=============================================================================== 02017524 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 2017524: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017528: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 201752c: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017530: 80 a6 80 01 cmp %i2, %g1 2017534: 18 80 00 16 bgu 201758c <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 2017538: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 201753c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2017540: 80 a0 60 00 cmp %g1, 0 2017544: 02 80 00 0b be 2017570 <_CORE_message_queue_Broadcast+0x4c> 2017548: a2 10 20 00 clr %l1 *count = 0; 201754c: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 2017550: 81 c7 e0 08 ret 2017554: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 2017558: 92 10 00 19 mov %i1, %o1 201755c: 40 00 21 8a call 201fb84 2017560: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 2017564: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 2017568: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 201756c: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 2017570: 40 00 0a 5d call 2019ee4 <_Thread_queue_Dequeue> 2017574: 90 10 00 10 mov %l0, %o0 2017578: a4 92 20 00 orcc %o0, 0, %l2 201757c: 32 bf ff f7 bne,a 2017558 <_CORE_message_queue_Broadcast+0x34> 2017580: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 2017584: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 2017588: b0 10 20 00 clr %i0 } 201758c: 81 c7 e0 08 ret 2017590: 81 e8 00 00 restore =============================================================================== 0200fe08 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fe08: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200fe0c: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200fe10: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200fe14: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fe18: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fe1c: 80 8e e0 03 btst 3, %i3 200fe20: 02 80 00 07 be 200fe3c <_CORE_message_queue_Initialize+0x34> 200fe24: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 200fe28: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fe2c: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 200fe30: 80 a4 80 1b cmp %l2, %i3 200fe34: 0a 80 00 22 bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fe38: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 200fe3c: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 200fe40: 92 10 00 1a mov %i2, %o1 200fe44: 90 10 00 11 mov %l1, %o0 200fe48: 40 00 3d 62 call 201f3d0 <.umul> 200fe4c: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 200fe50: 80 a2 00 12 cmp %o0, %l2 200fe54: 0a 80 00 1a bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fe58: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200fe5c: 40 00 0b af call 2012d18 <_Workspace_Allocate> 200fe60: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200fe64: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200fe68: 80 a2 20 00 cmp %o0, 0 200fe6c: 02 80 00 14 be 200febc <_CORE_message_queue_Initialize+0xb4> 200fe70: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200fe74: 90 04 20 60 add %l0, 0x60, %o0 200fe78: 94 10 00 1a mov %i2, %o2 200fe7c: 40 00 14 00 call 2014e7c <_Chain_Initialize> 200fe80: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200fe84: 82 04 20 54 add %l0, 0x54, %g1 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 200fe88: c2 24 20 50 st %g1, [ %l0 + 0x50 ] the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); 200fe8c: 82 04 20 50 add %l0, 0x50, %g1 the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); 200fe90: c2 24 20 58 st %g1, [ %l0 + 0x58 ] _Thread_queue_Initialize( 200fe94: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 200fe98: c0 24 20 54 clr [ %l0 + 0x54 ] 200fe9c: 82 18 60 01 xor %g1, 1, %g1 200fea0: 80 a0 00 01 cmp %g0, %g1 200fea4: 90 10 00 10 mov %l0, %o0 200fea8: 92 60 3f ff subx %g0, -1, %o1 200feac: 94 10 20 80 mov 0x80, %o2 200feb0: 96 10 20 06 mov 6, %o3 200feb4: 40 00 08 80 call 20120b4 <_Thread_queue_Initialize> 200feb8: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200febc: 81 c7 e0 08 ret 200fec0: 81 e8 00 00 restore =============================================================================== 0200fec4 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fec4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 200fec8: 27 00 80 90 sethi %hi(0x2024000), %l3 200fecc: a6 14 e0 1c or %l3, 0x1c, %l3 ! 202401c <_Per_CPU_Information> 200fed0: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200fed4: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 200fed8: 7f ff de 40 call 20077d8 200fedc: c0 24 a0 34 clr [ %l2 + 0x34 ] 200fee0: 82 10 00 08 mov %o0, %g1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200fee4: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200fee8: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 200feec: 80 a4 40 02 cmp %l1, %g2 200fef0: 02 80 00 15 be 200ff44 <_CORE_message_queue_Seize+0x80> 200fef4: 86 06 20 50 add %i0, 0x50, %g3 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 200fef8: c4 04 40 00 ld [ %l1 ], %g2 the_chain->first = new_first; 200fefc: c4 26 20 50 st %g2, [ %i0 + 0x50 ] the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 200ff00: 80 a4 60 00 cmp %l1, 0 200ff04: 02 80 00 10 be 200ff44 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 200ff08: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 200ff0c: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200ff10: 82 00 7f ff add %g1, -1, %g1 200ff14: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 200ff18: 7f ff de 34 call 20077e8 200ff1c: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 200ff20: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 200ff24: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 200ff28: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 200ff2c: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 200ff30: 90 10 00 1a mov %i2, %o0 200ff34: 40 00 1e 87 call 2017950 200ff38: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 200ff3c: 7f ff ff 83 call 200fd48 <_Chain_Append> 200ff40: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 200ff44: 80 8f 20 ff btst 0xff, %i4 200ff48: 32 80 00 08 bne,a 200ff68 <_CORE_message_queue_Seize+0xa4> 200ff4c: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 200ff50: 7f ff de 26 call 20077e8 200ff54: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 200ff58: 82 10 20 04 mov 4, %g1 200ff5c: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 200ff60: 81 c7 e0 08 ret 200ff64: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 200ff68: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 200ff6c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 200ff70: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 200ff74: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 200ff78: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 200ff7c: 90 10 00 01 mov %g1, %o0 200ff80: 7f ff de 1a call 20077e8 200ff84: 35 00 80 48 sethi %hi(0x2012000), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 200ff88: b2 10 00 1d mov %i5, %i1 200ff8c: 40 00 07 a2 call 2011e14 <_Thread_queue_Enqueue_with_handler> 200ff90: 95 ee a1 94 restore %i2, 0x194, %o2 =============================================================================== 02006c80 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2006c80: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2006c84: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006c88: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 2014e28 <_Thread_Dispatch_disable_level> 2006c8c: 80 a0 60 00 cmp %g1, 0 2006c90: 02 80 00 0d be 2006cc4 <_CORE_mutex_Seize+0x44> 2006c94: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006c98: 80 8e a0 ff btst 0xff, %i2 2006c9c: 02 80 00 0b be 2006cc8 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 2006ca0: 90 10 00 18 mov %i0, %o0 2006ca4: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006ca8: c2 00 63 ac ld [ %g1 + 0x3ac ], %g1 ! 2014fac <_System_state_Current> 2006cac: 80 a0 60 01 cmp %g1, 1 2006cb0: 08 80 00 05 bleu 2006cc4 <_CORE_mutex_Seize+0x44> 2006cb4: 90 10 20 00 clr %o0 2006cb8: 92 10 20 00 clr %o1 2006cbc: 40 00 01 dd call 2007430 <_Internal_error_Occurred> 2006cc0: 94 10 20 12 mov 0x12, %o2 2006cc4: 90 10 00 18 mov %i0, %o0 2006cc8: 40 00 13 1c call 200b938 <_CORE_mutex_Seize_interrupt_trylock> 2006ccc: 92 07 a0 54 add %fp, 0x54, %o1 2006cd0: 80 a2 20 00 cmp %o0, 0 2006cd4: 02 80 00 0a be 2006cfc <_CORE_mutex_Seize+0x7c> 2006cd8: 80 8e a0 ff btst 0xff, %i2 2006cdc: 35 00 80 54 sethi %hi(0x2015000), %i2 2006ce0: 12 80 00 09 bne 2006d04 <_CORE_mutex_Seize+0x84> 2006ce4: b4 16 a0 8c or %i2, 0x8c, %i2 ! 201508c <_Per_CPU_Information> 2006ce8: 7f ff ed 3a call 20021d0 2006cec: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006cf0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006cf4: 84 10 20 01 mov 1, %g2 2006cf8: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006cfc: 81 c7 e0 08 ret 2006d00: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2006d04: 82 10 20 01 mov 1, %g1 2006d08: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006d0c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d10: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006d14: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006d18: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006d1c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2006d20: 84 00 a0 01 inc %g2 2006d24: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2006d28: 7f ff ed 2a call 20021d0 2006d2c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d30: 90 10 00 18 mov %i0, %o0 2006d34: 7f ff ff ba call 2006c1c <_CORE_mutex_Seize_interrupt_blocking> 2006d38: 92 10 00 1b mov %i3, %o1 2006d3c: 81 c7 e0 08 ret 2006d40: 81 e8 00 00 restore =============================================================================== 0200b938 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 200b938: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 200b93c: 03 00 80 54 sethi %hi(0x2015000), %g1 200b940: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 2015098 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200b944: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 200b948: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200b94c: 80 a0 a0 00 cmp %g2, 0 200b950: 02 80 00 2f be 200ba0c <_CORE_mutex_Seize_interrupt_trylock+0xd4> 200b954: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200b958: c4 00 60 08 ld [ %g1 + 8 ], %g2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 200b95c: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200b960: c4 26 20 60 st %g2, [ %i0 + 0x60 ] the_mutex->nest_count = 1; 200b964: 84 10 20 01 mov 1, %g2 200b968: c4 26 20 54 st %g2, [ %i0 + 0x54 ] return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 200b96c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 200b970: 80 a0 a0 02 cmp %g2, 2 200b974: 02 80 00 05 be 200b988 <_CORE_mutex_Seize_interrupt_trylock+0x50> 200b978: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 200b97c: 80 a0 a0 03 cmp %g2, 3 200b980: 12 80 00 07 bne 200b99c <_CORE_mutex_Seize_interrupt_trylock+0x64> 200b984: 01 00 00 00 nop _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200b988: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200b98c: 80 a0 a0 03 cmp %g2, 3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200b990: 88 00 e0 01 add %g3, 1, %g4 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200b994: 02 80 00 03 be 200b9a0 <_CORE_mutex_Seize_interrupt_trylock+0x68> 200b998: c8 20 60 1c st %g4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200b99c: 30 80 00 2b b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 200b9a0: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 current = executing->current_priority; 200b9a4: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 if ( current == ceiling ) { 200b9a8: 80 a1 00 02 cmp %g4, %g2 200b9ac: 12 80 00 03 bne 200b9b8 <_CORE_mutex_Seize_interrupt_trylock+0x80> 200b9b0: 01 00 00 00 nop _ISR_Enable( *level_p ); 200b9b4: 30 80 00 25 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110> return 0; } if ( current > ceiling ) { 200b9b8: 08 80 00 0f bleu 200b9f4 <_CORE_mutex_Seize_interrupt_trylock+0xbc> 200b9bc: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200b9c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 200b9c4: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 200b9c8: 84 00 a0 01 inc %g2 200b9cc: c4 20 62 28 st %g2, [ %g1 + 0x228 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 200b9d0: 7f ff da 00 call 20021d0 200b9d4: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 200b9d8: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 200b9dc: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 200b9e0: 7f ff f0 e9 call 2007d84 <_Thread_Change_priority> 200b9e4: 94 10 20 00 clr %o2 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 200b9e8: 7f ff f2 65 call 200837c <_Thread_Enable_dispatch> 200b9ec: b0 10 20 00 clr %i0 200b9f0: 30 80 00 1d b,a 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 200b9f4: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */ 200b9f8: c0 24 20 54 clr [ %l0 + 0x54 ] _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED; 200b9fc: 84 10 20 01 mov 1, %g2 200ba00: c4 24 20 50 st %g2, [ %l0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */ 200ba04: c6 20 60 1c st %g3, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200ba08: 30 80 00 10 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110> /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 200ba0c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200ba10: 80 a0 80 01 cmp %g2, %g1 200ba14: 12 80 00 14 bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c> 200ba18: b0 10 20 01 mov 1, %i0 switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200ba1c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 200ba20: 80 a0 60 00 cmp %g1, 0 200ba24: 22 80 00 07 be,a 200ba40 <_CORE_mutex_Seize_interrupt_trylock+0x108> 200ba28: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200ba2c: 80 a0 60 01 cmp %g1, 1 200ba30: 12 80 00 0d bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN 200ba34: 82 10 20 02 mov 2, %g1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 200ba38: 10 80 00 08 b 200ba58 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 200ba3c: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 200ba40: 82 00 60 01 inc %g1 200ba44: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 200ba48: 7f ff d9 e2 call 20021d0 200ba4c: d0 06 40 00 ld [ %i1 ], %o0 return 0; 200ba50: 81 c7 e0 08 ret 200ba54: 91 e8 20 00 restore %g0, 0, %o0 case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p ); 200ba58: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200ba5c: 7f ff d9 dd call 20021d0 <== NOT EXECUTED 200ba60: b0 10 20 00 clr %i0 <== NOT EXECUTED 200ba64: 81 c7 e0 08 ret 200ba68: 81 e8 00 00 restore =============================================================================== 02006ec0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2006ec0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2006ec4: 90 10 00 18 mov %i0, %o0 2006ec8: 40 00 06 19 call 200872c <_Thread_queue_Dequeue> 2006ecc: a0 10 00 18 mov %i0, %l0 2006ed0: 80 a2 20 00 cmp %o0, 0 2006ed4: 12 80 00 0e bne 2006f0c <_CORE_semaphore_Surrender+0x4c> 2006ed8: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2006edc: 7f ff ec b9 call 20021c0 2006ee0: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2006ee4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006ee8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006eec: 80 a0 40 02 cmp %g1, %g2 2006ef0: 1a 80 00 05 bcc 2006f04 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2006ef4: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2006ef8: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2006efc: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2006f00: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2006f04: 7f ff ec b3 call 20021d0 2006f08: 01 00 00 00 nop } return status; } 2006f0c: 81 c7 e0 08 ret 2006f10: 81 e8 00 00 restore =============================================================================== 02007240 <_Chain_Get_with_empty_check>: bool _Chain_Get_with_empty_check( Chain_Control *chain, Chain_Node **node ) { 2007240: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; bool is_empty_now; _ISR_Disable( level ); 2007244: 7f ff ed 73 call 2002810 2007248: 01 00 00 00 nop Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; 200724c: c4 06 00 00 ld [ %i0 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007250: 86 06 20 04 add %i0, 4, %g3 ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; if ( first != _Chain_Tail( the_chain ) ) { 2007254: 80 a0 80 03 cmp %g2, %g3 2007258: 22 80 00 0a be,a 2007280 <_Chain_Get_with_empty_check+0x40><== NEVER TAKEN 200725c: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED Chain_Node *new_first = first->next; 2007260: c2 00 80 00 ld [ %g2 ], %g1 the_chain->first = new_first; 2007264: c2 26 00 00 st %g1, [ %i0 ] new_first->previous = _Chain_Head( the_chain ); 2007268: f0 20 60 04 st %i0, [ %g1 + 4 ] *the_node = first; 200726c: c4 26 40 00 st %g2, [ %i1 ] is_empty_now = new_first == _Chain_Tail( the_chain ); 2007270: 82 18 40 03 xor %g1, %g3, %g1 2007274: 80 a0 00 01 cmp %g0, %g1 2007278: 10 80 00 03 b 2007284 <_Chain_Get_with_empty_check+0x44> 200727c: b0 60 3f ff subx %g0, -1, %i0 RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected( Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; 2007280: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node ); _ISR_Enable( level ); 2007284: 7f ff ed 67 call 2002820 2007288: 01 00 00 00 nop return is_empty_now; } 200728c: 81 c7 e0 08 ret 2007290: 81 e8 00 00 restore =============================================================================== 02005c88 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005c88: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005c8c: e2 06 21 60 ld [ %i0 + 0x160 ], %l1 option_set = (rtems_option) the_thread->Wait.option; 2005c90: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 2005c94: 7f ff f1 4b call 20021c0 2005c98: a0 10 00 18 mov %i0, %l0 2005c9c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2005ca0: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2005ca4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2005ca8: 82 88 c0 02 andcc %g3, %g2, %g1 2005cac: 12 80 00 03 bne 2005cb8 <_Event_Surrender+0x30> 2005cb0: 09 00 80 54 sethi %hi(0x2015000), %g4 _ISR_Enable( level ); 2005cb4: 30 80 00 42 b,a 2005dbc <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2005cb8: 88 11 20 8c or %g4, 0x8c, %g4 ! 201508c <_Per_CPU_Information> 2005cbc: da 01 20 08 ld [ %g4 + 8 ], %o5 2005cc0: 80 a3 60 00 cmp %o5, 0 2005cc4: 22 80 00 1d be,a 2005d38 <_Event_Surrender+0xb0> 2005cc8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005ccc: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005cd0: 80 a4 00 04 cmp %l0, %g4 2005cd4: 32 80 00 19 bne,a 2005d38 <_Event_Surrender+0xb0> 2005cd8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005cdc: 09 00 80 54 sethi %hi(0x2015000), %g4 2005ce0: da 01 20 a8 ld [ %g4 + 0xa8 ], %o5 ! 20150a8 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2005ce4: 80 a3 60 02 cmp %o5, 2 2005ce8: 02 80 00 07 be 2005d04 <_Event_Surrender+0x7c> <== NEVER TAKEN 2005cec: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2005cf0: c8 01 20 a8 ld [ %g4 + 0xa8 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005cf4: 80 a1 20 01 cmp %g4, 1 2005cf8: 32 80 00 10 bne,a 2005d38 <_Event_Surrender+0xb0> 2005cfc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2005d00: 80 a0 40 03 cmp %g1, %g3 2005d04: 02 80 00 04 be 2005d14 <_Event_Surrender+0x8c> 2005d08: 80 8c a0 02 btst 2, %l2 2005d0c: 02 80 00 0a be 2005d34 <_Event_Surrender+0xac> <== NEVER TAKEN 2005d10: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2005d14: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2005d18: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d1c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2005d20: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d24: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2005d28: 84 10 20 03 mov 3, %g2 2005d2c: 03 00 80 54 sethi %hi(0x2015000), %g1 2005d30: c4 20 60 a8 st %g2, [ %g1 + 0xa8 ] ! 