009728: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200972c: 05 00 80 54 sethi %hi(0x2015000), %g2 2009730: c4 00 a1 a0 ld [ %g2 + 0x1a0 ], %g2 ! 20151a0 <_Watchdog_Sync_count> 2009734: 80 a0 a0 00 cmp %g2, 0 2009738: 22 80 00 07 be,a 2009754 <_Watchdog_Remove+0x80> 200973c: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009740: 05 00 80 54 sethi %hi(0x2015000), %g2 2009744: c6 00 a2 c4 ld [ %g2 + 0x2c4 ], %g3 ! 20152c4 <_Per_CPU_Information+0x8> 2009748: 05 00 80 54 sethi %hi(0x2015000), %g2 200974c: c6 20 a1 38 st %g3, [ %g2 + 0x138 ] ! 2015138 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009750: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 2009754: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009758: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200975c: 03 00 80 54 sethi %hi(0x2015000), %g1 2009760: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 20151a4 <_Watchdog_Ticks_since_boot> 2009764: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 2009768: 7f ff e2 9a call 20021d0 200976c: 01 00 00 00 nop return( previous_state ); } 2009770: 81 c7 e0 08 ret 2009774: 81 e8 00 00 restore =============================================================================== 0200adb4 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200adb4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200adb8: 7f ff df e4 call 2002d48 200adbc: a0 10 00 18 mov %i0, %l0 200adc0: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200adc4: 11 00 80 6f sethi %hi(0x201bc00), %o0 200adc8: 94 10 00 19 mov %i1, %o2 200adcc: 90 12 20 60 or %o0, 0x60, %o0 200add0: 7f ff e6 40 call 20046d0 200add4: 92 10 00 10 mov %l0, %o1 printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); } 200add8: e2 06 40 00 ld [ %i1 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200addc: b2 06 60 04 add %i1, 4, %i1 ISR_Level level; Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { 200ade0: 80 a4 40 19 cmp %l1, %i1 200ade4: 02 80 00 0e be 200ae1c <_Watchdog_Report_chain+0x68> 200ade8: 11 00 80 6f sethi %hi(0x201bc00), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200adec: 92 10 00 11 mov %l1, %o1 200adf0: 40 00 00 10 call 200ae30 <_Watchdog_Report> 200adf4: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200adf8: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200adfc: 80 a4 40 19 cmp %l1, %i1 200ae00: 12 bf ff fc bne 200adf0 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200ae04: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200ae08: 11 00 80 6f sethi %hi(0x201bc00), %o0 200ae0c: 92 10 00 10 mov %l0, %o1 200ae10: 7f ff e6 30 call 20046d0 200ae14: 90 12 20 78 or %o0, 0x78, %o0 200ae18: 30 80 00 03 b,a 200ae24 <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 200ae1c: 7f ff e6 2d call 20046d0 200ae20: 90 12 20 88 or %o0, 0x88, %o0 } _ISR_Enable( level ); 200ae24: 7f ff df cd call 2002d58 200ae28: 81 e8 00 00 restore =============================================================================== 02006df8 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006df8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 2006dfc: 90 10 00 18 mov %i0, %o0 2006e00: 40 00 01 4a call 2007328 <_Chain_Append_with_empty_check> 2006e04: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 2006e08: 80 8a 20 ff btst 0xff, %o0 2006e0c: 02 80 00 05 be 2006e20 <== NEVER TAKEN 2006e10: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006e14: b0 10 00 1a mov %i2, %i0 2006e18: 7f ff fd 75 call 20063ec 2006e1c: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006e20: 81 c7 e0 08 ret 2006e24: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 02006e58 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006e58: 9d e3 bf 98 save %sp, -104, %sp 2006e5c: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006e60: 10 80 00 09 b 2006e84 2006e64: a4 07 bf fc add %fp, -4, %l2 2006e68: 92 10 20 00 clr %o1 2006e6c: 94 10 00 1a mov %i2, %o2 2006e70: 7f ff fc fb call 200625c 2006e74: 96 10 00 12 mov %l2, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006e78: 80 a2 20 00 cmp %o0, 0 2006e7c: 32 80 00 09 bne,a 2006ea0 <== ALWAYS TAKEN 2006e80: e2 26 c0 00 st %l1, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006e84: 40 00 01 65 call 2007418 <_Chain_Get> 2006e88: 90 10 00 10 mov %l0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006e8c: a2 92 20 00 orcc %o0, 0, %l1 2006e90: 02 bf ff f6 be 2006e68 2006e94: 90 10 00 19 mov %i1, %o0 2006e98: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006e9c: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 2006ea0: 81 c7 e0 