RTEMS 4.11Annotated Report
Fri Oct 8 09:05:28 2010
02017528 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017528: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
201752c: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017530: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017534: 80 a6 80 01 cmp %i2, %g1
2017538: 18 80 00 16 bgu 2017590 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
201753c: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
2017540: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2017544: 80 a0 60 00 cmp %g1, 0
2017548: 02 80 00 0b be 2017574 <_CORE_message_queue_Broadcast+0x4c>
201754c: a2 10 20 00 clr %l1
*count = 0;
2017550: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017554: 81 c7 e0 08 ret
2017558: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
201755c: 92 10 00 19 mov %i1, %o1
2017560: 40 00 21 8b call 201fb8c <memcpy>
2017564: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
2017568: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
201756c: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
2017570: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
2017574: 40 00 0a 5d call 2019ee8 <_Thread_queue_Dequeue>
2017578: 90 10 00 10 mov %l0, %o0
201757c: a4 92 20 00 orcc %o0, 0, %l2
2017580: 32 bf ff f7 bne,a 201755c <_CORE_message_queue_Broadcast+0x34>
2017584: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
2017588: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
201758c: b0 10 20 00 clr %i0
}
2017590: 81 c7 e0 08 ret
2017594: 81 e8 00 00 restore
0200fe08 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fe08: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200fe0c: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200fe10: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200fe14: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fe18: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fe1c: 80 8e e0 03 btst 3, %i3
200fe20: 02 80 00 07 be 200fe3c <_CORE_message_queue_Initialize+0x34>
200fe24: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fe28: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fe2c: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
200fe30: 80 a4 80 1b cmp %l2, %i3
200fe34: 0a 80 00 22 bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe38: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fe3c: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
200fe40: 92 10 00 1a mov %i2, %o1
200fe44: 90 10 00 11 mov %l1, %o0
200fe48: 40 00 3d 62 call 201f3d0 <.umul>
200fe4c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
200fe50: 80 a2 00 12 cmp %o0, %l2
200fe54: 0a 80 00 1a bcs 200febc <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fe58: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200fe5c: 40 00 0b af call 2012d18 <_Workspace_Allocate>
200fe60: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200fe64: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200fe68: 80 a2 20 00 cmp %o0, 0
200fe6c: 02 80 00 14 be 200febc <_CORE_message_queue_Initialize+0xb4>
200fe70: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200fe74: 90 04 20 60 add %l0, 0x60, %o0
200fe78: 94 10 00 1a mov %i2, %o2
200fe7c: 40 00 14 00 call 2014e7c <_Chain_Initialize>
200fe80: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200fe84: 82 04 20 54 add %l0, 0x54, %g1
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
200fe88: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
200fe8c: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL;
the_chain->last = _Chain_Head(the_chain);
200fe90: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
200fe94: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
200fe98: c0 24 20 54 clr [ %l0 + 0x54 ]
200fe9c: 82 18 60 01 xor %g1, 1, %g1
200fea0: 80 a0 00 01 cmp %g0, %g1
200fea4: 90 10 00 10 mov %l0, %o0
200fea8: 92 60 3f ff subx %g0, -1, %o1
200feac: 94 10 20 80 mov 0x80, %o2
200feb0: 96 10 20 06 mov 6, %o3
200feb4: 40 00 08 80 call 20120b4 <_Thread_queue_Initialize>
200feb8: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200febc: 81 c7 e0 08 ret
200fec0: 81 e8 00 00 restore
0200fec4 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200fec4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
200fec8: 27 00 80 90 sethi %hi(0x2024000), %l3
200fecc: a6 14 e0 2c or %l3, 0x2c, %l3 ! 202402c <_Per_CPU_Information>
200fed0: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200fed4: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
200fed8: 7f ff de 40 call 20077d8 <sparc_disable_interrupts>
200fedc: c0 24 a0 34 clr [ %l2 + 0x34 ]
200fee0: 82 10 00 08 mov %o0, %g1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200fee4: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200fee8: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
200feec: 80 a4 40 02 cmp %l1, %g2
200fef0: 02 80 00 15 be 200ff44 <_CORE_message_queue_Seize+0x80>
200fef4: 86 06 20 50 add %i0, 0x50, %g3
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
200fef8: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
200fefc: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
200ff00: 80 a4 60 00 cmp %l1, 0
200ff04: 02 80 00 10 be 200ff44 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200ff08: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200ff0c: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
200ff10: 82 00 7f ff add %g1, -1, %g1
200ff14: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200ff18: 7f ff de 34 call 20077e8 <sparc_enable_interrupts>
200ff1c: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200ff20: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200ff24: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
200ff28: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200ff2c: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
200ff30: 90 10 00 1a mov %i2, %o0
200ff34: 40 00 1e 87 call 2017950 <memcpy>
200ff38: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200ff3c: 7f ff ff 83 call 200fd48 <_Chain_Append>
200ff40: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
200ff44: 80 8f 20 ff btst 0xff, %i4
200ff48: 32 80 00 08 bne,a 200ff68 <_CORE_message_queue_Seize+0xa4>
200ff4c: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200ff50: 7f ff de 26 call 20077e8 <sparc_enable_interrupts>
200ff54: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
200ff58: 82 10 20 04 mov 4, %g1
200ff5c: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
200ff60: 81 c7 e0 08 ret
200ff64: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
200ff68: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
200ff6c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
200ff70: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
200ff74: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
200ff78: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
200ff7c: 90 10 00 01 mov %g1, %o0
200ff80: 7f ff de 1a call 20077e8 <sparc_enable_interrupts>
200ff84: 35 00 80 48 sethi %hi(0x2012000), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
200ff88: b2 10 00 1d mov %i5, %i1
200ff8c: 40 00 07 a2 call 2011e14 <_Thread_queue_Enqueue_with_handler>
200ff90: 95 ee a1 94 restore %i2, 0x194, %o2
02006c80 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2006c80: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006c84: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006c88: c2 00 62 38 ld [ %g1 + 0x238 ], %g1 ! 2014e38 <_Thread_Dispatch_disable_level>
2006c8c: 80 a0 60 00 cmp %g1, 0
2006c90: 02 80 00 0d be 2006cc4 <_CORE_mutex_Seize+0x44>
2006c94: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2006c98: 80 8e a0 ff btst 0xff, %i2
2006c9c: 02 80 00 0b be 2006cc8 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006ca0: 90 10 00 18 mov %i0, %o0
2006ca4: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006ca8: c2 00 63 bc ld [ %g1 + 0x3bc ], %g1 ! 2014fbc <_System_state_Current>
2006cac: 80 a0 60 01 cmp %g1, 1
2006cb0: 08 80 00 05 bleu 2006cc4 <_CORE_mutex_Seize+0x44>
2006cb4: 90 10 20 00 clr %o0
2006cb8: 92 10 20 00 clr %o1
2006cbc: 40 00 01 dd call 2007430 <_Internal_error_Occurred>
2006cc0: 94 10 20 12 mov 0x12, %o2
2006cc4: 90 10 00 18 mov %i0, %o0
2006cc8: 40 00 13 1c call 200b938 <_CORE_mutex_Seize_interrupt_trylock>
2006ccc: 92 07 a0 54 add %fp, 0x54, %o1
2006cd0: 80 a2 20 00 cmp %o0, 0
2006cd4: 02 80 00 0a be 2006cfc <_CORE_mutex_Seize+0x7c>
2006cd8: 80 8e a0 ff btst 0xff, %i2
2006cdc: 35 00 80 54 sethi %hi(0x2015000), %i2
2006ce0: 12 80 00 09 bne 2006d04 <_CORE_mutex_Seize+0x84>
2006ce4: b4 16 a0 9c or %i2, 0x9c, %i2 ! 201509c <_Per_CPU_Information>
2006ce8: 7f ff ed 3a call 20021d0 <sparc_enable_interrupts>
2006cec: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006cf0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006cf4: 84 10 20 01 mov 1, %g2
2006cf8: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2006cfc: 81 c7 e0 08 ret
2006d00: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006d04: 82 10 20 01 mov 1, %g1
2006d08: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
2006d0c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006d10: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2006d14: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2006d18: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006d1c: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
2006d20: 84 00 a0 01 inc %g2
2006d24: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
2006d28: 7f ff ed 2a call 20021d0 <sparc_enable_interrupts>
2006d2c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006d30: 90 10 00 18 mov %i0, %o0
2006d34: 7f ff ff ba call 2006c1c <_CORE_mutex_Seize_interrupt_blocking>
2006d38: 92 10 00 1b mov %i3, %o1
2006d3c: 81 c7 e0 08 ret
2006d40: 81 e8 00 00 restore
0200b938 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
200b938: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
200b93c: 03 00 80 54 sethi %hi(0x2015000), %g1
200b940: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20150a8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200b944: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200b948: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200b94c: 80 a0 a0 00 cmp %g2, 0
200b950: 02 80 00 2f be 200ba0c <_CORE_mutex_Seize_interrupt_trylock+0xd4>
200b954: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200b958: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
200b95c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200b960: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
200b964: 84 10 20 01 mov 1, %g2
200b968: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
200b96c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200b970: 80 a0 a0 02 cmp %g2, 2
200b974: 02 80 00 05 be 200b988 <_CORE_mutex_Seize_interrupt_trylock+0x50>
200b978: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
200b97c: 80 a0 a0 03 cmp %g2, 3
200b980: 12 80 00 07 bne 200b99c <_CORE_mutex_Seize_interrupt_trylock+0x64>
200b984: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200b988: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200b98c: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200b990: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200b994: 02 80 00 03 be 200b9a0 <_CORE_mutex_Seize_interrupt_trylock+0x68>
200b998: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200b99c: 30 80 00 2b b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
200b9a0: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
200b9a4: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
200b9a8: 80 a1 00 02 cmp %g4, %g2
200b9ac: 12 80 00 03 bne 200b9b8 <_CORE_mutex_Seize_interrupt_trylock+0x80>
200b9b0: 01 00 00 00 nop
_ISR_Enable( *level_p );
200b9b4: 30 80 00 25 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
200b9b8: 08 80 00 0f bleu 200b9f4 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
200b9bc: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200b9c0: 03 00 80 53 sethi %hi(0x2014c00), %g1
200b9c4: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
200b9c8: 84 00 a0 01 inc %g2
200b9cc: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
200b9d0: 7f ff da 00 call 20021d0 <sparc_enable_interrupts>
200b9d4: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200b9d8: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
200b9dc: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
200b9e0: 7f ff f0 e9 call 2007d84 <_Thread_Change_priority>
200b9e4: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
200b9e8: 7f ff f2 65 call 200837c <_Thread_Enable_dispatch>
200b9ec: b0 10 20 00 clr %i0
200b9f0: 30 80 00 1d b,a 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200b9f4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
200b9f8: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
200b9fc: 84 10 20 01 mov 1, %g2
200ba00: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
200ba04: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200ba08: 30 80 00 10 b,a 200ba48 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
200ba0c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
200ba10: 80 a0 80 01 cmp %g2, %g1
200ba14: 12 80 00 14 bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200ba18: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200ba1c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
200ba20: 80 a0 60 00 cmp %g1, 0
200ba24: 22 80 00 07 be,a 200ba40 <_CORE_mutex_Seize_interrupt_trylock+0x108>
200ba28: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
200ba2c: 80 a0 60 01 cmp %g1, 1
200ba30: 12 80 00 0d bne 200ba64 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
200ba34: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200ba38: 10 80 00 08 b 200ba58 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
200ba3c: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
200ba40: 82 00 60 01 inc %g1
200ba44: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200ba48: 7f ff d9 e2 call 20021d0 <sparc_enable_interrupts>
200ba4c: d0 06 40 00 ld [ %i1 ], %o0
return 0;
200ba50: 81 c7 e0 08 ret
200ba54: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
200ba58: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
200ba5c: 7f ff d9 dd call 20021d0 <sparc_enable_interrupts> <== NOT EXECUTED
200ba60: b0 10 20 00 clr %i0 <== NOT EXECUTED
200ba64: 81 c7 e0 08 ret
200ba68: 81 e8 00 00 restore
02006ec0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2006ec0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006ec4: 90 10 00 18 mov %i0, %o0
2006ec8: 40 00 06 19 call 200872c <_Thread_queue_Dequeue>
2006ecc: a0 10 00 18 mov %i0, %l0
2006ed0: 80 a2 20 00 cmp %o0, 0
2006ed4: 12 80 00 0e bne 2006f0c <_CORE_semaphore_Surrender+0x4c>
2006ed8: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2006edc: 7f ff ec b9 call 20021c0 <sparc_disable_interrupts>
2006ee0: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006ee4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2006ee8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2006eec: 80 a0 40 02 cmp %g1, %g2
2006ef0: 1a 80 00 05 bcc 2006f04 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006ef4: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006ef8: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006efc: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2006f00: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2006f04: 7f ff ec b3 call 20021d0 <sparc_enable_interrupts>
2006f08: 01 00 00 00 nop
}
return status;
}
2006f0c: 81 c7 e0 08 ret
2006f10: 81 e8 00 00 restore
02007240 <_Chain_Get_with_empty_check>:
bool _Chain_Get_with_empty_check(
Chain_Control *chain,
Chain_Node **node
)
{
2007240: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
bool is_empty_now;
_ISR_Disable( level );
2007244: 7f ff ed 73 call 2002810 <sparc_disable_interrupts>
2007248: 01 00 00 00 nop
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
200724c: c4 06 00 00 ld [ %i0 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007250: 86 06 20 04 add %i0, 4, %g3
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
if ( first != _Chain_Tail( the_chain ) ) {
2007254: 80 a0 80 03 cmp %g2, %g3
2007258: 22 80 00 0a be,a 2007280 <_Chain_Get_with_empty_check+0x40><== NEVER TAKEN
200725c: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED
Chain_Node *new_first = first->next;
2007260: c2 00 80 00 ld [ %g2 ], %g1
the_chain->first = new_first;
2007264: c2 26 00 00 st %g1, [ %i0 ]
new_first->previous = _Chain_Head( the_chain );
2007268: f0 20 60 04 st %i0, [ %g1 + 4 ]
*the_node = first;
200726c: c4 26 40 00 st %g2, [ %i1 ]
is_empty_now = new_first == _Chain_Tail( the_chain );
2007270: 82 18 40 03 xor %g1, %g3, %g1
2007274: 80 a0 00 01 cmp %g0, %g1
2007278: 10 80 00 03 b 2007284 <_Chain_Get_with_empty_check+0x44>
200727c: b0 60 3f ff subx %g0, -1, %i0
RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected(
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
2007280: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED
is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node );
_ISR_Enable( level );
2007284: 7f ff ed 67 call 2002820 <sparc_enable_interrupts>
2007288: 01 00 00 00 nop
return is_empty_now;
}
200728c: 81 c7 e0 08 ret
2007290: 81 e8 00 00 restore
02005c88 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005c88: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005c8c: e2 06 21 60 ld [ %i0 + 0x160 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005c90: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005c94: 7f ff f1 4b call 20021c0 <sparc_disable_interrupts>
2005c98: a0 10 00 18 mov %i0, %l0
2005c9c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005ca0: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005ca4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2005ca8: 82 88 c0 02 andcc %g3, %g2, %g1
2005cac: 12 80 00 03 bne 2005cb8 <_Event_Surrender+0x30>
2005cb0: 09 00 80 54 sethi %hi(0x2015000), %g4
_ISR_Enable( level );
2005cb4: 30 80 00 42 b,a 2005dbc <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2005cb8: 88 11 20 9c or %g4, 0x9c, %g4 ! 201509c <_Per_CPU_Information>
2005cbc: da 01 20 08 ld [ %g4 + 8 ], %o5
2005cc0: 80 a3 60 00 cmp %o5, 0
2005cc4: 22 80 00 1d be,a 2005d38 <_Event_Surrender+0xb0>
2005cc8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
2005ccc: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2005cd0: 80 a4 00 04 cmp %l0, %g4
2005cd4: 32 80 00 19 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cd8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cdc: 09 00 80 54 sethi %hi(0x2015000), %g4
2005ce0: da 01 20 b8 ld [ %g4 + 0xb8 ], %o5 ! 20150b8 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2005ce4: 80 a3 60 02 cmp %o5, 2
2005ce8: 02 80 00 07 be 2005d04 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005cec: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005cf0: c8 01 20 b8 ld [ %g4 + 0xb8 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005cf4: 80 a1 20 01 cmp %g4, 1
2005cf8: 32 80 00 10 bne,a 2005d38 <_Event_Surrender+0xb0>
2005cfc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005d00: 80 a0 40 03 cmp %g1, %g3
2005d04: 02 80 00 04 be 2005d14 <_Event_Surrender+0x8c>
2005d08: 80 8c a0 02 btst 2, %l2
2005d0c: 02 80 00 0a be 2005d34 <_Event_Surrender+0xac> <== NEVER TAKEN
2005d10: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005d14: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005d18: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d1c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2005d20: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d24: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005d28: 84 10 20 03 mov 3, %g2
2005d2c: 03 00 80 54 sethi %hi(0x2015000), %g1
2005d30: c4 20 60 b8 st %g2, [ %g1 + 0xb8 ] ! 20150b8 <_Event_Sync_state>
}
_ISR_Enable( level );
2005d34: 30 80 00 22 b,a 2005dbc <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005d38: 80 89 21 00 btst 0x100, %g4
2005d3c: 02 80 00 20 be 2005dbc <_Event_Surrender+0x134>
2005d40: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2005d44: 02 80 00 04 be 2005d54 <_Event_Surrender+0xcc>
2005d48: 80 8c a0 02 btst 2, %l2
2005d4c: 02 80 00 1c be 2005dbc <_Event_Surrender+0x134> <== NEVER TAKEN
2005d50: 01 00 00 00 nop
2005d54: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005d58: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d5c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2005d60: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005d64: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005d68: 7f ff f1 1a call 20021d0 <sparc_enable_interrupts>
2005d6c: 90 10 00 18 mov %i0, %o0
2005d70: 7f ff f1 14 call 20021c0 <sparc_disable_interrupts>
2005d74: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005d78: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
2005d7c: 80 a0 60 02 cmp %g1, 2
2005d80: 02 80 00 06 be 2005d98 <_Event_Surrender+0x110>
2005d84: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005d88: 7f ff f1 12 call 20021d0 <sparc_enable_interrupts>
2005d8c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005d90: 10 80 00 08 b 2005db0 <_Event_Surrender+0x128>
2005d94: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2005d98: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2005d9c: 7f ff f1 0d call 20021d0 <sparc_enable_interrupts>
2005da0: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005da4: 40 00 0e 19 call 2009608 <_Watchdog_Remove>
2005da8: 90 04 20 48 add %l0, 0x48, %o0
2005dac: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2005db0: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2005db4: 40 00 08 6d call 2007f68 <_Thread_Clear_state>
2005db8: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2005dbc: 7f ff f1 05 call 20021d0 <sparc_enable_interrupts>
2005dc0: 81 e8 00 00 restore
02005dc8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2005dc8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2005dcc: 90 10 00 18 mov %i0, %o0
2005dd0: 40 00 09 78 call 20083b0 <_Thread_Get>
2005dd4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005dd8: c2 07 bf fc ld [ %fp + -4 ], %g1
2005ddc: 80 a0 60 00 cmp %g1, 0
2005de0: 12 80 00 1c bne 2005e50 <_Event_Timeout+0x88> <== NEVER TAKEN
