=============================================================================== 0201767c <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 201767c: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017680: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 2017684: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 2017688: 80 a6 80 01 cmp %i2, %g1 201768c: 18 80 00 16 bgu 20176e4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 2017690: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 2017694: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2017698: 80 a0 60 00 cmp %g1, 0 201769c: 02 80 00 0b be 20176c8 <_CORE_message_queue_Broadcast+0x4c> 20176a0: a2 10 20 00 clr %l1 *count = 0; 20176a4: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 20176a8: 81 c7 e0 08 ret 20176ac: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 20176b0: 92 10 00 19 mov %i1, %o1 20176b4: 40 00 22 0d call 201fee8 20176b8: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 20176bc: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 20176c0: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 20176c4: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 20176c8: 40 00 0a 57 call 201a024 <_Thread_queue_Dequeue> 20176cc: 90 10 00 10 mov %l0, %o0 20176d0: a4 92 20 00 orcc %o0, 0, %l2 20176d4: 32 bf ff f7 bne,a 20176b0 <_CORE_message_queue_Broadcast+0x34> 20176d8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 20176dc: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 20176e0: b0 10 20 00 clr %i0 } 20176e4: 81 c7 e0 08 ret 20176e8: 81 e8 00 00 restore =============================================================================== 0200feb0 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200feb0: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 200feb4: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 200feb8: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 200febc: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 200fec0: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 200fec4: 80 8e e0 03 btst 3, %i3 200fec8: 02 80 00 07 be 200fee4 <_CORE_message_queue_Initialize+0x34> 200fecc: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 200fed0: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 200fed4: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 200fed8: 80 a4 80 1b cmp %l2, %i3 200fedc: 0a 80 00 22 bcs 200ff64 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200fee0: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 200fee4: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 200fee8: 92 10 00 1a mov %i2, %o1 200feec: 90 10 00 11 mov %l1, %o0 200fef0: 40 00 3d f5 call 201f6c4 <.umul> 200fef4: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 200fef8: 80 a2 00 12 cmp %o0, %l2 200fefc: 0a 80 00 1a bcs 200ff64 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 200ff00: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 200ff04: 40 00 0b ad call 2012db8 <_Workspace_Allocate> 200ff08: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 200ff0c: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 200ff10: 80 a2 20 00 cmp %o0, 0 200ff14: 02 80 00 14 be 200ff64 <_CORE_message_queue_Initialize+0xb4> 200ff18: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 200ff1c: 90 04 20 60 add %l0, 0x60, %o0 200ff20: 94 10 00 1a mov %i2, %o2 200ff24: 40 00 14 72 call 20150ec <_Chain_Initialize> 200ff28: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200ff2c: 82 04 20 54 add %l0, 0x54, %g1 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 200ff30: c2 24 20 50 st %g1, [ %l0 + 0x50 ] the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); 200ff34: 82 04 20 50 add %l0, 0x50, %g1 the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); 200ff38: c2 24 20 58 st %g1, [ %l0 + 0x58 ] _Thread_queue_Initialize( 200ff3c: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 200ff40: c0 24 20 54 clr [ %l0 + 0x54 ] 200ff44: 82 18 60 01 xor %g1, 1, %g1 200ff48: 80 a0 00 01 cmp %g0, %g1 200ff4c: 90 10 00 10 mov %l0, %o0 200ff50: 92 60 3f ff subx %g0, -1, %o1 200ff54: 94 10 20 80 mov 0x80, %o2 200ff58: 96 10 20 06 mov 6, %o3 200ff5c: 40 00 08 7e call 2012154 <_Thread_queue_Initialize> 200ff60: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 200ff64: 81 c7 e0 08 ret 200ff68: 81 e8 00 00 restore =============================================================================== 0200ff6c <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200ff6c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 200ff70: 27 00 80 90 sethi %hi(0x2024000), %l3 200ff74: a6 14 e1 8c or %l3, 0x18c, %l3 ! 202418c <_Per_CPU_Information> 200ff78: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 200ff7c: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 200ff80: 7f ff de 16 call 20077d8 200ff84: c0 24 a0 34 clr [ %l2 + 0x34 ] 200ff88: 82 10 00 08 mov %o0, %g1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200ff8c: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200ff90: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 200ff94: 80 a4 40 02 cmp %l1, %g2 200ff98: 02 80 00 15 be 200ffec <_CORE_message_queue_Seize+0x80> 200ff9c: 86 06 20 50 add %i0, 0x50, %g3 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 200ffa0: c4 04 40 00 ld [ %l1 ], %g2 the_chain->first = new_first; 200ffa4: c4 26 20 50 st %g2, [ %i0 + 0x50 ] the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 200ffa8: 80 a4 60 00 cmp %l1, 0 200ffac: 02 80 00 10 be 200ffec <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 200ffb0: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 200ffb4: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 200ffb8: 82 00 7f ff add %g1, -1, %g1 200ffbc: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 200ffc0: 7f ff de 0a call 20077e8 200ffc4: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 200ffc8: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 200ffcc: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 200ffd0: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 200ffd4: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 200ffd8: 90 10 00 1a mov %i2, %o0 200ffdc: 40 00 1e f1 call 2017ba0 200ffe0: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 200ffe4: 7f ff ff 83 call 200fdf0 <_Chain_Append> 200ffe8: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 200ffec: 80 8f 20 ff btst 0xff, %i4 200fff0: 32 80 00 08 bne,a 2010010 <_CORE_message_queue_Seize+0xa4> 200fff4: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 200fff8: 7f ff dd fc call 20077e8 200fffc: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 2010000: 82 10 20 04 mov 4, %g1 2010004: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 2010008: 81 c7 e0 08 ret 201000c: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2010010: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 2010014: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 2010018: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 201001c: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 2010020: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 2010024: 90 10 00 01 mov %g1, %o0 2010028: 7f ff dd f0 call 20077e8 201002c: 35 00 80 48 sethi %hi(0x2012000), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 2010030: b2 10 00 1d mov %i5, %i1 2010034: 40 00 07 a0 call 2011eb4 <_Thread_queue_Enqueue_with_handler> 2010038: 95 ee a2 34 restore %i2, 0x234, %o2 =============================================================================== 02006d14 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2006d14: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2006d18: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006d1c: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 2014f28 <_Thread_Dispatch_disable_level> 2006d20: 80 a0 60 00 cmp %g1, 0 2006d24: 02 80 00 0d be 2006d58 <_CORE_mutex_Seize+0x44> 2006d28: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2006d2c: 80 8e a0 ff btst 0xff, %i2 2006d30: 02 80 00 0b be 2006d5c <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 2006d34: 90 10 00 18 mov %i0, %o0 2006d38: 03 00 80 54 sethi %hi(0x2015000), %g1 2006d3c: c2 00 60 ac ld [ %g1 + 0xac ], %g1 ! 20150ac <_System_state_Current> 2006d40: 80 a0 60 01 cmp %g1, 1 2006d44: 08 80 00 05 bleu 2006d58 <_CORE_mutex_Seize+0x44> 2006d48: 90 10 20 00 clr %o0 2006d4c: 92 10 20 00 clr %o1 2006d50: 40 00 01 df call 20074cc <_Internal_error_Occurred> 2006d54: 94 10 20 12 mov 0x12, %o2 2006d58: 90 10 00 18 mov %i0, %o0 2006d5c: 40 00 13 8e call 200bb94 <_CORE_mutex_Seize_interrupt_trylock> 2006d60: 92 07 a0 54 add %fp, 0x54, %o1 2006d64: 80 a2 20 00 cmp %o0, 0 2006d68: 02 80 00 0a be 2006d90 <_CORE_mutex_Seize+0x7c> 2006d6c: 80 8e a0 ff btst 0xff, %i2 2006d70: 35 00 80 54 sethi %hi(0x2015000), %i2 2006d74: 12 80 00 09 bne 2006d98 <_CORE_mutex_Seize+0x84> 2006d78: b4 16 a1 8c or %i2, 0x18c, %i2 ! 201518c <_Per_CPU_Information> 2006d7c: 7f ff ed 15 call 20021d0 2006d80: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006d84: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006d88: 84 10 20 01 mov 1, %g2 2006d8c: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2006d90: 81 c7 e0 08 ret 2006d94: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2006d98: 82 10 20 01 mov 1, %g1 2006d9c: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 2006da0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 2006da4: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2006da8: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2006dac: 03 00 80 53 sethi %hi(0x2014c00), %g1 2006db0: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 2006db4: 84 00 a0 01 inc %g2 2006db8: c4 20 63 28 st %g2, [ %g1 + 0x328 ] 2006dbc: 7f ff ed 05 call 20021d0 2006dc0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2006dc4: 90 10 00 18 mov %i0, %o0 2006dc8: 7f ff ff ba call 2006cb0 <_CORE_mutex_Seize_interrupt_blocking> 2006dcc: 92 10 00 1b mov %i3, %o1 2006dd0: 81 c7 e0 08 ret 2006dd4: 81 e8 00 00 restore =============================================================================== 0200bb94 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 200bb94: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 200bb98: 03 00 80 54 sethi %hi(0x2015000), %g1 200bb9c: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 2015198 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200bba0: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 200bba4: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200bba8: 80 a0 a0 00 cmp %g2, 0 200bbac: 02 80 00 2f be 200bc68 <_CORE_mutex_Seize_interrupt_trylock+0xd4> 200bbb0: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200bbb4: c4 00 60 08 ld [ %g1 + 8 ], %g2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 200bbb8: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200bbbc: c4 26 20 60 st %g2, [ %i0 + 0x60 ] the_mutex->nest_count = 1; 200bbc0: 84 10 20 01 mov 1, %g2 200bbc4: c4 26 20 54 st %g2, [ %i0 + 0x54 ] return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 200bbc8: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 200bbcc: 80 a0 a0 02 cmp %g2, 2 200bbd0: 02 80 00 05 be 200bbe4 <_CORE_mutex_Seize_interrupt_trylock+0x50> 200bbd4: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 200bbd8: 80 a0 a0 03 cmp %g2, 3 200bbdc: 12 80 00 07 bne 200bbf8 <_CORE_mutex_Seize_interrupt_trylock+0x64> 200bbe0: 01 00 00 00 nop _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200bbe4: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200bbe8: 80 a0 a0 03 cmp %g2, 3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200bbec: 88 00 e0 01 add %g3, 1, %g4 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 200bbf0: 02 80 00 03 be 200bbfc <_CORE_mutex_Seize_interrupt_trylock+0x68> 200bbf4: c8 20 60 1c st %g4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200bbf8: 30 80 00 2b b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 200bbfc: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 current = executing->current_priority; 200bc00: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 if ( current == ceiling ) { 200bc04: 80 a1 00 02 cmp %g4, %g2 200bc08: 12 80 00 03 bne 200bc14 <_CORE_mutex_Seize_interrupt_trylock+0x80> 200bc0c: 01 00 00 00 nop _ISR_Enable( *level_p ); 200bc10: 30 80 00 25 b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110> return 0; } if ( current > ceiling ) { 200bc14: 08 80 00 0f bleu 200bc50 <_CORE_mutex_Seize_interrupt_trylock+0xbc> 200bc18: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200bc1c: 03 00 80 53 sethi %hi(0x2014c00), %g1 200bc20: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 200bc24: 84 00 a0 01 inc %g2 200bc28: c4 20 63 28 st %g2, [ %g1 + 0x328 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 200bc2c: 7f ff d9 69 call 20021d0 200bc30: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 200bc34: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 200bc38: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 