20150a8 <_Event_Sync_state> } _ISR_Enable( level ); 2005d34: 30 80 00 22 b,a 2005dbc <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2005d38: 80 89 21 00 btst 0x100, %g4 2005d3c: 02 80 00 20 be 2005dbc <_Event_Surrender+0x134> 2005d40: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005d44: 02 80 00 04 be 2005d54 <_Event_Surrender+0xcc> 2005d48: 80 8c a0 02 btst 2, %l2 2005d4c: 02 80 00 1c be 2005dbc <_Event_Surrender+0x134> <== NEVER TAKEN 2005d50: 01 00 00 00 nop 2005d54: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2005d58: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d5c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2005d60: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005d64: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2005d68: 7f ff f1 1a call 20021d0 2005d6c: 90 10 00 18 mov %i0, %o0 2005d70: 7f ff f1 14 call 20021c0 2005d74: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2005d78: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005d7c: 80 a0 60 02 cmp %g1, 2 2005d80: 02 80 00 06 be 2005d98 <_Event_Surrender+0x110> 2005d84: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2005d88: 7f ff f1 12 call 20021d0 2005d8c: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005d90: 10 80 00 08 b 2005db0 <_Event_Surrender+0x128> 2005d94: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2005d98: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2005d9c: 7f ff f1 0d call 20021d0 2005da0: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 2005da4: 40 00 0e 19 call 2009608 <_Watchdog_Remove> 2005da8: 90 04 20 48 add %l0, 0x48, %o0 2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005db0: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2005db4: 40 00 08 6d call 2007f68 <_Thread_Clear_state> 2005db8: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2005dbc: 7f ff f1 05 call 20021d0 2005dc0: 81 e8 00 00 restore =============================================================================== 02005dc8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2005dc8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2005dcc: 90 10 00 18 mov %i0, %o0 2005dd0: 40 00 09 78 call 20083b0 <_Thread_Get> 2005dd4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2005ddc: 80 a0 60 00 cmp %g1, 0 2005de0: 12 80 00 1c bne 2005e50 <_Event_Timeout+0x88> <== NEVER TAKEN 2005de4: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2005de8: 7f ff f0 f6 call 20021c0 2005dec: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2005df0: 03 00 80 54 sethi %hi(0x2015000), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2005df4: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 2015098 <_Per_CPU_Information+0xc> 2005df8: 80 a4 00 01 cmp %l0, %g1 2005dfc: 12 80 00 09 bne 2005e20 <_Event_Timeout+0x58> 2005e00: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2005e04: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e08: c4 00 60 a8 ld [ %g1 + 0xa8 ], %g2 ! 20150a8 <_Event_Sync_state> 2005e0c: 80 a0 a0 01 cmp %g2, 1 2005e10: 32 80 00 05 bne,a 2005e24 <_Event_Timeout+0x5c> 2005e14: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2005e18: 84 10 20 02 mov 2, %g2 2005e1c: c4 20 60 a8 st %g2, [ %g1 + 0xa8 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2005e20: 82 10 20 06 mov 6, %g1 2005e24: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2005e28: 7f ff f0 ea call 20021d0 2005e2c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005e30: 90 10 00 10 mov %l0, %o0 2005e34: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005e38: 40 00 08 4c call 2007f68 <_Thread_Clear_state> 2005e3c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2005e40: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005e44: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2005e48: 84 00 bf ff add %g2, -1, %g2 2005e4c: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2005e50: 81 c7 e0 08 ret 2005e54: 81 e8 00 00 restore =============================================================================== 0200bfb4 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfb4: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200bfb8: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200bfbc: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfc0: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200bfc4: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200bfc8: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200bfcc: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200bfd0: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 200bfd4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200bfd8: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200bfdc: 80 a4 40 19 cmp %l1, %i1 200bfe0: 0a 80 00 9f bcs 200c25c <_Heap_Extend+0x2a8> 200bfe4: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200bfe8: 90 10 00 19 mov %i1, %o0 200bfec: 94 10 00 13 mov %l3, %o2 200bff0: 98 07 bf fc add %fp, -4, %o4 200bff4: 7f ff ed 2b call 20074a0 <_Heap_Get_first_and_last_block> 200bff8: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200bffc: 80 8a 20 ff btst 0xff, %o0 200c000: 02 80 00 97 be 200c25c <_Heap_Extend+0x2a8> 200c004: aa 10 00 12 mov %l2, %l5 200c008: ba 10 20 00 clr %i5 200c00c: b8 10 20 00 clr %i4 200c010: b0 10 20 00 clr %i0 200c014: ae 10 20 00 clr %l7 200c018: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c01c: 80 a0 40 11 cmp %g1, %l1 200c020: 1a 80 00 05 bcc 200c034 <_Heap_Extend+0x80> 200c024: ec 05 40 00 ld [ %l5 ], %l6 200c028: 80 a6 40 16 cmp %i1, %l6 200c02c: 2a 80 00 8c bcs,a 200c25c <_Heap_Extend+0x2a8> 200c030: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c034: 80 a4 40 01 cmp %l1, %g1 200c038: 02 80 00 06 be 200c050 <_Heap_Extend+0x9c> 200c03c: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c040: 2a 80 00 05 bcs,a 200c054 <_Heap_Extend+0xa0> 200c044: b8 10 00 15 mov %l5, %i4 200c048: 10 80 00 04 b 200c058 <_Heap_Extend+0xa4> 200c04c: 90 10 00 16 mov %l6, %o0 200c050: ae 10 00 15 mov %l5, %l7 200c054: 90 10 00 16 mov %l6, %o0 200c058: 40 00 16 6e call 2011a10 <.urem> 200c05c: 92 10 00 13 mov %l3, %o1 200c060: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c064: 80 a5 80 19 cmp %l6, %i1 200c068: 12 80 00 05 bne 200c07c <_Heap_Extend+0xc8> 200c06c: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 200c070: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200c074: 10 80 00 04 b 200c084 <_Heap_Extend+0xd0> 200c078: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c07c: 2a 80 00 02 bcs,a 200c084 <_Heap_Extend+0xd0> 200c080: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c084: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c088: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c08c: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c090: 80 a5 40 12 cmp %l5, %l2 200c094: 12 bf ff e2 bne 200c01c <_Heap_Extend+0x68> 200c098: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 200c09c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c0a0: 80 a6 40 01 cmp %i1, %g1 200c0a4: 3a 80 00 04 bcc,a 200c0b4 <_Heap_Extend+0x100> 200c0a8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c0ac: 10 80 00 05 b 200c0c0 <_Heap_Extend+0x10c> 200c0b0: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200c0b4: 80 a0 40 11 cmp %g1, %l1 200c0b8: 2a 80 00 02 bcs,a 200c0c0 <_Heap_Extend+0x10c> 200c0bc: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c0c0: c4 07 bf fc ld [ %fp + -4 ], %g2 200c0c4: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 200c0c8: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c0cc: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c0d0: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200c0d4: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c0d8: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c0dc: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c0e0: 80 a0 c0 02 cmp %g3, %g2 200c0e4: 08 80 00 04 bleu 200c0f4 <_Heap_Extend+0x140> 200c0e8: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200c0ec: 10 80 00 06 b 200c104 <_Heap_Extend+0x150> 200c0f0: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200c0f4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c0f8: 80 a0 80 01 cmp %g2, %g1 200c0fc: 2a 80 00 02 bcs,a 200c104 <_Heap_Extend+0x150> 200c100: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c104: 80 a5 e0 00 cmp %l7, 0 200c108: 02 80 00 14 be 200c158 <_Heap_Extend+0x1a4> 200c10c: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200c110: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200c114: 92 10 00 12 mov %l2, %o1 200c118: 40 00 16 3e call 2011a10 <.urem> 200c11c: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200c120: 80 a2 20 00 cmp %o0, 0 200c124: 02 80 00 04 be 200c134 <_Heap_Extend+0x180> <== ALWAYS TAKEN 200c128: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 200c12c: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c130: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200c134: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200c138: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200c13c: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200c140: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200c144: 90 10 00 10 mov %l0, %o0 200c148: 7f ff ff 90 call 200bf88 <_Heap_Free_block> 200c14c: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c150: 10 80 00 09 b 200c174 <_Heap_Extend+0x1c0> 200c154: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200c158: 80 a7 20 00 cmp %i4, 0 200c15c: 02 80 00 05 be 200c170 <_Heap_Extend+0x1bc> 200c160: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200c164: b8 27 00 01 sub %i4, %g1, %i4 200c168: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200c16c: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c170: 80 a6 20 00 cmp %i0, 0 200c174: 02 80 00 15 be 200c1c8 <_Heap_Extend+0x214> 200c178: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c17c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200c180: a2 24 40 18 sub %l1, %i0, %l1 200c184: 40 00 16 23 call 2011a10 <.urem> 200c188: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200c18c: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c190: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c194: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 200c198: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 200c19c: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c1a0: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c1a4: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200c1a8: 90 10 00 10 mov %l0, %o0 200c1ac: 82 08 60 01 and %g1, 1, %g1 200c1b0: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 200c1b4: a2 14 40 01 or %l1, %g1, %l1 200c1b8: 7f ff ff 74 call 200bf88 <_Heap_Free_block> 200c1bc: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c1c0: 10 80 00 0f b 200c1fc <_Heap_Extend+0x248> 200c1c4: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200c1c8: 80 a7 60 00 cmp %i5, 0 200c1cc: 02 80 00 0b be 200c1f8 <_Heap_Extend+0x244> 200c1d0: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c1d4: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 200c1d8: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200c1dc: 86 20 c0 1d sub %g3, %i5, %g3 200c1e0: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c1e4: 84 10 c0 02 or %g3, %g2, %g2 200c1e8: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200c1ec: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c1f0: 84 10 a0 01 or %g2, 1, %g2 200c1f4: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c1f8: 80 a6 20 00 cmp %i0, 0 200c1fc: 32 80 00 09 bne,a 200c220 <_Heap_Extend+0x26c> 200c200: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c204: 80 a5 e0 00 cmp %l7, 0 200c208: 32 80 00 06 bne,a 200c220 <_Heap_Extend+0x26c> 200c20c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200c210: d2 07 bf fc ld [ %fp + -4 ], %o1 200c214: 7f ff ff 5d call 200bf88 <_Heap_Free_block> 200c218: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200c21c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c220: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c224: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c228: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c22c: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c230: 84 10 c0 02 or %g3, %g2, %g2 200c234: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c238: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200c23c: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c240: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 200c244: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200c248: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200c24c: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 200c250: 02 80 00 03 be 200c25c <_Heap_Extend+0x2a8> <== NEVER TAKEN 200c254: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 200c258: e8 26 c0 00 st %l4, [ %i3 ] 200c25c: 81 c7 e0 08 ret 200c260: 81 e8 00 00 restore =============================================================================== 0200bcb4 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200bcb4: 9d e3 bf a0 save %sp, -96, %sp 200bcb8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200bcbc: 40 00 16 17 call 2011518 <.urem> 200bcc0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200bcc4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bcc8: a2 06 7f f8 add %i1, -8, %l1 200bccc: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200bcd0: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bcd4: 80 a2 00 0c cmp %o0, %o4 200bcd8: 0a 80 00 05 bcs 200bcec <_Heap_Free+0x38> 200bcdc: 82 10 20 00 clr %g1 200bce0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bce4: 80 a0 40 08 cmp %g1, %o0 200bce8: 82 60 3f ff subx %g0, -1, %g1 uintptr_t next_block_size = 0; bool next_is_free = false; _Heap_Protection_block_check( heap, block ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200bcec: 80 a0 60 00 cmp %g1, 0 200bcf0: 02 80 00 6a be 200be98 <_Heap_Free+0x1e4> 200bcf4: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bcf8: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bcfc: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd00: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bd04: 80 a0 40 0c cmp %g1, %o4 200bd08: 0a 80 00 05 bcs 200bd1c <_Heap_Free+0x68> <== NEVER TAKEN 200bd0c: 86 10 20 00 clr %g3 200bd10: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bd14: 80 a0 c0 01 cmp %g3, %g1 200bd18: 86 60 3f ff subx %g0, -1, %g3 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200bd1c: 80 a0 e0 00 cmp %g3, 0 200bd20: 02 80 00 5e be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bd24: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bd28: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200bd2c: 80 89 20 01 btst 1, %g4 200bd30: 02 80 00 5a be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bd34: 88 09 3f fe and %g4, -2, %g4 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200bd38: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bd3c: 80 a0 40 09 cmp %g1, %o1 200bd40: 02 80 00 07 be 200bd5c <_Heap_Free+0xa8> 200bd44: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bd48: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bd4c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200bd50: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bd54: 80 a0 00 03 cmp %g0, %g3 200bd58: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 200bd5c: 80 8b 60 01 btst 1, %o5 200bd60: 12 80 00 26 bne 200bdf8 <_Heap_Free+0x144> 200bd64: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 200bd68: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bd6c: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bd70: 80 a0 c0 0c cmp %g3, %o4 200bd74: 0a 80 00 04 bcs 200bd84 <_Heap_Free+0xd0> <== NEVER TAKEN 200bd78: 94 10 20 00 clr %o2 200bd7c: 80 a2 40 03 cmp %o1, %g3 200bd80: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200bd84: 80 a2 a0 00 cmp %o2, 0 200bd88: 02 80 00 44 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bd8c: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bd90: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200bd94: 80 8b 20 01 btst 1, %o4 200bd98: 02 80 00 40 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bd9c: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200bda0: 22 80 00 0f be,a 200bddc <_Heap_Free+0x128> 200bda4: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 200bda8: 88 00 80 04 add %g2, %g4, %g4 200bdac: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200bdb0: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200bdb4: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200bdb8: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200bdbc: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200bdc0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200bdc4: 82 00 7f ff add %g1, -1, %g1 200bdc8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200bdcc: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bdd0: 82 13 60 01 or %o5, 1, %g1 200bdd4: 10 80 00 27 b 200be70 <_Heap_Free+0x1bc> 200bdd8: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200bddc: 88 13 60 01 or %o5, 1, %g4 200bde0: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bde4: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200bde8: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200bdec: 86 08 ff fe and %g3, -2, %g3 200bdf0: 10 80 00 20 b 200be70 <_Heap_Free+0x1bc> 200bdf4: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200bdf8: 22 80 00 0d be,a 200be2c <_Heap_Free+0x178> 200bdfc: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 200be00: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200be04: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200be08: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200be0c: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200be10: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 200be14: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200be18: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be1c: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200be20: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200be24: 10 80 00 13 b 200be70 <_Heap_Free+0x1bc> 200be28: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200be2c: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200be30: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200be34: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200be38: 86 10 a0 01 or %g2, 1, %g3 200be3c: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200be40: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200be44: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200be48: 86 08 ff fe and %g3, -2, %g3 200be4c: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200be50: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200be54: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200be58: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200be5c: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200be60: 80 a0 c0 01 cmp %g3, %g1 200be64: 1a 80 00 03 bcc 200be70 <_Heap_Free+0x1bc> 200be68: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200be6c: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200be70: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200be74: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200be78: 82 00 7f ff add %g1, -1, %g1 200be7c: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 200be80: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200be84: 82 00 60 01 inc %g1 200be88: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200be8c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200be90: 84 00 40 02 add %g1, %g2, %g2 200be94: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 200be98: 81 c7 e0 08 ret 200be9c: 81 e8 00 00 restore =============================================================================== 02012f2c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2012f2c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2012f30: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2012f34: 7f ff f9 79 call 2011518 <.urem> 2012f38: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2012f3c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2012f40: a2 06 7f f8 add %i1, -8, %l1 2012f44: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2012f48: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2012f4c: 80 a2 00 02 cmp %o0, %g2 2012f50: 0a 80 00 05 bcs 2012f64 <_Heap_Size_of_alloc_area+0x38> 2012f54: 82 10 20 00 clr %g1 2012f58: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2012f5c: 80 a0 40 08 cmp %g1, %o0 2012f60: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 2012f64: 80 a0 60 00 cmp %g1, 0 2012f68: 02 80 00 15 be 2012fbc <_Heap_Size_of_alloc_area+0x90> 2012f6c: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2012f70: e2 02 20 04 ld [ %o0 + 4 ], %l1 2012f74: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2012f78: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2012f7c: 80 a4 40 02 cmp %l1, %g2 2012f80: 0a 80 00 05 bcs 2012f94 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 2012f84: 82 10 20 00 clr %g1 2012f88: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 2012f8c: 80 a0 40 11 cmp %g1, %l1 2012f90: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 2012f94: 80 a0 60 00 cmp %g1, 0 2012f98: 02 80 00 09 be 2012fbc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 2012f9c: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2012fa0: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2012fa4: 80 88 60 01 btst 1, %g1 2012fa8: 02 80 00 05 be 2012fbc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 2012fac: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2012fb0: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2012fb4: a2 04 60 04 add %l1, 4, %l1 2012fb8: e2 26 80 00 st %l1, [ %i2 ] return true; } 2012fbc: 81 c7 e0 08 ret 2012fc0: 81 e8 00 00 restore =============================================================================== 020082a8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20082a8: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20082ac: 23 00 80 20 sethi %hi(0x2008000), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20082b0: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 20082b4: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 20082b8: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 20082bc: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 20082c0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20082c4: 80 8e a0 ff btst 0xff, %i2 20082c8: 02 80 00 04 be 20082d8 <_Heap_Walk+0x30> 20082cc: a2 14 62 54 or %l1, 0x254, %l1 20082d0: 23 00 80 20 sethi %hi(0x2008000), %l1 20082d4: a2 14 62 5c or %l1, 0x25c, %l1 ! 