2005de4: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2005de8: 7f ff f0 f6 call 20021c0 <sparc_disable_interrupts>
2005dec: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2005df0: 03 00 80 54 sethi %hi(0x2015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2005df4: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20150a8 <_Per_CPU_Information+0xc>
2005df8: 80 a4 00 01 cmp %l0, %g1
2005dfc: 12 80 00 09 bne 2005e20 <_Event_Timeout+0x58>
2005e00: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005e04: 03 00 80 54 sethi %hi(0x2015000), %g1
2005e08: c4 00 60 b8 ld [ %g1 + 0xb8 ], %g2 ! 20150b8 <_Event_Sync_state>
2005e0c: 80 a0 a0 01 cmp %g2, 1
2005e10: 32 80 00 05 bne,a 2005e24 <_Event_Timeout+0x5c>
2005e14: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005e18: 84 10 20 02 mov 2, %g2
2005e1c: c4 20 60 b8 st %g2, [ %g1 + 0xb8 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005e20: 82 10 20 06 mov 6, %g1
2005e24: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005e28: 7f ff f0 ea call 20021d0 <sparc_enable_interrupts>
2005e2c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005e30: 90 10 00 10 mov %l0, %o0
2005e34: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2005e38: 40 00 08 4c call 2007f68 <_Thread_Clear_state>
2005e3c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2005e40: 03 00 80 53 sethi %hi(0x2014c00), %g1
2005e44: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
2005e48: 84 00 bf ff add %g2, -1, %g2
2005e4c: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
2005e50: 81 c7 e0 08 ret
2005e54: 81 e8 00 00 restore
0200bfb4 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfb4: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200bfb8: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200bfbc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfc0: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200bfc4: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200bfc8: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200bfcc: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200bfd0: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200bfd4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200bfd8: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200bfdc: 80 a4 40 19 cmp %l1, %i1
200bfe0: 0a 80 00 9f bcs 200c25c <_Heap_Extend+0x2a8>
200bfe4: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200bfe8: 90 10 00 19 mov %i1, %o0
200bfec: 94 10 00 13 mov %l3, %o2
200bff0: 98 07 bf fc add %fp, -4, %o4
200bff4: 7f ff ed 2b call 20074a0 <_Heap_Get_first_and_last_block>
200bff8: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200bffc: 80 8a 20 ff btst 0xff, %o0
200c000: 02 80 00 97 be 200c25c <_Heap_Extend+0x2a8>
200c004: aa 10 00 12 mov %l2, %l5
200c008: ba 10 20 00 clr %i5
200c00c: b8 10 20 00 clr %i4
200c010: b0 10 20 00 clr %i0
200c014: ae 10 20 00 clr %l7
200c018: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c01c: 80 a0 40 11 cmp %g1, %l1
200c020: 1a 80 00 05 bcc 200c034 <_Heap_Extend+0x80>
200c024: ec 05 40 00 ld [ %l5 ], %l6
200c028: 80 a6 40 16 cmp %i1, %l6
200c02c: 2a 80 00 8c bcs,a 200c25c <_Heap_Extend+0x2a8>
200c030: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c034: 80 a4 40 01 cmp %l1, %g1
200c038: 02 80 00 06 be 200c050 <_Heap_Extend+0x9c>
200c03c: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c040: 2a 80 00 05 bcs,a 200c054 <_Heap_Extend+0xa0>
200c044: b8 10 00 15 mov %l5, %i4
200c048: 10 80 00 04 b 200c058 <_Heap_Extend+0xa4>
200c04c: 90 10 00 16 mov %l6, %o0
200c050: ae 10 00 15 mov %l5, %l7
200c054: 90 10 00 16 mov %l6, %o0
200c058: 40 00 16 6e call 2011a10 <.urem>
200c05c: 92 10 00 13 mov %l3, %o1
200c060: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c064: 80 a5 80 19 cmp %l6, %i1
200c068: 12 80 00 05 bne 200c07c <_Heap_Extend+0xc8>
200c06c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c070: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c074: 10 80 00 04 b 200c084 <_Heap_Extend+0xd0>
200c078: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c07c: 2a 80 00 02 bcs,a 200c084 <_Heap_Extend+0xd0>
200c080: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c084: ea 02 20 04 ld [ %o0 + 4 ], %l5
200c088: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c08c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c090: 80 a5 40 12 cmp %l5, %l2
200c094: 12 bf ff e2 bne 200c01c <_Heap_Extend+0x68>
200c098: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c09c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200c0a0: 80 a6 40 01 cmp %i1, %g1
200c0a4: 3a 80 00 04 bcc,a 200c0b4 <_Heap_Extend+0x100>
200c0a8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c0ac: 10 80 00 05 b 200c0c0 <_Heap_Extend+0x10c>
200c0b0: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c0b4: 80 a0 40 11 cmp %g1, %l1
200c0b8: 2a 80 00 02 bcs,a 200c0c0 <_Heap_Extend+0x10c>
200c0bc: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c0c0: c4 07 bf fc ld [ %fp + -4 ], %g2
200c0c4: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c0c8: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c0cc: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c0d0: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200c0d4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c0d8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c0dc: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
200c0e0: 80 a0 c0 02 cmp %g3, %g2
200c0e4: 08 80 00 04 bleu 200c0f4 <_Heap_Extend+0x140>
200c0e8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c0ec: 10 80 00 06 b 200c104 <_Heap_Extend+0x150>
200c0f0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c0f4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
200c0f8: 80 a0 80 01 cmp %g2, %g1
200c0fc: 2a 80 00 02 bcs,a 200c104 <_Heap_Extend+0x150>
200c100: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c104: 80 a5 e0 00 cmp %l7, 0
200c108: 02 80 00 14 be 200c158 <_Heap_Extend+0x1a4>
200c10c: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200c110: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200c114: 92 10 00 12 mov %l2, %o1
200c118: 40 00 16 3e call 2011a10 <.urem>
200c11c: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c120: 80 a2 20 00 cmp %o0, 0
200c124: 02 80 00 04 be 200c134 <_Heap_Extend+0x180> <== ALWAYS TAKEN
200c128: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c12c: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
200c130: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200c134: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200c138: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200c13c: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c140: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c144: 90 10 00 10 mov %l0, %o0
200c148: 7f ff ff 90 call 200bf88 <_Heap_Free_block>
200c14c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c150: 10 80 00 09 b 200c174 <_Heap_Extend+0x1c0>
200c154: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200c158: 80 a7 20 00 cmp %i4, 0
200c15c: 02 80 00 05 be 200c170 <_Heap_Extend+0x1bc>
200c160: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c164: b8 27 00 01 sub %i4, %g1, %i4
200c168: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200c16c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c170: 80 a6 20 00 cmp %i0, 0
200c174: 02 80 00 15 be 200c1c8 <_Heap_Extend+0x214>
200c178: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c17c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200c180: a2 24 40 18 sub %l1, %i0, %l1
200c184: 40 00 16 23 call 2011a10 <.urem>
200c188: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200c18c: c4 06 20 04 ld [ %i0 + 4 ], %g2
200c190: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c194: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c198: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c19c: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c1a0: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c1a4: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200c1a8: 90 10 00 10 mov %l0, %o0
200c1ac: 82 08 60 01 and %g1, 1, %g1
200c1b0: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c1b4: a2 14 40 01 or %l1, %g1, %l1
200c1b8: 7f ff ff 74 call 200bf88 <_Heap_Free_block>
200c1bc: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1c0: 10 80 00 0f b 200c1fc <_Heap_Extend+0x248>
200c1c4: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200c1c8: 80 a7 60 00 cmp %i5, 0
200c1cc: 02 80 00 0b be 200c1f8 <_Heap_Extend+0x244>
200c1d0: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c1d4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c1d8: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200c1dc: 86 20 c0 1d sub %g3, %i5, %g3
200c1e0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c1e4: 84 10 c0 02 or %g3, %g2, %g2
200c1e8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c1ec: c4 00 60 04 ld [ %g1 + 4 ], %g2
200c1f0: 84 10 a0 01 or %g2, 1, %g2
200c1f4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c1f8: 80 a6 20 00 cmp %i0, 0
200c1fc: 32 80 00 09 bne,a 200c220 <_Heap_Extend+0x26c>
200c200: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200c204: 80 a5 e0 00 cmp %l7, 0
200c208: 32 80 00 06 bne,a 200c220 <_Heap_Extend+0x26c>
200c20c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c210: d2 07 bf fc ld [ %fp + -4 ], %o1
200c214: 7f ff ff 5d call 200bf88 <_Heap_Free_block>
200c218: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c21c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c220: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c224: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c228: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c22c: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c230: 84 10 c0 02 or %g3, %g2, %g2
200c234: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c238: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200c23c: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c240: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
200c244: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c248: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200c24c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c250: 02 80 00 03 be 200c25c <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c254: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c258: e8 26 c0 00 st %l4, [ %i3 ]
200c25c: 81 c7 e0 08 ret
200c260: 81 e8 00 00 restore
0200bcb4 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200bcb4: 9d e3 bf a0 save %sp, -96, %sp
200bcb8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200bcbc: 40 00 16 17 call 2011518 <.urem>
200bcc0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200bcc4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bcc8: a2 06 7f f8 add %i1, -8, %l1
200bccc: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200bcd0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bcd4: 80 a2 00 0c cmp %o0, %o4
200bcd8: 0a 80 00 05 bcs 200bcec <_Heap_Free+0x38>
200bcdc: 82 10 20 00 clr %g1
200bce0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200bce4: 80 a0 40 08 cmp %g1, %o0
200bce8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0;
bool next_is_free = false;
_Heap_Protection_block_check( heap, block );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bcec: 80 a0 60 00 cmp %g1, 0
200bcf0: 02 80 00 6a be 200be98 <_Heap_Free+0x1e4>
200bcf4: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bcf8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bcfc: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd00: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd04: 80 a0 40 0c cmp %g1, %o4
200bd08: 0a 80 00 05 bcs 200bd1c <_Heap_Free+0x68> <== NEVER TAKEN
200bd0c: 86 10 20 00 clr %g3
200bd10: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200bd14: 80 a0 c0 01 cmp %g3, %g1
200bd18: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bd1c: 80 a0 e0 00 cmp %g3, 0
200bd20: 02 80 00 5e be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd24: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bd28: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200bd2c: 80 89 20 01 btst 1, %g4
200bd30: 02 80 00 5a be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd34: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200bd38: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd3c: 80 a0 40 09 cmp %g1, %o1
200bd40: 02 80 00 07 be 200bd5c <_Heap_Free+0xa8>
200bd44: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bd48: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd4c: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200bd50: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bd54: 80 a0 00 03 cmp %g0, %g3
200bd58: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200bd5c: 80 8b 60 01 btst 1, %o5
200bd60: 12 80 00 26 bne 200bdf8 <_Heap_Free+0x144>
200bd64: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200bd68: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bd6c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bd70: 80 a0 c0 0c cmp %g3, %o4
200bd74: 0a 80 00 04 bcs 200bd84 <_Heap_Free+0xd0> <== NEVER TAKEN
200bd78: 94 10 20 00 clr %o2
200bd7c: 80 a2 40 03 cmp %o1, %g3
200bd80: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200bd84: 80 a2 a0 00 cmp %o2, 0
200bd88: 02 80 00 44 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd8c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bd90: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200bd94: 80 8b 20 01 btst 1, %o4
200bd98: 02 80 00 40 be 200be98 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bd9c: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200bda0: 22 80 00 0f be,a 200bddc <_Heap_Free+0x128>
200bda4: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200bda8: 88 00 80 04 add %g2, %g4, %g4
200bdac: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200bdb0: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200bdb4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200bdb8: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200bdbc: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200bdc0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
200bdc4: 82 00 7f ff add %g1, -1, %g1
200bdc8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200bdcc: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bdd0: 82 13 60 01 or %o5, 1, %g1
200bdd4: 10 80 00 27 b 200be70 <_Heap_Free+0x1bc>
200bdd8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200bddc: 88 13 60 01 or %o5, 1, %g4
200bde0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bde4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200bde8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200bdec: 86 08 ff fe and %g3, -2, %g3
200bdf0: 10 80 00 20 b 200be70 <_Heap_Free+0x1bc>
200bdf4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200bdf8: 22 80 00 0d be,a 200be2c <_Heap_Free+0x178>
200bdfc: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200be00: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200be04: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200be08: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200be0c: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200be10: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
200be14: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200be18: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be1c: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200be20: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200be24: 10 80 00 13 b 200be70 <_Heap_Free+0x1bc>
200be28: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200be2c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200be30: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200be34: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200be38: 86 10 a0 01 or %g2, 1, %g3
200be3c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be40: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200be44: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200be48: 86 08 ff fe and %g3, -2, %g3
200be4c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200be50: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200be54: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200be58: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200be5c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200be60: 80 a0 c0 01 cmp %g3, %g1
200be64: 1a 80 00 03 bcc 200be70 <_Heap_Free+0x1bc>
200be68: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200be6c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200be70: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200be74: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200be78: 82 00 7f ff add %g1, -1, %g1
200be7c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200be80: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
200be84: 82 00 60 01 inc %g1
200be88: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200be8c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
200be90: 84 00 40 02 add %g1, %g2, %g2
200be94: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
200be98: 81 c7 e0 08 ret
200be9c: 81 e8 00 00 restore
02012f30 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2012f30: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2012f34: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2012f38: 7f ff f9 78 call 2011518 <.urem>
2012f3c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2012f40: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2012f44: a2 06 7f f8 add %i1, -8, %l1
2012f48: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2012f4c: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2012f50: 80 a2 00 02 cmp %o0, %g2
2012f54: 0a 80 00 05 bcs 2012f68 <_Heap_Size_of_alloc_area+0x38>
2012f58: 82 10 20 00 clr %g1
2012f5c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
2012f60: 80 a0 40 08 cmp %g1, %o0
2012f64: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
2012f68: 80 a0 60 00 cmp %g1, 0
2012f6c: 02 80 00 15 be 2012fc0 <_Heap_Size_of_alloc_area+0x90>
2012f70: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2012f74: e2 02 20 04 ld [ %o0 + 4 ], %l1
2012f78: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2012f7c: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2012f80: 80 a4 40 02 cmp %l1, %g2
2012f84: 0a 80 00 05 bcs 2012f98 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
2012f88: 82 10 20 00 clr %g1
2012f8c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
2012f90: 80 a0 40 11 cmp %g1, %l1
2012f94: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
2012f98: 80 a0 60 00 cmp %g1, 0
2012f9c: 02 80 00 09 be 2012fc0 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012fa0: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2012fa4: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2012fa8: 80 88 60 01 btst 1, %g1
2012fac: 02 80 00 05 be 2012fc0 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
2012fb0: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2012fb4: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2012fb8: a2 04 60 04 add %l1, 4, %l1
2012fbc: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
2012fc0: 81 c7 e0 08 ret
2012fc4: 81 e8 00 00 restore
020082a8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20082a8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20082ac: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20082b0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20082b4: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
20082b8: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
20082bc: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
20082c0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20082c4: 80 8e a0 ff btst 0xff, %i2
20082c8: 02 80 00 04 be 20082d8 <_Heap_Walk+0x30>
20082cc: a2 14 62 54 or %l1, 0x254, %l1
20082d0: 23 00 80 20 sethi %hi(0x2008000), %l1
20082d4: a2 14 62 5c or %l1, 0x25c, %l1 ! 200825c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20082d8: 03 00 80 5d sethi %hi(0x2017400), %g1
20082dc: c2 00 62 4c ld [ %g1 + 0x24c ], %g1 ! 201764c <_System_state_Current>
20082e0: 80 a0 60 03 cmp %g1, 3
20082e4: 12 80 01 2d bne 2008798 <_Heap_Walk+0x4f0>
20082e8: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20082ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
20082f0: da 04 20 18 ld [ %l0 + 0x18 ], %o5
20082f4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20082f8: c2 04 20 08 ld [ %l0 + 8 ], %g1
20082fc: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
2008300: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008304: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2008308: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
200830c: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008310: 90 10 00 19 mov %i1, %o0
2008314: 92 10 20 00 clr %o1
2008318: 15 00 80 52 sethi %hi(0x2014800), %o2
200831c: 96 10 00 12 mov %l2, %o3
2008320: 94 12 a3 f8 or %o2, 0x3f8, %o2
2008324: 9f c4 40 00 call %l1
2008328: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
200832c: 80 a4 a0 00 cmp %l2, 0
2008330: 12 80 00 07 bne 200834c <_Heap_Walk+0xa4>
2008334: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
2008338: 15 00 80 53 sethi %hi(0x2014c00), %o2
200833c: 90 10 00 19 mov %i1, %o0
2008340: 92 10 20 01 mov 1, %o1
2008344: 10 80 00 38 b 2008424 <_Heap_Walk+0x17c>
2008348: 94 12 a0 90 or %o2, 0x90, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
200834c: 22 80 00 08 be,a 200836c <_Heap_Walk+0xc4>
2008350: 90 10 00 14 mov %l4, %o0
(*printer)(
2008354: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008358: 90 10 00 19 mov %i1, %o0
200835c: 92 10 20 01 mov 1, %o1
2008360: 94 12 a0 a8 or %o2, 0xa8, %o2
2008364: 10 80 01 0b b 2008790 <_Heap_Walk+0x4e8>
2008368: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200836c: 7f ff e5 d6 call 2001ac4 <.urem>
2008370: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008374: 80 a2 20 00 cmp %o0, 0
2008378: 22 80 00 08 be,a 2008398 <_Heap_Walk+0xf0>
200837c: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
2008380: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008384: 90 10 00 19 mov %i1, %o0
2008388: 92 10 20 01 mov 1, %o1
200838c: 94 12 a0 c8 or %o2, 0xc8, %o2
2008390: 10 80 01 00 b 2008790 <_Heap_Walk+0x4e8>
2008394: 96 10 00 14 mov %l4, %o3
2008398: 7f ff e5 cb call 2001ac4 <.urem>