200bc3c: 7f ff f0 75 call 2007e10 <_Thread_Change_priority> 200bc40: 94 10 20 00 clr %o2 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 200bc44: 7f ff f1 f1 call 2008408 <_Thread_Enable_dispatch> 200bc48: b0 10 20 00 clr %i0 200bc4c: 30 80 00 1d b,a 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 200bc50: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */ 200bc54: c0 24 20 54 clr [ %l0 + 0x54 ] _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED; 200bc58: 84 10 20 01 mov 1, %g2 200bc5c: c4 24 20 50 st %g2, [ %l0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */ 200bc60: c6 20 60 1c st %g3, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200bc64: 30 80 00 10 b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110> /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 200bc68: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200bc6c: 80 a0 80 01 cmp %g2, %g1 200bc70: 12 80 00 14 bne 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c> 200bc74: b0 10 20 01 mov 1, %i0 switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200bc78: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 200bc7c: 80 a0 60 00 cmp %g1, 0 200bc80: 22 80 00 07 be,a 200bc9c <_CORE_mutex_Seize_interrupt_trylock+0x108> 200bc84: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200bc88: 80 a0 60 01 cmp %g1, 1 200bc8c: 12 80 00 0d bne 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN 200bc90: 82 10 20 02 mov 2, %g1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 200bc94: 10 80 00 08 b 200bcb4 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 200bc98: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 200bc9c: 82 00 60 01 inc %g1 200bca0: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 200bca4: 7f ff d9 4b call 20021d0 200bca8: d0 06 40 00 ld [ %i1 ], %o0 return 0; 200bcac: 81 c7 e0 08 ret 200bcb0: 91 e8 20 00 restore %g0, 0, %o0 case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p ); 200bcb4: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200bcb8: 7f ff d9 46 call 20021d0 <== NOT EXECUTED 200bcbc: b0 10 20 00 clr %i0 <== NOT EXECUTED 200bcc0: 81 c7 e0 08 ret 200bcc4: 81 e8 00 00 restore =============================================================================== 02006f54 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2006f54: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2006f58: 90 10 00 18 mov %i0, %o0 2006f5c: 40 00 06 17 call 20087b8 <_Thread_queue_Dequeue> 2006f60: a0 10 00 18 mov %i0, %l0 2006f64: 80 a2 20 00 cmp %o0, 0 2006f68: 12 80 00 0e bne 2006fa0 <_CORE_semaphore_Surrender+0x4c> 2006f6c: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2006f70: 7f ff ec 94 call 20021c0 2006f74: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2006f78: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2006f7c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2006f80: 80 a0 40 02 cmp %g1, %g2 2006f84: 1a 80 00 05 bcc 2006f98 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 2006f88: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2006f8c: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2006f90: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2006f94: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2006f98: 7f ff ec 8e call 20021d0 2006f9c: 01 00 00 00 nop } return status; } 2006fa0: 81 c7 e0 08 ret 2006fa4: 81 e8 00 00 restore =============================================================================== 02005ba8 <_Event_Seize>: rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) { 2005ba8: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set pending_events; ISR_Level level; RTEMS_API_Control *api; Thread_blocking_operation_States sync_state; executing = _Thread_Executing; 2005bac: 03 00 80 54 sethi %hi(0x2015000), %g1 2005bb0: e0 00 61 98 ld [ %g1 + 0x198 ], %l0 ! 2015198 <_Per_CPU_Information+0xc> executing->Wait.return_code = RTEMS_SUCCESSFUL; 2005bb4: c0 24 20 34 clr [ %l0 + 0x34 ] api = executing->API_Extensions[ THREAD_API_RTEMS ]; _ISR_Disable( level ); 2005bb8: 7f ff f1 82 call 20021c0 2005bbc: e4 04 21 60 ld [ %l0 + 0x160 ], %l2 pending_events = api->pending_events; 2005bc0: c2 04 80 00 ld [ %l2 ], %g1 seized_events = _Event_sets_Get( pending_events, event_in ); if ( !_Event_sets_Is_empty( seized_events ) && 2005bc4: a2 8e 00 01 andcc %i0, %g1, %l1 2005bc8: 02 80 00 0f be 2005c04 <_Event_Seize+0x5c> 2005bcc: 80 8e 60 01 btst 1, %i1 2005bd0: 80 a4 40 18 cmp %l1, %i0 2005bd4: 22 80 00 06 be,a 2005bec <_Event_Seize+0x44> 2005bd8: 82 28 40 11 andn %g1, %l1, %g1 (seized_events == event_in || _Options_Is_any( option_set )) ) { 2005bdc: 80 8e 60 02 btst 2, %i1 2005be0: 22 80 00 09 be,a 2005c04 <_Event_Seize+0x5c> <== NEVER TAKEN 2005be4: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2005be8: 82 28 40 11 andn %g1, %l1, %g1 api->pending_events = 2005bec: c2 24 80 00 st %g1, [ %l2 ] _Event_sets_Clear( pending_events, seized_events ); _ISR_Enable( level ); 2005bf0: 7f ff f1 78 call 20021d0 2005bf4: 01 00 00 00 nop 2005bf8: e2 26 c0 00 st %l1, [ %i3 ] 2005bfc: 81 c7 e0 08 ret 2005c00: 81 e8 00 00 restore *event_out = seized_events; return; } if ( _Options_Is_no_wait( option_set ) ) { 2005c04: 22 80 00 09 be,a 2005c28 <_Event_Seize+0x80> 2005c08: f2 24 20 30 st %i1, [ %l0 + 0x30 ] _ISR_Enable( level ); 2005c0c: 7f ff f1 71 call 20021d0 2005c10: 01 00 00 00 nop executing->Wait.return_code = RTEMS_UNSATISFIED; 2005c14: 82 10 20 0d mov 0xd, %g1 ! d 2005c18: c2 24 20 34 st %g1, [ %l0 + 0x34 ] *event_out = seized_events; 2005c1c: e2 26 c0 00 st %l1, [ %i3 ] 2005c20: 81 c7 e0 08 ret 2005c24: 81 e8 00 00 restore * * NOTE: Since interrupts are disabled, this isn't that much of an * issue but better safe than sorry. */ executing->Wait.option = (uint32_t) option_set; executing->Wait.count = (uint32_t) event_in; 2005c28: f0 24 20 24 st %i0, [ %l0 + 0x24 ] executing->Wait.return_argument = event_out; 2005c2c: f6 24 20 28 st %i3, [ %l0 + 0x28 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2005c30: 84 10 20 01 mov 1, %g2 2005c34: 03 00 80 54 sethi %hi(0x2015000), %g1 2005c38: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ] ! 20151a8 <_Event_Sync_state> _ISR_Enable( level ); 2005c3c: 7f ff f1 65 call 20021d0 2005c40: 01 00 00 00 nop if ( ticks ) { 2005c44: 80 a6 a0 00 cmp %i2, 0 2005c48: 02 80 00 0f be 2005c84 <_Event_Seize+0xdc> 2005c4c: 90 10 00 10 mov %l0, %o0 _Watchdog_Initialize( 2005c50: c2 04 20 08 ld [ %l0 + 8 ], %g1 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2005c54: 05 00 80 17 sethi %hi(0x2005c00), %g2 2005c58: 84 10 a2 5c or %g2, 0x25c, %g2 ! 2005e5c <_Event_Timeout> ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2005c5c: 11 00 80 53 sethi %hi(0x2014c00), %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2005c60: c0 24 20 50 clr [ %l0 + 0x50 ] the_watchdog->routine = routine; 2005c64: c4 24 20 64 st %g2, [ %l0 + 0x64 ] the_watchdog->id = id; 2005c68: c2 24 20 68 st %g1, [ %l0 + 0x68 ] the_watchdog->user_data = user_data; 2005c6c: c0 24 20 6c clr [ %l0 + 0x6c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2005c70: f4 24 20 54 st %i2, [ %l0 + 0x54 ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2005c74: 90 12 23 f0 or %o0, 0x3f0, %o0 2005c78: 40 00 0e 2d call 200952c <_Watchdog_Insert> 2005c7c: 92 04 20 48 add %l0, 0x48, %o1 NULL ); _Watchdog_Insert_ticks( &executing->Timer, ticks ); } _Thread_Set_state( executing, STATES_WAITING_FOR_EVENT ); 2005c80: 90 10 00 10 mov %l0, %o0 2005c84: 40 00 0c 38 call 2008d64 <_Thread_Set_state> 2005c88: 92 10 21 00 mov 0x100, %o1 _ISR_Disable( level ); 2005c8c: 7f ff f1 4d call 20021c0 2005c90: 01 00 00 00 nop sync_state = _Event_Sync_state; 2005c94: 03 00 80 54 sethi %hi(0x2015000), %g1 2005c98: f0 00 61 a8 ld [ %g1 + 0x1a8 ], %i0 ! 20151a8 <_Event_Sync_state> _Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; 2005c9c: c0 20 61 a8 clr [ %g1 + 0x1a8 ] if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) { 2005ca0: 80 a6 20 01 cmp %i0, 1 2005ca4: 12 80 00 04 bne 2005cb4 <_Event_Seize+0x10c> 2005ca8: b2 10 00 10 mov %l0, %i1 _ISR_Enable( level ); 2005cac: 7f ff f1 49 call 20021d0 2005cb0: 91 e8 00 08 restore %g0, %o0, %o0 * An interrupt completed the thread's blocking request. * The blocking thread was satisfied by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ _Thread_blocking_operation_Cancel( sync_state, executing, level ); 2005cb4: 40 00 08 42 call 2007dbc <_Thread_blocking_operation_Cancel> 2005cb8: 95 e8 00 08 restore %g0, %o0, %o2 =============================================================================== 02005d1c <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005d1c: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005d20: e2 06 21 60 ld [ %i0 + 0x160 ], %l1 option_set = (rtems_option) the_thread->Wait.option; 2005d24: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 2005d28: 7f ff f1 26 call 20021c0 2005d2c: a0 10 00 18 mov %i0, %l0 2005d30: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 2005d34: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2005d38: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2005d3c: 82 88 c0 02 andcc %g3, %g2, %g1 2005d40: 12 80 00 03 bne 2005d4c <_Event_Surrender+0x30> 2005d44: 09 00 80 54 sethi %hi(0x2015000), %g4 _ISR_Enable( level ); 2005d48: 30 80 00 42 b,a 2005e50 <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2005d4c: 88 11 21 8c or %g4, 0x18c, %g4 ! 201518c <_Per_CPU_Information> 2005d50: da 01 20 08 ld [ %g4 + 8 ], %o5 2005d54: 80 a3 60 00 cmp %o5, 0 2005d58: 22 80 00 1d be,a 2005dcc <_Event_Surrender+0xb0> 2005d5c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 2005d60: c8 01 20 0c ld [ %g4 + 0xc ], %g4 2005d64: 80 a4 00 04 cmp %l0, %g4 2005d68: 32 80 00 19 bne,a 2005dcc <_Event_Surrender+0xb0> 2005d6c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005d70: 09 00 80 54 sethi %hi(0x2015000), %g4 2005d74: da 01 21 a8 ld [ %g4 + 0x1a8 ], %o5 ! 20151a8 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2005d78: 80 a3 60 02 cmp %o5, 2 2005d7c: 02 80 00 07 be 2005d98 <_Event_Surrender+0x7c> <== NEVER TAKEN 2005d80: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2005d84: c8 01 21 a8 ld [ %g4 + 0x1a8 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2005d88: 80 a1 20 01 cmp %g4, 1 2005d8c: 32 80 00 10 bne,a 2005dcc <_Event_Surrender+0xb0> 2005d90: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2005d94: 80 a0 40 03 cmp %g1, %g3 2005d98: 02 80 00 04 be 2005da8 <_Event_Surrender+0x8c> 2005d9c: 80 8c a0 02 btst 2, %l2 2005da0: 02 80 00 0a be 2005dc8 <_Event_Surrender+0xac> <== NEVER TAKEN 2005da4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2005da8: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 2005dac: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005db0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 2005db4: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005db8: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 2005dbc: 84 10 20 03 mov 3, %g2 2005dc0: 03 00 80 54 sethi %hi(0x2015000), %g1 2005dc4: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ] ! 20151a8 <_Event_Sync_state> } _ISR_Enable( level ); 2005dc8: 30 80 00 22 b,a 2005e50 <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2005dcc: 80 89 21 00 btst 0x100, %g4 2005dd0: 02 80 00 20 be 2005e50 <_Event_Surrender+0x134> 2005dd4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2005dd8: 02 80 00 04 be 2005de8 <_Event_Surrender+0xcc> 2005ddc: 80 8c a0 02 btst 2, %l2 2005de0: 02 80 00 1c be 2005e50 <_Event_Surrender+0x134> <== NEVER TAKEN 2005de4: 01 00 00 00 nop 2005de8: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2005dec: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005df0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 2005df4: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2005df8: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 2005dfc: 7f ff f0 f5 call 20021d0 2005e00: 90 10 00 18 mov %i0, %o0 2005e04: 7f ff f0 ef call 20021c0 2005e08: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2005e0c: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 2005e10: 80 a0 60 02 cmp %g1, 2 2005e14: 02 80 00 06 be 2005e2c <_Event_Surrender+0x110> 2005e18: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2005e1c: 7f ff f0 ed call 20021d0 2005e20: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005e24: 10 80 00 08 b 2005e44 <_Event_Surrender+0x128> 2005e28: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2005e2c: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 2005e30: 7f ff f0 e8 call 20021d0 2005e34: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 2005e38: 40 00 0e 17 call 2009694 <_Watchdog_Remove> 2005e3c: 90 04 20 48 add %l0, 0x48, %o0 2005e40: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2005e44: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2005e48: 40 00 08 6b call 2007ff4 <_Thread_Clear_state> 2005e4c: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2005e50: 7f ff f0 e0 call 20021d0 2005e54: 81 e8 00 00 restore =============================================================================== 02005e5c <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2005e5c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2005e60: 90 10 00 18 mov %i0, %o0 2005e64: 40 00 09 76 call 200843c <_Thread_Get> 2005e68: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2005e6c: c2 07 bf fc ld [ %fp + -4 ], %g1 2005e70: 80 a0 60 00 cmp %g1, 0 2005e74: 12 80 00 1c bne 2005ee4 <_Event_Timeout+0x88> <== NEVER TAKEN 2005e78: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2005e7c: 7f ff f0 d1 call 20021c0 2005e80: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2005e84: 03 00 80 54 sethi %hi(0x2015000), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2005e88: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 2015198 <_Per_CPU_Information+0xc> 2005e8c: 80 a4 00 01 cmp %l0, %g1 2005e90: 12 80 00 09 bne 2005eb4 <_Event_Timeout+0x58> 2005e94: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2005e98: 03 00 80 54 sethi %hi(0x2015000), %g1 2005e9c: c4 00 61 a8 ld [ %g1 + 0x1a8 ], %g2 ! 