200825c <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20082d8: 03 00 80 5d sethi %hi(0x2017400), %g1 20082dc: c2 00 62 3c ld [ %g1 + 0x23c ], %g1 ! 201763c <_System_state_Current> 20082e0: 80 a0 60 03 cmp %g1, 3 20082e4: 12 80 01 2d bne 2008798 <_Heap_Walk+0x4f0> 20082e8: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 20082ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20082f0: da 04 20 18 ld [ %l0 + 0x18 ], %o5 20082f4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20082f8: c2 04 20 08 ld [ %l0 + 8 ], %g1 20082fc: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 2008300: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008304: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008308: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 200830c: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008310: 90 10 00 19 mov %i1, %o0 2008314: 92 10 20 00 clr %o1 2008318: 15 00 80 52 sethi %hi(0x2014800), %o2 200831c: 96 10 00 12 mov %l2, %o3 2008320: 94 12 a3 e8 or %o2, 0x3e8, %o2 2008324: 9f c4 40 00 call %l1 2008328: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 200832c: 80 a4 a0 00 cmp %l2, 0 2008330: 12 80 00 07 bne 200834c <_Heap_Walk+0xa4> 2008334: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 2008338: 15 00 80 53 sethi %hi(0x2014c00), %o2 200833c: 90 10 00 19 mov %i1, %o0 2008340: 92 10 20 01 mov 1, %o1 2008344: 10 80 00 38 b 2008424 <_Heap_Walk+0x17c> 2008348: 94 12 a0 80 or %o2, 0x80, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 200834c: 22 80 00 08 be,a 200836c <_Heap_Walk+0xc4> 2008350: 90 10 00 14 mov %l4, %o0 (*printer)( 2008354: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008358: 90 10 00 19 mov %i1, %o0 200835c: 92 10 20 01 mov 1, %o1 2008360: 94 12 a0 98 or %o2, 0x98, %o2 2008364: 10 80 01 0b b 2008790 <_Heap_Walk+0x4e8> 2008368: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200836c: 7f ff e5 d6 call 2001ac4 <.urem> 2008370: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008374: 80 a2 20 00 cmp %o0, 0 2008378: 22 80 00 08 be,a 2008398 <_Heap_Walk+0xf0> 200837c: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 2008380: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008384: 90 10 00 19 mov %i1, %o0 2008388: 92 10 20 01 mov 1, %o1 200838c: 94 12 a0 b8 or %o2, 0xb8, %o2 2008390: 10 80 01 00 b 2008790 <_Heap_Walk+0x4e8> 2008394: 96 10 00 14 mov %l4, %o3 2008398: 7f ff e5 cb call 2001ac4 <.urem> 200839c: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 20083a0: 80 a2 20 00 cmp %o0, 0 20083a4: 22 80 00 08 be,a 20083c4 <_Heap_Walk+0x11c> 20083a8: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 20083ac: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083b0: 90 10 00 19 mov %i1, %o0 20083b4: 92 10 20 01 mov 1, %o1 20083b8: 94 12 a0 e0 or %o2, 0xe0, %o2 20083bc: 10 80 00 f5 b 2008790 <_Heap_Walk+0x4e8> 20083c0: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20083c4: 80 88 60 01 btst 1, %g1 20083c8: 32 80 00 07 bne,a 20083e4 <_Heap_Walk+0x13c> 20083cc: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 20083d0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083d4: 90 10 00 19 mov %i1, %o0 20083d8: 92 10 20 01 mov 1, %o1 20083dc: 10 80 00 12 b 2008424 <_Heap_Walk+0x17c> 20083e0: 94 12 a1 18 or %o2, 0x118, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20083e4: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20083e8: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20083ec: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20083f0: 80 88 60 01 btst 1, %g1 20083f4: 12 80 00 07 bne 2008410 <_Heap_Walk+0x168> 20083f8: 80 a5 80 13 cmp %l6, %l3 (*printer)( 20083fc: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008400: 90 10 00 19 mov %i1, %o0 2008404: 92 10 20 01 mov 1, %o1 2008408: 10 80 00 07 b 2008424 <_Heap_Walk+0x17c> 200840c: 94 12 a1 48 or %o2, 0x148, %o2 ); return false; } if ( 2008410: 02 80 00 08 be 2008430 <_Heap_Walk+0x188> <== ALWAYS TAKEN 2008414: 15 00 80 53 sethi %hi(0x2014c00), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008418: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 200841c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008420: 94 12 a1 60 or %o2, 0x160, %o2 <== NOT EXECUTED 2008424: 9f c4 40 00 call %l1 2008428: b0 10 20 00 clr %i0 200842c: 30 80 00 db b,a 2008798 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 2008430: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2008434: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 2008438: ae 10 00 10 mov %l0, %l7 200843c: 10 80 00 32 b 2008504 <_Heap_Walk+0x25c> 2008440: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008444: 80 a0 80 1c cmp %g2, %i4 2008448: 18 80 00 05 bgu 200845c <_Heap_Walk+0x1b4> 200844c: 82 10 20 00 clr %g1 2008450: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 2008454: 80 a0 40 1c cmp %g1, %i4 2008458: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 200845c: 80 a0 60 00 cmp %g1, 0 2008460: 32 80 00 08 bne,a 2008480 <_Heap_Walk+0x1d8> 2008464: 90 07 20 08 add %i4, 8, %o0 (*printer)( 2008468: 15 00 80 53 sethi %hi(0x2014c00), %o2 200846c: 96 10 00 1c mov %i4, %o3 2008470: 90 10 00 19 mov %i1, %o0 2008474: 92 10 20 01 mov 1, %o1 2008478: 10 80 00 c6 b 2008790 <_Heap_Walk+0x4e8> 200847c: 94 12 a1 90 or %o2, 0x190, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008480: 7f ff e5 91 call 2001ac4 <.urem> 2008484: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 2008488: 80 a2 20 00 cmp %o0, 0 200848c: 22 80 00 08 be,a 20084ac <_Heap_Walk+0x204> 2008490: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008494: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008498: 96 10 00 1c mov %i4, %o3 200849c: 90 10 00 19 mov %i1, %o0 20084a0: 92 10 20 01 mov 1, %o1 20084a4: 10 80 00 bb b 2008790 <_Heap_Walk+0x4e8> 20084a8: 94 12 a1 b0 or %o2, 0x1b0, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20084ac: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 20084b0: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20084b4: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20084b8: 80 88 60 01 btst 1, %g1 20084bc: 22 80 00 08 be,a 20084dc <_Heap_Walk+0x234> 20084c0: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 20084c4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084c8: 96 10 00 1c mov %i4, %o3 20084cc: 90 10 00 19 mov %i1, %o0 20084d0: 92 10 20 01 mov 1, %o1 20084d4: 10 80 00 af b 2008790 <_Heap_Walk+0x4e8> 20084d8: 94 12 a1 e0 or %o2, 0x1e0, %o2 ); return false; } if ( free_block->prev != prev_block ) { 20084dc: 80 a3 00 17 cmp %o4, %l7 20084e0: 22 80 00 08 be,a 2008500 <_Heap_Walk+0x258> 20084e4: ae 10 00 1c mov %i4, %l7 (*printer)( 20084e8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084ec: 96 10 00 1c mov %i4, %o3 20084f0: 90 10 00 19 mov %i1, %o0 20084f4: 92 10 20 01 mov 1, %o1 20084f8: 10 80 00 49 b 200861c <_Heap_Walk+0x374> 20084fc: 94 12 a2 00 or %o2, 0x200, %o2 return false; } prev_block = free_block; free_block = free_block->next; 2008500: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008504: 80 a7 00 10 cmp %i4, %l0 2008508: 32 bf ff cf bne,a 2008444 <_Heap_Walk+0x19c> 200850c: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 2008510: 35 00 80 53 sethi %hi(0x2014c00), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008514: 31 00 80 53 sethi %hi(0x2014c00), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008518: b4 16 a3 c0 or %i2, 0x3c0, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 200851c: b0 16 23 a8 or %i0, 0x3a8, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008520: 37 00 80 53 sethi %hi(0x2014c00), %i3 block = next_block; } while ( block != first_block ); return true; } 2008524: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008528: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200852c: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008530: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008534: 80 a0 c0 1d cmp %g3, %i5 2008538: 18 80 00 05 bgu 200854c <_Heap_Walk+0x2a4> <== NEVER TAKEN 200853c: 84 10 20 00 clr %g2 2008540: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 2008544: 80 a0 80 1d cmp %g2, %i5 2008548: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200854c: 80 a0 a0 00 cmp %g2, 0 2008550: 12 80 00 07 bne 200856c <_Heap_Walk+0x2c4> 2008554: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 2008558: 15 00 80 53 sethi %hi(0x2014c00), %o2 200855c: 90 10 00 19 mov %i1, %o0 2008560: 92 10 20 01 mov 1, %o1 2008564: 10 80 00 2c b 2008614 <_Heap_Walk+0x36c> 2008568: 94 12 a2 38 or %o2, 0x238, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 200856c: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008570: c2 27 bf fc st %g1, [ %fp + -4 ] 2008574: b8 40 20 00 addx %g0, 0, %i4 2008578: 90 10 00 17 mov %l7, %o0 200857c: 7f ff e5 52 call 2001ac4 <.urem> 2008580: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008584: 80 a2 20 00 cmp %o0, 0 2008588: 02 80 00 0c be 20085b8 <_Heap_Walk+0x310> 200858c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008590: 80 8f 20 ff btst 0xff, %i4 2008594: 02 80 00 0a be 20085bc <_Heap_Walk+0x314> 2008598: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 200859c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085a0: 90 10 00 19 mov %i1, %o0 20085a4: 92 10 20 01 mov 1, %o1 20085a8: 94 12 a2 68 or %o2, 0x268, %o2 20085ac: 96 10 00 16 mov %l6, %o3 20085b0: 10 80 00 1b b 200861c <_Heap_Walk+0x374> 20085b4: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 20085b8: 80 a5 c0 14 cmp %l7, %l4 20085bc: 1a 80 00 0d bcc 20085f0 <_Heap_Walk+0x348> 20085c0: 80 a7 40 16 cmp %i5, %l6 20085c4: 80 8f 20 ff btst 0xff, %i4 20085c8: 02 80 00 0a be 20085f0 <_Heap_Walk+0x348> <== NEVER TAKEN 20085cc: 80 a7 40 16 cmp %i5, %l6 (*printer)( 20085d0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085d4: 90 10 00 19 mov %i1, %o0 20085d8: 92 10 20 01 mov 1, %o1 20085dc: 94 12 a2 98 or %o2, 0x298, %o2 20085e0: 96 10 00 16 mov %l6, %o3 20085e4: 98 10 00 17 mov %l7, %o4 20085e8: 10 80 00 3f b 20086e4 <_Heap_Walk+0x43c> 20085ec: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20085f0: 38 80 00 0e bgu,a 2008628 <_Heap_Walk+0x380> 20085f4: b8 08 60 01 and %g1, 1, %i4 20085f8: 80 8f 20 ff btst 0xff, %i4 20085fc: 02 80 00 0b be 2008628 <_Heap_Walk+0x380> 2008600: b8 08 60 01 and %g1, 1, %i4 (*printer)( 2008604: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008608: 90 10 00 19 mov %i1, %o0 200860c: 92 10 20 01 mov 1, %o1 2008610: 94 12 a2 c8 or %o2, 0x2c8, %o2 2008614: 96 10 00 16 mov %l6, %o3 2008618: 98 10 00 1d mov %i5, %o4 200861c: 9f c4 40 00 call %l1 2008620: b0 10 20 00 clr %i0 2008624: 30 80 00 5d b,a 2008798 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008628: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200862c: 80 88 60 01 btst 1, %g1 2008630: 12 80 00 3f bne 200872c <_Heap_Walk+0x484> 2008634: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008638: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200863c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008640: 05 00 80 52 sethi %hi(0x2014800), %g2 block = next_block; } while ( block != first_block ); return true; } 2008644: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008648: 80 a3 40 01 cmp %o5, %g1 200864c: 02 80 00 07 be 2008668 <_Heap_Walk+0x3c0> 2008650: 86 10 a3 a8 or %g2, 0x3a8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008654: 80 a3 40 10 cmp %o5, %l0 2008658: 12 80 00 04 bne 2008668 <_Heap_Walk+0x3c0> 200865c: 86 16 e3 70 or %i3, 0x370, %g3 2008660: 19 00 80 52 sethi %hi(0x2014800), %o4 2008664: 86 13 23 b8 or %o4, 0x3b8, %g3 ! 2014bb8 block->next, block->next == last_free_block ? 2008668: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200866c: 19 00 80 52 sethi %hi(0x2014800), %o4 2008670: 80 a0 80 04 cmp %g2, %g4 2008674: 02 80 00 07 be 2008690 <_Heap_Walk+0x3e8> 2008678: 82 13 23 c8 or %o4, 0x3c8, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 200867c: 80 a0 80 10 cmp %g2, %l0 2008680: 12 80 00 04 bne 2008690 <_Heap_Walk+0x3e8> 2008684: 82 16 e3 70 or %i3, 0x370, %g1 2008688: 09 00 80 52 sethi %hi(0x2014800), %g4 200868c: 82 11 23 d8 or %g4, 0x3d8, %g1 ! 2014bd8 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008690: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008694: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008698: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 200869c: 90 10 00 19 mov %i1, %o0 20086a0: 92 10 20 00 clr %o1 20086a4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086a8: 96 10 00 16 mov %l6, %o3 20086ac: 94 12 a3 00 or %o2, 0x300, %o2 20086b0: 9f c4 40 00 call %l1 20086b4: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 20086b8: da 07 40 00 ld [ %i5 ], %o5 20086bc: 80 a5 c0 0d cmp %l7, %o5 20086c0: 02 80 00 0c be 20086f0 <_Heap_Walk+0x448> 20086c4: 80 a7 20 00 cmp %i4, 0 (*printer)( 20086c8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086cc: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 20086d0: 90 10 00 19 mov %i1, %o0 20086d4: 92 10 20 01 mov 1, %o1 20086d8: 94 12 a3 38 or %o2, 0x338, %o2 20086dc: 96 10 00 16 mov %l6, %o3 20086e0: 98 10 00 17 mov %l7, %o4 20086e4: 9f c4 40 00 call %l1 20086e8: b0 10 20 00 clr %i0 20086ec: 30 80 00 2b b,a 2008798 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 20086f0: 32 80 00 0a bne,a 2008718 <_Heap_Walk+0x470> 20086f4: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 20086f8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086fc: 90 10 00 19 mov %i1, %o0 2008700: 92 10 20 01 mov 1, %o1 2008704: 10 80 00 22 b 200878c <_Heap_Walk+0x4e4> 2008708: 94 12 a3 78 or %o2, 0x378, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 200870c: 02 80 00 19 be 2008770 <_Heap_Walk+0x4c8> 2008710: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 2008714: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008718: 80 a0 40 10 cmp %g1, %l0 200871c: 12 bf ff fc bne 200870c <_Heap_Walk+0x464> 2008720: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008724: 10 80 00 17 b 2008780 <_Heap_Walk+0x4d8> 2008728: 15 00 80 53 sethi %hi(0x2014c00), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 200872c: 22 80 00 0a be,a 2008754 <_Heap_Walk+0x4ac> 2008730: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 2008734: 90 10 00 19 mov %i1, %o0 2008738: 92 10 20 00 clr %o1 200873c: 94 10 00 18 mov %i0, %o2 2008740: 96 10 00 16 mov %l6, %o3 2008744: 9f c4 40 00 call %l1 2008748: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 200874c: 10 80 00 09 b 2008770 <_Heap_Walk+0x4c8> 2008750: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008754: 90 10 00 19 mov %i1, %o0 2008758: 92 10 20 00 clr %o1 200875c: 94 10 00 1a mov %i2, %o2 2008760: 96 10 00 16 mov %l6, %o3 2008764: 9f c4 40 00 call %l1 2008768: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 200876c: 80 a7 40 13 cmp %i5, %l3 2008770: 32 bf ff 6d bne,a 2008524 <_Heap_Walk+0x27c> 2008774: ac 10 00 1d mov %i5, %l6 return true; } 2008778: 81 c7 e0 08 ret 200877c: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008780: 90 10 00 19 mov %i1, %o0 2008784: 92 10 20 01 mov 1, %o1 2008788: 94 12 a3 e8 or %o2, 0x3e8, %o2 200878c: 96 10 00 16 mov %l6, %o3 2008790: 9f c4 40 00 call %l1 2008794: b0 10 20 00 clr %i0 2008798: 81 c7 e0 08 ret 200879c: 81 e8 00 00 restore =============================================================================== 020074e0 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20074e0: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20074e4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20074e8: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20074ec: 80 a0 60 00 cmp %g1, 0 20074f0: 02 80 00 20 be 2007570 <_Objects_Allocate+0x90> <== NEVER TAKEN 20074f4: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20074f8: a2 04 20 20 add %l0, 0x20, %l1 20074fc: 7f ff fd 88 call 2006b1c <_Chain_Get> 2007500: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 2007504: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007508: 80 a0 60 00 cmp %g1, 0 200750c: 02 80 00 19 be 2007570 <_Objects_Allocate+0x90> 2007510: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007514: 80 a2 20 00 cmp %o0, 0 2007518: 32 80 00 0a bne,a 2007540 <_Objects_Allocate+0x60> 200751c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 2007520: 40 00 00 1e call 2007598 <_Objects_Extend_information> 2007524: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007528: 7f ff fd 7d call 2006b1c <_Chain_Get> 200752c: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 2007530: b0 92 20 00 orcc %o0, 0, %i0 2007534: 02 80 00 0f be 2007570 <_Objects_Allocate+0x90> 2007538: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 200753c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007540: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007544: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007548: 40 00 27 48 call 2011268 <.udiv> 200754c: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007550: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2007554: 91 2a 20 02 sll %o0, 2, %o0 2007558: c4 00 40 08 ld [ %g1 + %o0 ], %g2 200755c: 84 00 bf ff add %g2, -1, %g2 2007560: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2007564: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 2007568: 82 00 7f ff add %g1, -1, %g1 200756c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 2007570: 81 c7 e0 08 ret 2007574: 81 e8 00 00 restore =============================================================================== 020078f4 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 20078f4: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 20078f8: b3 2e 60 10 sll %i1, 0x10, %i1 20078fc: b3 36 60 10 srl %i1, 0x10, %i1 2007900: 80 a6 60 00 cmp %i1, 0 2007904: 02 80 00 17 be 2007960 <_Objects_Get_information+0x6c> 2007908: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 200790c: 40 00 11 65 call 200bea0 <_Objects_API_maximum_class> 2007910: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007914: 80 a2 20 00 cmp %o0, 0 2007918: 02 80 00 12 be 2007960 <_Objects_Get_information+0x6c> 200791c: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007920: 18 80 00 10 bgu 2007960 <_Objects_Get_information+0x6c> 2007924: 03 00 80 53 sethi %hi(0x2014c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007928: b1 2e 20 02 sll %i0, 2, %i0 200792c: 82 10 61 8c or %g1, 0x18c, %g1 2007930: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007934: 80 a0 60 00 cmp %g1, 0 2007938: 02 80 00 0a be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN 200793c: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007940: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 2007944: 80 a4 20 00 cmp %l0, 0 2007948: 02 80 00 06 be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN 200794c: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007950: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 2007954: 80 a0 00 01 cmp %g0, %g1 2007958: 82 60 20 00 subx %g0, 0, %g1 200795c: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 2007960: 81 c7 e0 08 ret 2007964: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 0201914c <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201914c: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 2019150: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019154: 82 22 40 01 sub %o1, %g1, %g1 2019158: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 201915c: 80 a0 80 01 cmp %g2, %g1 2019160: 0a 80 00 09 bcs 2019184 <_Objects_Get_no_protection+0x38> 2019164: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 2019168: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 201916c: d0 00 80 01 ld [ %g2 + %g1 ], %o0 2019170: 80 a2 20 00 cmp %o0, 0 2019174: 02 80 00 05 be 2019188 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 2019178: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 201917c: 81 c3 e0 08 retl 2019180: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 2019184: 82 10 20 01 mov 1, %g1 return NULL; 2019188: 90 10 20 00 clr %o0 } 201918c: 81 c3 e0 08 retl 2019190: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 020091d0 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20091d0: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20091d4: 92 96 20 00 orcc %i0, 0, %o1 20091d8: 12 80 00 06 bne 20091f0 <_Objects_Id_to_name+0x20> 20091dc: 83 32 60 18 srl %o1, 0x18, %g1 20091e0: 03 00 80 74 sethi %hi(0x201d000), %g1 20091e4: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201d078 <_Per_CPU_Information+0xc> 20091e8: d2 00 60 08 ld [ %g1 + 8 ], %o1 20091ec: 83 32 60 18 srl %o1, 0x18, %g1 20091f0: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20091f4: 84 00 7f ff add %g1, -1, %g2 20091f8: 80 a0 a0 02 cmp %g2, 2 20091fc: 18 80 00 12 bgu 2009244 <_Objects_Id_to_name+0x74> 2009200: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2009204: 10 80 00 12 b 200924c <_Objects_Id_to_name+0x7c> 2009208: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 200920c: 85 28 a0 02 sll %g2, 2, %g2 2009210: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2009214: 80 a2 20 00 cmp %o0, 0 2009218: 02 80 00 0b be 2009244 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 200921c: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2009220: 7f ff ff cf call 200915c <_Objects_Get> 2009224: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2009228: 80 a2 20 00 cmp %o0, 0 200922c: 02 80 00 06 be 2009244 <_Objects_Id_to_name+0x74> 2009230: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2009234: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2009238: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 200923c: 40 00 02 56 call 2009b94 <_Thread_Enable_dispatch> 2009240: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2009244: 81 c7 e0 08 ret 2009248: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200924c: 05 00 80 73 sethi %hi(0x201cc00), %g2 2009250: 84 10 a1 6c or %g2, 0x16c, %g2 ! 