02017524 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
2017524: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
2017528: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
201752c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
2017530: 80 a6 80 01 cmp %i2, %g1
2017534: 18 80 00 16 bgu 201758c <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
2017538: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) {
201753c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2017540: 80 a0 60 00 cmp %g1, 0
2017544: 02 80 00 0b be 2017570 <_CORE_message_queue_Broadcast+0x4c>
2017548: a2 10 20 00 clr %l1
*count = 0;
201754c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017550: 81 c7 e0 08 ret 2017554: 91 e8 20 00 restore %g0, 0, %o0
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
2017558: 92 10 00 19 mov %i1, %o1 201755c: 40 00 21 8a call 201fb84 <memcpy> 2017560: 94 10 00 1a mov %i2, %o2
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
2017564: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1;
2017568: a2 04 60 01 inc %l1
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
201756c: f4 20 40 00 st %i2, [ %g1 ]
/* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread =
2017570: 40 00 0a 5d call 2019ee4 <_Thread_queue_Dequeue> 2017574: 90 10 00 10 mov %l0, %o0 2017578: a4 92 20 00 orcc %o0, 0, %l2
201757c: 32 bf ff f7 bne,a 2017558 <_CORE_message_queue_Broadcast+0x34>
2017580: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted;
2017584: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017588: b0 10 20 00 clr %i0
}
201758c: 81 c7 e0 08 ret 2017590: 81 e8 00 00 restore
0200fe08 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
200fe08: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fe0c: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fe10: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fe14: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
200fe18: a0 10 00 18 mov %i0, %l0
/* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fe1c: 80 8e e0 03 btst 3, %i3
200fe20: 02 80 00 07 be 200fe3c <_CORE_message_queue_Initialize+0x34>
200fe24: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fe28: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fe2c: a4 0c bf fc and %l2, -4, %l2
} if (allocated_message_size < maximum_message_size)
200fe30: 80 a4 80 1b cmp %l2, %i3
200fe34: 0a 80 00 22 bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe38: b0 10 20 00 clr %i0
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fe3c: a2 04 a0 10 add %l2, 0x10, %l1
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages *
200fe40: 92 10 00 1a mov %i2, %o1 200fe44: 90 10 00 11 mov %l1, %o0 200fe48: 40 00 3d 62 call 201f3d0 <.umul> 200fe4c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size)
200fe50: 80 a2 00 12 cmp %o0, %l2
200fe54: 0a 80 00 1a bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe58: 01 00 00 00 nop
/* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required );
200fe5c: 40 00 0b af call 2012d18 <_Workspace_Allocate> 200fe60: 01 00 00 00 nop
return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fe64: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0)
200fe68: 80 a2 20 00 cmp %o0, 0
200fe6c: 02 80 00 14 be 200febc <_CORE_message_queue_Initialize+0xb4>
200fe70: 92 10 00 08 mov %o0, %o1
/* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize (
200fe74: 90 04 20 60 add %l0, 0x60, %o0 200fe78: 94 10 00 1a mov %i2, %o2 200fe7c: 40 00 14 00 call 2014e7c <_Chain_Initialize> 200fe80: 96 10 00 11 mov %l1, %o3
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
200fe84: 82 04 20 54 add %l0, 0x54, %g1
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
200fe88: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages );
200fe8c: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain);
200fe90: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
200fe94: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
200fe98: c0 24 20 54 clr [ %l0 + 0x54 ] 200fe9c: 82 18 60 01 xor %g1, 1, %g1 200fea0: 80 a0 00 01 cmp %g0, %g1 200fea4: 90 10 00 10 mov %l0, %o0 200fea8: 92 60 3f ff subx %g0, -1, %o1 200feac: 94 10 20 80 mov 0x80, %o2 200feb0: 96 10 20 06 mov 6, %o3 200feb4: 40 00 08 80 call 20120b4 <_Thread_queue_Initialize> 200feb8: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; }
200febc: 81 c7 e0 08 ret 200fec0: 81 e8 00 00 restore
0200fec4 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
200fec4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing;
200fec8: 27 00 80 90 sethi %hi(0x2024000), %l3 200fecc: a6 14 e0 1c or %l3, 0x1c, %l3 ! 202401c <_Per_CPU_Information> 200fed0: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
200fed4: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level );
200fed8: 7f ff de 40 call 20077d8 <sparc_disable_interrupts> 200fedc: c0 24 a0 34 clr [ %l2 + 0x34 ] 200fee0: 82 10 00 08 mov %o0, %g1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
200fee4: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
200fee8: 84 06 20 54 add %i0, 0x54, %g2
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
200feec: 80 a4 40 02 cmp %l1, %g2
200fef0: 02 80 00 15 be 200ff44 <_CORE_message_queue_Seize+0x80>
200fef4: 86 06 20 50 add %i0, 0x50, %g3
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
200fef8: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
200fefc: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) {
200ff00: 80 a4 60 00 cmp %l1, 0
200ff04: 02 80 00 10 be 200ff44 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200ff08: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200ff0c: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200ff10: 82 00 7f ff add %g1, -1, %g1 200ff14: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200ff18: 7f ff de 34 call 20077e8 <sparc_enable_interrupts> 200ff1c: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200ff20: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200ff24: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size;
200ff28: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200ff2c: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
200ff30: 90 10 00 1a mov %i2, %o0 200ff34: 40 00 1e 87 call 2017950 <memcpy> 200ff38: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200ff3c: 7f ff ff 83 call 200fd48 <_Chain_Append> 200ff40: 93 e8 00 11 restore %g0, %l1, %o1
return; } #endif } if ( !wait ) {
200ff44: 80 8f 20 ff btst 0xff, %i4
200ff48: 32 80 00 08 bne,a 200ff68 <_CORE_message_queue_Seize+0xa4>
200ff4c: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200ff50: 7f ff de 26 call 20077e8 <sparc_enable_interrupts> 200ff54: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
200ff58: 82 10 20 04 mov 4, %g1 200ff5c: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); }
200ff60: 81 c7 e0 08 ret 200ff64: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
200ff68: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue;
200ff6c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
200ff70: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
200ff74: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
200ff78: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */ _ISR_Enable( level );
200ff7c: 90 10 00 01 mov %g1, %o0 200ff80: 7f ff de 1a call 20077e8 <sparc_enable_interrupts> 200ff84: 35 00 80 48 sethi %hi(0x2012000), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
200ff88: b2 10 00 1d mov %i5, %i1 200ff8c: 40 00 07 a2 call 2011e14 <_Thread_queue_Enqueue_with_handler> 200ff90: 95 ee a1 94 restore %i2, 0x194, %o2
02006c80 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) {
2006c80: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006c84: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006c88: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 2014e28 <_Thread_Dispatch_disable_level> 2006c8c: 80 a0 60 00 cmp %g1, 0
2006c90: 02 80 00 0d be 2006cc4 <_CORE_mutex_Seize+0x44>
2006c94: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006c98: 80 8e a0 ff btst 0xff, %i2
2006c9c: 02 80 00 0b be 2006cc8 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006ca0: 90 10 00 18 mov %i0, %o0 2006ca4: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006ca8: c2 00 63 ac ld [ %g1 + 0x3ac ], %g1 ! 2014fac <_System_state_Current> 2006cac: 80 a0 60 01 cmp %g1, 1
2006cb0: 08 80 00 05 bleu 2006cc4 <_CORE_mutex_Seize+0x44>
2006cb4: 90 10 20 00 clr %o0 2006cb8: 92 10 20 00 clr %o1 2006cbc: 40 00 01 dd call 2007430 <_Internal_error_Occurred> 2006cc0: 94 10 20 12 mov 0x12, %o2 2006cc4: 90 10 00 18 mov %i0, %o0 2006cc8: 40 00 13 1c call 200b938 <_CORE_mutex_Seize_interrupt_trylock> 2006ccc: 92 07 a0 54 add %fp, 0x54, %o1 2006cd0: 80 a2 20 00 cmp %o0, 0
2006cd4: 02 80 00 0a be 2006cfc <_CORE_mutex_Seize+0x7c>
2006cd8: 80 8e a0 ff btst 0xff, %i2 2006cdc: 35 00 80 54 sethi %hi(0x2015000), %i2
2006ce0: 12 80 00 09 bne 2006d04 <_CORE_mutex_Seize+0x84>
2006ce4: b4 16 a0 8c or %i2, 0x8c, %i2 ! 201508c <_Per_CPU_Information> 2006ce8: 7f ff ed 3a call 20021d0 <sparc_enable_interrupts> 2006cec: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006cf0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006cf4: 84 10 20 01 mov 1, %g2 2006cf8: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006cfc: 81 c7 e0 08 ret 2006d00: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006d04: 82 10 20 01 mov 1, %g1 2006d08: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006d0c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d10: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006d14: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006d18: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006d1c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2006d20: 84 00 a0 01 inc %g2 2006d24: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2006d28: 7f ff ed 2a call 20021d0 <sparc_enable_interrupts> 2006d2c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d30: 90 10 00 18 mov %i0, %o0 2006d34: 7f ff ff ba call 2006c1c <_CORE_mutex_Seize_interrupt_blocking> 2006d38: 92 10 00 1b mov %i3, %o1 2006d3c: 81 c7 e0 08 ret 2006d40: 81 e8 00 00 restore
0200b938 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) {
200b938: 9d e3 bf a0 save %sp, -96, %sp
{ Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
200b93c: 03 00 80 54 sethi %hi(0x2015000), %g1 200b940: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 2015098 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200b944: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200b948: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200b94c: 80 a0 a0 00 cmp %g2, 0
200b950: 02 80 00 2f be 200ba0c <_CORE_mutex_Seize_interrupt_trylock+0xd4>
200b954: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
200b958: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED;
200b95c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
200b960: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
200b964: 84 10 20 01 mov 1, %g2 200b968: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); }
200b96c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200b970: 80 a0 a0 02 cmp %g2, 2
200b974: 02 80 00 05 be 200b988 <_CORE_mutex_Seize_interrupt_trylock+0x50>
200b978: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 200b97c: 80 a0 a0 03 cmp %g2, 3
200b980: 12 80 00 07 bne 200b99c <_CORE_mutex_Seize_interrupt_trylock+0x64>
200b984: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
200b988: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200b98c: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
200b990: 88 00 e0 01 add %g3, 1, %g4
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200b994: 02 80 00 03 be 200b9a0 <_CORE_mutex_Seize_interrupt_trylock+0x68>
200b998: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200b99c: 30 80 00 2b b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling;
200b9a0: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
200b9a4: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
200b9a8: 80 a1 00 02 cmp %g4, %g2
200b9ac: 12 80 00 03 bne 200b9b8 <_CORE_mutex_Seize_interrupt_trylock+0x80>
200b9b0: 01 00 00 00 nop
_ISR_Enable( *level_p );
200b9b4: 30 80 00 25 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0; } if ( current > ceiling ) { 200b9b8: 08 80 00 0f bleu 200b9f4 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
200b9bc: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
200b9c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 200b9c4: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 200b9c8: 84 00 a0 01 inc %g2 200b9cc: c4 20 62 28 st %g2, [ %g1 + 0x228 ]
_Thread_Disable_dispatch(); _ISR_Enable( *level_p );
200b9d0: 7f ff da 00 call 20021d0 <sparc_enable_interrupts> 200b9d4: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200b9d8: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 200b9dc: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 200b9e0: 7f ff f0 e9 call 2007d84 <_Thread_Change_priority> 200b9e4: 94 10 20 00 clr %o2
the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch();
200b9e8: 7f ff f2 65 call 200837c <_Thread_Enable_dispatch> 200b9ec: b0 10 20 00 clr %i0 200b9f0: 30 80 00 1d b,a 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200b9f4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */
200b9f8: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED;
200b9fc: 84 10 20 01 mov 1, %g2 200ba00: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */
200ba04: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200ba08: 30 80 00 10 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) {
200ba0c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200ba10: 80 a0 80 01 cmp %g2, %g1
200ba14: 12 80 00 14 bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200ba18: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200ba1c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 200ba20: 80 a0 60 00 cmp %g1, 0
200ba24: 22 80 00 07 be,a 200ba40 <_CORE_mutex_Seize_interrupt_trylock+0x108>
200ba28: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200ba2c: 80 a0 60 01 cmp %g1, 1
200ba30: 12 80 00 0d bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
200ba34: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200ba38: 10 80 00 08 b 200ba58 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 200ba3c: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++;
200ba40: 82 00 60 01 inc %g1 200ba44: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200ba48: 7f ff d9 e2 call 20021d0 <sparc_enable_interrupts> 200ba4c: d0 06 40 00 ld [ %i1 ], %o0
return 0;
200ba50: 81 c7 e0 08 ret 200ba54: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p );
200ba58: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200ba5c: 7f ff d9 dd call 20021d0 <sparc_enable_interrupts> <== NOT EXECUTED 200ba60: b0 10 20 00 clr %i0 <== NOT EXECUTED
200ba64: 81 c7 e0 08 ret 200ba68: 81 e8 00 00 restore
02006ec0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) {
2006ec0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006ec4: 90 10 00 18 mov %i0, %o0 2006ec8: 40 00 06 19 call 200872c <_Thread_queue_Dequeue> 2006ecc: a0 10 00 18 mov %i0, %l0 2006ed0: 80 a2 20 00 cmp %o0, 0
2006ed4: 12 80 00 0e bne 2006f0c <_CORE_semaphore_Surrender+0x4c>
2006ed8: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level );
2006edc: 7f ff ec b9 call 20021c0 <sparc_disable_interrupts> 2006ee0: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006ee4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006ee8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006eec: 80 a0 40 02 cmp %g1, %g2
2006ef0: 1a 80 00 05 bcc 2006f04 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006ef4: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006ef8: 82 00 60 01 inc %g1
{ Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006efc: b0 10 20 00 clr %i0
#endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1;
2006f00: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level );
2006f04: 7f ff ec b3 call 20021d0 <sparc_enable_interrupts> 2006f08: 01 00 00 00 nop
} return status; }
2006f0c: 81 c7 e0 08 ret 2006f10: 81 e8 00 00 restore
02007240 <_Chain_Get_with_empty_check>: bool _Chain_Get_with_empty_check( Chain_Control *chain, Chain_Node **node ) {
2007240: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; bool is_empty_now; _ISR_Disable( level );
2007244: 7f ff ed 73 call 2002810 <sparc_disable_interrupts> 2007248: 01 00 00 00 nop
Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; Chain_Node *first = the_chain->first;
200724c: c4 06 00 00 ld [ %i0 ], %g2
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2007250: 86 06 20 04 add %i0, 4, %g3
) { bool is_empty_now = true; Chain_Node *first = the_chain->first; if ( first != _Chain_Tail( the_chain ) ) {
2007254: 80 a0 80 03 cmp %g2, %g3
2007258: 22 80 00 0a be,a 2007280 <_Chain_Get_with_empty_check+0x40><== NEVER TAKEN
200725c: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED
Chain_Node *new_first = first->next;
2007260: c2 00 80 00 ld [ %g2 ], %g1
the_chain->first = new_first;
2007264: c2 26 00 00 st %g1, [ %i0 ]
new_first->previous = _Chain_Head( the_chain );
2007268: f0 20 60 04 st %i0, [ %g1 + 4 ]
*the_node = first;
200726c: c4 26 40 00 st %g2, [ %i1 ]
is_empty_now = new_first == _Chain_Tail( the_chain );
2007270: 82 18 40 03 xor %g1, %g3, %g1 2007274: 80 a0 00 01 cmp %g0, %g1 2007278: 10 80 00 03 b 2007284 <_Chain_Get_with_empty_check+0x44> 200727c: b0 60 3f ff subx %g0, -1, %i0
RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected( Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true;
2007280: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED
is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node ); _ISR_Enable( level );
2007284: 7f ff ed 67 call 2002820 <sparc_enable_interrupts> 2007288: 01 00 00 00 nop
return is_empty_now; }
200728c: 81 c7 e0 08 ret 2007290: 81 e8 00 00 restore
02005c88 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) {
2005c88: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005c8c: e2 06 21 60 ld [ %i0 + 0x160 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005c90: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005c94: 7f ff f1 4b call 20021c0 <sparc_disable_interrupts> 2005c98: a0 10 00 18 mov %i0, %l0 2005c9c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005ca0: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005ca4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) {
2005ca8: 82 88 c0 02 andcc %g3, %g2, %g1
2005cac: 12 80 00 03 bne 2005cb8 <_Event_Surrender+0x30>
2005cb0: 09 00 80 54 sethi %hi(0x2015000), %g4
_ISR_Enable( level );
2005cb4: 30 80 00 42 b,a 2005dbc <_Event_Surrender+0x134>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() &&
2005cb8: 88 11 20 8c or %g4, 0x8c, %g4 ! 201508c <_Per_CPU_Information> 2005cbc: da 01 20 08 ld [ %g4 + 8 ], %o5 2005cc0: 80 a3 60 00 cmp %o5, 0
2005cc4: 22 80 00 1d be,a 2005d38 <_Event_Surrender+0xb0>
2005cc8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005ccc: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005cd0: 80 a4 00 04 cmp %l0, %g4
2005cd4: 32 80 00 19 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cd8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cdc: 09 00 80 54 sethi %hi(0x2015000), %g4 2005ce0: da 01 20 a8 ld [ %g4 + 0xa8 ], %o5 ! 20150a8 <_Event_Sync_state>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) &&
2005ce4: 80 a3 60 02 cmp %o5, 2
2005ce8: 02 80 00 07 be 2005d04 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005cec: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005cf0: c8 01 20 a8 ld [ %g4 + 0xa8 ], %g4
* If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cf4: 80 a1 20 01 cmp %g4, 1
2005cf8: 32 80 00 10 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cfc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005d00: 80 a0 40 03 cmp %g1, %g3
2005d04: 02 80 00 04 be 2005d14 <_Event_Surrender+0x8c>
2005d08: 80 8c a0 02 btst 2, %l2
2005d0c: 02 80 00 0a be 2005d34 <_Event_Surrender+0xac> <== NEVER TAKEN
2005d10: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
2005d14: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005d18: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d1c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0;
2005d20: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d24: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005d28: 84 10 20 03 mov 3, %g2 2005d2c: 03 00 80 54 sethi %hi(0x2015000), %g1 2005d30: c4 20 60 a8 st %g2, [ %g1 + 0xa8 ] ! 20150a8 <_Event_Sync_state>
} _ISR_Enable( level );
2005d34: 30 80 00 22 b,a 2005dbc <_Event_Surrender+0x134>
} /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005d38: 80 89 21 00 btst 0x100, %g4
2005d3c: 02 80 00 20 be 2005dbc <_Event_Surrender+0x134>
2005d40: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005d44: 02 80 00 04 be 2005d54 <_Event_Surrender+0xcc>
2005d48: 80 8c a0 02 btst 2, %l2
2005d4c: 02 80 00 1c be 2005dbc <_Event_Surrender+0x134> <== NEVER TAKEN
2005d50: 01 00 00 00 nop 2005d54: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005d58: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d5c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0;
2005d60: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d64: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005d68: 7f ff f1 1a call 20021d0 <sparc_enable_interrupts> 2005d6c: 90 10 00 18 mov %i0, %o0 2005d70: 7f ff f1 14 call 20021c0 <sparc_disable_interrupts> 2005d74: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005d78: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005d7c: 80 a0 60 02 cmp %g1, 2
2005d80: 02 80 00 06 be 2005d98 <_Event_Surrender+0x110>
2005d84: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005d88: 7f ff f1 12 call 20021d0 <sparc_enable_interrupts> 2005d8c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
2005d90: 10 80 00 08 b 2005db0 <_Event_Surrender+0x128> 2005d94: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT;
2005d98: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
2005d9c: 7f ff f1 0d call 20021d0 <sparc_enable_interrupts> 2005da0: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005da4: 40 00 0e 19 call 2009608 <_Watchdog_Remove> 2005da8: 90 04 20 48 add %l0, 0x48, %o0 2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005db0: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8> 2005db4: 40 00 08 6d call 2007f68 <_Thread_Clear_state> 2005db8: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level );
