02017534 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
2017534: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
2017538: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
201753c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
2017540: 80 a6 80 01 cmp %i2, %g1
2017544: 18 80 00 16 bgu 201759c <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
2017548: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) {
201754c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2017550: 80 a0 60 00 cmp %g1, 0
2017554: 02 80 00 0b be 2017580 <_CORE_message_queue_Broadcast+0x4c>
2017558: a2 10 20 00 clr %l1
*count = 0;
201755c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017560: 81 c7 e0 08 ret 2017564: 91 e8 20 00 restore %g0, 0, %o0
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
2017568: 92 10 00 19 mov %i1, %o1 201756c: 40 00 21 64 call 201fafc <memcpy> 2017570: 94 10 00 1a mov %i2, %o2
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
2017574: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1;
2017578: a2 04 60 01 inc %l1
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
201757c: f4 20 40 00 st %i2, [ %g1 ]
/* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread =
2017580: 40 00 0b 07 call 201a19c <_Thread_queue_Dequeue> 2017584: 90 10 00 10 mov %l0, %o0 2017588: a4 92 20 00 orcc %o0, 0, %l2
201758c: 32 bf ff f7 bne,a 2017568 <_CORE_message_queue_Broadcast+0x34>
2017590: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted;
2017594: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017598: b0 10 20 00 clr %i0
}
201759c: 81 c7 e0 08 ret 20175a0: 81 e8 00 00 restore
0200fe24 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
200fe24: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fe28: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fe2c: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fe30: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
200fe34: a0 10 00 18 mov %i0, %l0
/* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fe38: 80 8e e0 03 btst 3, %i3
200fe3c: 02 80 00 07 be 200fe58 <_CORE_message_queue_Initialize+0x34>
200fe40: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fe44: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fe48: a4 0c bf fc and %l2, -4, %l2
} if (allocated_message_size < maximum_message_size)
200fe4c: 80 a4 80 1b cmp %l2, %i3
200fe50: 0a 80 00 22 bcs 200fed8 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe54: b0 10 20 00 clr %i0
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fe58: a2 04 a0 10 add %l2, 0x10, %l1
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages *
200fe5c: 92 10 00 1a mov %i2, %o1 200fe60: 90 10 00 11 mov %l1, %o0 200fe64: 40 00 3d af call 201f520 <.umul> 200fe68: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size)
200fe6c: 80 a2 00 12 cmp %o0, %l2
200fe70: 0a 80 00 1a bcs 200fed8 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe74: 01 00 00 00 nop
/* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required );
200fe78: 40 00 0b dd call 2012dec <_Workspace_Allocate> 200fe7c: 01 00 00 00 nop
return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fe80: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0)
200fe84: 80 a2 20 00 cmp %o0, 0
200fe88: 02 80 00 14 be 200fed8 <_CORE_message_queue_Initialize+0xb4>
200fe8c: 92 10 00 08 mov %o0, %o1
/* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize (
200fe90: 90 04 20 60 add %l0, 0x60, %o0 200fe94: 94 10 00 1a mov %i2, %o2 200fe98: 40 00 14 2e call 2014f50 <_Chain_Initialize> 200fe9c: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain );
200fea0: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
200fea4: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain );
200fea8: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL;
200feac: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
200feb0: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize(
200feb4: c2 06 40 00 ld [ %i1 ], %g1 200feb8: 90 10 00 10 mov %l0, %o0 200febc: 82 18 60 01 xor %g1, 1, %g1 200fec0: 80 a0 00 01 cmp %g0, %g1 200fec4: 94 10 20 80 mov 0x80, %o2 200fec8: 92 60 3f ff subx %g0, -1, %o1 200fecc: 96 10 20 06 mov 6, %o3 200fed0: 40 00 09 31 call 2012394 <_Thread_queue_Initialize> 200fed4: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; }
200fed8: 81 c7 e0 08 ret 200fedc: 81 e8 00 00 restore
0200fee0 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
200fee0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing;
200fee4: 27 00 80 90 sethi %hi(0x2024000), %l3 200fee8: a6 14 e1 4c or %l3, 0x14c, %l3 ! 202414c <_Per_CPU_Information> 200feec: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
200fef0: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level );
200fef4: 7f ff de 3a call 20077dc <sparc_disable_interrupts> 200fef8: c0 24 a0 34 clr [ %l2 + 0x34 ] 200fefc: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); }
200ff00: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
200ff04: 84 06 20 54 add %i0, 0x54, %g2
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
200ff08: 80 a4 40 02 cmp %l1, %g2
200ff0c: 02 80 00 15 be 200ff60 <_CORE_message_queue_Seize+0x80>
200ff10: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next;
200ff14: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
200ff18: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) {
200ff1c: 80 a4 60 00 cmp %l1, 0
200ff20: 02 80 00 10 be 200ff60 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200ff24: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200ff28: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200ff2c: 82 00 7f ff add %g1, -1, %g1 200ff30: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200ff34: 7f ff de 2e call 20077ec <sparc_enable_interrupts> 200ff38: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200ff3c: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200ff40: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size;
200ff44: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200ff48: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
200ff4c: 90 10 00 1a mov %i2, %o0 200ff50: 40 00 1e d5 call 2017aa4 <memcpy> 200ff54: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200ff58: 7f ff ff 83 call 200fd64 <_Chain_Append> 200ff5c: 93 e8 00 11 restore %g0, %l1, %o1
return; } #endif } if ( !wait ) {
200ff60: 80 8f 20 ff btst 0xff, %i4
200ff64: 32 80 00 08 bne,a 200ff84 <_CORE_message_queue_Seize+0xa4>
200ff68: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200ff6c: 7f ff de 20 call 20077ec <sparc_enable_interrupts> 200ff70: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
200ff74: 82 10 20 04 mov 4, %g1 200ff78: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); }
200ff7c: 81 c7 e0 08 ret 200ff80: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
200ff84: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue;
200ff88: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
200ff8c: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
200ff90: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
200ff94: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */ _ISR_Enable( level );
200ff98: 90 10 00 01 mov %g1, %o0 200ff9c: 7f ff de 14 call 20077ec <sparc_enable_interrupts> 200ffa0: 35 00 80 49 sethi %hi(0x2012400), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
200ffa4: b2 10 00 1d mov %i5, %i1 200ffa8: 40 00 08 51 call 20120ec <_Thread_queue_Enqueue_with_handler> 200ffac: 95 ee a0 74 restore %i2, 0x74, %o2
02006c94 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) {
2006c94: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006c98: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006c9c: c2 00 63 80 ld [ %g1 + 0x380 ], %g1 ! 2014f80 <_Thread_Dispatch_disable_level> 2006ca0: 80 a0 60 00 cmp %g1, 0
2006ca4: 02 80 00 0d be 2006cd8 <_CORE_mutex_Seize+0x44>
2006ca8: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006cac: 80 8e a0 ff btst 0xff, %i2
2006cb0: 02 80 00 0b be 2006cdc <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006cb4: 90 10 00 18 mov %i0, %o0 2006cb8: 03 00 80 54 sethi %hi(0x2015000), %g1 2006cbc: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 ! 20150fc <_System_state_Current> 2006cc0: 80 a0 60 01 cmp %g1, 1
2006cc4: 08 80 00 05 bleu 2006cd8 <_CORE_mutex_Seize+0x44>
2006cc8: 90 10 20 00 clr %o0 2006ccc: 92 10 20 00 clr %o1 2006cd0: 40 00 01 da call 2007438 <_Internal_error_Occurred> 2006cd4: 94 10 20 12 mov 0x12, %o2 2006cd8: 90 10 00 18 mov %i0, %o0 2006cdc: 40 00 13 4a call 200ba04 <_CORE_mutex_Seize_interrupt_trylock> 2006ce0: 92 07 a0 54 add %fp, 0x54, %o1 2006ce4: 80 a2 20 00 cmp %o0, 0
2006ce8: 02 80 00 0a be 2006d10 <_CORE_mutex_Seize+0x7c>
2006cec: 80 8e a0 ff btst 0xff, %i2 2006cf0: 35 00 80 54 sethi %hi(0x2015000), %i2
2006cf4: 12 80 00 09 bne 2006d18 <_CORE_mutex_Seize+0x84>
2006cf8: b4 16 a1 cc or %i2, 0x1cc, %i2 ! 20151cc <_Per_CPU_Information> 2006cfc: 7f ff ed 35 call 20021d0 <sparc_enable_interrupts> 2006d00: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d04: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d08: 84 10 20 01 mov 1, %g2 2006d0c: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006d10: 81 c7 e0 08 ret 2006d14: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006d18: 82 10 20 01 mov 1, %g1 2006d1c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006d20: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d24: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006d28: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006d2c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006d30: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 2006d34: 84 00 a0 01 inc %g2 2006d38: c4 20 63 80 st %g2, [ %g1 + 0x380 ] 2006d3c: 7f ff ed 25 call 20021d0 <sparc_enable_interrupts> 2006d40: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d44: 90 10 00 18 mov %i0, %o0 2006d48: 7f ff ff ba call 2006c30 <_CORE_mutex_Seize_interrupt_blocking> 2006d4c: 92 10 00 1b mov %i3, %o1 2006d50: 81 c7 e0 08 ret 2006d54: 81 e8 00 00 restore
0200ba04 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) {
200ba04: 9d e3 bf a0 save %sp, -96, %sp
{ Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
200ba08: 03 00 80 54 sethi %hi(0x2015000), %g1 200ba0c: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 20151d8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200ba10: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200ba14: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200ba18: 80 a0 a0 00 cmp %g2, 0
200ba1c: 02 80 00 2f be 200bad8 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
200ba20: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
200ba24: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED;
200ba28: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
200ba2c: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
200ba30: 84 10 20 01 mov 1, %g2 200ba34: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); }
200ba38: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200ba3c: 80 a0 a0 02 cmp %g2, 2
200ba40: 02 80 00 05 be 200ba54 <_CORE_mutex_Seize_interrupt_trylock+0x50>
200ba44: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 200ba48: 80 a0 a0 03 cmp %g2, 3
200ba4c: 12 80 00 07 bne 200ba68 <_CORE_mutex_Seize_interrupt_trylock+0x64>
200ba50: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
200ba54: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200ba58: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
200ba5c: 88 00 e0 01 add %g3, 1, %g4
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200ba60: 02 80 00 03 be 200ba6c <_CORE_mutex_Seize_interrupt_trylock+0x68>
200ba64: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200ba68: 30 80 00 2b b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling;
200ba6c: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
200ba70: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
200ba74: 80 a1 00 02 cmp %g4, %g2
200ba78: 12 80 00 03 bne 200ba84 <_CORE_mutex_Seize_interrupt_trylock+0x80>
200ba7c: 01 00 00 00 nop
_ISR_Enable( *level_p );
200ba80: 30 80 00 25 b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0; } if ( current > ceiling ) { 200ba84: 08 80 00 0f bleu 200bac0 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
200ba88: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
200ba8c: 03 00 80 53 sethi %hi(0x2014c00), %g1 200ba90: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 200ba94: 84 00 a0 01 inc %g2 200ba98: c4 20 63 80 st %g2, [ %g1 + 0x380 ]
_Thread_Disable_dispatch(); _ISR_Enable( *level_p );
200ba9c: 7f ff d9 cd call 20021d0 <sparc_enable_interrupts> 200baa0: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200baa4: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 200baa8: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 200baac: 7f ff f1 a6 call 2008144 <_Thread_Change_priority> 200bab0: 94 10 20 00 clr %o2
the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch();
200bab4: 7f ff f2 eb call 2008660 <_Thread_Enable_dispatch> 200bab8: b0 10 20 00 clr %i0 200babc: 30 80 00 1d b,a 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200bac0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */
200bac4: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED;
200bac8: 84 10 20 01 mov 1, %g2 200bacc: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */
200bad0: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200bad4: 30 80 00 10 b,a 200bb14 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) {
200bad8: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200badc: 80 a0 80 01 cmp %g2, %g1
200bae0: 12 80 00 14 bne 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200bae4: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200bae8: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 200baec: 80 a0 60 00 cmp %g1, 0
200baf0: 22 80 00 07 be,a 200bb0c <_CORE_mutex_Seize_interrupt_trylock+0x108>
200baf4: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200baf8: 80 a0 60 01 cmp %g1, 1
200bafc: 12 80 00 0d bne 200bb30 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
200bb00: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200bb04: 10 80 00 08 b 200bb24 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 200bb08: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++;
200bb0c: 82 00 60 01 inc %g1 200bb10: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200bb14: 7f ff d9 af call 20021d0 <sparc_enable_interrupts> 200bb18: d0 06 40 00 ld [ %i1 ], %o0
return 0;
200bb1c: 81 c7 e0 08 ret 200bb20: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p );
200bb24: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200bb28: 7f ff d9 aa call 20021d0 <sparc_enable_interrupts> <== NOT EXECUTED 200bb2c: b0 10 20 00 clr %i0 <== NOT EXECUTED
200bb30: 81 c7 e0 08 ret 200bb34: 81 e8 00 00 restore
02006ed4 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) {
2006ed4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006ed8: 90 10 00 18 mov %i0, %o0 2006edc: 40 00 06 c6 call 20089f4 <_Thread_queue_Dequeue> 2006ee0: a0 10 00 18 mov %i0, %l0 2006ee4: 80 a2 20 00 cmp %o0, 0
2006ee8: 12 80 00 0e bne 2006f20 <_CORE_semaphore_Surrender+0x4c>
2006eec: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level );
2006ef0: 7f ff ec b4 call 20021c0 <sparc_disable_interrupts> 2006ef4: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006ef8: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006efc: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006f00: 80 a0 40 02 cmp %g1, %g2
2006f04: 1a 80 00 05 bcc 2006f18 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006f08: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006f0c: 82 00 60 01 inc %g1
{ Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006f10: b0 10 20 00 clr %i0
#endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1;
2006f14: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level );
2006f18: 7f ff ec ae call 20021d0 <sparc_enable_interrupts> 2006f1c: 01 00 00 00 nop
} return status; }
2006f20: 81 c7 e0 08 ret 2006f24: 81 e8 00 00 restore
02005c88 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) {
2005c88: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005c8c: e2 06 21 58 ld [ %i0 + 0x158 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005c90: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005c94: 7f ff f1 4b call 20021c0 <sparc_disable_interrupts> 2005c98: a0 10 00 18 mov %i0, %l0 2005c9c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005ca0: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005ca4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) {
2005ca8: 82 88 c0 02 andcc %g3, %g2, %g1
2005cac: 12 80 00 03 bne 2005cb8 <_Event_Surrender+0x30>
2005cb0: 09 00 80 54 sethi %hi(0x2015000), %g4
_ISR_Enable( level );
2005cb4: 30 80 00 42 b,a 2005dbc <_Event_Surrender+0x134>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() &&
2005cb8: 88 11 21 cc or %g4, 0x1cc, %g4 ! 20151cc <_Per_CPU_Information> 2005cbc: da 01 20 08 ld [ %g4 + 8 ], %o5 2005cc0: 80 a3 60 00 cmp %o5, 0
2005cc4: 22 80 00 1d be,a 2005d38 <_Event_Surrender+0xb0>
2005cc8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005ccc: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005cd0: 80 a4 00 04 cmp %l0, %g4
2005cd4: 32 80 00 19 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cd8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cdc: 09 00 80 54 sethi %hi(0x2015000), %g4 2005ce0: da 01 22 20 ld [ %g4 + 0x220 ], %o5 ! 2015220 <_Event_Sync_state>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) &&
2005ce4: 80 a3 60 02 cmp %o5, 2
2005ce8: 02 80 00 07 be 2005d04 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005cec: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005cf0: c8 01 22 20 ld [ %g4 + 0x220 ], %g4
* If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cf4: 80 a1 20 01 cmp %g4, 1
2005cf8: 32 80 00 10 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cfc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005d00: 80 a0 40 03 cmp %g1, %g3
2005d04: 02 80 00 04 be 2005d14 <_Event_Surrender+0x8c>
2005d08: 80 8c a0 02 btst 2, %l2
2005d0c: 02 80 00 0a be 2005d34 <_Event_Surrender+0xac> <== NEVER TAKEN
2005d10: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
2005d14: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005d18: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d1c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0;
2005d20: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d24: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005d28: 84 10 20 03 mov 3, %g2 2005d2c: 03 00 80 54 sethi %hi(0x2015000), %g1 2005d30: c4 20 62 20 st %g2, [ %g1 + 0x220 ] ! 2015220 <_Event_Sync_state>
} _ISR_Enable( level );
2005d34: 30 80 00 22 b,a 2005dbc <_Event_Surrender+0x134>
} /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005d38: 80 89 21 00 btst 0x100, %g4
2005d3c: 02 80 00 20 be 2005dbc <_Event_Surrender+0x134>
2005d40: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005d44: 02 80 00 04 be 2005d54 <_Event_Surrender+0xcc>
2005d48: 80 8c a0 02 btst 2, %l2
2005d4c: 02 80 00 1c be 2005dbc <_Event_Surrender+0x134> <== NEVER TAKEN
2005d50: 01 00 00 00 nop 2005d54: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005d58: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d5c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0;
2005d60: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d64: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005d68: 7f ff f1 1a call 20021d0 <sparc_enable_interrupts> 2005d6c: 90 10 00 18 mov %i0, %o0 2005d70: 7f ff f1 14 call 20021c0 <sparc_disable_interrupts> 2005d74: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005d78: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005d7c: 80 a0 60 02 cmp %g1, 2
2005d80: 02 80 00 06 be 2005d98 <_Event_Surrender+0x110>
2005d84: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005d88: 7f ff f1 12 call 20021d0 <sparc_enable_interrupts> 2005d8c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
2005d90: 10 80 00 08 b 2005db0 <_Event_Surrender+0x128> 2005d94: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT;
2005d98: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
2005d9c: 7f ff f1 0d call 20021d0 <sparc_enable_interrupts> 2005da0: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005da4: 40 00 0e 4c call 20096d4 <_Watchdog_Remove> 2005da8: 90 04 20 48 add %l0, 0x48, %o0 2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005db0: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8> 2005db4: 40 00 09 45 call 20082c8 <_Thread_Clear_state> 2005db8: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level );
2005dbc: 7f ff f1 05 call 20021d0 <sparc_enable_interrupts> 2005dc0: 81 e8 00 00 restore
02005dc8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) {
2005dc8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location );
2005dcc: 90 10 00 18 mov %i0, %o0 2005dd0: 40 00 0a 31 call 2008694 <_Thread_Get> 2005dd4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2005ddc: 80 a0 60 00 cmp %g1, 0
2005de0: 12 80 00 1c bne 2005e50 <_Event_Timeout+0x88> <== NEVER TAKEN
2005de4: a0 10 00 08 mov %o0, %l0
* * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level );
2005de8: 7f ff f0 f6 call 20021c0 <sparc_disable_interrupts> 2005dec: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
2005df0: 03 00 80 54 sethi %hi(0x2015000), %g1
return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) {
2005df4: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 20151d8 <_Per_CPU_Information+0xc> 2005df8: 80 a4 00 01 cmp %l0, %g1
2005dfc: 12 80 00 09 bne 2005e20 <_Event_Timeout+0x58>
2005e00: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005e04: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e08: c4 00 62 20 ld [ %g1 + 0x220 ], %g2 ! 2015220 <_Event_Sync_state> 2005e0c: 80 a0 a0 01 cmp %g2, 1
2005e10: 32 80 00 05 bne,a 2005e24 <_Event_Timeout+0x5c>
2005e14: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005e18: 84 10 20 02 mov 2, %g2 2005e1c: c4 20 62 20 st %g2, [ %g1 + 0x220 ]
} the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005e20: 82 10 20 06 mov 6, %g1 2005e24: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005e28: 7f ff f0 ea call 20021d0 <sparc_enable_interrupts> 2005e2c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
2005e30: 90 10 00 10 mov %l0, %o0 2005e34: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005e38: 40 00 09 24 call 20082c8 <_Thread_Clear_state> 2005e3c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
2005e40: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005e44: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 2005e48: 84 00 bf ff add %g2, -1, %g2 2005e4c: c4 20 63 80 st %g2, [ %g1 + 0x380 ] 2005e50: 81 c7 e0 08 ret 2005e54: 81 e8 00 00 restore
0200c074 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200c074: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL;
200c078: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200c07c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200c080: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block;
200c084: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size;
200c088: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200c08c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c090: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200c094: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200c098: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) {
200c09c: 80 a4 40 19 cmp %l1, %i1
200c0a0: 0a 80 00 9f bcs 200c31c <_Heap_Extend+0x2a8>
200c0a4: b0 10 20 00 clr %i0
return false; } extend_area_ok = _Heap_Get_first_and_last_block(
200c0a8: 90 10 00 19 mov %i1, %o0 200c0ac: 94 10 00 13 mov %l3, %o2 200c0b0: 98 07 bf fc add %fp, -4, %o4 200c0b4: 7f ff ec fd call 20074a8 <_Heap_Get_first_and_last_block> 200c0b8: 9a 07 bf f8 add %fp, -8, %o5
page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) {
200c0bc: 80 8a 20 ff btst 0xff, %o0
200c0c0: 02 80 00 97 be 200c31c <_Heap_Extend+0x2a8>
200c0c4: aa 10 00 12 mov %l2, %l5 200c0c8: ba 10 20 00 clr %i5 200c0cc: b8 10 20 00 clr %i4 200c0d0: b0 10 20 00 clr %i0 200c0d4: ae 10 20 00 clr %l7 200c0d8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if (
200c0dc: 80 a0 40 11 cmp %g1, %l1
200c0e0: 1a 80 00 05 bcc 200c0f4 <_Heap_Extend+0x80>
200c0e4: ec 05 40 00 ld [ %l5 ], %l6 200c0e8: 80 a6 40 16 cmp %i1, %l6
200c0ec: 2a 80 00 8c bcs,a 200c31c <_Heap_Extend+0x2a8>
200c0f0: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) {
200c0f4: 80 a4 40 01 cmp %l1, %g1
200c0f8: 02 80 00 06 be 200c110 <_Heap_Extend+0x9c>
200c0fc: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c100: 2a 80 00 05 bcs,a 200c114 <_Heap_Extend+0xa0>
200c104: b8 10 00 15 mov %l5, %i4 200c108: 10 80 00 04 b 200c118 <_Heap_Extend+0xa4> 200c10c: 90 10 00 16 mov %l6, %o0 200c110: ae 10 00 15 mov %l5, %l7 200c114: 90 10 00 16 mov %l6, %o0 200c118: 40 00 16 90 call 2011b58 <.urem> 200c11c: 92 10 00 13 mov %l3, %o1 200c120: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) {
200c124: 80 a5 80 19 cmp %l6, %i1
200c128: 12 80 00 05 bne 200c13c <_Heap_Extend+0xc8>
200c12c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c130: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c134: 10 80 00 04 b 200c144 <_Heap_Extend+0xd0> 200c138: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c13c: 2a 80 00 02 bcs,a 200c144 <_Heap_Extend+0xd0>
200c140: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c144: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c148: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200c14c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block );
200c150: 80 a5 40 12 cmp %l5, %l2
200c154: 12 bf ff e2 bne 200c0dc <_Heap_Extend+0x68>
200c158: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c15c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c160: 80 a6 40 01 cmp %i1, %g1
200c164: 3a 80 00 04 bcc,a 200c174 <_Heap_Extend+0x100>
200c168: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c16c: 10 80 00 05 b 200c180 <_Heap_Extend+0x10c> 200c170: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c174: 80 a0 40 11 cmp %g1, %l1
200c178: 2a 80 00 02 bcs,a 200c180 <_Heap_Extend+0x10c>
200c17c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c180: c4 07 bf fc ld [ %fp + -4 ], %g2 200c184: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c188: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size =
200c18c: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c190: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size;
200c194: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag =
200c198: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c19c: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c1a0: 80 a0 c0 02 cmp %g3, %g2