08 ret 2006ea4: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02006ea8 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006ea8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 2006eac: 90 10 00 18 mov %i0, %o0 2006eb0: 40 00 01 74 call 2007480 <_Chain_Prepend_with_empty_check> 2006eb4: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 2006eb8: 80 8a 20 ff btst 0xff, %o0 2006ebc: 02 80 00 05 be 2006ed0 <== NEVER TAKEN 2006ec0: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006ec4: b0 10 00 1a mov %i2, %i0 2006ec8: 7f ff fd 49 call 20063ec 2006ecc: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006ed0: 81 c7 e0 08 ret <== NOT EXECUTED 2006ed4: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02009124 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009124: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009128: 80 a6 20 00 cmp %i0, 0 200912c: 02 80 00 1d be 20091a0 <== NEVER TAKEN 2009130: 21 00 80 98 sethi %hi(0x2026000), %l0 2009134: a0 14 20 3c or %l0, 0x3c, %l0 ! 202603c <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009138: a6 04 20 0c add %l0, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200913c: c2 04 00 00 ld [ %l0 ], %g1 2009140: 80 a0 60 00 cmp %g1, 0 2009144: 22 80 00 14 be,a 2009194 2009148: a0 04 20 04 add %l0, 4, %l0 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 200914c: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 2009150: 80 a4 a0 00 cmp %l2, 0 2009154: 12 80 00 0b bne 2009180 2009158: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200915c: 10 80 00 0e b 2009194 2009160: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 2009164: 83 2c 60 02 sll %l1, 2, %g1 2009168: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 200916c: 80 a2 20 00 cmp %o0, 0 2009170: 02 80 00 04 be 2009180 2009174: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 2009178: 9f c6 00 00 call %i0 200917c: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009180: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 2009184: 80 a4 40 01 cmp %l1, %g1 2009188: 28 bf ff f7 bleu,a 2009164 200918c: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 2009190: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009194: 80 a4 00 13 cmp %l0, %l3 2009198: 32 bf ff ea bne,a 2009140 200919c: c2 04 00 00 ld [ %l0 ], %g1 20091a0: 81 c7 e0 08 ret 20091a4: 81 e8 00 00 restore =============================================================================== 020142cc : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 20142cc: 9d e3 bf a0 save %sp, -96, %sp 20142d0: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 20142d4: 80 a4 20 00 cmp %l0, 0 20142d8: 02 80 00 1f be 2014354 20142dc: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 20142e0: 80 a6 60 00 cmp %i1, 0 20142e4: 02 80 00 1c be 2014354 20142e8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 20142ec: 80 a7 60 00 cmp %i5, 0 20142f0: 02 80 00 19 be 2014354 <== NEVER TAKEN 20142f4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20142f8: 02 80 00 32 be 20143c0 20142fc: 80 a6 a0 00 cmp %i2, 0 2014300: 02 80 00 30 be 20143c0 2014304: 80 a6 80 1b cmp %i2, %i3 2014308: 0a 80 00 13 bcs 2014354 201430c: b0 10 20 08 mov 8, %i0 2014310: 80 8e e0 07 btst 7, %i3 2014314: 12 80 00 10 bne 2014354 2014318: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 201431c: 12 80 00 0e bne 2014354 2014320: b0 10 20 09 mov 9, %i0 2014324: 03 00 80 f2 sethi %hi(0x203c800), %g1 2014328: c4 00 60 50 ld [ %g1 + 0x50 ], %g2 ! 203c850 <_Thread_Dispatch_disable_level> 201432c: 84 00 a0 01 inc %g2 2014330: c4 20 60 50 st %g2, [ %g1 + 0x50 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014334: 25 00 80 f1 sethi %hi(0x203c400), %l2 2014338: 40 00 12 44 call 2018c48 <_Objects_Allocate> 201433c: 90 14 a2 64 or %l2, 0x264, %o0 ! 203c664 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014340: a2 92 20 00 orcc %o0, 0, %l1 2014344: 12 80 00 06 bne 201435c 2014348: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 201434c: 40 00 16 af call 2019e08 <_Thread_Enable_dispatch> 2014350: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 2014354: 81 c7 e0 08 ret 2014358: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 201435c: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 2014360: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 2014364: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 2014368: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 201436c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014370: 40 00 61 d7 call 202cacc <.udiv> 