200839c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
20083a0: 80 a2 20 00 cmp %o0, 0
20083a4: 22 80 00 08 be,a 20083c4 <_Heap_Walk+0x11c>
20083a8: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
20083ac: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083b0: 90 10 00 19 mov %i1, %o0
20083b4: 92 10 20 01 mov 1, %o1
20083b8: 94 12 a0 f0 or %o2, 0xf0, %o2
20083bc: 10 80 00 f5 b 2008790 <_Heap_Walk+0x4e8>
20083c0: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20083c4: 80 88 60 01 btst 1, %g1
20083c8: 32 80 00 07 bne,a 20083e4 <_Heap_Walk+0x13c>
20083cc: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
20083d0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083d4: 90 10 00 19 mov %i1, %o0
20083d8: 92 10 20 01 mov 1, %o1
20083dc: 10 80 00 12 b 2008424 <_Heap_Walk+0x17c>
20083e0: 94 12 a1 28 or %o2, 0x128, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20083e4: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20083e8: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20083ec: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20083f0: 80 88 60 01 btst 1, %g1
20083f4: 12 80 00 07 bne 2008410 <_Heap_Walk+0x168>
20083f8: 80 a5 80 13 cmp %l6, %l3
(*printer)(
20083fc: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008400: 90 10 00 19 mov %i1, %o0
2008404: 92 10 20 01 mov 1, %o1
2008408: 10 80 00 07 b 2008424 <_Heap_Walk+0x17c>
200840c: 94 12 a1 58 or %o2, 0x158, %o2
);
return false;
}
if (
2008410: 02 80 00 08 be 2008430 <_Heap_Walk+0x188> <== ALWAYS TAKEN
2008414: 15 00 80 53 sethi %hi(0x2014c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008418: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
200841c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
2008420: 94 12 a1 70 or %o2, 0x170, %o2 <== NOT EXECUTED
2008424: 9f c4 40 00 call %l1
2008428: b0 10 20 00 clr %i0
200842c: 30 80 00 db b,a 2008798 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
2008430: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008434: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
2008438: ae 10 00 10 mov %l0, %l7
200843c: 10 80 00 32 b 2008504 <_Heap_Walk+0x25c>
2008440: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008444: 80 a0 80 1c cmp %g2, %i4
2008448: 18 80 00 05 bgu 200845c <_Heap_Walk+0x1b4>
200844c: 82 10 20 00 clr %g1
2008450: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
2008454: 80 a0 40 1c cmp %g1, %i4
2008458: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
200845c: 80 a0 60 00 cmp %g1, 0
2008460: 32 80 00 08 bne,a 2008480 <_Heap_Walk+0x1d8>
2008464: 90 07 20 08 add %i4, 8, %o0
(*printer)(
2008468: 15 00 80 53 sethi %hi(0x2014c00), %o2
200846c: 96 10 00 1c mov %i4, %o3
2008470: 90 10 00 19 mov %i1, %o0
2008474: 92 10 20 01 mov 1, %o1
2008478: 10 80 00 c6 b 2008790 <_Heap_Walk+0x4e8>
200847c: 94 12 a1 a0 or %o2, 0x1a0, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008480: 7f ff e5 91 call 2001ac4 <.urem>
2008484: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
2008488: 80 a2 20 00 cmp %o0, 0
200848c: 22 80 00 08 be,a 20084ac <_Heap_Walk+0x204>
2008490: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008494: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008498: 96 10 00 1c mov %i4, %o3
200849c: 90 10 00 19 mov %i1, %o0
20084a0: 92 10 20 01 mov 1, %o1
20084a4: 10 80 00 bb b 2008790 <_Heap_Walk+0x4e8>
20084a8: 94 12 a1 c0 or %o2, 0x1c0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20084ac: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
20084b0: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20084b4: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20084b8: 80 88 60 01 btst 1, %g1
20084bc: 22 80 00 08 be,a 20084dc <_Heap_Walk+0x234>
20084c0: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
20084c4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084c8: 96 10 00 1c mov %i4, %o3
20084cc: 90 10 00 19 mov %i1, %o0
20084d0: 92 10 20 01 mov 1, %o1
20084d4: 10 80 00 af b 2008790 <_Heap_Walk+0x4e8>
20084d8: 94 12 a1 f0 or %o2, 0x1f0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
20084dc: 80 a3 00 17 cmp %o4, %l7
20084e0: 22 80 00 08 be,a 2008500 <_Heap_Walk+0x258>
20084e4: ae 10 00 1c mov %i4, %l7
(*printer)(
20084e8: 15 00 80 53 sethi %hi(0x2014c00), %o2
20084ec: 96 10 00 1c mov %i4, %o3
20084f0: 90 10 00 19 mov %i1, %o0
20084f4: 92 10 20 01 mov 1, %o1
20084f8: 10 80 00 49 b 200861c <_Heap_Walk+0x374>
20084fc: 94 12 a2 10 or %o2, 0x210, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
2008500: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008504: 80 a7 00 10 cmp %i4, %l0
2008508: 32 bf ff cf bne,a 2008444 <_Heap_Walk+0x19c>
200850c: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
2008510: 35 00 80 53 sethi %hi(0x2014c00), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008514: 31 00 80 53 sethi %hi(0x2014c00), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008518: b4 16 a3 d0 or %i2, 0x3d0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200851c: b0 16 23 b8 or %i0, 0x3b8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008520: 37 00 80 53 sethi %hi(0x2014c00), %i3
block = next_block;
} while ( block != first_block );
return true;
}
2008524: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008528: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200852c: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008530: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008534: 80 a0 c0 1d cmp %g3, %i5
2008538: 18 80 00 05 bgu 200854c <_Heap_Walk+0x2a4> <== NEVER TAKEN
200853c: 84 10 20 00 clr %g2
2008540: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
2008544: 80 a0 80 1d cmp %g2, %i5
2008548: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200854c: 80 a0 a0 00 cmp %g2, 0
2008550: 12 80 00 07 bne 200856c <_Heap_Walk+0x2c4>
2008554: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
2008558: 15 00 80 53 sethi %hi(0x2014c00), %o2
200855c: 90 10 00 19 mov %i1, %o0
2008560: 92 10 20 01 mov 1, %o1
2008564: 10 80 00 2c b 2008614 <_Heap_Walk+0x36c>
2008568: 94 12 a2 48 or %o2, 0x248, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
200856c: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008570: c2 27 bf fc st %g1, [ %fp + -4 ]
2008574: b8 40 20 00 addx %g0, 0, %i4
2008578: 90 10 00 17 mov %l7, %o0
200857c: 7f ff e5 52 call 2001ac4 <.urem>
2008580: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008584: 80 a2 20 00 cmp %o0, 0
2008588: 02 80 00 0c be 20085b8 <_Heap_Walk+0x310>
200858c: c2 07 bf fc ld [ %fp + -4 ], %g1
2008590: 80 8f 20 ff btst 0xff, %i4
2008594: 02 80 00 0a be 20085bc <_Heap_Walk+0x314>
2008598: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
200859c: 15 00 80 53 sethi %hi(0x2014c00), %o2
20085a0: 90 10 00 19 mov %i1, %o0
20085a4: 92 10 20 01 mov 1, %o1
20085a8: 94 12 a2 78 or %o2, 0x278, %o2
20085ac: 96 10 00 16 mov %l6, %o3
20085b0: 10 80 00 1b b 200861c <_Heap_Walk+0x374>
20085b4: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
20085b8: 80 a5 c0 14 cmp %l7, %l4
20085bc: 1a 80 00 0d bcc 20085f0 <_Heap_Walk+0x348>
20085c0: 80 a7 40 16 cmp %i5, %l6
20085c4: 80 8f 20 ff btst 0xff, %i4
20085c8: 02 80 00 0a be 20085f0 <_Heap_Walk+0x348> <== NEVER TAKEN
20085cc: 80 a7 40 16 cmp %i5, %l6
(*printer)(
20085d0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20085d4: 90 10 00 19 mov %i1, %o0
20085d8: 92 10 20 01 mov 1, %o1
20085dc: 94 12 a2 a8 or %o2, 0x2a8, %o2
20085e0: 96 10 00 16 mov %l6, %o3
20085e4: 98 10 00 17 mov %l7, %o4
20085e8: 10 80 00 3f b 20086e4 <_Heap_Walk+0x43c>
20085ec: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
20085f0: 38 80 00 0e bgu,a 2008628 <_Heap_Walk+0x380>
20085f4: b8 08 60 01 and %g1, 1, %i4
20085f8: 80 8f 20 ff btst 0xff, %i4
20085fc: 02 80 00 0b be 2008628 <_Heap_Walk+0x380>
2008600: b8 08 60 01 and %g1, 1, %i4
(*printer)(
2008604: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008608: 90 10 00 19 mov %i1, %o0
200860c: 92 10 20 01 mov 1, %o1
2008610: 94 12 a2 d8 or %o2, 0x2d8, %o2
2008614: 96 10 00 16 mov %l6, %o3
2008618: 98 10 00 1d mov %i5, %o4
200861c: 9f c4 40 00 call %l1
2008620: b0 10 20 00 clr %i0
2008624: 30 80 00 5d b,a 2008798 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008628: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200862c: 80 88 60 01 btst 1, %g1
2008630: 12 80 00 3f bne 200872c <_Heap_Walk+0x484>
2008634: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008638: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200863c: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008640: 05 00 80 52 sethi %hi(0x2014800), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008644: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008648: 80 a3 40 01 cmp %o5, %g1
200864c: 02 80 00 07 be 2008668 <_Heap_Walk+0x3c0>
2008650: 86 10 a3 b8 or %g2, 0x3b8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008654: 80 a3 40 10 cmp %o5, %l0
2008658: 12 80 00 04 bne 2008668 <_Heap_Walk+0x3c0>
200865c: 86 16 e3 80 or %i3, 0x380, %g3
2008660: 19 00 80 52 sethi %hi(0x2014800), %o4
2008664: 86 13 23 c8 or %o4, 0x3c8, %g3 ! 2014bc8 <C.0.4150+0x44>
block->next,
block->next == last_free_block ?
2008668: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200866c: 19 00 80 52 sethi %hi(0x2014800), %o4
2008670: 80 a0 80 04 cmp %g2, %g4
2008674: 02 80 00 07 be 2008690 <_Heap_Walk+0x3e8>
2008678: 82 13 23 d8 or %o4, 0x3d8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200867c: 80 a0 80 10 cmp %g2, %l0
2008680: 12 80 00 04 bne 2008690 <_Heap_Walk+0x3e8>
2008684: 82 16 e3 80 or %i3, 0x380, %g1
2008688: 09 00 80 52 sethi %hi(0x2014800), %g4
200868c: 82 11 23 e8 or %g4, 0x3e8, %g1 ! 2014be8 <C.0.4150+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008690: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008694: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2008698: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
200869c: 90 10 00 19 mov %i1, %o0
20086a0: 92 10 20 00 clr %o1
20086a4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20086a8: 96 10 00 16 mov %l6, %o3
20086ac: 94 12 a3 10 or %o2, 0x310, %o2
20086b0: 9f c4 40 00 call %l1
20086b4: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
20086b8: da 07 40 00 ld [ %i5 ], %o5
20086bc: 80 a5 c0 0d cmp %l7, %o5
20086c0: 02 80 00 0c be 20086f0 <_Heap_Walk+0x448>
20086c4: 80 a7 20 00 cmp %i4, 0
(*printer)(
20086c8: 15 00 80 53 sethi %hi(0x2014c00), %o2
20086cc: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
20086d0: 90 10 00 19 mov %i1, %o0
20086d4: 92 10 20 01 mov 1, %o1
20086d8: 94 12 a3 48 or %o2, 0x348, %o2
20086dc: 96 10 00 16 mov %l6, %o3
20086e0: 98 10 00 17 mov %l7, %o4
20086e4: 9f c4 40 00 call %l1
20086e8: b0 10 20 00 clr %i0
20086ec: 30 80 00 2b b,a 2008798 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
20086f0: 32 80 00 0a bne,a 2008718 <_Heap_Walk+0x470>
20086f4: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
20086f8: 15 00 80 53 sethi %hi(0x2014c00), %o2
20086fc: 90 10 00 19 mov %i1, %o0
2008700: 92 10 20 01 mov 1, %o1
2008704: 10 80 00 22 b 200878c <_Heap_Walk+0x4e4>
2008708: 94 12 a3 88 or %o2, 0x388, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
200870c: 02 80 00 19 be 2008770 <_Heap_Walk+0x4c8>
2008710: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
2008714: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008718: 80 a0 40 10 cmp %g1, %l0
200871c: 12 bf ff fc bne 200870c <_Heap_Walk+0x464>
2008720: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008724: 10 80 00 17 b 2008780 <_Heap_Walk+0x4d8>
2008728: 15 00 80 53 sethi %hi(0x2014c00), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
200872c: 22 80 00 0a be,a 2008754 <_Heap_Walk+0x4ac>
2008730: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
2008734: 90 10 00 19 mov %i1, %o0
2008738: 92 10 20 00 clr %o1
200873c: 94 10 00 18 mov %i0, %o2
2008740: 96 10 00 16 mov %l6, %o3
2008744: 9f c4 40 00 call %l1
2008748: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200874c: 10 80 00 09 b 2008770 <_Heap_Walk+0x4c8>
2008750: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008754: 90 10 00 19 mov %i1, %o0
2008758: 92 10 20 00 clr %o1
200875c: 94 10 00 1a mov %i2, %o2
2008760: 96 10 00 16 mov %l6, %o3
2008764: 9f c4 40 00 call %l1
2008768: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200876c: 80 a7 40 13 cmp %i5, %l3
2008770: 32 bf ff 6d bne,a 2008524 <_Heap_Walk+0x27c>
2008774: ac 10 00 1d mov %i5, %l6
return true;
}
2008778: 81 c7 e0 08 ret
200877c: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008780: 90 10 00 19 mov %i1, %o0
2008784: 92 10 20 01 mov 1, %o1
2008788: 94 12 a3 f8 or %o2, 0x3f8, %o2
200878c: 96 10 00 16 mov %l6, %o3
2008790: 9f c4 40 00 call %l1
2008794: b0 10 20 00 clr %i0
2008798: 81 c7 e0 08 ret
200879c: 81 e8 00 00 restore
020074e0 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20074e0: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20074e4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20074e8: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20074ec: 80 a0 60 00 cmp %g1, 0
20074f0: 02 80 00 20 be 2007570 <_Objects_Allocate+0x90> <== NEVER TAKEN
20074f4: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20074f8: a2 04 20 20 add %l0, 0x20, %l1
20074fc: 7f ff fd 88 call 2006b1c <_Chain_Get>
2007500: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007504: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
2007508: 80 a0 60 00 cmp %g1, 0
200750c: 02 80 00 19 be 2007570 <_Objects_Allocate+0x90>
2007510: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007514: 80 a2 20 00 cmp %o0, 0
2007518: 32 80 00 0a bne,a 2007540 <_Objects_Allocate+0x60>
200751c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
2007520: 40 00 00 1e call 2007598 <_Objects_Extend_information>
2007524: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007528: 7f ff fd 7d call 2006b1c <_Chain_Get>
200752c: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
2007530: b0 92 20 00 orcc %o0, 0, %i0
2007534: 02 80 00 0f be 2007570 <_Objects_Allocate+0x90>
2007538: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
200753c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
2007540: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007544: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
2007548: 40 00 27 48 call 2011268 <.udiv>
200754c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007550: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2007554: 91 2a 20 02 sll %o0, 2, %o0
2007558: c4 00 40 08 ld [ %g1 + %o0 ], %g2
200755c: 84 00 bf ff add %g2, -1, %g2
2007560: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007564: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
2007568: 82 00 7f ff add %g1, -1, %g1
200756c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
2007570: 81 c7 e0 08 ret
2007574: 81 e8 00 00 restore
020078f4 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
20078f4: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
20078f8: b3 2e 60 10 sll %i1, 0x10, %i1
20078fc: b3 36 60 10 srl %i1, 0x10, %i1
2007900: 80 a6 60 00 cmp %i1, 0
2007904: 02 80 00 17 be 2007960 <_Objects_Get_information+0x6c>
2007908: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
200790c: 40 00 11 65 call 200bea0 <_Objects_API_maximum_class>
2007910: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007914: 80 a2 20 00 cmp %o0, 0
2007918: 02 80 00 12 be 2007960 <_Objects_Get_information+0x6c>
200791c: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007920: 18 80 00 10 bgu 2007960 <_Objects_Get_information+0x6c>
2007924: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007928: b1 2e 20 02 sll %i0, 2, %i0
200792c: 82 10 61 9c or %g1, 0x19c, %g1
2007930: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2007934: 80 a0 60 00 cmp %g1, 0
2007938: 02 80 00 0a be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200793c: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2007940: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
2007944: 80 a4 20 00 cmp %l0, 0
2007948: 02 80 00 06 be 2007960 <_Objects_Get_information+0x6c> <== NEVER TAKEN
200794c: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2007950: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
2007954: 80 a0 00 01 cmp %g0, %g1
2007958: 82 60 20 00 subx %g0, 0, %g1
200795c: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
2007960: 81 c7 e0 08 ret
2007964: 91 e8 00 10 restore %g0, %l0, %o0
02019150 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019150: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
2019154: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019158: 82 22 40 01 sub %o1, %g1, %g1
201915c: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
2019160: 80 a0 80 01 cmp %g2, %g1
2019164: 0a 80 00 09 bcs 2019188 <_Objects_Get_no_protection+0x38>
2019168: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
201916c: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
2019170: d0 00 80 01 ld [ %g2 + %g1 ], %o0
2019174: 80 a2 20 00 cmp %o0, 0
2019178: 02 80 00 05 be 201918c <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
201917c: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
2019180: 81 c3 e0 08 retl
2019184: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
2019188: 82 10 20 01 mov 1, %g1
return NULL;
201918c: 90 10 20 00 clr %o0
}
2019190: 81 c3 e0 08 retl
2019194: c2 22 80 00 st %g1, [ %o2 ]
020091d4 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
20091d4: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20091d8: 92 96 20 00 orcc %i0, 0, %o1
20091dc: 12 80 00 06 bne 20091f4 <_Objects_Id_to_name+0x20>
20091e0: 83 32 60 18 srl %o1, 0x18, %g1
20091e4: 03 00 80 74 sethi %hi(0x201d000), %g1
20091e8: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201d078 <_Per_CPU_Information+0xc>
20091ec: d2 00 60 08 ld [ %g1 + 8 ], %o1
20091f0: 83 32 60 18 srl %o1, 0x18, %g1
20091f4: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
20091f8: 84 00 7f ff add %g1, -1, %g2
20091fc: 80 a0 a0 02 cmp %g2, 2
2009200: 18 80 00 12 bgu 2009248 <_Objects_Id_to_name+0x74>
2009204: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009208: 10 80 00 12 b 2009250 <_Objects_Id_to_name+0x7c>
200920c: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2009210: 85 28 a0 02 sll %g2, 2, %g2
2009214: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009218: 80 a2 20 00 cmp %o0, 0
200921c: 02 80 00 0b be 2009248 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
2009220: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2009224: 7f ff ff cf call 2009160 <_Objects_Get>
2009228: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200922c: 80 a2 20 00 cmp %o0, 0
2009230: 02 80 00 06 be 2009248 <_Objects_Id_to_name+0x74>
2009234: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2009238: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200923c: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2009240: 40 00 02 56 call 2009b98 <_Thread_Enable_dispatch>
2009244: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2009248: 81 c7 e0 08 ret
200924c: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009250: 05 00 80 73 sethi %hi(0x201cc00), %g2
2009254: 84 10 a1 6c or %g2, 0x16c, %g2 ! 201cd6c <_Objects_Information_table>
2009258: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200925c: 80 a0 60 00 cmp %g1, 0
2009260: 12 bf ff ec bne 2009210 <_Objects_Id_to_name+0x3c>
2009264: 85 32 60 1b srl %o1, 0x1b, %g2
2009268: 30 bf ff f8 b,a 2009248 <_Objects_Id_to_name+0x74>
02007a50 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007a50: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007a54: 85 2f 20 10 sll %i4, 0x10, %g2
2007a58: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007a5c: 07 00 80 53 sethi %hi(0x2014c00), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007a60: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007a64: 86 10 e1 9c or %g3, 0x19c, %g3
2007a68: 85 2e 60 02 sll %i1, 2, %g2
2007a6c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
2007a70: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
2007a74: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
information->local_table = 0;
2007a78: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
2007a7c: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
2007a80: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
2007a84: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
2007a88: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007a8c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007a90: b5 2e a0 10 sll %i2, 0x10, %i2
2007a94: b5 36 a0 10 srl %i2, 0x10, %i2
2007a98: 85 2e a0 02 sll %i2, 2, %g2
2007a9c: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2007aa0: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
2007aa4: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2007aa8: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
2007aac: 80 a0 a0 00 cmp %g2, 0
2007ab0: 02 80 00 09 be 2007ad4 <_Objects_Initialize_information+0x84>
2007ab4: b6 2e c0 03 andn %i3, %g3, %i3
2007ab8: 80 a6 e0 00 cmp %i3, 0
2007abc: 12 80 00 07 bne 2007ad8 <_Objects_Initialize_information+0x88>
2007ac0: 05 00 80 52 sethi %hi(0x2014800), %g2
_Internal_error_Occurred(
2007ac4: 90 10 20 00 clr %o0
2007ac8: 92 10 20 01 mov 1, %o1
2007acc: 7f ff fe 59 call 2007430 <_Internal_error_Occurred>
2007ad0: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
2007ad4: 05 00 80 52 sethi %hi(0x2014800), %g2
2007ad8: 84 10 a2 e4 or %g2, 0x2e4, %g2 ! 2014ae4 <null_local_table.3231>
2007adc: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007ae0: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007ae4: 80 a0 00 1b cmp %g0, %i3
2007ae8: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007aec: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007af0: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
2007af4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007af8: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007afc: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b00: b4 16 80 02 or %i2, %g2, %i2
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2007b04: 80 88 60 03 btst 3, %g1
2007b08: 02 80 00 04 be 2007b18 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
2007b0c: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2007b10: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