201cd6c <_Objects_Information_table> 2009254: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009258: 80 a0 60 00 cmp %g1, 0 200925c: 12 bf ff ec bne 200920c <_Objects_Id_to_name+0x3c> 2009260: 85 32 60 1b srl %o1, 0x1b, %g2 2009264: 30 bf ff f8 b,a 2009244 <_Objects_Id_to_name+0x74> =============================================================================== 02007a50 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007a50: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007a54: 85 2f 20 10 sll %i4, 0x10, %g2 2007a58: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a5c: 07 00 80 53 sethi %hi(0x2014c00), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007a60: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a64: 86 10 e1 8c or %g3, 0x18c, %g3 2007a68: 85 2e 60 02 sll %i1, 2, %g2 2007a6c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 2007a70: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 2007a74: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; information->local_table = 0; 2007a78: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 2007a7c: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 2007a80: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 2007a84: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 2007a88: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007a8c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007a90: b5 2e a0 10 sll %i2, 0x10, %i2 2007a94: b5 36 a0 10 srl %i2, 0x10, %i2 2007a98: 85 2e a0 02 sll %i2, 2, %g2 2007a9c: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2007aa0: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 2007aa4: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2007aa8: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2007aac: 80 a0 a0 00 cmp %g2, 0 2007ab0: 02 80 00 09 be 2007ad4 <_Objects_Initialize_information+0x84> 2007ab4: b6 2e c0 03 andn %i3, %g3, %i3 2007ab8: 80 a6 e0 00 cmp %i3, 0 2007abc: 12 80 00 07 bne 2007ad8 <_Objects_Initialize_information+0x88> 2007ac0: 05 00 80 52 sethi %hi(0x2014800), %g2 _Internal_error_Occurred( 2007ac4: 90 10 20 00 clr %o0 2007ac8: 92 10 20 01 mov 1, %o1 2007acc: 7f ff fe 59 call 2007430 <_Internal_error_Occurred> 2007ad0: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 2007ad4: 05 00 80 52 sethi %hi(0x2014800), %g2 2007ad8: 84 10 a2 d4 or %g2, 0x2d4, %g2 ! 2014ad4 2007adc: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007ae0: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007ae4: 80 a0 00 1b cmp %g0, %i3 2007ae8: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007aec: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007af0: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 2007af4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007af8: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007afc: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007b00: b4 16 80 02 or %i2, %g2, %i2 /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 2007b04: 80 88 60 03 btst 3, %g1 2007b08: 02 80 00 04 be 2007b18 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN 2007b0c: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 2007b10: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007b14: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 2007b18: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007b1c: 82 06 20 24 add %i0, 0x24, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 2007b20: c0 26 20 24 clr [ %i0 + 0x24 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2007b24: c2 26 20 20 st %g1, [ %i0 + 0x20 ] _Chain_Initialize_empty( &information->Inactive ); 2007b28: 82 06 20 20 add %i0, 0x20, %g1 /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 2007b2c: 80 a6 e0 00 cmp %i3, 0 2007b30: 02 80 00 04 be 2007b40 <_Objects_Initialize_information+0xf0> 2007b34: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 2007b38: 7f ff fe 98 call 2007598 <_Objects_Extend_information> 2007b3c: 81 e8 00 00 restore 2007b40: 81 c7 e0 08 ret 2007b44: 81 e8 00 00 restore =============================================================================== 0200b668 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200b668: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200b66c: e0 06 21 60 ld [ %i0 + 0x160 ], %l0 if ( !api ) 200b670: 80 a4 20 00 cmp %l0, 0 200b674: 02 80 00 1d be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 200b678: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200b67c: 7f ff da d1 call 20021c0 200b680: 01 00 00 00 nop signal_set = asr->signals_posted; 200b684: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 200b688: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200b68c: 7f ff da d1 call 20021d0 200b690: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200b694: 80 a4 e0 00 cmp %l3, 0 200b698: 02 80 00 14 be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80> 200b69c: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 200b6a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6a4: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200b6a8: 82 00 60 01 inc %g1 200b6ac: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6b0: 94 10 00 11 mov %l1, %o2 200b6b4: 25 00 00 3f sethi %hi(0xfc00), %l2 200b6b8: 40 00 07 8c call 200d4e8 200b6bc: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200b6c0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b6c4: 9f c0 40 00 call %g1 200b6c8: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 200b6cc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6d0: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b6d4: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6d8: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b6dc: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b6e0: 40 00 07 82 call 200d4e8 200b6e4: 94 10 00 11 mov %l1, %o2 200b6e8: 81 c7 e0 08 ret 200b6ec: 81 e8 00 00 restore =============================================================================== 02007838 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007838: 9d e3 bf 98 save %sp, -104, %sp 200783c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007840: 92 10 00 18 mov %i0, %o1 2007844: 90 12 23 04 or %o0, 0x304, %o0 2007848: 40 00 07 c8 call 2009768 <_Objects_Get> 200784c: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007850: c2 07 bf fc ld [ %fp + -4 ], %g1 2007854: 80 a0 60 00 cmp %g1, 0 2007858: 12 80 00 24 bne 20078e8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 200785c: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007860: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007864: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007868: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 200786c: 80 88 80 01 btst %g2, %g1 2007870: 22 80 00 0b be,a 200789c <_Rate_monotonic_Timeout+0x64> 2007874: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007878: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 200787c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007880: 80 a0 80 01 cmp %g2, %g1 2007884: 32 80 00 06 bne,a 200789c <_Rate_monotonic_Timeout+0x64> 2007888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200788c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007890: 40 00 09 19 call 2009cf4 <_Thread_Clear_state> 2007894: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007898: 30 80 00 06 b,a 20078b0 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 200789c: 80 a0 60 01 cmp %g1, 1 20078a0: 12 80 00 0d bne 20078d4 <_Rate_monotonic_Timeout+0x9c> 20078a4: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 20078a8: 82 10 20 03 mov 3, %g1 20078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 20078b0: 7f ff fe 66 call 2007248 <_Rate_monotonic_Initiate_statistics> 20078b4: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20078b8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20078bc: 11 00 80 75 sethi %hi(0x201d400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20078c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20078c4: 90 12 21 40 or %o0, 0x140, %o0 20078c8: 40 00 0f 21 call 200b54c <_Watchdog_Insert> 20078cc: 92 04 20 10 add %l0, 0x10, %o1 20078d0: 30 80 00 02 b,a 20078d8 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 20078d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 20078d8: 03 00 80 75 sethi %hi(0x201d400), %g1 20078dc: c4 00 60 78 ld [ %g1 + 0x78 ], %g2 ! 201d478 <_Thread_Dispatch_disable_level> 20078e0: 84 00 bf ff add %g2, -1, %g2 20078e4: c4 20 60 78 st %g2, [ %g1 + 0x78 ] 20078e8: 81 c7 e0 08 ret 20078ec: 81 e8 00 00 restore =============================================================================== 02007240 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007240: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007244: 03 00 80 74 sethi %hi(0x201d000), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007248: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 200724c: d2 00 61 74 ld [ %g1 + 0x174 ], %o1 if ((!the_tod) || 2007250: 80 a4 20 00 cmp %l0, 0 2007254: 02 80 00 2b be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007258: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 200725c: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007260: 40 00 46 f3 call 2018e2c <.udiv> 2007264: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007268: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200726c: 80 a0 40 08 cmp %g1, %o0 2007270: 1a 80 00 24 bcc 2007300 <_TOD_Validate+0xc0> 2007274: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 2007278: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 200727c: 80 a0 60 3b cmp %g1, 0x3b 2007280: 18 80 00 20 bgu 2007300 <_TOD_Validate+0xc0> 2007284: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007288: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 200728c: 80 a0 60 3b cmp %g1, 0x3b 2007290: 18 80 00 1c bgu 2007300 <_TOD_Validate+0xc0> 2007294: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007298: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200729c: 80 a0 60 17 cmp %g1, 0x17 20072a0: 18 80 00 18 bgu 2007300 <_TOD_Validate+0xc0> 20072a4: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20072a8: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 20072ac: 80 a0 60 00 cmp %g1, 0 20072b0: 02 80 00 14 be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN 20072b4: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 20072b8: 18 80 00 12 bgu 2007300 <_TOD_Validate+0xc0> 20072bc: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20072c0: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 20072c4: 80 a0 e7 c3 cmp %g3, 0x7c3 20072c8: 08 80 00 0e bleu 2007300 <_TOD_Validate+0xc0> 20072cc: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20072d0: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20072d4: 80 a0 a0 00 cmp %g2, 0 20072d8: 02 80 00 0a be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN 20072dc: 80 88 e0 03 btst 3, %g3 20072e0: 07 00 80 6f sethi %hi(0x201bc00), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20072e4: 12 80 00 03 bne 20072f0 <_TOD_Validate+0xb0> 20072e8: 86 10 e1 a0 or %g3, 0x1a0, %g3 ! 201bda0 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20072ec: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20072f0: 83 28 60 02 sll %g1, 2, %g1 20072f4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20072f8: 80 a0 40 02 cmp %g1, %g2 20072fc: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 2007300: 81 c7 e0 08 ret 2007304: 81 e8 00 00 restore =============================================================================== 02007d84 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2007d84: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 2007d88: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2007d8c: 40 00 04 36 call 2008e64 <_Thread_Set_transient> 2007d90: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2007d94: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007d98: 80 a0 40 19 cmp %g1, %i1 2007d9c: 02 80 00 05 be 2007db0 <_Thread_Change_priority+0x2c> 2007da0: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 2007da4: 90 10 00 18 mov %i0, %o0 2007da8: 40 00 03 b2 call 2008c70 <_Thread_Set_priority> 2007dac: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2007db0: 7f ff e9 04 call 20021c0 2007db4: 01 00 00 00 nop 2007db8: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2007dbc: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 2007dc0: 80 a6 60 04 cmp %i1, 4 2007dc4: 02 80 00 10 be 2007e04 <_Thread_Change_priority+0x80> 2007dc8: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2007dcc: 80 a4 60 00 cmp %l1, 0 2007dd0: 12 80 00 03 bne 2007ddc <_Thread_Change_priority+0x58> <== NEVER TAKEN 2007dd4: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2007dd8: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 2007ddc: 7f ff e8 fd call 20021d0 2007de0: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2007de4: 03 00 00 ef sethi %hi(0x3bc00), %g1 2007de8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2007dec: 80 8e 40 01 btst %i1, %g1 2007df0: 02 80 00 5c be 2007f60 <_Thread_Change_priority+0x1dc> 2007df4: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2007df8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2007dfc: 40 00 03 70 call 2008bbc <_Thread_queue_Requeue> 2007e00: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2007e04: 80 a4 60 00 cmp %l1, 0 2007e08: 12 80 00 1c bne 2007e78 <_Thread_Change_priority+0xf4> <== NEVER TAKEN 2007e0c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2007e10: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2007e14: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2007e18: c6 10 40 00 lduh [ %g1 ], %g3 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2007e1c: c0 24 20 10 clr [ %l0 + 0x10 ] 2007e20: 84 10 c0 02 or %g3, %g2, %g2 2007e24: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2007e28: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e2c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2007e30: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2 _Priority_bit_map_Add( &the_thread->Priority_map ); if ( prepend_it ) 2007e34: 80 8e a0 ff btst 0xff, %i2 2007e38: 84 10 c0 02 or %g3, %g2, %g2 2007e3c: c4 30 62 cc sth %g2, [ %g1 + 0x2cc ] 2007e40: 02 80 00 08 be 2007e60 <_Thread_Change_priority+0xdc> 2007e44: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2007e48: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2007e4c: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2007e50: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 2007e54: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 2007e58: 10 80 00 08 b 2007e78 <_Thread_Change_priority+0xf4> 2007e5c: e0 20 a0 04 st %l0, [ %g2 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007e60: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 2007e64: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 2007e68: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 2007e6c: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 2007e70: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 2007e74: c4 24 20 04 st %g2, [ %l0 + 4 ] _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level ); 2007e78: 7f ff e8 d6 call 20021d0 2007e7c: 90 10 00 18 mov %i0, %o0 2007e80: 7f ff e8 d0 call 20021c0 2007e84: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first; 2007e88: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e8c: da 00 61 84 ld [ %g1 + 0x184 ], %o5 ! 2014d84 <_Thread_Ready_chain> RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2007e90: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e94: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2 ! 2014ecc <_Priority_Major_bit_map> 2007e98: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e9c: 85 28 a0 10 sll %g2, 0x10, %g2 2007ea0: 87 30 a0 10 srl %g2, 0x10, %g3 2007ea4: 80 a0 e0 ff cmp %g3, 0xff 2007ea8: 18 80 00 05 bgu 2007ebc <_Thread_Change_priority+0x138> 2007eac: 82 10 60 90 or %g1, 0x90, %g1 2007eb0: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 2007eb4: 10 80 00 04 b 2007ec4 <_Thread_Change_priority+0x140> 2007eb8: 84 00 a0 08 add %g2, 8, %g2 2007ebc: 85 30 a0 18 srl %g2, 0x18, %g2 2007ec0: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2007ec4: 83 28 a0 10 sll %g2, 0x10, %g1 2007ec8: 07 00 80 53 sethi %hi(0x2014c00), %g3 2007ecc: 83 30 60 0f srl %g1, 0xf, %g1 2007ed0: 86 10 e3 40 or %g3, 0x340, %g3 2007ed4: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 2007ed8: 03 00 80 4e sethi %hi(0x2013800), %g1 2007edc: 87 28 e0 10 sll %g3, 0x10, %g3 2007ee0: 89 30 e0 10 srl %g3, 0x10, %g4 2007ee4: 80 a1 20 ff cmp %g4, 0xff 2007ee8: 18 80 00 05 bgu 2007efc <_Thread_Change_priority+0x178> 2007eec: 82 10 60 90 or %g1, 0x90, %g1 2007ef0: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 2007ef4: 10 80 00 04 b 2007f04 <_Thread_Change_priority+0x180> 2007ef8: 82 00 60 08 add %g1, 8, %g1 2007efc: 87 30 e0 18 srl %g3, 0x18, %g3 2007f00: c2 08 40 03 ldub [ %g1 + %g3 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 2007f04: 83 28 60 10 sll %g1, 0x10, %g1 2007f08: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007f0c: 85 28 a0 10 sll %g2, 0x10, %g2 2007f10: 85 30 a0 0c srl %g2, 0xc, %g2 2007f14: 84 00 40 02 add %g1, %g2, %g2 2007f18: 83 28 a0 02 sll %g2, 2, %g1 2007f1c: 85 28 a0 04 sll %g2, 4, %g2 2007f20: 84 20 80 01 sub %g2, %g1, %g2 * ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) 2007f24: c6 03 40 02 ld [ %o5 + %g2 ], %g3 2007f28: 03 00 80 54 sethi %hi(0x2015000), %g1 2007f2c: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2007f30: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() && 2007f34: 80 a0 80 03 cmp %g2, %g3 2007f38: 02 80 00 08 be 2007f58 <_Thread_Change_priority+0x1d4> 2007f3c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 2007f40: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2007f44: 80 a0 a0 00 cmp %g2, 0 2007f48: 02 80 00 04 be 2007f58 <_Thread_Change_priority+0x1d4> 2007f4c: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2007f50: 84 10 20 01 mov 1, %g2 ! 1 2007f54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2007f58: 7f ff e8 9e call 20021d0 2007f5c: 81 e8 00 00 restore 2007f60: 81 c7 e0 08 ret 2007f64: 81 e8 00 00 restore =============================================================================== 02007f68 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) { 2007f68: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 2007f6c: 7f ff e8 95 call 20021c0 2007f70: a0 10 00 18 mov %i0, %l0 2007f74: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 2007f78: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & state ) { 2007f7c: 80 8e 40 01 btst %i1, %g1 2007f80: 02 80 00 2f be 200803c <_Thread_Clear_state+0xd4> 2007f84: 01 00 00 00 nop RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear); 2007f88: b2 28 40 19 andn %g1, %i1, %i1 current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) { 2007f8c: 80 a6 60 00 cmp %i1, 0 2007f90: 12 80 00 2b bne 200803c <_Thread_Clear_state+0xd4> 2007f94: f2 24 20 10 st %i1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2007f98: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2007f9c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2007fa0: c6 10 40 00 lduh [ %g1 ], %g3 2007fa4: 84 10 c0 02 or %g3, %g2, %g2 2007fa8: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2007fac: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007fb0: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2007fb4: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2 2007fb8: 84 10 c0 02 or %g3, %g2, %g2 2007fbc: c4 30 62 cc sth %g2, [ %g1 + 0x2cc ] _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 2007fc0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007fc4: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 2007fc8: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 2007fcc: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 2007fd0: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 2007fd4: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 2007fd8: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 2007fdc: 7f ff e8 7d call 20021d0 2007fe0: 01 00 00 00 nop 2007fe4: 7f ff e8 77 call 20021c0 2007fe8: 01 00 00 00 nop * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 2007fec: 03 00 80 54 sethi %hi(0x2015000), %g1 2007ff0: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 2007ff4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2007ff8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 2007ffc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 2008000: 80 a0 80 03 cmp %g2, %g3 2008004: 1a 80 00 0e bcc 200803c <_Thread_Clear_state+0xd4> 2008008: 01 00 00 00 nop _Thread_Heir = the_thread; 200800c: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 2008010: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2008014: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 2008018: 80 a0 60 00 cmp %g1, 0 200801c: 32 80 00 05 bne,a 2008030 <_Thread_Clear_state+0xc8> 2008020: 84 10 20 01 mov 1, %g2 2008024: 80 a0 a0 00 cmp %g2, 0 2008028: 12 80 00 05 bne 200803c <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN 200802c: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 2008030: 03 00 80 54 sethi %hi(0x2015000), %g1 2008034: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 2008038: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 200803c: 7f ff e8 65 call 20021d0 2008040: 81 e8 00 00 restore =============================================================================== 020081f0 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 20081f0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20081f4: 90 10 00 18 mov %i0, %o0 20081f8: 40 00 00 6e call 20083b0 <_Thread_Get> 20081fc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008200: c2 07 bf fc ld [ %fp + -4 ], %g1 2008204: 80 a0 60 00 cmp %g1, 0 2008208: 12 80 00 08 bne 2008228 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 200820c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008210: 7f ff ff 56 call 2007f68 <_Thread_Clear_state> 2008214: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 2008218: 03 00 80 53 sethi %hi(0x2014c00), %g1 200821c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2008220: 84 00 bf ff add %g2, -1, %g2 2008224: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2008228: 81 c7 e0 08 ret 200822c: 81 e8 00 00 restore =============================================================================== 02008230 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008230: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008234: 2d 00 80 54 sethi %hi(0x2015000), %l6 2008238: 82 15 a0 8c or %l6, 0x8c, %g1 ! 