2014374: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014378: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 201437c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014380: 96 10 00 1b mov %i3, %o3 2014384: a6 04 60 24 add %l1, 0x24, %l3 2014388: 40 00 0c 5d call 20174fc <_Chain_Initialize> 201438c: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014390: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014394: a4 14 a2 64 or %l2, 0x264, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014398: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201439c: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20143a0: 85 28 a0 02 sll %g2, 2, %g2 20143a4: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 20143a8: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 20143ac: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 20143b0: 40 00 16 96 call 2019e08 <_Thread_Enable_dispatch> 20143b4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20143b8: 81 c7 e0 08 ret 20143bc: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 20143c0: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 20143c4: 81 c7 e0 08 ret 20143c8: 81 e8 00 00 restore =============================================================================== 020073b0 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 20073b0: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 20073b4: 11 00 80 76 sethi %hi(0x201d800), %o0 20073b8: 92 10 00 18 mov %i0, %o1 20073bc: 90 12 21 44 or %o0, 0x144, %o0 20073c0: 40 00 08 e9 call 2009764 <_Objects_Get> 20073c4: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20073cc: 80 a0 60 00 cmp %g1, 0 20073d0: 12 80 00 66 bne 2007568 20073d4: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20073d8: 25 00 80 77 sethi %hi(0x201dc00), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 20073dc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 20073e0: a4 14 a0 fc or %l2, 0xfc, %l2 20073e4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 20073e8: 80 a0 80 01 cmp %g2, %g1 20073ec: 02 80 00 06 be 2007404 20073f0: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 20073f4: 40 00 0b fb call 200a3e0 <_Thread_Enable_dispatch> 20073f8: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20073fc: 81 c7 e0 08 ret 2007400: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 2007404: 12 80 00 0e bne 200743c 2007408: 01 00 00 00 nop switch ( the_period->state ) { 200740c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007410: 80 a0 60 04 cmp %g1, 4 2007414: 18 80 00 06 bgu 200742c <== NEVER TAKEN 2007418: b0 10 20 00 clr %i0 200741c: 83 28 60 02 sll %g1, 2, %g1 2007420: 05 00 80 6e sethi %hi(0x201b800), %g2 2007424: 84 10 a1 94 or %g2, 0x194, %g2 ! 201b994 2007428: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 200742c: 40 00 0b ed call 200a3e0 <_Thread_Enable_dispatch> 2007430: 01 00 00 00 nop return( return_value ); 2007434: 81 c7 e0 08 ret 2007438: 81 e8 00 00 restore } _ISR_Disable( level ); 200743c: 7f ff ef 26 call 20030d4 2007440: 01 00 00 00 nop 2007444: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007448: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 200744c: 80 a4 60 00 cmp %l1, 0 2007450: 12 80 00 15 bne 20074a4 2007454: 80 a4 60 02 cmp %l1, 2 _ISR_Enable( level ); 2007458: 7f ff ef 23 call 20030e4 200745c: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007460: 7f ff ff 7a call 2007248 <_Rate_monotonic_Initiate_statistics> 2007464: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007468: 82 10 20 02 mov 2, %g1 200746c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007470: 03 00 80 1e sethi %hi(0x2007800), %g1 2007474: 82 10 60 38 or %g1, 0x38, %g1 ! 2007838 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007478: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 200747c: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 2007480: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 2007484: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 2007488: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200748c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007490: 11 00 80 76 sethi %hi(0x201d800), %o0 2007494: 92 04 20 10 add %l0, 0x10, %o1 2007498: 40 00 10 0b call 200b4c4 <_Watchdog_Insert> 200749c: 90 12 23 94 or %o0, 0x394, %o0 20074a0: 30 80 00 1b b,a 200750c _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20074a4: 12 80 00 1e bne 200751c 20074a8: 80 a4 60 04 cmp %l1, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20074ac: 7f ff ff 83 call 20072b8 <_Rate_monotonic_Update_statistics> 