2007b14: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
2007b18: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007b1c: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
2007b20: c0 26 20 24 clr [ %i0 + 0x24 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2007b24: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
2007b28: 82 06 20 20 add %i0, 0x20, %g1
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
2007b2c: 80 a6 e0 00 cmp %i3, 0
2007b30: 02 80 00 04 be 2007b40 <_Objects_Initialize_information+0xf0>
2007b34: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
2007b38: 7f ff fe 98 call 2007598 <_Objects_Extend_information>
2007b3c: 81 e8 00 00 restore
2007b40: 81 c7 e0 08 ret
2007b44: 81 e8 00 00 restore
0200b668 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200b668: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b66c: e0 06 21 60 ld [ %i0 + 0x160 ], %l0
if ( !api )
200b670: 80 a4 20 00 cmp %l0, 0
200b674: 02 80 00 1d be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b678: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200b67c: 7f ff da d1 call 20021c0 <sparc_disable_interrupts>
200b680: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b684: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b688: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b68c: 7f ff da d1 call 20021d0 <sparc_enable_interrupts>
200b690: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b694: 80 a4 e0 00 cmp %l3, 0
200b698: 02 80 00 14 be 200b6e8 <_RTEMS_tasks_Post_switch_extension+0x80>
200b69c: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
200b6a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6a4: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200b6a8: 82 00 60 01 inc %g1
200b6ac: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6b0: 94 10 00 11 mov %l1, %o2
200b6b4: 25 00 00 3f sethi %hi(0xfc00), %l2
200b6b8: 40 00 07 8c call 200d4e8 <rtems_task_mode>
200b6bc: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b6c0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200b6c4: 9f c0 40 00 call %g1
200b6c8: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b6cc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6d0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b6d4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6d8: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b6dc: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b6e0: 40 00 07 82 call 200d4e8 <rtems_task_mode>
200b6e4: 94 10 00 11 mov %l1, %o2
200b6e8: 81 c7 e0 08 ret
200b6ec: 81 e8 00 00 restore
02007838 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007838: 9d e3 bf 98 save %sp, -104, %sp
200783c: 11 00 80 74 sethi %hi(0x201d000), %o0
2007840: 92 10 00 18 mov %i0, %o1
2007844: 90 12 23 04 or %o0, 0x304, %o0
2007848: 40 00 07 c9 call 200976c <_Objects_Get>
200784c: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007850: c2 07 bf fc ld [ %fp + -4 ], %g1
2007854: 80 a0 60 00 cmp %g1, 0
2007858: 12 80 00 24 bne 20078e8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
200785c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007860: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007864: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007868: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
200786c: 80 88 80 01 btst %g2, %g1
2007870: 22 80 00 0b be,a 200789c <_Rate_monotonic_Timeout+0x64>
2007874: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007878: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
200787c: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007880: 80 a0 80 01 cmp %g2, %g1
2007884: 32 80 00 06 bne,a 200789c <_Rate_monotonic_Timeout+0x64>
2007888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
200788c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2007890: 40 00 09 1a call 2009cf8 <_Thread_Clear_state>
2007894: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
2007898: 30 80 00 06 b,a 20078b0 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
200789c: 80 a0 60 01 cmp %g1, 1
20078a0: 12 80 00 0d bne 20078d4 <_Rate_monotonic_Timeout+0x9c>
20078a4: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20078a8: 82 10 20 03 mov 3, %g1
20078ac: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20078b0: 7f ff fe 66 call 2007248 <_Rate_monotonic_Initiate_statistics>
20078b4: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20078b8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078bc: 11 00 80 75 sethi %hi(0x201d400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20078c0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20078c4: 90 12 21 40 or %o0, 0x140, %o0
20078c8: 40 00 0f 22 call 200b550 <_Watchdog_Insert>
20078cc: 92 04 20 10 add %l0, 0x10, %o1
20078d0: 30 80 00 02 b,a 20078d8 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
20078d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
20078d8: 03 00 80 75 sethi %hi(0x201d400), %g1
20078dc: c4 00 60 78 ld [ %g1 + 0x78 ], %g2 ! 201d478 <_Thread_Dispatch_disable_level>
20078e0: 84 00 bf ff add %g2, -1, %g2
20078e4: c4 20 60 78 st %g2, [ %g1 + 0x78 ]
20078e8: 81 c7 e0 08 ret
20078ec: 81 e8 00 00 restore
02007240 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007240: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007244: 03 00 80 74 sethi %hi(0x201d000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007248: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
200724c: d2 00 61 74 ld [ %g1 + 0x174 ], %o1
if ((!the_tod) ||
2007250: 80 a4 20 00 cmp %l0, 0
2007254: 02 80 00 2b be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007258: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
200725c: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007260: 40 00 46 f4 call 2018e30 <.udiv>
2007264: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007268: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200726c: 80 a0 40 08 cmp %g1, %o0
2007270: 1a 80 00 24 bcc 2007300 <_TOD_Validate+0xc0>
2007274: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
2007278: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
200727c: 80 a0 60 3b cmp %g1, 0x3b
2007280: 18 80 00 20 bgu 2007300 <_TOD_Validate+0xc0>
2007284: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2007288: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
200728c: 80 a0 60 3b cmp %g1, 0x3b
2007290: 18 80 00 1c bgu 2007300 <_TOD_Validate+0xc0>
2007294: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2007298: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200729c: 80 a0 60 17 cmp %g1, 0x17
20072a0: 18 80 00 18 bgu 2007300 <_TOD_Validate+0xc0>
20072a4: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20072a8: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
20072ac: 80 a0 60 00 cmp %g1, 0
20072b0: 02 80 00 14 be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072b4: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20072b8: 18 80 00 12 bgu 2007300 <_TOD_Validate+0xc0>
20072bc: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20072c0: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20072c4: 80 a0 e7 c3 cmp %g3, 0x7c3
20072c8: 08 80 00 0e bleu 2007300 <_TOD_Validate+0xc0>
20072cc: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20072d0: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20072d4: 80 a0 a0 00 cmp %g2, 0
20072d8: 02 80 00 0a be 2007300 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072dc: 80 88 e0 03 btst 3, %g3
20072e0: 07 00 80 6f sethi %hi(0x201bc00), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
20072e4: 12 80 00 03 bne 20072f0 <_TOD_Validate+0xb0>
20072e8: 86 10 e1 a0 or %g3, 0x1a0, %g3 ! 201bda0 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20072ec: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20072f0: 83 28 60 02 sll %g1, 2, %g1
20072f4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20072f8: 80 a0 40 02 cmp %g1, %g2
20072fc: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
2007300: 81 c7 e0 08 ret
2007304: 81 e8 00 00 restore
02007d84 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2007d84: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
2007d88: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2007d8c: 40 00 04 36 call 2008e64 <_Thread_Set_transient>
2007d90: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2007d94: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007d98: 80 a0 40 19 cmp %g1, %i1
2007d9c: 02 80 00 05 be 2007db0 <_Thread_Change_priority+0x2c>
2007da0: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2007da4: 90 10 00 18 mov %i0, %o0
2007da8: 40 00 03 b2 call 2008c70 <_Thread_Set_priority>
2007dac: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2007db0: 7f ff e9 04 call 20021c0 <sparc_disable_interrupts>
2007db4: 01 00 00 00 nop
2007db8: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2007dbc: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2007dc0: 80 a6 60 04 cmp %i1, 4
2007dc4: 02 80 00 10 be 2007e04 <_Thread_Change_priority+0x80>
2007dc8: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2007dcc: 80 a4 60 00 cmp %l1, 0
2007dd0: 12 80 00 03 bne 2007ddc <_Thread_Change_priority+0x58> <== NEVER TAKEN
2007dd4: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007dd8: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
2007ddc: 7f ff e8 fd call 20021d0 <sparc_enable_interrupts>
2007de0: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2007de4: 03 00 00 ef sethi %hi(0x3bc00), %g1
2007de8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2007dec: 80 8e 40 01 btst %i1, %g1
2007df0: 02 80 00 5c be 2007f60 <_Thread_Change_priority+0x1dc>
2007df4: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2007df8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
2007dfc: 40 00 03 70 call 2008bbc <_Thread_queue_Requeue>
2007e00: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2007e04: 80 a4 60 00 cmp %l1, 0
2007e08: 12 80 00 1c bne 2007e78 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
2007e0c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2007e10: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
2007e14: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
2007e18: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007e1c: c0 24 20 10 clr [ %l0 + 0x10 ]
2007e20: 84 10 c0 02 or %g3, %g2, %g2
2007e24: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2007e28: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007e2c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
2007e30: c4 10 62 dc lduh [ %g1 + 0x2dc ], %g2
_Priority_bit_map_Add( &the_thread->Priority_map );
if ( prepend_it )
2007e34: 80 8e a0 ff btst 0xff, %i2
2007e38: 84 10 c0 02 or %g3, %g2, %g2
2007e3c: c4 30 62 dc sth %g2, [ %g1 + 0x2dc ]
2007e40: 02 80 00 08 be 2007e60 <_Thread_Change_priority+0xdc>
2007e44: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2007e48: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2007e4c: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2007e50: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
2007e54: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
2007e58: 10 80 00 08 b 2007e78 <_Thread_Change_priority+0xf4>
2007e5c: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007e60: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2007e64: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2007e68: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
2007e6c: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2007e70: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2007e74: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
2007e78: 7f ff e8 d6 call 20021d0 <sparc_enable_interrupts>
2007e7c: 90 10 00 18 mov %i0, %o0
2007e80: 7f ff e8 d0 call 20021c0 <sparc_disable_interrupts>
2007e84: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first;
2007e88: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007e8c: da 00 61 94 ld [ %g1 + 0x194 ], %o5 ! 2014d94 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007e90: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007e94: c4 10 62 dc lduh [ %g1 + 0x2dc ], %g2 ! 2014edc <_Priority_Major_bit_map>
2007e98: 03 00 80 4e sethi %hi(0x2013800), %g1
2007e9c: 85 28 a0 10 sll %g2, 0x10, %g2
2007ea0: 87 30 a0 10 srl %g2, 0x10, %g3
2007ea4: 80 a0 e0 ff cmp %g3, 0xff
2007ea8: 18 80 00 05 bgu 2007ebc <_Thread_Change_priority+0x138>
2007eac: 82 10 60 a0 or %g1, 0xa0, %g1
2007eb0: c4 08 40 03 ldub [ %g1 + %g3 ], %g2
2007eb4: 10 80 00 04 b 2007ec4 <_Thread_Change_priority+0x140>
2007eb8: 84 00 a0 08 add %g2, 8, %g2
2007ebc: 85 30 a0 18 srl %g2, 0x18, %g2
2007ec0: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007ec4: 83 28 a0 10 sll %g2, 0x10, %g1
2007ec8: 07 00 80 53 sethi %hi(0x2014c00), %g3
2007ecc: 83 30 60 0f srl %g1, 0xf, %g1
2007ed0: 86 10 e3 50 or %g3, 0x350, %g3
2007ed4: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3
2007ed8: 03 00 80 4e sethi %hi(0x2013800), %g1
2007edc: 87 28 e0 10 sll %g3, 0x10, %g3
2007ee0: 89 30 e0 10 srl %g3, 0x10, %g4
2007ee4: 80 a1 20 ff cmp %g4, 0xff
2007ee8: 18 80 00 05 bgu 2007efc <_Thread_Change_priority+0x178>
2007eec: 82 10 60 a0 or %g1, 0xa0, %g1
2007ef0: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
2007ef4: 10 80 00 04 b 2007f04 <_Thread_Change_priority+0x180>
2007ef8: 82 00 60 08 add %g1, 8, %g1
2007efc: 87 30 e0 18 srl %g3, 0x18, %g3
2007f00: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
2007f04: 83 28 60 10 sll %g1, 0x10, %g1
2007f08: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007f0c: 85 28 a0 10 sll %g2, 0x10, %g2
2007f10: 85 30 a0 0c srl %g2, 0xc, %g2
2007f14: 84 00 40 02 add %g1, %g2, %g2
2007f18: 83 28 a0 02 sll %g2, 2, %g1
2007f1c: 85 28 a0 04 sll %g2, 4, %g2
2007f20: 84 20 80 01 sub %g2, %g1, %g2
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
2007f24: c6 03 40 02 ld [ %o5 + %g2 ], %g3
2007f28: 03 00 80 54 sethi %hi(0x2015000), %g1
2007f2c: 82 10 60 9c or %g1, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2007f30: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
2007f34: 80 a0 80 03 cmp %g2, %g3
2007f38: 02 80 00 08 be 2007f58 <_Thread_Change_priority+0x1d4>
2007f3c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
2007f40: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2007f44: 80 a0 a0 00 cmp %g2, 0
2007f48: 02 80 00 04 be 2007f58 <_Thread_Change_priority+0x1d4>
2007f4c: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2007f50: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
2007f54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2007f58: 7f ff e8 9e call 20021d0 <sparc_enable_interrupts>
2007f5c: 81 e8 00 00 restore
2007f60: 81 c7 e0 08 ret
2007f64: 81 e8 00 00 restore
02007f68 <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
2007f68: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
2007f6c: 7f ff e8 95 call 20021c0 <sparc_disable_interrupts>
2007f70: a0 10 00 18 mov %i0, %l0
2007f74: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
2007f78: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
2007f7c: 80 8e 40 01 btst %i1, %g1
2007f80: 02 80 00 2f be 200803c <_Thread_Clear_state+0xd4>
2007f84: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear (
States_Control states_to_clear,
States_Control current_state
)
{
return (current_state & ~states_to_clear);
2007f88: b2 28 40 19 andn %g1, %i1, %i1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
2007f8c: 80 a6 60 00 cmp %i1, 0
2007f90: 12 80 00 2b bne 200803c <_Thread_Clear_state+0xd4>
2007f94: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2007f98: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
2007f9c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
2007fa0: c6 10 40 00 lduh [ %g1 ], %g3
2007fa4: 84 10 c0 02 or %g3, %g2, %g2
2007fa8: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2007fac: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007fb0: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
2007fb4: c4 10 62 dc lduh [ %g1 + 0x2dc ], %g2
2007fb8: 84 10 c0 02 or %g3, %g2, %g2
2007fbc: c4 30 62 dc sth %g2, [ %g1 + 0x2dc ]
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
2007fc0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007fc4: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2007fc8: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2007fcc: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
2007fd0: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2007fd4: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2007fd8: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
2007fdc: 7f ff e8 7d call 20021d0 <sparc_enable_interrupts>
2007fe0: 01 00 00 00 nop
2007fe4: 7f ff e8 77 call 20021c0 <sparc_disable_interrupts>
2007fe8: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
2007fec: 03 00 80 54 sethi %hi(0x2015000), %g1
2007ff0: 82 10 60 9c or %g1, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
2007ff4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2007ff8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
2007ffc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
2008000: 80 a0 80 03 cmp %g2, %g3
2008004: 1a 80 00 0e bcc 200803c <_Thread_Clear_state+0xd4>
2008008: 01 00 00 00 nop
_Thread_Heir = the_thread;
200800c: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
2008010: c2 00 60 0c ld [ %g1 + 0xc ], %g1
2008014: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
2008018: 80 a0 60 00 cmp %g1, 0
200801c: 32 80 00 05 bne,a 2008030 <_Thread_Clear_state+0xc8>
2008020: 84 10 20 01 mov 1, %g2
2008024: 80 a0 a0 00 cmp %g2, 0
2008028: 12 80 00 05 bne 200803c <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
200802c: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
2008030: 03 00 80 54 sethi %hi(0x2015000), %g1
2008034: 82 10 60 9c or %g1, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
2008038: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
200803c: 7f ff e8 65 call 20021d0 <sparc_enable_interrupts>
2008040: 81 e8 00 00 restore
020081f0 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20081f0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
20081f4: 90 10 00 18 mov %i0, %o0
20081f8: 40 00 00 6e call 20083b0 <_Thread_Get>
20081fc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008200: c2 07 bf fc ld [ %fp + -4 ], %g1
2008204: 80 a0 60 00 cmp %g1, 0
2008208: 12 80 00 08 bne 2008228 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
200820c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008210: 7f ff ff 56 call 2007f68 <_Thread_Clear_state>
2008214: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
2008218: 03 00 80 53 sethi %hi(0x2014c00), %g1
200821c: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
2008220: 84 00 bf ff add %g2, -1, %g2
2008224: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
2008228: 81 c7 e0 08 ret
200822c: 81 e8 00 00 restore
02008230 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008230: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
2008234: 2d 00 80 54 sethi %hi(0x2015000), %l6
2008238: 82 15 a0 9c or %l6, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
_ISR_Disable( level );
200823c: 7f ff e7 e1 call 20021c0 <sparc_disable_interrupts>
2008240: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008244: 25 00 80 53 sethi %hi(0x2014c00), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008248: 37 00 80 53 sethi %hi(0x2014c00), %i3
200824c: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008250: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008254: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
2008258: a8 07 bf f0 add %fp, -16, %l4
200825c: a4 14 a2 ec or %l2, 0x2ec, %l2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008260: 2f 00 80 53 sethi %hi(0x2014c00), %l7
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008264: 10 80 00 39 b 2008348 <_Thread_Dispatch+0x118>
2008268: 27 00 80 53 sethi %hi(0x2014c00), %l3
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
200826c: f8 26 e2 38 st %i4, [ %i3 + 0x238 ]
_Thread_Dispatch_necessary = false;
2008270: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008274: 80 a4 40 10 cmp %l1, %l0
2008278: 02 80 00 39 be 200835c <_Thread_Dispatch+0x12c>
200827c: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008280: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008284: 80 a0 60 01 cmp %g1, 1
2008288: 12 80 00 03 bne 2008294 <_Thread_Dispatch+0x64>
200828c: c2 07 61 98 ld [ %i5 + 0x198 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008290: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008294: 7f ff e7 cf call 20021d0 <sparc_enable_interrupts>
2008298: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
200829c: 40 00 0d f4 call 200ba6c <_TOD_Get_uptime>
20082a0: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
20082a4: 90 10 00 12 mov %l2, %o0
20082a8: 92 10 00 15 mov %l5, %o1
20082ac: 40 00 03 be call 20091a4 <_Timespec_Subtract>
20082b0: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
20082b4: 90 04 20 84 add %l0, 0x84, %o0
20082b8: 40 00 03 a2 call 2009140 <_Timespec_Add_to>
20082bc: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
20082c0: c2 07 bf f8 ld [ %fp + -8 ], %g1
20082c4: c2 24 80 00 st %g1, [ %l2 ]
20082c8: c2 07 bf fc ld [ %fp + -4 ], %g1
20082cc: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20082d0: c2 05 e2 c0 ld [ %l7 + 0x2c0 ], %g1
20082d4: 80 a0 60 00 cmp %g1, 0
20082d8: 02 80 00 06 be 20082f0 <_Thread_Dispatch+0xc0> <== NEVER TAKEN
20082dc: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
20082e0: c4 00 40 00 ld [ %g1 ], %g2
20082e4: c4 24 21 5c st %g2, [ %l0 + 0x15c ]
*_Thread_libc_reent = heir->libc_reent;
20082e8: c4 04 61 5c ld [ %l1 + 0x15c ], %g2
20082ec: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
20082f0: 40 00 04 5d call 2009464 <_User_extensions_Thread_switch>
20082f4: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
20082f8: 90 04 20 d0 add %l0, 0xd0, %o0
20082fc: 40 00 05 86 call 2009914 <_CPU_Context_switch>
2008300: 92 04 60 d0 add %l1, 0xd0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008304: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
2008308: 80 a0 60 00 cmp %g1, 0
200830c: 02 80 00 0c be 200833c <_Thread_Dispatch+0x10c>
2008310: d0 04 e2 bc ld [ %l3 + 0x2bc ], %o0
2008314: 80 a4 00 08 cmp %l0, %o0
2008318: 02 80 00 09 be 200833c <_Thread_Dispatch+0x10c>