200c1a4: 08 80 00 04 bleu 200c1b4 <_Heap_Extend+0x140>
200c1a8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c1ac: 10 80 00 06 b 200c1c4 <_Heap_Extend+0x150> 200c1b0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c1b4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c1b8: 80 a0 80 01 cmp %g2, %g1
200c1bc: 2a 80 00 02 bcs,a 200c1c4 <_Heap_Extend+0x150>
200c1c0: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) {
200c1c4: 80 a5 e0 00 cmp %l7, 0
200c1c8: 02 80 00 14 be 200c218 <_Heap_Extend+0x1a4>
200c1cc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size;
200c1d0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment;
200c1d4: 92 10 00 12 mov %l2, %o1 200c1d8: 40 00 16 60 call 2011b58 <.urem> 200c1dc: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c1e0: 80 a2 20 00 cmp %o0, 0
200c1e4: 02 80 00 04 be 200c1f4 <_Heap_Extend+0x180> <== ALWAYS TAKEN
200c1e8: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c1ec: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c1f0: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin =
200c1f4: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size;
200c1f8: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size =
200c1fc: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c200: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c204: 90 10 00 10 mov %l0, %o0 200c208: 7f ff ff 90 call 200c048 <_Heap_Free_block> 200c20c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
200c210: 10 80 00 09 b 200c234 <_Heap_Extend+0x1c0> 200c214: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) {
200c218: 80 a7 20 00 cmp %i4, 0
200c21c: 02 80 00 05 be 200c230 <_Heap_Extend+0x1bc>
200c220: c2 07 bf f8 ld [ %fp + -8 ], %g1
{ uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c224: b8 27 00 01 sub %i4, %g1, %i4 200c228: b8 17 20 01 or %i4, 1, %i4
) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag =
200c22c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
200c230: 80 a6 20 00 cmp %i0, 0
200c234: 02 80 00 15 be 200c288 <_Heap_Extend+0x214>
200c238: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
200c23c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down(
200c240: a2 24 40 18 sub %l1, %i0, %l1 200c244: 40 00 16 45 call 2011b58 <.urem> 200c248: 90 10 00 11 mov %l1, %o0
); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size)
200c24c: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c250: a2 24 40 08 sub %l1, %o0, %l1
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
200c254: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c258: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c25c: 84 10 a0 01 or %g2, 1, %g2
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
200c260: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c264: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block );
200c268: 90 10 00 10 mov %l0, %o0 200c26c: 82 08 60 01 and %g1, 1, %g1 200c270: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c274: a2 14 40 01 or %l1, %g1, %l1 200c278: 7f ff ff 74 call 200c048 <_Heap_Free_block> 200c27c: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c280: 10 80 00 0f b 200c2bc <_Heap_Extend+0x248> 200c284: 80 a6 20 00 cmp %i0, 0
); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) {
200c288: 80 a7 60 00 cmp %i5, 0
200c28c: 02 80 00 0b be 200c2b8 <_Heap_Extend+0x244>
200c290: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c294: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c298: c2 07 bf f8 ld [ %fp + -8 ], %g1
) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin );
200c29c: 86 20 c0 1d sub %g3, %i5, %g3 200c2a0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c2a4: 84 10 c0 02 or %g3, %g2, %g2 200c2a8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c2ac: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c2b0: 84 10 a0 01 or %g2, 1, %g2 200c2b4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c2b8: 80 a6 20 00 cmp %i0, 0
200c2bc: 32 80 00 09 bne,a 200c2e0 <_Heap_Extend+0x26c>
200c2c0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c2c4: 80 a5 e0 00 cmp %l7, 0
200c2c8: 32 80 00 06 bne,a 200c2e0 <_Heap_Extend+0x26c>
200c2cc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c2d0: d2 07 bf fc ld [ %fp + -4 ], %o1 200c2d4: 7f ff ff 5d call 200c048 <_Heap_Free_block> 200c2d8: 90 10 00 10 mov %l0, %o0
*/ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c2dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
200c2e0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c2e4: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
200c2e8: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c2ec: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c2f0: 84 10 c0 02 or %g3, %g2, %g2 200c2f4: c4 20 60 04 st %g2, [ %g1 + 4 ]
} _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
200c2f8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true;
200c2fc: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
200c300: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */ stats->size += extended_size;
200c304: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c308: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size;
200c30c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c310: 02 80 00 03 be 200c31c <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c314: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c318: e8 26 c0 00 st %l4, [ %i3 ] 200c31c: 81 c7 e0 08 ret 200c320: 81 e8 00 00 restore
0200bd74 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) {
200bd74: 9d e3 bf a0 save %sp, -96, %sp 200bd78: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200bd7c: 40 00 16 39 call 2011660 <.urem> 200bd80: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
200bd84: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
200bd88: a2 06 7f f8 add %i1, -8, %l1 200bd8c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
200bd90: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd94: 80 a2 00 0c cmp %o0, %o4
200bd98: 0a 80 00 05 bcs 200bdac <_Heap_Free+0x38>
200bd9c: 82 10 20 00 clr %g1 200bda0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bda4: 80 a0 40 08 cmp %g1, %o0 200bda8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0; bool next_is_free = false; _Heap_Protection_block_check( heap, block ); if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bdac: 80 a0 60 00 cmp %g1, 0
200bdb0: 02 80 00 6a be 200bf58 <_Heap_Free+0x1e4>
200bdb4: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200bdb8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bdbc: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200bdc0: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200bdc4: 80 a0 40 0c cmp %g1, %o4
200bdc8: 0a 80 00 05 bcs 200bddc <_Heap_Free+0x68> <== NEVER TAKEN
200bdcc: 86 10 20 00 clr %g3 200bdd0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bdd4: 80 a0 c0 01 cmp %g3, %g1 200bdd8: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bddc: 80 a0 e0 00 cmp %g3, 0
200bde0: 02 80 00 5e be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bde4: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200bde8: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
200bdec: 80 89 20 01 btst 1, %g4
200bdf0: 02 80 00 5a be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bdf4: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block
200bdf8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bdfc: 80 a0 40 09 cmp %g1, %o1
200be00: 02 80 00 07 be 200be1c <_Heap_Free+0xa8>
200be04: 96 10 20 00 clr %o3
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200be08: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be0c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200be10: 86 08 e0 01 and %g3, 1, %g3
return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200be14: 80 a0 00 03 cmp %g0, %g3 200be18: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200be1c: 80 8b 60 01 btst 1, %o5
200be20: 12 80 00 26 bne 200beb8 <_Heap_Free+0x144>
200be24: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200be28: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200be2c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200be30: 80 a0 c0 0c cmp %g3, %o4
200be34: 0a 80 00 04 bcs 200be44 <_Heap_Free+0xd0> <== NEVER TAKEN
200be38: 94 10 20 00 clr %o2 200be3c: 80 a2 40 03 cmp %o1, %g3 200be40: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200be44: 80 a2 a0 00 cmp %o2, 0
200be48: 02 80 00 44 be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN
200be4c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200be50: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) {
200be54: 80 8b 20 01 btst 1, %o4
200be58: 02 80 00 40 be 200bf58 <_Heap_Free+0x1e4> <== NEVER TAKEN
200be5c: 80 8a e0 ff btst 0xff, %o3
_HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200be60: 22 80 00 0f be,a 200be9c <_Heap_Free+0x128>
200be64: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200be68: 88 00 80 04 add %g2, %g4, %g4 200be6c: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next;
200be70: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200be74: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200be78: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200be7c: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block ); stats->free_blocks -= 1;
200be80: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200be84: 82 00 7f ff add %g1, -1, %g1 200be88: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size;
200be8c: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be90: 82 13 60 01 or %o5, 1, %g1 200be94: 10 80 00 27 b 200bf30 <_Heap_Free+0x1bc> 200be98: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be9c: 88 13 60 01 or %o5, 1, %g4 200bea0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bea4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200bea8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200beac: 86 08 ff fe and %g3, -2, %g3 200beb0: 10 80 00 20 b 200bf30 <_Heap_Free+0x1bc> 200beb4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200beb8: 22 80 00 0d be,a 200beec <_Heap_Free+0x178>
200bebc: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200bec0: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next;
200bec4: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200bec8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200becc: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200bed0: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block; prev->next = new_block;
200bed4: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block;
200bed8: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bedc: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size ); next_block->prev_size = size;
200bee0: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bee4: 10 80 00 13 b 200bf30 <_Heap_Free+0x1bc> 200bee8: c2 22 20 04 st %g1, [ %o0 + 4 ]
) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before;
200beec: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next;
200bef0: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before; block_before->next = new_block; next->prev = new_block;
200bef4: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200bef8: 86 10 a0 01 or %g2, 1, %g3 200befc: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bf00: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200bf04: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bf08: 86 08 ff fe and %g3, -2, %g3 200bf0c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
200bf10: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200bf14: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
200bf18: 82 00 60 01 inc %g1
{ Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block;
200bf1c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200bf20: 80 a0 c0 01 cmp %g3, %g1
200bf24: 1a 80 00 03 bcc 200bf30 <_Heap_Free+0x1bc>
200bf28: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200bf2c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
} } /* Statistics */ --stats->used_blocks;
200bf30: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees; stats->free_size += block_size; return( true );
200bf34: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks;
200bf38: 82 00 7f ff add %g1, -1, %g1 200bf3c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200bf40: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200bf44: 82 00 60 01 inc %g1 200bf48: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200bf4c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200bf50: 84 00 40 02 add %g1, %g2, %g2 200bf54: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true ); }
200bf58: 81 c7 e0 08 ret 200bf5c: 81 e8 00 00 restore
02013074 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) {
2013074: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
2013078: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 201307c: 7f ff f9 79 call 2011660 <.urem> 2013080: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
2013084: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
2013088: a2 06 7f f8 add %i1, -8, %l1 201308c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
2013090: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2013094: 80 a2 00 02 cmp %o0, %g2
2013098: 0a 80 00 05 bcs 20130ac <_Heap_Size_of_alloc_area+0x38>
201309c: 82 10 20 00 clr %g1 20130a0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 20130a4: 80 a0 40 08 cmp %g1, %o0 20130a8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
20130ac: 80 a0 60 00 cmp %g1, 0
20130b0: 02 80 00 15 be 2013104 <_Heap_Size_of_alloc_area+0x90>
20130b4: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20130b8: e2 02 20 04 ld [ %o0 + 4 ], %l1 20130bc: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
20130c0: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
20130c4: 80 a4 40 02 cmp %l1, %g2
20130c8: 0a 80 00 05 bcs 20130dc <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
20130cc: 82 10 20 00 clr %g1 20130d0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 20130d4: 80 a0 40 11 cmp %g1, %l1 20130d8: 82 60 3f ff subx %g0, -1, %g1
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if (
20130dc: 80 a0 60 00 cmp %g1, 0
20130e0: 02 80 00 09 be 2013104 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
20130e4: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20130e8: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block )
20130ec: 80 88 60 01 btst 1, %g1
20130f0: 02 80 00 05 be 2013104 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
20130f4: a2 24 40 19 sub %l1, %i1, %l1
return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true;
20130f8: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
20130fc: a2 04 60 04 add %l1, 4, %l1 2013100: e2 26 80 00 st %l1, [ %i2 ]
return true; }
2013104: 81 c7 e0 08 ret 2013108: 81 e8 00 00 restore
020082b0 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
20082b0: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
20082b4: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
20082b8: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20082bc: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
20082c0: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
20082c4: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
20082c8: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
20082cc: 80 8e a0 ff btst 0xff, %i2
20082d0: 02 80 00 04 be 20082e0 <_Heap_Walk+0x30>
20082d4: a2 14 62 5c or %l1, 0x25c, %l1 20082d8: 23 00 80 20 sethi %hi(0x2008000), %l1 20082dc: a2 14 62 64 or %l1, 0x264, %l1 ! 2008264 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20082e0: 03 00 80 5d sethi %hi(0x2017400), %g1 20082e4: c2 00 63 8c ld [ %g1 + 0x38c ], %g1 ! 201778c <_System_state_Current> 20082e8: 80 a0 60 03 cmp %g1, 3
20082ec: 12 80 01 2d bne 20087a0 <_Heap_Walk+0x4f0>
20082f0: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)(
20082f4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20082f8: da 04 20 18 ld [ %l0 + 0x18 ], %o5 20082fc: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2008300: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008304: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 2008308: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 200830c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008310: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 2008314: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008318: 90 10 00 19 mov %i1, %o0 200831c: 92 10 20 00 clr %o1 2008320: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008324: 96 10 00 12 mov %l2, %o3 2008328: 94 12 a1 40 or %o2, 0x140, %o2 200832c: 9f c4 40 00 call %l1 2008330: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) {
2008334: 80 a4 a0 00 cmp %l2, 0
2008338: 12 80 00 07 bne 2008354 <_Heap_Walk+0xa4>
200833c: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
2008340: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008344: 90 10 00 19 mov %i1, %o0 2008348: 92 10 20 01 mov 1, %o1 200834c: 10 80 00 38 b 200842c <_Heap_Walk+0x17c> 2008350: 94 12 a1 d8 or %o2, 0x1d8, %o2
return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008354: 22 80 00 08 be,a 2008374 <_Heap_Walk+0xc4>
2008358: 90 10 00 14 mov %l4, %o0
(*printer)(
200835c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008360: 90 10 00 19 mov %i1, %o0 2008364: 92 10 20 01 mov 1, %o1 2008368: 94 12 a1 f0 or %o2, 0x1f0, %o2 200836c: 10 80 01 0b b 2008798 <_Heap_Walk+0x4e8> 2008370: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
2008374: 7f ff e5 d4 call 2001ac4 <.urem> 2008378: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
200837c: 80 a2 20 00 cmp %o0, 0
2008380: 22 80 00 08 be,a 20083a0 <_Heap_Walk+0xf0>
2008384: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
2008388: 15 00 80 53 sethi %hi(0x2014c00), %o2 200838c: 90 10 00 19 mov %i1, %o0 2008390: 92 10 20 01 mov 1, %o1 2008394: 94 12 a2 10 or %o2, 0x210, %o2 2008398: 10 80 01 00 b 2008798 <_Heap_Walk+0x4e8> 200839c: 96 10 00 14 mov %l4, %o3 20083a0: 7f ff e5 c9 call 2001ac4 <.urem> 20083a4: 92 10 00 12 mov %l2, %o1
); return false; } if (
20083a8: 80 a2 20 00 cmp %o0, 0
20083ac: 22 80 00 08 be,a 20083cc <_Heap_Walk+0x11c>
20083b0: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)(
20083b4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083b8: 90 10 00 19 mov %i1, %o0 20083bc: 92 10 20 01 mov 1, %o1 20083c0: 94 12 a2 38 or %o2, 0x238, %o2 20083c4: 10 80 00 f5 b 2008798 <_Heap_Walk+0x4e8> 20083c8: 96 10 00 13 mov %l3, %o3
); return false; } if ( !_Heap_Is_prev_used( first_block ) ) {
20083cc: 80 88 60 01 btst 1, %g1
20083d0: 32 80 00 07 bne,a 20083ec <_Heap_Walk+0x13c>
20083d4: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
20083d8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083dc: 90 10 00 19 mov %i1, %o0 20083e0: 92 10 20 01 mov 1, %o1 20083e4: 10 80 00 12 b 200842c <_Heap_Walk+0x17c> 20083e8: 94 12 a2 70 or %o2, 0x270, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20083ec: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
20083f0: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20083f4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
); return false; } if ( _Heap_Is_free( last_block ) ) {
20083f8: 80 88 60 01 btst 1, %g1
20083fc: 12 80 00 07 bne 2008418 <_Heap_Walk+0x168>
2008400: 80 a5 80 13 cmp %l6, %l3
(*printer)(
2008404: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008408: 90 10 00 19 mov %i1, %o0 200840c: 92 10 20 01 mov 1, %o1 2008410: 10 80 00 07 b 200842c <_Heap_Walk+0x17c> 2008414: 94 12 a2 a0 or %o2, 0x2a0, %o2
); return false; } if (
2008418: 02 80 00 08 be 2008438 <_Heap_Walk+0x188> <== ALWAYS TAKEN
200841c: 15 00 80 53 sethi %hi(0x2014c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)(
2008420: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008424: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008428: 94 12 a2 b8 or %o2, 0x2b8, %o2 <== NOT EXECUTED
200842c: 9f c4 40 00 call %l1 2008430: b0 10 20 00 clr %i0 2008434: 30 80 00 db b,a 20087a0 <_Heap_Walk+0x4f0>
block = next_block; } while ( block != first_block ); return true; }
2008438: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
200843c: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008440: ae 10 00 10 mov %l0, %l7 2008444: 10 80 00 32 b 200850c <_Heap_Walk+0x25c> 2008448: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200844c: 80 a0 80 1c cmp %g2, %i4
2008450: 18 80 00 05 bgu 2008464 <_Heap_Walk+0x1b4>
2008454: 82 10 20 00 clr %g1 2008458: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200845c: 80 a0 40 1c cmp %g1, %i4 2008460: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
2008464: 80 a0 60 00 cmp %g1, 0
2008468: 32 80 00 08 bne,a 2008488 <_Heap_Walk+0x1d8>
200846c: 90 07 20 08 add %i4, 8, %o0
(*printer)(
2008470: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008474: 96 10 00 1c mov %i4, %o3 2008478: 90 10 00 19 mov %i1, %o0 200847c: 92 10 20 01 mov 1, %o1 2008480: 10 80 00 c6 b 2008798 <_Heap_Walk+0x4e8> 2008484: 94 12 a2 e8 or %o2, 0x2e8, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
2008488: 7f ff e5 8f call 2001ac4 <.urem> 200848c: 92 10 00 1d mov %i5, %o1
); return false; } if (
2008490: 80 a2 20 00 cmp %o0, 0
2008494: 22 80 00 08 be,a 20084b4 <_Heap_Walk+0x204>
2008498: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)(
200849c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084a0: 96 10 00 1c mov %i4, %o3 20084a4: 90 10 00 19 mov %i1, %o0 20084a8: 92 10 20 01 mov 1, %o1 20084ac: 10 80 00 bb b 2008798 <_Heap_Walk+0x4e8> 20084b0: 94 12 a3 08 or %o2, 0x308, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20084b4: 82 08 7f fe and %g1, -2, %g1
block = next_block; } while ( block != first_block ); return true; }
20084b8: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20084bc: c2 00 60 04 ld [ %g1 + 4 ], %g1
); return false; } if ( _Heap_Is_used( free_block ) ) {
20084c0: 80 88 60 01 btst 1, %g1
20084c4: 22 80 00 08 be,a 20084e4 <_Heap_Walk+0x234>
20084c8: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
20084cc: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084d0: 96 10 00 1c mov %i4, %o3 20084d4: 90 10 00 19 mov %i1, %o0 20084d8: 92 10 20 01 mov 1, %o1 20084dc: 10 80 00 af b 2008798 <_Heap_Walk+0x4e8> 20084e0: 94 12 a3 38 or %o2, 0x338, %o2
); return false; } if ( free_block->prev != prev_block ) {
20084e4: 80 a3 00 17 cmp %o4, %l7
20084e8: 22 80 00 08 be,a 2008508 <_Heap_Walk+0x258>
20084ec: ae 10 00 1c mov %i4, %l7
(*printer)(
20084f0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084f4: 96 10 00 1c mov %i4, %o3 20084f8: 90 10 00 19 mov %i1, %o0 20084fc: 92 10 20 01 mov 1, %o1 2008500: 10 80 00 49 b 2008624 <_Heap_Walk+0x374> 2008504: 94 12 a3 58 or %o2, 0x358, %o2
return false; } prev_block = free_block; free_block = free_block->next;
2008508: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
200850c: 80 a7 00 10 cmp %i4, %l0
2008510: 32 bf ff cf bne,a 200844c <_Heap_Walk+0x19c>
2008514: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 2008518: 35 00 80 54 sethi %hi(0x2015000), %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
200851c: 31 00 80 54 sethi %hi(0x2015000), %i0
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
2008520: b4 16 a1 18 or %i2, 0x118, %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
2008524: b0 16 21 00 or %i0, 0x100, %i0
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
2008528: 37 00 80 54 sethi %hi(0x2015000), %i3
block = next_block; } while ( block != first_block ); return true; }
200852c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2008530: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008534: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
2008538: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200853c: 80 a0 c0 1d cmp %g3, %i5
2008540: 18 80 00 05 bgu 2008554 <_Heap_Walk+0x2a4> <== NEVER TAKEN
2008544: 84 10 20 00 clr %g2 2008548: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200854c: 80 a0 80 1d cmp %g2, %i5 2008550: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
2008554: 80 a0 a0 00 cmp %g2, 0
2008558: 12 80 00 07 bne 2008574 <_Heap_Walk+0x2c4>
200855c: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
2008560: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008564: 90 10 00 19 mov %i1, %o0 2008568: 92 10 20 01 mov 1, %o1 200856c: 10 80 00 2c b 200861c <_Heap_Walk+0x36c> 2008570: 94 12 a3 90 or %o2, 0x390, %o2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block;
2008574: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
2008578: c2 27 bf fc st %g1, [ %fp + -4 ] 200857c: b8 40 20 00 addx %g0, 0, %i4 2008580: 90 10 00 17 mov %l7, %o0 2008584: 7f ff e5 50 call 2001ac4 <.urem> 2008588: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
200858c: 80 a2 20 00 cmp %o0, 0
2008590: 02 80 00 0c be 20085c0 <_Heap_Walk+0x310>
2008594: c2 07 bf fc ld [ %fp + -4 ], %g1 2008598: 80 8f 20 ff btst 0xff, %i4
200859c: 02 80 00 0a be 20085c4 <_Heap_Walk+0x314>
20085a0: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
20085a4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085a8: 90 10 00 19 mov %i1, %o0 20085ac: 92 10 20 01 mov 1, %o1 20085b0: 94 12 a3 c0 or %o2, 0x3c0, %o2 20085b4: 96 10 00 16 mov %l6, %o3 20085b8: 10 80 00 1b b 2008624 <_Heap_Walk+0x374> 20085bc: 98 10 00 17 mov %l7, %o4
); return false; } if ( block_size < min_block_size && is_not_last_block ) {
20085c0: 80 a5 c0 14 cmp %l7, %l4
20085c4: 1a 80 00 0d bcc 20085f8 <_Heap_Walk+0x348>
20085c8: 80 a7 40 16 cmp %i5, %l6 20085cc: 80 8f 20 ff btst 0xff, %i4
20085d0: 02 80 00 0a be 20085f8 <_Heap_Walk+0x348> <== NEVER TAKEN
20085d4: 80 a7 40 16 cmp %i5, %l6
(*printer)(
20085d8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085dc: 90 10 00 19 mov %i1, %o0 20085e0: 92 10 20 01 mov 1, %o1 20085e4: 94 12 a3 f0 or %o2, 0x3f0, %o2 20085e8: 96 10 00 16 mov %l6, %o3 20085ec: 98 10 00 17 mov %l7, %o4 20085f0: 10 80 00 3f b 20086ec <_Heap_Walk+0x43c> 20085f4: 9a 10 00 14 mov %l4, %o5
); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20085f8: 38 80 00 0e bgu,a 2008630 <_Heap_Walk+0x380>
20085fc: b8 08 60 01 and %g1, 1, %i4 2008600: 80 8f 20 ff btst 0xff, %i4
2008604: 02 80 00 0b be 2008630 <_Heap_Walk+0x380>
2008608: b8 08 60 01 and %g1, 1, %i4
(*printer)(
200860c: 15 00 80 54 sethi %hi(0x2015000), %o2 2008610: 90 10 00 19 mov %i1, %o0 2008614: 92 10 20 01 mov 1, %o1 2008618: 94 12 a0 20 or %o2, 0x20, %o2 200861c: 96 10 00 16 mov %l6, %o3 2008620: 98 10 00 1d mov %i5, %o4 2008624: 9f c4 40 00 call %l1 2008628: b0 10 20 00 clr %i0 200862c: 30 80 00 5d b,a 20087a0 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008630: c2 07 60 04 ld [ %i5 + 4 ], %g1
); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
2008634: 80 88 60 01 btst 1, %g1
2008638: 12 80 00 3f bne 2008734 <_Heap_Walk+0x484>
200863c: 80 a7 20 00 cmp %i4, 0
false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ?