20074b0: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20074b4: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 20074b8: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20074bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 20074c0: 7f ff ef 09 call 20030e4 20074c4: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 20074c8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 20074cc: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20074d0: 13 00 00 10 sethi %hi(0x4000), %o1 20074d4: 40 00 0e 06 call 200acec <_Thread_Set_state> 20074d8: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 20074dc: 7f ff ee fe call 20030d4 20074e0: 01 00 00 00 nop local_state = the_period->state; 20074e4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 20074e8: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 20074ec: 7f ff ee fe call 20030e4 20074f0: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20074f4: 80 a4 e0 03 cmp %l3, 3 20074f8: 12 80 00 05 bne 200750c 20074fc: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007500: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007504: 40 00 0a d1 call 200a048 <_Thread_Clear_state> 2007508: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 200750c: 40 00 0b b5 call 200a3e0 <_Thread_Enable_dispatch> 2007510: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007514: 81 c7 e0 08 ret 2007518: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 200751c: 12 bf ff b8 bne 20073fc <== NEVER TAKEN 2007520: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007524: 7f ff ff 65 call 20072b8 <_Rate_monotonic_Update_statistics> 2007528: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 200752c: 7f ff ee ee call 20030e4 2007530: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007534: 82 10 20 02 mov 2, %g1 2007538: 92 04 20 10 add %l0, 0x10, %o1 200753c: 11 00 80 76 sethi %hi(0x201d800), %o0 2007540: 90 12 23 94 or %o0, 0x394, %o0 ! 201db94 <_Watchdog_Ticks_chain> 2007544: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 2007548: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200754c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007550: 40 00 0f dd call 200b4c4 <_Watchdog_Insert> 2007554: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007558: 40 00 0b a2 call 200a3e0 <_Thread_Enable_dispatch> 200755c: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007560: 81 c7 e0 08 ret 2007564: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2007568: b0 10 20 04 mov 4, %i0 } 200756c: 81 c7 e0 08 ret 2007570: 81 e8 00 00 restore =============================================================================== 02007574 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007574: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007578: 80 a6 60 00 cmp %i1, 0 200757c: 02 80 00 79 be 2007760 <== NEVER TAKEN 2007580: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007584: 13 00 80 6e sethi %hi(0x201b800), %o1 2007588: 9f c6 40 00 call %i1 200758c: 92 12 61 a8 or %o1, 0x1a8, %o1 ! 201b9a8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007590: 90 10 00 18 mov %i0, %o0 2007594: 13 00 80 6e sethi %hi(0x201b800), %o1 2007598: 9f c6 40 00 call %i1 200759c: 92 12 61 c8 or %o1, 0x1c8, %o1 ! 201b9c8 (*print)( context, "--- Wall times are in seconds ---\n" ); 20075a0: 90 10 00 18 mov %i0, %o0 20075a4: 13 00 80 6e sethi %hi(0x201b800), %o1 20075a8: 9f c6 40 00 call %i1 20075ac: 92 12 61 f0 or %o1, 0x1f0, %o1 ! 201b9f0 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 20075b0: 90 10 00 18 mov %i0, %o0 20075b4: 13 00 80 6e sethi %hi(0x201b800), %o1 20075b8: 9f c6 40 00 call %i1 20075bc: 92 12 62 18 or %o1, 0x218, %o1 ! 201ba18 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 20075c0: 90 10 00 18 mov %i0, %o0 20075c4: 13 00 80 6e sethi %hi(0x201b800), %o1 20075c8: 9f c6 40 00 call %i1 20075cc: 92 12 62 68 or %o1, 0x268, %o1 ! 201ba68 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075d0: 3b 00 80 76 sethi %hi(0x201d800), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20075d4: 2b 00 80 6e sethi %hi(0x201b800), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075d8: 82 17 61 44 or %i5, 0x144, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 20075dc: 27 00 80 6e sethi %hi(0x201b800), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 20075e0: 35 00 80 6e sethi %hi(0x201b800), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075e4: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20075e8: ae 07 bf a0 add %fp, -96, %l7 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20075ec: ac 07 bf d8 add %fp, -40, %l6 