201508c <_Per_CPU_Information> _ISR_Disable( level ); 200823c: 7f ff e7 e1 call 20021c0 2008240: e0 00 60 0c ld [ %g1 + 0xc ], %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008244: 25 00 80 53 sethi %hi(0x2014c00), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 2008248: 37 00 80 53 sethi %hi(0x2014c00), %i3 200824c: b8 10 20 01 mov 1, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008250: 3b 00 80 53 sethi %hi(0x2014c00), %i5 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008254: aa 07 bf f8 add %fp, -8, %l5 _Timestamp_Subtract( 2008258: a8 07 bf f0 add %fp, -16, %l4 200825c: a4 14 a2 dc or %l2, 0x2dc, %l2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008260: 2f 00 80 53 sethi %hi(0x2014c00), %l7 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008264: 10 80 00 39 b 2008348 <_Thread_Dispatch+0x118> 2008268: 27 00 80 53 sethi %hi(0x2014c00), %l3 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 200826c: f8 26 e2 28 st %i4, [ %i3 + 0x228 ] _Thread_Dispatch_necessary = false; 2008270: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008274: 80 a4 40 10 cmp %l1, %l0 2008278: 02 80 00 39 be 200835c <_Thread_Dispatch+0x12c> 200827c: e2 20 60 0c st %l1, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008280: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008284: 80 a0 60 01 cmp %g1, 1 2008288: 12 80 00 03 bne 2008294 <_Thread_Dispatch+0x64> 200828c: c2 07 61 88 ld [ %i5 + 0x188 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008290: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Enable( level ); 2008294: 7f ff e7 cf call 20021d0 2008298: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 200829c: 40 00 0d f4 call 200ba6c <_TOD_Get_uptime> 20082a0: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 20082a4: 90 10 00 12 mov %l2, %o0 20082a8: 92 10 00 15 mov %l5, %o1 20082ac: 40 00 03 be call 20091a4 <_Timespec_Subtract> 20082b0: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 20082b4: 90 04 20 84 add %l0, 0x84, %o0 20082b8: 40 00 03 a2 call 2009140 <_Timespec_Add_to> 20082bc: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 20082c0: c2 07 bf f8 ld [ %fp + -8 ], %g1 20082c4: c2 24 80 00 st %g1, [ %l2 ] 20082c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20082cc: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20082d0: c2 05 e2 b0 ld [ %l7 + 0x2b0 ], %g1 20082d4: 80 a0 60 00 cmp %g1, 0 20082d8: 02 80 00 06 be 20082f0 <_Thread_Dispatch+0xc0> <== NEVER TAKEN 20082dc: 90 10 00 10 mov %l0, %o0 executing->libc_reent = *_Thread_libc_reent; 20082e0: c4 00 40 00 ld [ %g1 ], %g2 20082e4: c4 24 21 5c st %g2, [ %l0 + 0x15c ] *_Thread_libc_reent = heir->libc_reent; 20082e8: c4 04 61 5c ld [ %l1 + 0x15c ], %g2 20082ec: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 20082f0: 40 00 04 5d call 2009464 <_User_extensions_Thread_switch> 20082f4: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 20082f8: 90 04 20 d0 add %l0, 0xd0, %o0 20082fc: 40 00 05 86 call 2009914 <_CPU_Context_switch> 2008300: 92 04 60 d0 add %l1, 0xd0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008304: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 2008308: 80 a0 60 00 cmp %g1, 0 200830c: 02 80 00 0c be 200833c <_Thread_Dispatch+0x10c> 2008310: d0 04 e2 ac ld [ %l3 + 0x2ac ], %o0 2008314: 80 a4 00 08 cmp %l0, %o0 2008318: 02 80 00 09 be 200833c <_Thread_Dispatch+0x10c> 200831c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008320: 02 80 00 04 be 2008330 <_Thread_Dispatch+0x100> 2008324: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008328: 40 00 05 41 call 200982c <_CPU_Context_save_fp> 200832c: 90 02 21 58 add %o0, 0x158, %o0 _Context_Restore_fp( &executing->fp_context ); 2008330: 40 00 05 5c call 20098a0 <_CPU_Context_restore_fp> 2008334: 90 04 21 58 add %l0, 0x158, %o0 _Thread_Allocated_fp = executing; 2008338: e0 24 e2 ac st %l0, [ %l3 + 0x2ac ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 200833c: 82 15 a0 8c or %l6, 0x8c, %g1 _ISR_Disable( level ); 2008340: 7f ff e7 a0 call 20021c0 2008344: e0 00 60 0c ld [ %g1 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008348: 82 15 a0 8c or %l6, 0x8c, %g1 200834c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008350: 80 a0 a0 00 cmp %g2, 0 2008354: 32 bf ff c6 bne,a 200826c <_Thread_Dispatch+0x3c> 2008358: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 200835c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008360: c0 20 62 28 clr [ %g1 + 0x228 ] ! 2014e28 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 2008364: 7f ff e7 9b call 20021d0 2008368: 01 00 00 00 nop _API_extensions_Run_postswitch(); 200836c: 7f ff f9 8b call 2006998 <_API_extensions_Run_postswitch> 2008370: 01 00 00 00 nop } 2008374: 81 c7 e0 08 ret 2008378: 81 e8 00 00 restore =============================================================================== 020083b0 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 20083b0: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 20083b4: 80 a2 20 00 cmp %o0, 0 20083b8: 12 80 00 0a bne 20083e0 <_Thread_Get+0x30> 20083bc: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 20083c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20083c4: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 20083c8: 84 00 a0 01 inc %g2 20083cc: c4 20 62 28 st %g2, [ %g1 + 0x228 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 20083d0: 03 00 80 54 sethi %hi(0x2015000), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 20083d4: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 20083d8: 81 c3 e0 08 retl 20083dc: d0 00 60 98 ld [ %g1 + 0x98 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 20083e0: 87 32 20 18 srl %o0, 0x18, %g3 20083e4: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20083e8: 84 00 ff ff add %g3, -1, %g2 20083ec: 80 a0 a0 02 cmp %g2, 2 20083f0: 28 80 00 16 bleu,a 2008448 <_Thread_Get+0x98> 20083f4: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 20083f8: 82 10 20 01 mov 1, %g1 20083fc: 10 80 00 09 b 2008420 <_Thread_Get+0x70> 2008400: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 2008404: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008408: 88 11 21 8c or %g4, 0x18c, %g4 ! 2014d8c <_Objects_Information_table> 200840c: c6 01 00 03 ld [ %g4 + %g3 ], %g3 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 2008410: 80 a0 e0 00 cmp %g3, 0 2008414: 32 80 00 05 bne,a 2008428 <_Thread_Get+0x78> <== ALWAYS TAKEN 2008418: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 200841c: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 2008420: 81 c3 e0 08 retl 2008424: 90 10 20 00 clr %o0 } #endif information = api_information[ the_class ]; if ( !information ) { 2008428: 80 a2 20 00 cmp %o0, 0 200842c: 12 80 00 04 bne 200843c <_Thread_Get+0x8c> 2008430: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 2008434: 81 c3 e0 08 retl 2008438: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 200843c: 82 13 c0 00 mov %o7, %g1 2008440: 7f ff fd 67 call 20079dc <_Objects_Get> 2008444: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 2008448: 80 a0 a0 01 cmp %g2, 1 200844c: 22 bf ff ee be,a 2008404 <_Thread_Get+0x54> 2008450: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 2008454: 10 bf ff ea b 20083fc <_Thread_Get+0x4c> 2008458: 82 10 20 01 mov 1, %g1 =============================================================================== 0200d818 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200d818: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200d81c: 03 00 80 54 sethi %hi(0x2015000), %g1 200d820: e0 00 60 98 ld [ %g1 + 0x98 ], %l0 ! 2015098 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200d824: 3f 00 80 36 sethi %hi(0x200d800), %i7 200d828: be 17 e0 18 or %i7, 0x18, %i7 ! 200d818 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200d82c: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0 _ISR_Set_level(level); 200d830: 7f ff d2 68 call 20021d0 200d834: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d838: 03 00 80 52 sethi %hi(0x2014800), %g1 doneConstructors = 1; 200d83c: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200d840: e2 08 62 dc ldub [ %g1 + 0x2dc ], %l1 doneConstructors = 1; 200d844: c4 28 62 dc stb %g2, [ %g1 + 0x2dc ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200d848: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 200d84c: 80 a0 60 00 cmp %g1, 0 200d850: 02 80 00 0c be 200d880 <_Thread_Handler+0x68> 200d854: 03 00 80 53 sethi %hi(0x2014c00), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200d858: d0 00 62 ac ld [ %g1 + 0x2ac ], %o0 ! 2014eac <_Thread_Allocated_fp> 200d85c: 80 a4 00 08 cmp %l0, %o0 200d860: 02 80 00 08 be 200d880 <_Thread_Handler+0x68> 200d864: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200d868: 22 80 00 06 be,a 200d880 <_Thread_Handler+0x68> 200d86c: e0 20 62 ac st %l0, [ %g1 + 0x2ac ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200d870: 7f ff ef ef call 200982c <_CPU_Context_save_fp> 200d874: 90 02 21 58 add %o0, 0x158, %o0 _Thread_Allocated_fp = executing; 200d878: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d87c: e0 20 62 ac st %l0, [ %g1 + 0x2ac ] ! 2014eac <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200d880: 7f ff ee 89 call 20092a4 <_User_extensions_Thread_begin> 200d884: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200d888: 7f ff ea bd call 200837c <_Thread_Enable_dispatch> 200d88c: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200d890: 80 a4 60 00 cmp %l1, 0 200d894: 32 80 00 05 bne,a 200d8a8 <_Thread_Handler+0x90> 200d898: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 INIT_NAME (); 200d89c: 40 00 1a 3d call 2014190 <_init> 200d8a0: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200d8a4: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 200d8a8: 80 a0 60 00 cmp %g1, 0 200d8ac: 12 80 00 06 bne 200d8c4 <_Thread_Handler+0xac> <== NEVER TAKEN 200d8b0: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200d8b4: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 200d8b8: 9f c0 40 00 call %g1 200d8bc: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200d8c0: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200d8c4: 7f ff ee 89 call 20092e8 <_User_extensions_Thread_exitted> 200d8c8: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200d8cc: 90 10 20 00 clr %o0 200d8d0: 92 10 20 01 mov 1, %o1 200d8d4: 7f ff e6 d7 call 2007430 <_Internal_error_Occurred> 200d8d8: 94 10 20 05 mov 5, %o2 =============================================================================== 0200845c <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 200845c: 9d e3 bf a0 save %sp, -96, %sp 2008460: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008464: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 2008468: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 200846c: c0 26 61 60 clr [ %i1 + 0x160 ] 2008470: c0 26 61 64 clr [ %i1 + 0x164 ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008474: c0 26 61 5c clr [ %i1 + 0x15c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008478: 90 10 00 19 mov %i1, %o0 200847c: 40 00 02 9f call 2008ef8 <_Thread_Stack_Allocate> 2008480: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008484: 80 a2 00 1b cmp %o0, %i3 2008488: 0a 80 00 6b bcs 2008634 <_Thread_Initialize+0x1d8> 200848c: 80 a2 20 00 cmp %o0, 0 2008490: 02 80 00 69 be 2008634 <_Thread_Initialize+0x1d8> <== NEVER TAKEN 2008494: 80 8f 20 ff btst 0xff, %i4 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008498: c2 06 60 cc ld [ %i1 + 0xcc ], %g1 the_stack->size = size; 200849c: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20084a0: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 20084a4: 02 80 00 07 be 20084c0 <_Thread_Initialize+0x64> 20084a8: a2 10 20 00 clr %l1 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 20084ac: 40 00 04 c2 call 20097b4 <_Workspace_Allocate> 20084b0: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 20084b4: a2 92 20 00 orcc %o0, 0, %l1 20084b8: 02 80 00 3e be 20085b0 <_Thread_Initialize+0x154> 20084bc: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20084c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20084c4: d0 00 62 bc ld [ %g1 + 0x2bc ], %o0 ! 2014ebc <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 20084c8: e2 26 61 58 st %l1, [ %i1 + 0x158 ] the_thread->Start.fp_context = fp_area; 20084cc: e2 26 60 c8 st %l1, [ %i1 + 0xc8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20084d0: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 20084d4: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 20084d8: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 20084dc: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20084e0: 80 a2 20 00 cmp %o0, 0 20084e4: 02 80 00 08 be 2008504 <_Thread_Initialize+0xa8> 20084e8: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 20084ec: 90 02 20 01 inc %o0 20084f0: 40 00 04 b1 call 20097b4 <_Workspace_Allocate> 20084f4: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 20084f8: b6 92 20 00 orcc %o0, 0, %i3 20084fc: 22 80 00 2e be,a 20085b4 <_Thread_Initialize+0x158> 2008500: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008504: 80 a6 e0 00 cmp %i3, 0 2008508: 02 80 00 0b be 2008534 <_Thread_Initialize+0xd8> 200850c: f6 26 61 68 st %i3, [ %i1 + 0x168 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008510: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008514: c4 00 62 bc ld [ %g1 + 0x2bc ], %g2 ! 2014ebc <_Thread_Maximum_extensions> 2008518: 10 80 00 04 b 2008528 <_Thread_Initialize+0xcc> 200851c: 82 10 20 00 clr %g1 2008520: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 2008524: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008528: 80 a0 40 02 cmp %g1, %g2 200852c: 08 bf ff fd bleu 2008520 <_Thread_Initialize+0xc4> 2008530: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008534: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 2008538: 90 10 00 19 mov %i1, %o0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200853c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ] the_thread->Start.budget_callout = budget_callout; 2008540: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 2008544: 92 10 00 1d mov %i5, %o1 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008548: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200854c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008550: e4 2e 60 ac stb %l2, [ %i1 + 0xac ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008554: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] the_thread->current_state = STATES_DORMANT; 2008558: 82 10 20 01 mov 1, %g1 the_thread->Wait.queue = NULL; 200855c: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 2008560: c2 26 60 10 st %g1, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008564: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2008568: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 200856c: 40 00 01 c1 call 2008c70 <_Thread_Set_priority> 2008570: fa 26 60 bc st %i5, [ %i1 + 0xbc ] _Thread_Stack_Free( the_thread ); return false; } 2008574: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008578: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 200857c: c0 26 60 84 clr [ %i1 + 0x84 ] 2008580: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008584: 83 28 60 02 sll %g1, 2, %g1 2008588: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200858c: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008590: 90 10 00 19 mov %i1, %o0 2008594: 40 00 03 77 call 2009370 <_User_extensions_Thread_create> 2008598: b0 10 20 01 mov 1, %i0 if ( extension_status ) 200859c: 80 8a 20 ff btst 0xff, %o0 20085a0: 22 80 00 05 be,a 20085b4 <_Thread_Initialize+0x158> 20085a4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20085a8: 81 c7 e0 08 ret 20085ac: 81 e8 00 00 restore return true; failed: if ( the_thread->libc_reent ) 20085b0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20085b4: 80 a2 20 00 cmp %o0, 0 20085b8: 22 80 00 05 be,a 20085cc <_Thread_Initialize+0x170> 20085bc: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 _Workspace_Free( the_thread->libc_reent ); 20085c0: 40 00 04 86 call 20097d8 <_Workspace_Free> 20085c4: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 20085c8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 20085cc: 80 a2 20 00 cmp %o0, 0 20085d0: 22 80 00 05 be,a 20085e4 <_Thread_Initialize+0x188> 20085d4: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 20085d8: 40 00 04 80 call 20097d8 <_Workspace_Free> 20085dc: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 20085e0: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 20085e4: 80 a2 20 00 cmp %o0, 0 20085e8: 02 80 00 05 be 20085fc <_Thread_Initialize+0x1a0> <== ALWAYS TAKEN 20085ec: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 20085f0: 40 00 04 7a call 20097d8 <_Workspace_Free> <== NOT EXECUTED 20085f4: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 20085f8: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 20085fc: 02 80 00 05 be 2008610 <_Thread_Initialize+0x1b4> 2008600: 80 a4 60 00 cmp %l1, 0 (void) _Workspace_Free( extensions_area ); 2008604: 40 00 04 75 call 20097d8 <_Workspace_Free> 2008608: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) 200860c: 80 a4 60 00 cmp %l1, 0 2008610: 02 80 00 05 be 2008624 <_Thread_Initialize+0x1c8> 2008614: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( fp_area ); 2008618: 40 00 04 70 call 20097d8 <_Workspace_Free> 200861c: 90 10 00 11 mov %l1, %o0 #endif _Thread_Stack_Free( the_thread ); 2008620: 90 10 00 19 mov %i1, %o0 2008624: 40 00 02 4c call 2008f54 <_Thread_Stack_Free> 2008628: b0 10 20 00 clr %i0 return false; 200862c: 81 c7 e0 08 ret 2008630: 81 e8 00 00 restore } 2008634: 81 c7 e0 08 ret 2008638: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200c274 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200c274: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200c278: 7f ff d8 4e call 20023b0 200c27c: a0 10 00 18 mov %i0, %l0 200c280: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 200c284: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200c288: 80 88 60 02 btst 2, %g1 200c28c: 02 80 00 2e be 200c344 <_Thread_Resume+0xd0> <== NEVER TAKEN 200c290: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200c294: 80 a0 60 00 cmp %g1, 0 200c298: 12 80 00 2b bne 200c344 <_Thread_Resume+0xd0> 200c29c: c2 24 20 10 st %g1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 200c2a0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200c2a4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 200c2a8: c6 10 40 00 lduh [ %g1 ], %g3 200c2ac: 84 10 c0 02 or %g3, %g2, %g2 200c2b0: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 200c2b4: 03 00 80 62 sethi %hi(0x2018800), %g1 200c2b8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 200c2bc: c4 10 63 9c lduh [ %g1 + 0x39c ], %g2 200c2c0: 84 10 c0 02 or %g3, %g2, %g2 200c2c4: c4 30 63 9c sth %g2, [ %g1 + 0x39c ] _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 200c2c8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200c2cc: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 200c2d0: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 200c2d4: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 200c2d8: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 200c2dc: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 200c2e0: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 200c2e4: 7f ff d8 37 call 20023c0 200c2e8: 01 00 00 00 nop 200c2ec: 7f ff d8 31 call 20023b0 200c2f0: 01 00 00 00 nop if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 200c2f4: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c2f8: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information> 200c2fc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200c300: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 200c304: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 200c308: 80 a0 80 03 cmp %g2, %g3 200c30c: 1a 80 00 0e bcc 200c344 <_Thread_Resume+0xd0> 200c310: 01 00 00 00 nop _Thread_Heir = the_thread; 200c314: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200c318: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200c31c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 200c320: 80 a0 60 00 cmp %g1, 0 200c324: 32 80 00 05 bne,a 200c338 <_Thread_Resume+0xc4> 200c328: 84 10 20 01 mov 1, %g2 200c32c: 80 a0 a0 00 cmp %g2, 0 200c330: 12 80 00 05 bne 200c344 <_Thread_Resume+0xd0> <== ALWAYS TAKEN 200c334: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200c338: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c33c: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information> 200c340: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 200c344: 7f ff d8 1f call 20023c0 200c348: 81 e8 00 00 restore =============================================================================== 02009098 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) { 2009098: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 200909c: 23 00 80 54 sethi %hi(0x2015000), %l1 20090a0: a2 14 60 8c or %l1, 0x8c, %l1 ! 