2008640: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008644: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008648: 05 00 80 53 sethi %hi(0x2014c00), %g2
block = next_block; } while ( block != first_block ); return true; }
200864c: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008650: 80 a3 40 01 cmp %o5, %g1
2008654: 02 80 00 07 be 2008670 <_Heap_Walk+0x3c0>
2008658: 86 10 a1 00 or %g2, 0x100, %g3
block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""),
200865c: 80 a3 40 10 cmp %o5, %l0
2008660: 12 80 00 04 bne 2008670 <_Heap_Walk+0x3c0>
2008664: 86 16 e0 c8 or %i3, 0xc8, %g3 2008668: 19 00 80 53 sethi %hi(0x2014c00), %o4 200866c: 86 13 21 10 or %o4, 0x110, %g3 ! 2014d10 <C.0.4237+0x44>
block->next, block->next == last_free_block ?
2008670: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008674: 19 00 80 53 sethi %hi(0x2014c00), %o4 2008678: 80 a0 80 04 cmp %g2, %g4
200867c: 02 80 00 07 be 2008698 <_Heap_Walk+0x3e8>
2008680: 82 13 21 20 or %o4, 0x120, %g1
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
2008684: 80 a0 80 10 cmp %g2, %l0
2008688: 12 80 00 04 bne 2008698 <_Heap_Walk+0x3e8>
200868c: 82 16 e0 c8 or %i3, 0xc8, %g1 2008690: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008694: 82 11 21 30 or %g4, 0x130, %g1 ! 2014d30 <C.0.4237+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008698: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200869c: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 20086a0: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 20086a4: 90 10 00 19 mov %i1, %o0 20086a8: 92 10 20 00 clr %o1 20086ac: 15 00 80 54 sethi %hi(0x2015000), %o2 20086b0: 96 10 00 16 mov %l6, %o3 20086b4: 94 12 a0 58 or %o2, 0x58, %o2 20086b8: 9f c4 40 00 call %l1 20086bc: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) {
20086c0: da 07 40 00 ld [ %i5 ], %o5 20086c4: 80 a5 c0 0d cmp %l7, %o5
20086c8: 02 80 00 0c be 20086f8 <_Heap_Walk+0x448>
20086cc: 80 a7 20 00 cmp %i4, 0
(*printer)(
20086d0: 15 00 80 54 sethi %hi(0x2015000), %o2 20086d4: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 20086d8: 90 10 00 19 mov %i1, %o0 20086dc: 92 10 20 01 mov 1, %o1 20086e0: 94 12 a0 90 or %o2, 0x90, %o2 20086e4: 96 10 00 16 mov %l6, %o3 20086e8: 98 10 00 17 mov %l7, %o4 20086ec: 9f c4 40 00 call %l1 20086f0: b0 10 20 00 clr %i0 20086f4: 30 80 00 2b b,a 20087a0 <_Heap_Walk+0x4f0>
); return false; } if ( !prev_used ) { 20086f8: 32 80 00 0a bne,a 2008720 <_Heap_Walk+0x470>
20086fc: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
2008700: 15 00 80 54 sethi %hi(0x2015000), %o2 2008704: 90 10 00 19 mov %i1, %o0 2008708: 92 10 20 01 mov 1, %o1 200870c: 10 80 00 22 b 2008794 <_Heap_Walk+0x4e4> 2008710: 94 12 a0 d0 or %o2, 0xd0, %o2
{ const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008714: 02 80 00 19 be 2008778 <_Heap_Walk+0x4c8>
2008718: 80 a7 40 13 cmp %i5, %l3
return true; } free_block = free_block->next;
200871c: c2 00 60 08 ld [ %g1 + 8 ], %g1
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
2008720: 80 a0 40 10 cmp %g1, %l0
2008724: 12 bf ff fc bne 2008714 <_Heap_Walk+0x464>
2008728: 80 a0 40 16 cmp %g1, %l6
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
200872c: 10 80 00 17 b 2008788 <_Heap_Walk+0x4d8> 2008730: 15 00 80 54 sethi %hi(0x2015000), %o2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008734: 22 80 00 0a be,a 200875c <_Heap_Walk+0x4ac>
2008738: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
200873c: 90 10 00 19 mov %i1, %o0 2008740: 92 10 20 00 clr %o1 2008744: 94 10 00 18 mov %i0, %o2 2008748: 96 10 00 16 mov %l6, %o3 200874c: 9f c4 40 00 call %l1 2008750: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
2008754: 10 80 00 09 b 2008778 <_Heap_Walk+0x4c8> 2008758: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
200875c: 90 10 00 19 mov %i1, %o0 2008760: 92 10 20 00 clr %o1 2008764: 94 10 00 1a mov %i2, %o2 2008768: 96 10 00 16 mov %l6, %o3 200876c: 9f c4 40 00 call %l1 2008770: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
2008774: 80 a7 40 13 cmp %i5, %l3
2008778: 12 bf ff 6d bne 200852c <_Heap_Walk+0x27c>
200877c: ac 10 00 1d mov %i5, %l6
return true; }
2008780: 81 c7 e0 08 ret 2008784: 91 e8 20 01 restore %g0, 1, %o0
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
2008788: 90 10 00 19 mov %i1, %o0 200878c: 92 10 20 01 mov 1, %o1 2008790: 94 12 a1 40 or %o2, 0x140, %o2 2008794: 96 10 00 16 mov %l6, %o3 2008798: 9f c4 40 00 call %l1 200879c: b0 10 20 00 clr %i0 20087a0: 81 c7 e0 08 ret 20087a4: 81 e8 00 00 restore
020074e8 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
20074e8: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
20074ec: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
20074f0: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
20074f4: 80 a0 60 00 cmp %g1, 0
20074f8: 02 80 00 20 be 2007578 <_Objects_Allocate+0x90> <== NEVER TAKEN
20074fc: b0 10 20 00 clr %i0
/* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007500: a2 04 20 20 add %l0, 0x20, %l1 2007504: 7f ff fd 8b call 2006b30 <_Chain_Get> 2007508: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
200750c: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007510: 80 a0 60 00 cmp %g1, 0
2007514: 02 80 00 19 be 2007578 <_Objects_Allocate+0x90>
2007518: b0 10 00 08 mov %o0, %i0
/* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) {
200751c: 80 a2 20 00 cmp %o0, 0
2007520: 32 80 00 0a bne,a 2007548 <_Objects_Allocate+0x60>
2007524: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
2007528: 40 00 00 1e call 20075a0 <_Objects_Extend_information> 200752c: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007530: 7f ff fd 80 call 2006b30 <_Chain_Get> 2007534: 90 10 00 11 mov %l1, %o0
} if ( the_object ) {
2007538: b0 92 20 00 orcc %o0, 0, %i0
200753c: 02 80 00 0f be 2007578 <_Objects_Allocate+0x90>
2007540: 01 00 00 00 nop
uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007544: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007548: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id ); block /= information->allocation_size;
200754c: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007550: 40 00 27 98 call 20113b0 <.udiv> 2007554: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007558: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200755c: 91 2a 20 02 sll %o0, 2, %o0 2007560: c4 00 40 08 ld [ %g1 + %o0 ], %g2 2007564: 84 00 bf ff add %g2, -1, %g2 2007568: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
200756c: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 2007570: 82 00 7f ff add %g1, -1, %g1 2007574: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
); } #endif return the_object; }
2007578: 81 c7 e0 08 ret 200757c: 81 e8 00 00 restore
020078fc <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) {
20078fc: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info; int the_class_api_maximum; if ( !the_class )
2007900: b3 2e 60 10 sll %i1, 0x10, %i1 2007904: b3 36 60 10 srl %i1, 0x10, %i1 2007908: 80 a6 60 00 cmp %i1, 0
200790c: 02 80 00 17 be 2007968 <_Objects_Get_information+0x6c>
2007910: a0 10 20 00 clr %l0
/* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007914: 40 00 11 93 call 200bf60 <_Objects_API_maximum_class> 2007918: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
200791c: 80 a2 20 00 cmp %o0, 0
2007920: 02 80 00 12 be 2007968 <_Objects_Get_information+0x6c>
2007924: 80 a6 40 08 cmp %i1, %o0
return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007928: 18 80 00 10 bgu 2007968 <_Objects_Get_information+0x6c>
200792c: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL; if ( !_Objects_Information_table[ the_api ] )
2007930: b1 2e 20 02 sll %i0, 2, %i0 2007934: 82 10 62 e8 or %g1, 0x2e8, %g1 2007938: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200793c: 80 a0 60 00 cmp %g1, 0
2007940: 02 80 00 0a be 2007968 <_Objects_Get_information+0x6c> <== NEVER TAKEN
2007944: b3 2e 60 02 sll %i1, 2, %i1
return NULL; info = _Objects_Information_table[ the_api ][ the_class ];
2007948: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
200794c: 80 a4 20 00 cmp %l0, 0
2007950: 02 80 00 06 be 2007968 <_Objects_Get_information+0x6c> <== NEVER TAKEN
2007954: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 )
2007958: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
200795c: 80 a0 00 01 cmp %g0, %g1 2007960: 82 60 20 00 subx %g0, 0, %g1 2007964: a0 0c 00 01 and %l0, %g1, %l0
#endif return info; }
2007968: 81 c7 e0 08 ret 200796c: 91 e8 00 10 restore %g0, %l0, %o0
02019144 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
2019144: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
2019148: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
201914c: 82 22 40 01 sub %o1, %g1, %g1 2019150: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
2019154: 80 a0 80 01 cmp %g2, %g1
2019158: 0a 80 00 09 bcs 201917c <_Objects_Get_no_protection+0x38>
201915c: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
2019160: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 2019164: d0 00 80 01 ld [ %g2 + %g1 ], %o0 2019168: 80 a2 20 00 cmp %o0, 0
201916c: 02 80 00 05 be 2019180 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
2019170: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL; return the_object;
2019174: 81 c3 e0 08 retl 2019178: c0 22 80 00 clr [ %o2 ]
/* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR;
201917c: 82 10 20 01 mov 1, %g1
return NULL;
2019180: 90 10 20 00 clr %o0
}
2019184: 81 c3 e0 08 retl 2019188: c2 22 80 00 st %g1, [ %o2 ]
020091d8 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) {
20091d8: 9d e3 bf 98 save %sp, -104, %sp
/* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20091dc: 92 96 20 00 orcc %i0, 0, %o1
20091e0: 12 80 00 06 bne 20091f8 <_Objects_Id_to_name+0x20>
20091e4: 83 32 60 18 srl %o1, 0x18, %g1 20091e8: 03 00 80 74 sethi %hi(0x201d000), %g1 20091ec: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201d078 <_Per_CPU_Information+0xc> 20091f0: d2 00 60 08 ld [ %g1 + 8 ], %o1 20091f4: 83 32 60 18 srl %o1, 0x18, %g1 20091f8: 82 08 60 07 and %g1, 7, %g1
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
20091fc: 84 00 7f ff add %g1, -1, %g2 2009200: 80 a0 a0 02 cmp %g2, 2
2009204: 18 80 00 12 bgu 200924c <_Objects_Id_to_name+0x74>
2009208: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
200920c: 10 80 00 12 b 2009254 <_Objects_Id_to_name+0x7c> 2009210: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ];
2009214: 85 28 a0 02 sll %g2, 2, %g2 2009218: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200921c: 80 a2 20 00 cmp %o0, 0
2009220: 02 80 00 0b be 200924c <_Objects_Id_to_name+0x74> <== NEVER TAKEN
2009224: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location );
2009228: 7f ff ff cf call 2009164 <_Objects_Get> 200922c: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2009230: 80 a2 20 00 cmp %o0, 0
2009234: 02 80 00 06 be 200924c <_Objects_Id_to_name+0x74>
2009238: 01 00 00 00 nop
return OBJECTS_INVALID_ID; *name = the_object->name;
200923c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2009240: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch();
2009244: 40 00 03 0d call 2009e78 <_Thread_Enable_dispatch> 2009248: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; }
200924c: 81 c7 e0 08 ret 2009250: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
2009254: 05 00 80 73 sethi %hi(0x201cc00), %g2 2009258: 84 10 a1 88 or %g2, 0x188, %g2 ! 201cd88 <_Objects_Information_table> 200925c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009260: 80 a0 60 00 cmp %g1, 0
2009264: 12 bf ff ec bne 2009214 <_Objects_Id_to_name+0x3c>
2009268: 85 32 60 1b srl %o1, 0x1b, %g2 200926c: 30 bf ff f8 b,a 200924c <_Objects_Id_to_name+0x74>
02007a58 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
2007a58: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
2007a5c: 85 2f 20 10 sll %i4, 0x10, %g2 2007a60: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a64: 07 00 80 53 sethi %hi(0x2014c00), %g3
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
2007a68: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a6c: 86 10 e2 e8 or %g3, 0x2e8, %g3 2007a70: 85 2e 60 02 sll %i1, 2, %g2 2007a74: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class;
2007a78: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api;
2007a7c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class; information->size = size; information->local_table = 0;
2007a80: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
2007a84: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
2007a88: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
2007a8c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0;
2007a90: c0 36 20 10 clrh [ %i0 + 0x10 ]
, bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
2007a94: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a98: b5 2e a0 10 sll %i2, 0x10, %i2 2007a9c: b5 36 a0 10 srl %i2, 0x10, %i2 2007aa0: 85 2e a0 02 sll %i2, 2, %g2 2007aa4: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2007aa8: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend =
2007aac: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2007ab0: 07 20 00 00 sethi %hi(0x80000000), %g3
/* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) {
2007ab4: 80 a0 a0 00 cmp %g2, 0
2007ab8: 02 80 00 09 be 2007adc <_Objects_Initialize_information+0x84>
2007abc: b6 2e c0 03 andn %i3, %g3, %i3 2007ac0: 80 a6 e0 00 cmp %i3, 0
2007ac4: 12 80 00 07 bne 2007ae0 <_Objects_Initialize_information+0x88>
2007ac8: 05 00 80 53 sethi %hi(0x2014c00), %g2
_Internal_error_Occurred(
2007acc: 90 10 20 00 clr %o0 2007ad0: 92 10 20 01 mov 1, %o1 2007ad4: 7f ff fe 59 call 2007438 <_Internal_error_Occurred> 2007ad8: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table;
2007adc: 05 00 80 53 sethi %hi(0x2014c00), %g2 2007ae0: 84 10 a0 34 or %g2, 0x34, %g2 ! 2014c34 <null_local_table.3316> 2007ae4: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007ae8: 05 00 00 40 sethi %hi(0x10000), %g2
/* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007aec: 80 a0 00 1b cmp %g0, %i3 2007af0: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007af4: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007af8: b2 16 40 02 or %i1, %g2, %i1
} /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation;
2007afc: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007b00: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007b04: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b08: b4 16 80 02 or %i2, %g2, %i2
/* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2007b0c: 80 88 60 03 btst 3, %g1
2007b10: 02 80 00 04 be 2007b20 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
2007b14: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2007b18: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007b1c: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length;
2007b20: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain );
2007b24: 82 06 20 24 add %i0, 0x24, %g1
head->next = tail; head->previous = NULL;
2007b28: c0 26 20 24 clr [ %i0 + 0x24 ]
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
2007b2c: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain );
2007b30: 82 06 20 20 add %i0, 0x20, %g1
_Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) {
2007b34: 80 a6 e0 00 cmp %i3, 0
2007b38: 02 80 00 04 be 2007b48 <_Objects_Initialize_information+0xf0>
2007b3c: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information );
2007b40: 7f ff fe 98 call 20075a0 <_Objects_Extend_information> 2007b44: 81 e8 00 00 restore 2007b48: 81 c7 e0 08 ret 2007b4c: 81 e8 00 00 restore
0200b734 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) {
200b734: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b738: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
if ( !api )
200b73c: 80 a4 20 00 cmp %l0, 0
200b740: 02 80 00 1d be 200b7b4 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b744: 01 00 00 00 nop
* Signal Processing */ asr = &api->Signal; _ISR_Disable( level );
200b748: 7f ff da 9e call 20021c0 <sparc_disable_interrupts> 200b74c: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b750: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b754: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b758: 7f ff da 9e call 20021d0 <sparc_enable_interrupts> 200b75c: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b760: 80 a4 e0 00 cmp %l3, 0
200b764: 02 80 00 14 be 200b7b4 <_RTEMS_tasks_Post_switch_extension+0x80>
200b768: a2 07 bf fc add %fp, -4, %l1
return; asr->nest_level += 1;
200b76c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b770: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1;
200b774: 82 00 60 01 inc %g1 200b778: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b77c: 94 10 00 11 mov %l1, %o2 200b780: 25 00 00 3f sethi %hi(0xfc00), %l2 200b784: 40 00 07 ac call 200d634 <rtems_task_mode> 200b788: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b78c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b790: 9f c0 40 00 call %g1 200b794: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b798: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b79c: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
200b7a0: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b7a4: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
200b7a8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b7ac: 40 00 07 a2 call 200d634 <rtems_task_mode> 200b7b0: 94 10 00 11 mov %l1, %o2 200b7b4: 81 c7 e0 08 ret 200b7b8: 81 e8 00 00 restore
02007838 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) {
2007838: 9d e3 bf 98 save %sp, -104, %sp 200783c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007840: 92 10 00 18 mov %i0, %o1 2007844: 90 12 23 04 or %o0, 0x304, %o0 2007848: 40 00 07 c7 call 2009764 <_Objects_Get> 200784c: 94 07 bf fc add %fp, -4, %o2
/* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
2007850: c2 07 bf fc ld [ %fp + -4 ], %g1 2007854: 80 a0 60 00 cmp %g1, 0
2007858: 12 80 00 24 bne 20078e8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
200785c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL: the_thread = the_period->owner;
2007860: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007864: 03 00 00 10 sethi %hi(0x4000), %g1
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD);
2007868: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 200786c: 80 88 80 01 btst %g2, %g1
2007870: 22 80 00 0b be,a 200789c <_Rate_monotonic_Timeout+0x64>
2007874: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007878: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 200787c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007880: 80 a0 80 01 cmp %g2, %g1
2007884: 32 80 00 06 bne,a 200789c <_Rate_monotonic_Timeout+0x64>
2007888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
200788c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007890: 40 00 09 ee call 200a048 <_Thread_Clear_state> 2007894: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8> 2007898: 30 80 00 06 b,a 20078b0 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
200789c: 80 a0 60 01 cmp %g1, 1
20078a0: 12 80 00 0d bne 20078d4 <_Rate_monotonic_Timeout+0x9c>
20078a4: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20078a8: 82 10 20 03 mov 3, %g1 20078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20078b0: 7f ff fe 66 call 2007248 <_Rate_monotonic_Initiate_statistics> 20078b4: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
20078b8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078bc: 11 00 80 75 sethi %hi(0x201d400), %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
20078c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078c4: 90 12 21 54 or %o0, 0x154, %o0 20078c8: 40 00 0e ff call 200b4c4 <_Watchdog_Insert> 20078cc: 92 04 20 10 add %l0, 0x10, %o1 20078d0: 30 80 00 02 b,a 20078d8 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED;
20078d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
20078d8: 03 00 80 75 sethi %hi(0x201d400), %g1 20078dc: c4 00 60 70 ld [ %g1 + 0x70 ], %g2 ! 201d470 <_Thread_Dispatch_disable_level> 20078e0: 84 00 bf ff add %g2, -1, %g2 20078e4: c4 20 60 70 st %g2, [ %g1 + 0x70 ] 20078e8: 81 c7 e0 08 ret 20078ec: 81 e8 00 00 restore
0200bf88 <_Scheduler_priority_Block>: void _Scheduler_priority_Block( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) {
200bf88: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract( Thread_Control *the_thread ) { Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
200bf8c: c2 06 60 8c ld [ %i1 + 0x8c ], %g1 200bf90: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
200bf94: c6 00 40 00 ld [ %g1 ], %g3 200bf98: c4 00 60 08 ld [ %g1 + 8 ], %g2 200bf9c: 80 a0 c0 02 cmp %g3, %g2
200bfa0: 32 80 00 17 bne,a 200bffc <_Scheduler_priority_Block+0x74>
200bfa4: c4 06 40 00 ld [ %i1 ], %g2
{ Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL;
200bfa8: c0 20 60 04 clr [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain );
200bfac: 84 00 60 04 add %g1, 4, %g2