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20075f0: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20075f4: aa 15 62 b8 or %l5, 0x2b8, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 20075f8: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20075fc: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 2007600: a6 14 e2 d0 or %l3, 0x2d0, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007604: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007608: 10 80 00 52 b 2007750 200760c: b4 16 a2 f0 or %i2, 0x2f0, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007610: 40 00 17 f3 call 200d5dc 2007614: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007618: 80 a2 20 00 cmp %o0, 0 200761c: 32 80 00 4c bne,a 200774c 2007620: a0 04 20 01 inc %l0 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007624: 92 10 00 16 mov %l6, %o1 2007628: 40 00 18 1a call 200d690 200762c: 90 10 00 10 mov %l0, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007630: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007634: 92 10 20 05 mov 5, %o1 2007638: 40 00 00 ae call 20078f0 200763c: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007640: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007644: 92 10 00 15 mov %l5, %o1 2007648: 90 10 00 18 mov %i0, %o0 200764c: 94 10 00 10 mov %l0, %o2 2007650: 9f c6 40 00 call %i1 2007654: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007658: d2 07 bf a0 ld [ %fp + -96 ], %o1 200765c: 80 a2 60 00 cmp %o1, 0 2007660: 12 80 00 08 bne 2007680 2007664: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 2007668: 90 10 00 18 mov %i0, %o0 200766c: 13 00 80 6b sethi %hi(0x201ac00), %o1 2007670: 9f c6 40 00 call %i1 2007674: 92 12 60 b8 or %o1, 0xb8, %o1 ! 201acb8 <_rodata_start+0x158> continue; 2007678: 10 80 00 35 b 200774c 200767c: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007680: 40 00 0e 6e call 200b038 <_Timespec_Divide_by_integer> 2007684: 90 10 00 14 mov %l4, %o0 (*print)( context, 2007688: d0 07 bf ac ld [ %fp + -84 ], %o0 200768c: 40 00 45 ab call 2018d38 <.div> 2007690: 92 10 23 e8 mov 0x3e8, %o1 2007694: 96 10 00 08 mov %o0, %o3 2007698: d0 07 bf b4 ld [ %fp + -76 ], %o0 200769c: d6 27 bf 9c st %o3, [ %fp + -100 ] 20076a0: 40 00 45 a6 call 2018d38 <.div> 20076a4: 92 10 23 e8 mov 0x3e8, %o1 20076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20076ac: b6 10 00 08 mov %o0, %i3 20076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20076b8: 40 00 45 a0 call 2018d38 <.div> 20076bc: 92 10 23 e8 mov 0x3e8, %o1 20076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4 20076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3 20076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2 20076cc: 9a 10 00 1b mov %i3, %o5 20076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20076d4: 92 10 00 13 mov %l3, %o1 20076d8: 9f c6 40 00 call %i1 20076dc: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 20076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20076e4: 94 10 00 11 mov %l1, %o2 20076e8: 40 00 0e 54 call 200b038 <_Timespec_Divide_by_integer> 20076ec: 90 10 00 1c mov %i4, %o0 (*print)( context, 20076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0 20076f4: 40 00 45 91 call 2018d38 <.div> 20076f8: 92 10 23 e8 mov 0x3e8, %o1 20076fc: 96 10 00 08 mov %o0, %o3 2007700: d0 07 bf cc ld [ %fp + -52 ], %o0 2007704: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007708: 40 00 45 8c call 2018d38 <.div> 200770c: 92 10 23 e8 mov 0x3e8, %o1 2007710: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007714: b6 10 00 08 mov %o0, %i3 2007718: d0 07 bf f4 ld [ %fp + -12 ], %o0 200771c: 92 10 23 e8 mov 0x3e8, %o1 2007720: 40 00 45 86 call 2018d38 <.div> 2007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007728: d4 07 bf c0 ld [ %fp + -64 ], %o2 200772c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007730: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007738: 92 10 00 1a mov %i2, %o1 200773c: 90 10 00 18 mov %i0, %o0 2007740: 9f c6 40 00 call %i1 2007744: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007748: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 200774c: 82 17 61 44 or %i5, 0x144, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007750: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2007754: 80 a4 00 01 cmp %l0, %g1 2007758: 08 bf ff ae bleu 2007610 200775c: 90 10 00 10 mov %l0, %o0 2007760: 81 c7 e0 08 ret 2007764: 81 e8 00 00 restore =============================================================================== 02015870 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2015870: 