200831c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008320: 02 80 00 04 be 2008330 <_Thread_Dispatch+0x100>
2008324: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008328: 40 00 05 41 call 200982c <_CPU_Context_save_fp>
200832c: 90 02 21 58 add %o0, 0x158, %o0
_Context_Restore_fp( &executing->fp_context );
2008330: 40 00 05 5c call 20098a0 <_CPU_Context_restore_fp>
2008334: 90 04 21 58 add %l0, 0x158, %o0
_Thread_Allocated_fp = executing;
2008338: e0 24 e2 bc st %l0, [ %l3 + 0x2bc ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
200833c: 82 15 a0 9c or %l6, 0x9c, %g1
_ISR_Disable( level );
2008340: 7f ff e7 a0 call 20021c0 <sparc_disable_interrupts>
2008344: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008348: 82 15 a0 9c or %l6, 0x9c, %g1
200834c: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
2008350: 80 a0 a0 00 cmp %g2, 0
2008354: 32 bf ff c6 bne,a 200826c <_Thread_Dispatch+0x3c>
2008358: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
200835c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008360: c0 20 62 38 clr [ %g1 + 0x238 ] ! 2014e38 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
2008364: 7f ff e7 9b call 20021d0 <sparc_enable_interrupts>
2008368: 01 00 00 00 nop
_API_extensions_Run_postswitch();
200836c: 7f ff f9 8b call 2006998 <_API_extensions_Run_postswitch>
2008370: 01 00 00 00 nop
}
2008374: 81 c7 e0 08 ret
2008378: 81 e8 00 00 restore
020083b0 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
20083b0: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
20083b4: 80 a2 20 00 cmp %o0, 0
20083b8: 12 80 00 0a bne 20083e0 <_Thread_Get+0x30>
20083bc: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
20083c0: 03 00 80 53 sethi %hi(0x2014c00), %g1
20083c4: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
20083c8: 84 00 a0 01 inc %g2
20083cc: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
20083d0: 03 00 80 54 sethi %hi(0x2015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
20083d4: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
20083d8: 81 c3 e0 08 retl
20083dc: d0 00 60 a8 ld [ %g1 + 0xa8 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
20083e0: 87 32 20 18 srl %o0, 0x18, %g3
20083e4: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
20083e8: 84 00 ff ff add %g3, -1, %g2
20083ec: 80 a0 a0 02 cmp %g2, 2
20083f0: 28 80 00 16 bleu,a 2008448 <_Thread_Get+0x98>
20083f4: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
20083f8: 82 10 20 01 mov 1, %g1
20083fc: 10 80 00 09 b 2008420 <_Thread_Get+0x70>
2008400: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
2008404: 09 00 80 53 sethi %hi(0x2014c00), %g4
2008408: 88 11 21 9c or %g4, 0x19c, %g4 ! 2014d9c <_Objects_Information_table>
200840c: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
2008410: 80 a0 e0 00 cmp %g3, 0
2008414: 32 80 00 05 bne,a 2008428 <_Thread_Get+0x78> <== ALWAYS TAKEN
2008418: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
200841c: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
2008420: 81 c3 e0 08 retl
2008424: 90 10 20 00 clr %o0
}
#endif
information = api_information[ the_class ];
if ( !information ) {
2008428: 80 a2 20 00 cmp %o0, 0
200842c: 12 80 00 04 bne 200843c <_Thread_Get+0x8c>
2008430: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
2008434: 81 c3 e0 08 retl
2008438: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
200843c: 82 13 c0 00 mov %o7, %g1
2008440: 7f ff fd 67 call 20079dc <_Objects_Get>
2008444: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
2008448: 80 a0 a0 01 cmp %g2, 1
200844c: 22 bf ff ee be,a 2008404 <_Thread_Get+0x54>
2008450: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
2008454: 10 bf ff ea b 20083fc <_Thread_Get+0x4c>
2008458: 82 10 20 01 mov 1, %g1
0200d818 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200d818: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200d81c: 03 00 80 54 sethi %hi(0x2015000), %g1
200d820: e0 00 60 a8 ld [ %g1 + 0xa8 ], %l0 ! 20150a8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200d824: 3f 00 80 36 sethi %hi(0x200d800), %i7
200d828: be 17 e0 18 or %i7, 0x18, %i7 ! 200d818 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200d82c: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
200d830: 7f ff d2 68 call 20021d0 <sparc_enable_interrupts>
200d834: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d838: 03 00 80 52 sethi %hi(0x2014800), %g1
doneConstructors = 1;
200d83c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200d840: e2 08 62 ec ldub [ %g1 + 0x2ec ], %l1
doneConstructors = 1;
200d844: c4 28 62 ec stb %g2, [ %g1 + 0x2ec ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200d848: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
200d84c: 80 a0 60 00 cmp %g1, 0
200d850: 02 80 00 0c be 200d880 <_Thread_Handler+0x68>
200d854: 03 00 80 53 sethi %hi(0x2014c00), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200d858: d0 00 62 bc ld [ %g1 + 0x2bc ], %o0 ! 2014ebc <_Thread_Allocated_fp>
200d85c: 80 a4 00 08 cmp %l0, %o0
200d860: 02 80 00 08 be 200d880 <_Thread_Handler+0x68>
200d864: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200d868: 22 80 00 06 be,a 200d880 <_Thread_Handler+0x68>
200d86c: e0 20 62 bc st %l0, [ %g1 + 0x2bc ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200d870: 7f ff ef ef call 200982c <_CPU_Context_save_fp>
200d874: 90 02 21 58 add %o0, 0x158, %o0
_Thread_Allocated_fp = executing;
200d878: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d87c: e0 20 62 bc st %l0, [ %g1 + 0x2bc ] ! 2014ebc <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200d880: 7f ff ee 89 call 20092a4 <_User_extensions_Thread_begin>
200d884: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200d888: 7f ff ea bd call 200837c <_Thread_Enable_dispatch>
200d88c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200d890: 80 a4 60 00 cmp %l1, 0
200d894: 32 80 00 05 bne,a 200d8a8 <_Thread_Handler+0x90>
200d898: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
200d89c: 40 00 1a 41 call 20141a0 <_init>
200d8a0: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200d8a4: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
200d8a8: 80 a0 60 00 cmp %g1, 0
200d8ac: 12 80 00 06 bne 200d8c4 <_Thread_Handler+0xac> <== NEVER TAKEN
200d8b0: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200d8b4: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
200d8b8: 9f c0 40 00 call %g1
200d8bc: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200d8c0: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200d8c4: 7f ff ee 89 call 20092e8 <_User_extensions_Thread_exitted>
200d8c8: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200d8cc: 90 10 20 00 clr %o0
200d8d0: 92 10 20 01 mov 1, %o1
200d8d4: 7f ff e6 d7 call 2007430 <_Internal_error_Occurred>
200d8d8: 94 10 20 05 mov 5, %o2
0200845c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200845c: 9d e3 bf a0 save %sp, -96, %sp
2008460: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008464: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2
2008468: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200846c: c0 26 61 60 clr [ %i1 + 0x160 ]
2008470: c0 26 61 64 clr [ %i1 + 0x164 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008474: c0 26 61 5c clr [ %i1 + 0x15c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008478: 90 10 00 19 mov %i1, %o0
200847c: 40 00 02 9f call 2008ef8 <_Thread_Stack_Allocate>
2008480: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008484: 80 a2 00 1b cmp %o0, %i3
2008488: 0a 80 00 6b bcs 2008634 <_Thread_Initialize+0x1d8>
200848c: 80 a2 20 00 cmp %o0, 0
2008490: 02 80 00 69 be 2008634 <_Thread_Initialize+0x1d8> <== NEVER TAKEN
2008494: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008498: c2 06 60 cc ld [ %i1 + 0xcc ], %g1
the_stack->size = size;
200849c: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
20084a0: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
20084a4: 02 80 00 07 be 20084c0 <_Thread_Initialize+0x64>
20084a8: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
20084ac: 40 00 04 c2 call 20097b4 <_Workspace_Allocate>
20084b0: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
20084b4: a2 92 20 00 orcc %o0, 0, %l1
20084b8: 02 80 00 3e be 20085b0 <_Thread_Initialize+0x154>
20084bc: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20084c0: 03 00 80 53 sethi %hi(0x2014c00), %g1
20084c4: d0 00 62 cc ld [ %g1 + 0x2cc ], %o0 ! 2014ecc <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
20084c8: e2 26 61 58 st %l1, [ %i1 + 0x158 ]
the_thread->Start.fp_context = fp_area;
20084cc: e2 26 60 c8 st %l1, [ %i1 + 0xc8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20084d0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20084d4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20084d8: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
20084dc: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20084e0: 80 a2 20 00 cmp %o0, 0
20084e4: 02 80 00 08 be 2008504 <_Thread_Initialize+0xa8>
20084e8: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
20084ec: 90 02 20 01 inc %o0
20084f0: 40 00 04 b1 call 20097b4 <_Workspace_Allocate>
20084f4: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
20084f8: b6 92 20 00 orcc %o0, 0, %i3
20084fc: 22 80 00 2e be,a 20085b4 <_Thread_Initialize+0x158>
2008500: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
2008504: 80 a6 e0 00 cmp %i3, 0
2008508: 02 80 00 0b be 2008534 <_Thread_Initialize+0xd8>
200850c: f6 26 61 68 st %i3, [ %i1 + 0x168 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008510: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008514: c4 00 62 cc ld [ %g1 + 0x2cc ], %g2 ! 2014ecc <_Thread_Maximum_extensions>
2008518: 10 80 00 04 b 2008528 <_Thread_Initialize+0xcc>
200851c: 82 10 20 00 clr %g1
2008520: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
2008524: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008528: 80 a0 40 02 cmp %g1, %g2
200852c: 08 bf ff fd bleu 2008520 <_Thread_Initialize+0xc4>
2008530: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008534: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
2008538: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200853c: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
2008540: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
2008544: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
2008548: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200854c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008550: e4 2e 60 ac stb %l2, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008554: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
2008558: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
200855c: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
2008560: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008564: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008568: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
200856c: 40 00 01 c1 call 2008c70 <_Thread_Set_priority>
2008570: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread );
return false;
}
2008574: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008578: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
200857c: c0 26 60 84 clr [ %i1 + 0x84 ]
2008580: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008584: 83 28 60 02 sll %g1, 2, %g1
2008588: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200858c: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008590: 90 10 00 19 mov %i1, %o0
2008594: 40 00 03 77 call 2009370 <_User_extensions_Thread_create>
2008598: b0 10 20 01 mov 1, %i0
if ( extension_status )
200859c: 80 8a 20 ff btst 0xff, %o0
20085a0: 22 80 00 05 be,a 20085b4 <_Thread_Initialize+0x158>
20085a4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
20085a8: 81 c7 e0 08 ret
20085ac: 81 e8 00 00 restore
return true;
failed:
if ( the_thread->libc_reent )
20085b0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
20085b4: 80 a2 20 00 cmp %o0, 0
20085b8: 22 80 00 05 be,a 20085cc <_Thread_Initialize+0x170>
20085bc: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->libc_reent );
20085c0: 40 00 04 86 call 20097d8 <_Workspace_Free>
20085c4: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
20085c8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
20085cc: 80 a2 20 00 cmp %o0, 0
20085d0: 22 80 00 05 be,a 20085e4 <_Thread_Initialize+0x188>
20085d4: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
20085d8: 40 00 04 80 call 20097d8 <_Workspace_Free>
20085dc: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
20085e0: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
20085e4: 80 a2 20 00 cmp %o0, 0
20085e8: 02 80 00 05 be 20085fc <_Thread_Initialize+0x1a0> <== ALWAYS TAKEN
20085ec: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
20085f0: 40 00 04 7a call 20097d8 <_Workspace_Free> <== NOT EXECUTED
20085f4: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
20085f8: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
20085fc: 02 80 00 05 be 2008610 <_Thread_Initialize+0x1b4>
2008600: 80 a4 60 00 cmp %l1, 0
(void) _Workspace_Free( extensions_area );
2008604: 40 00 04 75 call 20097d8 <_Workspace_Free>
2008608: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
200860c: 80 a4 60 00 cmp %l1, 0
2008610: 02 80 00 05 be 2008624 <_Thread_Initialize+0x1c8>
2008614: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( fp_area );
2008618: 40 00 04 70 call 20097d8 <_Workspace_Free>
200861c: 90 10 00 11 mov %l1, %o0
#endif
_Thread_Stack_Free( the_thread );
2008620: 90 10 00 19 mov %i1, %o0
2008624: 40 00 02 4c call 2008f54 <_Thread_Stack_Free>
2008628: b0 10 20 00 clr %i0
return false;
200862c: 81 c7 e0 08 ret
2008630: 81 e8 00 00 restore
}
2008634: 81 c7 e0 08 ret
2008638: 91 e8 20 00 restore %g0, 0, %o0
0200c274 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200c274: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200c278: 7f ff d8 4e call 20023b0 <sparc_disable_interrupts>
200c27c: a0 10 00 18 mov %i0, %l0
200c280: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
200c284: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c288: 80 88 60 02 btst 2, %g1
200c28c: 02 80 00 2e be 200c344 <_Thread_Resume+0xd0> <== NEVER TAKEN
200c290: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200c294: 80 a0 60 00 cmp %g1, 0
200c298: 12 80 00 2b bne 200c344 <_Thread_Resume+0xd0>
200c29c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
200c2a0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200c2a4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
200c2a8: c6 10 40 00 lduh [ %g1 ], %g3
200c2ac: 84 10 c0 02 or %g3, %g2, %g2
200c2b0: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200c2b4: 03 00 80 62 sethi %hi(0x2018800), %g1
200c2b8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
200c2bc: c4 10 63 9c lduh [ %g1 + 0x39c ], %g2
200c2c0: 84 10 c0 02 or %g3, %g2, %g2
200c2c4: c4 30 63 9c sth %g2, [ %g1 + 0x39c ]
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
200c2c8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200c2cc: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
200c2d0: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
200c2d4: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
200c2d8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
200c2dc: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
200c2e0: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
200c2e4: 7f ff d8 37 call 20023c0 <sparc_enable_interrupts>
200c2e8: 01 00 00 00 nop
200c2ec: 7f ff d8 31 call 20023b0 <sparc_disable_interrupts>
200c2f0: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
200c2f4: 03 00 80 63 sethi %hi(0x2018c00), %g1
200c2f8: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information>
200c2fc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200c300: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
200c304: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
200c308: 80 a0 80 03 cmp %g2, %g3
200c30c: 1a 80 00 0e bcc 200c344 <_Thread_Resume+0xd0>
200c310: 01 00 00 00 nop
_Thread_Heir = the_thread;
200c314: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200c318: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200c31c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
200c320: 80 a0 60 00 cmp %g1, 0
200c324: 32 80 00 05 bne,a 200c338 <_Thread_Resume+0xc4>
200c328: 84 10 20 01 mov 1, %g2
200c32c: 80 a0 a0 00 cmp %g2, 0
200c330: 12 80 00 05 bne 200c344 <_Thread_Resume+0xd0> <== ALWAYS TAKEN
200c334: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200c338: 03 00 80 63 sethi %hi(0x2018c00), %g1
200c33c: 82 10 61 5c or %g1, 0x15c, %g1 ! 2018d5c <_Per_CPU_Information>
200c340: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
200c344: 7f ff d8 1f call 20023c0 <sparc_enable_interrupts>
200c348: 81 e8 00 00 restore
02009098 <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
2009098: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
200909c: 23 00 80 54 sethi %hi(0x2015000), %l1
20090a0: a2 14 60 9c or %l1, 0x9c, %l1 ! 201509c <_Per_CPU_Information>
20090a4: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
20090a8: 7f ff e4 46 call 20021c0 <sparc_disable_interrupts>
20090ac: e4 04 20 8c ld [ %l0 + 0x8c ], %l2
20090b0: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node(
const Chain_Control *the_chain
)
{
return (the_chain->first == the_chain->last);
20090b4: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
20090b8: c4 04 80 00 ld [ %l2 ], %g2
20090bc: 80 a0 80 01 cmp %g2, %g1
20090c0: 22 80 00 19 be,a 2009124 <_Thread_Yield_processor+0x8c>
20090c4: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
20090c8: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
20090cc: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
previous->next = next;
20090d0: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
20090d4: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
20090d8: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
20090dc: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
20090e0: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
20090e4: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
20090e8: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
20090ec: 7f ff e4 39 call 20021d0 <sparc_enable_interrupts>
20090f0: 01 00 00 00 nop
20090f4: 7f ff e4 33 call 20021c0 <sparc_disable_interrupts>
20090f8: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20090fc: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
2009100: 80 a4 00 01 cmp %l0, %g1
2009104: 12 80 00 04 bne 2009114 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
2009108: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
200910c: c2 04 80 00 ld [ %l2 ], %g1
2009110: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Thread_Dispatch_necessary = true;
2009114: 03 00 80 54 sethi %hi(0x2015000), %g1
2009118: 82 10 60 9c or %g1, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
200911c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2009120: 30 80 00 05 b,a 2009134 <_Thread_Yield_processor+0x9c>
}
else if ( !_Thread_Is_heir( executing ) )
2009124: 80 a4 00 01 cmp %l0, %g1
2009128: 02 80 00 03 be 2009134 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
200912c: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
2009130: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
2009134: 7f ff e4 27 call 20021d0 <sparc_enable_interrupts>
2009138: 81 e8 00 00 restore
02008bbc <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2008bbc: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2008bc0: 80 a6 20 00 cmp %i0, 0
2008bc4: 02 80 00 19 be 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008bc8: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008bcc: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
2008bd0: 80 a4 60 01 cmp %l1, 1
2008bd4: 12 80 00 15 bne 2008c28 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008bd8: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2008bdc: 7f ff e5 79 call 20021c0 <sparc_disable_interrupts>
2008be0: 01 00 00 00 nop
2008be4: a0 10 00 08 mov %o0, %l0
2008be8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008bec: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008bf0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008bf4: 80 88 80 01 btst %g2, %g1
2008bf8: 02 80 00 0a be 2008c20 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008bfc: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008c00: 92 10 00 19 mov %i1, %o1
2008c04: 94 10 20 01 mov 1, %o2
2008c08: 40 00 0d 0f call 200c044 <_Thread_queue_Extract_priority_helper>
2008c0c: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008c10: 90 10 00 18 mov %i0, %o0
2008c14: 92 10 00 19 mov %i1, %o1
2008c18: 7f ff ff 4b call 2008944 <_Thread_queue_Enqueue_priority>
2008c1c: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2008c20: 7f ff e5 6c call 20021d0 <sparc_enable_interrupts>
2008c24: 90 10 00 10 mov %l0, %o0
2008c28: 81 c7 e0 08 ret
2008c2c: 81 e8 00 00 restore
02008c30 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008c30: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008c34: 90 10 00 18 mov %i0, %o0
2008c38: 7f ff fd de call 20083b0 <_Thread_Get>
2008c3c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008c40: c2 07 bf fc ld [ %fp + -4 ], %g1
2008c44: 80 a0 60 00 cmp %g1, 0
2008c48: 12 80 00 08 bne 2008c68 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008c4c: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2008c50: 40 00 0d 33 call 200c11c <_Thread_queue_Process_timeout>
2008c54: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2008c58: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008c5c: c4 00 62 38 ld [ %g1 + 0x238 ], %g2 ! 2014e38 <_Thread_Dispatch_disable_level>
2008c60: 84 00 bf ff add %g2, -1, %g2
2008c64: c4 20 62 38 st %g2, [ %g1 + 0x238 ]
2008c68: 81 c7 e0 08 ret
2008c6c: 81 e8 00 00 restore
0201690c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
201690c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016910: 35 00 80 ef sethi %hi(0x203bc00), %i2
2016914: a4 07 bf e8 add %fp, -24, %l2
2016918: b2 07 bf f4 add %fp, -12, %i1
201691c: ac 07 bf f8 add %fp, -8, %l6
2016920: a6 07 bf ec add %fp, -20, %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016924: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