head->next = tail; head->previous = NULL; tail->previous = head;
200bfb0: c2 20 60 08 st %g1, [ %g1 + 8 ]
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
200bfb4: c4 20 40 00 st %g2, [ %g1 ]
_Chain_Initialize_empty( ready ); _Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
200bfb8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor &= the_priority_map->block_minor;
200bfbc: c6 00 60 04 ld [ %g1 + 4 ], %g3 200bfc0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2 200bfc4: c8 10 c0 00 lduh [ %g3 ], %g4 200bfc8: 84 09 00 02 and %g4, %g2, %g2 200bfcc: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
200bfd0: 85 28 a0 10 sll %g2, 0x10, %g2 200bfd4: 80 a0 a0 00 cmp %g2, 0
200bfd8: 32 80 00 0d bne,a 200c00c <_Scheduler_priority_Block+0x84>
200bfdc: 03 00 80 54 sethi %hi(0x2015000), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
200bfe0: 05 00 80 54 sethi %hi(0x2015000), %g2 200bfe4: c2 10 60 0c lduh [ %g1 + 0xc ], %g1 200bfe8: c6 10 a1 f0 lduh [ %g2 + 0x1f0 ], %g3 200bfec: 82 08 40 03 and %g1, %g3, %g1 200bff0: c2 30 a1 f0 sth %g1, [ %g2 + 0x1f0 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir );
200bff4: 10 80 00 06 b 200c00c <_Scheduler_priority_Block+0x84> 200bff8: 03 00 80 54 sethi %hi(0x2015000), %g1
{ Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous;
200bffc: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
200c000: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200c004: c4 20 40 00 st %g2, [ %g1 ] 200c008: 03 00 80 54 sethi %hi(0x2015000), %g1
{ _Scheduler_priority_Ready_queue_extract(the_thread); /* TODO: flash critical section */ if ( _Thread_Is_heir( the_thread ) )
200c00c: c2 00 61 dc ld [ %g1 + 0x1dc ], %g1 ! 20151dc <_Per_CPU_Information+0x10> 200c010: 80 a6 40 01 cmp %i1, %g1
200c014: 32 80 00 32 bne,a 200c0dc <_Scheduler_priority_Block+0x154>
200c018: 03 00 80 54 sethi %hi(0x2015000), %g1
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
200c01c: 03 00 80 54 sethi %hi(0x2015000), %g1 200c020: c4 10 61 f0 lduh [ %g1 + 0x1f0 ], %g2 ! 20151f0 <_Priority_Major_bit_map>
_Scheduler_priority_Block_body(the_scheduler, the_thread); }
200c024: c6 06 00 00 ld [ %i0 ], %g3 200c028: 85 28 a0 10 sll %g2, 0x10, %g2 200c02c: 03 00 80 4e sethi %hi(0x2013800), %g1 200c030: 89 30 a0 10 srl %g2, 0x10, %g4 200c034: 80 a1 20 ff cmp %g4, 0xff
200c038: 18 80 00 05 bgu 200c04c <_Scheduler_priority_Block+0xc4>
200c03c: 82 10 61 e8 or %g1, 0x1e8, %g1 200c040: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 200c044: 10 80 00 04 b 200c054 <_Scheduler_priority_Block+0xcc> 200c048: 84 00 a0 08 add %g2, 8, %g2 200c04c: 85 30 a0 18 srl %g2, 0x18, %g2 200c050: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200c054: 83 28 a0 10 sll %g2, 0x10, %g1 200c058: 09 00 80 54 sethi %hi(0x2015000), %g4 200c05c: 83 30 60 0f srl %g1, 0xf, %g1 200c060: 88 11 22 00 or %g4, 0x200, %g4 200c064: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 200c068: 03 00 80 4e sethi %hi(0x2013800), %g1 200c06c: 89 29 20 10 sll %g4, 0x10, %g4 200c070: 9b 31 20 10 srl %g4, 0x10, %o5 200c074: 80 a3 60 ff cmp %o5, 0xff
200c078: 18 80 00 05 bgu 200c08c <_Scheduler_priority_Block+0x104>
200c07c: 82 10 61 e8 or %g1, 0x1e8, %g1 200c080: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 200c084: 10 80 00 04 b 200c094 <_Scheduler_priority_Block+0x10c> 200c088: 82 00 60 08 add %g1, 8, %g1 200c08c: 89 31 20 18 srl %g4, 0x18, %g4 200c090: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor );
200c094: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
200c098: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
200c09c: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
200c0a0: 85 30 a0 0c srl %g2, 0xc, %g2 200c0a4: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
200c0a8: 89 28 a0 02 sll %g2, 2, %g4 200c0ac: 83 28 a0 04 sll %g2, 4, %g1 200c0b0: 82 20 40 04 sub %g1, %g4, %g1 200c0b4: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 200c0b8: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
200c0bc: 86 01 20 04 add %g4, 4, %g3 200c0c0: 80 a0 80 03 cmp %g2, %g3
200c0c4: 02 80 00 03 be 200c0d0 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
200c0c8: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
200c0cc: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first(
200c0d0: 05 00 80 54 sethi %hi(0x2015000), %g2 200c0d4: c2 20 a1 dc st %g1, [ %g2 + 0x1dc ] ! 20151dc <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
200c0d8: 03 00 80 54 sethi %hi(0x2015000), %g1 200c0dc: 82 10 61 cc or %g1, 0x1cc, %g1 ! 20151cc <_Per_CPU_Information>
/* TODO: flash critical section */ if ( _Thread_Is_heir( the_thread ) ) _Scheduler_priority_Schedule_body(the_scheduler); if ( _Thread_Is_executing( the_thread ) )
200c0e0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200c0e4: 80 a6 40 02 cmp %i1, %g2
200c0e8: 12 80 00 03 bne 200c0f4 <_Scheduler_priority_Block+0x16c>
200c0ec: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
200c0f0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200c0f4: 81 c7 e0 08 ret 200c0f8: 81 e8 00 00 restore
02007e3c <_Scheduler_priority_Schedule>: */ void _Scheduler_priority_Schedule( Scheduler_Control *the_scheduler ) {
2007e3c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007e40: 03 00 80 54 sethi %hi(0x2015000), %g1 2007e44: c4 10 61 f0 lduh [ %g1 + 0x1f0 ], %g2 ! 20151f0 <_Priority_Major_bit_map>
_Scheduler_priority_Schedule_body( the_scheduler ); }
2007e48: c6 06 00 00 ld [ %i0 ], %g3 2007e4c: 85 28 a0 10 sll %g2, 0x10, %g2 2007e50: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e54: 89 30 a0 10 srl %g2, 0x10, %g4 2007e58: 80 a1 20 ff cmp %g4, 0xff
2007e5c: 18 80 00 05 bgu 2007e70 <_Scheduler_priority_Schedule+0x34>
2007e60: 82 10 61 e8 or %g1, 0x1e8, %g1 2007e64: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 2007e68: 10 80 00 04 b 2007e78 <_Scheduler_priority_Schedule+0x3c> 2007e6c: 84 00 a0 08 add %g2, 8, %g2 2007e70: 85 30 a0 18 srl %g2, 0x18, %g2 2007e74: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007e78: 83 28 a0 10 sll %g2, 0x10, %g1 2007e7c: 09 00 80 54 sethi %hi(0x2015000), %g4 2007e80: 83 30 60 0f srl %g1, 0xf, %g1 2007e84: 88 11 22 00 or %g4, 0x200, %g4 2007e88: c8 11 00 01 lduh [ %g4 + %g1 ], %g4 2007e8c: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e90: 89 29 20 10 sll %g4, 0x10, %g4 2007e94: 9b 31 20 10 srl %g4, 0x10, %o5 2007e98: 80 a3 60 ff cmp %o5, 0xff
2007e9c: 18 80 00 05 bgu 2007eb0 <_Scheduler_priority_Schedule+0x74>
2007ea0: 82 10 61 e8 or %g1, 0x1e8, %g1 2007ea4: c2 08 40 0d ldub [ %g1 + %o5 ], %g1 2007ea8: 10 80 00 04 b 2007eb8 <_Scheduler_priority_Schedule+0x7c> 2007eac: 82 00 60 08 add %g1, 8, %g1 2007eb0: 89 31 20 18 srl %g4, 0x18, %g4 2007eb4: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor );
2007eb8: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
2007ebc: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
2007ec0: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
2007ec4: 85 30 a0 0c srl %g2, 0xc, %g2 2007ec8: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
2007ecc: 89 28 a0 02 sll %g2, 2, %g4 2007ed0: 83 28 a0 04 sll %g2, 4, %g1 2007ed4: 82 20 40 04 sub %g1, %g4, %g1 2007ed8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2 2007edc: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
2007ee0: 86 01 20 04 add %g4, 4, %g3 2007ee4: 80 a0 80 03 cmp %g2, %g3
2007ee8: 02 80 00 03 be 2007ef4 <_Scheduler_priority_Schedule+0xb8><== NEVER TAKEN
2007eec: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2007ef0: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first(
2007ef4: 05 00 80 54 sethi %hi(0x2015000), %g2 2007ef8: c2 20 a1 dc st %g1, [ %g2 + 0x1dc ] ! 20151dc <_Per_CPU_Information+0x10> 2007efc: 81 c7 e0 08 ret 2007f00: 81 e8 00 00 restore
02008040 <_Scheduler_priority_Yield>: */ void _Scheduler_priority_Yield( Scheduler_Control *the_scheduler __attribute__((unused)) ) {
2008040: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing;
2008044: 25 00 80 54 sethi %hi(0x2015000), %l2 2008048: a4 14 a1 cc or %l2, 0x1cc, %l2 ! 20151cc <_Per_CPU_Information> 200804c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
2008050: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
2008054: 7f ff e8 5b call 20021c0 <sparc_disable_interrupts> 2008058: e2 00 40 00 ld [ %g1 ], %l1 200805c: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
2008060: c4 04 40 00 ld [ %l1 ], %g2 2008064: c2 04 60 08 ld [ %l1 + 8 ], %g1 2008068: 80 a0 80 01 cmp %g2, %g1
200806c: 22 80 00 1a be,a 20080d4 <_Scheduler_priority_Yield+0x94>
2008070: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
) { Chain_Node *next; Chain_Node *previous; next = the_node->next;
2008074: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
2008078: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
200807c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2008080: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous;
2008084: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain );
2008088: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node;
200808c: e0 24 60 08 st %l0, [ %l1 + 8 ]
) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail;
2008090: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node; old_last->next = the_node;
2008094: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
2008098: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level );
200809c: 7f ff e8 4d call 20021d0 <sparc_enable_interrupts> 20080a0: 01 00 00 00 nop 20080a4: 7f ff e8 47 call 20021c0 <sparc_disable_interrupts> 20080a8: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20080ac: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 20080b0: 80 a4 00 01 cmp %l0, %g1
20080b4: 12 80 00 04 bne 20080c4 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
20080b8: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
20080bc: c2 04 40 00 ld [ %l1 ], %g1 20080c0: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
20080c4: 03 00 80 54 sethi %hi(0x2015000), %g1 20080c8: 82 10 61 cc or %g1, 0x1cc, %g1 ! 20151cc <_Per_CPU_Information> 20080cc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20080d0: 30 80 00 05 b,a 20080e4 <_Scheduler_priority_Yield+0xa4>
} else if ( !_Thread_Is_heir( executing ) )
20080d4: 80 a4 00 01 cmp %l0, %g1
20080d8: 02 80 00 03 be 20080e4 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
20080dc: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
20080e0: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
20080e4: 7f ff e8 3b call 20021d0 <sparc_enable_interrupts> 20080e8: 81 e8 00 00 restore
02007260 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
2007260: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
2007264: 03 00 80 74 sethi %hi(0x201d000), %g1
*/ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
2007268: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
200726c: d2 00 61 14 ld [ %g1 + 0x114 ], %o1
if ((!the_tod) ||
2007270: 80 a4 20 00 cmp %l0, 0
2007274: 02 80 00 2b be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007278: b0 10 20 00 clr %i0
) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
200727c: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007280: 40 00 46 d2 call 2018dc8 <.udiv> 2007284: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) ||
2007288: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200728c: 80 a0 40 08 cmp %g1, %o0
2007290: 1a 80 00 24 bcc 2007320 <_TOD_Validate+0xc0>
2007294: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
2007298: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 200729c: 80 a0 60 3b cmp %g1, 0x3b
20072a0: 18 80 00 20 bgu 2007320 <_TOD_Validate+0xc0>
20072a4: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20072a8: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 20072ac: 80 a0 60 3b cmp %g1, 0x3b
20072b0: 18 80 00 1c bgu 2007320 <_TOD_Validate+0xc0>
20072b4: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20072b8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20072bc: 80 a0 60 17 cmp %g1, 0x17
20072c0: 18 80 00 18 bgu 2007320 <_TOD_Validate+0xc0>
20072c4: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) ||
20072c8: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) ||
20072cc: 80 a0 60 00 cmp %g1, 0
20072d0: 02 80 00 14 be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072d4: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) || 20072d8: 18 80 00 12 bgu 2007320 <_TOD_Validate+0xc0>
20072dc: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
20072e0: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) ||
20072e4: 80 a0 e7 c3 cmp %g3, 0x7c3
20072e8: 08 80 00 0e bleu 2007320 <_TOD_Validate+0xc0>
20072ec: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) )
20072f0: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
20072f4: 80 a0 a0 00 cmp %g2, 0
20072f8: 02 80 00 0a be 2007320 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072fc: 80 88 e0 03 btst 3, %g3 2007300: 07 00 80 6f sethi %hi(0x201bc00), %g3
(the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007304: 12 80 00 03 bne 2007310 <_TOD_Validate+0xb0>
2007308: 86 10 e1 48 or %g3, 0x148, %g3 ! 201bd48 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200730c: 82 00 60 0d add %g1, 0xd, %g1
else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2007310: 83 28 60 02 sll %g1, 2, %g1 2007314: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate(
2007318: 80 a0 40 02 cmp %g1, %g2 200731c: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month ) return false; return true; }
2007320: 81 c7 e0 08 ret 2007324: 81 e8 00 00 restore
02008144 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) {
2008144: 9d e3 bf a0 save %sp, -96, %sp
*/ /* * Save original state */ original_state = the_thread->current_state;
2008148: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread );
200814c: 40 00 03 9b call 2008fb8 <_Thread_Set_transient> 2008150: 90 10 00 18 mov %i0, %o0
/* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority )
2008154: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008158: 80 a0 40 19 cmp %g1, %i1
200815c: 02 80 00 05 be 2008170 <_Thread_Change_priority+0x2c>
2008160: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2008164: 90 10 00 18 mov %i0, %o0 2008168: 40 00 03 78 call 2008f48 <_Thread_Set_priority> 200816c: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2008170: 7f ff e8 14 call 20021c0 <sparc_disable_interrupts> 2008174: 01 00 00 00 nop 2008178: b0 10 00 08 mov %o0, %i0
/* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state;
200817c: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2008180: 80 a6 60 04 cmp %i1, 4
2008184: 02 80 00 10 be 20081c4 <_Thread_Change_priority+0x80>
2008188: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) )
200818c: 80 a4 60 00 cmp %l1, 0
2008190: 12 80 00 03 bne 200819c <_Thread_Change_priority+0x58> <== NEVER TAKEN
2008194: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008198: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
200819c: 7f ff e8 0d call 20021d0 <sparc_enable_interrupts> 20081a0: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
20081a4: 03 00 00 ef sethi %hi(0x3bc00), %g1 20081a8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 20081ac: 80 8e 40 01 btst %i1, %g1
20081b0: 02 80 00 44 be 20082c0 <_Thread_Change_priority+0x17c>
20081b4: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
20081b8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 20081bc: 40 00 03 36 call 2008e94 <_Thread_queue_Requeue> 20081c0: 93 e8 00 10 restore %g0, %l0, %o1
} return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) {
20081c4: 80 a4 60 00 cmp %l1, 0
20081c8: 12 80 00 26 bne 2008260 <_Thread_Change_priority+0x11c> <== NEVER TAKEN
20081cc: 80 8e a0 ff btst 0xff, %i2
* Ready Queue with interrupts off. * * FIXME: hard-coded for priority scheduling. Might be ok since this * function is specific to priority scheduling? */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20081d0: c0 24 20 10 clr [ %l0 + 0x10 ] 20081d4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
if ( prepend_it ) 20081d8: 02 80 00 12 be 2008220 <_Thread_Change_priority+0xdc>
20081dc: 05 00 80 54 sethi %hi(0x2015000), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
20081e0: c6 00 60 04 ld [ %g1 + 4 ], %g3 20081e4: c8 10 60 0a lduh [ %g1 + 0xa ], %g4 20081e8: da 10 c0 00 lduh [ %g3 ], %o5 20081ec: 88 13 40 04 or %o5, %g4, %g4 20081f0: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
20081f4: c6 10 a1 f0 lduh [ %g2 + 0x1f0 ], %g3 20081f8: c8 10 60 08 lduh [ %g1 + 8 ], %g4
Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); _Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
20081fc: c2 00 40 00 ld [ %g1 ], %g1 2008200: 86 11 00 03 or %g4, %g3, %g3 2008204: c6 30 a1 f0 sth %g3, [ %g2 + 0x1f0 ]
) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next;
2008208: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node;
200820c: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next; after_node->next = the_node;
2008210: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
2008214: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
2008218: 10 80 00 12 b 2008260 <_Thread_Change_priority+0x11c> 200821c: e0 20 a0 04 st %l0, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
2008220: c6 00 60 04 ld [ %g1 + 4 ], %g3 2008224: c8 10 60 0a lduh [ %g1 + 0xa ], %g4 2008228: da 10 c0 00 lduh [ %g3 ], %o5 200822c: 88 13 40 04 or %o5, %g4, %g4 2008230: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2008234: c8 10 60 08 lduh [ %g1 + 8 ], %g4 2008238: c6 10 a1 f0 lduh [ %g2 + 0x1f0 ], %g3
Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); _Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
200823c: c2 00 40 00 ld [ %g1 ], %g1 2008240: 86 11 00 03 or %g4, %g3, %g3 2008244: c6 30 a1 f0 sth %g3, [ %g2 + 0x1f0 ]
Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous;
2008248: c4 00 60 08 ld [ %g1 + 8 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain );
200824c: 86 00 60 04 add %g1, 4, %g3
Chain_Node *old_last = tail->previous; the_node->next = tail; tail->previous = the_node;
2008250: e0 20 60 08 st %l0, [ %g1 + 8 ]
) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail;
2008254: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node; old_last->next = the_node;
2008258: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last;
200825c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread ); else _Scheduler_priority_Ready_queue_enqueue( the_thread ); } _ISR_Flash( level );
2008260: 7f ff e7 dc call 20021d0 <sparc_enable_interrupts> 2008264: 90 10 00 18 mov %i0, %o0 2008268: 7f ff e7 d6 call 20021c0 <sparc_disable_interrupts> 200826c: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( Scheduler_Control *the_scheduler ) { the_scheduler->Operations.schedule( the_scheduler );
2008270: 11 00 80 54 sethi %hi(0x2015000), %o0 2008274: 90 12 20 08 or %o0, 8, %o0 ! 2015008 <_Scheduler> 2008278: c2 02 20 04 ld [ %o0 + 4 ], %g1 200827c: 9f c0 40 00 call %g1 2008280: 01 00 00 00 nop
* is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir );
2008284: 03 00 80 54 sethi %hi(0x2015000), %g1 2008288: 82 10 61 cc or %g1, 0x1cc, %g1 ! 20151cc <_Per_CPU_Information> 200828c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(&_Scheduler); if ( !_Thread_Is_executing_also_the_heir() &&
2008290: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008294: 80 a0 80 03 cmp %g2, %g3
2008298: 02 80 00 08 be 20082b8 <_Thread_Change_priority+0x174>
200829c: 01 00 00 00 nop 20082a0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20082a4: 80 a0 a0 00 cmp %g2, 0
20082a8: 02 80 00 04 be 20082b8 <_Thread_Change_priority+0x174>
20082ac: 01 00 00 00 nop
_Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true;
20082b0: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 20082b4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20082b8: 7f ff e7 c6 call 20021d0 <sparc_enable_interrupts> 20082bc: 81 e8 00 00 restore 20082c0: 81 c7 e0 08 ret 20082c4: 81 e8 00 00 restore
020084d4 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) {
20084d4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
20084d8: 90 10 00 18 mov %i0, %o0 20084dc: 40 00 00 6e call 2008694 <_Thread_Get> 20084e0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20084e4: c2 07 bf fc ld [ %fp + -4 ], %g1 20084e8: 80 a0 60 00 cmp %g1, 0
20084ec: 12 80 00 08 bne 200850c <_Thread_Delay_ended+0x38> <== NEVER TAKEN
20084f0: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state(
20084f4: 7f ff ff 75 call 20082c8 <_Thread_Clear_state> 20084f8: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018> 20084fc: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008500: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 2008504: 84 00 bf ff add %g2, -1, %g2 2008508: c4 20 63 80 st %g2, [ %g1 + 0x380 ] 200850c: 81 c7 e0 08 ret 2008510: 81 e8 00 00 restore
02008514 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) {
2008514: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing;
2008518: 2d 00 80 54 sethi %hi(0x2015000), %l6 200851c: 82 15 a1 cc or %l6, 0x1cc, %g1 ! 20151cc <_Per_CPU_Information>