2005dbc: 7f ff f1 05 call 20021d0 <sparc_enable_interrupts> 2005dc0: 81 e8 00 00 restore
02005dc8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) {
2005dc8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location );
2005dcc: 90 10 00 18 mov %i0, %o0 2005dd0: 40 00 09 78 call 20083b0 <_Thread_Get> 2005dd4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2005ddc: 80 a0 60 00 cmp %g1, 0
2005de0: 12 80 00 1c bne 2005e50 <_Event_Timeout+0x88> <== NEVER TAKEN
2005de4: a0 10 00 08 mov %o0, %l0
* * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level );
2005de8: 7f ff f0 f6 call 20021c0 <sparc_disable_interrupts> 2005dec: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
2005df0: 03 00 80 54 sethi %hi(0x2015000), %g1
return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) {
2005df4: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 2015098 <_Per_CPU_Information+0xc> 2005df8: 80 a4 00 01 cmp %l0, %g1
2005dfc: 12 80 00 09 bne 2005e20 <_Event_Timeout+0x58>
2005e00: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005e04: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e08: c4 00 60 a8 ld [ %g1 + 0xa8 ], %g2 ! 20150a8 <_Event_Sync_state> 2005e0c: 80 a0 a0 01 cmp %g2, 1
2005e10: 32 80 00 05 bne,a 2005e24 <_Event_Timeout+0x5c>
2005e14: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005e18: 84 10 20 02 mov 2, %g2 2005e1c: c4 20 60 a8 st %g2, [ %g1 + 0xa8 ]
} the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005e20: 82 10 20 06 mov 6, %g1 2005e24: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005e28: 7f ff f0 ea call 20021d0 <sparc_enable_interrupts> 2005e2c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
2005e30: 90 10 00 10 mov %l0, %o0 2005e34: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005e38: 40 00 08 4c call 2007f68 <_Thread_Clear_state> 2005e3c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
2005e40: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005e44: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2005e48: 84 00 bf ff add %g2, -1, %g2 2005e4c: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2005e50: 81 c7 e0 08 ret 2005e54: 81 e8 00 00 restore
0200bfb4 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200bfb4: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL;
200bfb8: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200bfbc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200bfc0: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block;
200bfc4: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size;
200bfc8: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200bfcc: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200bfd0: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200bfd4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
200bfd8: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) {
200bfdc: 80 a4 40 19 cmp %l1, %i1
200bfe0: 0a 80 00 9f bcs 200c25c <_Heap_Extend+0x2a8>
200bfe4: b0 10 20 00 clr %i0
return false; } extend_area_ok = _Heap_Get_first_and_last_block(
200bfe8: 90 10 00 19 mov %i1, %o0 200bfec: 94 10 00 13 mov %l3, %o2 200bff0: 98 07 bf fc add %fp, -4, %o4 200bff4: 7f ff ed 2b call 20074a0 <_Heap_Get_first_and_last_block> 200bff8: 9a 07 bf f8 add %fp, -8, %o5
page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) {
200bffc: 80 8a 20 ff btst 0xff, %o0
200c000: 02 80 00 97 be 200c25c <_Heap_Extend+0x2a8>
200c004: aa 10 00 12 mov %l2, %l5 200c008: ba 10 20 00 clr %i5 200c00c: b8 10 20 00 clr %i4 200c010: b0 10 20 00 clr %i0 200c014: ae 10 20 00 clr %l7 200c018: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if (
200c01c: 80 a0 40 11 cmp %g1, %l1
200c020: 1a 80 00 05 bcc 200c034 <_Heap_Extend+0x80>
200c024: ec 05 40 00 ld [ %l5 ], %l6 200c028: 80 a6 40 16 cmp %i1, %l6
200c02c: 2a 80 00 8c bcs,a 200c25c <_Heap_Extend+0x2a8>
200c030: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) {
200c034: 80 a4 40 01 cmp %l1, %g1
200c038: 02 80 00 06 be 200c050 <_Heap_Extend+0x9c>
200c03c: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c040: 2a 80 00 05 bcs,a 200c054 <_Heap_Extend+0xa0>
200c044: b8 10 00 15 mov %l5, %i4 200c048: 10 80 00 04 b 200c058 <_Heap_Extend+0xa4> 200c04c: 90 10 00 16 mov %l6, %o0 200c050: ae 10 00 15 mov %l5, %l7 200c054: 90 10 00 16 mov %l6, %o0 200c058: 40 00 16 6e call 2011a10 <.urem> 200c05c: 92 10 00 13 mov %l3, %o1 200c060: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) {
200c064: 80 a5 80 19 cmp %l6, %i1
200c068: 12 80 00 05 bne 200c07c <_Heap_Extend+0xc8>
200c06c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c070: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c074: 10 80 00 04 b 200c084 <_Heap_Extend+0xd0> 200c078: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c07c: 2a 80 00 02 bcs,a 200c084 <_Heap_Extend+0xd0>
200c080: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c084: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c088: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200c08c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block );
200c090: 80 a5 40 12 cmp %l5, %l2
200c094: 12 bf ff e2 bne 200c01c <_Heap_Extend+0x68>
200c098: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c09c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c0a0: 80 a6 40 01 cmp %i1, %g1
200c0a4: 3a 80 00 04 bcc,a 200c0b4 <_Heap_Extend+0x100>
200c0a8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c0ac: 10 80 00 05 b 200c0c0 <_Heap_Extend+0x10c> 200c0b0: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c0b4: 80 a0 40 11 cmp %g1, %l1
200c0b8: 2a 80 00 02 bcs,a 200c0c0 <_Heap_Extend+0x10c>
200c0bc: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c0c0: c4 07 bf fc ld [ %fp + -4 ], %g2 200c0c4: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c0c8: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size =
200c0cc: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c0d0: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size;
200c0d4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag =
200c0d8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c0dc: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c0e0: 80 a0 c0 02 cmp %g3, %g2
200c0e4: 08 80 00 04 bleu 200c0f4 <_Heap_Extend+0x140>
200c0e8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c0ec: 10 80 00 06 b 200c104 <_Heap_Extend+0x150> 200c0f0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c0f4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c0f8: 80 a0 80 01 cmp %g2, %g1
200c0fc: 2a 80 00 02 bcs,a 200c104 <_Heap_Extend+0x150>
200c100: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) {
200c104: 80 a5 e0 00 cmp %l7, 0
200c108: 02 80 00 14 be 200c158 <_Heap_Extend+0x1a4>
200c10c: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size;
200c110: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment;
200c114: 92 10 00 12 mov %l2, %o1 200c118: 40 00 16 3e call 2011a10 <.urem> 200c11c: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c120: 80 a2 20 00 cmp %o0, 0
200c124: 02 80 00 04 be 200c134 <_Heap_Extend+0x180> <== ALWAYS TAKEN
200c128: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c12c: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c130: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin =
200c134: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size;
200c138: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size =
200c13c: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c140: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c144: 90 10 00 10 mov %l0, %o0 200c148: 7f ff ff 90 call 200bf88 <_Heap_Free_block> 200c14c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
200c150: 10 80 00 09 b 200c174 <_Heap_Extend+0x1c0> 200c154: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) {
200c158: 80 a7 20 00 cmp %i4, 0
200c15c: 02 80 00 05 be 200c170 <_Heap_Extend+0x1bc>
200c160: c2 07 bf f8 ld [ %fp + -8 ], %g1
{ uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c164: b8 27 00 01 sub %i4, %g1, %i4 200c168: b8 17 20 01 or %i4, 1, %i4
) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag =
200c16c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
200c170: 80 a6 20 00 cmp %i0, 0
200c174: 02 80 00 15 be 200c1c8 <_Heap_Extend+0x214>
200c178: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
200c17c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down(
200c180: a2 24 40 18 sub %l1, %i0, %l1 200c184: 40 00 16 23 call 2011a10 <.urem> 200c188: 90 10 00 11 mov %l1, %o0
); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size)
200c18c: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c190: a2 24 40 08 sub %l1, %o0, %l1
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
200c194: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c198: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c19c: 84 10 a0 01 or %g2, 1, %g2
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
200c1a0: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c1a4: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block );
200c1a8: 90 10 00 10 mov %l0, %o0 200c1ac: 82 08 60 01 and %g1, 1, %g1 200c1b0: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c1b4: a2 14 40 01 or %l1, %g1, %l1 200c1b8: 7f ff ff 74 call 200bf88 <_Heap_Free_block> 200c1bc: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1c0: 10 80 00 0f b 200c1fc <_Heap_Extend+0x248> 200c1c4: 80 a6 20 00 cmp %i0, 0
); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) {
200c1c8: 80 a7 60 00 cmp %i5, 0
200c1cc: 02 80 00 0b be 200c1f8 <_Heap_Extend+0x244>
200c1d0: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c1d4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c1d8: c2 07 bf f8 ld [ %fp + -8 ], %g1
) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin );
200c1dc: 86 20 c0 1d sub %g3, %i5, %g3 200c1e0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c1e4: 84 10 c0 02 or %g3, %g2, %g2 200c1e8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c1ec: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c1f0: 84 10 a0 01 or %g2, 1, %g2 200c1f4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1f8: 80 a6 20 00 cmp %i0, 0
200c1fc: 32 80 00 09 bne,a 200c220 <_Heap_Extend+0x26c>
200c200: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c204: 80 a5 e0 00 cmp %l7, 0
200c208: 32 80 00 06 bne,a 200c220 <_Heap_Extend+0x26c>
200c20c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c210: d2 07 bf fc ld [ %fp + -4 ], %o1 200c214: 7f ff ff 5d call 200bf88 <_Heap_Free_block> 200c218: 90 10 00 10 mov %l0, %o0
*/ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c21c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
200c220: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c224: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
200c228: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c22c: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c230: 84 10 c0 02 or %g3, %g2, %g2 200c234: c4 20 60 04 st %g2, [ %g1 + 4 ]
} _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
200c238: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true;
200c23c: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
200c240: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */ stats->size += extended_size;
200c244: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c248: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size;
200c24c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c250: 02 80 00 03 be 200c25c <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c254: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c258: e8 26 c0 00 st %l4, [ %i3 ] 200c25c: 81 c7 e0 08 ret 200c260: 81 e8 00 00 restore
0200bcb4 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) {
200bcb4: 9d e3 bf a0 save %sp, -96, %sp 200bcb8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200bcbc: 40 00 16 17 call 2011518 <.urem> 200bcc0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
200bcc4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
200bcc8: a2 06 7f f8 add %i1, -8, %l1 200bccc: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
200bcd0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200bcd4: 80 a2 00 0c cmp %o0, %o4
200bcd8: 0a 80 00 05 bcs 200bcec <_Heap_Free+0x38>
200bcdc: 82 10 20 00 clr %g1 200bce0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bce4: 80 a0 40 08 cmp %g1, %o0 200bce8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0; bool next_is_free = false; _Heap_Protection_block_check( heap, block ); if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bcec: 80 a0 60 00 cmp %g1, 0
200bcf0: 02 80 00 6a be 200be98 <_Heap_Free+0x1e4>
200bcf4: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200bcf8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bcfc: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200bd00: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd04: 80 a0 40 0c cmp %g1, %o4
200bd08: 0a 80 00 05 bcs 200bd1c <_Heap_Free+0x68> <== NEVER TAKEN
200bd0c: 86 10 20 00 clr %g3 200bd10: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bd14: 80 a0 c0 01 cmp %g3, %g1 200bd18: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bd1c: 80 a0 e0 00 cmp %g3, 0
200bd20: 02 80 00 5e be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd24: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200bd28: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
200bd2c: 80 89 20 01 btst 1, %g4
200bd30: 02 80 00 5a be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd34: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block
200bd38: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd3c: 80 a0 40 09 cmp %g1, %o1
200bd40: 02 80 00 07 be 200bd5c <_Heap_Free+0xa8>
200bd44: 96 10 20 00 clr %o3
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
200bd48: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd4c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200bd50: 86 08 e0 01 and %g3, 1, %g3
return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd54: 80 a0 00 03 cmp %g0, %g3 200bd58: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200bd5c: 80 8b 60 01 btst 1, %o5
200bd60: 12 80 00 26 bne 200bdf8 <_Heap_Free+0x144>
200bd64: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200bd68: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
200bd6c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd70: 80 a0 c0 0c cmp %g3, %o4
200bd74: 0a 80 00 04 bcs 200bd84 <_Heap_Free+0xd0> <== NEVER TAKEN
200bd78: 94 10 20 00 clr %o2 200bd7c: 80 a2 40 03 cmp %o1, %g3 200bd80: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200bd84: 80 a2 a0 00 cmp %o2, 0
200bd88: 02 80 00 44 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd8c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd90: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) {
200bd94: 80 8b 20 01 btst 1, %o4
200bd98: 02 80 00 40 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd9c: 80 8a e0 ff btst 0xff, %o3
_HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200bda0: 22 80 00 0f be,a 200bddc <_Heap_Free+0x128>
200bda4: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200bda8: 88 00 80 04 add %g2, %g4, %g4 200bdac: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next;
200bdb0: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200bdb4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200bdb8: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200bdbc: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block ); stats->free_blocks -= 1;
200bdc0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200bdc4: 82 00 7f ff add %g1, -1, %g1 200bdc8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size;
200bdcc: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bdd0: 82 13 60 01 or %o5, 1, %g1 200bdd4: 10 80 00 27 b 200be70 <_Heap_Free+0x1bc> 200bdd8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bddc: 88 13 60 01 or %o5, 1, %g4 200bde0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bde4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200bde8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bdec: 86 08 ff fe and %g3, -2, %g3 200bdf0: 10 80 00 20 b 200be70 <_Heap_Free+0x1bc> 200bdf4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200bdf8: 22 80 00 0d be,a 200be2c <_Heap_Free+0x178>
200bdfc: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200be00: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next;
200be04: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200be08: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200be0c: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200be10: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block; prev->next = new_block;
200be14: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block;
200be18: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be1c: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size ); next_block->prev_size = size;
200be20: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be24: 10 80 00 13 b 200be70 <_Heap_Free+0x1bc> 200be28: c2 22 20 04 st %g1, [ %o0 + 4 ]
) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before;
200be2c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next;
200be30: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before; block_before->next = new_block; next->prev = new_block;
200be34: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200be38: 86 10 a0 01 or %g2, 1, %g3 200be3c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be40: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200be44: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be48: 86 08 ff fe and %g3, -2, %g3 200be4c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
200be50: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200be54: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
200be58: 82 00 60 01 inc %g1
{ Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block;
200be5c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200be60: 80 a0 c0 01 cmp %g3, %g1
200be64: 1a 80 00 03 bcc 200be70 <_Heap_Free+0x1bc>
200be68: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200be6c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
} } /* Statistics */ --stats->used_blocks;
200be70: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees; stats->free_size += block_size; return( true );
200be74: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks;
200be78: 82 00 7f ff add %g1, -1, %g1 200be7c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200be80: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200be84: 82 00 60 01 inc %g1 200be88: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200be8c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200be90: 84 00 40 02 add %g1, %g2, %g2 200be94: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true ); }
200be98: 81 c7 e0 08 ret 200be9c: 81 e8 00 00 restore
02012f2c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) {
2012f2c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
2012f30: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2012f34: 7f ff f9 79 call 2011518 <.urem> 2012f38: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
2012f3c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
2012f40: a2 06 7f f8 add %i1, -8, %l1 2012f44: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
2012f48: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2012f4c: 80 a2 00 02 cmp %o0, %g2
2012f50: 0a 80 00 05 bcs 2012f64 <_Heap_Size_of_alloc_area+0x38>
2012f54: 82 10 20 00 clr %g1 2012f58: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 2012f5c: 80 a0 40 08 cmp %g1, %o0 2012f60: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
2012f64: 80 a0 60 00 cmp %g1, 0
2012f68: 02 80 00 15 be 2012fbc <_Heap_Size_of_alloc_area+0x90>
2012f6c: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2012f70: e2 02 20 04 ld [ %o0 + 4 ], %l1 2012f74: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
2012f78: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2012f7c: 80 a4 40 02 cmp %l1, %g2
2012f80: 0a 80 00 05 bcs 2012f94 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
2012f84: 82 10 20 00 clr %g1 2012f88: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 2012f8c: 80 a0 40 11 cmp %g1, %l1 2012f90: 82 60 3f ff subx %g0, -1, %g1
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if (
2012f94: 80 a0 60 00 cmp %g1, 0
2012f98: 02 80 00 09 be 2012fbc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012f9c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2012fa0: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block )
2012fa4: 80 88 60 01 btst 1, %g1
2012fa8: 02 80 00 05 be 2012fbc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012fac: a2 24 40 19 sub %l1, %i1, %l1
return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true;
2012fb0: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2012fb4: a2 04 60 04 add %l1, 4, %l1 2012fb8: e2 26 80 00 st %l1, [ %i2 ]
return true; }
2012fbc: 81 c7 e0 08 ret 2012fc0: 81 e8 00 00 restore
020082a8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
20082a8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
20082ac: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
20082b0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20082b4: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
20082b8: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
20082bc: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
20082c0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
20082c4: 80 8e a0 ff btst 0xff, %i2
20082c8: 02 80 00 04 be 20082d8 <_Heap_Walk+0x30>
20082cc: a2 14 62 54 or %l1, 0x254, %l1 20082d0: 23 00 80 20 sethi %hi(0x2008000), %l1 20082d4: a2 14 62 5c or %l1, 0x25c, %l1 ! 200825c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20082d8: 03 00 80 5d sethi %hi(0x2017400), %g1 20082dc: c2 00 62 3c ld [ %g1 + 0x23c ], %g1 ! 201763c <_System_state_Current> 20082e0: 80 a0 60 03 cmp %g1, 3
20082e4: 12 80 01 2d bne 2008798 <_Heap_Walk+0x4f0>
20082e8: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)(