9d e3 bf 98 save %sp, -104, %sp 2015874: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2015878: 80 a6 60 00 cmp %i1, 0 201587c: 02 80 00 2e be 2015934 2015880: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015884: 40 00 11 6e call 2019e3c <_Thread_Get> 2015888: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 201588c: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015890: a2 10 00 08 mov %o0, %l1 switch ( location ) { 2015894: 80 a0 60 00 cmp %g1, 0 2015898: 12 80 00 27 bne 2015934 201589c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20158a0: e0 02 21 58 ld [ %o0 + 0x158 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20158a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20158a8: 80 a0 60 00 cmp %g1, 0 20158ac: 02 80 00 24 be 201593c 20158b0: 01 00 00 00 nop if ( asr->is_enabled ) { 20158b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20158b8: 80 a0 60 00 cmp %g1, 0 20158bc: 02 80 00 15 be 2015910 20158c0: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20158c4: 7f ff e7 f3 call 200f890 20158c8: 01 00 00 00 nop *signal_set |= signals; 20158cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20158d0: b2 10 40 19 or %g1, %i1, %i1 20158d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 20158d8: 7f ff e7 f2 call 200f8a0 20158dc: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 20158e0: 03 00 80 f2 sethi %hi(0x203c800), %g1 20158e4: 82 10 62 a4 or %g1, 0x2a4, %g1 ! 203caa4 <_Per_CPU_Information> 20158e8: c4 00 60 08 ld [ %g1 + 8 ], %g2 20158ec: 80 a0 a0 00 cmp %g2, 0 20158f0: 02 80 00 0f be 201592c 20158f4: 01 00 00 00 nop 20158f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20158fc: 80 a4 40 02 cmp %l1, %g2 2015900: 12 80 00 0b bne 201592c <== NEVER TAKEN 2015904: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015908: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 201590c: 30 80 00 08 b,a 201592c rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015910: 7f ff e7 e0 call 200f890 2015914: 01 00 00 00 nop *signal_set |= signals; 2015918: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 201591c: b2 10 40 19 or %g1, %i1, %i1 2015920: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 2015924: 7f ff e7 df call 200f8a0 2015928: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 201592c: 40 00 11 37 call 2019e08 <_Thread_Enable_dispatch> 2015930: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 2015934: 81 c7 e0 08 ret 2015938: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 201593c: 40 00 11 33 call 2019e08 <_Thread_Enable_dispatch> 2015940: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2015944: 81 c7 e0 08 ret 2015948: 81 e8 00 00 restore =============================================================================== 0200d634 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d634: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d638: 80 a6 a0 00 cmp %i2, 0 200d63c: 02 80 00 5a be 200d7a4 200d640: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d644: 03 00 80 54 sethi %hi(0x2015000), %g1 200d648: e2 00 62 c8 ld [ %g1 + 0x2c8 ], %l1 ! 20152c8 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d64c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d650: e0 04 61 58 ld [ %l1 + 0x158 ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d654: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d658: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d65c: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d660: 80 a0 60 00 cmp %g1, 0 200d664: 02 80 00 03 be 200d670 200d668: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d66c: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d670: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d674: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d678: 7f ff f1 e4 call 2009e08 <_CPU_ISR_Get_level> 200d67c: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d680: a7 2c e0 0a sll %l3, 0xa, %l3 200d684: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 200d688: a4 14 c0 12 or %l3, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d68c: 80 8e 61 00 btst 0x100, %i1 200d690: 02 80 00 06 be 200d6a8 200d694: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d698: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d69c: 80 a0 00 01 cmp %g0, %g1 200d6a0: 82 60 3f ff subx %g0, -1, %g1 200d6a4: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d6a8: 80 8e 62 00 btst 0x200, %i1 200d6ac: 02 80 00 0b be 200d6d8 200d6b0: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d6b4: 80 8e 22 00 btst 0x200, %i0 200d6b8: 22 80 00 07 be,a 200d6d4 200d6bc: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d6c0: 82 10 20 01 mov 1, %g1 200d6c4: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d6c8: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d6cc: c2 00 63 d4 ld [ %g1 + 0x3d4 ], %g1 ! 