201508c <_Per_CPU_Information> 20090a4: e0 04 60 0c ld [ %l1 + 0xc ], %l0 ready = executing->ready; _ISR_Disable( level ); 20090a8: 7f ff e4 46 call 20021c0 20090ac: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 20090b0: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last); 20090b4: c2 04 a0 08 ld [ %l2 + 8 ], %g1 if ( !_Chain_Has_only_one_node( ready ) ) { 20090b8: c4 04 80 00 ld [ %l2 ], %g2 20090bc: 80 a0 80 01 cmp %g2, %g1 20090c0: 22 80 00 19 be,a 2009124 <_Thread_Yield_processor+0x8c> 20090c4: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 20090c8: c6 04 00 00 ld [ %l0 ], %g3 previous = the_node->previous; 20090cc: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; previous->next = next; 20090d0: c6 20 80 00 st %g3, [ %g2 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 20090d4: c4 20 e0 04 st %g2, [ %g3 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 20090d8: 84 04 a0 04 add %l2, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 20090dc: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 20090e0: e0 24 a0 08 st %l0, [ %l2 + 8 ] old_last_node->next = the_node; 20090e4: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last_node; 20090e8: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 20090ec: 7f ff e4 39 call 20021d0 20090f0: 01 00 00 00 nop 20090f4: 7f ff e4 33 call 20021c0 20090f8: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 20090fc: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 2009100: 80 a4 00 01 cmp %l0, %g1 2009104: 12 80 00 04 bne 2009114 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN 2009108: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) ready->first; 200910c: c2 04 80 00 ld [ %l2 ], %g1 2009110: c2 24 60 10 st %g1, [ %l1 + 0x10 ] _Thread_Dispatch_necessary = true; 2009114: 03 00 80 54 sethi %hi(0x2015000), %g1 2009118: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 200911c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2009120: 30 80 00 05 b,a 2009134 <_Thread_Yield_processor+0x9c> } else if ( !_Thread_Is_heir( executing ) ) 2009124: 80 a4 00 01 cmp %l0, %g1 2009128: 02 80 00 03 be 2009134 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN 200912c: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2009130: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2009134: 7f ff e4 27 call 20021d0 2009138: 81 e8 00 00 restore =============================================================================== 02008bbc <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2008bbc: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2008bc0: 80 a6 20 00 cmp %i0, 0 2008bc4: 02 80 00 19 be 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008bc8: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2008bcc: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008bd0: 80 a4 60 01 cmp %l1, 1 2008bd4: 12 80 00 15 bne 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008bd8: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2008bdc: 7f ff e5 79 call 20021c0 2008be0: 01 00 00 00 nop 2008be4: a0 10 00 08 mov %o0, %l0 2008be8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2008bec: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008bf0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008bf4: 80 88 80 01 btst %g2, %g1 2008bf8: 02 80 00 0a be 2008c20 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2008bfc: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2008c00: 92 10 00 19 mov %i1, %o1 2008c04: 94 10 20 01 mov 1, %o2 2008c08: 40 00 0d 0f call 200c044 <_Thread_queue_Extract_priority_helper> 2008c0c: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2008c10: 90 10 00 18 mov %i0, %o0 2008c14: 92 10 00 19 mov %i1, %o1 2008c18: 7f ff ff 4b call 2008944 <_Thread_queue_Enqueue_priority> 2008c1c: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2008c20: 7f ff e5 6c call 20021d0 2008c24: 90 10 00 10 mov %l0, %o0 2008c28: 81 c7 e0 08 ret 2008c2c: 81 e8 00 00 restore =============================================================================== 02008c30 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008c30: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008c34: 90 10 00 18 mov %i0, %o0 2008c38: 7f ff fd de call 20083b0 <_Thread_Get> 2008c3c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008c40: c2 07 bf fc ld [ %fp + -4 ], %g1 2008c44: 80 a0 60 00 cmp %g1, 0 2008c48: 12 80 00 08 bne 2008c68 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 2008c4c: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2008c50: 40 00 0d 33 call 200c11c <_Thread_queue_Process_timeout> 2008c54: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2008c58: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008c5c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2008c60: 84 00 bf ff add %g2, -1, %g2 2008c64: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2008c68: 81 c7 e0 08 ret 2008c6c: 81 e8 00 00 restore =============================================================================== 0201690c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201690c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016910: 37 00 80 ef sethi %hi(0x203bc00), %i3 2016914: a4 07 bf e8 add %fp, -24, %l2 2016918: b4 07 bf f4 add %fp, -12, %i2 201691c: ac 07 bf f8 add %fp, -8, %l6 2016920: a6 07 bf ec add %fp, -20, %l3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2016924: ec 27 bf f4 st %l6, [ %fp + -12 ] the_chain->permanent_null = NULL; 2016928: c0 27 bf f8 clr [ %fp + -8 ] the_chain->last = _Chain_Head(the_chain); 201692c: f4 27 bf fc st %i2, [ %fp + -4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2016930: e6 27 bf e8 st %l3, [ %fp + -24 ] the_chain->permanent_null = NULL; 2016934: c0 27 bf ec clr [ %fp + -20 ] the_chain->last = _Chain_Head(the_chain); 2016938: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201693c: aa 06 20 30 add %i0, 0x30, %l5 _Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); 2016940: a8 10 00 12 mov %l2, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016944: 39 00 80 ef sethi %hi(0x203bc00), %i4 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016948: a2 06 20 68 add %i0, 0x68, %l1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 201694c: ba 06 20 08 add %i0, 8, %i5 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016950: ae 06 20 40 add %i0, 0x40, %l7 Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2016954: f4 26 20 78 st %i2, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016958: c2 06 e1 a4 ld [ %i3 + 0x1a4 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 201695c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016960: 94 10 00 14 mov %l4, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016964: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016968: 90 10 00 15 mov %l5, %o0 201696c: 40 00 11 d6 call 201b0c4 <_Watchdog_Adjust_to_chain> 2016970: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016974: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016978: e0 07 20 f4 ld [ %i4 + 0xf4 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201697c: 80 a4 00 0a cmp %l0, %o2 2016980: 08 80 00 06 bleu 2016998 <_Timer_server_Body+0x8c> 2016984: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016988: 90 10 00 11 mov %l1, %o0 201698c: 40 00 11 ce call 201b0c4 <_Watchdog_Adjust_to_chain> 2016990: 94 10 00 14 mov %l4, %o2 2016994: 30 80 00 06 b,a 20169ac <_Timer_server_Body+0xa0> } else if ( snapshot < last_snapshot ) { 2016998: 1a 80 00 05 bcc 20169ac <_Timer_server_Body+0xa0> 201699c: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20169a0: 92 10 20 01 mov 1, %o1 20169a4: 40 00 11 a0 call 201b024 <_Watchdog_Adjust> 20169a8: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 20169ac: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20169b0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20169b4: 40 00 02 bf call 20174b0 <_Chain_Get> 20169b8: 01 00 00 00 nop if ( timer == NULL ) { 20169bc: 92 92 20 00 orcc %o0, 0, %o1 20169c0: 02 80 00 0c be 20169f0 <_Timer_server_Body+0xe4> 20169c4: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20169c8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20169cc: 80 a0 60 01 cmp %g1, 1 20169d0: 02 80 00 05 be 20169e4 <_Timer_server_Body+0xd8> 20169d4: 90 10 00 15 mov %l5, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20169d8: 80 a0 60 03 cmp %g1, 3 20169dc: 12 bf ff f5 bne 20169b0 <_Timer_server_Body+0xa4> <== NEVER TAKEN 20169e0: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20169e4: 40 00 11 ec call 201b194 <_Watchdog_Insert> 20169e8: 92 02 60 10 add %o1, 0x10, %o1 20169ec: 30 bf ff f1 b,a 20169b0 <_Timer_server_Body+0xa4> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20169f0: 7f ff e3 a8 call 200f890 20169f4: 01 00 00 00 nop tmp = ts->insert_chain; 20169f8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 if ( _Chain_Is_empty( insert_chain ) ) { 20169fc: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016a00: 80 a0 40 16 cmp %g1, %l6 2016a04: 12 80 00 04 bne 2016a14 <_Timer_server_Body+0x108> <== NEVER TAKEN 2016a08: a0 10 20 01 mov 1, %l0 ts->insert_chain = NULL; 2016a0c: c0 26 20 78 clr [ %i0 + 0x78 ] do_loop = false; 2016a10: a0 10 20 00 clr %l0 } _ISR_Enable( level ); 2016a14: 7f ff e3 a3 call 200f8a0 2016a18: 01 00 00 00 nop * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) { 2016a1c: 80 8c 20 ff btst 0xff, %l0 2016a20: 12 bf ff ce bne 2016958 <_Timer_server_Body+0x4c> <== NEVER TAKEN 2016a24: c2 07 bf e8 ld [ %fp + -24 ], %g1 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016a28: 80 a0 40 13 cmp %g1, %l3 2016a2c: 02 80 00 18 be 2016a8c <_Timer_server_Body+0x180> 2016a30: 01 00 00 00 nop /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2016a34: 7f ff e3 97 call 200f890 2016a38: 01 00 00 00 nop 2016a3c: 84 10 00 08 mov %o0, %g2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016a40: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016a44: 80 a4 00 13 cmp %l0, %l3 2016a48: 02 80 00 0e be 2016a80 <_Timer_server_Body+0x174> 2016a4c: 80 a4 20 00 cmp %l0, 0 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 2016a50: c2 04 00 00 ld [ %l0 ], %g1 the_chain->first = new_first; 2016a54: c2 27 bf e8 st %g1, [ %fp + -24 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 2016a58: 02 80 00 0a be 2016a80 <_Timer_server_Body+0x174> <== NEVER TAKEN 2016a5c: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 2016a60: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 2016a64: 7f ff e3 8f call 200f8a0 2016a68: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2016a6c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016a70: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016a74: 9f c0 40 00 call %g1 2016a78: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 2016a7c: 30 bf ff ee b,a 2016a34 <_Timer_server_Body+0x128> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016a80: 7f ff e3 88 call 200f8a0 2016a84: 90 10 00 02 mov %g2, %o0 2016a88: 30 bf ff b3 b,a 2016954 <_Timer_server_Body+0x48> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016a8c: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 2016a90: 7f ff ff 6f call 201684c <_Thread_Disable_dispatch> 2016a94: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016a98: d0 06 00 00 ld [ %i0 ], %o0 2016a9c: 40 00 0e d7 call 201a5f8 <_Thread_Set_state> 2016aa0: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016aa4: 7f ff ff 70 call 2016864 <_Timer_server_Reset_interval_system_watchdog> 2016aa8: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016aac: 7f ff ff 83 call 20168b8 <_Timer_server_Reset_tod_system_watchdog> 2016ab0: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016ab4: 40 00 0c 20 call 2019b34 <_Thread_Enable_dispatch> 2016ab8: 01 00 00 00 nop ts->active = true; 2016abc: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016ac0: 90 10 00 1d mov %i5, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016ac4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016ac8: 40 00 12 0d call 201b2fc <_Watchdog_Remove> 2016acc: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016ad0: 40 00 12 0b call 201b2fc <_Watchdog_Remove> 2016ad4: 90 10 00 17 mov %l7, %o0 2016ad8: 30 bf ff 9f b,a 2016954 <_Timer_server_Body+0x48> =============================================================================== 02016adc <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016adc: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016ae0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016ae4: 80 a0 60 00 cmp %g1, 0 2016ae8: 12 80 00 49 bne 2016c0c <_Timer_server_Schedule_operation_method+0x130> 2016aec: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2016af0: 7f ff ff 57 call 201684c <_Thread_Disable_dispatch> 2016af4: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016af8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016afc: 80 a0 60 01 cmp %g1, 1 2016b00: 12 80 00 1f bne 2016b7c <_Timer_server_Schedule_operation_method+0xa0> 2016b04: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b08: 7f ff e3 62 call 200f890 2016b0c: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016b10: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016b14: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 203bda4 <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016b18: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016b1c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016b20: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016b24: 80 a0 40 03 cmp %g1, %g3 2016b28: 02 80 00 08 be 2016b48 <_Timer_server_Schedule_operation_method+0x6c> 2016b2c: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016b30: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016b34: 80 a3 40 04 cmp %o5, %g4 2016b38: 08 80 00 03 bleu 2016b44 <_Timer_server_Schedule_operation_method+0x68> 2016b3c: 86 10 20 00 clr %g3 delta_interval -= delta; 2016b40: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016b44: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016b48: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016b4c: 7f ff e3 55 call 200f8a0 2016b50: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016b54: 90 06 20 30 add %i0, 0x30, %o0 2016b58: 40 00 11 8f call 201b194 <_Watchdog_Insert> 2016b5c: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016b60: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b64: 80 a0 60 00 cmp %g1, 0 2016b68: 12 80 00 27 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128> 2016b6c: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016b70: 7f ff ff 3d call 2016864 <_Timer_server_Reset_interval_system_watchdog> 2016b74: 90 10 00 18 mov %i0, %o0 2016b78: 30 80 00 23 b,a 2016c04 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016b7c: 12 80 00 22 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128> 2016b80: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b84: 7f ff e3 43 call 200f890 2016b88: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016b8c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016b90: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016b94: 03 00 80 ef sethi %hi(0x203bc00), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016b98: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016b9c: 80 a0 80 03 cmp %g2, %g3 2016ba0: 02 80 00 0d be 2016bd4 <_Timer_server_Schedule_operation_method+0xf8> 2016ba4: c2 00 60 f4 ld [ %g1 + 0xf4 ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016ba8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2016bac: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016bb0: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016bb4: 08 80 00 07 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4> 2016bb8: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016bbc: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 2016bc0: 80 a1 00 0d cmp %g4, %o5 2016bc4: 08 80 00 03 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 2016bc8: 86 10 20 00 clr %g3 delta_interval -= delta; 2016bcc: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016bd0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016bd4: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016bd8: 7f ff e3 32 call 200f8a0 2016bdc: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016be0: 90 06 20 68 add %i0, 0x68, %o0 2016be4: 40 00 11 6c call 201b194 <_Watchdog_Insert> 2016be8: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016bec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016bf0: 80 a0 60 00 cmp %g1, 0 2016bf4: 12 80 00 04 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128> 2016bf8: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016bfc: 7f ff ff 2f call 20168b8 <_Timer_server_Reset_tod_system_watchdog> 2016c00: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016c04: 40 00 0b cc call 2019b34 <_Thread_Enable_dispatch> 2016c08: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016c0c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016c10: 40 00 02 12 call 2017458 <_Chain_Append> 2016c14: 81 e8 00 00 restore =============================================================================== 0200b1c8 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200b1c8: c6 02 00 00 ld [ %o0 ], %g3 200b1cc: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200b1d0: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200b1d4: 80 a0 c0 02 cmp %g3, %g2 200b1d8: 14 80 00 0b bg 200b204 <_Timespec_Greater_than+0x3c> 200b1dc: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200b1e0: 80 a0 c0 02 cmp %g3, %g2 200b1e4: 06 80 00 08 bl 200b204 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 200b1e8: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200b1ec: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b1f0: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b1f4: 80 a0 80 01 cmp %g2, %g1 200b1f8: 14 80 00 03 bg 200b204 <_Timespec_Greater_than+0x3c> 200b1fc: 90 10 20 01 mov 1, %o0 200b200: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200b204: 81 c3 e0 08 retl =============================================================================== 020091ec <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 20091ec: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 20091f0: 03 00 80 50 sethi %hi(0x2014000), %g1 20091f4: 82 10 62 88 or %g1, 0x288, %g1 ! 2014288 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20091f8: 05 00 80 54 sethi %hi(0x2015000), %g2 initial_extensions = Configuration.User_extension_table; 20091fc: e6 00 60 3c ld [ %g1 + 0x3c ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009200: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 2009204: 82 10 a0 48 or %g2, 0x48, %g1 2009208: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 200920c: c0 20 60 04 clr [ %g1 + 4 ] the_chain->last = _Chain_Head(the_chain); 2009210: c2 20 60 08 st %g1, [ %g1 + 8 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2009214: c6 20 a0 48 st %g3, [ %g2 + 0x48 ] 2009218: 05 00 80 53 sethi %hi(0x2014c00), %g2 200921c: 82 10 a2 2c or %g2, 0x22c, %g1 ! 