20082ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20082f0: da 04 20 18 ld [ %l0 + 0x18 ], %o5 20082f4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20082f8: c2 04 20 08 ld [ %l0 + 8 ], %g1 20082fc: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 2008300: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008304: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008308: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 200830c: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008310: 90 10 00 19 mov %i1, %o0 2008314: 92 10 20 00 clr %o1 2008318: 15 00 80 52 sethi %hi(0x2014800), %o2 200831c: 96 10 00 12 mov %l2, %o3 2008320: 94 12 a3 e8 or %o2, 0x3e8, %o2 2008324: 9f c4 40 00 call %l1 2008328: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) {
200832c: 80 a4 a0 00 cmp %l2, 0
2008330: 12 80 00 07 bne 200834c <_Heap_Walk+0xa4>
2008334: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
2008338: 15 00 80 53 sethi %hi(0x2014c00), %o2 200833c: 90 10 00 19 mov %i1, %o0 2008340: 92 10 20 01 mov 1, %o1 2008344: 10 80 00 38 b 2008424 <_Heap_Walk+0x17c> 2008348: 94 12 a0 80 or %o2, 0x80, %o2
return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 200834c: 22 80 00 08 be,a 200836c <_Heap_Walk+0xc4>
2008350: 90 10 00 14 mov %l4, %o0
(*printer)(
2008354: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008358: 90 10 00 19 mov %i1, %o0 200835c: 92 10 20 01 mov 1, %o1 2008360: 94 12 a0 98 or %o2, 0x98, %o2 2008364: 10 80 01 0b b 2008790 <_Heap_Walk+0x4e8> 2008368: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
200836c: 7f ff e5 d6 call 2001ac4 <.urem> 2008370: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008374: 80 a2 20 00 cmp %o0, 0
2008378: 22 80 00 08 be,a 2008398 <_Heap_Walk+0xf0>
200837c: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
2008380: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008384: 90 10 00 19 mov %i1, %o0 2008388: 92 10 20 01 mov 1, %o1 200838c: 94 12 a0 b8 or %o2, 0xb8, %o2 2008390: 10 80 01 00 b 2008790 <_Heap_Walk+0x4e8> 2008394: 96 10 00 14 mov %l4, %o3 2008398: 7f ff e5 cb call 2001ac4 <.urem> 200839c: 92 10 00 12 mov %l2, %o1
); return false; } if (
20083a0: 80 a2 20 00 cmp %o0, 0
20083a4: 22 80 00 08 be,a 20083c4 <_Heap_Walk+0x11c>
20083a8: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)(
20083ac: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083b0: 90 10 00 19 mov %i1, %o0 20083b4: 92 10 20 01 mov 1, %o1 20083b8: 94 12 a0 e0 or %o2, 0xe0, %o2 20083bc: 10 80 00 f5 b 2008790 <_Heap_Walk+0x4e8> 20083c0: 96 10 00 13 mov %l3, %o3
); return false; } if ( !_Heap_Is_prev_used( first_block ) ) {
20083c4: 80 88 60 01 btst 1, %g1
20083c8: 32 80 00 07 bne,a 20083e4 <_Heap_Walk+0x13c>
20083cc: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
20083d0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083d4: 90 10 00 19 mov %i1, %o0 20083d8: 92 10 20 01 mov 1, %o1 20083dc: 10 80 00 12 b 2008424 <_Heap_Walk+0x17c> 20083e0: 94 12 a1 18 or %o2, 0x118, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20083e4: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
20083e8: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20083ec: c2 05 a0 04 ld [ %l6 + 4 ], %g1
); return false; } if ( _Heap_Is_free( last_block ) ) {
20083f0: 80 88 60 01 btst 1, %g1
20083f4: 12 80 00 07 bne 2008410 <_Heap_Walk+0x168>
20083f8: 80 a5 80 13 cmp %l6, %l3
(*printer)(
20083fc: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008400: 90 10 00 19 mov %i1, %o0 2008404: 92 10 20 01 mov 1, %o1 2008408: 10 80 00 07 b 2008424 <_Heap_Walk+0x17c> 200840c: 94 12 a1 48 or %o2, 0x148, %o2
); return false; } if (
2008410: 02 80 00 08 be 2008430 <_Heap_Walk+0x188> <== ALWAYS TAKEN
2008414: 15 00 80 53 sethi %hi(0x2014c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)(
2008418: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 200841c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008420: 94 12 a1 60 or %o2, 0x160, %o2 <== NOT EXECUTED
2008424: 9f c4 40 00 call %l1 2008428: b0 10 20 00 clr %i0 200842c: 30 80 00 db b,a 2008798 <_Heap_Walk+0x4f0>
block = next_block; } while ( block != first_block ); return true; }
2008430: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
2008434: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008438: ae 10 00 10 mov %l0, %l7 200843c: 10 80 00 32 b 2008504 <_Heap_Walk+0x25c> 2008440: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2008444: 80 a0 80 1c cmp %g2, %i4
2008448: 18 80 00 05 bgu 200845c <_Heap_Walk+0x1b4>
200844c: 82 10 20 00 clr %g1 2008450: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 2008454: 80 a0 40 1c cmp %g1, %i4 2008458: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
200845c: 80 a0 60 00 cmp %g1, 0
2008460: 32 80 00 08 bne,a 2008480 <_Heap_Walk+0x1d8>
2008464: 90 07 20 08 add %i4, 8, %o0
(*printer)(
2008468: 15 00 80 53 sethi %hi(0x2014c00), %o2 200846c: 96 10 00 1c mov %i4, %o3 2008470: 90 10 00 19 mov %i1, %o0 2008474: 92 10 20 01 mov 1, %o1 2008478: 10 80 00 c6 b 2008790 <_Heap_Walk+0x4e8> 200847c: 94 12 a1 90 or %o2, 0x190, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
2008480: 7f ff e5 91 call 2001ac4 <.urem> 2008484: 92 10 00 1d mov %i5, %o1
); return false; } if (
2008488: 80 a2 20 00 cmp %o0, 0
200848c: 22 80 00 08 be,a 20084ac <_Heap_Walk+0x204>
2008490: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)(
2008494: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008498: 96 10 00 1c mov %i4, %o3 200849c: 90 10 00 19 mov %i1, %o0 20084a0: 92 10 20 01 mov 1, %o1 20084a4: 10 80 00 bb b 2008790 <_Heap_Walk+0x4e8> 20084a8: 94 12 a1 b0 or %o2, 0x1b0, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20084ac: 82 08 7f fe and %g1, -2, %g1
block = next_block; } while ( block != first_block ); return true; }
20084b0: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20084b4: c2 00 60 04 ld [ %g1 + 4 ], %g1
); return false; } if ( _Heap_Is_used( free_block ) ) {
20084b8: 80 88 60 01 btst 1, %g1
20084bc: 22 80 00 08 be,a 20084dc <_Heap_Walk+0x234>
20084c0: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
20084c4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084c8: 96 10 00 1c mov %i4, %o3 20084cc: 90 10 00 19 mov %i1, %o0 20084d0: 92 10 20 01 mov 1, %o1 20084d4: 10 80 00 af b 2008790 <_Heap_Walk+0x4e8> 20084d8: 94 12 a1 e0 or %o2, 0x1e0, %o2
); return false; } if ( free_block->prev != prev_block ) {
20084dc: 80 a3 00 17 cmp %o4, %l7
20084e0: 22 80 00 08 be,a 2008500 <_Heap_Walk+0x258>
20084e4: ae 10 00 1c mov %i4, %l7
(*printer)(
20084e8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20084ec: 96 10 00 1c mov %i4, %o3 20084f0: 90 10 00 19 mov %i1, %o0 20084f4: 92 10 20 01 mov 1, %o1 20084f8: 10 80 00 49 b 200861c <_Heap_Walk+0x374> 20084fc: 94 12 a2 00 or %o2, 0x200, %o2
return false; } prev_block = free_block; free_block = free_block->next;
2008500: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
2008504: 80 a7 00 10 cmp %i4, %l0
2008508: 32 bf ff cf bne,a 2008444 <_Heap_Walk+0x19c>
200850c: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 2008510: 35 00 80 53 sethi %hi(0x2014c00), %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
2008514: 31 00 80 53 sethi %hi(0x2014c00), %i0
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
2008518: b4 16 a3 c0 or %i2, 0x3c0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
200851c: b0 16 23 a8 or %i0, 0x3a8, %i0
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
2008520: 37 00 80 53 sethi %hi(0x2014c00), %i3
block = next_block; } while ( block != first_block ); return true; }
2008524: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2008528: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200852c: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
2008530: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
2008534: 80 a0 c0 1d cmp %g3, %i5
2008538: 18 80 00 05 bgu 200854c <_Heap_Walk+0x2a4> <== NEVER TAKEN
200853c: 84 10 20 00 clr %g2 2008540: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 2008544: 80 a0 80 1d cmp %g2, %i5 2008548: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200854c: 80 a0 a0 00 cmp %g2, 0
2008550: 12 80 00 07 bne 200856c <_Heap_Walk+0x2c4>
2008554: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
2008558: 15 00 80 53 sethi %hi(0x2014c00), %o2 200855c: 90 10 00 19 mov %i1, %o0 2008560: 92 10 20 01 mov 1, %o1 2008564: 10 80 00 2c b 2008614 <_Heap_Walk+0x36c> 2008568: 94 12 a2 38 or %o2, 0x238, %o2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block;
200856c: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
2008570: c2 27 bf fc st %g1, [ %fp + -4 ] 2008574: b8 40 20 00 addx %g0, 0, %i4 2008578: 90 10 00 17 mov %l7, %o0 200857c: 7f ff e5 52 call 2001ac4 <.urem> 2008580: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008584: 80 a2 20 00 cmp %o0, 0
2008588: 02 80 00 0c be 20085b8 <_Heap_Walk+0x310>
200858c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008590: 80 8f 20 ff btst 0xff, %i4
2008594: 02 80 00 0a be 20085bc <_Heap_Walk+0x314>
2008598: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
200859c: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085a0: 90 10 00 19 mov %i1, %o0 20085a4: 92 10 20 01 mov 1, %o1 20085a8: 94 12 a2 68 or %o2, 0x268, %o2 20085ac: 96 10 00 16 mov %l6, %o3 20085b0: 10 80 00 1b b 200861c <_Heap_Walk+0x374> 20085b4: 98 10 00 17 mov %l7, %o4
); return false; } if ( block_size < min_block_size && is_not_last_block ) {
20085b8: 80 a5 c0 14 cmp %l7, %l4
20085bc: 1a 80 00 0d bcc 20085f0 <_Heap_Walk+0x348>
20085c0: 80 a7 40 16 cmp %i5, %l6 20085c4: 80 8f 20 ff btst 0xff, %i4
20085c8: 02 80 00 0a be 20085f0 <_Heap_Walk+0x348> <== NEVER TAKEN
20085cc: 80 a7 40 16 cmp %i5, %l6
(*printer)(
20085d0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20085d4: 90 10 00 19 mov %i1, %o0 20085d8: 92 10 20 01 mov 1, %o1 20085dc: 94 12 a2 98 or %o2, 0x298, %o2 20085e0: 96 10 00 16 mov %l6, %o3 20085e4: 98 10 00 17 mov %l7, %o4 20085e8: 10 80 00 3f b 20086e4 <_Heap_Walk+0x43c> 20085ec: 9a 10 00 14 mov %l4, %o5
); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20085f0: 38 80 00 0e bgu,a 2008628 <_Heap_Walk+0x380>
20085f4: b8 08 60 01 and %g1, 1, %i4 20085f8: 80 8f 20 ff btst 0xff, %i4
20085fc: 02 80 00 0b be 2008628 <_Heap_Walk+0x380>
2008600: b8 08 60 01 and %g1, 1, %i4
(*printer)(
2008604: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008608: 90 10 00 19 mov %i1, %o0 200860c: 92 10 20 01 mov 1, %o1 2008610: 94 12 a2 c8 or %o2, 0x2c8, %o2 2008614: 96 10 00 16 mov %l6, %o3 2008618: 98 10 00 1d mov %i5, %o4 200861c: 9f c4 40 00 call %l1 2008620: b0 10 20 00 clr %i0 2008624: 30 80 00 5d b,a 2008798 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008628: c2 07 60 04 ld [ %i5 + 4 ], %g1
); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
200862c: 80 88 60 01 btst 1, %g1
2008630: 12 80 00 3f bne 200872c <_Heap_Walk+0x484>
2008634: 80 a7 20 00 cmp %i4, 0
false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ?
2008638: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
200863c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008640: 05 00 80 52 sethi %hi(0x2014800), %g2
block = next_block; } while ( block != first_block ); return true; }
2008644: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008648: 80 a3 40 01 cmp %o5, %g1
200864c: 02 80 00 07 be 2008668 <_Heap_Walk+0x3c0>
2008650: 86 10 a3 a8 or %g2, 0x3a8, %g3
block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""),
2008654: 80 a3 40 10 cmp %o5, %l0
2008658: 12 80 00 04 bne 2008668 <_Heap_Walk+0x3c0>
200865c: 86 16 e3 70 or %i3, 0x370, %g3 2008660: 19 00 80 52 sethi %hi(0x2014800), %o4 2008664: 86 13 23 b8 or %o4, 0x3b8, %g3 ! 2014bb8 <C.0.4150+0x44>
block->next, block->next == last_free_block ?
2008668: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
200866c: 19 00 80 52 sethi %hi(0x2014800), %o4 2008670: 80 a0 80 04 cmp %g2, %g4
2008674: 02 80 00 07 be 2008690 <_Heap_Walk+0x3e8>
2008678: 82 13 23 c8 or %o4, 0x3c8, %g1
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
200867c: 80 a0 80 10 cmp %g2, %l0
2008680: 12 80 00 04 bne 2008690 <_Heap_Walk+0x3e8>
2008684: 82 16 e3 70 or %i3, 0x370, %g1 2008688: 09 00 80 52 sethi %hi(0x2014800), %g4 200868c: 82 11 23 d8 or %g4, 0x3d8, %g1 ! 2014bd8 <C.0.4150+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
2008690: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008694: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008698: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 200869c: 90 10 00 19 mov %i1, %o0 20086a0: 92 10 20 00 clr %o1 20086a4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086a8: 96 10 00 16 mov %l6, %o3 20086ac: 94 12 a3 00 or %o2, 0x300, %o2 20086b0: 9f c4 40 00 call %l1 20086b4: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) {
20086b8: da 07 40 00 ld [ %i5 ], %o5 20086bc: 80 a5 c0 0d cmp %l7, %o5
20086c0: 02 80 00 0c be 20086f0 <_Heap_Walk+0x448>
20086c4: 80 a7 20 00 cmp %i4, 0
(*printer)(
20086c8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086cc: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 20086d0: 90 10 00 19 mov %i1, %o0 20086d4: 92 10 20 01 mov 1, %o1 20086d8: 94 12 a3 38 or %o2, 0x338, %o2 20086dc: 96 10 00 16 mov %l6, %o3 20086e0: 98 10 00 17 mov %l7, %o4 20086e4: 9f c4 40 00 call %l1 20086e8: b0 10 20 00 clr %i0 20086ec: 30 80 00 2b b,a 2008798 <_Heap_Walk+0x4f0>
); return false; } if ( !prev_used ) { 20086f0: 32 80 00 0a bne,a 2008718 <_Heap_Walk+0x470>
20086f4: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
20086f8: 15 00 80 53 sethi %hi(0x2014c00), %o2 20086fc: 90 10 00 19 mov %i1, %o0 2008700: 92 10 20 01 mov 1, %o1 2008704: 10 80 00 22 b 200878c <_Heap_Walk+0x4e4> 2008708: 94 12 a3 78 or %o2, 0x378, %o2
{ const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 200870c: 02 80 00 19 be 2008770 <_Heap_Walk+0x4c8>
2008710: 80 a7 40 13 cmp %i5, %l3
return true; } free_block = free_block->next;
2008714: c2 00 60 08 ld [ %g1 + 8 ], %g1
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
2008718: 80 a0 40 10 cmp %g1, %l0
200871c: 12 bf ff fc bne 200870c <_Heap_Walk+0x464>
2008720: 80 a0 40 16 cmp %g1, %l6
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
2008724: 10 80 00 17 b 2008780 <_Heap_Walk+0x4d8> 2008728: 15 00 80 53 sethi %hi(0x2014c00), %o2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 200872c: 22 80 00 0a be,a 2008754 <_Heap_Walk+0x4ac>
2008730: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
2008734: 90 10 00 19 mov %i1, %o0 2008738: 92 10 20 00 clr %o1 200873c: 94 10 00 18 mov %i0, %o2 2008740: 96 10 00 16 mov %l6, %o3 2008744: 9f c4 40 00 call %l1 2008748: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
200874c: 10 80 00 09 b 2008770 <_Heap_Walk+0x4c8> 2008750: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
2008754: 90 10 00 19 mov %i1, %o0 2008758: 92 10 20 00 clr %o1 200875c: 94 10 00 1a mov %i2, %o2 2008760: 96 10 00 16 mov %l6, %o3 2008764: 9f c4 40 00 call %l1 2008768: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
200876c: 80 a7 40 13 cmp %i5, %l3
2008770: 32 bf ff 6d bne,a 2008524 <_Heap_Walk+0x27c>
2008774: ac 10 00 1d mov %i5, %l6
return true; }
2008778: 81 c7 e0 08 ret 200877c: 91 e8 20 01 restore %g0, 1, %o0
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
2008780: 90 10 00 19 mov %i1, %o0 2008784: 92 10 20 01 mov 1, %o1 2008788: 94 12 a3 e8 or %o2, 0x3e8, %o2 200878c: 96 10 00 16 mov %l6, %o3 2008790: 9f c4 40 00 call %l1 2008794: b0 10 20 00 clr %i0 2008798: 81 c7 e0 08 ret 200879c: 81 e8 00 00 restore
020074e0 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
20074e0: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
20074e4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
20074e8: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
20074ec: 80 a0 60 00 cmp %g1, 0
20074f0: 02 80 00 20 be 2007570 <_Objects_Allocate+0x90> <== NEVER TAKEN
20074f4: b0 10 20 00 clr %i0
/* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20074f8: a2 04 20 20 add %l0, 0x20, %l1 20074fc: 7f ff fd 88 call 2006b1c <_Chain_Get> 2007500: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007504: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007508: 80 a0 60 00 cmp %g1, 0
200750c: 02 80 00 19 be 2007570 <_Objects_Allocate+0x90>
2007510: b0 10 00 08 mov %o0, %i0
/* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) {
2007514: 80 a2 20 00 cmp %o0, 0
2007518: 32 80 00 0a bne,a 2007540 <_Objects_Allocate+0x60>
200751c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
2007520: 40 00 00 1e call 2007598 <_Objects_Extend_information> 2007524: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007528: 7f ff fd 7d call 2006b1c <_Chain_Get> 200752c: 90 10 00 11 mov %l1, %o0
} if ( the_object ) {
2007530: b0 92 20 00 orcc %o0, 0, %i0
2007534: 02 80 00 0f be 2007570 <_Objects_Allocate+0x90>
2007538: 01 00 00 00 nop
uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) -
200753c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007540: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id ); block /= information->allocation_size;
2007544: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007548: 40 00 27 48 call 2011268 <.udiv> 200754c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007550: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2007554: 91 2a 20 02 sll %o0, 2, %o0 2007558: c4 00 40 08 ld [ %g1 + %o0 ], %g2 200755c: 84 00 bf ff add %g2, -1, %g2 2007560: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007564: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 2007568: 82 00 7f ff add %g1, -1, %g1 200756c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
); } #endif return the_object; }
2007570: 81 c7 e0 08 ret 2007574: 81 e8 00 00 restore
020078f4 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) {
20078f4: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info; int the_class_api_maximum; if ( !the_class )
20078f8: b3 2e 60 10 sll %i1, 0x10, %i1 20078fc: b3 36 60 10 srl %i1, 0x10, %i1 2007900: 80 a6 60 00 cmp %i1, 0
2007904: 02 80 00 17 be 2007960 <_Objects_Get_information+0x6c>
2007908: a0 10 20 00 clr %l0
/* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api );
200790c: 40 00 11 65 call 200bea0 <_Objects_API_maximum_class> 2007910: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007914: 80 a2 20 00 cmp %o0, 0
2007918: 02 80 00 12 be 2007960 <_Objects_Get_information+0x6c>
200791c: 80 a6 40 08 cmp %i1, %o0
return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007920: 18 80 00 10 bgu 2007960 <_Objects_Get_information+0x6c>
2007924: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL; if ( !_Objects_Information_table[ the_api ] )
2007928: b1 2e 20 02 sll %i0, 2, %i0 200792c: 82 10 61 8c or %g1, 0x18c, %g1 2007930: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007934: 80 a0 60 00 cmp %g1, 0
2007938: 02 80 00 0a be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200793c: b3 2e 60 02 sll %i1, 2, %i1
return NULL; info = _Objects_Information_table[ the_api ][ the_class ];
2007940: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
2007944: 80 a4 20 00 cmp %l0, 0
2007948: 02 80 00 06 be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200794c: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 )
2007950: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
2007954: 80 a0 00 01 cmp %g0, %g1 2007958: 82 60 20 00 subx %g0, 0, %g1 200795c: a0 0c 00 01 and %l0, %g1, %l0
#endif return info; }
2007960: 81 c7 e0 08 ret 2007964: 91 e8 00 10 restore %g0, %l0, %o0
0201914c <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
201914c: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
2019150: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
2019154: 82 22 40 01 sub %o1, %g1, %g1 2019158: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
201915c: 80 a0 80 01 cmp %g2, %g1
2019160: 0a 80 00 09 bcs 2019184 <_Objects_Get_no_protection+0x38>
2019164: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
2019168: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 201916c: d0 00 80 01 ld [ %g2 + %g1 ], %o0 2019170: 80 a2 20 00 cmp %o0, 0
2019174: 02 80 00 05 be 2019188 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
2019178: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL; return the_object;
201917c: 81 c3 e0 08 retl 2019180: c0 22 80 00 clr [ %o2 ]
/* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR;
2019184: 82 10 20 01 mov 1, %g1
return NULL;
2019188: 90 10 20 00 clr %o0
}
201918c: 81 c3 e0 08 retl 2019190: c2 22 80 00 st %g1, [ %o2 ]
020091d0 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) {
20091d0: 9d e3 bf 98 save %sp, -104, %sp
/* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20091d4: 92 96 20 00 orcc %i0, 0, %o1
20091d8: 12 80 00 06 bne 20091f0 <_Objects_Id_to_name+0x20>
20091dc: 83 32 60 18 srl %o1, 0x18, %g1 20091e0: 03 00 80 74 sethi %hi(0x201d000), %g1 20091e4: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201d078 <_Per_CPU_Information+0xc> 20091e8: d2 00 60 08 ld [ %g1 + 8 ], %o1 20091ec: 83 32 60 18 srl %o1, 0x18, %g1 20091f0: 82 08 60 07 and %g1, 7, %g1
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
20091f4: 84 00 7f ff add %g1, -1, %g2 20091f8: 80 a0 a0 02 cmp %g2, 2
20091fc: 18 80 00 12 bgu 2009244 <_Objects_Id_to_name+0x74>
2009200: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
2009204: 10 80 00 12 b 200924c <_Objects_Id_to_name+0x7c> 2009208: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ];
200920c: 85 28 a0 02 sll %g2, 2, %g2 2009210: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009214: 80 a2 20 00 cmp %o0, 0
2009218: 02 80 00 0b be 2009244 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
200921c: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location );
2009220: 7f ff ff cf call 200915c <_Objects_Get> 2009224: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2009228: 80 a2 20 00 cmp %o0, 0
200922c: 02 80 00 06 be 2009244 <_Objects_Id_to_name+0x74>
2009230: 01 00 00 00 nop
return OBJECTS_INVALID_ID; *name = the_object->name;
2009234: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2009238: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch();
200923c: 40 00 02 56 call 2009b94 <_Thread_Enable_dispatch> 2009240: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; }
2009244: 81 c7 e0 08 ret 2009248: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
200924c: 05 00 80 73 sethi %hi(0x201cc00), %g2 2009250: 84 10 a1 6c or %g2, 0x16c, %g2 ! 201cd6c <_Objects_Information_table> 2009254: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2009258: 80 a0 60 00 cmp %g1, 0
200925c: 12 bf ff ec bne 200920c <_Objects_Id_to_name+0x3c>
2009260: 85 32 60 1b srl %o1, 0x1b, %g2 2009264: 30 bf ff f8 b,a 2009244 <_Objects_Id_to_name+0x74>