2014fd4 <_Thread_Ticks_per_timeslice> 200d6d0: c2 24 60 78 st %g1, [ %l1 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d6d4: 80 8e 60 0f btst 0xf, %i1 200d6d8: 02 80 00 06 be 200d6f0 200d6dc: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d6e0: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d6e4: 7f ff d2 bb call 20021d0 200d6e8: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d6ec: 80 8e 64 00 btst 0x400, %i1 200d6f0: 02 80 00 14 be 200d740 200d6f4: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d6f8: c4 0c 20 08 ldub [ %l0 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d6fc: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d700: 80 a0 00 18 cmp %g0, %i0 200d704: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d708: 80 a0 40 02 cmp %g1, %g2 200d70c: 22 80 00 0e be,a 200d744 200d710: 03 00 80 54 sethi %hi(0x2015000), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d714: 7f ff d2 ab call 20021c0 200d718: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 200d71c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d720: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 200d724: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d728: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d72c: 7f ff d2 a9 call 20021d0 200d730: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d734: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d738: 80 a0 00 01 cmp %g0, %g1 200d73c: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d740: 03 00 80 54 sethi %hi(0x2015000), %g1 200d744: c4 00 61 ec ld [ %g1 + 0x1ec ], %g2 ! 20151ec <_System_state_Current> 200d748: 80 a0 a0 03 cmp %g2, 3 200d74c: 12 80 00 16 bne 200d7a4 <== NEVER TAKEN 200d750: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d754: 07 00 80 54 sethi %hi(0x2015000), %g3 if ( are_signals_pending || 200d758: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d75c: 86 10 e2 bc or %g3, 0x2bc, %g3 if ( are_signals_pending || 200d760: 12 80 00 0a bne 200d788 200d764: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d768: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d76c: 80 a0 80 03 cmp %g2, %g3 200d770: 02 80 00 0d be 200d7a4 200d774: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d778: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d77c: 80 a0 a0 00 cmp %g2, 0 200d780: 02 80 00 09 be 200d7a4 <== NEVER TAKEN 200d784: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d788: 84 10 20 01 mov 1, %g2 ! 1 200d78c: 03 00 80 54 sethi %hi(0x2015000), %g1 200d790: 82 10 62 bc or %g1, 0x2bc, %g1 ! 20152bc <_Per_CPU_Information> 200d794: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d798: 7f ff eb 5f call 2008514 <_Thread_Dispatch> 200d79c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d7a0: 82 10 20 00 clr %g1 ! 0 } 200d7a4: 81 c7 e0 08 ret 200d7a8: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200abc0 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200abc0: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200abc4: 80 a6 60 00 cmp %i1, 0 200abc8: 02 80 00 07 be 200abe4 200abcc: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200abd0: 03 00 80 63 sethi %hi(0x2018c00), %g1 200abd4: c2 08 60 34 ldub [ %g1 + 0x34 ], %g1 ! 2018c34 200abd8: 80 a6 40 01 cmp %i1, %g1 200abdc: 18 80 00 1c bgu 200ac4c 200abe0: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200abe4: 80 a6 a0 00 cmp %i2, 0 200abe8: 02 80 00 19 be 200ac4c 200abec: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200abf0: 40 00 08 d0 call 200cf30 <_Thread_Get> 200abf4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200abf8: c2 07 bf fc ld [ %fp + -4 ], %g1 200abfc: 80 a0 60 00 cmp %g1, 0 200ac00: 12 80 00 13 bne 200ac4c 200ac04: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200ac08: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200ac0c: 80 a6 60 00 cmp %i1, 0 200ac10: 02 80 00 0d be 200ac44 200ac14: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200ac18: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200ac1c: 80 a0 60 00 cmp %g1, 0 200ac20: 02 80 00 06 be 200ac38 200ac24: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200ac28: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200ac2c: 80 a0 40 19 cmp %g1, %i1 200ac30: 08 80 00 05 bleu 200ac44 <== ALWAYS TAKEN 200ac34: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200ac38: 