2016928: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
201692c: f2 27 bf fc st %i1, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016930: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
2016934: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
2016938: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201693c: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain );
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
2016940: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016944: 37 00 80 ef sethi %hi(0x203bc00), %i3
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016948: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
201694c: b8 10 20 01 mov 1, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016950: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016954: ae 06 20 40 add %i0, 0x40, %l7
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016958: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
201695c: c2 06 a1 a4 ld [ %i2 + 0x1a4 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016960: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016964: 94 10 00 14 mov %l4, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016968: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201696c: 90 10 00 15 mov %l5, %o0
2016970: 40 00 11 d7 call 201b0cc <_Watchdog_Adjust_to_chain>
2016974: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016978: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
201697c: e0 06 e0 f4 ld [ %i3 + 0xf4 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2016980: 80 a4 00 0a cmp %l0, %o2
2016984: 08 80 00 06 bleu 201699c <_Timer_server_Body+0x90>
2016988: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201698c: 90 10 00 11 mov %l1, %o0
2016990: 40 00 11 cf call 201b0cc <_Watchdog_Adjust_to_chain>
2016994: 94 10 00 14 mov %l4, %o2
2016998: 30 80 00 06 b,a 20169b0 <_Timer_server_Body+0xa4>
} else if ( snapshot < last_snapshot ) {
201699c: 1a 80 00 05 bcc 20169b0 <_Timer_server_Body+0xa4>
20169a0: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20169a4: 92 10 20 01 mov 1, %o1
20169a8: 40 00 11 a1 call 201b02c <_Watchdog_Adjust>
20169ac: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
20169b0: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20169b4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
20169b8: 40 00 02 bf call 20174b4 <_Chain_Get>
20169bc: 01 00 00 00 nop
if ( timer == NULL ) {
20169c0: 92 92 20 00 orcc %o0, 0, %o1
20169c4: 02 80 00 0c be 20169f4 <_Timer_server_Body+0xe8>
20169c8: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20169cc: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
20169d0: 80 a0 60 01 cmp %g1, 1
20169d4: 02 80 00 05 be 20169e8 <_Timer_server_Body+0xdc>
20169d8: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20169dc: 80 a0 60 03 cmp %g1, 3
20169e0: 12 bf ff f5 bne 20169b4 <_Timer_server_Body+0xa8> <== NEVER TAKEN
20169e4: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20169e8: 40 00 11 ed call 201b19c <_Watchdog_Insert>
20169ec: 92 02 60 10 add %o1, 0x10, %o1
20169f0: 30 bf ff f1 b,a 20169b4 <_Timer_server_Body+0xa8>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
20169f4: 7f ff e3 a7 call 200f890 <sparc_disable_interrupts>
20169f8: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
20169fc: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016a00: 80 a0 40 16 cmp %g1, %l6
2016a04: 12 80 00 0a bne 2016a2c <_Timer_server_Body+0x120> <== NEVER TAKEN
2016a08: 01 00 00 00 nop
ts->insert_chain = NULL;
2016a0c: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2016a10: 7f ff e3 a4 call 200f8a0 <sparc_enable_interrupts>
2016a14: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016a18: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016a1c: 80 a0 40 13 cmp %g1, %l3
2016a20: 12 80 00 06 bne 2016a38 <_Timer_server_Body+0x12c>
2016a24: 01 00 00 00 nop
2016a28: 30 80 00 1a b,a 2016a90 <_Timer_server_Body+0x184>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016a2c: 7f ff e3 9d call 200f8a0 <sparc_enable_interrupts> <== NOT EXECUTED
2016a30: 01 00 00 00 nop <== NOT EXECUTED
2016a34: 30 bf ff ca b,a 201695c <_Timer_server_Body+0x50> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016a38: 7f ff e3 96 call 200f890 <sparc_disable_interrupts>
2016a3c: 01 00 00 00 nop
2016a40: 84 10 00 08 mov %o0, %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016a44: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016a48: 80 a4 00 13 cmp %l0, %l3
2016a4c: 02 80 00 0e be 2016a84 <_Timer_server_Body+0x178>
2016a50: 80 a4 20 00 cmp %l0, 0
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
2016a54: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
2016a58: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
2016a5c: 02 80 00 0a be 2016a84 <_Timer_server_Body+0x178> <== NEVER TAKEN
2016a60: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
2016a64: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016a68: 7f ff e3 8e call 200f8a0 <sparc_enable_interrupts>
2016a6c: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2016a70: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2016a74: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
2016a78: 9f c0 40 00 call %g1
2016a7c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
2016a80: 30 bf ff ee b,a 2016a38 <_Timer_server_Body+0x12c>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016a84: 7f ff e3 87 call 200f8a0 <sparc_enable_interrupts>
2016a88: 90 10 00 02 mov %g2, %o0
2016a8c: 30 bf ff b3 b,a 2016958 <_Timer_server_Body+0x4c>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016a90: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
2016a94: 7f ff ff 6e call 201684c <_Thread_Disable_dispatch>
2016a98: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016a9c: d0 06 00 00 ld [ %i0 ], %o0
2016aa0: 40 00 0e d8 call 201a600 <_Thread_Set_state>
2016aa4: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016aa8: 7f ff ff 6f call 2016864 <_Timer_server_Reset_interval_system_watchdog>
2016aac: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016ab0: 7f ff ff 82 call 20168b8 <_Timer_server_Reset_tod_system_watchdog>
2016ab4: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016ab8: 40 00 0c 20 call 2019b38 <_Thread_Enable_dispatch>
2016abc: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ac0: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016ac4: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ac8: 40 00 12 0f call 201b304 <_Watchdog_Remove>
2016acc: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016ad0: 40 00 12 0d call 201b304 <_Watchdog_Remove>
2016ad4: 90 10 00 17 mov %l7, %o0
2016ad8: 30 bf ff a0 b,a 2016958 <_Timer_server_Body+0x4c>
02016adc <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016adc: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016ae0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016ae4: 80 a0 60 00 cmp %g1, 0
2016ae8: 12 80 00 49 bne 2016c0c <_Timer_server_Schedule_operation_method+0x130>
2016aec: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2016af0: 7f ff ff 57 call 201684c <_Thread_Disable_dispatch>
2016af4: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016af8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016afc: 80 a0 60 01 cmp %g1, 1
2016b00: 12 80 00 1f bne 2016b7c <_Timer_server_Schedule_operation_method+0xa0>
2016b04: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016b08: 7f ff e3 62 call 200f890 <sparc_disable_interrupts>
2016b0c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016b10: 03 00 80 ef sethi %hi(0x203bc00), %g1
2016b14: c4 00 61 a4 ld [ %g1 + 0x1a4 ], %g2 ! 203bda4 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016b18: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016b1c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016b20: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016b24: 80 a0 40 03 cmp %g1, %g3
2016b28: 02 80 00 08 be 2016b48 <_Timer_server_Schedule_operation_method+0x6c>
2016b2c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016b30: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016b34: 80 a3 40 04 cmp %o5, %g4
2016b38: 08 80 00 03 bleu 2016b44 <_Timer_server_Schedule_operation_method+0x68>
2016b3c: 86 10 20 00 clr %g3
delta_interval -= delta;
2016b40: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016b44: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016b48: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016b4c: 7f ff e3 55 call 200f8a0 <sparc_enable_interrupts>
2016b50: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016b54: 90 06 20 30 add %i0, 0x30, %o0
2016b58: 40 00 11 91 call 201b19c <_Watchdog_Insert>
2016b5c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b60: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016b64: 80 a0 60 00 cmp %g1, 0
2016b68: 12 80 00 27 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016b6c: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016b70: 7f ff ff 3d call 2016864 <_Timer_server_Reset_interval_system_watchdog>
2016b74: 90 10 00 18 mov %i0, %o0
2016b78: 30 80 00 23 b,a 2016c04 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016b7c: 12 80 00 22 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016b80: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016b84: 7f ff e3 43 call 200f890 <sparc_disable_interrupts>
2016b88: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016b8c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016b90: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b94: 03 00 80 ef sethi %hi(0x203bc00), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016b98: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016b9c: 80 a0 80 03 cmp %g2, %g3
2016ba0: 02 80 00 0d be 2016bd4 <_Timer_server_Schedule_operation_method+0xf8>
2016ba4: c2 00 60 f4 ld [ %g1 + 0xf4 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016ba8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016bac: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016bb0: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016bb4: 08 80 00 07 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4>
2016bb8: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016bbc: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016bc0: 80 a1 00 0d cmp %g4, %o5
2016bc4: 08 80 00 03 bleu 2016bd0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016bc8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016bcc: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016bd0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016bd4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016bd8: 7f ff e3 32 call 200f8a0 <sparc_enable_interrupts>
2016bdc: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016be0: 90 06 20 68 add %i0, 0x68, %o0
2016be4: 40 00 11 6e call 201b19c <_Watchdog_Insert>
2016be8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016bec: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016bf0: 80 a0 60 00 cmp %g1, 0
2016bf4: 12 80 00 04 bne 2016c04 <_Timer_server_Schedule_operation_method+0x128>
2016bf8: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016bfc: 7f ff ff 2f call 20168b8 <_Timer_server_Reset_tod_system_watchdog>
2016c00: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016c04: 40 00 0b cd call 2019b38 <_Thread_Enable_dispatch>
2016c08: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016c0c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016c10: 40 00 02 13 call 201745c <_Chain_Append>
2016c14: 81 e8 00 00 restore
0200b1cc <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
200b1cc: c6 02 00 00 ld [ %o0 ], %g3
200b1d0: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
200b1d4: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200b1d8: 80 a0 c0 02 cmp %g3, %g2
200b1dc: 14 80 00 0b bg 200b208 <_Timespec_Greater_than+0x3c>
200b1e0: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
200b1e4: 80 a0 c0 02 cmp %g3, %g2
200b1e8: 06 80 00 08 bl 200b208 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
200b1ec: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
200b1f0: c4 00 60 04 ld [ %g1 + 4 ], %g2
200b1f4: c2 02 60 04 ld [ %o1 + 4 ], %g1
200b1f8: 80 a0 80 01 cmp %g2, %g1
200b1fc: 14 80 00 03 bg 200b208 <_Timespec_Greater_than+0x3c>
200b200: 90 10 20 01 mov 1, %o0
200b204: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
200b208: 81 c3 e0 08 retl
020091ec <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
20091ec: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
20091f0: 03 00 80 50 sethi %hi(0x2014000), %g1
20091f4: 82 10 62 98 or %g1, 0x298, %g1 ! 2014298 <Configuration>
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
20091f8: 05 00 80 54 sethi %hi(0x2015000), %g2
initial_extensions = Configuration.User_extension_table;
20091fc: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009200: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
2009204: 82 10 a0 58 or %g2, 0x58, %g1
2009208: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
200920c: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
2009210: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2009214: c6 20 a0 58 st %g3, [ %g2 + 0x58 ]
2009218: 05 00 80 53 sethi %hi(0x2014c00), %g2
200921c: 82 10 a2 3c or %g2, 0x23c, %g1 ! 2014e3c <_User_extensions_Switches_list>
2009220: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
2009224: c0 20 60 04 clr [ %g1 + 4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2009228: c6 20 a2 3c st %g3, [ %g2 + 0x23c ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200922c: 80 a4 e0 00 cmp %l3, 0
2009230: 02 80 00 1b be 200929c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009234: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009238: 83 2c a0 02 sll %l2, 2, %g1
200923c: a1 2c a0 04 sll %l2, 4, %l0
2009240: a0 24 00 01 sub %l0, %g1, %l0
2009244: a0 04 00 12 add %l0, %l2, %l0
2009248: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
200924c: 40 00 01 6a call 20097f4 <_Workspace_Allocate_or_fatal_error>
2009250: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009254: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009258: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200925c: 92 10 20 00 clr %o1
2009260: 40 00 14 86 call 200e478 <memset>
2009264: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009268: 10 80 00 0b b 2009294 <_User_extensions_Handler_initialization+0xa8>
200926c: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009270: 90 04 60 14 add %l1, 0x14, %o0
2009274: 92 04 c0 09 add %l3, %o1, %o1
2009278: 40 00 14 47 call 200e394 <memcpy>
200927c: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
2009280: 90 10 00 11 mov %l1, %o0
2009284: 40 00 0c 0e call 200c2bc <_User_extensions_Add_set>
2009288: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
200928c: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009290: 80 a4 00 12 cmp %l0, %l2
2009294: 0a bf ff f7 bcs 2009270 <_User_extensions_Handler_initialization+0x84>
2009298: 93 2c 20 05 sll %l0, 5, %o1
200929c: 81 c7 e0 08 ret
20092a0: 81 e8 00 00 restore
020092e8 <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
20092e8: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
20092ec: 23 00 80 54 sethi %hi(0x2015000), %l1
20092f0: a2 14 60 58 or %l1, 0x58, %l1 ! 2015058 <_User_extensions_List>
20092f4: 10 80 00 08 b 2009314 <_User_extensions_Thread_exitted+0x2c>
20092f8: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
20092fc: 80 a0 60 00 cmp %g1, 0
2009300: 22 80 00 05 be,a 2009314 <_User_extensions_Thread_exitted+0x2c>
2009304: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
2009308: 9f c0 40 00 call %g1
200930c: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009310: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009314: 80 a4 00 11 cmp %l0, %l1
2009318: 32 bf ff f9 bne,a 20092fc <_User_extensions_Thread_exitted+0x14>
200931c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
2009320: 81 c7 e0 08 ret
2009324: 81 e8 00 00 restore
0200b67c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b67c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b680: 7f ff de db call 20031ec <sparc_disable_interrupts>
200b684: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200b688: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200b68c: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b690: 80 a0 40 11 cmp %g1, %l1
200b694: 02 80 00 1f be 200b710 <_Watchdog_Adjust+0x94>
200b698: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b69c: 02 80 00 1a be 200b704 <_Watchdog_Adjust+0x88>
200b6a0: a4 10 20 01 mov 1, %l2
200b6a4: 80 a6 60 01 cmp %i1, 1
200b6a8: 12 80 00 1a bne 200b710 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b6ac: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b6b0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b6b4: 10 80 00 07 b 200b6d0 <_Watchdog_Adjust+0x54>
200b6b8: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b6bc: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
200b6c0: 80 a6 80 19 cmp %i2, %i1
200b6c4: 3a 80 00 05 bcc,a 200b6d8 <_Watchdog_Adjust+0x5c>
200b6c8: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b6cc: b4 26 40 1a sub %i1, %i2, %i2
break;
200b6d0: 10 80 00 10 b 200b710 <_Watchdog_Adjust+0x94>
200b6d4: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b6d8: 7f ff de c9 call 20031fc <sparc_enable_interrupts>
200b6dc: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b6e0: 40 00 00 92 call 200b928 <_Watchdog_Tickle>
200b6e4: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b6e8: 7f ff de c1 call 20031ec <sparc_disable_interrupts>
200b6ec: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b6f0: c2 04 00 00 ld [ %l0 ], %g1
200b6f4: 80 a0 40 11 cmp %g1, %l1
200b6f8: 02 80 00 06 be 200b710 <_Watchdog_Adjust+0x94>
200b6fc: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200b700: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b704: 80 a6 a0 00 cmp %i2, 0
200b708: 32 bf ff ed bne,a 200b6bc <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b70c: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b710: 7f ff de bb call 20031fc <sparc_enable_interrupts>
200b714: 91 e8 00 08 restore %g0, %o0, %o0
02009608 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009608: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200960c: 7f ff e2 ed call 20021c0 <sparc_disable_interrupts>
2009610: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
2009614: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
2009618: 80 a6 20 01 cmp %i0, 1
200961c: 22 80 00 1d be,a 2009690 <_Watchdog_Remove+0x88>
2009620: c0 24 20 08 clr [ %l0 + 8 ]
2009624: 0a 80 00 1c bcs 2009694 <_Watchdog_Remove+0x8c>
2009628: 03 00 80 53 sethi %hi(0x2014c00), %g1
200962c: 80 a6 20 03 cmp %i0, 3
2009630: 18 80 00 19 bgu 2009694 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
2009634: 01 00 00 00 nop
2009638: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200963c: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009640: c4 00 40 00 ld [ %g1 ], %g2
2009644: 80 a0 a0 00 cmp %g2, 0
2009648: 02 80 00 07 be 2009664 <_Watchdog_Remove+0x5c>
200964c: 05 00 80 53 sethi %hi(0x2014c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009650: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009654: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
2009658: 84 00 c0 02 add %g3, %g2, %g2
200965c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009660: 05 00 80 53 sethi %hi(0x2014c00), %g2
2009664: c4 00 a3 70 ld [ %g2 + 0x370 ], %g2 ! 2014f70 <_Watchdog_Sync_count>
2009668: 80 a0 a0 00 cmp %g2, 0
200966c: 22 80 00 07 be,a 2009688 <_Watchdog_Remove+0x80>
2009670: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009674: 05 00 80 54 sethi %hi(0x2015000), %g2
2009678: c6 00 a0 a4 ld [ %g2 + 0xa4 ], %g3 ! 20150a4 <_Per_CPU_Information+0x8>
200967c: 05 00 80 53 sethi %hi(0x2014c00), %g2
2009680: c6 20 a2 e4 st %g3, [ %g2 + 0x2e4 ] ! 2014ee4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009684: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
2009688: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200968c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009690: 03 00 80 53 sethi %hi(0x2014c00), %g1
2009694: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 2014f74 <_Watchdog_Ticks_since_boot>
2009698: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
200969c: 7f ff e2 cd call 20021d0 <sparc_enable_interrupts>
20096a0: 01 00 00 00 nop
return( previous_state );
}
20096a4: 81 c7 e0 08 ret
20096a8: 81 e8 00 00 restore
0200aebc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200aebc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200aec0: 7f ff df a2 call 2002d48 <sparc_disable_interrupts>
200aec4: a0 10 00 18 mov %i0, %l0
200aec8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200aecc: 11 00 80 6d sethi %hi(0x201b400), %o0
200aed0: 94 10 00 19 mov %i1, %o2
200aed4: 90 12 22 b8 or %o0, 0x2b8, %o0
200aed8: 7f ff e5 fe call 20046d0 <printk>
200aedc: 92 10 00 10 mov %l0, %o1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200aee0: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200aee4: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200aee8: 80 a4 40 19 cmp %l1, %i1
200aeec: 02 80 00 0e be 200af24 <_Watchdog_Report_chain+0x68>
200aef0: 11 00 80 6d sethi %hi(0x201b400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200aef4: 92 10 00 11 mov %l1, %o1
200aef8: 40 00 00 10 call 200af38 <_Watchdog_Report>
200aefc: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
200af00: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
200af04: 80 a4 40 19 cmp %l1, %i1
200af08: 12 bf ff fc bne 200aef8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200af0c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200af10: 11 00 80 6d sethi %hi(0x201b400), %o0
200af14: 92 10 00 10 mov %l0, %o1
200af18: 7f ff e5 ee call 20046d0 <printk>
200af1c: 90 12 22 d0 or %o0, 0x2d0, %o0
200af20: 30 80 00 03 b,a 200af2c <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
200af24: 7f ff e5 eb call 20046d0 <printk>
200af28: 90 12 22 e0 or %o0, 0x2e0, %o0
}
_ISR_Enable( level );
200af2c: 7f ff df 8b call 2002d58 <sparc_enable_interrupts>
200af30: 81 e8 00 00 restore