02007a50 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
2007a50: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
2007a54: 85 2f 20 10 sll %i4, 0x10, %g2 2007a58: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a5c: 07 00 80 53 sethi %hi(0x2014c00), %g3
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
2007a60: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a64: 86 10 e1 8c or %g3, 0x18c, %g3 2007a68: 85 2e 60 02 sll %i1, 2, %g2 2007a6c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class;
2007a70: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api;
2007a74: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class; information->size = size; information->local_table = 0;
2007a78: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
2007a7c: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
2007a80: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
2007a84: c0 36 20 2c clrh [ %i0 + 0x2c ]
/* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0;
2007a88: c0 36 20 10 clrh [ %i0 + 0x10 ]
, bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
2007a8c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
2007a90: b5 2e a0 10 sll %i2, 0x10, %i2 2007a94: b5 36 a0 10 srl %i2, 0x10, %i2 2007a98: 85 2e a0 02 sll %i2, 2, %g2 2007a9c: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2007aa0: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend =
2007aa4: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2007aa8: 07 20 00 00 sethi %hi(0x80000000), %g3
/* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) {
2007aac: 80 a0 a0 00 cmp %g2, 0
2007ab0: 02 80 00 09 be 2007ad4 <_Objects_Initialize_information+0x84>
2007ab4: b6 2e c0 03 andn %i3, %g3, %i3 2007ab8: 80 a6 e0 00 cmp %i3, 0
2007abc: 12 80 00 07 bne 2007ad8 <_Objects_Initialize_information+0x88>
2007ac0: 05 00 80 52 sethi %hi(0x2014800), %g2
_Internal_error_Occurred(
2007ac4: 90 10 20 00 clr %o0 2007ac8: 92 10 20 01 mov 1, %o1 2007acc: 7f ff fe 59 call 2007430 <_Internal_error_Occurred> 2007ad0: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table;
2007ad4: 05 00 80 52 sethi %hi(0x2014800), %g2 2007ad8: 84 10 a2 d4 or %g2, 0x2d4, %g2 ! 2014ad4 <null_local_table.3231> 2007adc: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007ae0: 05 00 00 40 sethi %hi(0x10000), %g2
/* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007ae4: 80 a0 00 1b cmp %g0, %i3 2007ae8: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007aec: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007af0: b2 16 40 02 or %i1, %g2, %i1
} /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation;
2007af4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007af8: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007afc: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b00: b4 16 80 02 or %i2, %g2, %i2
/* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2007b04: 80 88 60 03 btst 3, %g1
2007b08: 02 80 00 04 be 2007b18 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
2007b0c: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2007b10: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007b14: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length;
2007b18: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2007b1c: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
2007b20: c0 26 20 24 clr [ %i0 + 0x24 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
2007b24: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
2007b28: 82 06 20 20 add %i0, 0x20, %g1
/* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) {
2007b2c: 80 a6 e0 00 cmp %i3, 0
2007b30: 02 80 00 04 be 2007b40 <_Objects_Initialize_information+0xf0>
2007b34: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information );
2007b38: 7f ff fe 98 call 2007598 <_Objects_Extend_information> 2007b3c: 81 e8 00 00 restore 2007b40: 81 c7 e0 08 ret 2007b44: 81 e8 00 00 restore
0200b668 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) {
200b668: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b66c: e0 06 21 60 ld [ %i0 + 0x160 ], %l0
if ( !api )
200b670: 80 a4 20 00 cmp %l0, 0
200b674: 02 80 00 1d be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b678: 01 00 00 00 nop
* Signal Processing */ asr = &api->Signal; _ISR_Disable( level );
200b67c: 7f ff da d1 call 20021c0 <sparc_disable_interrupts> 200b680: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b684: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b688: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b68c: 7f ff da d1 call 20021d0 <sparc_enable_interrupts> 200b690: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b694: 80 a4 e0 00 cmp %l3, 0
200b698: 02 80 00 14 be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80>
200b69c: a2 07 bf fc add %fp, -4, %l1
return; asr->nest_level += 1;
200b6a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6a4: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1;
200b6a8: 82 00 60 01 inc %g1 200b6ac: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6b0: 94 10 00 11 mov %l1, %o2 200b6b4: 25 00 00 3f sethi %hi(0xfc00), %l2 200b6b8: 40 00 07 8c call 200d4e8 <rtems_task_mode> 200b6bc: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b6c0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b6c4: 9f c0 40 00 call %g1 200b6c8: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b6cc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6d0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
200b6d4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6d8: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
200b6dc: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6e0: 40 00 07 82 call 200d4e8 <rtems_task_mode> 200b6e4: 94 10 00 11 mov %l1, %o2 200b6e8: 81 c7 e0 08 ret 200b6ec: 81 e8 00 00 restore
02007838 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) {
2007838: 9d e3 bf 98 save %sp, -104, %sp 200783c: 11 00 80 74 sethi %hi(0x201d000), %o0 2007840: 92 10 00 18 mov %i0, %o1 2007844: 90 12 23 04 or %o0, 0x304, %o0 2007848: 40 00 07 c8 call 2009768 <_Objects_Get> 200784c: 94 07 bf fc add %fp, -4, %o2
/* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
2007850: c2 07 bf fc ld [ %fp + -4 ], %g1 2007854: 80 a0 60 00 cmp %g1, 0
2007858: 12 80 00 24 bne 20078e8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
200785c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL: the_thread = the_period->owner;
2007860: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007864: 03 00 00 10 sethi %hi(0x4000), %g1
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD);
2007868: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 200786c: 80 88 80 01 btst %g2, %g1
2007870: 22 80 00 0b be,a 200789c <_Rate_monotonic_Timeout+0x64>
2007874: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007878: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 200787c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007880: 80 a0 80 01 cmp %g2, %g1
2007884: 32 80 00 06 bne,a 200789c <_Rate_monotonic_Timeout+0x64>
2007888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
200788c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007890: 40 00 09 19 call 2009cf4 <_Thread_Clear_state> 2007894: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8> 2007898: 30 80 00 06 b,a 20078b0 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
200789c: 80 a0 60 01 cmp %g1, 1
20078a0: 12 80 00 0d bne 20078d4 <_Rate_monotonic_Timeout+0x9c>
20078a4: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20078a8: 82 10 20 03 mov 3, %g1 20078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20078b0: 7f ff fe 66 call 2007248 <_Rate_monotonic_Initiate_statistics> 20078b4: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
20078b8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078bc: 11 00 80 75 sethi %hi(0x201d400), %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
20078c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078c4: 90 12 21 40 or %o0, 0x140, %o0 20078c8: 40 00 0f 21 call 200b54c <_Watchdog_Insert> 20078cc: 92 04 20 10 add %l0, 0x10, %o1 20078d0: 30 80 00 02 b,a 20078d8 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED;
20078d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
20078d8: 03 00 80 75 sethi %hi(0x201d400), %g1 20078dc: c4 00 60 78 ld [ %g1 + 0x78 ], %g2 ! 201d478 <_Thread_Dispatch_disable_level> 20078e0: 84 00 bf ff add %g2, -1, %g2 20078e4: c4 20 60 78 st %g2, [ %g1 + 0x78 ] 20078e8: 81 c7 e0 08 ret 20078ec: 81 e8 00 00 restore
02007240 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
2007240: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
2007244: 03 00 80 74 sethi %hi(0x201d000), %g1
*/ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
2007248: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
200724c: d2 00 61 74 ld [ %g1 + 0x174 ], %o1
if ((!the_tod) ||
2007250: 80 a4 20 00 cmp %l0, 0
2007254: 02 80 00 2b be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007258: b0 10 20 00 clr %i0
) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
200725c: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007260: 40 00 46 f3 call 2018e2c <.udiv> 2007264: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) ||
2007268: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200726c: 80 a0 40 08 cmp %g1, %o0
2007270: 1a 80 00 24 bcc 2007300 <_TOD_Validate+0xc0>
2007274: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
2007278: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 200727c: 80 a0 60 3b cmp %g1, 0x3b
2007280: 18 80 00 20 bgu 2007300 <_TOD_Validate+0xc0>
2007284: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2007288: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 200728c: 80 a0 60 3b cmp %g1, 0x3b
2007290: 18 80 00 1c bgu 2007300 <_TOD_Validate+0xc0>
2007294: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2007298: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200729c: 80 a0 60 17 cmp %g1, 0x17
20072a0: 18 80 00 18 bgu 2007300 <_TOD_Validate+0xc0>
20072a4: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) ||
20072a8: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) ||
20072ac: 80 a0 60 00 cmp %g1, 0
20072b0: 02 80 00 14 be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072b4: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) || 20072b8: 18 80 00 12 bgu 2007300 <_TOD_Validate+0xc0>
20072bc: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
20072c0: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) ||
20072c4: 80 a0 e7 c3 cmp %g3, 0x7c3
20072c8: 08 80 00 0e bleu 2007300 <_TOD_Validate+0xc0>
20072cc: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) )
20072d0: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
20072d4: 80 a0 a0 00 cmp %g2, 0
20072d8: 02 80 00 0a be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072dc: 80 88 e0 03 btst 3, %g3 20072e0: 07 00 80 6f sethi %hi(0x201bc00), %g3
(the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20072e4: 12 80 00 03 bne 20072f0 <_TOD_Validate+0xb0>
20072e8: 86 10 e1 a0 or %g3, 0x1a0, %g3 ! 201bda0 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20072ec: 82 00 60 0d add %g1, 0xd, %g1
else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20072f0: 83 28 60 02 sll %g1, 2, %g1 20072f4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate(
20072f8: 80 a0 40 02 cmp %g1, %g2 20072fc: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month ) return false; return true; }
2007300: 81 c7 e0 08 ret 2007304: 81 e8 00 00 restore
02007d84 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) {
2007d84: 9d e3 bf a0 save %sp, -96, %sp
*/ /* * Save original state */ original_state = the_thread->current_state;
2007d88: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread );
2007d8c: 40 00 04 36 call 2008e64 <_Thread_Set_transient> 2007d90: 90 10 00 18 mov %i0, %o0
/* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority )
2007d94: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007d98: 80 a0 40 19 cmp %g1, %i1
2007d9c: 02 80 00 05 be 2007db0 <_Thread_Change_priority+0x2c>
2007da0: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2007da4: 90 10 00 18 mov %i0, %o0 2007da8: 40 00 03 b2 call 2008c70 <_Thread_Set_priority> 2007dac: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2007db0: 7f ff e9 04 call 20021c0 <sparc_disable_interrupts> 2007db4: 01 00 00 00 nop 2007db8: b0 10 00 08 mov %o0, %i0
/* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state;
2007dbc: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2007dc0: 80 a6 60 04 cmp %i1, 4
2007dc4: 02 80 00 10 be 2007e04 <_Thread_Change_priority+0x80>
2007dc8: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) )
2007dcc: 80 a4 60 00 cmp %l1, 0
2007dd0: 12 80 00 03 bne 2007ddc <_Thread_Change_priority+0x58> <== NEVER TAKEN
2007dd4: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007dd8: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
2007ddc: 7f ff e8 fd call 20021d0 <sparc_enable_interrupts> 2007de0: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2007de4: 03 00 00 ef sethi %hi(0x3bc00), %g1 2007de8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 2007dec: 80 8e 40 01 btst %i1, %g1
2007df0: 02 80 00 5c be 2007f60 <_Thread_Change_priority+0x1dc>
2007df4: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2007df8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2007dfc: 40 00 03 70 call 2008bbc <_Thread_queue_Requeue> 2007e00: 93 e8 00 10 restore %g0, %l0, %o1
} return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) {
2007e04: 80 a4 60 00 cmp %l1, 0
2007e08: 12 80 00 1c bne 2007e78 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
2007e0c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
2007e10: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2007e14: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2007e18: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007e1c: c0 24 20 10 clr [ %l0 + 0x10 ] 2007e20: 84 10 c0 02 or %g3, %g2, %g2 2007e24: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2007e28: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e2c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2007e30: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2
_Priority_bit_map_Add( &the_thread->Priority_map ); if ( prepend_it )
2007e34: 80 8e a0 ff btst 0xff, %i2 2007e38: 84 10 c0 02 or %g3, %g2, %g2 2007e3c: c4 30 62 cc sth %g2, [ %g1 + 0x2cc ]
2007e40: 02 80 00 08 be 2007e60 <_Thread_Change_priority+0xdc>
2007e44: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next;
2007e48: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node;
2007e4c: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next; after_node->next = the_node;
2007e50: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
2007e54: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
2007e58: 10 80 00 08 b 2007e78 <_Thread_Change_priority+0xf4> 2007e5c: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2007e60: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
2007e64: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2007e68: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
2007e6c: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2007e70: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2007e74: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level );
2007e78: 7f ff e8 d6 call 20021d0 <sparc_enable_interrupts> 2007e7c: 90 10 00 18 mov %i0, %o0 2007e80: 7f ff e8 d0 call 20021c0 <sparc_disable_interrupts> 2007e84: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first;
2007e88: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e8c: da 00 61 84 ld [ %g1 + 0x184 ], %o5 ! 2014d84 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007e90: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007e94: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2 ! 2014ecc <_Priority_Major_bit_map> 2007e98: 03 00 80 4e sethi %hi(0x2013800), %g1 2007e9c: 85 28 a0 10 sll %g2, 0x10, %g2 2007ea0: 87 30 a0 10 srl %g2, 0x10, %g3 2007ea4: 80 a0 e0 ff cmp %g3, 0xff
2007ea8: 18 80 00 05 bgu 2007ebc <_Thread_Change_priority+0x138>
2007eac: 82 10 60 90 or %g1, 0x90, %g1 2007eb0: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 2007eb4: 10 80 00 04 b 2007ec4 <_Thread_Change_priority+0x140> 2007eb8: 84 00 a0 08 add %g2, 8, %g2 2007ebc: 85 30 a0 18 srl %g2, 0x18, %g2 2007ec0: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007ec4: 83 28 a0 10 sll %g2, 0x10, %g1 2007ec8: 07 00 80 53 sethi %hi(0x2014c00), %g3 2007ecc: 83 30 60 0f srl %g1, 0xf, %g1 2007ed0: 86 10 e3 40 or %g3, 0x340, %g3 2007ed4: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 2007ed8: 03 00 80 4e sethi %hi(0x2013800), %g1 2007edc: 87 28 e0 10 sll %g3, 0x10, %g3 2007ee0: 89 30 e0 10 srl %g3, 0x10, %g4 2007ee4: 80 a1 20 ff cmp %g4, 0xff
2007ee8: 18 80 00 05 bgu 2007efc <_Thread_Change_priority+0x178>
2007eec: 82 10 60 90 or %g1, 0x90, %g1 2007ef0: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 2007ef4: 10 80 00 04 b 2007f04 <_Thread_Change_priority+0x180> 2007ef8: 82 00 60 08 add %g1, 8, %g1 2007efc: 87 30 e0 18 srl %g3, 0x18, %g3 2007f00: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor );
2007f04: 83 28 60 10 sll %g1, 0x10, %g1 2007f08: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
2007f0c: 85 28 a0 10 sll %g2, 0x10, %g2 2007f10: 85 30 a0 0c srl %g2, 0xc, %g2 2007f14: 84 00 40 02 add %g1, %g2, %g2 2007f18: 83 28 a0 02 sll %g2, 2, %g1 2007f1c: 85 28 a0 04 sll %g2, 4, %g2 2007f20: 84 20 80 01 sub %g2, %g1, %g2
* ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *)
2007f24: c6 03 40 02 ld [ %o5 + %g2 ], %g3 2007f28: 03 00 80 54 sethi %hi(0x2015000), %g1 2007f2c: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information>
* is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir );
2007f30: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() &&
2007f34: 80 a0 80 03 cmp %g2, %g3
2007f38: 02 80 00 08 be 2007f58 <_Thread_Change_priority+0x1d4>
2007f3c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 2007f40: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2007f44: 80 a0 a0 00 cmp %g2, 0
2007f48: 02 80 00 04 be 2007f58 <_Thread_Change_priority+0x1d4>
2007f4c: 01 00 00 00 nop
_Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true;
2007f50: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 2007f54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2007f58: 7f ff e8 9e call 20021d0 <sparc_enable_interrupts> 2007f5c: 81 e8 00 00 restore 2007f60: 81 c7 e0 08 ret 2007f64: 81 e8 00 00 restore
02007f68 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) {
2007f68: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
2007f6c: 7f ff e8 95 call 20021c0 <sparc_disable_interrupts> 2007f70: a0 10 00 18 mov %i0, %l0 2007f74: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
2007f78: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
2007f7c: 80 8e 40 01 btst %i1, %g1
2007f80: 02 80 00 2f be 200803c <_Thread_Clear_state+0xd4>
2007f84: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear);
2007f88: b2 28 40 19 andn %g1, %i1, %i1
current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) {
2007f8c: 80 a6 60 00 cmp %i1, 0
2007f90: 12 80 00 2b bne 200803c <_Thread_Clear_state+0xd4>
2007f94: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
2007f98: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2007f9c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2007fa0: c6 10 40 00 lduh [ %g1 ], %g3 2007fa4: 84 10 c0 02 or %g3, %g2, %g2 2007fa8: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2007fac: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007fb0: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2007fb4: c4 10 62 cc lduh [ %g1 + 0x2cc ], %g2 2007fb8: 84 10 c0 02 or %g3, %g2, %g2 2007fbc: c4 30 62 cc sth %g2, [ %g1 + 0x2cc ]
_Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
2007fc0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2007fc4: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
2007fc8: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2007fcc: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
2007fd0: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2007fd4: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2007fd8: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
2007fdc: 7f ff e8 7d call 20021d0 <sparc_enable_interrupts> 2007fe0: 01 00 00 00 nop 2007fe4: 7f ff e8 77 call 20021c0 <sparc_disable_interrupts> 2007fe8: 01 00 00 00 nop
* a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
2007fec: 03 00 80 54 sethi %hi(0x2015000), %g1 2007ff0: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 2007ff4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2007ff8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 2007ffc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 2008000: 80 a0 80 03 cmp %g2, %g3
2008004: 1a 80 00 0e bcc 200803c <_Thread_Clear_state+0xd4>
2008008: 01 00 00 00 nop
_Thread_Heir = the_thread;
200800c: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
2008010: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2008014: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 2008018: 80 a0 60 00 cmp %g1, 0
200801c: 32 80 00 05 bne,a 2008030 <_Thread_Clear_state+0xc8>
2008020: 84 10 20 01 mov 1, %g2 2008024: 80 a0 a0 00 cmp %g2, 0
2008028: 12 80 00 05 bne 200803c <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
200802c: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true;
2008030: 03 00 80 54 sethi %hi(0x2015000), %g1 2008034: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 2008038: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
200803c: 7f ff e8 65 call 20021d0 <sparc_enable_interrupts> 2008040: 81 e8 00 00 restore
020081f0 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) {
20081f0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
20081f4: 90 10 00 18 mov %i0, %o0 20081f8: 40 00 00 6e call 20083b0 <_Thread_Get> 20081fc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008200: c2 07 bf fc ld [ %fp + -4 ], %g1 2008204: 80 a0 60 00 cmp %g1, 0
2008208: 12 80 00 08 bne 2008228 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
200820c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state(