92 10 00 19 mov %i1, %o1 200ac3c: 40 00 07 69 call 200c9e0 <_Thread_Change_priority> 200ac40: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200ac44: 40 00 08 ae call 200cefc <_Thread_Enable_dispatch> 200ac48: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200ac4c: 81 c7 e0 08 ret 200ac50: 81 e8 00 00 restore =============================================================================== 02016280 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016280: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 2016284: 11 00 80 f2 sethi %hi(0x203c800), %o0 2016288: 92 10 00 18 mov %i0, %o1 201628c: 90 12 23 34 or %o0, 0x334, %o0 2016290: 40 00 0b bf call 201918c <_Objects_Get> 2016294: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016298: c2 07 bf fc ld [ %fp + -4 ], %g1 201629c: 80 a0 60 00 cmp %g1, 0 20162a0: 12 80 00 0c bne 20162d0 20162a4: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 20162a8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20162ac: 80 a0 60 04 cmp %g1, 4 20162b0: 02 80 00 04 be 20162c0 <== NEVER TAKEN 20162b4: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 20162b8: 40 00 13 cc call 201b1e8 <_Watchdog_Remove> 20162bc: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 20162c0: 40 00 0e d2 call 2019e08 <_Thread_Enable_dispatch> 20162c4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20162c8: 81 c7 e0 08 ret 20162cc: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20162d0: 81 c7 e0 08 ret 20162d4: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016768 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016768: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 201676c: 03 00 80 f2 sethi %hi(0x203c800), %g1 2016770: e2 00 63 74 ld [ %g1 + 0x374 ], %l1 ! 203cb74 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016774: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016778: 80 a4 60 00 cmp %l1, 0 201677c: 02 80 00 33 be 2016848 2016780: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016784: 03 00 80 f2 sethi %hi(0x203c800), %g1 2016788: c2 08 60 60 ldub [ %g1 + 0x60 ], %g1 ! 203c860 <_TOD_Is_set> 201678c: 80 a0 60 00 cmp %g1, 0 2016790: 02 80 00 2e be 2016848 <== NEVER TAKEN 2016794: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016798: 80 a6 a0 00 cmp %i2, 0 201679c: 02 80 00 2b be 2016848 20167a0: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 20167a4: 90 10 00 19 mov %i1, %o0 20167a8: 7f ff f4 06 call 20137c0 <_TOD_Validate> 20167ac: b0 10 20 14 mov 0x14, %i0 20167b0: 80 8a 20 ff btst 0xff, %o0 20167b4: 02 80 00 27 be 2016850 20167b8: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 20167bc: 7f ff f3 cd call 20136f0 <_TOD_To_seconds> 20167c0: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 20167c4: 27 00 80 f2 sethi %hi(0x203c800), %l3 20167c8: c2 04 e0 fc ld [ %l3 + 0xfc ], %g1 ! 203c8fc <_TOD_Now> 20167cc: 80 a2 00 01 cmp %o0, %g1 20167d0: 08 80 00 1e bleu 2016848 20167d4: a4 10 00 08 mov %o0, %l2 20167d8: 11 00 80 f2 sethi %hi(0x203c800), %o0 20167dc: 92 10 00 10 mov %l0, %o1 20167e0: 90 12 23 34 or %o0, 0x334, %o0 20167e4: 40 00 0a 6a call 201918c <_Objects_Get> 20167e8: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20167ec: c2 07 bf fc ld [ %fp + -4 ], %g1 20167f0: b2 10 00 08 mov %o0, %i1 20167f4: 80 a0 60 00 cmp %g1, 0 20167f8: 12 80 00 14 bne 2016848 20167fc: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016800: 40 00 12 7a call 201b1e8 <_Watchdog_Remove> 2016804: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2016808: 82 10 20 03 mov 3, %g1 201680c: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016810: c2 04 e0 fc ld [ %l3 + 0xfc ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016814: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016818: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 201681c: c2 04 60 04 ld [ %l1 + 4 ], %g1 2016820: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016824: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 2016828: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 201682c: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 2016830: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016834: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2016838: 9f c0 40 00 call %g1 201683c: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016840: 40 00 0d 72 call 2019e08 <_Thread_Enable_dispatch> 2016844: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2016848: 81 c7 e0 08 ret 201684c: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016850: 81 c7 e0 08 ret 2016854: 81 e8 00 00 restore