20151a8 <_Event_Sync_state> 2005ea0: 80 a0 a0 01 cmp %g2, 1 2005ea4: 32 80 00 05 bne,a 2005eb8 <_Event_Timeout+0x5c> 2005ea8: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2005eac: 84 10 20 02 mov 2, %g2 2005eb0: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2005eb4: 82 10 20 06 mov 6, %g1 2005eb8: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2005ebc: 7f ff f0 c5 call 20021d0 2005ec0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2005ec4: 90 10 00 10 mov %l0, %o0 2005ec8: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2005ecc: 40 00 08 4a call 2007ff4 <_Thread_Clear_state> 2005ed0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2005ed4: 03 00 80 53 sethi %hi(0x2014c00), %g1 2005ed8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 2005edc: 84 00 bf ff add %g2, -1, %g2 2005ee0: c4 20 63 28 st %g2, [ %g1 + 0x328 ] 2005ee4: 81 c7 e0 08 ret 2005ee8: 81 e8 00 00 restore =============================================================================== 0200bd44 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200bd44: 9d e3 bf 98 save %sp, -104, %sp 200bd48: a0 10 00 18 mov %i0, %l0 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200bd4c: e4 06 20 08 ld [ %i0 + 8 ], %l2 ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200bd50: ac 06 60 04 add %i1, 4, %l6 - HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size; 200bd54: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) { 200bd58: 80 a5 80 19 cmp %l6, %i1 200bd5c: 0a 80 00 67 bcs 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4> 200bd60: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200bd64: 80 a6 e0 00 cmp %i3, 0 200bd68: 02 80 00 08 be 200bd88 <_Heap_Allocate_aligned_with_boundary+0x44> 200bd6c: 82 05 20 07 add %l4, 7, %g1 if ( boundary < alloc_size ) { 200bd70: 80 a6 c0 19 cmp %i3, %i1 200bd74: 0a 80 00 61 bcs 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4> 200bd78: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200bd7c: 22 80 00 03 be,a 200bd88 <_Heap_Allocate_aligned_with_boundary+0x44> 200bd80: b4 10 00 14 mov %l4, %i2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200bd84: 82 05 20 07 add %l4, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; 200bd88: b8 10 20 04 mov 4, %i4 if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size; 200bd8c: a2 10 20 00 clr %l1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200bd90: c2 27 bf f8 st %g1, [ %fp + -8 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; 200bd94: b8 27 00 19 sub %i4, %i1, %i4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bd98: 10 80 00 50 b 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194> 200bd9c: ba 10 3f f8 mov -8, %i5 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200bda0: 80 a6 00 16 cmp %i0, %l6 200bda4: 08 80 00 4c bleu 200bed4 <_Heap_Allocate_aligned_with_boundary+0x190> 200bda8: a2 04 60 01 inc %l1 if ( alignment == 0 ) { 200bdac: 80 a6 a0 00 cmp %i2, 0 200bdb0: 12 80 00 04 bne 200bdc0 <_Heap_Allocate_aligned_with_boundary+0x7c> 200bdb4: aa 04 a0 08 add %l2, 8, %l5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; 200bdb8: 10 80 00 3a b 200bea0 <_Heap_Allocate_aligned_with_boundary+0x15c> 200bdbc: b0 10 00 15 mov %l5, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200bdc0: c2 07 bf f8 ld [ %fp + -8 ], %g1 uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; 200bdc4: ee 04 20 14 ld [ %l0 + 0x14 ], %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bdc8: b0 0e 3f fe and %i0, -2, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200bdcc: a6 20 40 17 sub %g1, %l7, %l3 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200bdd0: b0 04 80 18 add %l2, %i0, %i0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bdd4: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200bdd8: a6 04 c0 18 add %l3, %i0, %l3 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size; 200bddc: b0 07 00 18 add %i4, %i0, %i0 200bde0: 40 00 16 6c call 2011790 <.urem> 200bde4: 90 10 00 18 mov %i0, %o0 200bde8: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200bdec: 80 a6 00 13 cmp %i0, %l3 200bdf0: 08 80 00 07 bleu 200be0c <_Heap_Allocate_aligned_with_boundary+0xc8> 200bdf4: 80 a6 e0 00 cmp %i3, 0 200bdf8: 90 10 00 13 mov %l3, %o0 200bdfc: 40 00 16 65 call 2011790 <.urem> 200be00: 92 10 00 1a mov %i2, %o1 200be04: b0 24 c0 08 sub %l3, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200be08: 80 a6 e0 00 cmp %i3, 0 200be0c: 02 80 00 18 be 200be6c <_Heap_Allocate_aligned_with_boundary+0x128> 200be10: 80 a6 00 15 cmp %i0, %l5 uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200be14: 82 05 40 19 add %l5, %i1, %g1 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200be18: a6 06 00 19 add %i0, %i1, %l3 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200be1c: 10 80 00 0a b 200be44 <_Heap_Allocate_aligned_with_boundary+0x100> 200be20: c2 27 bf fc st %g1, [ %fp + -4 ] uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200be24: 80 a2 00 01 cmp %o0, %g1 200be28: 0a 80 00 2b bcs 200bed4 <_Heap_Allocate_aligned_with_boundary+0x190> 200be2c: b0 22 00 19 sub %o0, %i1, %i0 200be30: 92 10 00 1a mov %i2, %o1 200be34: 40 00 16 57 call 2011790 <.urem> 200be38: 90 10 00 18 mov %i0, %o0 200be3c: b0 26 00 08 sub %i0, %o0, %i0 return 0; } alloc_begin = boundary_line - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200be40: a6 06 00 19 add %i0, %i1, %l3 200be44: 90 10 00 13 mov %l3, %o0 200be48: 40 00 16 52 call 2011790 <.urem> 200be4c: 92 10 00 1b mov %i3, %o1 200be50: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200be54: 80 a2 00 13 cmp %o0, %l3 200be58: 1a 80 00 04 bcc 200be68 <_Heap_Allocate_aligned_with_boundary+0x124> 200be5c: 80 a6 00 08 cmp %i0, %o0 200be60: 0a bf ff f1 bcs 200be24 <_Heap_Allocate_aligned_with_boundary+0xe0> 200be64: c2 07 bf fc ld [ %fp + -4 ], %g1 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200be68: 80 a6 00 15 cmp %i0, %l5 200be6c: 2a 80 00 1b bcs,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194> 200be70: e4 04 a0 08 ld [ %l2 + 8 ], %l2 200be74: a6 27 40 12 sub %i5, %l2, %l3 200be78: 90 10 00 18 mov %i0, %o0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200be7c: a6 04 c0 18 add %l3, %i0, %l3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200be80: 40 00 16 44 call 2011790 <.urem> 200be84: 92 10 00 14 mov %l4, %o1 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200be88: 90 a4 c0 08 subcc %l3, %o0, %o0 200be8c: 02 80 00 06 be 200bea4 <_Heap_Allocate_aligned_with_boundary+0x160> 200be90: 80 a6 20 00 cmp %i0, 0 200be94: 80 a2 00 17 cmp %o0, %l7 200be98: 2a 80 00 10 bcs,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194> 200be9c: e4 04 a0 08 ld [ %l2 + 8 ], %l2 boundary ); } } if ( alloc_begin != 0 ) { 200bea0: 80 a6 20 00 cmp %i0, 0 200bea4: 22 80 00 0d be,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194><== NEVER TAKEN 200bea8: e4 04 a0 08 ld [ %l2 + 8 ], %l2 <== NOT EXECUTED block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 200beac: c2 04 20 4c ld [ %l0 + 0x4c ], %g1 block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200beb0: 90 10 00 10 mov %l0, %o0 block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 200beb4: 82 00 40 11 add %g1, %l1, %g1 block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200beb8: 92 10 00 12 mov %l2, %o1 block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count; 200bebc: c2 24 20 4c st %g1, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200bec0: 94 10 00 18 mov %i0, %o2 200bec4: 7f ff ed 35 call 2007398 <_Heap_Block_allocate> 200bec8: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200becc: 10 80 00 08 b 200beec <_Heap_Allocate_aligned_with_boundary+0x1a8> 200bed0: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 if ( alloc_begin != 0 ) { break; } block = block->next; 200bed4: e4 04 a0 08 ld [ %l2 + 8 ], %l2 if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) { 200bed8: 80 a4 80 10 cmp %l2, %l0 200bedc: 32 bf ff b1 bne,a 200bda0 <_Heap_Allocate_aligned_with_boundary+0x5c> 200bee0: f0 04 a0 04 ld [ %l2 + 4 ], %i0 200bee4: b0 10 20 00 clr %i0 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200bee8: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200beec: 80 a0 40 11 cmp %g1, %l1 200bef0: 2a 80 00 02 bcs,a 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4> 200bef4: e2 24 20 44 st %l1, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 200bef8: 81 c7 e0 08 ret 200befc: 81 e8 00 00 restore =============================================================================== 0200c1f0 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c1f0: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200c1f4: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200c1f8: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c1fc: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200c200: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200c204: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200c208: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200c20c: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 200c210: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c214: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200c218: 80 a4 40 19 cmp %l1, %i1 200c21c: 0a 80 00 9f bcs 200c498 <_Heap_Extend+0x2a8> 200c220: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200c224: 90 10 00 19 mov %i1, %o0 200c228: 94 10 00 13 mov %l3, %o2 200c22c: 98 07 bf fc add %fp, -4, %o4 200c230: 7f ff ec 7b call 200741c <_Heap_Get_first_and_last_block> 200c234: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c238: 80 8a 20 ff btst 0xff, %o0 200c23c: 02 80 00 97 be 200c498 <_Heap_Extend+0x2a8> 200c240: aa 10 00 12 mov %l2, %l5 200c244: ba 10 20 00 clr %i5 200c248: b8 10 20 00 clr %i4 200c24c: b0 10 20 00 clr %i0 200c250: ae 10 20 00 clr %l7 200c254: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c258: 80 a0 40 11 cmp %g1, %l1 200c25c: 1a 80 00 05 bcc 200c270 <_Heap_Extend+0x80> 200c260: ec 05 40 00 ld [ %l5 ], %l6 200c264: 80 a6 40 16 cmp %i1, %l6 200c268: 2a 80 00 8c bcs,a 200c498 <_Heap_Extend+0x2a8> 200c26c: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c270: 80 a4 40 01 cmp %l1, %g1 200c274: 02 80 00 06 be 200c28c <_Heap_Extend+0x9c> 200c278: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c27c: 2a 80 00 05 bcs,a 200c290 <_Heap_Extend+0xa0> 200c280: b8 10 00 15 mov %l5, %i4 200c284: 10 80 00 04 b 200c294 <_Heap_Extend+0xa4> 200c288: 90 10 00 16 mov %l6, %o0 200c28c: ae 10 00 15 mov %l5, %l7 200c290: 90 10 00 16 mov %l6, %o0 200c294: 40 00 16 79 call 2011c78 <.urem> 200c298: 92 10 00 13 mov %l3, %o1 200c29c: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c2a0: 80 a5 80 19 cmp %l6, %i1 200c2a4: 12 80 00 05 bne 200c2b8 <_Heap_Extend+0xc8> 200c2a8: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 200c2ac: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 200c2b0: 10 80 00 04 b 200c2c0 <_Heap_Extend+0xd0> 200c2b4: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c2b8: 2a 80 00 02 bcs,a 200c2c0 <_Heap_Extend+0xd0> 200c2bc: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c2c0: ea 02 20 04 ld [ %o0 + 4 ], %l5 200c2c4: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c2c8: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c2cc: 80 a5 40 12 cmp %l5, %l2 200c2d0: 12 bf ff e2 bne 200c258 <_Heap_Extend+0x68> 200c2d4: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 200c2d8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c2dc: 80 a6 40 01 cmp %i1, %g1 200c2e0: 3a 80 00 04 bcc,a 200c2f0 <_Heap_Extend+0x100> 200c2e4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c2e8: 10 80 00 05 b 200c2fc <_Heap_Extend+0x10c> 200c2ec: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 200c2f0: 80 a0 40 11 cmp %g1, %l1 200c2f4: 2a 80 00 02 bcs,a 200c2fc <_Heap_Extend+0x10c> 200c2f8: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c2fc: c4 07 bf fc ld [ %fp + -4 ], %g2 200c300: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 200c304: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c308: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c30c: 88 10 e0 01 or %g3, 1, %g4 extend_last_block->prev_size = extend_first_block_size; 200c310: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c314: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c318: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 200c31c: 80 a0 c0 02 cmp %g3, %g2 200c320: 08 80 00 04 bleu 200c330 <_Heap_Extend+0x140> 200c324: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 200c328: 10 80 00 06 b 200c340 <_Heap_Extend+0x150> 200c32c: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200c330: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 200c334: 80 a0 80 01 cmp %g2, %g1 200c338: 2a 80 00 02 bcs,a 200c340 <_Heap_Extend+0x150> 200c33c: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c340: 80 a5 e0 00 cmp %l7, 0 200c344: 02 80 00 14 be 200c394 <_Heap_Extend+0x1a4> 200c348: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200c34c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200c350: 92 10 00 12 mov %l2, %o1 200c354: 40 00 16 49 call 2011c78 <.urem> 200c358: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200c35c: 80 a2 20 00 cmp %o0, 0 200c360: 02 80 00 04 be 200c370 <_Heap_Extend+0x180> <== ALWAYS TAKEN 200c364: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 200c368: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200c36c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200c370: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200c374: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200c378: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200c37c: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 200c380: 90 10 00 10 mov %l0, %o0 200c384: 7f ff ff 90 call 200c1c4 <_Heap_Free_block> 200c388: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c38c: 10 80 00 09 b 200c3b0 <_Heap_Extend+0x1c0> 200c390: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200c394: 80 a7 20 00 cmp %i4, 0 200c398: 02 80 00 05 be 200c3ac <_Heap_Extend+0x1bc> 200c39c: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200c3a0: b8 27 00 01 sub %i4, %g1, %i4 200c3a4: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200c3a8: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200c3ac: 80 a6 20 00 cmp %i0, 0 200c3b0: 02 80 00 15 be 200c404 <_Heap_Extend+0x214> 200c3b4: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c3b8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200c3bc: a2 24 40 18 sub %l1, %i0, %l1 200c3c0: 40 00 16 2e call 2011c78 <.urem> 200c3c4: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200c3c8: c4 06 20 04 ld [ %i0 + 4 ], %g2 200c3cc: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c3d0: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 200c3d4: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 200c3d8: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200c3dc: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c3e0: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200c3e4: 90 10 00 10 mov %l0, %o0 200c3e8: 82 08 60 01 and %g1, 1, %g1 200c3ec: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 200c3f0: a2 14 40 01 or %l1, %g1, %l1 200c3f4: 7f ff ff 74 call 200c1c4 <_Heap_Free_block> 200c3f8: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c3fc: 10 80 00 0f b 200c438 <_Heap_Extend+0x248> 200c400: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200c404: 80 a7 60 00 cmp %i5, 0 200c408: 02 80 00 0b be 200c434 <_Heap_Extend+0x244> 200c40c: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c410: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 200c414: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200c418: 86 20 c0 1d sub %g3, %i5, %g3 200c41c: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c420: 84 10 c0 02 or %g3, %g2, %g2 200c424: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200c428: c4 00 60 04 ld [ %g1 + 4 ], %g2 200c42c: 84 10 a0 01 or %g2, 1, %g2 200c430: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200c434: 80 a6 20 00 cmp %i0, 0 200c438: 32 80 00 09 bne,a 200c45c <_Heap_Extend+0x26c> 200c43c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200c440: 80 a5 e0 00 cmp %l7, 0 200c444: 32 80 00 06 bne,a 200c45c <_Heap_Extend+0x26c> 200c448: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200c44c: d2 07 bf fc ld [ %fp + -4 ], %o1 200c450: 7f ff ff 5d call 200c1c4 <_Heap_Free_block> 200c454: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200c458: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c45c: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c460: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200c464: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c468: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200c46c: 84 10 c0 02 or %g3, %g2, %g2 200c470: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c474: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200c478: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200c47c: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 200c480: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 200c484: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200c488: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 200c48c: 02 80 00 03 be 200c498 <_Heap_Extend+0x2a8> <== NEVER TAKEN 200c490: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 200c494: e8 26 c0 00 st %l4, [ %i3 ] 200c498: 81 c7 e0 08 ret 200c49c: 81 e8 00 00 restore =============================================================================== 0200bf00 <_Heap_Free>: #include #include #include bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200bf00: 9d e3 bf a0 save %sp, -96, %sp 200bf04: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200bf08: 40 00 16 22 call 2011790 <.urem> 200bf0c: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200bf10: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200bf14: a2 06 7f f8 add %i1, -8, %l1 200bf18: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200bf1c: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bf20: 80 a2 00 0c cmp %o0, %o4 200bf24: 0a 80 00 05 bcs 200bf38 <_Heap_Free+0x38> 200bf28: 82 10 20 00 clr %g1 200bf2c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200bf30: 80 a0 40 08 cmp %g1, %o0 200bf34: 82 60 3f ff subx %g0, -1, %g1 Heap_Block *next_block = NULL; uintptr_t block_size = 0; uintptr_t next_block_size = 0; bool next_is_free = false; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 200bf38: 80 a0 60 00 cmp %g1, 0 200bf3c: 02 80 00 6a be 200c0e4 <_Heap_Free+0x1e4> 200bf40: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bf44: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200bf48: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bf4c: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bf50: 80 a0 40 0c cmp %g1, %o4 200bf54: 0a 80 00 05 bcs 200bf68 <_Heap_Free+0x68> <== NEVER TAKEN 200bf58: 86 10 20 00 clr %g3 200bf5c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200bf60: 80 a0 c0 01 cmp %g3, %g1 200bf64: 86 60 3f ff subx %g0, -1, %g3 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 200bf68: 80 a0 e0 00 cmp %g3, 0 200bf6c: 02 80 00 5e be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bf70: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bf74: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200bf78: 80 89 20 01 btst 1, %g4 200bf7c: 02 80 00 5a be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bf80: 88 09 3f fe and %g4, -2, %g4 _HAssert( false ); return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200bf84: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bf88: 80 a0 40 09 cmp %g1, %o1 200bf8c: 02 80 00 07 be 200bfa8 <_Heap_Free+0xa8> 200bf90: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200bf94: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bf98: c6 00 e0 04 ld [ %g3 + 4 ], %g3 200bf9c: 86 08 e0 01 and %g3, 1, %g3 return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200bfa0: 80 a0 00 03 cmp %g0, %g3 200bfa4: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 200bfa8: 80 8b 60 01 btst 1, %o5 200bfac: 12 80 00 26 bne 200c044 <_Heap_Free+0x144> 200bfb0: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 200bfb4: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200bfb8: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200bfbc: 80 a0 c0 0c cmp %g3, %o4 200bfc0: 0a 80 00 04 bcs 200bfd0 <_Heap_Free+0xd0> <== NEVER TAKEN 200bfc4: 94 10 20 00 clr %o2 200bfc8: 80 a2 40 03 cmp %o1, %g3 200bfcc: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 200bfd0: 80 a2 a0 00 cmp %o2, 0 200bfd4: 02 80 00 44 be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bfd8: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200bfdc: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200bfe0: 80 8b 20 01 btst 1, %o4 200bfe4: 02 80 00 40 be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN 200bfe8: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200bfec: 22 80 00 0f be,a 200c028 <_Heap_Free+0x128> 200bff0: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 200bff4: 88 00 80 04 add %g2, %g4, %g4 200bff8: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200bffc: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 200c000: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 200c004: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 200c008: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c00c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 200c010: 82 00 7f ff add %g1, -1, %g1 200c014: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c018: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c01c: 82 13 60 01 or %o5, 1, %g1 200c020: 10 80 00 27 b 200c0bc <_Heap_Free+0x1bc> 200c024: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c028: 88 13 60 01 or %o5, 1, %g4 200c02c: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c030: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 200c034: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c038: 86 08 ff fe and %g3, -2, %g3 200c03c: 10 80 00 20 b 200c0bc <_Heap_Free+0x1bc> 200c040: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c044: 22 80 00 0d be,a 200c078 <_Heap_Free+0x178> 200c048: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 200c04c: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200c050: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 200c054: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 200c058: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 200c05c: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 200c060: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 200c064: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c068: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c06c: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c070: 10 80 00 13 b 200c0bc <_Heap_Free+0x1bc> 200c074: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c078: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c07c: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c080: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c084: 86 10 a0 01 or %g2, 1, %g3 200c088: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c08c: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 200c090: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c094: 86 08 ff fe and %g3, -2, %g3 200c098: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c09c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 200c0a0: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c0a4: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c0a8: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c0ac: 80 a0 c0 01 cmp %g3, %g1 200c0b0: 1a 80 00 03 bcc 200c0bc <_Heap_Free+0x1bc> 200c0b4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c0b8: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 200c0bc: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 200c0c0: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c0c4: 82 00 7f ff add %g1, -1, %g1 200c0c8: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 200c0cc: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 200c0d0: 82 00 60 01 inc %g1 200c0d4: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200c0d8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 200c0dc: 84 00 40 02 add %g1, %g2, %g2 200c0e0: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 200c0e4: 81 c7 e0 08 ret 200c0e8: 81 e8 00 00 restore =============================================================================== 020131cc <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 20131cc: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20131d0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 20131d4: 7f ff f9 6f call 2011790 <.urem> 20131d8: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 20131dc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20131e0: a2 06 7f f8 add %i1, -8, %l1 20131e4: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 20131e8: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20131ec: 80 a2 00 02 cmp %o0, %g2 20131f0: 0a 80 00 05 bcs 2013204 <_Heap_Size_of_alloc_area+0x38> 20131f4: 82 10 20 00 clr %g1 20131f8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 20131fc: 80 a0 40 08 cmp %g1, %o0 2013200: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 2013204: 80 a0 60 00 cmp %g1, 0 2013208: 02 80 00 15 be 201325c <_Heap_Size_of_alloc_area+0x90> 201320c: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2013210: e2 02 20 04 ld [ %o0 + 4 ], %l1 2013214: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2013218: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 201321c: 80 a4 40 02 cmp %l1, %g2 2013220: 0a 80 00 05 bcs 2013234 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 2013224: 82 10 20 00 clr %g1 2013228: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 201322c: 80 a0 40 11 cmp %g1, %l1 2013230: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 2013234: 80 a0 60 00 cmp %g1, 0 2013238: 02 80 00 09 be 201325c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 201323c: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2013240: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2013244: 80 88 60 01 btst 1, %g1 2013248: 02 80 00 05 be 201325c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 201324c: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; return true; 2013250: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; 2013254: a2 04 60 04 add %l1, 4, %l1 2013258: e2 26 80 00 st %l1, [ %i2 ] return true; } 201325c: 81 c7 e0 08 ret 2013260: 81 e8 00 00 restore =============================================================================== 02008334 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008334: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008338: 23 00 80 20 sethi %hi(0x2008000), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 200833c: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 2008340: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 2008344: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 2008348: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 200834c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008350: 80 8e a0 ff btst 0xff, %i2 2008354: 02 80 00 04 be 2008364 <_Heap_Walk+0x30> 2008358: a2 14 62 e0 or %l1, 0x2e0, %l1 200835c: 23 00 80 20 sethi %hi(0x2008000), %l1 2008360: a2 14 62 e8 or %l1, 0x2e8, %l1 ! 20082e8 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008364: 03 00 80 5d sethi %hi(0x2017400), %g1 2008368: c2 00 63 3c ld [ %g1 + 0x33c ], %g1 ! 201773c <_System_state_Current> 200836c: 80 a0 60 03 cmp %g1, 3 2008370: 12 80 01 2d bne 2008824 <_Heap_Walk+0x4f0> 2008374: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008378: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200837c: da 04 20 18 ld [ %l0 + 0x18 ], %o5 2008380: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2008384: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008388: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 200838c: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 2008390: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008394: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 2008398: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 200839c: 90 10 00 19 mov %i1, %o0 20083a0: 92 10 20 00 clr %o1 20083a4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083a8: 96 10 00 12 mov %l2, %o3 20083ac: 94 12 a2 88 or %o2, 0x288, %o2 20083b0: 9f c4 40 00 call %l1 20083b4: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 20083b8: 80 a4 a0 00 cmp %l2, 0 20083bc: 12 80 00 07 bne 20083d8 <_Heap_Walk+0xa4> 20083c0: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 20083c4: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083c8: 90 10 00 19 mov %i1, %o0 20083cc: 92 10 20 01 mov 1, %o1 20083d0: 10 80 00 38 b 20084b0 <_Heap_Walk+0x17c> 20083d4: 94 12 a3 20 or %o2, 0x320, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 20083d8: 22 80 00 08 be,a 20083f8 <_Heap_Walk+0xc4> 20083dc: 90 10 00 14 mov %l4, %o0 (*printer)( 20083e0: 15 00 80 53 sethi %hi(0x2014c00), %o2 20083e4: 90 10 00 19 mov %i1, %o0 20083e8: 92 10 20 01 mov 1, %o1 20083ec: 94 12 a3 38 or %o2, 0x338, %o2 20083f0: 10 80 01 0b b 200881c <_Heap_Walk+0x4e8> 20083f4: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20083f8: 7f ff e5 b3 call 2001ac4 <.urem> 20083fc: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008400: 80 a2 20 00 cmp %o0, 0 2008404: 22 80 00 08 be,a 2008424 <_Heap_Walk+0xf0> 2008408: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 200840c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008410: 90 10 00 19 mov %i1, %o0 2008414: 92 10 20 01 mov 1, %o1 2008418: 94 12 a3 58 or %o2, 0x358, %o2 200841c: 10 80 01 00 b 200881c <_Heap_Walk+0x4e8> 2008420: 96 10 00 14 mov %l4, %o3 2008424: 7f ff e5 a8 call 2001ac4 <.urem> 2008428: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 200842c: 80 a2 20 00 cmp %o0, 0 2008430: 22 80 00 08 be,a 2008450 <_Heap_Walk+0x11c> 2008434: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008438: 15 00 80 53 sethi %hi(0x2014c00), %o2 200843c: 90 10 00 19 mov %i1, %o0 2008440: 92 10 20 01 mov 1, %o1 2008444: 94 12 a3 80 or %o2, 0x380, %o2 2008448: 10 80 00 f5 b 200881c <_Heap_Walk+0x4e8> 200844c: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2008450: 80 88 60 01 btst 1, %g1 2008454: 32 80 00 07 bne,a 2008470 <_Heap_Walk+0x13c> 2008458: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 200845c: 15 00 80 53 sethi %hi(0x2014c00), %o2 2008460: 90 10 00 19 mov %i1, %o0 2008464: 92 10 20 01 mov 1, %o1 2008468: 10 80 00 12 b 20084b0 <_Heap_Walk+0x17c> 200846c: 94 12 a3 b8 or %o2, 0x3b8, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008470: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008474: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008478: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 200847c: 80 88 60 01 btst 1, %g1 2008480: 12 80 00 07 bne 200849c <_Heap_Walk+0x168> 2008484: 80 a5 80 13 cmp %l6, %l3 (*printer)( 2008488: 15 00 80 53 sethi %hi(0x2014c00), %o2 200848c: 90 10 00 19 mov %i1, %o0 2008490: 92 10 20 01 mov 1, %o1 2008494: 10 80 00 07 b 20084b0 <_Heap_Walk+0x17c> 2008498: 94 12 a3 e8 or %o2, 0x3e8, %o2 ); return false; } if ( 200849c: 02 80 00 08 be 20084bc <_Heap_Walk+0x188> <== ALWAYS TAKEN 20084a0: 15 00 80 54 sethi %hi(0x2015000), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20084a4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20084a8: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 20084ac: 94 12 a0 00 mov %o2, %o2 <== NOT EXECUTED 20084b0: 9f c4 40 00 call %l1 20084b4: b0 10 20 00 clr %i0 20084b8: 30 80 00 db b,a 2008824 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 20084bc: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20084c0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 20084c4: ae 10 00 10 mov %l0, %l7 20084c8: 10 80 00 32 b 2008590 <_Heap_Walk+0x25c> 20084cc: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20084d0: 80 a0 80 1c cmp %g2, %i4 20084d4: 18 80 00 05 bgu 20084e8 <_Heap_Walk+0x1b4> 20084d8: 82 10 20 00 clr %g1 20084dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 20084e0: 80 a0 40 1c cmp %g1, %i4 20084e4: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 20084e8: 80 a0 60 00 cmp %g1, 0 20084ec: 32 80 00 08 bne,a 200850c <_Heap_Walk+0x1d8> 20084f0: 90 07 20 08 add %i4, 8, %o0 (*printer)( 20084f4: 15 00 80 54 sethi %hi(0x2015000), %o2 20084f8: 96 10 00 1c mov %i4, %o3 20084fc: 90 10 00 19 mov %i1, %o0 2008500: 92 10 20 01 mov 1, %o1 2008504: 10 80 00 c6 b 200881c <_Heap_Walk+0x4e8> 2008508: 94 12 a0 30 or %o2, 0x30, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200850c: 7f ff e5 6e call 2001ac4 <.urem> 2008510: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 2008514: 80 a2 20 00 cmp %o0, 0 2008518: 22 80 00 08 be,a 2008538 <_Heap_Walk+0x204> 200851c: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008520: 15 00 80 54 sethi %hi(0x2015000), %o2 2008524: 96 10 00 1c mov %i4, %o3 2008528: 90 10 00 19 mov %i1, %o0 200852c: 92 10 20 01 mov 1, %o1 2008530: 10 80 00 bb b 200881c <_Heap_Walk+0x4e8> 2008534: 94 12 a0 50 or %o2, 0x50, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008538: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 200853c: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008540: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008544: 80 88 60 01 btst 1, %g1 2008548: 22 80 00 08 be,a 2008568 <_Heap_Walk+0x234> 200854c: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 2008550: 15 00 80 54 sethi %hi(0x2015000), %o2 2008554: 96 10 00 1c mov %i4, %o3 2008558: 90 10 00 19 mov %i1, %o0 200855c: 92 10 20 01 mov 1, %o1 2008560: 10 80 00 af b 200881c <_Heap_Walk+0x4e8> 2008564: 94 12 a0 80 or %o2, 0x80, %o2 ); return false; } if ( free_block->prev != prev_block ) { 2008568: 80 a3 00 17 cmp %o4, %l7 200856c: 22 80 00 08 be,a 200858c <_Heap_Walk+0x258> 2008570: ae 10 00 1c mov %i4, %l7 (*printer)( 2008574: 15 00 80 54 sethi %hi(0x2015000), %o2 2008578: 96 10 00 1c mov %i4, %o3 200857c: 90 10 00 19 mov %i1, %o0 2008580: 92 10 20 01 mov 1, %o1 2008584: 10 80 00 49 b 20086a8 <_Heap_Walk+0x374> 2008588: 94 12 a0 a0 or %o2, 0xa0, %o2 return false; } prev_block = free_block; free_block = free_block->next; 200858c: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008590: 80 a7 00 10 cmp %i4, %l0 2008594: 32 bf ff cf bne,a 20084d0 <_Heap_Walk+0x19c> 2008598: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 200859c: 35 00 80 54 sethi %hi(0x2015000), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20085a0: 31 00 80 54 sethi %hi(0x2015000), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20085a4: b4 16 a2 60 or %i2, 0x260, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20085a8: b0 16 22 48 or %i0, 0x248, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20085ac: 37 00 80 54 sethi %hi(0x2015000), %i3 block = next_block; } while ( block != first_block ); return true; } 20085b0: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20085b4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20085b8: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20085bc: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20085c0: 80 a0 c0 1d cmp %g3, %i5 20085c4: 18 80 00 05 bgu 20085d8 <_Heap_Walk+0x2a4> <== NEVER TAKEN 20085c8: 84 10 20 00 clr %g2 20085cc: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 20085d0: 80 a0 80 1d cmp %g2, %i5 20085d4: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 20085d8: 80 a0 a0 00 cmp %g2, 0 20085dc: 12 80 00 07 bne 20085f8 <_Heap_Walk+0x2c4> 20085e0: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 20085e4: 15 00 80 54 sethi %hi(0x2015000), %o2 20085e8: 90 10 00 19 mov %i1, %o0 20085ec: 92 10 20 01 mov 1, %o1 20085f0: 10 80 00 2c b 20086a0 <_Heap_Walk+0x36c> 20085f4: 94 12 a0 d8 or %o2, 0xd8, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 20085f8: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20085fc: c2 27 bf fc st %g1, [ %fp + -4 ] 2008600: b8 40 20 00 addx %g0, 0, %i4 2008604: 90 10 00 17 mov %l7, %o0 2008608: 7f ff e5 2f call 2001ac4 <.urem> 200860c: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008610: 80 a2 20 00 cmp %o0, 0 2008614: 02 80 00 0c be 2008644 <_Heap_Walk+0x310> 2008618: c2 07 bf fc ld [ %fp + -4 ], %g1 200861c: 80 8f 20 ff btst 0xff, %i4 2008620: 02 80 00 0a be 2008648 <_Heap_Walk+0x314> 2008624: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 2008628: 15 00 80 54 sethi %hi(0x2015000), %o2 200862c: 90 10 00 19 mov %i1, %o0 2008630: 92 10 20 01 mov 1, %o1 2008634: 94 12 a1 08 or %o2, 0x108, %o2 2008638: 96 10 00 16 mov %l6, %o3 200863c: 10 80 00 1b b 20086a8 <_Heap_Walk+0x374> 2008640: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008644: 80 a5 c0 14 cmp %l7, %l4 2008648: 1a 80 00 0d bcc 200867c <_Heap_Walk+0x348> 200864c: 80 a7 40 16 cmp %i5, %l6 2008650: 80 8f 20 ff btst 0xff, %i4 2008654: 02 80 00 0a be 200867c <_Heap_Walk+0x348> <== NEVER TAKEN 2008658: 80 a7 40 16 cmp %i5, %l6 (*printer)( 200865c: 15 00 80 54 sethi %hi(0x2015000), %o2 2008660: 90 10 00 19 mov %i1, %o0 2008664: 92 10 20 01 mov 1, %o1 2008668: 94 12 a1 38 or %o2, 0x138, %o2 200866c: 96 10 00 16 mov %l6, %o3 2008670: 98 10 00 17 mov %l7, %o4 2008674: 10 80 00 3f b 2008770 <_Heap_Walk+0x43c> 2008678: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 200867c: 38 80 00 0e bgu,a 20086b4 <_Heap_Walk+0x380> 2008680: b8 08 60 01 and %g1, 1, %i4 2008684: 80 8f 20 ff btst 0xff, %i4 2008688: 02 80 00 0b be 20086b4 <_Heap_Walk+0x380> 200868c: b8 08 60 01 and %g1, 1, %i4 (*printer)( 2008690: 15 00 80 54 sethi %hi(0x2015000), %o2 2008694: 90 10 00 19 mov %i1, %o0 2008698: 92 10 20 01 mov 1, %o1 200869c: 94 12 a1 68 or %o2, 0x168, %o2 20086a0: 96 10 00 16 mov %l6, %o3 20086a4: 98 10 00 1d mov %i5, %o4 20086a8: 9f c4 40 00 call %l1 20086ac: b0 10 20 00 clr %i0 20086b0: 30 80 00 5d b,a 2008824 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20086b4: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 20086b8: 80 88 60 01 btst 1, %g1 20086bc: 12 80 00 3f bne 20087b8 <_Heap_Walk+0x484> 20086c0: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 20086c4: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20086c8: c2 04 20 08 ld [ %l0 + 8 ], %g1 20086cc: 05 00 80 53 sethi %hi(0x2014c00), %g2 block = next_block; } while ( block != first_block ); return true; } 20086d0: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20086d4: 80 a3 40 01 cmp %o5, %g1 20086d8: 02 80 00 07 be 20086f4 <_Heap_Walk+0x3c0> 20086dc: 86 10 a2 48 or %g2, 0x248, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 20086e0: 80 a3 40 10 cmp %o5, %l0 20086e4: 12 80 00 04 bne 20086f4 <_Heap_Walk+0x3c0> 20086e8: 86 16 e2 10 or %i3, 0x210, %g3 20086ec: 19 00 80 53 sethi %hi(0x2014c00), %o4 20086f0: 86 13 22 58 or %o4, 0x258, %g3 ! 