2008210: 7f ff ff 56 call 2007f68 <_Thread_Clear_state> 2008214: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018> 2008218: 03 00 80 53 sethi %hi(0x2014c00), %g1 200821c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2008220: 84 00 bf ff add %g2, -1, %g2 2008224: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2008228: 81 c7 e0 08 ret 200822c: 81 e8 00 00 restore
02008230 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) {
2008230: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing;
2008234: 2d 00 80 54 sethi %hi(0x2015000), %l6 2008238: 82 15 a0 8c or %l6, 0x8c, %g1 ! 201508c <_Per_CPU_Information>
_ISR_Disable( level );
200823c: 7f ff e7 e1 call 20021c0 <sparc_disable_interrupts> 2008240: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract(
2008244: 25 00 80 53 sethi %hi(0x2014c00), %l2
executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
2008248: 37 00 80 53 sethi %hi(0x2014c00), %i3 200824c: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008250: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
2008254: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
2008258: a8 07 bf f0 add %fp, -16, %l4 200825c: a4 14 a2 dc or %l2, 0x2dc, %l2
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
2008260: 2f 00 80 53 sethi %hi(0x2014c00), %l7
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) {
2008264: 10 80 00 39 b 2008348 <_Thread_Dispatch+0x118> 2008268: 27 00 80 53 sethi %hi(0x2014c00), %l3
heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
200826c: f8 26 e2 28 st %i4, [ %i3 + 0x228 ]
_Thread_Dispatch_necessary = false;
2008270: c0 28 60 18 clrb [ %g1 + 0x18 ]
/* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing )
2008274: 80 a4 40 10 cmp %l1, %l0
2008278: 02 80 00 39 be 200835c <_Thread_Dispatch+0x12c>
200827c: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008280: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008284: 80 a0 60 01 cmp %g1, 1
2008288: 12 80 00 03 bne 2008294 <_Thread_Dispatch+0x64>
200828c: c2 07 61 88 ld [ %i5 + 0x188 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008290: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008294: 7f ff e7 cf call 20021d0 <sparc_enable_interrupts> 2008298: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
200829c: 40 00 0d f4 call 200ba6c <_TOD_Get_uptime> 20082a0: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
20082a4: 90 10 00 12 mov %l2, %o0 20082a8: 92 10 00 15 mov %l5, %o1 20082ac: 40 00 03 be call 20091a4 <_Timespec_Subtract> 20082b0: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran );
20082b4: 90 04 20 84 add %l0, 0x84, %o0 20082b8: 40 00 03 a2 call 2009140 <_Timespec_Add_to> 20082bc: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
20082c0: c2 07 bf f8 ld [ %fp + -8 ], %g1 20082c4: c2 24 80 00 st %g1, [ %l2 ] 20082c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20082cc: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
20082d0: c2 05 e2 b0 ld [ %l7 + 0x2b0 ], %g1 20082d4: 80 a0 60 00 cmp %g1, 0
20082d8: 02 80 00 06 be 20082f0 <_Thread_Dispatch+0xc0> <== NEVER TAKEN
20082dc: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
20082e0: c4 00 40 00 ld [ %g1 ], %g2 20082e4: c4 24 21 5c st %g2, [ %l0 + 0x15c ]
*_Thread_libc_reent = heir->libc_reent;
20082e8: c4 04 61 5c ld [ %l1 + 0x15c ], %g2 20082ec: c4 20 40 00 st %g2, [ %g1 ]
} _User_extensions_Thread_switch( executing, heir );
20082f0: 40 00 04 5d call 2009464 <_User_extensions_Thread_switch> 20082f4: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers );
20082f8: 90 04 20 d0 add %l0, 0xd0, %o0 20082fc: 40 00 05 86 call 2009914 <_CPU_Context_switch> 2008300: 92 04 60 d0 add %l1, 0xd0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) &&
2008304: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 2008308: 80 a0 60 00 cmp %g1, 0
200830c: 02 80 00 0c be 200833c <_Thread_Dispatch+0x10c>
2008310: d0 04 e2 ac ld [ %l3 + 0x2ac ], %o0 2008314: 80 a4 00 08 cmp %l0, %o0
2008318: 02 80 00 09 be 200833c <_Thread_Dispatch+0x10c>
200831c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008320: 02 80 00 04 be 2008330 <_Thread_Dispatch+0x100>
2008324: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008328: 40 00 05 41 call 200982c <_CPU_Context_save_fp> 200832c: 90 02 21 58 add %o0, 0x158, %o0
_Context_Restore_fp( &executing->fp_context );
2008330: 40 00 05 5c call 20098a0 <_CPU_Context_restore_fp> 2008334: 90 04 21 58 add %l0, 0x158, %o0
_Thread_Allocated_fp = executing;
2008338: e0 24 e2 ac st %l0, [ %l3 + 0x2ac ]
if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing;
200833c: 82 15 a0 8c or %l6, 0x8c, %g1
_ISR_Disable( level );
2008340: 7f ff e7 a0 call 20021c0 <sparc_disable_interrupts> 2008344: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) {
2008348: 82 15 a0 8c or %l6, 0x8c, %g1 200834c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 2008350: 80 a0 a0 00 cmp %g2, 0
2008354: 32 bf ff c6 bne,a 200826c <_Thread_Dispatch+0x3c>
2008358: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0;
200835c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008360: c0 20 62 28 clr [ %g1 + 0x228 ] ! 2014e28 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008364: 7f ff e7 9b call 20021d0 <sparc_enable_interrupts> 2008368: 01 00 00 00 nop
_API_extensions_Run_postswitch();
200836c: 7f ff f9 8b call 2006998 <_API_extensions_Run_postswitch> 2008370: 01 00 00 00 nop
}
2008374: 81 c7 e0 08 ret 2008378: 81 e8 00 00 restore
020083b0 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) {
20083b0: 82 10 00 08 mov %o0, %g1
uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
20083b4: 80 a2 20 00 cmp %o0, 0
20083b8: 12 80 00 0a bne 20083e0 <_Thread_Get+0x30>
20083bc: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
20083c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20083c4: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 20083c8: 84 00 a0 01 inc %g2 20083cc: c4 20 62 28 st %g2, [ %g1 + 0x228 ]
_Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing;
20083d0: 03 00 80 54 sethi %hi(0x2015000), %g1
Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL;
20083d4: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing; goto done;
20083d8: 81 c3 e0 08 retl 20083dc: d0 00 60 98 ld [ %g1 + 0x98 ], %o0
*/ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
20083e0: 87 32 20 18 srl %o0, 0x18, %g3 20083e4: 86 08 e0 07 and %g3, 7, %g3
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
20083e8: 84 00 ff ff add %g3, -1, %g2 20083ec: 80 a0 a0 02 cmp %g2, 2
20083f0: 28 80 00 16 bleu,a 2008448 <_Thread_Get+0x98>
20083f4: 85 32 20 1b srl %o0, 0x1b, %g2
goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR;
20083f8: 82 10 20 01 mov 1, %g1 20083fc: 10 80 00 09 b 2008420 <_Thread_Get+0x70> 2008400: c2 22 80 00 st %g1, [ %o2 ]
goto done; } api_information = _Objects_Information_table[ the_api ];
2008404: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008408: 88 11 21 8c or %g4, 0x18c, %g4 ! 2014d8c <_Objects_Information_table> 200840c: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) {
2008410: 80 a0 e0 00 cmp %g3, 0
2008414: 32 80 00 05 bne,a 2008428 <_Thread_Get+0x78> <== ALWAYS TAKEN
2008418: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
200841c: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
2008420: 81 c3 e0 08 retl 2008424: 90 10 20 00 clr %o0
} #endif information = api_information[ the_class ]; if ( !information ) {
2008428: 80 a2 20 00 cmp %o0, 0
200842c: 12 80 00 04 bne 200843c <_Thread_Get+0x8c>
2008430: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR; goto done;
2008434: 81 c3 e0 08 retl 2008438: c4 22 80 00 st %g2, [ %o2 ]
} tp = (Thread_Control *) _Objects_Get( information, id, location );
200843c: 82 13 c0 00 mov %o7, %g1 2008440: 7f ff fd 67 call 20079dc <_Objects_Get> 2008444: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */
2008448: 80 a0 a0 01 cmp %g2, 1
200844c: 22 bf ff ee be,a 2008404 <_Thread_Get+0x54>
2008450: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
2008454: 10 bf ff ea b 20083fc <_Thread_Get+0x4c> 2008458: 82 10 20 01 mov 1, %g1
0200d818 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) {
200d818: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing;
200d81c: 03 00 80 54 sethi %hi(0x2015000), %g1 200d820: e0 00 60 98 ld [ %g1 + 0x98 ], %l0 ! 2015098 <_Per_CPU_Information+0xc>
/* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin();
200d824: 3f 00 80 36 sethi %hi(0x200d800), %i7 200d828: be 17 e0 18 or %i7, 0x18, %i7 ! 200d818 <_Thread_Handler>
/* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level;
200d82c: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
200d830: 7f ff d2 68 call 20021d0 <sparc_enable_interrupts> 200d834: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
200d838: 03 00 80 52 sethi %hi(0x2014800), %g1
doneConstructors = 1;
200d83c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
200d840: e2 08 62 dc ldub [ %g1 + 0x2dc ], %l1
doneConstructors = 1;
200d844: c4 28 62 dc stb %g2, [ %g1 + 0x2dc ]
#endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) &&
200d848: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 200d84c: 80 a0 60 00 cmp %g1, 0
200d850: 02 80 00 0c be 200d880 <_Thread_Handler+0x68>
200d854: 03 00 80 53 sethi %hi(0x2014c00), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp );
200d858: d0 00 62 ac ld [ %g1 + 0x2ac ], %o0 ! 2014eac <_Thread_Allocated_fp> 200d85c: 80 a4 00 08 cmp %l0, %o0
200d860: 02 80 00 08 be 200d880 <_Thread_Handler+0x68>
200d864: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200d868: 22 80 00 06 be,a 200d880 <_Thread_Handler+0x68>
200d86c: e0 20 62 ac st %l0, [ %g1 + 0x2ac ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d870: 7f ff ef ef call 200982c <_CPU_Context_save_fp> 200d874: 90 02 21 58 add %o0, 0x158, %o0
_Thread_Allocated_fp = executing;
200d878: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d87c: e0 20 62 ac st %l0, [ %g1 + 0x2ac ] ! 2014eac <_Thread_Allocated_fp>
/* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing );
200d880: 7f ff ee 89 call 20092a4 <_User_extensions_Thread_begin> 200d884: 90 10 00 10 mov %l0, %o0
/* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch();
200d888: 7f ff ea bd call 200837c <_Thread_Enable_dispatch> 200d88c: a3 2c 60 18 sll %l1, 0x18, %l1
/* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ {
200d890: 80 a4 60 00 cmp %l1, 0
200d894: 32 80 00 05 bne,a 200d8a8 <_Thread_Handler+0x90>
200d898: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
200d89c: 40 00 1a 3d call 2014190 <_init> 200d8a0: 01 00 00 00 nop
} #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200d8a4: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 200d8a8: 80 a0 60 00 cmp %g1, 0
200d8ac: 12 80 00 06 bne 200d8c4 <_Thread_Handler+0xac> <== NEVER TAKEN
200d8b0: 01 00 00 00 nop
executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)(
200d8b4: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 200d8b8: 9f c0 40 00 call %g1 200d8bc: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument =
200d8c0: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing );
200d8c4: 7f ff ee 89 call 20092e8 <_User_extensions_Thread_exitted> 200d8c8: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200d8cc: 90 10 20 00 clr %o0 200d8d0: 92 10 20 01 mov 1, %o1 200d8d4: 7f ff e6 d7 call 2007430 <_Internal_error_Occurred> 200d8d8: 94 10 20 05 mov 5, %o2
0200845c <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) {
200845c: 9d e3 bf a0 save %sp, -96, %sp 2008460: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008464: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 2008468: e0 00 40 00 ld [ %g1 ], %l0
/* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL;
200846c: c0 26 61 60 clr [ %i1 + 0x160 ] 2008470: c0 26 61 64 clr [ %i1 + 0x164 ]
extensions_area = NULL; the_thread->libc_reent = NULL;
2008474: c0 26 61 5c clr [ %i1 + 0x15c ]
/* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008478: 90 10 00 19 mov %i1, %o0 200847c: 40 00 02 9f call 2008ef8 <_Thread_Stack_Allocate> 2008480: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008484: 80 a2 00 1b cmp %o0, %i3
2008488: 0a 80 00 6b bcs 2008634 <_Thread_Initialize+0x1d8>
200848c: 80 a2 20 00 cmp %o0, 0
2008490: 02 80 00 69 be 2008634 <_Thread_Initialize+0x1d8> <== NEVER TAKEN
2008494: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
2008498: c2 06 60 cc ld [ %i1 + 0xcc ], %g1
the_stack->size = size;
200849c: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
20084a0: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
/* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 20084a4: 02 80 00 07 be 20084c0 <_Thread_Initialize+0x64>
20084a8: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
20084ac: 40 00 04 c2 call 20097b4 <_Workspace_Allocate> 20084b0: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
20084b4: a2 92 20 00 orcc %o0, 0, %l1
20084b8: 02 80 00 3e be 20085b0 <_Thread_Initialize+0x154>
20084bc: b6 10 20 00 clr %i3
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
20084c0: 03 00 80 53 sethi %hi(0x2014c00), %g1 20084c4: d0 00 62 bc ld [ %g1 + 0x2bc ], %o0 ! 2014ebc <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area;
20084c8: e2 26 61 58 st %l1, [ %i1 + 0x158 ]
the_thread->Start.fp_context = fp_area;
20084cc: e2 26 60 c8 st %l1, [ %i1 + 0xc8 ]
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
20084d0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20084d4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20084d8: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
20084dc: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
20084e0: 80 a2 20 00 cmp %o0, 0
20084e4: 02 80 00 08 be 2008504 <_Thread_Initialize+0xa8>
20084e8: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
20084ec: 90 02 20 01 inc %o0 20084f0: 40 00 04 b1 call 20097b4 <_Workspace_Allocate> 20084f4: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area )
20084f8: b6 92 20 00 orcc %o0, 0, %i3
20084fc: 22 80 00 2e be,a 20085b4 <_Thread_Initialize+0x158>
2008500: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
* if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) {
2008504: 80 a6 e0 00 cmp %i3, 0
2008508: 02 80 00 0b be 2008534 <_Thread_Initialize+0xd8>
200850c: f6 26 61 68 st %i3, [ %i1 + 0x168 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008510: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008514: c4 00 62 bc ld [ %g1 + 0x2bc ], %g2 ! 2014ebc <_Thread_Maximum_extensions> 2008518: 10 80 00 04 b 2008528 <_Thread_Initialize+0xcc> 200851c: 82 10 20 00 clr %g1 2008520: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008524: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008528: 80 a0 40 02 cmp %g1, %g2
200852c: 08 bf ff fd bleu 2008520 <_Thread_Initialize+0xc4>
2008530: 87 28 60 02 sll %g1, 2, %g3
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
2008534: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
2008538: 90 10 00 19 mov %i1, %o0
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
200853c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
2008540: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
2008544: 92 10 00 1d mov %i5, %o1
* General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout;
2008548: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
200854c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible;
2008550: e4 2e 60 ac stb %l2, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
2008554: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
2008558: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
200855c: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT;
2008560: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL; the_thread->resource_count = 0;
2008564: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008568: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
200856c: 40 00 01 c1 call 2008c70 <_Thread_Set_priority> 2008570: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread ); return false; }
2008574: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
2008578: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
200857c: c0 26 60 84 clr [ %i1 + 0x84 ] 2008580: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
2008584: 83 28 60 02 sll %g1, 2, %g1 2008588: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
200858c: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread );
2008590: 90 10 00 19 mov %i1, %o0 2008594: 40 00 03 77 call 2009370 <_User_extensions_Thread_create> 2008598: b0 10 20 01 mov 1, %i0
if ( extension_status )
200859c: 80 8a 20 ff btst 0xff, %o0
20085a0: 22 80 00 05 be,a 20085b4 <_Thread_Initialize+0x158>
20085a4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20085a8: 81 c7 e0 08 ret 20085ac: 81 e8 00 00 restore
return true; failed: if ( the_thread->libc_reent )
20085b0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 20085b4: 80 a2 20 00 cmp %o0, 0
20085b8: 22 80 00 05 be,a 20085cc <_Thread_Initialize+0x170>
20085bc: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->libc_reent );
20085c0: 40 00 04 86 call 20097d8 <_Workspace_Free> 20085c4: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
20085c8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 20085cc: 80 a2 20 00 cmp %o0, 0
20085d0: 22 80 00 05 be,a 20085e4 <_Thread_Initialize+0x188>
20085d4: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
20085d8: 40 00 04 80 call 20097d8 <_Workspace_Free> 20085dc: 01 00 00 00 nop
failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
20085e0: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 20085e4: 80 a2 20 00 cmp %o0, 0
20085e8: 02 80 00 05 be 20085fc <_Thread_Initialize+0x1a0> <== ALWAYS TAKEN
20085ec: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
20085f0: 40 00 04 7a call 20097d8 <_Workspace_Free> <== NOT EXECUTED 20085f4: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
20085f8: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
20085fc: 02 80 00 05 be 2008610 <_Thread_Initialize+0x1b4>
2008600: 80 a4 60 00 cmp %l1, 0
(void) _Workspace_Free( extensions_area );
2008604: 40 00 04 75 call 20097d8 <_Workspace_Free> 2008608: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area )
200860c: 80 a4 60 00 cmp %l1, 0
2008610: 02 80 00 05 be 2008624 <_Thread_Initialize+0x1c8>
2008614: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( fp_area );
2008618: 40 00 04 70 call 20097d8 <_Workspace_Free> 200861c: 90 10 00 11 mov %l1, %o0
#endif _Thread_Stack_Free( the_thread );
2008620: 90 10 00 19 mov %i1, %o0 2008624: 40 00 02 4c call 2008f54 <_Thread_Stack_Free> 2008628: b0 10 20 00 clr %i0
return false;
200862c: 81 c7 e0 08 ret 2008630: 81 e8 00 00 restore
}
2008634: 81 c7 e0 08 ret 2008638: 91 e8 20 00 restore %g0, 0, %o0
0200c274 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) {
200c274: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
200c278: 7f ff d8 4e call 20023b0 <sparc_disable_interrupts> 200c27c: a0 10 00 18 mov %i0, %l0 200c280: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
200c284: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c288: 80 88 60 02 btst 2, %g1
200c28c: 02 80 00 2e be 200c344 <_Thread_Resume+0xd0> <== NEVER TAKEN
200c290: 82 08 7f fd and %g1, -3, %g1
current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) {
200c294: 80 a0 60 00 cmp %g1, 0
200c298: 12 80 00 2b bne 200c344 <_Thread_Resume+0xd0>
200c29c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
200c2a0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200c2a4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 200c2a8: c6 10 40 00 lduh [ %g1 ], %g3 200c2ac: 84 10 c0 02 or %g3, %g2, %g2 200c2b0: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200c2b4: 03 00 80 62 sethi %hi(0x2018800), %g1 200c2b8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 200c2bc: c4 10 63 9c lduh [ %g1 + 0x39c ], %g2 200c2c0: 84 10 c0 02 or %g3, %g2, %g2 200c2c4: c4 30 63 9c sth %g2, [ %g1 + 0x39c ]
_Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
200c2c8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
200c2cc: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
200c2d0: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
200c2d4: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
200c2d8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
200c2dc: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
200c2e0: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
200c2e4: 7f ff d8 37 call 20023c0 <sparc_enable_interrupts> 200c2e8: 01 00 00 00 nop 200c2ec: 7f ff d8 31 call 20023b0 <sparc_disable_interrupts> 200c2f0: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
200c2f4: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c2f8: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information> 200c2fc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200c300: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 200c304: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 200c308: 80 a0 80 03 cmp %g2, %g3
200c30c: 1a 80 00 0e bcc 200c344 <_Thread_Resume+0xd0>
200c310: 01 00 00 00 nop
_Thread_Heir = the_thread;
200c314: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200c318: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200c31c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 200c320: 80 a0 60 00 cmp %g1, 0
200c324: 32 80 00 05 bne,a 200c338 <_Thread_Resume+0xc4>
200c328: 84 10 20 01 mov 1, %g2 200c32c: 80 a0 a0 00 cmp %g2, 0
200c330: 12 80 00 05 bne 200c344 <_Thread_Resume+0xd0> <== ALWAYS TAKEN
200c334: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true;
200c338: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c33c: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information> 200c340: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
200c344: 7f ff d8 1f call 20023c0 <sparc_enable_interrupts> 200c348: 81 e8 00 00 restore
02009098 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) {
2009098: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing;
200909c: 23 00 80 54 sethi %hi(0x2015000), %l1 20090a0: a2 14 60 8c or %l1, 0x8c, %l1 ! 201508c <_Per_CPU_Information> 20090a4: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready; _ISR_Disable( level );
20090a8: 7f ff e4 46 call 20021c0 <sparc_disable_interrupts> 20090ac: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 20090b0: b0 10 00 08 mov %o0, %i0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last);
20090b4: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
20090b8: c4 04 80 00 ld [ %l2 ], %g2 20090bc: 80 a0 80 01 cmp %g2, %g1