2014e2c <_User_extensions_Switches_list> 2009220: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 2009224: c0 20 60 04 clr [ %g1 + 4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2009228: c6 20 a2 2c st %g3, [ %g2 + 0x22c ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 200922c: 80 a4 e0 00 cmp %l3, 0 2009230: 02 80 00 1b be 200929c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009234: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009238: 83 2c a0 02 sll %l2, 2, %g1 200923c: a1 2c a0 04 sll %l2, 4, %l0 2009240: a0 24 00 01 sub %l0, %g1, %l0 2009244: a0 04 00 12 add %l0, %l2, %l0 2009248: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 200924c: 40 00 01 6a call 20097f4 <_Workspace_Allocate_or_fatal_error> 2009250: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009254: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009258: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 200925c: 92 10 20 00 clr %o1 2009260: 40 00 14 86 call 200e478 2009264: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009268: 10 80 00 0b b 2009294 <_User_extensions_Handler_initialization+0xa8> 200926c: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009270: 90 04 60 14 add %l1, 0x14, %o0 2009274: 92 04 c0 09 add %l3, %o1, %o1 2009278: 40 00 14 47 call 200e394 200927c: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 2009280: 90 10 00 11 mov %l1, %o0 2009284: 40 00 0c 0e call 200c2bc <_User_extensions_Add_set> 2009288: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 200928c: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009290: 80 a4 00 12 cmp %l0, %l2 2009294: 0a bf ff f7 bcs 2009270 <_User_extensions_Handler_initialization+0x84> 2009298: 93 2c 20 05 sll %l0, 5, %o1 200929c: 81 c7 e0 08 ret 20092a0: 81 e8 00 00 restore =============================================================================== 020092e8 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 20092e8: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 20092ec: 23 00 80 54 sethi %hi(0x2015000), %l1 20092f0: a2 14 60 48 or %l1, 0x48, %l1 ! 2015048 <_User_extensions_List> 20092f4: 10 80 00 08 b 2009314 <_User_extensions_Thread_exitted+0x2c> 20092f8: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 20092fc: 80 a0 60 00 cmp %g1, 0 2009300: 22 80 00 05 be,a 2009314 <_User_extensions_Thread_exitted+0x2c> 2009304: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 2009308: 9f c0 40 00 call %g1 200930c: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009310: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009314: 80 a4 00 11 cmp %l0, %l1 2009318: 32 bf ff f9 bne,a 20092fc <_User_extensions_Thread_exitted+0x14> 200931c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 2009320: 81 c7 e0 08 ret 2009324: 81 e8 00 00 restore =============================================================================== 0200b678 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b678: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b67c: 7f ff de dc call 20031ec 200b680: a0 10 00 18 mov %i0, %l0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200b684: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200b688: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b68c: 80 a0 40 11 cmp %g1, %l1 200b690: 02 80 00 1f be 200b70c <_Watchdog_Adjust+0x94> 200b694: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b698: 02 80 00 1a be 200b700 <_Watchdog_Adjust+0x88> 200b69c: a4 10 20 01 mov 1, %l2 200b6a0: 80 a6 60 01 cmp %i1, 1 200b6a4: 12 80 00 1a bne 200b70c <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b6a8: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b6ac: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b6b0: 10 80 00 07 b 200b6cc <_Watchdog_Adjust+0x54> 200b6b4: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b6b8: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b6bc: 80 a6 80 19 cmp %i2, %i1 200b6c0: 3a 80 00 05 bcc,a 200b6d4 <_Watchdog_Adjust+0x5c> 200b6c4: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b6c8: b4 26 40 1a sub %i1, %i2, %i2 break; 200b6cc: 10 80 00 10 b 200b70c <_Watchdog_Adjust+0x94> 200b6d0: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b6d4: 7f ff de ca call 20031fc 200b6d8: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b6dc: 40 00 00 92 call 200b924 <_Watchdog_Tickle> 200b6e0: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200b6e4: 7f ff de c2 call 20031ec 200b6e8: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b6ec: c2 04 00 00 ld [ %l0 ], %g1 200b6f0: 80 a0 40 11 cmp %g1, %l1 200b6f4: 02 80 00 06 be 200b70c <_Watchdog_Adjust+0x94> 200b6f8: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 200b6fc: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b700: 80 a6 a0 00 cmp %i2, 0 200b704: 32 bf ff ed bne,a 200b6b8 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b708: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 200b70c: 7f ff de bc call 20031fc 200b710: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009608 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009608: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200960c: 7f ff e2 ed call 20021c0 2009610: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 2009614: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 2009618: 80 a6 20 01 cmp %i0, 1 200961c: 22 80 00 1d be,a 2009690 <_Watchdog_Remove+0x88> 2009620: c0 24 20 08 clr [ %l0 + 8 ] 2009624: 0a 80 00 1c bcs 2009694 <_Watchdog_Remove+0x8c> 2009628: 03 00 80 53 sethi %hi(0x2014c00), %g1 200962c: 80 a6 20 03 cmp %i0, 3 2009630: 18 80 00 19 bgu 2009694 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 2009634: 01 00 00 00 nop 2009638: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200963c: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009640: c4 00 40 00 ld [ %g1 ], %g2 2009644: 80 a0 a0 00 cmp %g2, 0 2009648: 02 80 00 07 be 2009664 <_Watchdog_Remove+0x5c> 200964c: 05 00 80 53 sethi %hi(0x2014c00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009650: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009654: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 2009658: 84 00 c0 02 add %g3, %g2, %g2 200965c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009660: 05 00 80 53 sethi %hi(0x2014c00), %g2 2009664: c4 00 a3 60 ld [ %g2 + 0x360 ], %g2 ! 2014f60 <_Watchdog_Sync_count> 2009668: 80 a0 a0 00 cmp %g2, 0 200966c: 22 80 00 07 be,a 2009688 <_Watchdog_Remove+0x80> 2009670: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009674: 05 00 80 54 sethi %hi(0x2015000), %g2 2009678: c6 00 a0 94 ld [ %g2 + 0x94 ], %g3 ! 2015094 <_Per_CPU_Information+0x8> 200967c: 05 00 80 53 sethi %hi(0x2014c00), %g2 2009680: c6 20 a2 d4 st %g3, [ %g2 + 0x2d4 ] ! 2014ed4 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009684: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 2009688: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200968c: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009690: 03 00 80 53 sethi %hi(0x2014c00), %g1 2009694: c2 00 63 64 ld [ %g1 + 0x364 ], %g1 ! 2014f64 <_Watchdog_Ticks_since_boot> 2009698: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 200969c: 7f ff e2 cd call 20021d0 20096a0: 01 00 00 00 nop return( previous_state ); } 20096a4: 81 c7 e0 08 ret 20096a8: 81 e8 00 00 restore =============================================================================== 0200aeb8 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200aeb8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200aebc: 7f ff df a3 call 2002d48 200aec0: a0 10 00 18 mov %i0, %l0 200aec4: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200aec8: 11 00 80 6d sethi %hi(0x201b400), %o0 200aecc: 94 10 00 19 mov %i1, %o2 200aed0: 90 12 22 b8 or %o0, 0x2b8, %o0 200aed4: 7f ff e5 ff call 20046d0 200aed8: 92 10 00 10 mov %l0, %o1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200aedc: e2 06 40 00 ld [ %i1 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200aee0: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200aee4: 80 a4 40 19 cmp %l1, %i1 200aee8: 02 80 00 0e be 200af20 <_Watchdog_Report_chain+0x68> 200aeec: 11 00 80 6d sethi %hi(0x201b400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200aef0: 92 10 00 11 mov %l1, %o1 200aef4: 40 00 00 10 call 200af34 <_Watchdog_Report> 200aef8: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next ) 200aefc: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; 200af00: 80 a4 40 19 cmp %l1, %i1 200af04: 12 bf ff fc bne 200aef4 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200af08: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200af0c: 11 00 80 6d sethi %hi(0x201b400), %o0 200af10: 92 10 00 10 mov %l0, %o1 200af14: 7f ff e5 ef call 20046d0 200af18: 90 12 22 d0 or %o0, 0x2d0, %o0 200af1c: 30 80 00 03 b,a 200af28 <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 200af20: 7f ff e5 ec call 20046d0 200af24: 90 12 22 e0 or %o0, 0x2e0, %o0 } _ISR_Enable( level ); 200af28: 7f ff df 8c call 2002d58 200af2c: 81 e8 00 00 restore =============================================================================== 02006c7c : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006c7c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 2006c80: 90 10 00 18 mov %i0, %o0 2006c84: 40 00 01 48 call 20071a4 <_Chain_Append_with_empty_check> 2006c88: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 2006c8c: 80 8a 20 ff btst 0xff, %o0 2006c90: 02 80 00 05 be 2006ca4 <== NEVER TAKEN 2006c94: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006c98: b0 10 00 1a mov %i2, %i0 2006c9c: 7f ff fd 78 call 200627c 2006ca0: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006ca4: 81 c7 e0 08 ret <== NOT EXECUTED 2006ca8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02006cac : rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) { 2006cac: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node ); 2006cb0: 90 10 00 18 mov %i0, %o0 2006cb4: 40 00 01 63 call 2007240 <_Chain_Get_with_empty_check> 2006cb8: 92 10 00 1b mov %i3, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { 2006cbc: 80 8a 20 ff btst 0xff, %o0 2006cc0: 02 80 00 05 be 2006cd4 <== NEVER TAKEN 2006cc4: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006cc8: b0 10 00 19 mov %i1, %i0 2006ccc: 7f ff fd 6c call 200627c 2006cd0: 93 e8 00 1a restore %g0, %i2, %o1 } return sc; } 2006cd4: 81 c7 e0 08 ret <== NOT EXECUTED 2006cd8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02006cdc : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2006cdc: 9d e3 bf 98 save %sp, -104, %sp 2006ce0: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2006ce4: 10 80 00 09 b 2006d08 2006ce8: a4 07 bf fc add %fp, -4, %l2 2006cec: 92 10 20 00 clr %o1 2006cf0: 94 10 00 1a mov %i2, %o2 2006cf4: 7f ff fc fe call 20060ec 2006cf8: 96 10 00 12 mov %l2, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2006cfc: 80 a2 20 00 cmp %o0, 0 2006d00: 32 80 00 09 bne,a 2006d24 <== ALWAYS TAKEN 2006d04: e2 26 c0 00 st %l1, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2006d08: 40 00 01 63 call 2007294 <_Chain_Get> 2006d0c: 90 10 00 10 mov %l0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2006d10: a2 92 20 00 orcc %o0, 0, %l1 2006d14: 02 bf ff f6 be 2006cec 2006d18: 90 10 00 19 mov %i1, %o0 2006d1c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2006d20: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 2006d24: 81 c7 e0 08 ret 2006d28: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02006d2c : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2006d2c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 2006d30: 90 10 00 18 mov %i0, %o0 2006d34: 40 00 01 72 call 20072fc <_Chain_Prepend_with_empty_check> 2006d38: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 2006d3c: 80 8a 20 ff btst 0xff, %o0 2006d40: 02 80 00 05 be 2006d54 <== NEVER TAKEN 2006d44: 01 00 00 00 nop sc = rtems_event_send( task, events ); 2006d48: b0 10 00 1a mov %i2, %i0 2006d4c: 7f ff fd 4c call 200627c 2006d50: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 2006d54: 81 c7 e0 08 ret <== NOT EXECUTED 2006d58: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 02009108 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009108: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 200910c: 80 a6 20 00 cmp %i0, 0 2009110: 02 80 00 1a be 2009178 <== NEVER TAKEN 2009114: 21 00 80 96 sethi %hi(0x2025800), %l0 2009118: a0 14 22 60 or %l0, 0x260, %l0 ! 2025a60 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 200911c: a6 04 20 0c add %l0, 0xc, %l3 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009120: c2 04 00 00 ld [ %l0 ], %g1 2009124: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 2009128: 80 a4 a0 00 cmp %l2, 0 200912c: 12 80 00 0b bne 2009158 2009130: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009134: 10 80 00 0e b 200916c 2009138: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 200913c: 83 2c 60 02 sll %l1, 2, %g1 2009140: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009144: 80 a2 20 00 cmp %o0, 0 2009148: 02 80 00 04 be 2009158 200914c: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 2009150: 9f c6 00 00 call %i0 2009154: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009158: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 200915c: 80 a4 40 01 cmp %l1, %g1 2009160: 28 bf ff f7 bleu,a 200913c 2009164: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 2009168: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200916c: 80 a4 00 13 cmp %l0, %l3 2009170: 32 bf ff ed bne,a 2009124 2009174: c2 04 00 00 ld [ %l0 ], %g1 2009178: 81 c7 e0 08 ret 200917c: 81 e8 00 00 restore =============================================================================== 020142cc : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 20142cc: 9d e3 bf a0 save %sp, -96, %sp 20142d0: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 20142d4: 80 a4 20 00 cmp %l0, 0 20142d8: 02 80 00 1f be 2014354 20142dc: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 20142e0: 80 a6 60 00 cmp %i1, 0 20142e4: 02 80 00 1c be 2014354 20142e8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 20142ec: 80 a7 60 00 cmp %i5, 0 20142f0: 02 80 00 19 be 2014354 <== NEVER TAKEN 20142f4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20142f8: 02 80 00 32 be 20143c0 20142fc: 80 a6 a0 00 cmp %i2, 0 2014300: 02 80 00 30 be 20143c0 2014304: 80 a6 80 1b cmp %i2, %i3 2014308: 0a 80 00 13 bcs 2014354 201430c: b0 10 20 08 mov 8, %i0 2014310: 80 8e e0 07 btst 7, %i3 2014314: 12 80 00 10 bne 2014354 2014318: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 201431c: 12 80 00 0e bne 2014354 2014320: b0 10 20 09 mov 9, %i0 2014324: 03 00 80 ef sethi %hi(0x203bc00), %g1 2014328: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 203bc68 <_Thread_Dispatch_disable_level> 201432c: 84 00 a0 01 inc %g2 2014330: c4 20 60 68 st %g2, [ %g1 + 0x68 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014334: 25 00 80 ee sethi %hi(0x203b800), %l2 2014338: 40 00 12 46 call 2018c50 <_Objects_Allocate> 201433c: 90 14 a2 74 or %l2, 0x274, %o0 ! 203ba74 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014340: a2 92 20 00 orcc %o0, 0, %l1 2014344: 12 80 00 06 bne 201435c 2014348: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 201434c: 40 00 15 fa call 2019b34 <_Thread_Enable_dispatch> 2014350: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 2014354: 81 c7 e0 08 ret 2014358: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 201435c: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 2014360: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 2014364: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 2014368: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 201436c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014370: 40 00 5e dd call 202bee4 <.udiv> 2014374: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014378: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 201437c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014380: 96 10 00 1b mov %i3, %o3 2014384: a6 04 60 24 add %l1, 0x24, %l3 2014388: 40 00 0c 59 call 20174ec <_Chain_Initialize> 201438c: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014390: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014394: a4 14 a2 74 or %l2, 0x274, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014398: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201439c: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20143a0: 85 28 a0 02 sll %g2, 2, %g2 20143a4: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 20143a8: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 20143ac: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 20143b0: 40 00 15 e1 call 2019b34 <_Thread_Enable_dispatch> 20143b4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20143b8: 81 c7 e0 08 ret 20143bc: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 20143c0: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 20143c4: 81 c7 e0 08 ret 20143c8: 81 e8 00 00 restore =============================================================================== 020073b0 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 20073b0: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 20073b4: 11 00 80 74 sethi %hi(0x201d000), %o0 20073b8: 92 10 00 18 mov %i0, %o1 20073bc: 90 12 23 04 or %o0, 0x304, %o0 20073c0: 40 00 08 ea call 2009768 <_Objects_Get> 20073c4: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20073cc: 80 a0 60 00 cmp %g1, 0 20073d0: 12 80 00 66 bne 2007568 20073d4: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20073d8: 25 00 80 75 sethi %hi(0x201d400), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 20073dc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 20073e0: a4 14 a2 dc or %l2, 0x2dc, %l2 20073e4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 20073e8: 80 a0 80 01 cmp %g2, %g1 20073ec: 02 80 00 06 be 2007404 20073f0: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 20073f4: 40 00 0b 45 call 200a108 <_Thread_Enable_dispatch> 20073f8: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20073fc: 81 c7 e0 08 ret 2007400: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 2007404: 12 80 00 0e bne 200743c 2007408: 01 00 00 00 nop switch ( the_period->state ) { 200740c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007410: 80 a0 60 04 cmp %g1, 4 2007414: 18 80 00 06 bgu 200742c <== NEVER TAKEN 2007418: b0 10 20 00 clr %i0 200741c: 83 28 60 02 sll %g1, 2, %g1 2007420: 05 00 80 6c sethi %hi(0x201b000), %g2 2007424: 84 10 a3 5c or %g2, 0x35c, %g2 ! 201b35c 2007428: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 200742c: 40 00 0b 37 call 200a108 <_Thread_Enable_dispatch> 2007430: 01 00 00 00 nop return( return_value ); 2007434: 81 c7 e0 08 ret 2007438: 81 e8 00 00 restore } _ISR_Disable( level ); 200743c: 7f ff ef 26 call 20030d4 2007440: 01 00 00 00 nop 2007444: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007448: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 200744c: 80 a4 60 00 cmp %l1, 0 2007450: 12 80 00 15 bne 20074a4 2007454: 80 a4 60 02 cmp %l1, 2 _ISR_Enable( level ); 2007458: 7f ff ef 23 call 20030e4 200745c: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007460: 7f ff ff 7a call 2007248 <_Rate_monotonic_Initiate_statistics> 2007464: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007468: 82 10 20 02 mov 2, %g1 200746c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007470: 03 00 80 1e sethi %hi(0x2007800), %g1 2007474: 82 10 60 38 or %g1, 0x38, %g1 ! 2007838 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007478: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 200747c: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 2007480: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 2007484: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 2007488: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200748c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007490: 11 00 80 75 sethi %hi(0x201d400), %o0 2007494: 92 04 20 10 add %l0, 0x10, %o1 2007498: 40 00 10 2d call 200b54c <_Watchdog_Insert> 200749c: 90 12 21 40 or %o0, 0x140, %o0 20074a0: 30 80 00 1b b,a 200750c _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20074a4: 12 80 00 1e bne 200751c 20074a8: 80 a4 60 04 cmp %l1, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20074ac: 7f ff ff 83 call 20072b8 <_Rate_monotonic_Update_statistics> 20074b0: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20074b4: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 20074b8: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20074bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 20074c0: 7f ff ef 09 call 20030e4 20074c4: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 20074c8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 20074cc: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20074d0: 13 00 00 10 sethi %hi(0x4000), %o1 20074d4: 40 00 0d 64 call 200aa64 <_Thread_Set_state> 20074d8: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 20074dc: 7f ff ee fe call 20030d4 20074e0: 01 00 00 00 nop local_state = the_period->state; 20074e4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 20074e8: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 20074ec: 7f ff ee fe call 20030e4 20074f0: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20074f4: 80 a4 e0 03 cmp %l3, 3 20074f8: 12 80 00 05 bne 200750c 20074fc: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007500: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007504: 40 00 09 fc call 2009cf4 <_Thread_Clear_state> 2007508: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 200750c: 40 00 0a ff call 200a108 <_Thread_Enable_dispatch> 2007510: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007514: 81 c7 e0 08 ret 2007518: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 200751c: 12 bf ff b8 bne 20073fc <== NEVER TAKEN 2007520: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007524: 7f ff ff 65 call 20072b8 <_Rate_monotonic_Update_statistics> 2007528: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 200752c: 7f ff ee ee call 20030e4 2007530: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007534: 82 10 20 02 mov 2, %g1 2007538: 92 04 20 10 add %l0, 0x10, %o1 200753c: 11 00 80 75 sethi %hi(0x201d400), %o0 2007540: 90 12 21 40 or %o0, 0x140, %o0 ! 