2014e58 block->next, block->next == last_free_block ? 20086f4: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 20086f8: 19 00 80 53 sethi %hi(0x2014c00), %o4 20086fc: 80 a0 80 04 cmp %g2, %g4 2008700: 02 80 00 07 be 200871c <_Heap_Walk+0x3e8> 2008704: 82 13 22 68 or %o4, 0x268, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008708: 80 a0 80 10 cmp %g2, %l0 200870c: 12 80 00 04 bne 200871c <_Heap_Walk+0x3e8> 2008710: 82 16 e2 10 or %i3, 0x210, %g1 2008714: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008718: 82 11 22 78 or %g4, 0x278, %g1 ! 2014e78 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200871c: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008720: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 2008724: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 2008728: 90 10 00 19 mov %i1, %o0 200872c: 92 10 20 00 clr %o1 2008730: 15 00 80 54 sethi %hi(0x2015000), %o2 2008734: 96 10 00 16 mov %l6, %o3 2008738: 94 12 a1 a0 or %o2, 0x1a0, %o2 200873c: 9f c4 40 00 call %l1 2008740: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008744: da 07 40 00 ld [ %i5 ], %o5 2008748: 80 a5 c0 0d cmp %l7, %o5 200874c: 02 80 00 0c be 200877c <_Heap_Walk+0x448> 2008750: 80 a7 20 00 cmp %i4, 0 (*printer)( 2008754: 15 00 80 54 sethi %hi(0x2015000), %o2 2008758: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 200875c: 90 10 00 19 mov %i1, %o0 2008760: 92 10 20 01 mov 1, %o1 2008764: 94 12 a1 d8 or %o2, 0x1d8, %o2 2008768: 96 10 00 16 mov %l6, %o3 200876c: 98 10 00 17 mov %l7, %o4 2008770: 9f c4 40 00 call %l1 2008774: b0 10 20 00 clr %i0 2008778: 30 80 00 2b b,a 2008824 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 200877c: 32 80 00 0a bne,a 20087a4 <_Heap_Walk+0x470> 2008780: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 2008784: 15 00 80 54 sethi %hi(0x2015000), %o2 2008788: 90 10 00 19 mov %i1, %o0 200878c: 92 10 20 01 mov 1, %o1 2008790: 10 80 00 22 b 2008818 <_Heap_Walk+0x4e4> 2008794: 94 12 a2 18 or %o2, 0x218, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 2008798: 02 80 00 19 be 20087fc <_Heap_Walk+0x4c8> 200879c: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 20087a0: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 20087a4: 80 a0 40 10 cmp %g1, %l0 20087a8: 12 bf ff fc bne 2008798 <_Heap_Walk+0x464> 20087ac: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 20087b0: 10 80 00 17 b 200880c <_Heap_Walk+0x4d8> 20087b4: 15 00 80 54 sethi %hi(0x2015000), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 20087b8: 22 80 00 0a be,a 20087e0 <_Heap_Walk+0x4ac> 20087bc: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 20087c0: 90 10 00 19 mov %i1, %o0 20087c4: 92 10 20 00 clr %o1 20087c8: 94 10 00 18 mov %i0, %o2 20087cc: 96 10 00 16 mov %l6, %o3 20087d0: 9f c4 40 00 call %l1 20087d4: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20087d8: 10 80 00 09 b 20087fc <_Heap_Walk+0x4c8> 20087dc: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20087e0: 90 10 00 19 mov %i1, %o0 20087e4: 92 10 20 00 clr %o1 20087e8: 94 10 00 1a mov %i2, %o2 20087ec: 96 10 00 16 mov %l6, %o3 20087f0: 9f c4 40 00 call %l1 20087f4: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20087f8: 80 a7 40 13 cmp %i5, %l3 20087fc: 32 bf ff 6d bne,a 20085b0 <_Heap_Walk+0x27c> 2008800: ac 10 00 1d mov %i5, %l6 return true; } 2008804: 81 c7 e0 08 ret 2008808: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 200880c: 90 10 00 19 mov %i1, %o0 2008810: 92 10 20 01 mov 1, %o1 2008814: 94 12 a2 88 or %o2, 0x288, %o2 2008818: 96 10 00 16 mov %l6, %o3 200881c: 9f c4 40 00 call %l1 2008820: b0 10 20 00 clr %i0 2008824: 81 c7 e0 08 ret 2008828: 81 e8 00 00 restore =============================================================================== 0200757c <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 200757c: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007580: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007584: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007588: 80 a0 60 00 cmp %g1, 0 200758c: 02 80 00 20 be 200760c <_Objects_Allocate+0x90> <== NEVER TAKEN 2007590: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007594: a2 04 20 20 add %l0, 0x20, %l1 2007598: 7f ff fd 86 call 2006bb0 <_Chain_Get> 200759c: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 20075a0: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 20075a4: 80 a0 60 00 cmp %g1, 0 20075a8: 02 80 00 19 be 200760c <_Objects_Allocate+0x90> 20075ac: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 20075b0: 80 a2 20 00 cmp %o0, 0 20075b4: 32 80 00 0a bne,a 20075dc <_Objects_Allocate+0x60> 20075b8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 20075bc: 40 00 00 1e call 2007634 <_Objects_Extend_information> 20075c0: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20075c4: 7f ff fd 7b call 2006bb0 <_Chain_Get> 20075c8: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 20075cc: b0 92 20 00 orcc %o0, 0, %i0 20075d0: 02 80 00 0f be 200760c <_Objects_Allocate+0x90> 20075d4: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 20075d8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 20075dc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 20075e0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 20075e4: 40 00 27 bf call 20114e0 <.udiv> 20075e8: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 20075ec: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 20075f0: 91 2a 20 02 sll %o0, 2, %o0 20075f4: c4 00 40 08 ld [ %g1 + %o0 ], %g2 20075f8: 84 00 bf ff add %g2, -1, %g2 20075fc: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 2007600: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 2007604: 82 00 7f ff add %g1, -1, %g1 2007608: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 200760c: 81 c7 e0 08 ret 2007610: 81 e8 00 00 restore =============================================================================== 02007990 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint32_t the_class ) { 2007990: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007994: 80 a6 60 00 cmp %i1, 0 2007998: 02 80 00 17 be 20079f4 <_Objects_Get_information+0x64> 200799c: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 20079a0: 40 00 11 d3 call 200c0ec <_Objects_API_maximum_class> 20079a4: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 20079a8: 80 a2 20 00 cmp %o0, 0 20079ac: 02 80 00 12 be 20079f4 <_Objects_Get_information+0x64> 20079b0: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20079b4: 18 80 00 10 bgu 20079f4 <_Objects_Get_information+0x64> 20079b8: 03 00 80 53 sethi %hi(0x2014c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20079bc: b1 2e 20 02 sll %i0, 2, %i0 20079c0: 82 10 62 8c or %g1, 0x28c, %g1 20079c4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20079c8: 80 a0 60 00 cmp %g1, 0 20079cc: 02 80 00 0a be 20079f4 <_Objects_Get_information+0x64> <== NEVER TAKEN 20079d0: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20079d4: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 20079d8: 80 a4 20 00 cmp %l0, 0 20079dc: 02 80 00 06 be 20079f4 <_Objects_Get_information+0x64> <== NEVER TAKEN 20079e0: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 20079e4: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 20079e8: 80 a0 00 01 cmp %g0, %g1 20079ec: 82 60 20 00 subx %g0, 0, %g1 20079f0: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 20079f4: 81 c7 e0 08 ret 20079f8: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02019294 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019294: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 2019298: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201929c: 82 22 40 01 sub %o1, %g1, %g1 20192a0: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 20192a4: 80 a0 80 01 cmp %g2, %g1 20192a8: 0a 80 00 09 bcs 20192cc <_Objects_Get_no_protection+0x38> 20192ac: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 20192b0: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 20192b4: d0 00 80 01 ld [ %g2 + %g1 ], %o0 20192b8: 80 a2 20 00 cmp %o0, 0 20192bc: 02 80 00 05 be 20192d0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 20192c0: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 20192c4: 81 c3 e0 08 retl 20192c8: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 20192cc: 82 10 20 01 mov 1, %g1 return NULL; 20192d0: 90 10 20 00 clr %o0 } 20192d4: 81 c3 e0 08 retl 20192d8: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 0200925c <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 200925c: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009260: 92 96 20 00 orcc %i0, 0, %o1 2009264: 12 80 00 06 bne 200927c <_Objects_Id_to_name+0x20> 2009268: 83 32 60 18 srl %o1, 0x18, %g1 200926c: 03 00 80 74 sethi %hi(0x201d000), %g1 2009270: c2 00 62 68 ld [ %g1 + 0x268 ], %g1 ! 201d268 <_Per_CPU_Information+0xc> 2009274: d2 00 60 08 ld [ %g1 + 8 ], %o1 2009278: 83 32 60 18 srl %o1, 0x18, %g1 200927c: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2009280: 84 00 7f ff add %g1, -1, %g2 2009284: 80 a0 a0 02 cmp %g2, 2 2009288: 18 80 00 12 bgu 20092d0 <_Objects_Id_to_name+0x74> 200928c: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2009290: 10 80 00 12 b 20092d8 <_Objects_Id_to_name+0x7c> 2009294: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2009298: 85 28 a0 02 sll %g2, 2, %g2 200929c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 20092a0: 80 a2 20 00 cmp %o0, 0 20092a4: 02 80 00 0b be 20092d0 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 20092a8: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 20092ac: 7f ff ff cf call 20091e8 <_Objects_Get> 20092b0: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 20092b4: 80 a2 20 00 cmp %o0, 0 20092b8: 02 80 00 06 be 20092d0 <_Objects_Id_to_name+0x74> 20092bc: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 20092c0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 20092c4: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 20092c8: 40 00 02 54 call 2009c18 <_Thread_Enable_dispatch> 20092cc: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 20092d0: 81 c7 e0 08 ret 20092d4: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20092d8: 05 00 80 73 sethi %hi(0x201cc00), %g2 20092dc: 84 10 a3 5c or %g2, 0x35c, %g2 ! 201cf5c <_Objects_Information_table> 20092e0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20092e4: 80 a0 60 00 cmp %g1, 0 20092e8: 12 bf ff ec bne 2009298 <_Objects_Id_to_name+0x3c> <== ALWAYS TAKEN 20092ec: 85 32 60 1b srl %o1, 0x1b, %g2 20092f0: 30 bf ff f8 b,a 20092d0 <_Objects_Id_to_name+0x74> <== NOT EXECUTED =============================================================================== 02007ae4 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007ae4: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007ae8: 85 2f 20 10 sll %i4, 0x10, %g2 2007aec: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007af0: 07 00 80 53 sethi %hi(0x2014c00), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2007af4: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007af8: 86 10 e2 8c or %g3, 0x28c, %g3 2007afc: 85 2e 60 02 sll %i1, 2, %g2 2007b00: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 2007b04: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; 2007b08: f4 36 20 04 sth %i2, [ %i0 + 4 ] information->size = size; information->local_table = 0; 2007b0c: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 2007b10: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 2007b14: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 2007b18: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 2007b1c: c0 36 20 10 clrh [ %i0 + 0x10 ] /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007b20: 85 2e a0 02 sll %i2, 2, %g2 , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2007b24: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2007b28: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2007b2c: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 2007b30: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2007b34: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2007b38: 80 a0 a0 00 cmp %g2, 0 2007b3c: 02 80 00 09 be 2007b60 <_Objects_Initialize_information+0x7c> 2007b40: b6 2e c0 03 andn %i3, %g3, %i3 2007b44: 80 a6 e0 00 cmp %i3, 0 2007b48: 12 80 00 07 bne 2007b64 <_Objects_Initialize_information+0x80> 2007b4c: 05 00 80 52 sethi %hi(0x2014800), %g2 _Internal_error_Occurred( 2007b50: 90 10 20 00 clr %o0 2007b54: 92 10 20 01 mov 1, %o1 2007b58: 7f ff fe 5d call 20074cc <_Internal_error_Occurred> 2007b5c: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 2007b60: 05 00 80 52 sethi %hi(0x2014800), %g2 2007b64: 84 10 a3 d4 or %g2, 0x3d4, %g2 ! 