20090c0: 22 80 00 19 be,a 2009124 <_Thread_Yield_processor+0x8c>
20090c4: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
) { Chain_Node *next; Chain_Node *previous; next = the_node->next;
20090c8: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
20090cc: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous; previous->next = next;
20090d0: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous;
20090d4: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
20090d8: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
20090dc: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last; the_chain->last = the_node;
20090e0: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
20090e4: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
20090e8: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level );
20090ec: 7f ff e4 39 call 20021d0 <sparc_enable_interrupts> 20090f0: 01 00 00 00 nop 20090f4: 7f ff e4 33 call 20021c0 <sparc_disable_interrupts> 20090f8: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20090fc: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 2009100: 80 a4 00 01 cmp %l0, %g1
2009104: 12 80 00 04 bne 2009114 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
2009108: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
200910c: c2 04 80 00 ld [ %l2 ], %g1 2009110: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Thread_Dispatch_necessary = true;
2009114: 03 00 80 54 sethi %hi(0x2015000), %g1 2009118: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 200911c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2009120: 30 80 00 05 b,a 2009134 <_Thread_Yield_processor+0x9c>
} else if ( !_Thread_Is_heir( executing ) )
2009124: 80 a4 00 01 cmp %l0, %g1
2009128: 02 80 00 03 be 2009134 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
200912c: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
2009130: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
2009134: 7f ff e4 27 call 20021d0 <sparc_enable_interrupts> 2009138: 81 e8 00 00 restore
02008bbc <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) {
2008bbc: 9d e3 bf 98 save %sp, -104, %sp
/* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue )
2008bc0: 80 a6 20 00 cmp %i0, 0
2008bc4: 02 80 00 19 be 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008bc8: 01 00 00 00 nop
/* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008bcc: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008bd0: 80 a4 60 01 cmp %l1, 1
2008bd4: 12 80 00 15 bne 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008bd8: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level );
2008bdc: 7f ff e5 79 call 20021c0 <sparc_disable_interrupts> 2008be0: 01 00 00 00 nop 2008be4: a0 10 00 08 mov %o0, %l0 2008be8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008bec: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008bf0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 2008bf4: 80 88 80 01 btst %g2, %g1
2008bf8: 02 80 00 0a be 2008c20 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008bfc: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008c00: 92 10 00 19 mov %i1, %o1 2008c04: 94 10 20 01 mov 1, %o2 2008c08: 40 00 0d 0f call 200c044 <_Thread_queue_Extract_priority_helper> 2008c0c: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008c10: 90 10 00 18 mov %i0, %o0 2008c14: 92 10 00 19 mov %i1, %o1 2008c18: 7f ff ff 4b call 2008944 <_Thread_queue_Enqueue_priority> 2008c1c: 94 07 bf fc add %fp, -4, %o2
} _ISR_Enable( level );
2008c20: 7f ff e5 6c call 20021d0 <sparc_enable_interrupts> 2008c24: 90 10 00 10 mov %l0, %o0 2008c28: 81 c7 e0 08 ret 2008c2c: 81 e8 00 00 restore
02008c30 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) {
2008c30: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
2008c34: 90 10 00 18 mov %i0, %o0 2008c38: 7f ff fd de call 20083b0 <_Thread_Get> 2008c3c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008c40: c2 07 bf fc ld [ %fp + -4 ], %g1 2008c44: 80 a0 60 00 cmp %g1, 0
2008c48: 12 80 00 08 bne 2008c68 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008c4c: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread );
2008c50: 40 00 0d 33 call 200c11c <_Thread_queue_Process_timeout> 2008c54: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
2008c58: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008c5c: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2014e28 <_Thread_Dispatch_disable_level> 2008c60: 84 00 bf ff add %g2, -1, %g2 2008c64: c4 20 62 28 st %g2, [ %g1 + 0x228 ] 2008c68: 81 c7 e0 08 ret 2008c6c: 81 e8 00 00 restore
0201690c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) {
201690c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016910: 37 00 80 ef sethi %hi(0x203bc00), %i3 2016914: a4 07 bf e8 add %fp, -24, %l2 2016918: b4 07 bf f4 add %fp, -12, %i2 201691c: ac 07 bf f8 add %fp, -8, %l6 2016920: a6 07 bf ec add %fp, -20, %l3
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
2016924: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
2016928: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
201692c: f4 27 bf fc st %i2, [ %fp + -4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
2016930: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
2016934: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
2016938: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201693c: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
2016940: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016944: 39 00 80 ef sethi %hi(0x203bc00), %i4
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016948: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201694c: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016950: ae 06 20 40 add %i0, 0x40, %l7
Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain;
2016954: f4 26 20 78 st %i2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016958: c2 06 e1 a4 ld [ %i3 + 0x1a4 ], %g1
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201695c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016960: 94 10 00 14 mov %l4, %o2
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot;
2016964: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016968: 90 10 00 15 mov %l5, %o0 201696c: 40 00 11 d6 call 201b0c4 <_Watchdog_Adjust_to_chain> 2016970: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016974: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016978: e0 07 20 f4 ld [ %i4 + 0xf4 ], %l0
/* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) {
201697c: 80 a4 00 0a cmp %l0, %o2
2016980: 08 80 00 06 bleu 2016998 <_Timer_server_Body+0x8c>
2016984: 92 24 00 0a sub %l0, %o2, %o1
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016988: 90 10 00 11 mov %l1, %o0 201698c: 40 00 11 ce call 201b0c4 <_Watchdog_Adjust_to_chain> 2016990: 94 10 00 14 mov %l4, %o2 2016994: 30 80 00 06 b,a 20169ac <_Timer_server_Body+0xa0>
} else if ( snapshot < last_snapshot ) { 2016998: 1a 80 00 05 bcc 20169ac <_Timer_server_Body+0xa0>
201699c: 90 10 00 11 mov %l1, %o0
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20169a0: 92 10 20 01 mov 1, %o1 20169a4: 40 00 11 a0 call 201b024 <_Watchdog_Adjust> 20169a8: 94 22 80 10 sub %o2, %l0, %o2
} watchdogs->last_snapshot = snapshot;
20169ac: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20169b0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20169b4: 40 00 02 bf call 20174b0 <_Chain_Get> 20169b8: 01 00 00 00 nop
if ( timer == NULL ) {
20169bc: 92 92 20 00 orcc %o0, 0, %o1
20169c0: 02 80 00 0c be 20169f0 <_Timer_server_Body+0xe4>
20169c4: 01 00 00 00 nop
static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20169c8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20169cc: 80 a0 60 01 cmp %g1, 1
20169d0: 02 80 00 05 be 20169e4 <_Timer_server_Body+0xd8>
20169d4: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20169d8: 80 a0 60 03 cmp %g1, 3
20169dc: 12 bf ff f5 bne 20169b0 <_Timer_server_Body+0xa4> <== NEVER TAKEN
20169e0: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20169e4: 40 00 11 ec call 201b194 <_Watchdog_Insert> 20169e8: 92 02 60 10 add %o1, 0x10, %o1 20169ec: 30 bf ff f1 b,a 20169b0 <_Timer_server_Body+0xa4>
* of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level );
20169f0: 7f ff e3 a8 call 200f890 <sparc_disable_interrupts> 20169f4: 01 00 00 00 nop
tmp = ts->insert_chain;
20169f8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
20169fc: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016a00: 80 a0 40 16 cmp %g1, %l6
2016a04: 12 80 00 04 bne 2016a14 <_Timer_server_Body+0x108> <== NEVER TAKEN
2016a08: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
2016a0c: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
2016a10: a0 10 20 00 clr %l0
} _ISR_Enable( level );
2016a14: 7f ff e3 a3 call 200f8a0 <sparc_enable_interrupts> 2016a18: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) {
2016a1c: 80 8c 20 ff btst 0xff, %l0
2016a20: 12 bf ff ce bne 2016958 <_Timer_server_Body+0x4c> <== NEVER TAKEN
2016a24: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) {
2016a28: 80 a0 40 13 cmp %g1, %l3
2016a2c: 02 80 00 18 be 2016a8c <_Timer_server_Body+0x180>
2016a30: 01 00 00 00 nop
/* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level );
2016a34: 7f ff e3 97 call 200f890 <sparc_disable_interrupts> 2016a38: 01 00 00 00 nop 2016a3c: 84 10 00 08 mov %o0, %g2
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
2016a40: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
2016a44: 80 a4 00 13 cmp %l0, %l3
2016a48: 02 80 00 0e be 2016a80 <_Timer_server_Body+0x174>
2016a4c: 80 a4 20 00 cmp %l0, 0
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
2016a50: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
2016a54: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) {
2016a58: 02 80 00 0a be 2016a80 <_Timer_server_Body+0x174> <== NEVER TAKEN
2016a5c: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
2016a60: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016a64: 7f ff e3 8f call 200f8a0 <sparc_enable_interrupts> 2016a68: 01 00 00 00 nop
/* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data );
2016a6c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016a70: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016a74: 9f c0 40 00 call %g1 2016a78: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
2016a7c: 30 bf ff ee b,a 2016a34 <_Timer_server_Body+0x128>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level );
2016a80: 7f ff e3 88 call 200f8a0 <sparc_enable_interrupts> 2016a84: 90 10 00 02 mov %g2, %o0 2016a88: 30 bf ff b3 b,a 2016954 <_Timer_server_Body+0x48>
* the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false;
2016a8c: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/* * Block until there is something to do. */ _Thread_Disable_dispatch();
2016a90: 7f ff ff 6f call 201684c <_Thread_Disable_dispatch> 2016a94: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016a98: d0 06 00 00 ld [ %i0 ], %o0 2016a9c: 40 00 0e d7 call 201a5f8 <_Thread_Set_state> 2016aa0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016aa4: 7f ff ff 70 call 2016864 <_Timer_server_Reset_interval_system_watchdog> 2016aa8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016aac: 7f ff ff 83 call 20168b8 <_Timer_server_Reset_tod_system_watchdog> 2016ab0: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016ab4: 40 00 0c 20 call 2019b34 <_Thread_Enable_dispatch> 2016ab8: 01 00 00 00 nop
ts->active = true;
2016abc: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ac0: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
2016ac4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ac8: 40 00 12 0d call 201b2fc <_Watchdog_Remove> 2016acc: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016ad0: 40 00 12 0b call 201b2fc <_Watchdog_Remove> 2016ad4: 90 10 00 17 mov %l7, %o0 2016ad8: 30 bf ff 9f b,a 2016954 <_Timer_server_Body+0x48>
02016adc <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) {
2016adc: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016ae0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016ae4: 80 a0 60 00 cmp %g1, 0
2016ae8: 12 80 00 49 bne 2016c0c <_Timer_server_Schedule_operation_method+0x130>
2016aec: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch();
2016af0: 7f ff ff 57 call 201684c <_Thread_Disable_dispatch> 2016af4: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016af8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016afc: 80 a0 60 01 cmp %g1, 1
2016b00: 12 80 00 1f bne 2016b7c <_Timer_server_Schedule_operation_method+0xa0>
2016b04: 80 a0 60 03 cmp %g1, 3
/* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
2016b08: 7f ff e3 62 call 200f890 <sparc_disable_interrupts> 2016b0c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016b10: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016b14: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 203bda4 <_Watchdog_Ticks_since_boot>
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
2016b18: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016b1c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2016b20: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016b24: 80 a0 40 03 cmp %g1, %g3
2016b28: 02 80 00 08 be 2016b48 <_Timer_server_Schedule_operation_method+0x6c>
2016b2c: 88 20 80 04 sub %g2, %g4, %g4
/* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval;
2016b30: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016b34: 80 a3 40 04 cmp %o5, %g4
2016b38: 08 80 00 03 bleu 2016b44 <_Timer_server_Schedule_operation_method+0x68>
2016b3c: 86 10 20 00 clr %g3
delta_interval -= delta;
2016b40: 86 23 40 04 sub %o5, %g4, %g3
} else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval;
2016b44: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
} ts->Interval_watchdogs.last_snapshot = snapshot;
2016b48: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016b4c: 7f ff e3 55 call 200f8a0 <sparc_enable_interrupts> 2016b50: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016b54: 90 06 20 30 add %i0, 0x30, %o0 2016b58: 40 00 11 8f call 201b194 <_Watchdog_Insert> 2016b5c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b60: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b64: 80 a0 60 00 cmp %g1, 0
2016b68: 12 80 00 27 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016b6c: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016b70: 7f ff ff 3d call 2016864 <_Timer_server_Reset_interval_system_watchdog> 2016b74: 90 10 00 18 mov %i0, %o0 2016b78: 30 80 00 23 b,a 2016c04 <_Timer_server_Schedule_operation_method+0x128>
} } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016b7c: 12 80 00 22 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016b80: 01 00 00 00 nop
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
2016b84: 7f ff e3 43 call 200f890 <sparc_disable_interrupts> 2016b88: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
2016b8c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016b90: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b94: 03 00 80 ef sethi %hi(0x203bc00), %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
2016b98: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016b9c: 80 a0 80 03 cmp %g2, %g3
2016ba0: 02 80 00 0d be 2016bd4 <_Timer_server_Schedule_operation_method+0xf8>
2016ba4: c2 00 60 f4 ld [ %g1 + 0xf4 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval;
2016ba8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016bac: 80 a0 40 0d cmp %g1, %o5
} } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot;
2016bb0: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016bb4: 08 80 00 07 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4>
2016bb8: 86 20 c0 01 sub %g3, %g1, %g3
/* * We advanced in time. */ delta = snapshot - last_snapshot;
2016bbc: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016bc0: 80 a1 00 0d cmp %g4, %o5
2016bc4: 08 80 00 03 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016bc8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016bcc: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval;
2016bd0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
} ts->TOD_watchdogs.last_snapshot = snapshot;
2016bd4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016bd8: 7f ff e3 32 call 200f8a0 <sparc_enable_interrupts> 2016bdc: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016be0: 90 06 20 68 add %i0, 0x68, %o0 2016be4: 40 00 11 6c call 201b194 <_Watchdog_Insert> 2016be8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016bec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016bf0: 80 a0 60 00 cmp %g1, 0
2016bf4: 12 80 00 04 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016bf8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016bfc: 7f ff ff 2f call 20168b8 <_Timer_server_Reset_tod_system_watchdog> 2016c00: 90 10 00 18 mov %i0, %o0
} } _Thread_Enable_dispatch();
2016c04: 40 00 0b cc call 2019b34 <_Thread_Enable_dispatch> 2016c08: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node );
2016c0c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016c10: 40 00 02 12 call 2017458 <_Chain_Append> 2016c14: 81 e8 00 00 restore
0200b1c8 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec )
200b1c8: c6 02 00 00 ld [ %o0 ], %g3 200b1cc: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) {
200b1d0: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200b1d4: 80 a0 c0 02 cmp %g3, %g2
200b1d8: 14 80 00 0b bg 200b204 <_Timespec_Greater_than+0x3c>
200b1dc: 90 10 20 01 mov 1, %o0
return true; if ( lhs->tv_sec < rhs->tv_sec )
200b1e0: 80 a0 c0 02 cmp %g3, %g2
200b1e4: 06 80 00 08 bl 200b204 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
200b1e8: 90 10 20 00 clr %o0
#include <rtems/system.h> #include <rtems/score/timespec.h> #include <rtems/score/tod.h> bool _Timespec_Greater_than(
200b1ec: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b1f0: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b1f4: 80 a0 80 01 cmp %g2, %g1
200b1f8: 14 80 00 03 bg 200b204 <_Timespec_Greater_than+0x3c>
200b1fc: 90 10 20 01 mov 1, %o0 200b200: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; }
200b204: 81 c3 e0 08 retl
020091ec <_User_extensions_Handler_initialization>: #include <rtems/score/userext.h> #include <rtems/score/wkspace.h> #include <string.h> void _User_extensions_Handler_initialization(void) {
20091ec: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
20091f0: 03 00 80 50 sethi %hi(0x2014000), %g1 20091f4: 82 10 62 88 or %g1, 0x288, %g1 ! 2014288 <Configuration>
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
20091f8: 05 00 80 54 sethi %hi(0x2015000), %g2
initial_extensions = Configuration.User_extension_table;
20091fc: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
2009200: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 2009204: 82 10 a0 48 or %g2, 0x48, %g1 2009208: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
200920c: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
2009210: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
2009214: c6 20 a0 48 st %g3, [ %g2 + 0x48 ] 2009218: 05 00 80 53 sethi %hi(0x2014c00), %g2 200921c: 82 10 a2 2c or %g2, 0x22c, %g1 ! 2014e2c <_User_extensions_Switches_list> 2009220: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
2009224: c0 20 60 04 clr [ %g1 + 4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
2009228: c6 20 a2 2c st %g3, [ %g2 + 0x22c ]
initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) {
200922c: 80 a4 e0 00 cmp %l3, 0
2009230: 02 80 00 1b be 200929c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009234: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control )
2009238: 83 2c a0 02 sll %l2, 2, %g1 200923c: a1 2c a0 04 sll %l2, 4, %l0 2009240: a0 24 00 01 sub %l0, %g1, %l0 2009244: a0 04 00 12 add %l0, %l2, %l0 2009248: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
200924c: 40 00 01 6a call 20097f4 <_Workspace_Allocate_or_fatal_error> 2009250: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
2009254: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
2009258: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
200925c: 92 10 20 00 clr %o1 2009260: 40 00 14 86 call 200e478 <memset> 2009264: a0 10 20 00 clr %l0
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009268: 10 80 00 0b b 2009294 <_User_extensions_Handler_initialization+0xa8> 200926c: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table;
2009270: 90 04 60 14 add %l1, 0x14, %o0 2009274: 92 04 c0 09 add %l3, %o1, %o1 2009278: 40 00 14 47 call 200e394 <memcpy> 200927c: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
2009280: 90 10 00 11 mov %l1, %o0 2009284: 40 00 0c 0e call 200c2bc <_User_extensions_Add_set> 2009288: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++;
200928c: a2 04 60 34 add %l1, 0x34, %l1
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009290: 80 a4 00 12 cmp %l0, %l2
2009294: 0a bf ff f7 bcs 2009270 <_User_extensions_Handler_initialization+0x84>
2009298: 93 2c 20 05 sll %l0, 5, %o1 200929c: 81 c7 e0 08 ret 20092a0: 81 e8 00 00 restore
020092e8 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) {
20092e8: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
20092ec: 23 00 80 54 sethi %hi(0x2015000), %l1 20092f0: a2 14 60 48 or %l1, 0x48, %l1 ! 2015048 <_User_extensions_List> 20092f4: 10 80 00 08 b 2009314 <_User_extensions_Thread_exitted+0x2c> 20092f8: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL )
20092fc: 80 a0 60 00 cmp %g1, 0
2009300: 22 80 00 05 be,a 2009314 <_User_extensions_Thread_exitted+0x2c>
2009304: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
2009308: 9f c0 40 00 call %g1 200930c: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
2009310: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
2009314: 80 a4 00 11 cmp %l0, %l1
2009318: 32 bf ff f9 bne,a 20092fc <_User_extensions_Thread_exitted+0x14>
200931c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } }
2009320: 81 c7 e0 08 ret 2009324: 81 e8 00 00 restore
0200b678 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) {
200b678: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; _ISR_Disable( level );
200b67c: 7f ff de dc call 20031ec <sparc_disable_interrupts> 200b680: a0 10 00 18 mov %i0, %l0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
200b684: c2 06 00 00 ld [ %i0 ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
200b688: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) {