201d540 <_Watchdog_Ticks_chain> 2007544: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 2007548: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200754c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007550: 40 00 0f ff call 200b54c <_Watchdog_Insert> 2007554: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007558: 40 00 0a ec call 200a108 <_Thread_Enable_dispatch> 200755c: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007560: 81 c7 e0 08 ret 2007564: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2007568: b0 10 20 04 mov 4, %i0 } 200756c: 81 c7 e0 08 ret 2007570: 81 e8 00 00 restore =============================================================================== 02007574 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007574: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007578: 80 a6 60 00 cmp %i1, 0 200757c: 02 80 00 79 be 2007760 <== NEVER TAKEN 2007580: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007584: 13 00 80 6c sethi %hi(0x201b000), %o1 2007588: 9f c6 40 00 call %i1 200758c: 92 12 63 70 or %o1, 0x370, %o1 ! 201b370 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007590: 90 10 00 18 mov %i0, %o0 2007594: 13 00 80 6c sethi %hi(0x201b000), %o1 2007598: 9f c6 40 00 call %i1 200759c: 92 12 63 90 or %o1, 0x390, %o1 ! 201b390 (*print)( context, "--- Wall times are in seconds ---\n" ); 20075a0: 90 10 00 18 mov %i0, %o0 20075a4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075a8: 9f c6 40 00 call %i1 20075ac: 92 12 63 b8 or %o1, 0x3b8, %o1 ! 201b3b8 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 20075b0: 90 10 00 18 mov %i0, %o0 20075b4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075b8: 9f c6 40 00 call %i1 20075bc: 92 12 63 e0 or %o1, 0x3e0, %o1 ! 201b3e0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 20075c0: 90 10 00 18 mov %i0, %o0 20075c4: 13 00 80 6d sethi %hi(0x201b400), %o1 20075c8: 9f c6 40 00 call %i1 20075cc: 92 12 60 30 or %o1, 0x30, %o1 ! 201b430 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075d0: 3b 00 80 74 sethi %hi(0x201d000), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20075d4: 2b 00 80 6d sethi %hi(0x201b400), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075d8: 82 17 63 04 or %i5, 0x304, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 20075dc: 27 00 80 6d sethi %hi(0x201b400), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 20075e0: 35 00 80 6d sethi %hi(0x201b400), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20075e4: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20075e8: ae 07 bf a0 add %fp, -96, %l7 if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 20075ec: ac 07 bf d8 add %fp, -40, %l6 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20075f0: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20075f4: aa 15 60 80 or %l5, 0x80, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 20075f8: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20075fc: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 2007600: a6 14 e0 98 or %l3, 0x98, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007604: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007608: 10 80 00 52 b 2007750 200760c: b4 16 a0 b8 or %i2, 0xb8, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007610: 40 00 18 13 call 200d65c 2007614: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007618: 80 a2 20 00 cmp %o0, 0 200761c: 32 80 00 4c bne,a 200774c 2007620: a0 04 20 01 inc %l0 continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 2007624: 92 10 00 16 mov %l6, %o1 2007628: 40 00 18 3a call 200d710 200762c: 90 10 00 10 mov %l0, %o0 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007630: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007634: 92 10 20 05 mov 5, %o1 2007638: 40 00 00 ae call 20078f0 200763c: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007640: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007644: 92 10 00 15 mov %l5, %o1 2007648: 90 10 00 18 mov %i0, %o0 200764c: 94 10 00 10 mov %l0, %o2 2007650: 9f c6 40 00 call %i1 2007654: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007658: d2 07 bf a0 ld [ %fp + -96 ], %o1 200765c: 80 a2 60 00 cmp %o1, 0 2007660: 12 80 00 08 bne 2007680 2007664: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 2007668: 90 10 00 18 mov %i0, %o0 200766c: 13 00 80 69 sethi %hi(0x201a400), %o1 2007670: 9f c6 40 00 call %i1 2007674: 92 12 62 88 or %o1, 0x288, %o1 ! 201a688 <_rodata_start+0x158> continue; 2007678: 10 80 00 35 b 200774c 200767c: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007680: 40 00 0e 90 call 200b0c0 <_Timespec_Divide_by_integer> 2007684: 90 10 00 14 mov %l4, %o0 (*print)( context, 2007688: d0 07 bf ac ld [ %fp + -84 ], %o0 200768c: 40 00 44 1d call 2018700 <.div> 2007690: 92 10 23 e8 mov 0x3e8, %o1 2007694: 96 10 00 08 mov %o0, %o3 2007698: d0 07 bf b4 ld [ %fp + -76 ], %o0 200769c: d6 27 bf 9c st %o3, [ %fp + -100 ] 20076a0: 40 00 44 18 call 2018700 <.div> 20076a4: 92 10 23 e8 mov 0x3e8, %o1 20076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20076ac: b6 10 00 08 mov %o0, %i3 20076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20076b8: 40 00 44 12 call 2018700 <.div> 20076bc: 92 10 23 e8 mov 0x3e8, %o1 20076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4 20076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3 20076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2 20076cc: 9a 10 00 1b mov %i3, %o5 20076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20076d4: 92 10 00 13 mov %l3, %o1 20076d8: 9f c6 40 00 call %i1 20076dc: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 20076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20076e4: 94 10 00 11 mov %l1, %o2 20076e8: 40 00 0e 76 call 200b0c0 <_Timespec_Divide_by_integer> 20076ec: 90 10 00 1c mov %i4, %o0 (*print)( context, 20076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0 20076f4: 40 00 44 03 call 2018700 <.div> 20076f8: 92 10 23 e8 mov 0x3e8, %o1 20076fc: 96 10 00 08 mov %o0, %o3 2007700: d0 07 bf cc ld [ %fp + -52 ], %o0 2007704: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007708: 40 00 43 fe call 2018700 <.div> 200770c: 92 10 23 e8 mov 0x3e8, %o1 2007710: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007714: b6 10 00 08 mov %o0, %i3 2007718: d0 07 bf f4 ld [ %fp + -12 ], %o0 200771c: 92 10 23 e8 mov 0x3e8, %o1 2007720: 40 00 43 f8 call 2018700 <.div> 2007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007728: d4 07 bf c0 ld [ %fp + -64 ], %o2 200772c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007730: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007738: 92 10 00 1a mov %i2, %o1 200773c: 90 10 00 18 mov %i0, %o0 2007740: 9f c6 40 00 call %i1 2007744: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007748: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 200774c: 82 17 63 04 or %i5, 0x304, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007750: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2007754: 80 a4 00 01 cmp %l0, %g1 2007758: 08 bf ff ae bleu 2007610 200775c: 90 10 00 10 mov %l0, %o0 2007760: 81 c7 e0 08 ret 2007764: 81 e8 00 00 restore =============================================================================== 02015870 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2015870: 9d e3 bf 98 save %sp, -104, %sp 2015874: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2015878: 80 a6 60 00 cmp %i1, 0 201587c: 02 80 00 2e be 2015934 2015880: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015884: 40 00 10 b9 call 2019b68 <_Thread_Get> 2015888: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 201588c: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015890: a2 10 00 08 mov %o0, %l1 switch ( location ) { 2015894: 80 a0 60 00 cmp %g1, 0 2015898: 12 80 00 27 bne 2015934 201589c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20158a0: e0 02 21 60 ld [ %o0 + 0x160 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20158a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20158a8: 80 a0 60 00 cmp %g1, 0 20158ac: 02 80 00 24 be 201593c 20158b0: 01 00 00 00 nop if ( asr->is_enabled ) { 20158b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20158b8: 80 a0 60 00 cmp %g1, 0 20158bc: 02 80 00 15 be 2015910 20158c0: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20158c4: 7f ff e7 f3 call 200f890 20158c8: 01 00 00 00 nop *signal_set |= signals; 20158cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20158d0: b2 10 40 19 or %g1, %i1, %i1 20158d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 20158d8: 7f ff e7 f2 call 200f8a0 20158dc: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 20158e0: 03 00 80 ef sethi %hi(0x203bc00), %g1 20158e4: 82 10 62 d4 or %g1, 0x2d4, %g1 ! 203bed4 <_Per_CPU_Information> 20158e8: c4 00 60 08 ld [ %g1 + 8 ], %g2 20158ec: 80 a0 a0 00 cmp %g2, 0 20158f0: 02 80 00 0f be 201592c 20158f4: 01 00 00 00 nop 20158f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20158fc: 80 a4 40 02 cmp %l1, %g2 2015900: 12 80 00 0b bne 201592c <== NEVER TAKEN 2015904: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015908: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 201590c: 30 80 00 08 b,a 201592c rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015910: 7f ff e7 e0 call 200f890 2015914: 01 00 00 00 nop *signal_set |= signals; 2015918: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 201591c: b2 10 40 19 or %g1, %i1, %i1 2015920: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 2015924: 7f ff e7 df call 200f8a0 2015928: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 201592c: 40 00 10 82 call 2019b34 <_Thread_Enable_dispatch> 2015930: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 2015934: 81 c7 e0 08 ret 2015938: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 201593c: 40 00 10 7e call 2019b34 <_Thread_Enable_dispatch> 2015940: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2015944: 81 c7 e0 08 ret 2015948: 81 e8 00 00 restore =============================================================================== 0200d4e8 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d4e8: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d4ec: 80 a6 a0 00 cmp %i2, 0 200d4f0: 02 80 00 5a be 200d658 200d4f4: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d4f8: 03 00 80 54 sethi %hi(0x2015000), %g1 200d4fc: e2 00 60 98 ld [ %g1 + 0x98 ], %l1 ! 2015098 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d500: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d504: e0 04 61 60 ld [ %l1 + 0x160 ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d508: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d50c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d510: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d514: 80 a0 60 00 cmp %g1, 0 200d518: 02 80 00 03 be 200d524 200d51c: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d520: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d524: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d528: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d52c: 7f ff f2 04 call 2009d3c <_CPU_ISR_Get_level> 200d530: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d534: a7 2c e0 0a sll %l3, 0xa, %l3 200d538: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 200d53c: a4 14 c0 12 or %l3, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d540: 80 8e 61 00 btst 0x100, %i1 200d544: 02 80 00 06 be 200d55c 200d548: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d54c: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d550: 80 a0 00 01 cmp %g0, %g1 200d554: 82 60 3f ff subx %g0, -1, %g1 200d558: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d55c: 80 8e 62 00 btst 0x200, %i1 200d560: 02 80 00 0b be 200d58c 200d564: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d568: 80 8e 22 00 btst 0x200, %i0 200d56c: 22 80 00 07 be,a 200d588 200d570: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d574: 82 10 20 01 mov 1, %g1 200d578: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d57c: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d580: c2 00 61 88 ld [ %g1 + 0x188 ], %g1 ! 2014d88 <_Thread_Ticks_per_timeslice> 200d584: c2 24 60 78 st %g1, [ %l1 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d588: 80 8e 60 0f btst 0xf, %i1 200d58c: 02 80 00 06 be 200d5a4 200d590: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d594: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d598: 7f ff d3 0e call 20021d0 200d59c: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d5a0: 80 8e 64 00 btst 0x400, %i1 200d5a4: 02 80 00 14 be 200d5f4 200d5a8: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d5ac: c4 0c 20 08 ldub [ %l0 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d5b0: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d5b4: 80 a0 00 18 cmp %g0, %i0 200d5b8: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d5bc: 80 a0 40 02 cmp %g1, %g2 200d5c0: 22 80 00 0e be,a 200d5f8 200d5c4: 03 00 80 53 sethi %hi(0x2014c00), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d5c8: 7f ff d2 fe call 20021c0 200d5cc: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 200d5d0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d5d4: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 200d5d8: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d5dc: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d5e0: 7f ff d2 fc call 20021d0 200d5e4: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d5e8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d5ec: 80 a0 00 01 cmp %g0, %g1 200d5f0: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200d5f4: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d5f8: c4 00 63 ac ld [ %g1 + 0x3ac ], %g2 ! 2014fac <_System_state_Current> 200d5fc: 80 a0 a0 03 cmp %g2, 3 200d600: 12 80 00 16 bne 200d658 <== NEVER TAKEN 200d604: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d608: 07 00 80 54 sethi %hi(0x2015000), %g3 if ( are_signals_pending || 200d60c: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 200d610: 86 10 e0 8c or %g3, 0x8c, %g3 if ( are_signals_pending || 200d614: 12 80 00 0a bne 200d63c 200d618: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d61c: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d620: 80 a0 80 03 cmp %g2, %g3 200d624: 02 80 00 0d be 200d658 200d628: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200d62c: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d630: 80 a0 a0 00 cmp %g2, 0 200d634: 02 80 00 09 be 200d658 <== NEVER TAKEN 200d638: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200d63c: 84 10 20 01 mov 1, %g2 ! 1 200d640: 03 00 80 54 sethi %hi(0x2015000), %g1 200d644: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 200d648: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200d64c: 7f ff ea f9 call 2008230 <_Thread_Dispatch> 200d650: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200d654: 82 10 20 00 clr %g1 ! 0 } 200d658: 81 c7 e0 08 ret 200d65c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200abbc : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200abbc: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200abc0: 80 a6 60 00 cmp %i1, 0 200abc4: 02 80 00 07 be 200abe0 200abc8: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200abcc: 03 00 80 62 sethi %hi(0x2018800), %g1 200abd0: c2 08 63 f4 ldub [ %g1 + 0x3f4 ], %g1 ! 2018bf4 200abd4: 80 a6 40 01 cmp %i1, %g1 200abd8: 18 80 00 1c bgu 200ac48 200abdc: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200abe0: 80 a6 a0 00 cmp %i2, 0 200abe4: 02 80 00 19 be 200ac48 200abe8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200abec: 40 00 08 17 call 200cc48 <_Thread_Get> 200abf0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200abf4: c2 07 bf fc ld [ %fp + -4 ], %g1 200abf8: 80 a0 60 00 cmp %g1, 0 200abfc: 12 80 00 13 bne 200ac48 200ac00: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200ac04: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200ac08: 80 a6 60 00 cmp %i1, 0 200ac0c: 02 80 00 0d be 200ac40 200ac10: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200ac14: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200ac18: 80 a0 60 00 cmp %g1, 0 200ac1c: 02 80 00 06 be 200ac34 200ac20: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200ac24: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200ac28: 80 a0 40 19 cmp %g1, %i1 200ac2c: 08 80 00 05 bleu 200ac40 <== ALWAYS TAKEN 200ac30: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200ac34: 92 10 00 19 mov %i1, %o1 200ac38: 40 00 06 79 call 200c61c <_Thread_Change_priority> 200ac3c: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200ac40: 40 00 07 f5 call 200cc14 <_Thread_Enable_dispatch> 200ac44: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200ac48: 81 c7 e0 08 ret 200ac4c: 81 e8 00 00 restore =============================================================================== 02016274 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2016274: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 2016278: 11 00 80 ef sethi %hi(0x203bc00), %o0 201627c: 92 10 00 18 mov %i0, %o1 2016280: 90 12 23 34 or %o0, 0x334, %o0 2016284: 40 00 0b c4 call 2019194 <_Objects_Get> 2016288: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 201628c: c2 07 bf fc ld [ %fp + -4 ], %g1 2016290: 80 a0 60 00 cmp %g1, 0 2016294: 12 80 00 0c bne 20162c4 2016298: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 201629c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20162a0: 80 a0 60 04 cmp %g1, 4 20162a4: 02 80 00 04 be 20162b4 <== NEVER TAKEN 20162a8: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 20162ac: 40 00 14 14 call 201b2fc <_Watchdog_Remove> 20162b0: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 20162b4: 40 00 0e 20 call 2019b34 <_Thread_Enable_dispatch> 20162b8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20162bc: 81 c7 e0 08 ret 20162c0: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20162c4: 81 c7 e0 08 ret 20162c8: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 0201675c : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 201675c: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016760: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016764: e2 00 63 74 ld [ %g1 + 0x374 ], %l1 ! 203bf74 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016768: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 201676c: 80 a4 60 00 cmp %l1, 0 2016770: 02 80 00 33 be 201683c 2016774: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016778: 03 00 80 ef sethi %hi(0x203bc00), %g1 201677c: c2 08 60 78 ldub [ %g1 + 0x78 ], %g1 ! 203bc78 <_TOD_Is_set> 2016780: 80 a0 60 00 cmp %g1, 0 2016784: 02 80 00 2e be 201683c <== NEVER TAKEN 2016788: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 201678c: 80 a6 a0 00 cmp %i2, 0 2016790: 02 80 00 2b be 201683c 2016794: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016798: 90 10 00 19 mov %i1, %o0 201679c: 7f ff f4 09 call 20137c0 <_TOD_Validate> 20167a0: b0 10 20 14 mov 0x14, %i0 20167a4: 80 8a 20 ff btst 0xff, %o0 20167a8: 02 80 00 27 be 2016844 20167ac: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 20167b0: 7f ff f3 d0 call 20136f0 <_TOD_To_seconds> 20167b4: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 20167b8: 27 00 80 ef sethi %hi(0x203bc00), %l3 20167bc: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1 ! 203bcf4 <_TOD_Now> 20167c0: 80 a2 00 01 cmp %o0, %g1 20167c4: 08 80 00 1e bleu 201683c 20167c8: a4 10 00 08 mov %o0, %l2 20167cc: 11 00 80 ef sethi %hi(0x203bc00), %o0 20167d0: 92 10 00 10 mov %l0, %o1 20167d4: 90 12 23 34 or %o0, 0x334, %o0 20167d8: 40 00 0a 6f call 2019194 <_Objects_Get> 20167dc: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20167e0: c2 07 bf fc ld [ %fp + -4 ], %g1 20167e4: b2 10 00 08 mov %o0, %i1 20167e8: 80 a0 60 00 cmp %g1, 0 20167ec: 12 80 00 14 bne 201683c 20167f0: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20167f4: 40 00 12 c2 call 201b2fc <_Watchdog_Remove> 20167f8: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20167fc: 82 10 20 03 mov 3, %g1 2016800: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016804: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016808: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201680c: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016810: c2 04 60 04 ld [ %l1 + 4 ], %g1 2016814: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016818: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 201681c: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 2016820: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 2016824: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016828: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 201682c: 9f c0 40 00 call %g1 2016830: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016834: 40 00 0c c0 call 2019b34 <_Thread_Enable_dispatch> 2016838: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201683c: 81 c7 e0 08 ret 2016840: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016844: 81 c7 e0 08 ret 2016848: 81 e8 00 00 restore