02006c7c <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
2006c7c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
2006c80: 90 10 00 18 mov %i0, %o0
2006c84: 40 00 01 48 call 20071a4 <_Chain_Append_with_empty_check>
2006c88: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
2006c8c: 80 8a 20 ff btst 0xff, %o0
2006c90: 02 80 00 05 be 2006ca4 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
2006c94: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006c98: b0 10 00 1a mov %i2, %i0
2006c9c: 7f ff fd 78 call 200627c <rtems_event_send>
2006ca0: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
2006ca4: 81 c7 e0 08 ret <== NOT EXECUTED
2006ca8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02006cac <rtems_chain_get_with_notification>:
rtems_chain_control *chain,
rtems_id task,
rtems_event_set events,
rtems_chain_node **node
)
{
2006cac: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node **node
)
{
return _Chain_Get_with_empty_check( chain, node );
2006cb0: 90 10 00 18 mov %i0, %o0
2006cb4: 40 00 01 63 call 2007240 <_Chain_Get_with_empty_check>
2006cb8: 92 10 00 1b mov %i3, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
2006cbc: 80 8a 20 ff btst 0xff, %o0
2006cc0: 02 80 00 05 be 2006cd4 <rtems_chain_get_with_notification+0x28><== NEVER TAKEN
2006cc4: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006cc8: b0 10 00 19 mov %i1, %i0
2006ccc: 7f ff fd 6c call 200627c <rtems_event_send>
2006cd0: 93 e8 00 1a restore %g0, %i2, %o1
}
return sc;
}
2006cd4: 81 c7 e0 08 ret <== NOT EXECUTED
2006cd8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
02006cdc <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2006cdc: 9d e3 bf 98 save %sp, -104, %sp
2006ce0: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2006ce4: 10 80 00 09 b 2006d08 <rtems_chain_get_with_wait+0x2c>
2006ce8: a4 07 bf fc add %fp, -4, %l2
2006cec: 92 10 20 00 clr %o1
2006cf0: 94 10 00 1a mov %i2, %o2
2006cf4: 7f ff fc fe call 20060ec <rtems_event_receive>
2006cf8: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2006cfc: 80 a2 20 00 cmp %o0, 0
2006d00: 32 80 00 09 bne,a 2006d24 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
2006d04: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2006d08: 40 00 01 63 call 2007294 <_Chain_Get>
2006d0c: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2006d10: a2 92 20 00 orcc %o0, 0, %l1
2006d14: 02 bf ff f6 be 2006cec <rtems_chain_get_with_wait+0x10>
2006d18: 90 10 00 19 mov %i1, %o0
2006d1c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2006d20: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
2006d24: 81 c7 e0 08 ret
2006d28: 91 e8 00 08 restore %g0, %o0, %o0
02006d2c <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
2006d2c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
2006d30: 90 10 00 18 mov %i0, %o0
2006d34: 40 00 01 72 call 20072fc <_Chain_Prepend_with_empty_check>
2006d38: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
2006d3c: 80 8a 20 ff btst 0xff, %o0
2006d40: 02 80 00 05 be 2006d54 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
2006d44: 01 00 00 00 nop
sc = rtems_event_send( task, events );
2006d48: b0 10 00 1a mov %i2, %i0
2006d4c: 7f ff fd 4c call 200627c <rtems_event_send>
2006d50: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
2006d54: 81 c7 e0 08 ret <== NOT EXECUTED
2006d58: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
0200910c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200910c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009110: 80 a6 20 00 cmp %i0, 0
2009114: 02 80 00 1a be 200917c <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
2009118: 21 00 80 96 sethi %hi(0x2025800), %l0
200911c: a0 14 22 60 or %l0, 0x260, %l0 ! 2025a60 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009120: a6 04 20 0c add %l0, 0xc, %l3
#if defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009124: c2 04 00 00 ld [ %l0 ], %g1
2009128: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
200912c: 80 a4 a0 00 cmp %l2, 0
2009130: 12 80 00 0b bne 200915c <rtems_iterate_over_all_threads+0x50>
2009134: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009138: 10 80 00 0e b 2009170 <rtems_iterate_over_all_threads+0x64>
200913c: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
2009140: 83 2c 60 02 sll %l1, 2, %g1
2009144: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009148: 80 a2 20 00 cmp %o0, 0
200914c: 02 80 00 04 be 200915c <rtems_iterate_over_all_threads+0x50>
2009150: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
2009154: 9f c6 00 00 call %i0
2009158: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200915c: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
2009160: 80 a4 40 01 cmp %l1, %g1
2009164: 28 bf ff f7 bleu,a 2009140 <rtems_iterate_over_all_threads+0x34>
2009168: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
200916c: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009170: 80 a4 00 13 cmp %l0, %l3
2009174: 32 bf ff ed bne,a 2009128 <rtems_iterate_over_all_threads+0x1c>
2009178: c2 04 00 00 ld [ %l0 ], %g1
200917c: 81 c7 e0 08 ret
2009180: 81 e8 00 00 restore
020142cc <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
20142cc: 9d e3 bf a0 save %sp, -96, %sp
20142d0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
20142d4: 80 a4 20 00 cmp %l0, 0
20142d8: 02 80 00 1f be 2014354 <rtems_partition_create+0x88>
20142dc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
20142e0: 80 a6 60 00 cmp %i1, 0
20142e4: 02 80 00 1c be 2014354 <rtems_partition_create+0x88>
20142e8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
20142ec: 80 a7 60 00 cmp %i5, 0
20142f0: 02 80 00 19 be 2014354 <rtems_partition_create+0x88> <== NEVER TAKEN
20142f4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20142f8: 02 80 00 32 be 20143c0 <rtems_partition_create+0xf4>
20142fc: 80 a6 a0 00 cmp %i2, 0
2014300: 02 80 00 30 be 20143c0 <rtems_partition_create+0xf4>
2014304: 80 a6 80 1b cmp %i2, %i3
2014308: 0a 80 00 13 bcs 2014354 <rtems_partition_create+0x88>
201430c: b0 10 20 08 mov 8, %i0
2014310: 80 8e e0 07 btst 7, %i3
2014314: 12 80 00 10 bne 2014354 <rtems_partition_create+0x88>
2014318: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
201431c: 12 80 00 0e bne 2014354 <rtems_partition_create+0x88>
2014320: b0 10 20 09 mov 9, %i0
2014324: 03 00 80 ef sethi %hi(0x203bc00), %g1
2014328: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 203bc68 <_Thread_Dispatch_disable_level>
201432c: 84 00 a0 01 inc %g2
2014330: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014334: 25 00 80 ee sethi %hi(0x203b800), %l2
2014338: 40 00 12 47 call 2018c54 <_Objects_Allocate>
201433c: 90 14 a2 74 or %l2, 0x274, %o0 ! 203ba74 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014340: a2 92 20 00 orcc %o0, 0, %l1
2014344: 12 80 00 06 bne 201435c <rtems_partition_create+0x90>
2014348: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
201434c: 40 00 15 fb call 2019b38 <_Thread_Enable_dispatch>
2014350: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
2014354: 81 c7 e0 08 ret
2014358: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
201435c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
2014360: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014364: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
2014368: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
201436c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014370: 40 00 5e df call 202beec <.udiv>
2014374: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014378: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
201437c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014380: 96 10 00 1b mov %i3, %o3
2014384: a6 04 60 24 add %l1, 0x24, %l3
2014388: 40 00 0c 5a call 20174f0 <_Chain_Initialize>
201438c: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014390: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014394: a4 14 a2 74 or %l2, 0x274, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014398: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
201439c: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20143a0: 85 28 a0 02 sll %g2, 2, %g2
20143a4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20143a8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
20143ac: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
20143b0: 40 00 15 e2 call 2019b38 <_Thread_Enable_dispatch>
20143b4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20143b8: 81 c7 e0 08 ret
20143bc: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
20143c0: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
20143c4: 81 c7 e0 08 ret
20143c8: 81 e8 00 00 restore
020073b0 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
20073b0: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
20073b4: 11 00 80 74 sethi %hi(0x201d000), %o0
20073b8: 92 10 00 18 mov %i0, %o1
20073bc: 90 12 23 04 or %o0, 0x304, %o0
20073c0: 40 00 08 eb call 200976c <_Objects_Get>
20073c4: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20073c8: c2 07 bf fc ld [ %fp + -4 ], %g1
20073cc: 80 a0 60 00 cmp %g1, 0
20073d0: 12 80 00 66 bne 2007568 <rtems_rate_monotonic_period+0x1b8>
20073d4: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20073d8: 25 00 80 75 sethi %hi(0x201d400), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
20073dc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
20073e0: a4 14 a2 dc or %l2, 0x2dc, %l2
20073e4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
20073e8: 80 a0 80 01 cmp %g2, %g1
20073ec: 02 80 00 06 be 2007404 <rtems_rate_monotonic_period+0x54>
20073f0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20073f4: 40 00 0b 46 call 200a10c <_Thread_Enable_dispatch>
20073f8: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
20073fc: 81 c7 e0 08 ret
2007400: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
2007404: 12 80 00 0e bne 200743c <rtems_rate_monotonic_period+0x8c>
2007408: 01 00 00 00 nop
switch ( the_period->state ) {
200740c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007410: 80 a0 60 04 cmp %g1, 4
2007414: 18 80 00 06 bgu 200742c <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
2007418: b0 10 20 00 clr %i0
200741c: 83 28 60 02 sll %g1, 2, %g1
2007420: 05 00 80 6c sethi %hi(0x201b000), %g2
2007424: 84 10 a3 5c or %g2, 0x35c, %g2 ! 201b35c <CSWTCH.2>
2007428: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
200742c: 40 00 0b 38 call 200a10c <_Thread_Enable_dispatch>
2007430: 01 00 00 00 nop
return( return_value );
2007434: 81 c7 e0 08 ret
2007438: 81 e8 00 00 restore
}
_ISR_Disable( level );
200743c: 7f ff ef 26 call 20030d4 <sparc_disable_interrupts>
2007440: 01 00 00 00 nop
2007444: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007448: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
200744c: 80 a4 60 00 cmp %l1, 0
2007450: 12 80 00 15 bne 20074a4 <rtems_rate_monotonic_period+0xf4>
2007454: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
2007458: 7f ff ef 23 call 20030e4 <sparc_enable_interrupts>
200745c: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2007460: 7f ff ff 7a call 2007248 <_Rate_monotonic_Initiate_statistics>
2007464: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007468: 82 10 20 02 mov 2, %g1
200746c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007470: 03 00 80 1e sethi %hi(0x2007800), %g1
2007474: 82 10 60 38 or %g1, 0x38, %g1 ! 2007838 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007478: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
200747c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
2007480: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
2007484: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007488: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
200748c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007490: 11 00 80 75 sethi %hi(0x201d400), %o0
2007494: 92 04 20 10 add %l0, 0x10, %o1
2007498: 40 00 10 2e call 200b550 <_Watchdog_Insert>
200749c: 90 12 21 40 or %o0, 0x140, %o0
20074a0: 30 80 00 1b b,a 200750c <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20074a4: 12 80 00 1e bne 200751c <rtems_rate_monotonic_period+0x16c>
20074a8: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20074ac: 7f ff ff 83 call 20072b8 <_Rate_monotonic_Update_statistics>
20074b0: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074b4: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20074b8: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20074bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20074c0: 7f ff ef 09 call 20030e4 <sparc_enable_interrupts>
20074c4: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20074c8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
20074cc: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20074d0: 13 00 00 10 sethi %hi(0x4000), %o1
20074d4: 40 00 0d 65 call 200aa68 <_Thread_Set_state>
20074d8: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
20074dc: 7f ff ee fe call 20030d4 <sparc_disable_interrupts>
20074e0: 01 00 00 00 nop
local_state = the_period->state;
20074e4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
20074e8: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
20074ec: 7f ff ee fe call 20030e4 <sparc_enable_interrupts>
20074f0: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20074f4: 80 a4 e0 03 cmp %l3, 3
20074f8: 12 80 00 05 bne 200750c <rtems_rate_monotonic_period+0x15c>
20074fc: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007500: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
2007504: 40 00 09 fd call 2009cf8 <_Thread_Clear_state>
2007508: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
200750c: 40 00 0b 00 call 200a10c <_Thread_Enable_dispatch>
2007510: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007514: 81 c7 e0 08 ret
2007518: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
200751c: 12 bf ff b8 bne 20073fc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2007520: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2007524: 7f ff ff 65 call 20072b8 <_Rate_monotonic_Update_statistics>
2007528: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
200752c: 7f ff ee ee call 20030e4 <sparc_enable_interrupts>
2007530: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007534: 82 10 20 02 mov 2, %g1
2007538: 92 04 20 10 add %l0, 0x10, %o1
200753c: 11 00 80 75 sethi %hi(0x201d400), %o0
2007540: 90 12 21 40 or %o0, 0x140, %o0 ! 201d540 <_Watchdog_Ticks_chain>
2007544: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
2007548: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
200754c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007550: 40 00 10 00 call 200b550 <_Watchdog_Insert>
2007554: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007558: 40 00 0a ed call 200a10c <_Thread_Enable_dispatch>
200755c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007560: 81 c7 e0 08 ret
2007564: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2007568: b0 10 20 04 mov 4, %i0
}
200756c: 81 c7 e0 08 ret
2007570: 81 e8 00 00 restore
02007574 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2007574: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007578: 80 a6 60 00 cmp %i1, 0
200757c: 02 80 00 79 be 2007760 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
2007580: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2007584: 13 00 80 6c sethi %hi(0x201b000), %o1
2007588: 9f c6 40 00 call %i1
200758c: 92 12 63 70 or %o1, 0x370, %o1 ! 201b370 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007590: 90 10 00 18 mov %i0, %o0
2007594: 13 00 80 6c sethi %hi(0x201b000), %o1
2007598: 9f c6 40 00 call %i1
200759c: 92 12 63 90 or %o1, 0x390, %o1 ! 201b390 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20075a0: 90 10 00 18 mov %i0, %o0
20075a4: 13 00 80 6c sethi %hi(0x201b000), %o1
20075a8: 9f c6 40 00 call %i1
20075ac: 92 12 63 b8 or %o1, 0x3b8, %o1 ! 201b3b8 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
20075b0: 90 10 00 18 mov %i0, %o0
20075b4: 13 00 80 6c sethi %hi(0x201b000), %o1
20075b8: 9f c6 40 00 call %i1
20075bc: 92 12 63 e0 or %o1, 0x3e0, %o1 ! 201b3e0 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
20075c0: 90 10 00 18 mov %i0, %o0
20075c4: 13 00 80 6d sethi %hi(0x201b400), %o1
20075c8: 9f c6 40 00 call %i1
20075cc: 92 12 60 30 or %o1, 0x30, %o1 ! 201b430 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075d0: 3b 00 80 74 sethi %hi(0x201d000), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20075d4: 2b 00 80 6d sethi %hi(0x201b400), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075d8: 82 17 63 04 or %i5, 0x304, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
20075dc: 27 00 80 6d sethi %hi(0x201b400), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
20075e0: 35 00 80 6d sethi %hi(0x201b400), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20075e4: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20075e8: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
20075ec: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20075f0: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20075f4: aa 15 60 80 or %l5, 0x80, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
20075f8: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20075fc: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
2007600: a6 14 e0 98 or %l3, 0x98, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
2007604: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007608: 10 80 00 52 b 2007750 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
200760c: b4 16 a0 b8 or %i2, 0xb8, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007610: 40 00 18 14 call 200d660 <rtems_rate_monotonic_get_statistics>
2007614: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
2007618: 80 a2 20 00 cmp %o0, 0
200761c: 32 80 00 4c bne,a 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007620: a0 04 20 01 inc %l0
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
2007624: 92 10 00 16 mov %l6, %o1
2007628: 40 00 18 3b call 200d714 <rtems_rate_monotonic_get_status>
200762c: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007630: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007634: 92 10 20 05 mov 5, %o1
2007638: 40 00 00 ae call 20078f0 <rtems_object_get_name>
200763c: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007640: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2007644: 92 10 00 15 mov %l5, %o1
2007648: 90 10 00 18 mov %i0, %o0
200764c: 94 10 00 10 mov %l0, %o2
2007650: 9f c6 40 00 call %i1
2007654: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007658: d2 07 bf a0 ld [ %fp + -96 ], %o1
200765c: 80 a2 60 00 cmp %o1, 0
2007660: 12 80 00 08 bne 2007680 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
2007664: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
2007668: 90 10 00 18 mov %i0, %o0
200766c: 13 00 80 69 sethi %hi(0x201a400), %o1
2007670: 9f c6 40 00 call %i1
2007674: 92 12 62 88 or %o1, 0x288, %o1 ! 201a688 <_rodata_start+0x158>
continue;
2007678: 10 80 00 35 b 200774c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
200767c: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007680: 40 00 0e 91 call 200b0c4 <_Timespec_Divide_by_integer>
2007684: 90 10 00 14 mov %l4, %o0
(*print)( context,
2007688: d0 07 bf ac ld [ %fp + -84 ], %o0
200768c: 40 00 44 1e call 2018704 <.div>
2007690: 92 10 23 e8 mov 0x3e8, %o1
2007694: 96 10 00 08 mov %o0, %o3
2007698: d0 07 bf b4 ld [ %fp + -76 ], %o0
200769c: d6 27 bf 9c st %o3, [ %fp + -100 ]
20076a0: 40 00 44 19 call 2018704 <.div>
20076a4: 92 10 23 e8 mov 0x3e8, %o1
20076a8: c2 07 bf f0 ld [ %fp + -16 ], %g1
20076ac: b6 10 00 08 mov %o0, %i3
20076b0: d0 07 bf f4 ld [ %fp + -12 ], %o0
20076b4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20076b8: 40 00 44 13 call 2018704 <.div>
20076bc: 92 10 23 e8 mov 0x3e8, %o1
20076c0: d8 07 bf b0 ld [ %fp + -80 ], %o4
20076c4: d6 07 bf 9c ld [ %fp + -100 ], %o3
20076c8: d4 07 bf a8 ld [ %fp + -88 ], %o2
20076cc: 9a 10 00 1b mov %i3, %o5
20076d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20076d4: 92 10 00 13 mov %l3, %o1
20076d8: 9f c6 40 00 call %i1
20076dc: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20076e0: d2 07 bf a0 ld [ %fp + -96 ], %o1
20076e4: 94 10 00 11 mov %l1, %o2
20076e8: 40 00 0e 77 call 200b0c4 <_Timespec_Divide_by_integer>
20076ec: 90 10 00 1c mov %i4, %o0
(*print)( context,
20076f0: d0 07 bf c4 ld [ %fp + -60 ], %o0
20076f4: 40 00 44 04 call 2018704 <.div>
20076f8: 92 10 23 e8 mov 0x3e8, %o1
20076fc: 96 10 00 08 mov %o0, %o3
2007700: d0 07 bf cc ld [ %fp + -52 ], %o0
2007704: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007708: 40 00 43 ff call 2018704 <.div>
200770c: 92 10 23 e8 mov 0x3e8, %o1
2007710: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007714: b6 10 00 08 mov %o0, %i3
2007718: d0 07 bf f4 ld [ %fp + -12 ], %o0
200771c: 92 10 23 e8 mov 0x3e8, %o1
2007720: 40 00 43 f9 call 2018704 <.div>
2007724: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007728: d4 07 bf c0 ld [ %fp + -64 ], %o2
200772c: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007730: d8 07 bf c8 ld [ %fp + -56 ], %o4
2007734: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007738: 92 10 00 1a mov %i2, %o1
200773c: 90 10 00 18 mov %i0, %o0
2007740: 9f c6 40 00 call %i1
2007744: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007748: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
200774c: 82 17 63 04 or %i5, 0x304, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007750: c2 00 60 0c ld [ %g1 + 0xc ], %g1
2007754: 80 a4 00 01 cmp %l0, %g1
2007758: 08 bf ff ae bleu 2007610 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
200775c: 90 10 00 10 mov %l0, %o0
2007760: 81 c7 e0 08 ret
2007764: 81 e8 00 00 restore
02012b64 <rtems_shutdown_executive>:
*/
void rtems_shutdown_executive(
uint32_t result
)
{
2012b64: 9d e3 bf a0 save %sp, -96, %sp
if ( _System_state_Is_up( _System_state_Get() ) ) {
2012b68: 03 00 80 53 sethi %hi(0x2014c00), %g1
2012b6c: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2014fbc <_System_state_Current>
2012b70: 80 a0 a0 03 cmp %g2, 3
2012b74: 32 80 00 08 bne,a 2012b94 <rtems_shutdown_executive+0x30>
2012b78: 90 10 20 00 clr %o0
2012b7c: 84 10 20 04 mov 4, %g2
* if we were running within the same context, it would work.