200b68c: 80 a0 40 11 cmp %g1, %l1
200b690: 02 80 00 1f be 200b70c <_Watchdog_Adjust+0x94>
200b694: 80 a6 60 00 cmp %i1, 0
switch ( direction ) { 200b698: 02 80 00 1a be 200b700 <_Watchdog_Adjust+0x88>
200b69c: a4 10 20 01 mov 1, %l2 200b6a0: 80 a6 60 01 cmp %i1, 1
200b6a4: 12 80 00 1a bne 200b70c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b6a8: 01 00 00 00 nop
case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units;
200b6ac: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b6b0: 10 80 00 07 b 200b6cc <_Watchdog_Adjust+0x54> 200b6b4: b4 00 80 1a add %g2, %i2, %i2
break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) {
200b6b8: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b6bc: 80 a6 80 19 cmp %i2, %i1
200b6c0: 3a 80 00 05 bcc,a 200b6d4 <_Watchdog_Adjust+0x5c>
200b6c4: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b6c8: b4 26 40 1a sub %i1, %i2, %i2
break;
200b6cc: 10 80 00 10 b 200b70c <_Watchdog_Adjust+0x94> 200b6d0: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level );
200b6d4: 7f ff de ca call 20031fc <sparc_enable_interrupts> 200b6d8: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b6dc: 40 00 00 92 call 200b924 <_Watchdog_Tickle> 200b6e0: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b6e4: 7f ff de c2 call 20031ec <sparc_disable_interrupts> 200b6e8: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b6ec: c2 04 00 00 ld [ %l0 ], %g1 200b6f0: 80 a0 40 11 cmp %g1, %l1
200b6f4: 02 80 00 06 be 200b70c <_Watchdog_Adjust+0x94>
200b6f8: 01 00 00 00 nop
while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval;
200b6fc: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
200b700: 80 a6 a0 00 cmp %i2, 0
200b704: 32 bf ff ed bne,a 200b6b8 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b708: c2 04 00 00 ld [ %l0 ], %g1
} break; } } _ISR_Enable( level );
200b70c: 7f ff de bc call 20031fc <sparc_enable_interrupts> 200b710: 91 e8 00 08 restore %g0, %o0, %o0
02009608 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) {
2009608: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level );
200960c: 7f ff e2 ed call 20021c0 <sparc_disable_interrupts> 2009610: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
2009614: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009618: 80 a6 20 01 cmp %i0, 1
200961c: 22 80 00 1d be,a 2009690 <_Watchdog_Remove+0x88>
2009620: c0 24 20 08 clr [ %l0 + 8 ]
2009624: 0a 80 00 1c bcs 2009694 <_Watchdog_Remove+0x8c>
2009628: 03 00 80 53 sethi %hi(0x2014c00), %g1 200962c: 80 a6 20 03 cmp %i0, 3
2009630: 18 80 00 19 bgu 2009694 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009634: 01 00 00 00 nop 2009638: c2 04 00 00 ld [ %l0 ], %g1
break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE;
200963c: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) )
2009640: c4 00 40 00 ld [ %g1 ], %g2 2009644: 80 a0 a0 00 cmp %g2, 0
2009648: 02 80 00 07 be 2009664 <_Watchdog_Remove+0x5c>
200964c: 05 00 80 53 sethi %hi(0x2014c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009650: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009654: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 2009658: 84 00 c0 02 add %g3, %g2, %g2 200965c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009660: 05 00 80 53 sethi %hi(0x2014c00), %g2 2009664: c4 00 a3 60 ld [ %g2 + 0x360 ], %g2 ! 2014f60 <_Watchdog_Sync_count> 2009668: 80 a0 a0 00 cmp %g2, 0
200966c: 22 80 00 07 be,a 2009688 <_Watchdog_Remove+0x80>
2009670: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009674: 05 00 80 54 sethi %hi(0x2015000), %g2 2009678: c6 00 a0 94 ld [ %g2 + 0x94 ], %g3 ! 2015094 <_Per_CPU_Information+0x8> 200967c: 05 00 80 53 sethi %hi(0x2014c00), %g2 2009680: c6 20 a2 d4 st %g3, [ %g2 + 0x2d4 ] ! 2014ed4 <_Watchdog_Sync_level>
{ Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous;
2009684: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
2009688: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200968c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009690: 03 00 80 53 sethi %hi(0x2014c00), %g1 2009694: c2 00 63 64 ld [ %g1 + 0x364 ], %g1 ! 2014f64 <_Watchdog_Ticks_since_boot> 2009698: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
200969c: 7f ff e2 cd call 20021d0 <sparc_enable_interrupts> 20096a0: 01 00 00 00 nop
return( previous_state ); }
20096a4: 81 c7 e0 08 ret 20096a8: 81 e8 00 00 restore
0200aeb8 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) {
200aeb8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Chain_Node *node; _ISR_Disable( level );
200aebc: 7f ff df a3 call 2002d48 <sparc_disable_interrupts> 200aec0: a0 10 00 18 mov %i0, %l0 200aec4: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200aec8: 11 00 80 6d sethi %hi(0x201b400), %o0 200aecc: 94 10 00 19 mov %i1, %o2 200aed0: 90 12 22 b8 or %o0, 0x2b8, %o0 200aed4: 7f ff e5 ff call 20046d0 <printk> 200aed8: 92 10 00 10 mov %l0, %o1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
200aedc: e2 06 40 00 ld [ %i1 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
200aee0: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200aee4: 80 a4 40 19 cmp %l1, %i1
200aee8: 02 80 00 0e be 200af20 <_Watchdog_Report_chain+0x68>
200aeec: 11 00 80 6d sethi %hi(0x201b400), %o0
node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch );
200aef0: 92 10 00 11 mov %l1, %o1 200aef4: 40 00 00 10 call 200af34 <_Watchdog_Report> 200aef8: 90 10 20 00 clr %o0
_ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next )
200aefc: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ;
200af00: 80 a4 40 19 cmp %l1, %i1
200af04: 12 bf ff fc bne 200aef4 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200af08: 92 10 00 11 mov %l1, %o1
{ Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name );
200af0c: 11 00 80 6d sethi %hi(0x201b400), %o0 200af10: 92 10 00 10 mov %l0, %o1 200af14: 7f ff e5 ef call 20046d0 <printk> 200af18: 90 12 22 d0 or %o0, 0x2d0, %o0 200af1c: 30 80 00 03 b,a 200af28 <_Watchdog_Report_chain+0x70>
} else { printk( "Chain is empty\n" );
200af20: 7f ff e5 ec call 20046d0 <printk> 200af24: 90 12 22 e0 or %o0, 0x2e0, %o0
} _ISR_Enable( level );
200af28: 7f ff df 8c call 2002d58 <sparc_enable_interrupts> 200af2c: 81 e8 00 00 restore
02006c7c <rtems_chain_append_with_notification>: rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) {
2006c7c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node );
2006c80: 90 10 00 18 mov %i0, %o0 2006c84: 40 00 01 48 call 20071a4 <_Chain_Append_with_empty_check> 2006c88: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) {
2006c8c: 80 8a 20 ff btst 0xff, %o0
2006c90: 02 80 00 05 be 2006ca4 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
2006c94: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006c98: b0 10 00 1a mov %i2, %i0 2006c9c: 7f ff fd 78 call 200627c <rtems_event_send> 2006ca0: 93 e8 00 1b restore %g0, %i3, %o1
} return sc; }
2006ca4: 81 c7 e0 08 ret <== NOT EXECUTED 2006ca8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02006cac <rtems_chain_get_with_notification>: rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) {
2006cac: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node );
2006cb0: 90 10 00 18 mov %i0, %o0 2006cb4: 40 00 01 63 call 2007240 <_Chain_Get_with_empty_check> 2006cb8: 92 10 00 1b mov %i3, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) {
2006cbc: 80 8a 20 ff btst 0xff, %o0
2006cc0: 02 80 00 05 be 2006cd4 <rtems_chain_get_with_notification+0x28><== NEVER TAKEN
2006cc4: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006cc8: b0 10 00 19 mov %i1, %i0 2006ccc: 7f ff fd 6c call 200627c <rtems_event_send> 2006cd0: 93 e8 00 1a restore %g0, %i2, %o1
} return sc; }
2006cd4: 81 c7 e0 08 ret <== NOT EXECUTED 2006cd8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02006cdc <rtems_chain_get_with_wait>: rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) {
2006cdc: 9d e3 bf 98 save %sp, -104, %sp 2006ce0: a0 10 00 18 mov %i0, %l0
while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive(
2006ce4: 10 80 00 09 b 2006d08 <rtems_chain_get_with_wait+0x2c> 2006ce8: a4 07 bf fc add %fp, -4, %l2 2006cec: 92 10 20 00 clr %o1 2006cf0: 94 10 00 1a mov %i2, %o2 2006cf4: 7f ff fc fe call 20060ec <rtems_event_receive> 2006cf8: 96 10 00 12 mov %l2, %o3
) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while (
2006cfc: 80 a2 20 00 cmp %o0, 0
2006d00: 32 80 00 09 bne,a 2006d24 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
2006d04: e2 26 c0 00 st %l1, [ %i3 ]
*/ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain );
2006d08: 40 00 01 63 call 2007294 <_Chain_Get> 2006d0c: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL
2006d10: a2 92 20 00 orcc %o0, 0, %l1
2006d14: 02 bf ff f6 be 2006cec <rtems_chain_get_with_wait+0x10>
2006d18: 90 10 00 19 mov %i1, %o0 2006d1c: 90 10 20 00 clr %o0
timeout, &out ); } *node_ptr = node;
2006d20: e2 26 c0 00 st %l1, [ %i3 ]
return sc; }
2006d24: 81 c7 e0 08 ret 2006d28: 91 e8 00 08 restore %g0, %o0, %o0
02006d2c <rtems_chain_prepend_with_notification>: rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) {
2006d2c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node );
2006d30: 90 10 00 18 mov %i0, %o0 2006d34: 40 00 01 72 call 20072fc <_Chain_Prepend_with_empty_check> 2006d38: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) {
2006d3c: 80 8a 20 ff btst 0xff, %o0
2006d40: 02 80 00 05 be 2006d54 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
2006d44: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006d48: b0 10 00 1a mov %i2, %i0 2006d4c: 7f ff fd 4c call 200627c <rtems_event_send> 2006d50: 93 e8 00 1b restore %g0, %i3, %o1
} return sc; }
2006d54: 81 c7 e0 08 ret <== NOT EXECUTED 2006d58: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02009108 <rtems_iterate_over_all_threads>: #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) {
2009108: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine )
200910c: 80 a6 20 00 cmp %i0, 0
2009110: 02 80 00 1a be 2009178 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
2009114: 21 00 80 96 sethi %hi(0x2025800), %l0 2009118: a0 14 22 60 or %l0, 0x260, %l0 ! 2025a60 <_Objects_Information_table+0x4>
#endif #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200911c: a6 04 20 0c add %l0, 0xc, %l3
#if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ];
2009120: c2 04 00 00 ld [ %l0 ], %g1 2009124: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
2009128: 80 a4 a0 00 cmp %l2, 0
200912c: 12 80 00 0b bne 2009158 <rtems_iterate_over_all_threads+0x50>
2009130: a2 10 20 01 mov 1, %l1
continue; for ( i=1 ; i <= information->maximum ; i++ ) {
2009134: 10 80 00 0e b 200916c <rtems_iterate_over_all_threads+0x64> 2009138: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
200913c: 83 2c 60 02 sll %l1, 2, %g1 2009140: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009144: 80 a2 20 00 cmp %o0, 0
2009148: 02 80 00 04 be 2009158 <rtems_iterate_over_all_threads+0x50>
200914c: a2 04 60 01 inc %l1
continue; (*routine)(the_thread);
2009150: 9f c6 00 00 call %i0 2009154: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) {
2009158: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 200915c: 80 a4 40 01 cmp %l1, %g1
2009160: 28 bf ff f7 bleu,a 200913c <rtems_iterate_over_all_threads+0x34>
2009164: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 2009168: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200916c: 80 a4 00 13 cmp %l0, %l3
2009170: 32 bf ff ed bne,a 2009124 <rtems_iterate_over_all_threads+0x1c>
2009174: c2 04 00 00 ld [ %l0 ], %g1 2009178: 81 c7 e0 08 ret 200917c: 81 e8 00 00 restore
020142cc <rtems_partition_create>: uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) {
20142cc: 9d e3 bf a0 save %sp, -96, %sp 20142d0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) )
20142d4: 80 a4 20 00 cmp %l0, 0
20142d8: 02 80 00 1f be 2014354 <rtems_partition_create+0x88>
20142dc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME; if ( !starting_address )
20142e0: 80 a6 60 00 cmp %i1, 0
20142e4: 02 80 00 1c be 2014354 <rtems_partition_create+0x88>
20142e8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !id )
20142ec: 80 a7 60 00 cmp %i5, 0
20142f0: 02 80 00 19 be 2014354 <rtems_partition_create+0x88> <== NEVER TAKEN
20142f4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20142f8: 02 80 00 32 be 20143c0 <rtems_partition_create+0xf4>
20142fc: 80 a6 a0 00 cmp %i2, 0
2014300: 02 80 00 30 be 20143c0 <rtems_partition_create+0xf4>
2014304: 80 a6 80 1b cmp %i2, %i3
2014308: 0a 80 00 13 bcs 2014354 <rtems_partition_create+0x88>
201430c: b0 10 20 08 mov 8, %i0 2014310: 80 8e e0 07 btst 7, %i3
2014314: 12 80 00 10 bne 2014354 <rtems_partition_create+0x88>
2014318: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 201431c: 12 80 00 0e bne 2014354 <rtems_partition_create+0x88>
2014320: b0 10 20 09 mov 9, %i0 2014324: 03 00 80 ef sethi %hi(0x203bc00), %g1 2014328: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 203bc68 <_Thread_Dispatch_disable_level> 201432c: 84 00 a0 01 inc %g2 2014330: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
* This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014334: 25 00 80 ee sethi %hi(0x203b800), %l2 2014338: 40 00 12 46 call 2018c50 <_Objects_Allocate> 201433c: 90 14 a2 74 or %l2, 0x274, %o0 ! 203ba74 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) {
2014340: a2 92 20 00 orcc %o0, 0, %l1
2014344: 12 80 00 06 bne 201435c <rtems_partition_create+0x90>
2014348: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
201434c: 40 00 15 fa call 2019b34 <_Thread_Enable_dispatch> 2014350: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
2014354: 81 c7 e0 08 ret 2014358: 81 e8 00 00 restore
_Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address;
201435c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
2014360: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014364: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
2014368: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
201436c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size );
2014370: 40 00 5e dd call 202bee4 <.udiv> 2014374: 90 10 00 1a mov %i2, %o0
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
2014378: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
201437c: 94 10 00 08 mov %o0, %o2
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
2014380: 96 10 00 1b mov %i3, %o3 2014384: a6 04 60 24 add %l1, 0x24, %l3 2014388: 40 00 0c 59 call 20174ec <_Chain_Initialize> 201438c: 90 10 00 13 mov %l3, %o0
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
2014390: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
2014394: a4 14 a2 74 or %l2, 0x274, %l2
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
2014398: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
201439c: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
20143a0: 85 28 a0 02 sll %g2, 2, %g2 20143a4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
20143a8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id;
20143ac: c2 27 40 00 st %g1, [ %i5 ]
name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch();
20143b0: 40 00 15 e1 call 2019b34 <_Thread_Enable_dispatch> 20143b4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20143b8: 81 c7 e0 08 ret 20143bc: 81 e8 00 00 restore
if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE;
20143c0: b0 10 20 08 mov 8, %i0
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
20143c4: 81 c7 e0 08 ret 20143c8: 81 e8 00 00 restore
020073b0 <rtems_rate_monotonic_period>: rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) {
20073b0: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location );
20073b4: 11 00 80 74 sethi %hi(0x201d000), %o0 20073b8: 92 10 00 18 mov %i0, %o1 20073bc: 90 12 23 04 or %o0, 0x304, %o0 20073c0: 40 00 08 ea call 2009768 <_Objects_Get> 20073c4: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
20073c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20073cc: 80 a0 60 00 cmp %g1, 0
20073d0: 12 80 00 66 bne 2007568 <rtems_rate_monotonic_period+0x1b8>
20073d4: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
20073d8: 25 00 80 75 sethi %hi(0x201d400), %l2
case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) {
20073dc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 20073e0: a4 14 a2 dc or %l2, 0x2dc, %l2 20073e4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 20073e8: 80 a0 80 01 cmp %g2, %g1
20073ec: 02 80 00 06 be 2007404 <rtems_rate_monotonic_period+0x54>
20073f0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20073f4: 40 00 0b 45 call 200a108 <_Thread_Enable_dispatch> 20073f8: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
20073fc: 81 c7 e0 08 ret 2007400: 81 e8 00 00 restore
} if ( length == RTEMS_PERIOD_STATUS ) { 2007404: 12 80 00 0e bne 200743c <rtems_rate_monotonic_period+0x8c>
2007408: 01 00 00 00 nop
switch ( the_period->state ) {
200740c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007410: 80 a0 60 04 cmp %g1, 4
2007414: 18 80 00 06 bgu 200742c <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
2007418: b0 10 20 00 clr %i0 200741c: 83 28 60 02 sll %g1, 2, %g1 2007420: 05 00 80 6c sethi %hi(0x201b000), %g2 2007424: 84 10 a3 5c or %g2, 0x35c, %g2 ! 201b35c <CSWTCH.2> 2007428: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch();
200742c: 40 00 0b 37 call 200a108 <_Thread_Enable_dispatch> 2007430: 01 00 00 00 nop
return( return_value );
2007434: 81 c7 e0 08 ret 2007438: 81 e8 00 00 restore
} _ISR_Disable( level );
200743c: 7f ff ef 26 call 20030d4 <sparc_disable_interrupts> 2007440: 01 00 00 00 nop 2007444: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007448: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 200744c: 80 a4 60 00 cmp %l1, 0
2007450: 12 80 00 15 bne 20074a4 <rtems_rate_monotonic_period+0xf4>
2007454: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
2007458: 7f ff ef 23 call 20030e4 <sparc_enable_interrupts> 200745c: 01 00 00 00 nop
/* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period );
2007460: 7f ff ff 7a call 2007248 <_Rate_monotonic_Initiate_statistics> 2007464: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007468: 82 10 20 02 mov 2, %g1 200746c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
2007470: 03 00 80 1e sethi %hi(0x2007800), %g1 2007474: 82 10 60 38 or %g1, 0x38, %g1 ! 2007838 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
2007478: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
200747c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
2007480: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
2007484: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length;
2007488: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
200748c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007490: 11 00 80 75 sethi %hi(0x201d400), %o0 2007494: 92 04 20 10 add %l0, 0x10, %o1 2007498: 40 00 10 2d call 200b54c <_Watchdog_Insert> 200749c: 90 12 21 40 or %o0, 0x140, %o0 20074a0: 30 80 00 1b b,a 200750c <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20074a4: 12 80 00 1e bne 200751c <rtems_rate_monotonic_period+0x16c>
20074a8: 80 a4 60 04 cmp %l1, 4
/* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period );
20074ac: 7f ff ff 83 call 20072b8 <_Rate_monotonic_Update_statistics> 20074b0: 90 10 00 10 mov %l0, %o0
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074b4: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20074b8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length; _ISR_Enable( level );
20074c0: 7f ff ef 09 call 20030e4 <sparc_enable_interrupts> 20074c4: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20074c8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 20074cc: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20074d0: 13 00 00 10 sethi %hi(0x4000), %o1 20074d4: 40 00 0d 64 call 200aa64 <_Thread_Set_state> 20074d8: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level );
20074dc: 7f ff ee fe call 20030d4 <sparc_disable_interrupts> 20074e0: 01 00 00 00 nop
local_state = the_period->state;
20074e4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
20074e8: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
20074ec: 7f ff ee fe call 20030e4 <sparc_enable_interrupts> 20074f0: 01 00 00 00 nop
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20074f4: 80 a4 e0 03 cmp %l3, 3
20074f8: 12 80 00 05 bne 200750c <rtems_rate_monotonic_period+0x15c>
20074fc: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007500: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007504: 40 00 09 fc call 2009cf4 <_Thread_Clear_state> 2007508: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
200750c: 40 00 0a ff call 200a108 <_Thread_Enable_dispatch> 2007510: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007514: 81 c7 e0 08 ret 2007518: 81 e8 00 00 restore
} if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
200751c: 12 bf ff b8 bne 20073fc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2007520: b0 10 20 04 mov 4, %i0
/* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period );
2007524: 7f ff ff 65 call 20072b8 <_Rate_monotonic_Update_statistics> 2007528: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
200752c: 7f ff ee ee call 20030e4 <sparc_enable_interrupts> 2007530: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007534: 82 10 20 02 mov 2, %g1 2007538: 92 04 20 10 add %l0, 0x10, %o1 200753c: 11 00 80 75 sethi %hi(0x201d400), %o0 2007540: 90 12 21 40 or %o0, 0x140, %o0 ! 201d540 <_Watchdog_Ticks_chain> 2007544: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
2007548: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
200754c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007550: 40 00 0f ff call 200b54c <_Watchdog_Insert> 2007554: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
2007558: 40 00 0a ec call 200a108 <_Thread_Enable_dispatch> 200755c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007560: 81 c7 e0 08 ret 2007564: 81 e8 00 00 restore
#endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID;
2007568: b0 10 20 04 mov 4, %i0
}
200756c: 81 c7 e0 08 ret 2007570: 81 e8 00 00 restore
02007574 <rtems_rate_monotonic_report_statistics_with_plugin>: */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) {
2007574: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print )
2007578: 80 a6 60 00 cmp %i1, 0