_ISR_Disable( level );
2008520: 7f ff e7 28 call 20021c0 <sparc_disable_interrupts> 2008524: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract(
2008528: 25 00 80 54 sethi %hi(0x2015000), %l2
executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
200852c: 37 00 80 53 sethi %hi(0x2014c00), %i3 2008530: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008534: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
2008538: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
200853c: a8 07 bf f0 add %fp, -16, %l4 2008540: a4 14 a0 50 or %l2, 0x50, %l2
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
2008544: 2f 00 80 54 sethi %hi(0x2015000), %l7
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) {
2008548: 10 80 00 39 b 200862c <_Thread_Dispatch+0x118> 200854c: 27 00 80 54 sethi %hi(0x2015000), %l3
heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
2008550: f8 26 e3 80 st %i4, [ %i3 + 0x380 ]
_Thread_Dispatch_necessary = false;
2008554: c0 28 60 18 clrb [ %g1 + 0x18 ]
/* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing )
2008558: 80 a4 40 10 cmp %l1, %l0
200855c: 02 80 00 39 be 2008640 <_Thread_Dispatch+0x12c>
2008560: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008564: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008568: 80 a0 60 01 cmp %g1, 1
200856c: 12 80 00 03 bne 2008578 <_Thread_Dispatch+0x64>
2008570: c2 07 62 e4 ld [ %i5 + 0x2e4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008574: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008578: 7f ff e7 16 call 20021d0 <sparc_enable_interrupts> 200857c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
2008580: 40 00 0d 6e call 200bb38 <_TOD_Get_uptime> 2008584: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008588: 90 10 00 12 mov %l2, %o0 200858c: 92 10 00 15 mov %l5, %o1 2008590: 40 00 03 36 call 2009268 <_Timespec_Subtract> 2008594: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008598: 90 04 20 84 add %l0, 0x84, %o0 200859c: 40 00 03 1a call 2009204 <_Timespec_Add_to> 20085a0: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
20085a4: c2 07 bf f8 ld [ %fp + -8 ], %g1 20085a8: c2 24 80 00 st %g1, [ %l2 ] 20085ac: c2 07 bf fc ld [ %fp + -4 ], %g1 20085b0: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
20085b4: c2 05 e0 28 ld [ %l7 + 0x28 ], %g1 20085b8: 80 a0 60 00 cmp %g1, 0
20085bc: 02 80 00 06 be 20085d4 <_Thread_Dispatch+0xc0> <== NEVER TAKEN
20085c0: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
20085c4: c4 00 40 00 ld [ %g1 ], %g2 20085c8: c4 24 21 54 st %g2, [ %l0 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
20085cc: c4 04 61 54 ld [ %l1 + 0x154 ], %g2 20085d0: c4 20 40 00 st %g2, [ %g1 ]
} _User_extensions_Thread_switch( executing, heir );
20085d4: 40 00 03 d5 call 2009528 <_User_extensions_Thread_switch> 20085d8: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers );
20085dc: 90 04 20 c8 add %l0, 0xc8, %o0 20085e0: 40 00 05 00 call 20099e0 <_CPU_Context_switch> 20085e4: 92 04 60 c8 add %l1, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) &&
20085e8: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 20085ec: 80 a0 60 00 cmp %g1, 0
20085f0: 02 80 00 0c be 2008620 <_Thread_Dispatch+0x10c>
20085f4: d0 04 e0 04 ld [ %l3 + 4 ], %o0 20085f8: 80 a4 00 08 cmp %l0, %o0
20085fc: 02 80 00 09 be 2008620 <_Thread_Dispatch+0x10c>
2008600: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008604: 02 80 00 04 be 2008614 <_Thread_Dispatch+0x100>
2008608: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200860c: 40 00 04 bb call 20098f8 <_CPU_Context_save_fp> 2008610: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008614: 40 00 04 d6 call 200996c <_CPU_Context_restore_fp> 2008618: 90 04 21 50 add %l0, 0x150, %o0
_Thread_Allocated_fp = executing;
200861c: e0 24 e0 04 st %l0, [ %l3 + 4 ]
if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing;
2008620: 82 15 a1 cc or %l6, 0x1cc, %g1
_ISR_Disable( level );
2008624: 7f ff e6 e7 call 20021c0 <sparc_disable_interrupts> 2008628: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) {
200862c: 82 15 a1 cc or %l6, 0x1cc, %g1 2008630: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008634: 80 a0 a0 00 cmp %g2, 0
2008638: 32 bf ff c6 bne,a 2008550 <_Thread_Dispatch+0x3c>
200863c: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0;
2008640: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008644: c0 20 63 80 clr [ %g1 + 0x380 ] ! 2014f80 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008648: 7f ff e6 e2 call 20021d0 <sparc_enable_interrupts> 200864c: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008650: 7f ff f8 d7 call 20069ac <_API_extensions_Run_postswitch> 2008654: 01 00 00 00 nop
}
2008658: 81 c7 e0 08 ret 200865c: 81 e8 00 00 restore
02008694 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) {
2008694: 82 10 00 08 mov %o0, %g1
uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
2008698: 80 a2 20 00 cmp %o0, 0
200869c: 12 80 00 0a bne 20086c4 <_Thread_Get+0x30>
20086a0: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
20086a4: 03 00 80 53 sethi %hi(0x2014c00), %g1 20086a8: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 20086ac: 84 00 a0 01 inc %g2 20086b0: c4 20 63 80 st %g2, [ %g1 + 0x380 ]
_Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing;
20086b4: 03 00 80 54 sethi %hi(0x2015000), %g1
Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL;
20086b8: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing; goto done;
20086bc: 81 c3 e0 08 retl 20086c0: d0 00 61 d8 ld [ %g1 + 0x1d8 ], %o0
*/ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
20086c4: 87 32 20 18 srl %o0, 0x18, %g3 20086c8: 86 08 e0 07 and %g3, 7, %g3
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
20086cc: 84 00 ff ff add %g3, -1, %g2 20086d0: 80 a0 a0 02 cmp %g2, 2
20086d4: 28 80 00 16 bleu,a 200872c <_Thread_Get+0x98>
20086d8: 85 32 20 1b srl %o0, 0x1b, %g2
goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR;
20086dc: 82 10 20 01 mov 1, %g1 20086e0: 10 80 00 09 b 2008704 <_Thread_Get+0x70> 20086e4: c2 22 80 00 st %g1, [ %o2 ]
goto done; } api_information = _Objects_Information_table[ the_api ];
20086e8: 09 00 80 53 sethi %hi(0x2014c00), %g4 20086ec: 88 11 22 e8 or %g4, 0x2e8, %g4 ! 2014ee8 <_Objects_Information_table> 20086f0: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) {
20086f4: 80 a0 e0 00 cmp %g3, 0
20086f8: 32 80 00 05 bne,a 200870c <_Thread_Get+0x78> <== ALWAYS TAKEN
20086fc: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
2008700: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
2008704: 81 c3 e0 08 retl 2008708: 90 10 20 00 clr %o0
} #endif information = api_information[ the_class ]; if ( !information ) {
200870c: 80 a2 20 00 cmp %o0, 0
2008710: 12 80 00 04 bne 2008720 <_Thread_Get+0x8c>
2008714: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR; goto done;
2008718: 81 c3 e0 08 retl 200871c: c4 22 80 00 st %g2, [ %o2 ]
} tp = (Thread_Control *) _Objects_Get( information, id, location );
2008720: 82 13 c0 00 mov %o7, %g1 2008724: 7f ff fc b0 call 20079e4 <_Objects_Get> 2008728: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */
200872c: 80 a0 a0 01 cmp %g2, 1
2008730: 22 bf ff ee be,a 20086e8 <_Thread_Get+0x54>
2008734: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
2008738: 10 bf ff ea b 20086e0 <_Thread_Get+0x4c> 200873c: 82 10 20 01 mov 1, %g1
0200d964 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) {
200d964: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing;
200d968: 03 00 80 54 sethi %hi(0x2015000), %g1 200d96c: e0 00 61 d8 ld [ %g1 + 0x1d8 ], %l0 ! 20151d8 <_Per_CPU_Information+0xc>
/* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin();
200d970: 3f 00 80 36 sethi %hi(0x200d800), %i7 200d974: be 17 e1 64 or %i7, 0x164, %i7 ! 200d964 <_Thread_Handler>
/* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level;
200d978: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
200d97c: 7f ff d2 15 call 20021d0 <sparc_enable_interrupts> 200d980: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
200d984: 03 00 80 53 sethi %hi(0x2014c00), %g1
doneConstructors = 1;
200d988: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
200d98c: e2 08 60 3c ldub [ %g1 + 0x3c ], %l1
doneConstructors = 1;
200d990: c4 28 60 3c stb %g2, [ %g1 + 0x3c ]
#endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) &&
200d994: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 200d998: 80 a0 60 00 cmp %g1, 0
200d99c: 02 80 00 0c be 200d9cc <_Thread_Handler+0x68>
200d9a0: 03 00 80 54 sethi %hi(0x2015000), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp );
200d9a4: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 2015004 <_Thread_Allocated_fp> 200d9a8: 80 a4 00 08 cmp %l0, %o0
200d9ac: 02 80 00 08 be 200d9cc <_Thread_Handler+0x68>
200d9b0: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200d9b4: 22 80 00 06 be,a 200d9cc <_Thread_Handler+0x68>
200d9b8: e0 20 60 04 st %l0, [ %g1 + 4 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d9bc: 7f ff ef cf call 20098f8 <_CPU_Context_save_fp> 200d9c0: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200d9c4: 03 00 80 54 sethi %hi(0x2015000), %g1 200d9c8: e0 20 60 04 st %l0, [ %g1 + 4 ] ! 2015004 <_Thread_Allocated_fp>
/* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing );
200d9cc: 7f ff ee 67 call 2009368 <_User_extensions_Thread_begin> 200d9d0: 90 10 00 10 mov %l0, %o0
/* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch();
200d9d4: 7f ff eb 23 call 2008660 <_Thread_Enable_dispatch> 200d9d8: a3 2c 60 18 sll %l1, 0x18, %l1
/* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ {
200d9dc: 80 a4 60 00 cmp %l1, 0
200d9e0: 32 80 00 05 bne,a 200d9f4 <_Thread_Handler+0x90>
200d9e4: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
200d9e8: 40 00 1a 40 call 20142e8 <_init> 200d9ec: 01 00 00 00 nop
} #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200d9f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200d9f4: 80 a0 60 00 cmp %g1, 0
200d9f8: 12 80 00 06 bne 200da10 <_Thread_Handler+0xac> <== NEVER TAKEN
200d9fc: 01 00 00 00 nop
executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)(
200da00: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200da04: 9f c0 40 00 call %g1 200da08: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument =
200da0c: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing );
200da10: 7f ff ee 67 call 20093ac <_User_extensions_Thread_exitted> 200da14: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200da18: 90 10 20 00 clr %o0 200da1c: 92 10 20 01 mov 1, %o1 200da20: 7f ff e6 86 call 2007438 <_Internal_error_Occurred> 200da24: 94 10 20 05 mov 5, %o2
02008740 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) {
2008740: 9d e3 bf a0 save %sp, -96, %sp 2008744: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008748: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 200874c: e0 00 40 00 ld [ %g1 ], %l0
/* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL;
2008750: c0 26 61 58 clr [ %i1 + 0x158 ] 2008754: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL; the_thread->libc_reent = NULL;
2008758: c0 26 61 54 clr [ %i1 + 0x154 ]
/* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200875c: 90 10 00 19 mov %i1, %o0 2008760: 40 00 02 3e call 2009058 <_Thread_Stack_Allocate> 2008764: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008768: 80 a2 00 1b cmp %o0, %i3
200876c: 0a 80 00 78 bcs 200894c <_Thread_Initialize+0x20c>
2008770: 80 a2 20 00 cmp %o0, 0
2008774: 02 80 00 76 be 200894c <_Thread_Initialize+0x20c> <== NEVER TAKEN
2008778: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
200877c: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008780: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
2008784: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008788: 02 80 00 07 be 20087a4 <_Thread_Initialize+0x64>
200878c: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008790: 40 00 04 3c call 2009880 <_Workspace_Allocate> 2008794: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008798: a2 92 20 00 orcc %o0, 0, %l1
200879c: 02 80 00 45 be 20088b0 <_Thread_Initialize+0x170>
20087a0: b6 10 20 00 clr %i3
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
20087a4: 03 00 80 54 sethi %hi(0x2015000), %g1 20087a8: d0 00 60 34 ld [ %g1 + 0x34 ], %o0 ! 2015034 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area;
20087ac: e2 26 61 50 st %l1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
20087b0: e2 26 60 bc st %l1, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
20087b4: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20087b8: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20087bc: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
20087c0: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
20087c4: 80 a2 20 00 cmp %o0, 0
20087c8: 02 80 00 08 be 20087e8 <_Thread_Initialize+0xa8>
20087cc: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
20087d0: 90 02 20 01 inc %o0 20087d4: 40 00 04 2b call 2009880 <_Workspace_Allocate> 20087d8: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area )
20087dc: b6 92 20 00 orcc %o0, 0, %i3
20087e0: 22 80 00 35 be,a 20088b4 <_Thread_Initialize+0x174>
20087e4: a4 10 20 00 clr %l2
* if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) {
20087e8: 80 a6 e0 00 cmp %i3, 0
20087ec: 02 80 00 0b be 2008818 <_Thread_Initialize+0xd8>
20087f0: f6 26 61 60 st %i3, [ %i1 + 0x160 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20087f4: 03 00 80 54 sethi %hi(0x2015000), %g1 20087f8: c4 00 60 34 ld [ %g1 + 0x34 ], %g2 ! 2015034 <_Thread_Maximum_extensions> 20087fc: 10 80 00 04 b 200880c <_Thread_Initialize+0xcc> 2008800: 82 10 20 00 clr %g1 2008804: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008808: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200880c: 80 a0 40 02 cmp %g1, %g2
2008810: 08 bf ff fd bleu 2008804 <_Thread_Initialize+0xc4>
2008814: 87 28 60 02 sll %g1, 2, %g3
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
2008818: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
200881c: 11 00 80 54 sethi %hi(0x2015000), %o0 2008820: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008824: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 2008828: 90 12 20 08 or %o0, 8, %o0 200882c: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
2008830: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible;
2008834: e4 2e 60 a0 stb %l2, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
2008838: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
200883c: 82 10 20 01 mov 1, %g1 2008840: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return
2008844: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
the_thread->Wait.queue = NULL;
2008848: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
200884c: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008850: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2008854: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008858: 9f c0 40 00 call %g1 200885c: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread ); if ( !sched )
2008860: a4 92 20 00 orcc %o0, 0, %l2
2008864: 02 80 00 14 be 20088b4 <_Thread_Initialize+0x174>
2008868: 90 10 00 19 mov %i1, %o0
goto failed; _Thread_Set_priority( the_thread, priority );
200886c: 40 00 01 b7 call 2008f48 <_Thread_Set_priority> 2008870: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread ); return false; }
2008874: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
2008878: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
200887c: c0 26 60 84 clr [ %i1 + 0x84 ] 2008880: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
2008884: 83 28 60 02 sll %g1, 2, %g1 2008888: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
200888c: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread );
2008890: 90 10 00 19 mov %i1, %o0 2008894: 40 00 02 e8 call 2009434 <_User_extensions_Thread_create> 2008898: b0 10 20 01 mov 1, %i0
if ( extension_status )
200889c: 80 8a 20 ff btst 0xff, %o0
20088a0: 22 80 00 06 be,a 20088b8 <_Thread_Initialize+0x178>
20088a4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088a8: 81 c7 e0 08 ret 20088ac: 81 e8 00 00 restore
size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL;
20088b0: a4 10 20 00 clr %l2
extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) return true; failed: if ( the_thread->libc_reent )
20088b4: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20088b8: 80 a2 20 00 cmp %o0, 0
20088bc: 22 80 00 05 be,a 20088d0 <_Thread_Initialize+0x190>
20088c0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
_Workspace_Free( the_thread->libc_reent );
20088c4: 40 00 03 f8 call 20098a4 <_Workspace_Free> 20088c8: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
20088cc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20088d0: 80 a2 20 00 cmp %o0, 0
20088d4: 22 80 00 05 be,a 20088e8 <_Thread_Initialize+0x1a8>
20088d8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
20088dc: 40 00 03 f2 call 20098a4 <_Workspace_Free> 20088e0: 01 00 00 00 nop
failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
20088e4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20088e8: 80 a2 20 00 cmp %o0, 0
20088ec: 02 80 00 05 be 2008900 <_Thread_Initialize+0x1c0> <== ALWAYS TAKEN
20088f0: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
20088f4: 40 00 03 ec call 20098a4 <_Workspace_Free> <== NOT EXECUTED 20088f8: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
20088fc: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008900: 02 80 00 05 be 2008914 <_Thread_Initialize+0x1d4>
2008904: 80 a4 60 00 cmp %l1, 0
(void) _Workspace_Free( extensions_area );
2008908: 40 00 03 e7 call 20098a4 <_Workspace_Free> 200890c: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area )
2008910: 80 a4 60 00 cmp %l1, 0
2008914: 02 80 00 05 be 2008928 <_Thread_Initialize+0x1e8>
2008918: 80 a4 a0 00 cmp %l2, 0
(void) _Workspace_Free( fp_area );
200891c: 40 00 03 e2 call 20098a4 <_Workspace_Free> 2008920: 90 10 00 11 mov %l1, %o0
#endif if ( sched )
2008924: 80 a4 a0 00 cmp %l2, 0
2008928: 02 80 00 05 be 200893c <_Thread_Initialize+0x1fc>
200892c: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
2008930: 40 00 03 dd call 20098a4 <_Workspace_Free> 2008934: 90 10 00 12 mov %l2, %o0
_Thread_Stack_Free( the_thread );
2008938: 90 10 00 19 mov %i1, %o0 200893c: 40 00 01 de call 20090b4 <_Thread_Stack_Free> 2008940: b0 10 20 00 clr %i0
return false;
2008944: 81 c7 e0 08 ret 2008948: 81 e8 00 00 restore
}
200894c: 81 c7 e0 08 ret 2008950: 91 e8 20 00 restore %g0, 0, %o0
0200c550 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) {
200c550: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
200c554: 7f ff d7 97 call 20023b0 <sparc_disable_interrupts> 200c558: 01 00 00 00 nop 200c55c: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
200c560: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c564: 80 88 60 02 btst 2, %g1
200c568: 02 80 00 0a be 200c590 <_Thread_Resume+0x40> <== NEVER TAKEN
200c56c: 82 08 7f fd and %g1, -3, %g1
current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) {
200c570: 80 a0 60 00 cmp %g1, 0
200c574: 12 80 00 07 bne 200c590 <_Thread_Resume+0x40>
200c578: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { the_scheduler->Operations.unblock( the_scheduler, the_thread );
200c57c: 11 00 80 62 sethi %hi(0x2018800), %o0 200c580: 90 12 22 f8 or %o0, 0x2f8, %o0 ! 2018af8 <_Scheduler> 200c584: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 200c588: 9f c0 40 00 call %g1 200c58c: 92 10 00 18 mov %i0, %o1
_Scheduler_Unblock( &_Scheduler, the_thread ); } } _ISR_Enable( level );
200c590: 7f ff d7 8c call 20023c0 <sparc_enable_interrupts> 200c594: 91 e8 00 10 restore %g0, %l0, %o0
02008e94 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) {
2008e94: 9d e3 bf 98 save %sp, -104, %sp
/* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue )
2008e98: 80 a6 20 00 cmp %i0, 0
2008e9c: 02 80 00 19 be 2008f00 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008ea0: 01 00 00 00 nop
/* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008ea4: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008ea8: 80 a4 60 01 cmp %l1, 1
2008eac: 12 80 00 15 bne 2008f00 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008eb0: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level );
2008eb4: 7f ff e4 c3 call 20021c0 <sparc_disable_interrupts> 2008eb8: 01 00 00 00 nop 2008ebc: a0 10 00 08 mov %o0, %l0 2008ec0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008ec4: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008ec8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 2008ecc: 80 88 80 01 btst %g2, %g1
2008ed0: 02 80 00 0a be 2008ef8 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008ed4: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008ed8: 92 10 00 19 mov %i1, %o1 2008edc: 94 10 20 01 mov 1, %o2 2008ee0: 40 00 0c e6 call 200c278 <_Thread_queue_Extract_priority_helper> 2008ee4: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008ee8: 90 10 00 18 mov %i0, %o0 2008eec: 92 10 00 19 mov %i1, %o1 2008ef0: 7f ff ff 49 call 2008c14 <_Thread_queue_Enqueue_priority> 2008ef4: 94 07 bf fc add %fp, -4, %o2