*
* And we will not return to this thread, so there is no point of
* saving the context.
*/
_Context_Restart_self( &_Thread_BSP_context );
2012b80: 11 00 80 53 sethi %hi(0x2014c00), %o0
2012b84: c4 20 63 bc st %g2, [ %g1 + 0x3bc ]
2012b88: 7f ff db b0 call 2009a48 <_CPU_Context_restore>
2012b8c: 90 12 21 b0 or %o0, 0x1b0, %o0
_System_state_Set( SYSTEM_STATE_SHUTDOWN );
_Thread_Stop_multitasking();
}
_Internal_error_Occurred(
2012b90: 90 10 20 00 clr %o0 <== NOT EXECUTED
2012b94: 92 10 20 01 mov 1, %o1
2012b98: 7f ff d2 26 call 2007430 <_Internal_error_Occurred>
2012b9c: 94 10 20 14 mov 0x14, %o2
02015870 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2015870: 9d e3 bf 98 save %sp, -104, %sp
2015874: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
2015878: 80 a6 60 00 cmp %i1, 0
201587c: 02 80 00 2e be 2015934 <rtems_signal_send+0xc4>
2015880: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2015884: 40 00 10 ba call 2019b6c <_Thread_Get>
2015888: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201588c: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2015890: a2 10 00 08 mov %o0, %l1
switch ( location ) {
2015894: 80 a0 60 00 cmp %g1, 0
2015898: 12 80 00 27 bne 2015934 <rtems_signal_send+0xc4>
201589c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20158a0: e0 02 21 60 ld [ %o0 + 0x160 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20158a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20158a8: 80 a0 60 00 cmp %g1, 0
20158ac: 02 80 00 24 be 201593c <rtems_signal_send+0xcc>
20158b0: 01 00 00 00 nop
if ( asr->is_enabled ) {
20158b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
20158b8: 80 a0 60 00 cmp %g1, 0
20158bc: 02 80 00 15 be 2015910 <rtems_signal_send+0xa0>
20158c0: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20158c4: 7f ff e7 f3 call 200f890 <sparc_disable_interrupts>
20158c8: 01 00 00 00 nop
*signal_set |= signals;
20158cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20158d0: b2 10 40 19 or %g1, %i1, %i1
20158d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
20158d8: 7f ff e7 f2 call 200f8a0 <sparc_enable_interrupts>
20158dc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20158e0: 03 00 80 ef sethi %hi(0x203bc00), %g1
20158e4: 82 10 62 d4 or %g1, 0x2d4, %g1 ! 203bed4 <_Per_CPU_Information>
20158e8: c4 00 60 08 ld [ %g1 + 8 ], %g2
20158ec: 80 a0 a0 00 cmp %g2, 0
20158f0: 02 80 00 0f be 201592c <rtems_signal_send+0xbc>
20158f4: 01 00 00 00 nop
20158f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
20158fc: 80 a4 40 02 cmp %l1, %g2
2015900: 12 80 00 0b bne 201592c <rtems_signal_send+0xbc> <== NEVER TAKEN
2015904: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015908: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
201590c: 30 80 00 08 b,a 201592c <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015910: 7f ff e7 e0 call 200f890 <sparc_disable_interrupts>
2015914: 01 00 00 00 nop
*signal_set |= signals;
2015918: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
201591c: b2 10 40 19 or %g1, %i1, %i1
2015920: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
2015924: 7f ff e7 df call 200f8a0 <sparc_enable_interrupts>
2015928: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
201592c: 40 00 10 83 call 2019b38 <_Thread_Enable_dispatch>
2015930: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
2015934: 81 c7 e0 08 ret
2015938: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
201593c: 40 00 10 7f call 2019b38 <_Thread_Enable_dispatch>
2015940: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2015944: 81 c7 e0 08 ret
2015948: 81 e8 00 00 restore
0200d4e8 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d4e8: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d4ec: 80 a6 a0 00 cmp %i2, 0
200d4f0: 02 80 00 5a be 200d658 <rtems_task_mode+0x170>
200d4f4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d4f8: 03 00 80 54 sethi %hi(0x2015000), %g1
200d4fc: e2 00 60 a8 ld [ %g1 + 0xa8 ], %l1 ! 20150a8 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d500: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d504: e0 04 61 60 ld [ %l1 + 0x160 ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d508: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d50c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d510: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d514: 80 a0 60 00 cmp %g1, 0
200d518: 02 80 00 03 be 200d524 <rtems_task_mode+0x3c>
200d51c: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d520: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d524: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
200d528: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d52c: 7f ff f2 04 call 2009d3c <_CPU_ISR_Get_level>
200d530: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d534: a7 2c e0 0a sll %l3, 0xa, %l3
200d538: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d53c: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d540: 80 8e 61 00 btst 0x100, %i1
200d544: 02 80 00 06 be 200d55c <rtems_task_mode+0x74>
200d548: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d54c: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d550: 80 a0 00 01 cmp %g0, %g1
200d554: 82 60 3f ff subx %g0, -1, %g1
200d558: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d55c: 80 8e 62 00 btst 0x200, %i1
200d560: 02 80 00 0b be 200d58c <rtems_task_mode+0xa4>
200d564: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d568: 80 8e 22 00 btst 0x200, %i0
200d56c: 22 80 00 07 be,a 200d588 <rtems_task_mode+0xa0>
200d570: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d574: 82 10 20 01 mov 1, %g1
200d578: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d57c: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d580: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 2014d98 <_Thread_Ticks_per_timeslice>
200d584: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d588: 80 8e 60 0f btst 0xf, %i1
200d58c: 02 80 00 06 be 200d5a4 <rtems_task_mode+0xbc>
200d590: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d594: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d598: 7f ff d3 0e call 20021d0 <sparc_enable_interrupts>
200d59c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d5a0: 80 8e 64 00 btst 0x400, %i1
200d5a4: 02 80 00 14 be 200d5f4 <rtems_task_mode+0x10c>
200d5a8: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d5ac: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d5b0: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d5b4: 80 a0 00 18 cmp %g0, %i0
200d5b8: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d5bc: 80 a0 40 02 cmp %g1, %g2
200d5c0: 22 80 00 0e be,a 200d5f8 <rtems_task_mode+0x110>
200d5c4: 03 00 80 53 sethi %hi(0x2014c00), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d5c8: 7f ff d2 fe call 20021c0 <sparc_disable_interrupts>
200d5cc: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d5d0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d5d4: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d5d8: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d5dc: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d5e0: 7f ff d2 fc call 20021d0 <sparc_enable_interrupts>
200d5e4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d5e8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d5ec: 80 a0 00 01 cmp %g0, %g1
200d5f0: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200d5f4: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d5f8: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2014fbc <_System_state_Current>
200d5fc: 80 a0 a0 03 cmp %g2, 3
200d600: 12 80 00 16 bne 200d658 <rtems_task_mode+0x170> <== NEVER TAKEN
200d604: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d608: 07 00 80 54 sethi %hi(0x2015000), %g3
if ( are_signals_pending ||
200d60c: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
200d610: 86 10 e0 9c or %g3, 0x9c, %g3
if ( are_signals_pending ||
200d614: 12 80 00 0a bne 200d63c <rtems_task_mode+0x154>
200d618: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200d61c: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d620: 80 a0 80 03 cmp %g2, %g3
200d624: 02 80 00 0d be 200d658 <rtems_task_mode+0x170>
200d628: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200d62c: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200d630: 80 a0 a0 00 cmp %g2, 0
200d634: 02 80 00 09 be 200d658 <rtems_task_mode+0x170> <== NEVER TAKEN
200d638: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200d63c: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
200d640: 03 00 80 54 sethi %hi(0x2015000), %g1
200d644: 82 10 60 9c or %g1, 0x9c, %g1 ! 201509c <_Per_CPU_Information>
200d648: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200d64c: 7f ff ea f9 call 2008230 <_Thread_Dispatch>
200d650: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200d654: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d658: 81 c7 e0 08 ret
200d65c: 91 e8 00 01 restore %g0, %g1, %o0
0200abbc <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200abbc: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200abc0: 80 a6 60 00 cmp %i1, 0
200abc4: 02 80 00 07 be 200abe0 <rtems_task_set_priority+0x24>
200abc8: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200abcc: 03 00 80 62 sethi %hi(0x2018800), %g1
200abd0: c2 08 63 f4 ldub [ %g1 + 0x3f4 ], %g1 ! 2018bf4 <rtems_maximum_priority>
200abd4: 80 a6 40 01 cmp %i1, %g1
200abd8: 18 80 00 1c bgu 200ac48 <rtems_task_set_priority+0x8c>
200abdc: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200abe0: 80 a6 a0 00 cmp %i2, 0
200abe4: 02 80 00 19 be 200ac48 <rtems_task_set_priority+0x8c>
200abe8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200abec: 40 00 08 17 call 200cc48 <_Thread_Get>
200abf0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200abf4: c2 07 bf fc ld [ %fp + -4 ], %g1
200abf8: 80 a0 60 00 cmp %g1, 0
200abfc: 12 80 00 13 bne 200ac48 <rtems_task_set_priority+0x8c>
200ac00: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200ac04: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200ac08: 80 a6 60 00 cmp %i1, 0
200ac0c: 02 80 00 0d be 200ac40 <rtems_task_set_priority+0x84>
200ac10: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200ac14: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200ac18: 80 a0 60 00 cmp %g1, 0
200ac1c: 02 80 00 06 be 200ac34 <rtems_task_set_priority+0x78>
200ac20: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200ac24: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200ac28: 80 a0 40 19 cmp %g1, %i1
200ac2c: 08 80 00 05 bleu 200ac40 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200ac30: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200ac34: 92 10 00 19 mov %i1, %o1
200ac38: 40 00 06 79 call 200c61c <_Thread_Change_priority>
200ac3c: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200ac40: 40 00 07 f5 call 200cc14 <_Thread_Enable_dispatch>
200ac44: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200ac48: 81 c7 e0 08 ret
200ac4c: 81 e8 00 00 restore
02016274 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2016274: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
2016278: 11 00 80 ef sethi %hi(0x203bc00), %o0
201627c: 92 10 00 18 mov %i0, %o1
2016280: 90 12 23 34 or %o0, 0x334, %o0
2016284: 40 00 0b c5 call 2019198 <_Objects_Get>
2016288: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
201628c: c2 07 bf fc ld [ %fp + -4 ], %g1
2016290: 80 a0 60 00 cmp %g1, 0
2016294: 12 80 00 0c bne 20162c4 <rtems_timer_cancel+0x50>
2016298: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
201629c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20162a0: 80 a0 60 04 cmp %g1, 4
20162a4: 02 80 00 04 be 20162b4 <rtems_timer_cancel+0x40> <== NEVER TAKEN
20162a8: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
20162ac: 40 00 14 16 call 201b304 <_Watchdog_Remove>
20162b0: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
20162b4: 40 00 0e 21 call 2019b38 <_Thread_Enable_dispatch>
20162b8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20162bc: 81 c7 e0 08 ret
20162c0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20162c4: 81 c7 e0 08 ret
20162c8: 91 e8 20 04 restore %g0, 4, %o0
0201675c <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
201675c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016760: 03 00 80 ef sethi %hi(0x203bc00), %g1
2016764: e2 00 63 74 ld [ %g1 + 0x374 ], %l1 ! 203bf74 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016768: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
201676c: 80 a4 60 00 cmp %l1, 0
2016770: 02 80 00 33 be 201683c <rtems_timer_server_fire_when+0xe0>
2016774: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2016778: 03 00 80 ef sethi %hi(0x203bc00), %g1
201677c: c2 08 60 78 ldub [ %g1 + 0x78 ], %g1 ! 203bc78 <_TOD_Is_set>
2016780: 80 a0 60 00 cmp %g1, 0
2016784: 02 80 00 2e be 201683c <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
2016788: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
201678c: 80 a6 a0 00 cmp %i2, 0
2016790: 02 80 00 2b be 201683c <rtems_timer_server_fire_when+0xe0>
2016794: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016798: 90 10 00 19 mov %i1, %o0
201679c: 7f ff f4 09 call 20137c0 <_TOD_Validate>
20167a0: b0 10 20 14 mov 0x14, %i0
20167a4: 80 8a 20 ff btst 0xff, %o0
20167a8: 02 80 00 27 be 2016844 <rtems_timer_server_fire_when+0xe8>
20167ac: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
20167b0: 7f ff f3 d0 call 20136f0 <_TOD_To_seconds>
20167b4: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20167b8: 27 00 80 ef sethi %hi(0x203bc00), %l3
20167bc: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1 ! 203bcf4 <_TOD_Now>
20167c0: 80 a2 00 01 cmp %o0, %g1
20167c4: 08 80 00 1e bleu 201683c <rtems_timer_server_fire_when+0xe0>
20167c8: a4 10 00 08 mov %o0, %l2
20167cc: 11 00 80 ef sethi %hi(0x203bc00), %o0
20167d0: 92 10 00 10 mov %l0, %o1
20167d4: 90 12 23 34 or %o0, 0x334, %o0
20167d8: 40 00 0a 70 call 2019198 <_Objects_Get>
20167dc: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20167e0: c2 07 bf fc ld [ %fp + -4 ], %g1
20167e4: b2 10 00 08 mov %o0, %i1
20167e8: 80 a0 60 00 cmp %g1, 0
20167ec: 12 80 00 14 bne 201683c <rtems_timer_server_fire_when+0xe0>
20167f0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20167f4: 40 00 12 c4 call 201b304 <_Watchdog_Remove>
20167f8: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20167fc: 82 10 20 03 mov 3, %g1
2016800: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016804: c2 04 e0 f4 ld [ %l3 + 0xf4 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016808: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201680c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016810: c2 04 60 04 ld [ %l1 + 4 ], %g1
2016814: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2016818: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
201681c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
2016820: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016824: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016828: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201682c: 9f c0 40 00 call %g1
2016830: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016834: 40 00 0c c1 call 2019b38 <_Thread_Enable_dispatch>
2016838: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201683c: 81 c7 e0 08 ret
2016840: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016844: 81 c7 e0 08 ret
2016848: 81 e8 00 00 restore