2014bd4 2007b68: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007b6c: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007b70: 80 a0 00 1b cmp %g0, %i3 2007b74: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007b78: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007b7c: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 2007b80: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 2007b84: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007b88: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007b8c: b4 16 80 02 or %i2, %g2, %i2 /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 2007b90: 80 88 60 03 btst 3, %g1 2007b94: 02 80 00 04 be 2007ba4 <_Objects_Initialize_information+0xc0><== ALWAYS TAKEN 2007b98: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 2007b9c: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 2007ba0: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 2007ba4: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007ba8: 82 06 20 24 add %i0, 0x24, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 2007bac: c0 26 20 24 clr [ %i0 + 0x24 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2007bb0: c2 26 20 20 st %g1, [ %i0 + 0x20 ] _Chain_Initialize_empty( &information->Inactive ); 2007bb4: 82 06 20 20 add %i0, 0x20, %g1 /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 2007bb8: 80 a6 e0 00 cmp %i3, 0 2007bbc: 02 80 00 04 be 2007bcc <_Objects_Initialize_information+0xe8> 2007bc0: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 2007bc4: 7f ff fe 9c call 2007634 <_Objects_Extend_information> 2007bc8: 81 e8 00 00 restore 2007bcc: 81 c7 e0 08 ret 2007bd0: 81 e8 00 00 restore =============================================================================== 0200b8c4 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200b8c4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200b8c8: e0 06 21 60 ld [ %i0 + 0x160 ], %l0 if ( !api ) 200b8cc: 80 a4 20 00 cmp %l0, 0 200b8d0: 02 80 00 1d be 200b944 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 200b8d4: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200b8d8: 7f ff da 3a call 20021c0 200b8dc: 01 00 00 00 nop signal_set = asr->signals_posted; 200b8e0: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 200b8e4: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200b8e8: 7f ff da 3a call 20021d0 200b8ec: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200b8f0: 80 a4 e0 00 cmp %l3, 0 200b8f4: 02 80 00 14 be 200b944 <_RTEMS_tasks_Post_switch_extension+0x80> 200b8f8: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 200b8fc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b900: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200b904: 82 00 60 01 inc %g1 200b908: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b90c: 94 10 00 11 mov %l1, %o2 200b910: 25 00 00 3f sethi %hi(0xfc00), %l2 200b914: 40 00 07 9c call 200d784 200b918: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 200b91c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200b920: 9f c0 40 00 call %g1 200b924: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 200b928: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b92c: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b930: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b934: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200b938: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200b93c: 40 00 07 92 call 200d784 200b940: 94 10 00 11 mov %l1, %o2 200b944: 81 c7 e0 08 ret 200b948: 81 e8 00 00 restore =============================================================================== 020078d0 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 20078d0: 9d e3 bf 98 save %sp, -104, %sp 20078d4: 11 00 80 75 sethi %hi(0x201d400), %o0 20078d8: 92 10 00 18 mov %i0, %o1 20078dc: 90 12 20 d4 or %o0, 0xd4, %o0 20078e0: 40 00 07 cb call 200980c <_Objects_Get> 20078e4: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20078e8: c2 07 bf fc ld [ %fp + -4 ], %g1 20078ec: 80 a0 60 00 cmp %g1, 0 20078f0: 12 80 00 24 bne 2007980 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 20078f4: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 20078f8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 20078fc: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007900: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007904: 80 88 80 01 btst %g2, %g1 2007908: 22 80 00 0b be,a 2007934 <_Rate_monotonic_Timeout+0x64> 200790c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007910: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007914: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007918: 80 a0 80 01 cmp %g2, %g1 200791c: 32 80 00 06 bne,a 2007934 <_Rate_monotonic_Timeout+0x64> 2007920: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007924: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2007928: 40 00 09 1a call 2009d90 <_Thread_Clear_state> 200792c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 2007930: 30 80 00 06 b,a 2007948 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007934: 80 a0 60 01 cmp %g1, 1 2007938: 12 80 00 0d bne 200796c <_Rate_monotonic_Timeout+0x9c> 200793c: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007940: 82 10 20 03 mov 3, %g1 2007944: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007948: 7f ff fe 65 call 20072dc <_Rate_monotonic_Initiate_statistics> 200794c: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007950: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007954: 11 00 80 75 sethi %hi(0x201d400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007958: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200795c: 90 12 23 10 or %o0, 0x310, %o0 2007960: 40 00 0f 22 call 200b5e8 <_Watchdog_Insert> 2007964: 92 04 20 10 add %l0, 0x10, %o1 2007968: 30 80 00 02 b,a 2007970 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 200796c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2007970: 03 00 80 75 sethi %hi(0x201d400), %g1 2007974: c4 00 62 48 ld [ %g1 + 0x248 ], %g2 ! 201d648 <_Thread_Dispatch_disable_level> 2007978: 84 00 bf ff add %g2, -1, %g2 200797c: c4 20 62 48 st %g2, [ %g1 + 0x248 ] 2007980: 81 c7 e0 08 ret 2007984: 81 e8 00 00 restore =============================================================================== 020072e0 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20072e0: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20072e4: 03 00 80 75 sethi %hi(0x201d400), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20072e8: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20072ec: d2 00 60 84 ld [ %g1 + 0x84 ], %o1 if ((!the_tod) || 20072f0: 80 a4 20 00 cmp %l0, 0 20072f4: 02 80 00 2b be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN 20072f8: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 20072fc: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007300: 40 00 47 af call 20191bc <.udiv> 2007304: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007308: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200730c: 80 a0 40 08 cmp %g1, %o0 2007310: 1a 80 00 24 bcc 20073a0 <_TOD_Validate+0xc0> 2007314: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 2007318: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 200731c: 80 a0 60 3b cmp %g1, 0x3b 2007320: 18 80 00 20 bgu 20073a0 <_TOD_Validate+0xc0> 2007324: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007328: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 200732c: 80 a0 60 3b cmp %g1, 0x3b 2007330: 18 80 00 1c bgu 20073a0 <_TOD_Validate+0xc0> 2007334: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007338: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200733c: 80 a0 60 17 cmp %g1, 0x17 2007340: 18 80 00 18 bgu 20073a0 <_TOD_Validate+0xc0> 2007344: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2007348: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 200734c: 80 a0 60 00 cmp %g1, 0 2007350: 02 80 00 14 be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007354: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 2007358: 18 80 00 12 bgu 20073a0 <_TOD_Validate+0xc0> 200735c: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007360: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007364: 80 a0 e7 c3 cmp %g3, 0x7c3 2007368: 08 80 00 0e bleu 20073a0 <_TOD_Validate+0xc0> 200736c: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007370: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007374: 80 a0 a0 00 cmp %g2, 0 2007378: 02 80 00 0a be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN 200737c: 80 88 e0 03 btst 3, %g3 2007380: 07 00 80 70 sethi %hi(0x201c000), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007384: 12 80 00 03 bne 2007390 <_TOD_Validate+0xb0> 2007388: 86 10 e1 60 or %g3, 0x160, %g3 ! 201c160 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200738c: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 2007390: 83 28 60 02 sll %g1, 2, %g1 2007394: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 2007398: 80 a0 40 02 cmp %g1, %g2 200739c: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 20073a0: 81 c7 e0 08 ret 20073a4: 81 e8 00 00 restore =============================================================================== 02007e10 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2007e10: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 2007e14: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2007e18: 40 00 04 36 call 2008ef0 <_Thread_Set_transient> 2007e1c: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2007e20: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007e24: 80 a0 40 19 cmp %g1, %i1 2007e28: 02 80 00 05 be 2007e3c <_Thread_Change_priority+0x2c> 2007e2c: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 2007e30: 90 10 00 18 mov %i0, %o0 2007e34: 40 00 03 b2 call 2008cfc <_Thread_Set_priority> 2007e38: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2007e3c: 7f ff e8 e1 call 20021c0 2007e40: 01 00 00 00 nop 2007e44: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2007e48: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 2007e4c: 80 a6 60 04 cmp %i1, 4 2007e50: 02 80 00 10 be 2007e90 <_Thread_Change_priority+0x80> 2007e54: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2007e58: 80 a4 60 00 cmp %l1, 0 2007e5c: 12 80 00 03 bne 2007e68 <_Thread_Change_priority+0x58> <== NEVER TAKEN 2007e60: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2007e64: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 2007e68: 7f ff e8 da call 20021d0 2007e6c: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2007e70: 03 00 00 ef sethi %hi(0x3bc00), %g1 2007e74: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2007e78: 80 8e 40 01 btst %i1, %g1 2007e7c: 02 80 00 5c be 2007fec <_Thread_Change_priority+0x1dc> 2007e80: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2007e84: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2007e88: 40 00 03 70 call 2008c48 <_Thread_queue_Requeue> 2007e8c: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2007e90: 80 a4 60 00 cmp %l1, 0 2007e94: 12 80 00 1c bne 2007f04 <_Thread_Change_priority+0xf4> <== NEVER TAKEN 2007e98: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2007e9c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2007ea0: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2007ea4: c6 10 40 00 lduh [ %g1 ], %g3 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2007ea8: c0 24 20 10 clr [ %l0 + 0x10 ] 2007eac: 84 10 c0 02 or %g3, %g2, %g2 2007eb0: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2007eb4: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007eb8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2007ebc: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2 _Priority_Add_to_bit_map( &the_thread->Priority_map ); if ( prepend_it ) 2007ec0: 80 8e a0 ff btst 0xff, %i2 2007ec4: 84 10 c0 02 or %g3, %g2, %g2 2007ec8: c4 30 63 cc sth %g2, [ %g1 + 0x3cc ] 2007ecc: 02 80 00 08 be 2007eec <_Thread_Change_priority+0xdc> 2007ed0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2007ed4: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2007ed8: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2007edc: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 2007ee0: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 2007ee4: 10 80 00 08 b 2007f04 <_Thread_Change_priority+0xf4> 2007ee8: e0 20 a0 04 st %l0, [ %g2 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2007eec: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 2007ef0: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 2007ef4: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 2007ef8: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 2007efc: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 2007f00: c4 24 20 04 st %g2, [ %l0 + 4 ] _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level ); 2007f04: 7f ff e8 b3 call 20021d0 2007f08: 90 10 00 18 mov %i0, %o0 2007f0c: 7f ff e8 ad call 20021c0 2007f10: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_Get_highest() ].first; 2007f14: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007f18: da 00 62 84 ld [ %g1 + 0x284 ], %o5 ! 