} _ISR_Enable( level );
2008ef8: 7f ff e4 b6 call 20021d0 <sparc_enable_interrupts> 2008efc: 90 10 00 10 mov %l0, %o0 2008f00: 81 c7 e0 08 ret 2008f04: 81 e8 00 00 restore
02008f08 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) {
2008f08: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
2008f0c: 90 10 00 18 mov %i0, %o0 2008f10: 7f ff fd e1 call 2008694 <_Thread_Get> 2008f14: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008f18: c2 07 bf fc ld [ %fp + -4 ], %g1 2008f1c: 80 a0 60 00 cmp %g1, 0
2008f20: 12 80 00 08 bne 2008f40 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008f24: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread );
2008f28: 40 00 0d 0c call 200c358 <_Thread_queue_Process_timeout> 2008f2c: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
2008f30: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008f34: c4 00 63 80 ld [ %g1 + 0x380 ], %g2 ! 2014f80 <_Thread_Dispatch_disable_level> 2008f38: 84 00 bf ff add %g2, -1, %g2 2008f3c: c4 20 63 80 st %g2, [ %g1 + 0x380 ] 2008f40: 81 c7 e0 08 ret 2008f44: 81 e8 00 00 restore
02016918 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) {
2016918: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
201691c: 39 00 80 ef sethi %hi(0x203bc00), %i4
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
2016920: b6 07 bf f4 add %fp, -12, %i3 2016924: ae 07 bf f8 add %fp, -8, %l7 2016928: a4 07 bf e8 add %fp, -24, %l2 201692c: a6 07 bf ec add %fp, -20, %l3 2016930: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
2016934: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2016938: f6 27 bf fc st %i3, [ %fp + -4 ]
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
201693c: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
2016940: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2016944: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016948: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
201694c: 3b 00 80 ef sethi %hi(0x203bc00), %i5
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016950: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016954: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016958: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain;
201695c: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016960: c2 07 21 14 ld [ %i4 + 0x114 ], %g1
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016964: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016968: 94 10 00 12 mov %l2, %o2
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot;
201696c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016970: 90 10 00 14 mov %l4, %o0 2016974: 40 00 11 8d call 201afa8 <_Watchdog_Adjust_to_chain> 2016978: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
201697c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016980: e0 07 60 8c ld [ %i5 + 0x8c ], %l0
/* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) {
2016984: 80 a4 00 0a cmp %l0, %o2
2016988: 08 80 00 06 bleu 20169a0 <_Timer_server_Body+0x88>
201698c: 92 24 00 0a sub %l0, %o2, %o1
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016990: 90 10 00 11 mov %l1, %o0 2016994: 40 00 11 85 call 201afa8 <_Watchdog_Adjust_to_chain> 2016998: 94 10 00 12 mov %l2, %o2 201699c: 30 80 00 06 b,a 20169b4 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) { 20169a0: 1a 80 00 05 bcc 20169b4 <_Timer_server_Body+0x9c>
20169a4: 90 10 00 11 mov %l1, %o0
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20169a8: 92 10 20 01 mov 1, %o1 20169ac: 40 00 11 57 call 201af08 <_Watchdog_Adjust> 20169b0: 94 22 80 10 sub %o2, %l0, %o2
} watchdogs->last_snapshot = snapshot;
20169b4: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20169b8: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20169bc: 40 00 02 c1 call 20174c0 <_Chain_Get> 20169c0: 01 00 00 00 nop
if ( timer == NULL ) {
20169c4: 92 92 20 00 orcc %o0, 0, %o1
20169c8: 02 80 00 0c be 20169f8 <_Timer_server_Body+0xe0>
20169cc: 01 00 00 00 nop
static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20169d0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20169d4: 80 a0 60 01 cmp %g1, 1
20169d8: 02 80 00 05 be 20169ec <_Timer_server_Body+0xd4>
20169dc: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20169e0: 80 a0 60 03 cmp %g1, 3
20169e4: 12 bf ff f5 bne 20169b8 <_Timer_server_Body+0xa0> <== NEVER TAKEN
20169e8: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20169ec: 40 00 11 a3 call 201b078 <_Watchdog_Insert> 20169f0: 92 02 60 10 add %o1, 0x10, %o1 20169f4: 30 bf ff f1 b,a 20169b8 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level );
20169f8: 7f ff e3 a6 call 200f890 <sparc_disable_interrupts> 20169fc: 01 00 00 00 nop
tmp = ts->insert_chain;
2016a00: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
2016a04: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016a08: 80 a0 40 17 cmp %g1, %l7
2016a0c: 12 80 00 04 bne 2016a1c <_Timer_server_Body+0x104> <== NEVER TAKEN
2016a10: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
2016a14: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
2016a18: a0 10 20 00 clr %l0
} _ISR_Enable( level );
2016a1c: 7f ff e3 a1 call 200f8a0 <sparc_enable_interrupts> 2016a20: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) {
2016a24: 80 8c 20 ff btst 0xff, %l0
2016a28: 12 bf ff ce bne 2016960 <_Timer_server_Body+0x48> <== NEVER TAKEN
2016a2c: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) {
2016a30: 80 a0 40 13 cmp %g1, %l3
2016a34: 02 80 00 18 be 2016a94 <_Timer_server_Body+0x17c>
2016a38: 01 00 00 00 nop
/* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level );
2016a3c: 7f ff e3 95 call 200f890 <sparc_disable_interrupts> 2016a40: 01 00 00 00 nop 2016a44: 84 10 00 08 mov %o0, %g2
initialized = false; } #endif return status; }
2016a48: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
2016a4c: 80 a4 00 13 cmp %l0, %l3
2016a50: 02 80 00 0e be 2016a88 <_Timer_server_Body+0x170>
2016a54: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next;
2016a58: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
2016a5c: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) {
2016a60: 02 80 00 0a be 2016a88 <_Timer_server_Body+0x170> <== NEVER TAKEN
2016a64: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
2016a68: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016a6c: 7f ff e3 8d call 200f8a0 <sparc_enable_interrupts> 2016a70: 01 00 00 00 nop
/* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data );
2016a74: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016a78: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016a7c: 9f c0 40 00 call %g1 2016a80: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
2016a84: 30 bf ff ee b,a 2016a3c <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level );
2016a88: 7f ff e3 86 call 200f8a0 <sparc_enable_interrupts> 2016a8c: 90 10 00 02 mov %g2, %o0 2016a90: 30 bf ff b3 b,a 201695c <_Timer_server_Body+0x44>
* the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false;
2016a94: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/* * Block until there is something to do. */ _Thread_Disable_dispatch();
2016a98: 7f ff ff 70 call 2016858 <_Thread_Disable_dispatch> 2016a9c: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016aa0: d0 06 00 00 ld [ %i0 ], %o0 2016aa4: 40 00 0f 52 call 201a7ec <_Thread_Set_state> 2016aa8: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016aac: 7f ff ff 71 call 2016870 <_Timer_server_Reset_interval_system_watchdog> 2016ab0: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016ab4: 7f ff ff 84 call 20168c4 <_Timer_server_Reset_tod_system_watchdog> 2016ab8: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016abc: 40 00 0c d3 call 2019e08 <_Thread_Enable_dispatch> 2016ac0: 01 00 00 00 nop
ts->active = true;
2016ac4: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ac8: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
2016acc: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ad0: 40 00 11 c6 call 201b1e8 <_Watchdog_Remove> 2016ad4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016ad8: 40 00 11 c4 call 201b1e8 <_Watchdog_Remove> 2016adc: 90 10 00 15 mov %l5, %o0 2016ae0: 30 bf ff 9f b,a 201695c <_Timer_server_Body+0x44>
02016ae4 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) {
2016ae4: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016ae8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016aec: 80 a0 60 00 cmp %g1, 0
2016af0: 12 80 00 49 bne 2016c14 <_Timer_server_Schedule_operation_method+0x130>
2016af4: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch();
2016af8: 7f ff ff 58 call 2016858 <_Thread_Disable_dispatch> 2016afc: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016b00: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016b04: 80 a0 60 01 cmp %g1, 1
2016b08: 12 80 00 1f bne 2016b84 <_Timer_server_Schedule_operation_method+0xa0>
2016b0c: 80 a0 60 03 cmp %g1, 3
/* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
2016b10: 7f ff e3 60 call 200f890 <sparc_disable_interrupts> 2016b14: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016b18: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016b1c: c4 00 61 14 ld [ %g1 + 0x114 ], %g2 ! 203bd14 <_Watchdog_Ticks_since_boot>
initialized = false; } #endif return status; }
2016b20: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = _Watchdog_Ticks_since_boot; last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016b24: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
2016b28: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016b2c: 80 a0 40 03 cmp %g1, %g3
2016b30: 02 80 00 08 be 2016b50 <_Timer_server_Schedule_operation_method+0x6c>
2016b34: 88 20 80 04 sub %g2, %g4, %g4
/* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval;
2016b38: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016b3c: 80 a3 40 04 cmp %o5, %g4
2016b40: 08 80 00 03 bleu 2016b4c <_Timer_server_Schedule_operation_method+0x68>
2016b44: 86 10 20 00 clr %g3
delta_interval -= delta;
2016b48: 86 23 40 04 sub %o5, %g4, %g3
} else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval;
2016b4c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
} ts->Interval_watchdogs.last_snapshot = snapshot;
2016b50: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016b54: 7f ff e3 53 call 200f8a0 <sparc_enable_interrupts> 2016b58: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016b5c: 90 06 20 30 add %i0, 0x30, %o0 2016b60: 40 00 11 46 call 201b078 <_Watchdog_Insert> 2016b64: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b68: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b6c: 80 a0 60 00 cmp %g1, 0
2016b70: 12 80 00 27 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128>
2016b74: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016b78: 7f ff ff 3e call 2016870 <_Timer_server_Reset_interval_system_watchdog> 2016b7c: 90 10 00 18 mov %i0, %o0 2016b80: 30 80 00 23 b,a 2016c0c <_Timer_server_Schedule_operation_method+0x128>
} } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016b84: 12 80 00 22 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128>
2016b88: 01 00 00 00 nop
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
2016b8c: 7f ff e3 41 call 200f890 <sparc_disable_interrupts> 2016b90: 01 00 00 00 nop
initialized = false; } #endif return status; }
2016b94: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016b98: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b9c: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016ba0: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016ba4: 80 a0 80 03 cmp %g2, %g3
2016ba8: 02 80 00 0d be 2016bdc <_Timer_server_Schedule_operation_method+0xf8>
2016bac: c2 00 60 8c ld [ %g1 + 0x8c ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval;
2016bb0: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016bb4: 80 a0 40 0d cmp %g1, %o5
} } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot;
2016bb8: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016bbc: 08 80 00 07 bleu 2016bd8 <_Timer_server_Schedule_operation_method+0xf4>
2016bc0: 86 20 c0 01 sub %g3, %g1, %g3
/* * We advanced in time. */ delta = snapshot - last_snapshot;
2016bc4: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016bc8: 80 a1 00 0d cmp %g4, %o5
2016bcc: 08 80 00 03 bleu 2016bd8 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016bd0: 86 10 20 00 clr %g3
delta_interval -= delta;
2016bd4: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval;
2016bd8: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
} ts->TOD_watchdogs.last_snapshot = snapshot;
2016bdc: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016be0: 7f ff e3 30 call 200f8a0 <sparc_enable_interrupts> 2016be4: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016be8: 90 06 20 68 add %i0, 0x68, %o0 2016bec: 40 00 11 23 call 201b078 <_Watchdog_Insert> 2016bf0: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016bf4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016bf8: 80 a0 60 00 cmp %g1, 0
2016bfc: 12 80 00 04 bne 2016c0c <_Timer_server_Schedule_operation_method+0x128>
2016c00: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016c04: 7f ff ff 30 call 20168c4 <_Timer_server_Reset_tod_system_watchdog> 2016c08: 90 10 00 18 mov %i0, %o0
} } _Thread_Enable_dispatch();
2016c0c: 40 00 0c 7f call 2019e08 <_Thread_Enable_dispatch> 2016c10: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node );
2016c14: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016c18: 40 00 02 14 call 2017468 <_Chain_Append> 2016c1c: 81 e8 00 00 restore
0200b140 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec )
200b140: c6 02 00 00 ld [ %o0 ], %g3 200b144: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) {
200b148: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200b14c: 80 a0 c0 02 cmp %g3, %g2
200b150: 14 80 00 0b bg 200b17c <_Timespec_Greater_than+0x3c>
200b154: 90 10 20 01 mov 1, %o0
return true; if ( lhs->tv_sec < rhs->tv_sec )
200b158: 80 a0 c0 02 cmp %g3, %g2
200b15c: 06 80 00 08 bl 200b17c <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
200b160: 90 10 20 00 clr %o0
#include <rtems/system.h> #include <rtems/score/timespec.h> #include <rtems/score/tod.h> bool _Timespec_Greater_than(
200b164: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b168: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b16c: 80 a0 80 01 cmp %g2, %g1
200b170: 14 80 00 03 bg 200b17c <_Timespec_Greater_than+0x3c>
200b174: 90 10 20 01 mov 1, %o0 200b178: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; }
200b17c: 81 c3 e0 08 retl
020092b0 <_User_extensions_Handler_initialization>: #include <rtems/score/userext.h> #include <rtems/score/wkspace.h> #include <string.h> void _User_extensions_Handler_initialization(void) {
20092b0: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
20092b4: 03 00 80 50 sethi %hi(0x2014000), %g1 20092b8: 82 10 63 e8 or %g1, 0x3e8, %g1 ! 20143e8 <Configuration>
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
20092bc: 05 00 80 54 sethi %hi(0x2015000), %g2
initial_extensions = Configuration.User_extension_table;
20092c0: e6 00 60 40 ld [ %g1 + 0x40 ], %l3
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
20092c4: e4 00 60 3c ld [ %g1 + 0x3c ], %l2 20092c8: 82 10 a1 88 or %g2, 0x188, %g1 20092cc: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
20092d0: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
20092d4: c2 20 60 08 st %g1, [ %g1 + 8 ]
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
20092d8: c6 20 a1 88 st %g3, [ %g2 + 0x188 ] 20092dc: 05 00 80 53 sethi %hi(0x2014c00), %g2 20092e0: 82 10 a3 84 or %g2, 0x384, %g1 ! 2014f84 <_User_extensions_Switches_list> 20092e4: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
20092e8: c0 20 60 04 clr [ %g1 + 4 ]
) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail;
20092ec: c6 20 a3 84 st %g3, [ %g2 + 0x384 ]
initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) {
20092f0: 80 a4 e0 00 cmp %l3, 0
20092f4: 02 80 00 1b be 2009360 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
20092f8: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control )
20092fc: 83 2c a0 02 sll %l2, 2, %g1 2009300: a1 2c a0 04 sll %l2, 4, %l0 2009304: a0 24 00 01 sub %l0, %g1, %l0 2009308: a0 04 00 12 add %l0, %l2, %l0 200930c: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
2009310: 40 00 01 6c call 20098c0 <_Workspace_Allocate_or_fatal_error> 2009314: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
2009318: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
200931c: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
2009320: 92 10 20 00 clr %o1 2009324: 40 00 14 a8 call 200e5c4 <memset> 2009328: a0 10 20 00 clr %l0
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
200932c: 10 80 00 0b b 2009358 <_User_extensions_Handler_initialization+0xa8> 2009330: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table;
2009334: 90 04 60 14 add %l1, 0x14, %o0 2009338: 92 04 c0 09 add %l3, %o1, %o1 200933c: 40 00 14 69 call 200e4e0 <memcpy> 2009340: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
2009344: 90 10 00 11 mov %l1, %o0 2009348: 40 00 0c 2a call 200c3f0 <_User_extensions_Add_set> 200934c: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++;
2009350: a2 04 60 34 add %l1, 0x34, %l1
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009354: 80 a4 00 12 cmp %l0, %l2
2009358: 0a bf ff f7 bcs 2009334 <_User_extensions_Handler_initialization+0x84>
200935c: 93 2c 20 05 sll %l0, 5, %o1 2009360: 81 c7 e0 08 ret 2009364: 81 e8 00 00 restore
020093ac <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) {
20093ac: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } }
20093b0: 23 00 80 54 sethi %hi(0x2015000), %l1 20093b4: a2 14 61 88 or %l1, 0x188, %l1 ! 2015188 <_User_extensions_List>
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List );
20093b8: 10 80 00 08 b 20093d8 <_User_extensions_Thread_exitted+0x2c> 20093bc: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL )
20093c0: 80 a0 60 00 cmp %g1, 0
20093c4: 22 80 00 05 be,a 20093d8 <_User_extensions_Thread_exitted+0x2c>
20093c8: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
20093cc: 9f c0 40 00 call %g1 20093d0: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
20093d4: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List );
20093d8: 80 a4 00 11 cmp %l0, %l1
20093dc: 32 bf ff f9 bne,a 20093c0 <_User_extensions_Thread_exitted+0x14>
20093e0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } }
20093e4: 81 c7 e0 08 ret 20093e8: 81 e8 00 00 restore
0200b584 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) {
200b584: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; _ISR_Disable( level );
200b588: 7f ff df 19 call 20031ec <sparc_disable_interrupts> 200b58c: a0 10 00 18 mov %i0, %l0
} } _ISR_Enable( level ); }
200b590: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
200b594: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) {
200b598: 80 a0 40 11 cmp %g1, %l1
200b59c: 02 80 00 1f be 200b618 <_Watchdog_Adjust+0x94>
200b5a0: 80 a6 60 00 cmp %i1, 0
switch ( direction ) { 200b5a4: 02 80 00 1a be 200b60c <_Watchdog_Adjust+0x88>
200b5a8: a4 10 20 01 mov 1, %l2 200b5ac: 80 a6 60 01 cmp %i1, 1
200b5b0: 12 80 00 1a bne 200b618 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b5b4: 01 00 00 00 nop
case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units;
200b5b8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b5bc: 10 80 00 07 b 200b5d8 <_Watchdog_Adjust+0x54> 200b5c0: b4 00 80 1a add %g2, %i2, %i2
break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) {
200b5c4: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b5c8: 80 a6 80 19 cmp %i2, %i1
200b5cc: 3a 80 00 05 bcc,a 200b5e0 <_Watchdog_Adjust+0x5c>
200b5d0: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b5d4: b4 26 40 1a sub %i1, %i2, %i2
break;
200b5d8: 10 80 00 10 b 200b618 <_Watchdog_Adjust+0x94> 200b5dc: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level );
200b5e0: 7f ff df 07 call 20031fc <sparc_enable_interrupts> 200b5e4: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b5e8: 40 00 00 94 call 200b838 <_Watchdog_Tickle> 200b5ec: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b5f0: 7f ff de ff call 20031ec <sparc_disable_interrupts> 200b5f4: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b5f8: c2 04 00 00 ld [ %l0 ], %g1 200b5fc: 80 a0 40 11 cmp %g1, %l1
200b600: 02 80 00 06 be 200b618 <_Watchdog_Adjust+0x94>
200b604: 01 00 00 00 nop
while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval;
200b608: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
200b60c: 80 a6 a0 00 cmp %i2, 0
200b610: 32 bf ff ed bne,a 200b5c4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b614: c2 04 00 00 ld [ %l0 ], %g1
} break; } } _ISR_Enable( level );
200b618: 7f ff de f9 call 20031fc <sparc_enable_interrupts> 200b61c: 91 e8 00 08 restore %g0, %o0, %o0
020096d4 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) {