200757c: 02 80 00 79 be 2007760 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
2007580: 90 10 00 18 mov %i0, %o0
return; (*print)( context, "Period information by period\n" );
2007584: 13 00 80 6c sethi %hi(0x201b000), %o1 2007588: 9f c6 40 00 call %i1 200758c: 92 12 63 70 or %o1, 0x370, %o1 ! 201b370 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" );
2007590: 90 10 00 18 mov %i0, %o0 2007594: 13 00 80 6c sethi %hi(0x201b000), %o1 2007598: 9f c6 40 00 call %i1 200759c: 92 12 63 90 or %o1, 0x390, %o1 ! 201b390 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20075a0: 90 10 00 18 mov %i0, %o0 20075a4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075a8: 9f c6 40 00 call %i1 20075ac: 92 12 63 b8 or %o1, 0x3b8, %o1 ! 201b3b8 <CSWTCH.2+0x5c>
Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED "
20075b0: 90 10 00 18 mov %i0, %o0 20075b4: 13 00 80 6c sethi %hi(0x201b000), %o1 20075b8: 9f c6 40 00 call %i1 20075bc: 92 12 63 e0 or %o1, 0x3e0, %o1 ! 201b3e0 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " "
20075c0: 90 10 00 18 mov %i0, %o0 20075c4: 13 00 80 6d sethi %hi(0x201b400), %o1 20075c8: 9f c6 40 00 call %i1 20075cc: 92 12 60 30 or %o1, 0x30, %o1 ! 201b430 <CSWTCH.2+0xd4>
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075d0: 3b 00 80 74 sethi %hi(0x201d000), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context,
20075d4: 2b 00 80 6d sethi %hi(0x201b400), %l5
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075d8: 82 17 63 04 or %i5, 0x304, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context,
20075dc: 27 00 80 6d sethi %hi(0x201b400), %l3
struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context,
20075e0: 35 00 80 6d sethi %hi(0x201b400), %i2
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
20075e4: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20075e8: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
20075ec: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
20075f0: a4 07 bf f8 add %fp, -8, %l2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
20075f4: aa 15 60 80 or %l5, 0x80, %l5
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time;
20075f8: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20075fc: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
2007600: a6 14 e0 98 or %l3, 0x98, %l3
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time;
2007604: b8 07 bf d0 add %fp, -48, %i4
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
2007608: 10 80 00 52 b 2007750 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc> 200760c: b4 16 a0 b8 or %i2, 0xb8, %i2
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007610: 40 00 18 13 call 200d65c <rtems_rate_monotonic_get_statistics> 2007614: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
2007618: 80 a2 20 00 cmp %o0, 0
200761c: 32 80 00 4c bne,a 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007620: a0 04 20 01 inc %l0
continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
2007624: 92 10 00 16 mov %l6, %o1 2007628: 40 00 18 3a call 200d710 <rtems_rate_monotonic_get_status> 200762c: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
2007630: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007634: 92 10 20 05 mov 5, %o1 2007638: 40 00 00 ae call 20078f0 <rtems_object_get_name> 200763c: 94 10 00 12 mov %l2, %o2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
2007640: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007644: 92 10 00 15 mov %l5, %o1 2007648: 90 10 00 18 mov %i0, %o0 200764c: 94 10 00 10 mov %l0, %o2 2007650: 9f c6 40 00 call %i1 2007654: 96 10 00 12 mov %l2, %o3
); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) {
2007658: d2 07 bf a0 ld [ %fp + -96 ], %o1 200765c: 80 a2 60 00 cmp %o1, 0
2007660: 12 80 00 08 bne 2007680 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
2007664: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
2007668: 90 10 00 18 mov %i0, %o0 200766c: 13 00 80 69 sethi %hi(0x201a400), %o1 2007670: 9f c6 40 00 call %i1 2007674: 92 12 62 88 or %o1, 0x288, %o1 ! 201a688 <_rodata_start+0x158>
continue;
2007678: 10 80 00 35 b 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8> 200767c: a0 04 20 01 inc %l0
struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007680: 40 00 0e 90 call 200b0c0 <_Timespec_Divide_by_integer> 2007684: 90 10 00 14 mov %l4, %o0
(*print)( context,
2007688: d0 07 bf ac ld [ %fp + -84 ], %o0 200768c: 40 00 44 1d call 2018700 <.div> 2007690: 92 10 23 e8 mov 0x3e8, %o1 2007694: 96 10 00 08 mov %o0, %o3 2007698: d0 07 bf b4 ld [ %fp + -76 ], %o0 200769c: d6 27 bf 9c st %o3, [ %fp + -100 ] 20076a0: 40 00 44 18 call 2018700 <.div> 20076a4: 92 10 23 e8 mov 0x3e8, %o1 20076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20076ac: b6 10 00 08 mov %o0, %i3 20076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20076b8: 40 00 44 12 call 2018700 <.div> 20076bc: 92 10 23 e8 mov 0x3e8, %o1 20076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4 20076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3 20076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2 20076cc: 9a 10 00 1b mov %i3, %o5 20076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20076d4: 92 10 00 13 mov %l3, %o1 20076d8: 9f c6 40 00 call %i1 20076dc: 90 10 00 18 mov %i0, %o0
struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20076e4: 94 10 00 11 mov %l1, %o2 20076e8: 40 00 0e 76 call 200b0c0 <_Timespec_Divide_by_integer> 20076ec: 90 10 00 1c mov %i4, %o0
(*print)( context,
20076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0 20076f4: 40 00 44 03 call 2018700 <.div> 20076f8: 92 10 23 e8 mov 0x3e8, %o1 20076fc: 96 10 00 08 mov %o0, %o3 2007700: d0 07 bf cc ld [ %fp + -52 ], %o0 2007704: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007708: 40 00 43 fe call 2018700 <.div> 200770c: 92 10 23 e8 mov 0x3e8, %o1 2007710: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007714: b6 10 00 08 mov %o0, %i3 2007718: d0 07 bf f4 ld [ %fp + -12 ], %o0 200771c: 92 10 23 e8 mov 0x3e8, %o1 2007720: 40 00 43 f8 call 2018700 <.div> 2007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007728: d4 07 bf c0 ld [ %fp + -64 ], %o2 200772c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007730: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007738: 92 10 00 1a mov %i2, %o1 200773c: 90 10 00 18 mov %i0, %o0 2007740: 9f c6 40 00 call %i1 2007744: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) {
2007748: a0 04 20 01 inc %l0
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ;
200774c: 82 17 63 04 or %i5, 0x304, %g1
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
2007750: c2 00 60 0c ld [ %g1 + 0xc ], %g1 2007754: 80 a4 00 01 cmp %l0, %g1
2007758: 08 bf ff ae bleu 2007610 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
200775c: 90 10 00 10 mov %l0, %o0 2007760: 81 c7 e0 08 ret 2007764: 81 e8 00 00 restore
02015870 <rtems_signal_send>: rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) {
2015870: 9d e3 bf 98 save %sp, -104, %sp 2015874: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set )
2015878: 80 a6 60 00 cmp %i1, 0
201587c: 02 80 00 2e be 2015934 <rtems_signal_send+0xc4>
2015880: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
2015884: 40 00 10 b9 call 2019b68 <_Thread_Get> 2015888: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201588c: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
2015890: a2 10 00 08 mov %o0, %l1
switch ( location ) {
2015894: 80 a0 60 00 cmp %g1, 0
2015898: 12 80 00 27 bne 2015934 <rtems_signal_send+0xc4>
201589c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20158a0: e0 02 21 60 ld [ %o0 + 0x160 ], %l0
asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20158a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20158a8: 80 a0 60 00 cmp %g1, 0
20158ac: 02 80 00 24 be 201593c <rtems_signal_send+0xcc>
20158b0: 01 00 00 00 nop
if ( asr->is_enabled ) {
20158b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20158b8: 80 a0 60 00 cmp %g1, 0
20158bc: 02 80 00 15 be 2015910 <rtems_signal_send+0xa0>
20158c0: 01 00 00 00 nop
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
20158c4: 7f ff e7 f3 call 200f890 <sparc_disable_interrupts> 20158c8: 01 00 00 00 nop
*signal_set |= signals;
20158cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20158d0: b2 10 40 19 or %g1, %i1, %i1 20158d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
20158d8: 7f ff e7 f2 call 200f8a0 <sparc_enable_interrupts> 20158dc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20158e0: 03 00 80 ef sethi %hi(0x203bc00), %g1 20158e4: 82 10 62 d4 or %g1, 0x2d4, %g1 ! 203bed4 <_Per_CPU_Information> 20158e8: c4 00 60 08 ld [ %g1 + 8 ], %g2 20158ec: 80 a0 a0 00 cmp %g2, 0
20158f0: 02 80 00 0f be 201592c <rtems_signal_send+0xbc>
20158f4: 01 00 00 00 nop 20158f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20158fc: 80 a4 40 02 cmp %l1, %g2
2015900: 12 80 00 0b bne 201592c <rtems_signal_send+0xbc> <== NEVER TAKEN
2015904: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015908: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 201590c: 30 80 00 08 b,a 201592c <rtems_signal_send+0xbc>
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
2015910: 7f ff e7 e0 call 200f890 <sparc_disable_interrupts> 2015914: 01 00 00 00 nop
*signal_set |= signals;
2015918: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 201591c: b2 10 40 19 or %g1, %i1, %i1 2015920: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
2015924: 7f ff e7 df call 200f8a0 <sparc_enable_interrupts> 2015928: 01 00 00 00 nop
} else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch();
201592c: 40 00 10 82 call 2019b34 <_Thread_Enable_dispatch> 2015930: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
2015934: 81 c7 e0 08 ret 2015938: 81 e8 00 00 restore
} _Thread_Enable_dispatch();
201593c: 40 00 10 7e call 2019b34 <_Thread_Enable_dispatch> 2015940: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2015944: 81 c7 e0 08 ret 2015948: 81 e8 00 00 restore
0200d4e8 <rtems_task_mode>: rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) {
200d4e8: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set )
200d4ec: 80 a6 a0 00 cmp %i2, 0
200d4f0: 02 80 00 5a be 200d658 <rtems_task_mode+0x170>
200d4f4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing;
200d4f8: 03 00 80 54 sethi %hi(0x2015000), %g1 200d4fc: e2 00 60 98 ld [ %g1 + 0x98 ], %l1 ! 2015098 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d500: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d504: e0 04 61 60 ld [ %l1 + 0x160 ], %l0
asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d508: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d50c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d510: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d514: 80 a0 60 00 cmp %g1, 0
200d518: 02 80 00 03 be 200d524 <rtems_task_mode+0x3c>
200d51c: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE;
200d520: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d524: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d528: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d52c: 7f ff f2 04 call 2009d3c <_CPU_ISR_Get_level> 200d530: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d534: a7 2c e0 0a sll %l3, 0xa, %l3 200d538: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d53c: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK )
200d540: 80 8e 61 00 btst 0x100, %i1
200d544: 02 80 00 06 be 200d55c <rtems_task_mode+0x74>
200d548: e4 26 80 00 st %l2, [ %i2 ]
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d54c: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d550: 80 a0 00 01 cmp %g0, %g1 200d554: 82 60 3f ff subx %g0, -1, %g1 200d558: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d55c: 80 8e 62 00 btst 0x200, %i1
200d560: 02 80 00 0b be 200d58c <rtems_task_mode+0xa4>
200d564: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d568: 80 8e 22 00 btst 0x200, %i0
200d56c: 22 80 00 07 be,a 200d588 <rtems_task_mode+0xa0>
200d570: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d574: 82 10 20 01 mov 1, %g1 200d578: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d57c: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d580: c2 00 61 88 ld [ %g1 + 0x188 ], %g1 ! 2014d88 <_Thread_Ticks_per_timeslice> 200d584: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
} /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK )
200d588: 80 8e 60 0f btst 0xf, %i1
200d58c: 02 80 00 06 be 200d5a4 <rtems_task_mode+0xbc>
200d590: 80 8e 64 00 btst 0x400, %i1
*/ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK );
200d594: 90 0e 20 0f and %i0, 0xf, %o0
*/ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d598: 7f ff d3 0e call 20021d0 <sparc_enable_interrupts> 200d59c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) {
200d5a0: 80 8e 64 00 btst 0x400, %i1
200d5a4: 02 80 00 14 be 200d5f4 <rtems_task_mode+0x10c>
200d5a8: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
200d5ac: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d5b0: b0 0e 24 00 and %i0, 0x400, %i0
* Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode(
200d5b4: 80 a0 00 18 cmp %g0, %i0 200d5b8: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
200d5bc: 80 a0 40 02 cmp %g1, %g2
200d5c0: 22 80 00 0e be,a 200d5f8 <rtems_task_mode+0x110>
200d5c4: 03 00 80 53 sethi %hi(0x2014c00), %g1
) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level );
200d5c8: 7f ff d2 fe call 20021c0 <sparc_disable_interrupts> 200d5cc: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d5d0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d5d4: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d5d8: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted;
200d5dc: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals; _ISR_Enable( _level );
200d5e0: 7f ff d2 fc call 20021d0 <sparc_enable_interrupts> 200d5e4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) {
200d5e8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false;
200d5ec: 80 a0 00 01 cmp %g0, %g1 200d5f0: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) {
200d5f4: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d5f8: c4 00 63 ac ld [ %g1 + 0x3ac ], %g2 ! 2014fac <_System_state_Current> 200d5fc: 80 a0 a0 03 cmp %g2, 3
200d600: 12 80 00 16 bne 200d658 <rtems_task_mode+0x170> <== NEVER TAKEN
200d604: 82 10 20 00 clr %g1
bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing;
200d608: 07 00 80 54 sethi %hi(0x2015000), %g3
if ( are_signals_pending ||
200d60c: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing;
200d610: 86 10 e0 8c or %g3, 0x8c, %g3
if ( are_signals_pending || 200d614: 12 80 00 0a bne 200d63c <rtems_task_mode+0x154>
200d618: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200d61c: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d620: 80 a0 80 03 cmp %g2, %g3
200d624: 02 80 00 0d be 200d658 <rtems_task_mode+0x170>
200d628: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d62c: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200d630: 80 a0 a0 00 cmp %g2, 0
200d634: 02 80 00 09 be 200d658 <rtems_task_mode+0x170> <== NEVER TAKEN
200d638: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d63c: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 200d640: 03 00 80 54 sethi %hi(0x2015000), %g1 200d644: 82 10 60 8c or %g1, 0x8c, %g1 ! 201508c <_Per_CPU_Information> 200d648: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch();
200d64c: 7f ff ea f9 call 2008230 <_Thread_Dispatch> 200d650: 01 00 00 00 nop
} return RTEMS_SUCCESSFUL;
200d654: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d658: 81 c7 e0 08 ret 200d65c: 91 e8 00 01 restore %g0, %g1, %o0
0200abbc <rtems_task_set_priority>: rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) {
200abbc: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200abc0: 80 a6 60 00 cmp %i1, 0
200abc4: 02 80 00 07 be 200abe0 <rtems_task_set_priority+0x24>
200abc8: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200abcc: 03 00 80 62 sethi %hi(0x2018800), %g1 200abd0: c2 08 63 f4 ldub [ %g1 + 0x3f4 ], %g1 ! 2018bf4 <rtems_maximum_priority> 200abd4: 80 a6 40 01 cmp %i1, %g1
200abd8: 18 80 00 1c bgu 200ac48 <rtems_task_set_priority+0x8c>
200abdc: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority )
200abe0: 80 a6 a0 00 cmp %i2, 0
200abe4: 02 80 00 19 be 200ac48 <rtems_task_set_priority+0x8c>
200abe8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location );
200abec: 40 00 08 17 call 200cc48 <_Thread_Get> 200abf0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200abf4: c2 07 bf fc ld [ %fp + -4 ], %g1 200abf8: 80 a0 60 00 cmp %g1, 0
200abfc: 12 80 00 13 bne 200ac48 <rtems_task_set_priority+0x8c>
200ac00: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority;
200ac04: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200ac08: 80 a6 60 00 cmp %i1, 0
200ac0c: 02 80 00 0d be 200ac40 <rtems_task_set_priority+0x84>
200ac10: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 ||
200ac14: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200ac18: 80 a0 60 00 cmp %g1, 0
200ac1c: 02 80 00 06 be 200ac34 <rtems_task_set_priority+0x78>
200ac20: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200ac24: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200ac28: 80 a0 40 19 cmp %g1, %i1
200ac2c: 08 80 00 05 bleu 200ac40 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200ac30: 01 00 00 00 nop
the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false );
200ac34: 92 10 00 19 mov %i1, %o1 200ac38: 40 00 06 79 call 200c61c <_Thread_Change_priority> 200ac3c: 94 10 20 00 clr %o2
} _Thread_Enable_dispatch();
200ac40: 40 00 07 f5 call 200cc14 <_Thread_Enable_dispatch> 200ac44: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200ac48: 81 c7 e0 08 ret 200ac4c: 81 e8 00 00 restore
02016274 <rtems_timer_cancel>: */ rtems_status_code rtems_timer_cancel( rtems_id id ) {
2016274: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location );
2016278: 11 00 80 ef sethi %hi(0x203bc00), %o0 201627c: 92 10 00 18 mov %i0, %o1 2016280: 90 12 23 34 or %o0, 0x334, %o0 2016284: 40 00 0b c4 call 2019194 <_Objects_Get> 2016288: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) {
201628c: c2 07 bf fc ld [ %fp + -4 ], %g1 2016290: 80 a0 60 00 cmp %g1, 0
2016294: 12 80 00 0c bne 20162c4 <rtems_timer_cancel+0x50>
2016298: 01 00 00 00 nop
case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
201629c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20162a0: 80 a0 60 04 cmp %g1, 4
20162a4: 02 80 00 04 be 20162b4 <rtems_timer_cancel+0x40> <== NEVER TAKEN
20162a8: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
20162ac: 40 00 14 14 call 201b2fc <_Watchdog_Remove> 20162b0: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
20162b4: 40 00 0e 20 call 2019b34 <_Thread_Enable_dispatch> 20162b8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20162bc: 81 c7 e0 08 ret 20162c0: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
20162c4: 81 c7 e0 08 ret 20162c8: 91 e8 20 04 restore %g0, 4, %o0
0201675c <rtems_timer_server_fire_when>: rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
201675c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server;
2016760: 03 00 80 ef sethi %hi(0x203bc00), %g1 2016764: e2 00 63 74 ld [ %g1 + 0x374 ], %l1 ! 203bf74 <_Timer_server>
rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
2016768: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server )
201676c: 80 a4 60 00 cmp %l1, 0
2016770: 02 80 00 33 be 201683c <rtems_timer_server_fire_when+0xe0>
2016774: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set )
2016778: 03 00 80 ef sethi %hi(0x203bc00), %g1 201677c: c2 08 60 78 ldub [ %g1 + 0x78 ], %g1 ! 203bc78 <_TOD_Is_set> 2016780: 80 a0 60 00 cmp %g1, 0
2016784: 02 80 00 2e be 201683c <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
2016788: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED; if ( !routine )
201678c: 80 a6 a0 00 cmp %i2, 0
2016790: 02 80 00 2b be 201683c <rtems_timer_server_fire_when+0xe0>
2016794: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) )
2016798: 90 10 00 19 mov %i1, %o0 201679c: 7f ff f4 09 call 20137c0 <_TOD_Validate> 20167a0: b0 10 20 14 mov 0x14, %i0 20167a4: 80 8a 20 ff btst 0xff, %o0
20167a8: 02 80 00 27 be 2016844 <rtems_timer_server_fire_when+0xe8>
20167ac: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time );
20167b0: 7f ff f3 d0 call 20136f0 <_TOD_To_seconds> 20167b4: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20167b8: 27 00 80 ef sethi %hi(0x203bc00), %l3 20167bc: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1 ! 203bcf4 <_TOD_Now> 20167c0: 80 a2 00 01 cmp %o0, %g1
20167c4: 08 80 00 1e bleu 201683c <rtems_timer_server_fire_when+0xe0>
20167c8: a4 10 00 08 mov %o0, %l2 20167cc: 11 00 80 ef sethi %hi(0x203bc00), %o0 20167d0: 92 10 00 10 mov %l0, %o1 20167d4: 90 12 23 34 or %o0, 0x334, %o0 20167d8: 40 00 0a 6f call 2019194 <_Objects_Get> 20167dc: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) {
20167e0: c2 07 bf fc ld [ %fp + -4 ], %g1 20167e4: b2 10 00 08 mov %o0, %i1 20167e8: 80 a0 60 00 cmp %g1, 0
20167ec: 12 80 00 14 bne 201683c <rtems_timer_server_fire_when+0xe0>
20167f0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker );
20167f4: 40 00 12 c2 call 201b2fc <_Watchdog_Remove> 20167f8: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20167fc: 82 10 20 03 mov 3, %g1 2016800: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016804: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016808: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201680c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016810: c2 04 60 04 ld [ %l1 + 4 ], %g1 2016814: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
2016818: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
201681c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
2016820: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016824: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016828: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201682c: 9f c0 40 00 call %g1 2016830: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016834: 40 00 0c c0 call 2019b34 <_Thread_Enable_dispatch> 2016838: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201683c: 81 c7 e0 08 ret 2016840: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
2016844: 81 c7 e0 08 ret 2016848: 81 e8 00 00 restore