20096d4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level );
20096d8: 7f ff e2 ba call 20021c0 <sparc_disable_interrupts> 20096dc: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
20096e0: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
20096e4: 80 a6 20 01 cmp %i0, 1
20096e8: 22 80 00 1d be,a 200975c <_Watchdog_Remove+0x88>
20096ec: c0 24 20 08 clr [ %l0 + 8 ]
20096f0: 0a 80 00 1c bcs 2009760 <_Watchdog_Remove+0x8c>
20096f4: 03 00 80 54 sethi %hi(0x2015000), %g1 20096f8: 80 a6 20 03 cmp %i0, 3
20096fc: 18 80 00 19 bgu 2009760 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009700: 01 00 00 00 nop 2009704: c2 04 00 00 ld [ %l0 ], %g1
break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE;
2009708: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) )
200970c: c4 00 40 00 ld [ %g1 ], %g2 2009710: 80 a0 a0 00 cmp %g2, 0
2009714: 02 80 00 07 be 2009730 <_Watchdog_Remove+0x5c>
2009718: 05 00 80 54 sethi %hi(0x2015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200971c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009720: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 2009724: 84 00 c0 02 add %g3, %g2, %g2 2009728: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200972c: 05 00 80 54 sethi %hi(0x2015000), %g2 2009730: c4 00 a0 b0 ld [ %g2 + 0xb0 ], %g2 ! 20150b0 <_Watchdog_Sync_count> 2009734: 80 a0 a0 00 cmp %g2, 0
2009738: 22 80 00 07 be,a 2009754 <_Watchdog_Remove+0x80>
200973c: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009740: 05 00 80 54 sethi %hi(0x2015000), %g2 2009744: c6 00 a1 d4 ld [ %g2 + 0x1d4 ], %g3 ! 20151d4 <_Per_CPU_Information+0x8> 2009748: 05 00 80 54 sethi %hi(0x2015000), %g2 200974c: c6 20 a0 48 st %g3, [ %g2 + 0x48 ] ! 2015048 <_Watchdog_Sync_level>
{ Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous;
2009750: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
2009754: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009758: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200975c: 03 00 80 54 sethi %hi(0x2015000), %g1 2009760: c2 00 60 b4 ld [ %g1 + 0xb4 ], %g1 ! 20150b4 <_Watchdog_Ticks_since_boot> 2009764: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
2009768: 7f ff e2 9a call 20021d0 <sparc_enable_interrupts> 200976c: 01 00 00 00 nop
return( previous_state ); }
2009770: 81 c7 e0 08 ret 2009774: 81 e8 00 00 restore
0200adb4 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) {
200adb4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Chain_Node *node; _ISR_Disable( level );
200adb8: 7f ff df e4 call 2002d48 <sparc_disable_interrupts> 200adbc: a0 10 00 18 mov %i0, %l0 200adc0: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200adc4: 11 00 80 6d sethi %hi(0x201b400), %o0 200adc8: 94 10 00 19 mov %i1, %o2 200adcc: 90 12 22 30 or %o0, 0x230, %o0 200add0: 7f ff e6 40 call 20046d0 <printk> 200add4: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); }
200add8: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain );
200addc: b2 06 60 04 add %i1, 4, %i1
ISR_Level level; Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) {
200ade0: 80 a4 40 19 cmp %l1, %i1
200ade4: 02 80 00 0e be 200ae1c <_Watchdog_Report_chain+0x68>
200ade8: 11 00 80 6d sethi %hi(0x201b400), %o0
node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch );
200adec: 92 10 00 11 mov %l1, %o1 200adf0: 40 00 00 10 call 200ae30 <_Watchdog_Report> 200adf4: 90 10 20 00 clr %o0
_ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next )
200adf8: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ;
200adfc: 80 a4 40 19 cmp %l1, %i1
200ae00: 12 bf ff fc bne 200adf0 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200ae04: 92 10 00 11 mov %l1, %o1
{ Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name );
200ae08: 11 00 80 6d sethi %hi(0x201b400), %o0 200ae0c: 92 10 00 10 mov %l0, %o1 200ae10: 7f ff e6 30 call 20046d0 <printk> 200ae14: 90 12 22 48 or %o0, 0x248, %o0 200ae18: 30 80 00 03 b,a 200ae24 <_Watchdog_Report_chain+0x70>
} else { printk( "Chain is empty\n" );
200ae1c: 7f ff e6 2d call 20046d0 <printk> 200ae20: 90 12 22 58 or %o0, 0x258, %o0
} _ISR_Enable( level );
200ae24: 7f ff df cd call 2002d58 <sparc_enable_interrupts> 200ae28: 81 e8 00 00 restore
02006df8 <rtems_chain_append_with_notification>: rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) {
2006df8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node );
2006dfc: 90 10 00 18 mov %i0, %o0 2006e00: 40 00 01 4a call 2007328 <_Chain_Append_with_empty_check> 2006e04: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) {
2006e08: 80 8a 20 ff btst 0xff, %o0
2006e0c: 02 80 00 05 be 2006e20 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
2006e10: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006e14: b0 10 00 1a mov %i2, %i0 2006e18: 7f ff fd 75 call 20063ec <rtems_event_send> 2006e1c: 93 e8 00 1b restore %g0, %i3, %o1
} return sc; }
2006e20: 81 c7 e0 08 ret 2006e24: 91 e8 20 00 restore %g0, 0, %o0
02006e58 <rtems_chain_get_with_wait>: rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) {
2006e58: 9d e3 bf 98 save %sp, -104, %sp 2006e5c: a0 10 00 18 mov %i0, %l0
while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive(
2006e60: 10 80 00 09 b 2006e84 <rtems_chain_get_with_wait+0x2c> 2006e64: a4 07 bf fc add %fp, -4, %l2 2006e68: 92 10 20 00 clr %o1 2006e6c: 94 10 00 1a mov %i2, %o2 2006e70: 7f ff fc fb call 200625c <rtems_event_receive> 2006e74: 96 10 00 12 mov %l2, %o3
) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while (
2006e78: 80 a2 20 00 cmp %o0, 0
2006e7c: 32 80 00 09 bne,a 2006ea0 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
2006e80: e2 26 c0 00 st %l1, [ %i3 ]
*/ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain );
2006e84: 40 00 01 65 call 2007418 <_Chain_Get> 2006e88: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL
2006e8c: a2 92 20 00 orcc %o0, 0, %l1
2006e90: 02 bf ff f6 be 2006e68 <rtems_chain_get_with_wait+0x10>
2006e94: 90 10 00 19 mov %i1, %o0 2006e98: 90 10 20 00 clr %o0
timeout, &out ); } *node_ptr = node;
2006e9c: e2 26 c0 00 st %l1, [ %i3 ]
return sc; }
2006ea0: 81 c7 e0 08 ret 2006ea4: 91 e8 00 08 restore %g0, %o0, %o0
02006ea8 <rtems_chain_prepend_with_notification>: rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) {
2006ea8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node );
2006eac: 90 10 00 18 mov %i0, %o0 2006eb0: 40 00 01 74 call 2007480 <_Chain_Prepend_with_empty_check> 2006eb4: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) {
2006eb8: 80 8a 20 ff btst 0xff, %o0
2006ebc: 02 80 00 05 be 2006ed0 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
2006ec0: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006ec4: b0 10 00 1a mov %i2, %i0 2006ec8: 7f ff fd 49 call 20063ec <rtems_event_send> 2006ecc: 93 e8 00 1b restore %g0, %i3, %o1
} return sc; }
2006ed0: 81 c7 e0 08 ret <== NOT EXECUTED 2006ed4: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02009124 <rtems_iterate_over_all_threads>: #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) {
2009124: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine )
2009128: 80 a6 20 00 cmp %i0, 0
200912c: 02 80 00 1d be 20091a0 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
2009130: 21 00 80 96 sethi %hi(0x2025800), %l0 2009134: a0 14 21 fc or %l0, 0x1fc, %l0 ! 20259fc <_Objects_Information_table+0x4>
#endif #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009138: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] )
200913c: c2 04 00 00 ld [ %l0 ], %g1 2009140: 80 a0 60 00 cmp %g1, 0
2009144: 22 80 00 14 be,a 2009194 <rtems_iterate_over_all_threads+0x70>
2009148: a0 04 20 04 add %l0, 4, %l0
continue; #endif information = _Objects_Information_table[ api_index ][ 1 ];
200914c: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
2009150: 80 a4 a0 00 cmp %l2, 0
2009154: 12 80 00 0b bne 2009180 <rtems_iterate_over_all_threads+0x5c>
2009158: a2 10 20 01 mov 1, %l1
continue; for ( i=1 ; i <= information->maximum ; i++ ) {
200915c: 10 80 00 0e b 2009194 <rtems_iterate_over_all_threads+0x70> 2009160: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
2009164: 83 2c 60 02 sll %l1, 2, %g1 2009168: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
200916c: 80 a2 20 00 cmp %o0, 0
2009170: 02 80 00 04 be 2009180 <rtems_iterate_over_all_threads+0x5c>
2009174: a2 04 60 01 inc %l1
continue; (*routine)(the_thread);
2009178: 9f c6 00 00 call %i0 200917c: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) {
2009180: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 2009184: 80 a4 40 01 cmp %l1, %g1
2009188: 28 bf ff f7 bleu,a 2009164 <rtems_iterate_over_all_threads+0x40>
200918c: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 2009190: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009194: 80 a4 00 13 cmp %l0, %l3
2009198: 32 bf ff ea bne,a 2009140 <rtems_iterate_over_all_threads+0x1c>
200919c: c2 04 00 00 ld [ %l0 ], %g1 20091a0: 81 c7 e0 08 ret 20091a4: 81 e8 00 00 restore
020142cc <rtems_partition_create>: uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) {
20142cc: 9d e3 bf a0 save %sp, -96, %sp 20142d0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) )
20142d4: 80 a4 20 00 cmp %l0, 0
20142d8: 02 80 00 1f be 2014354 <rtems_partition_create+0x88>
20142dc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME; if ( !starting_address )
20142e0: 80 a6 60 00 cmp %i1, 0
20142e4: 02 80 00 1c be 2014354 <rtems_partition_create+0x88>
20142e8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !id )
20142ec: 80 a7 60 00 cmp %i5, 0
20142f0: 02 80 00 19 be 2014354 <rtems_partition_create+0x88> <== NEVER TAKEN
20142f4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20142f8: 02 80 00 32 be 20143c0 <rtems_partition_create+0xf4>
20142fc: 80 a6 a0 00 cmp %i2, 0
2014300: 02 80 00 30 be 20143c0 <rtems_partition_create+0xf4>
2014304: 80 a6 80 1b cmp %i2, %i3
2014308: 0a 80 00 13 bcs 2014354 <rtems_partition_create+0x88>
201430c: b0 10 20 08 mov 8, %i0 2014310: 80 8e e0 07 btst 7, %i3
2014314: 12 80 00 10 bne 2014354 <rtems_partition_create+0x88>
2014318: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 201431c: 12 80 00 0e bne 2014354 <rtems_partition_create+0x88>
2014320: b0 10 20 09 mov 9, %i0 2014324: 03 00 80 ee sethi %hi(0x203b800), %g1 2014328: c4 00 63 e0 ld [ %g1 + 0x3e0 ], %g2 ! 203bbe0 <_Thread_Dispatch_disable_level> 201432c: 84 00 a0 01 inc %g2 2014330: c4 20 63 e0 st %g2, [ %g1 + 0x3e0 ]
* This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014334: 25 00 80 ee sethi %hi(0x203b800), %l2 2014338: 40 00 12 44 call 2018c48 <_Objects_Allocate> 201433c: 90 14 a1 f4 or %l2, 0x1f4, %o0 ! 203b9f4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) {
2014340: a2 92 20 00 orcc %o0, 0, %l1
2014344: 12 80 00 06 bne 201435c <rtems_partition_create+0x90>
2014348: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
201434c: 40 00 16 af call 2019e08 <_Thread_Enable_dispatch> 2014350: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
2014354: 81 c7 e0 08 ret 2014358: 81 e8 00 00 restore
_Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address;
201435c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
2014360: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014364: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
2014368: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
201436c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size );
2014370: 40 00 5e b8 call 202be50 <.udiv> 2014374: 90 10 00 1a mov %i2, %o0
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
2014378: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
201437c: 94 10 00 08 mov %o0, %o2
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
2014380: 96 10 00 1b mov %i3, %o3 2014384: a6 04 60 24 add %l1, 0x24, %l3 2014388: 40 00 0c 5d call 20174fc <_Chain_Initialize> 201438c: 90 10 00 13 mov %l3, %o0
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
2014390: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
2014394: a4 14 a1 f4 or %l2, 0x1f4, %l2
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
2014398: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
201439c: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
20143a0: 85 28 a0 02 sll %g2, 2, %g2 20143a4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
20143a8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id;
20143ac: c2 27 40 00 st %g1, [ %i5 ]
name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch();
20143b0: 40 00 16 96 call 2019e08 <_Thread_Enable_dispatch> 20143b4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20143b8: 81 c7 e0 08 ret 20143bc: 81 e8 00 00 restore
if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE;
20143c0: b0 10 20 08 mov 8, %i0
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
20143c4: 81 c7 e0 08 ret 20143c8: 81 e8 00 00 restore
020073b0 <rtems_rate_monotonic_period>: rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) {
20073b0: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location );
20073b4: 11 00 80 74 sethi %hi(0x201d000), %o0 20073b8: 92 10 00 18 mov %i0, %o1 20073bc: 90 12 23 04 or %o0, 0x304, %o0 20073c0: 40 00 08 e9 call 2009764 <_Objects_Get> 20073c4: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
20073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20073cc: 80 a0 60 00 cmp %g1, 0
20073d0: 12 80 00 66 bne 2007568 <rtems_rate_monotonic_period+0x1b8>
20073d4: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
20073d8: 25 00 80 75 sethi %hi(0x201d400), %l2
case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) {
20073dc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 20073e0: a4 14 a2 bc or %l2, 0x2bc, %l2 20073e4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 20073e8: 80 a0 80 01 cmp %g2, %g1
20073ec: 02 80 00 06 be 2007404 <rtems_rate_monotonic_period+0x54>
20073f0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20073f4: 40 00 0b fb call 200a3e0 <_Thread_Enable_dispatch> 20073f8: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
20073fc: 81 c7 e0 08 ret 2007400: 81 e8 00 00 restore
} if ( length == RTEMS_PERIOD_STATUS ) { 2007404: 12 80 00 0e bne 200743c <rtems_rate_monotonic_period+0x8c>
2007408: 01 00 00 00 nop
switch ( the_period->state ) {
200740c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007410: 80 a0 60 04 cmp %g1, 4
2007414: 18 80 00 06 bgu 200742c <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
2007418: b0 10 20 00 clr %i0 200741c: 83 28 60 02 sll %g1, 2, %g1 2007420: 05 00 80 6c sethi %hi(0x201b000), %g2 2007424: 84 10 a3 64 or %g2, 0x364, %g2 ! 201b364 <CSWTCH.2> 2007428: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch();
200742c: 40 00 0b ed call 200a3e0 <_Thread_Enable_dispatch> 2007430: 01 00 00 00 nop
return( return_value );
2007434: 81 c7 e0 08 ret 2007438: 81 e8 00 00 restore
} _ISR_Disable( level );
200743c: 7f ff ef 26 call 20030d4 <sparc_disable_interrupts> 2007440: 01 00 00 00 nop 2007444: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007448: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 200744c: 80 a4 60 00 cmp %l1, 0
2007450: 12 80 00 15 bne 20074a4 <rtems_rate_monotonic_period+0xf4>
2007454: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
2007458: 7f ff ef 23 call 20030e4 <sparc_enable_interrupts> 200745c: 01 00 00 00 nop
/* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period );
2007460: 7f ff ff 7a call 2007248 <_Rate_monotonic_Initiate_statistics> 2007464: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007468: 82 10 20 02 mov 2, %g1 200746c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
2007470: 03 00 80 1e sethi %hi(0x2007800), %g1 2007474: 82 10 60 38 or %g1, 0x38, %g1 ! 2007838 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
2007478: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
200747c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
2007480: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
2007484: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length;
2007488: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
200748c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007490: 11 00 80 75 sethi %hi(0x201d400), %o0 2007494: 92 04 20 10 add %l0, 0x10, %o1 2007498: 40 00 10 0b call 200b4c4 <_Watchdog_Insert> 200749c: 90 12 21 54 or %o0, 0x154, %o0 20074a0: 30 80 00 1b b,a 200750c <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20074a4: 12 80 00 1e bne 200751c <rtems_rate_monotonic_period+0x16c>
20074a8: 80 a4 60 04 cmp %l1, 4
/* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period );
20074ac: 7f ff ff 83 call 20072b8 <_Rate_monotonic_Update_statistics> 20074b0: 90 10 00 10 mov %l0, %o0
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074b4: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20074b8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length; _ISR_Enable( level );
20074c0: 7f ff ef 09 call 20030e4 <sparc_enable_interrupts> 20074c4: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20074c8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 20074cc: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20074d0: 13 00 00 10 sethi %hi(0x4000), %o1 20074d4: 40 00 0e 06 call 200acec <_Thread_Set_state> 20074d8: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level );
20074dc: 7f ff ee fe call 20030d4 <sparc_disable_interrupts> 20074e0: 01 00 00 00 nop
local_state = the_period->state;
20074e4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
20074e8: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
20074ec: 7f ff ee fe call 20030e4 <sparc_enable_interrupts> 20074f0: 01 00 00 00 nop
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20074f4: 80 a4 e0 03 cmp %l3, 3
20074f8: 12 80 00 05 bne 200750c <rtems_rate_monotonic_period+0x15c>
20074fc: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007500: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007504: 40 00 0a d1 call 200a048 <_Thread_Clear_state> 2007508: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
200750c: 40 00 0b b5 call 200a3e0 <_Thread_Enable_dispatch> 2007510: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007514: 81 c7 e0 08 ret 2007518: 81 e8 00 00 restore
} if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
200751c: 12 bf ff b8 bne 20073fc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2007520: b0 10 20 04 mov 4, %i0
/* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period );
2007524: 7f ff ff 65 call 20072b8 <_Rate_monotonic_Update_statistics> 2007528: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
200752c: 7f ff ee ee call 20030e4 <sparc_enable_interrupts> 2007530: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007534: 82 10 20 02 mov 2, %g1 2007538: 92 04 20 10 add %l0, 0x10, %o1 200753c: 11 00 80 75 sethi %hi(0x201d400), %o0 2007540: 90 12 21 54 or %o0, 0x154, %o0 ! 201d554 <_Watchdog_Ticks_chain> 2007544: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
2007548: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
200754c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007550: 40 00 0f dd call 200b4c4 <_Watchdog_Insert> 2007554: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
2007558: 40 00 0b a2 call 200a3e0 <_Thread_Enable_dispatch> 200755c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007560: 81 c7 e0 08 ret 2007564: 81 e8 00 00 restore
#endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID;
2007568: b0 10 20 04 mov 4, %i0
}
200756c: 81 c7 e0 08 ret 2007570: 81 e8 00 00 restore
02007574 <rtems_rate_monotonic_report_statistics_with_plugin>: */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) {
2007574: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print )
2007578: 80 a6 60 00 cmp %i1, 0
200757c: 02 80 00 79 be 2007760 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
2007580: 90 10 00 18 mov %i0, %o0
return; (*print)( context, "Period information by period\n" );
2007584: 13 00 80 6c sethi %hi(0x201b000), %o1 2007588: 9f c6 40 00 call %i1 200758c: 92 12 63 78 or %o1, 0x378, %o1 ! 201b378 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" );
2007590: 90 10 00 18 mov %i0, %o0 2007594: 13 00 80 6c sethi %hi(0x201b000), %o1 2007598: 9f c6 40 00 call %i1 200759c: 92 12 63 98 or %o1, 0x398, %o1 ! 201b398 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20075a0: 90 10 00 18 mov %i0, %o0 20075a4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075a8: 9f c6 40 00 call %i1 20075ac: 92 12 63 c0 or %o1, 0x3c0, %o1 ! 201b3c0 <CSWTCH.2+0x5c>
Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED "
20075b0: 90 10 00 18 mov %i0, %o0 20075b4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075b8: 9f c6 40 00 call %i1 20075bc: 92 12 63 e8 or %o1, 0x3e8, %o1 ! 201b3e8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " "
20075c0: 90 10 00 18 mov %i0, %o0 20075c4: 13 00 80 6d sethi %hi(0x201b400), %o1 20075c8: 9f c6 40 00 call %i1 20075cc: 92 12 60 38 or %o1, 0x38, %o1 ! 201b438 <CSWTCH.2+0xd4>
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075d0: 3b 00 80 74 sethi %hi(0x201d000), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context,
20075d4: 2b 00 80 6d sethi %hi(0x201b400), %l5
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075d8: 82 17 63 04 or %i5, 0x304, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context,
20075dc: 27 00 80 6d sethi %hi(0x201b400), %l3
struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context,
20075e0: 35 00 80 6d sethi %hi(0x201b400), %i2
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075e4: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20075e8: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status );
20075ec: ac 07 bf d8 add %fp, -40, %l6
#endif rtems_object_get_name( the_status.owner, sizeof(name), name );
20075f0: a4 07 bf f8 add %fp, -8, %l2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
20075f4: aa 15 60 88 or %l5, 0x88, %l5
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time;
20075f8: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20075fc: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
2007600: a6 14 e0 a0 or %l3, 0xa0, %l3
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time;
2007604: b8 07 bf d0 add %fp, -48, %i4
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
2007608: 10 80 00 52 b 2007750 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc> 200760c: b4 16 a0 c0 or %i2, 0xc0, %i2
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007610: 40 00 17 f3 call 200d5dc <rtems_rate_monotonic_get_statistics> 2007614: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
2007618: 80 a2 20 00 cmp %o0, 0
200761c: 32 80 00 4c bne,a 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007620: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status );
2007624: 92 10 00 16 mov %l6, %o1 2007628: 40 00 18 1a call 200d690 <rtems_rate_monotonic_get_status> 200762c: 90 10 00 10 mov %l0, %o0
#endif rtems_object_get_name( the_status.owner, sizeof(name), name );
2007630: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007634: 92 10 20 05 mov 5, %o1 2007638: 40 00 00 ae call 20078f0 <rtems_object_get_name> 200763c: 94 10 00 12 mov %l2, %o2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
2007640: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007644: 92 10 00 15 mov %l5, %o1 2007648: 90 10 00 18 mov %i0, %o0 200764c: 94 10 00 10 mov %l0, %o2 2007650: 9f c6 40 00 call %i1 2007654: 96 10 00 12 mov %l2, %o3
); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) {
2007658: d2 07 bf a0 ld [ %fp + -96 ], %o1 200765c: 80 a2 60 00 cmp %o1, 0
2007660: 12 80 00 08 bne 2007680 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
2007664: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
2007668: 90 10 00 18 mov %i0, %o0 200766c: 13 00 80 69 sethi %hi(0x201a400), %o1 2007670: 9f c6 40 00 call %i1 2007674: 92 12 62 88 or %o1, 0x288, %o1 ! 201a688 <_rodata_start+0x158>
continue;
2007678: 10 80 00 35 b 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8> 200767c: a0 04 20 01 inc %l0
struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007680: 40 00 0e 6e call 200b038 <_Timespec_Divide_by_integer> 2007684: 90 10 00 14 mov %l4, %o0
(*print)( context,
2007688: d0 07 bf ac ld [ %fp + -84 ], %o0 200768c: 40 00 44 1f call 2018708 <.div> 2007690: 92 10 23 e8 mov 0x3e8, %o1 2007694: 96 10 00 08 mov %o0, %o3 2007698: d0 07 bf b4 ld [ %fp + -76 ], %o0 200769c: d6 27 bf 9c st %o3, [ %fp + -100 ] 20076a0: 40 00 44 1a call 2018708 <.div> 20076a4: 92 10 23 e8 mov 0x3e8, %o1 20076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20076ac: b6 10 00 08 mov %o0, %i3 20076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20076b8: 40 00 44 14 call 2018708 <.div> 20076bc: 92 10 23 e8 mov 0x3e8, %o1 20076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4 20076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3 20076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2 20076cc: 9a 10 00 1b mov %i3, %o5 20076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20076d4: 92 10 00 13 mov %l3, %o1 20076d8: 9f c6 40 00 call %i1 20076dc: 90 10 00 18 mov %i0, %o0
struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20076e4: 94 10 00 11 mov %l1, %o2 20076e8: 40 00 0e 54 call 200b038 <_Timespec_Divide_by_integer> 20076ec: 90 10 00 1c mov %i4, %o0
(*print)( context,
20076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0 20076f4: 40 00 44 05 call 2018708 <.div> 20076f8: 92 10 23 e8 mov 0x3e8, %o1 20076fc: 96 10 00 08 mov %o0, %o3 2007700: d0 07 bf cc ld [ %fp + -52 ], %o0 2007704: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007708: 40 00 44 00 call 2018708 <.div> 200770c: 92 10 23 e8 mov 0x3e8, %o1 2007710: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007714: b6 10 00 08 mov %o0, %i3 2007718: d0 07 bf f4 ld [ %fp + -12 ], %o0 200771c: 92 10 23 e8 mov 0x3e8, %o1 2007720: 40 00 43 fa call 2018708 <.div> 2007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007728: d4 07 bf c0 ld [ %fp + -64 ], %o2 200772c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007730: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007738: 92 10 00 1a mov %i2, %o1 200773c: 90 10 00 18 mov %i0, %o0 2007740: 9f c6 40 00 call %i1 2007744: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) {
2007748: a0 04 20 01 inc %l0
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ;
200774c: 82 17 63 04 or %i5, 0x304, %g1
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
2007750: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2007754: 80 a4 00 01 cmp %l0, %g1
2007758: 08 bf ff ae bleu 2007610 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
200775c: 90 10 00 10 mov %l0, %o0 2007760: 81 c7 e0 08 ret 2007764: 81 e8 00 00 restore
02015870 <rtems_signal_send>: rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) {
2015870: 9d e3 bf 98 save %sp, -104, %sp 2015874: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set )
2015878: 80 a6 60 00 cmp %i1, 0
201587c: 02 80 00 2e be 2015934 <rtems_signal_send+0xc4>
2015880: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
2015884: 40 00 11 6e call 2019e3c <_Thread_Get> 2015888: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201588c: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
2015890: a2 10 00 08 mov %o0, %l1
switch ( location ) {
2015894: 80 a0 60 00 cmp %g1, 0
2015898: 12 80 00 27 bne 2015934 <rtems_signal_send+0xc4>
201589c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20158a0: e0 02 21 58 ld [ %o0 + 0x158 ], %l0
asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20158a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20158a8: 80 a0 60 00 cmp %g1, 0
20158ac: 02 80 00 24 be 201593c <rtems_signal_send+0xcc>
20158b0: 01 00 00 00 nop
if ( asr->is_enabled ) {
20158b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20158b8: 80 a0 60 00 cmp %g1, 0
20158bc: 02 80 00 15 be 2015910 <rtems_signal_send+0xa0>
20158c0: 01 00 00 00 nop
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
20158c4: 7f ff e7 f3 call 200f890 <sparc_disable_interrupts> 20158c8: 01 00 00 00 nop
*signal_set |= signals;
20158cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20158d0: b2 10 40 19 or %g1, %i1, %i1 20158d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
20158d8: 7f ff e7 f2 call 200f8a0 <sparc_enable_interrupts> 20158dc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20158e0: 03 00 80 ef sethi %hi(0x203bc00), %g1 20158e4: 82 10 62 34 or %g1, 0x234, %g1 ! 203be34 <_Per_CPU_Information> 20158e8: c4 00 60 08 ld [ %g1 + 8 ], %g2 20158ec: 80 a0 a0 00 cmp %g2, 0
20158f0: 02 80 00 0f be 201592c <rtems_signal_send+0xbc>
20158f4: 01 00 00 00 nop 20158f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20158fc: 80 a4 40 02 cmp %l1, %g2
2015900: 12 80 00 0b bne 201592c <rtems_signal_send+0xbc> <== NEVER TAKEN
2015904: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015908: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 201590c: 30 80 00 08 b,a 201592c <rtems_signal_send+0xbc>
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
2015910: 7f ff e7 e0 call 200f890 <sparc_disable_interrupts> 2015914: 01 00 00 00 nop
*signal_set |= signals;
2015918: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 201591c: b2 10 40 19 or %g1, %i1, %i1 2015920: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
2015924: 7f ff e7 df call 200f8a0 <sparc_enable_interrupts> 2015928: 01 00 00 00 nop
} else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch();
201592c: 40 00 11 37 call 2019e08 <_Thread_Enable_dispatch> 2015930: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
2015934: 81 c7 e0 08 ret 2015938: 81 e8 00 00 restore
} _Thread_Enable_dispatch();
201593c: 40 00 11 33 call 2019e08 <_Thread_Enable_dispatch> 2015940: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2015944: 81 c7 e0 08 ret 2015948: 81 e8 00 00 restore
0200d634 <rtems_task_mode>: rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) {
200d634: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set )
200d638: 80 a6 a0 00 cmp %i2, 0
200d63c: 02 80 00 5a be 200d7a4 <rtems_task_mode+0x170>
200d640: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing;
200d644: 03 00 80 54 sethi %hi(0x2015000), %g1 200d648: e2 00 61 d8 ld [ %g1 + 0x1d8 ], %l1 ! 20151d8 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d64c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d650: e0 04 61 58 ld [ %l1 + 0x158 ], %l0
asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d654: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d658: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d65c: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d660: 80 a0 60 00 cmp %g1, 0
200d664: 02 80 00 03 be 200d670 <rtems_task_mode+0x3c>
200d668: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE;
200d66c: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d670: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d674: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d678: 7f ff f1 e4 call 2009e08 <_CPU_ISR_Get_level> 200d67c: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d680: a7 2c e0 0a sll %l3, 0xa, %l3 200d684: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d688: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK )
200d68c: 80 8e 61 00 btst 0x100, %i1
200d690: 02 80 00 06 be 200d6a8 <rtems_task_mode+0x74>
200d694: e4 26 80 00 st %l2, [ %i2 ]
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d698: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d69c: 80 a0 00 01 cmp %g0, %g1 200d6a0: 82 60 3f ff subx %g0, -1, %g1 200d6a4: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d6a8: 80 8e 62 00 btst 0x200, %i1
200d6ac: 02 80 00 0b be 200d6d8 <rtems_task_mode+0xa4>
200d6b0: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d6b4: 80 8e 22 00 btst 0x200, %i0
200d6b8: 22 80 00 07 be,a 200d6d4 <rtems_task_mode+0xa0>
200d6bc: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d6c0: 82 10 20 01 mov 1, %g1 200d6c4: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d6c8: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d6cc: c2 00 62 e4 ld [ %g1 + 0x2e4 ], %g1 ! 2014ee4 <_Thread_Ticks_per_timeslice> 200d6d0: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
} /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK )
200d6d4: 80 8e 60 0f btst 0xf, %i1
200d6d8: 02 80 00 06 be 200d6f0 <rtems_task_mode+0xbc>
200d6dc: 80 8e 64 00 btst 0x400, %i1
*/ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK );
200d6e0: 90 0e 20 0f and %i0, 0xf, %o0
*/ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d6e4: 7f ff d2 bb call 20021d0 <sparc_enable_interrupts> 200d6e8: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) {
200d6ec: 80 8e 64 00 btst 0x400, %i1
200d6f0: 02 80 00 14 be 200d740 <rtems_task_mode+0x10c>
200d6f4: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
200d6f8: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d6fc: b0 0e 24 00 and %i0, 0x400, %i0
* Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode(
200d700: 80 a0 00 18 cmp %g0, %i0 200d704: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
200d708: 80 a0 40 02 cmp %g1, %g2
200d70c: 22 80 00 0e be,a 200d744 <rtems_task_mode+0x110>
200d710: 03 00 80 54 sethi %hi(0x2015000), %g1
) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level );
200d714: 7f ff d2 ab call 20021c0 <sparc_disable_interrupts> 200d718: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d71c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d720: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d724: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted;
200d728: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals; _ISR_Enable( _level );
200d72c: 7f ff d2 a9 call 20021d0 <sparc_enable_interrupts> 200d730: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) {
200d734: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false;
200d738: 80 a0 00 01 cmp %g0, %g1 200d73c: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) {
200d740: 03 00 80 54 sethi %hi(0x2015000), %g1 200d744: c4 00 60 fc ld [ %g1 + 0xfc ], %g2 ! 20150fc <_System_state_Current> 200d748: 80 a0 a0 03 cmp %g2, 3
200d74c: 12 80 00 16 bne 200d7a4 <rtems_task_mode+0x170> <== NEVER TAKEN
200d750: 82 10 20 00 clr %g1
bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing;
200d754: 07 00 80 54 sethi %hi(0x2015000), %g3
if ( are_signals_pending ||
200d758: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing;
200d75c: 86 10 e1 cc or %g3, 0x1cc, %g3
if ( are_signals_pending || 200d760: 12 80 00 0a bne 200d788 <rtems_task_mode+0x154>
200d764: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d768: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d76c: 80 a0 80 03 cmp %g2, %g3
200d770: 02 80 00 0d be 200d7a4 <rtems_task_mode+0x170>
200d774: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d778: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d77c: 80 a0 a0 00 cmp %g2, 0
200d780: 02 80 00 09 be 200d7a4 <rtems_task_mode+0x170> <== NEVER TAKEN
200d784: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d788: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 200d78c: 03 00 80 54 sethi %hi(0x2015000), %g1 200d790: 82 10 61 cc or %g1, 0x1cc, %g1 ! 20151cc <_Per_CPU_Information> 200d794: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch();
200d798: 7f ff eb 5f call 2008514 <_Thread_Dispatch> 200d79c: 01 00 00 00 nop
} return RTEMS_SUCCESSFUL;
200d7a0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d7a4: 81 c7 e0 08 ret 200d7a8: 91 e8 00 01 restore %g0, %g1, %o0
0200abc0 <rtems_task_set_priority>: rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) {
200abc0: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200abc4: 80 a6 60 00 cmp %i1, 0
200abc8: 02 80 00 07 be 200abe4 <rtems_task_set_priority+0x24>
200abcc: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200abd0: 03 00 80 62 sethi %hi(0x2018800), %g1 200abd4: c2 08 63 74 ldub [ %g1 + 0x374 ], %g1 ! 2018b74 <rtems_maximum_priority> 200abd8: 80 a6 40 01 cmp %i1, %g1
200abdc: 18 80 00 1c bgu 200ac4c <rtems_task_set_priority+0x8c>
200abe0: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority )
200abe4: 80 a6 a0 00 cmp %i2, 0
200abe8: 02 80 00 19 be 200ac4c <rtems_task_set_priority+0x8c>
200abec: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location );
200abf0: 40 00 08 d0 call 200cf30 <_Thread_Get> 200abf4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200abf8: c2 07 bf fc ld [ %fp + -4 ], %g1 200abfc: 80 a0 60 00 cmp %g1, 0
200ac00: 12 80 00 13 bne 200ac4c <rtems_task_set_priority+0x8c>
200ac04: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority;
200ac08: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200ac0c: 80 a6 60 00 cmp %i1, 0
200ac10: 02 80 00 0d be 200ac44 <rtems_task_set_priority+0x84>
200ac14: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 ||
200ac18: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200ac1c: 80 a0 60 00 cmp %g1, 0
200ac20: 02 80 00 06 be 200ac38 <rtems_task_set_priority+0x78>
200ac24: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200ac28: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200ac2c: 80 a0 40 19 cmp %g1, %i1
200ac30: 08 80 00 05 bleu 200ac44 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200ac34: 01 00 00 00 nop
the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false );
200ac38: 92 10 00 19 mov %i1, %o1 200ac3c: 40 00 07 69 call 200c9e0 <_Thread_Change_priority> 200ac40: 94 10 20 00 clr %o2
} _Thread_Enable_dispatch();
200ac44: 40 00 08 ae call 200cefc <_Thread_Enable_dispatch> 200ac48: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200ac4c: 81 c7 e0 08 ret 200ac50: 81 e8 00 00 restore
02016280 <rtems_timer_cancel>: */ rtems_status_code rtems_timer_cancel( rtems_id id ) {
2016280: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location );
2016284: 11 00 80 ef sethi %hi(0x203bc00), %o0 2016288: 92 10 00 18 mov %i0, %o1 201628c: 90 12 22 c4 or %o0, 0x2c4, %o0 2016290: 40 00 0b bf call 201918c <_Objects_Get> 2016294: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) {
2016298: c2 07 bf fc ld [ %fp + -4 ], %g1 201629c: 80 a0 60 00 cmp %g1, 0
20162a0: 12 80 00 0c bne 20162d0 <rtems_timer_cancel+0x50>
20162a4: 01 00 00 00 nop
case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
20162a8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20162ac: 80 a0 60 04 cmp %g1, 4
20162b0: 02 80 00 04 be 20162c0 <rtems_timer_cancel+0x40> <== NEVER TAKEN
20162b4: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
20162b8: 40 00 13 cc call 201b1e8 <_Watchdog_Remove> 20162bc: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
20162c0: 40 00 0e d2 call 2019e08 <_Thread_Enable_dispatch> 20162c4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20162c8: 81 c7 e0 08 ret 20162cc: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
20162d0: 81 c7 e0 08 ret 20162d4: 91 e8 20 04 restore %g0, 4, %o0
02016768 <rtems_timer_server_fire_when>: rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
2016768: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server;
201676c: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016770: e2 00 63 04 ld [ %g1 + 0x304 ], %l1 ! 203bf04 <_Timer_server>
rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
2016774: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server )
2016778: 80 a4 60 00 cmp %l1, 0
201677c: 02 80 00 33 be 2016848 <rtems_timer_server_fire_when+0xe0>
2016780: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set )
2016784: 03 00 80 ee sethi %hi(0x203b800), %g1 2016788: c2 08 63 f0 ldub [ %g1 + 0x3f0 ], %g1 ! 203bbf0 <_TOD_Is_set> 201678c: 80 a0 60 00 cmp %g1, 0
2016790: 02 80 00 2e be 2016848 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
2016794: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED; if ( !routine )
2016798: 80 a6 a0 00 cmp %i2, 0
201679c: 02 80 00 2b be 2016848 <rtems_timer_server_fire_when+0xe0>
20167a0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) )
20167a4: 90 10 00 19 mov %i1, %o0 20167a8: 7f ff f4 06 call 20137c0 <_TOD_Validate> 20167ac: b0 10 20 14 mov 0x14, %i0 20167b0: 80 8a 20 ff btst 0xff, %o0
20167b4: 02 80 00 27 be 2016850 <rtems_timer_server_fire_when+0xe8>
20167b8: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time );
20167bc: 7f ff f3 cd call 20136f0 <_TOD_To_seconds> 20167c0: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20167c4: 27 00 80 ef sethi %hi(0x203bc00), %l3 20167c8: c2 04 e0 8c ld [ %l3 + 0x8c ], %g1 ! 203bc8c <_TOD_Now> 20167cc: 80 a2 00 01 cmp %o0, %g1
20167d0: 08 80 00 1e bleu 2016848 <rtems_timer_server_fire_when+0xe0>
20167d4: a4 10 00 08 mov %o0, %l2 20167d8: 11 00 80 ef sethi %hi(0x203bc00), %o0 20167dc: 92 10 00 10 mov %l0, %o1 20167e0: 90 12 22 c4 or %o0, 0x2c4, %o0 20167e4: 40 00 0a 6a call 201918c <_Objects_Get> 20167e8: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) {
20167ec: c2 07 bf fc ld [ %fp + -4 ], %g1 20167f0: b2 10 00 08 mov %o0, %i1 20167f4: 80 a0 60 00 cmp %g1, 0
20167f8: 12 80 00 14 bne 2016848 <rtems_timer_server_fire_when+0xe0>
20167fc: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker );
2016800: 40 00 12 7a call 201b1e8 <_Watchdog_Remove> 2016804: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2016808: 82 10 20 03 mov 3, %g1 201680c: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016810: c2 04 e0 8c ld [ %l3 + 0x8c ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016814: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016818: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
201681c: c2 04 60 04 ld [ %l1 + 4 ], %g1 2016820: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
2016824: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
2016828: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
201682c: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016830: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016834: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2016838: 9f c0 40 00 call %g1 201683c: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016840: 40 00 0d 72 call 2019e08 <_Thread_Enable_dispatch> 2016844: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2016848: 81 c7 e0 08 ret 201684c: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
2016850: 81 c7 e0 08 ret 2016854: 81 e8 00 00 restore