2014e84 <_Thread_Ready_chain> RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void ) { Priority_Bit_map_control minor; Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2007f1c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2007f20: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2 ! 2014fcc <_Priority_Major_bit_map> 2007f24: 03 00 80 4e sethi %hi(0x2013800), %g1 2007f28: 85 28 a0 10 sll %g2, 0x10, %g2 2007f2c: 87 30 a0 10 srl %g2, 0x10, %g3 2007f30: 80 a0 e0 ff cmp %g3, 0xff 2007f34: 18 80 00 05 bgu 2007f48 <_Thread_Change_priority+0x138> 2007f38: 82 10 63 30 or %g1, 0x330, %g1 2007f3c: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 2007f40: 10 80 00 04 b 2007f50 <_Thread_Change_priority+0x140> 2007f44: 84 00 a0 08 add %g2, 8, %g2 2007f48: 85 30 a0 18 srl %g2, 0x18, %g2 2007f4c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2007f50: 83 28 a0 10 sll %g2, 0x10, %g1 2007f54: 07 00 80 54 sethi %hi(0x2015000), %g3 2007f58: 83 30 60 0f srl %g1, 0xf, %g1 2007f5c: 86 10 e0 40 or %g3, 0x40, %g3 2007f60: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 2007f64: 03 00 80 4e sethi %hi(0x2013800), %g1 2007f68: 87 28 e0 10 sll %g3, 0x10, %g3 2007f6c: 89 30 e0 10 srl %g3, 0x10, %g4 2007f70: 80 a1 20 ff cmp %g4, 0xff 2007f74: 18 80 00 05 bgu 2007f88 <_Thread_Change_priority+0x178> 2007f78: 82 10 63 30 or %g1, 0x330, %g1 2007f7c: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 2007f80: 10 80 00 04 b 2007f90 <_Thread_Change_priority+0x180> 2007f84: 82 00 60 08 add %g1, 8, %g1 2007f88: 87 30 e0 18 srl %g3, 0x18, %g3 2007f8c: c2 08 40 03 ldub [ %g1 + %g3 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 2007f90: 83 28 60 10 sll %g1, 0x10, %g1 2007f94: 83 30 60 10 srl %g1, 0x10, %g1 Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2007f98: 85 28 a0 10 sll %g2, 0x10, %g2 2007f9c: 85 30 a0 0c srl %g2, 0xc, %g2 2007fa0: 84 00 40 02 add %g1, %g2, %g2 2007fa4: 83 28 a0 02 sll %g2, 2, %g1 2007fa8: 85 28 a0 04 sll %g2, 4, %g2 2007fac: 84 20 80 01 sub %g2, %g1, %g2 * ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) 2007fb0: c6 03 40 02 ld [ %o5 + %g2 ], %g3 2007fb4: 03 00 80 54 sethi %hi(0x2015000), %g1 2007fb8: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information> * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2007fbc: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() && 2007fc0: 80 a0 80 03 cmp %g2, %g3 2007fc4: 02 80 00 08 be 2007fe4 <_Thread_Change_priority+0x1d4> 2007fc8: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 2007fcc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2007fd0: 80 a0 a0 00 cmp %g2, 0 2007fd4: 02 80 00 04 be 2007fe4 <_Thread_Change_priority+0x1d4> 2007fd8: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Context_Switch_necessary = true; 2007fdc: 84 10 20 01 mov 1, %g2 ! 1 2007fe0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2007fe4: 7f ff e8 7b call 20021d0 2007fe8: 81 e8 00 00 restore 2007fec: 81 c7 e0 08 ret 2007ff0: 81 e8 00 00 restore =============================================================================== 02007ff4 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) { 2007ff4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 2007ff8: 7f ff e8 72 call 20021c0 2007ffc: a0 10 00 18 mov %i0, %l0 2008000: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 2008004: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & state ) { 2008008: 80 8e 40 01 btst %i1, %g1 200800c: 02 80 00 2f be 20080c8 <_Thread_Clear_state+0xd4> 2008010: 01 00 00 00 nop RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear); 2008014: b2 28 40 19 andn %g1, %i1, %i1 current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) { 2008018: 80 a6 60 00 cmp %i1, 0 200801c: 12 80 00 2b bne 20080c8 <_Thread_Clear_state+0xd4> 2008020: f2 24 20 10 st %i1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2008024: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2008028: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 200802c: c6 10 40 00 lduh [ %g1 ], %g3 2008030: 84 10 c0 02 or %g3, %g2, %g2 2008034: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2008038: 03 00 80 53 sethi %hi(0x2014c00), %g1 200803c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 2008040: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2 2008044: 84 10 c0 02 or %g3, %g2, %g2 2008048: c4 30 63 cc sth %g2, [ %g1 + 0x3cc ] _Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 200804c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2008050: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 2008054: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 2008058: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 200805c: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 2008060: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 2008064: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 2008068: 7f ff e8 5a call 20021d0 200806c: 01 00 00 00 nop 2008070: 7f ff e8 54 call 20021c0 2008074: 01 00 00 00 nop * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 2008078: 03 00 80 54 sethi %hi(0x2015000), %g1 200807c: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information> 2008080: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008084: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 2008088: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 200808c: 80 a0 80 03 cmp %g2, %g3 2008090: 1a 80 00 0e bcc 20080c8 <_Thread_Clear_state+0xd4> 2008094: 01 00 00 00 nop _Thread_Heir = the_thread; 2008098: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200809c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 20080a0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 20080a4: 80 a0 60 00 cmp %g1, 0 20080a8: 32 80 00 05 bne,a 20080bc <_Thread_Clear_state+0xc8> 20080ac: 84 10 20 01 mov 1, %g2 20080b0: 80 a0 a0 00 cmp %g2, 0 20080b4: 12 80 00 05 bne 20080c8 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN 20080b8: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Context_Switch_necessary = true; 20080bc: 03 00 80 54 sethi %hi(0x2015000), %g1 20080c0: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information> 20080c4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 20080c8: 7f ff e8 42 call 20021d0 20080cc: 81 e8 00 00 restore =============================================================================== 0200827c <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 200827c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008280: 90 10 00 18 mov %i0, %o0 2008284: 40 00 00 6e call 200843c <_Thread_Get> 2008288: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200828c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008290: 80 a0 60 00 cmp %g1, 0 2008294: 12 80 00 08 bne 20082b4 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 2008298: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 200829c: 7f ff ff 56 call 2007ff4 <_Thread_Clear_state> 20082a0: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 20082a4: 03 00 80 53 sethi %hi(0x2014c00), %g1 20082a8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 20082ac: 84 00 bf ff add %g2, -1, %g2 20082b0: c4 20 63 28 st %g2, [ %g1 + 0x328 ] 20082b4: 81 c7 e0 08 ret 20082b8: 81 e8 00 00 restore =============================================================================== 020082bc <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 20082bc: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 20082c0: 2d 00 80 54 sethi %hi(0x2015000), %l6 20082c4: 82 15 a1 8c or %l6, 0x18c, %g1 ! 201518c <_Per_CPU_Information> _ISR_Disable( level ); 20082c8: 7f ff e7 be call 20021c0 20082cc: e0 00 60 0c ld [ %g1 + 0xc ], %l0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20082d0: 25 00 80 53 sethi %hi(0x2014c00), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 20082d4: 37 00 80 53 sethi %hi(0x2014c00), %i3 20082d8: b8 10 20 01 mov 1, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 20082dc: 3b 00 80 53 sethi %hi(0x2014c00), %i5 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 20082e0: aa 07 bf f8 add %fp, -8, %l5 _Timestamp_Subtract( 20082e4: a8 07 bf f0 add %fp, -16, %l4 20082e8: a4 14 a3 dc or %l2, 0x3dc, %l2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20082ec: 2f 00 80 53 sethi %hi(0x2014c00), %l7 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { 20082f0: 10 80 00 39 b 20083d4 <_Thread_Dispatch+0x118> 20082f4: 27 00 80 53 sethi %hi(0x2014c00), %l3 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 20082f8: f8 26 e3 28 st %i4, [ %i3 + 0x328 ] _Context_Switch_necessary = false; 20082fc: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008300: 80 a4 40 10 cmp %l1, %l0 2008304: 02 80 00 39 be 20083e8 <_Thread_Dispatch+0x12c> 2008308: e2 20 60 0c st %l1, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 200830c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008310: 80 a0 60 01 cmp %g1, 1 2008314: 12 80 00 03 bne 2008320 <_Thread_Dispatch+0x64> 2008318: c2 07 62 88 ld [ %i5 + 0x288 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 200831c: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Enable( level ); 2008320: 7f ff e7 ac call 20021d0 2008324: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008328: 40 00 0e 68 call 200bcc8 <_TOD_Get_uptime> 200832c: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 2008330: 90 10 00 12 mov %l2, %o0 2008334: 92 10 00 15 mov %l5, %o1 2008338: 40 00 03 be call 2009230 <_Timespec_Subtract> 200833c: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008340: 90 04 20 84 add %l0, 0x84, %o0 2008344: 40 00 03 a2 call 20091cc <_Timespec_Add_to> 2008348: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 200834c: c2 07 bf f8 ld [ %fp + -8 ], %g1 2008350: c2 24 80 00 st %g1, [ %l2 ] 2008354: c2 07 bf fc ld [ %fp + -4 ], %g1 2008358: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 200835c: c2 05 e3 b0 ld [ %l7 + 0x3b0 ], %g1 2008360: 80 a0 60 00 cmp %g1, 0 2008364: 02 80 00 06 be 200837c <_Thread_Dispatch+0xc0> <== NEVER TAKEN 2008368: 90 10 00 10 mov %l0, %o0 executing->libc_reent = *_Thread_libc_reent; 200836c: c4 00 40 00 ld [ %g1 ], %g2 2008370: c4 24 21 5c st %g2, [ %l0 + 0x15c ] *_Thread_libc_reent = heir->libc_reent; 2008374: c4 04 61 5c ld [ %l1 + 0x15c ], %g2 2008378: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 200837c: 40 00 04 5d call 20094f0 <_User_extensions_Thread_switch> 2008380: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008384: 90 04 20 d0 add %l0, 0xd0, %o0 2008388: 40 00 05 86 call 20099a0 <_CPU_Context_switch> 200838c: 92 04 60 d0 add %l1, 0xd0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008390: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 2008394: 80 a0 60 00 cmp %g1, 0 2008398: 02 80 00 0c be 20083c8 <_Thread_Dispatch+0x10c> 200839c: d0 04 e3 ac ld [ %l3 + 0x3ac ], %o0 20083a0: 80 a4 00 08 cmp %l0, %o0 20083a4: 02 80 00 09 be 20083c8 <_Thread_Dispatch+0x10c> 20083a8: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 20083ac: 02 80 00 04 be 20083bc <_Thread_Dispatch+0x100> 20083b0: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 20083b4: 40 00 05 41 call 20098b8 <_CPU_Context_save_fp> 20083b8: 90 02 21 58 add %o0, 0x158, %o0 _Context_Restore_fp( &executing->fp_context ); 20083bc: 40 00 05 5c call 200992c <_CPU_Context_restore_fp> 20083c0: 90 04 21 58 add %l0, 0x158, %o0 _Thread_Allocated_fp = executing; 20083c4: e0 24 e3 ac st %l0, [ %l3 + 0x3ac ] if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 20083c8: 82 15 a1 8c or %l6, 0x18c, %g1 _ISR_Disable( level ); 20083cc: 7f ff e7 7d call 20021c0 20083d0: e0 00 60 0c ld [ %g1 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { 20083d4: 82 15 a1 8c or %l6, 0x18c, %g1 20083d8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 20083dc: 80 a0 a0 00 cmp %g2, 0 20083e0: 32 bf ff c6 bne,a 20082f8 <_Thread_Dispatch+0x3c> 20083e4: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 20083e8: 03 00 80 53 sethi %hi(0x2014c00), %g1 20083ec: c0 20 63 28 clr [ %g1 + 0x328 ] ! 2014f28 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 20083f0: 7f ff e7 78 call 20021d0 20083f4: 01 00 00 00 nop _API_extensions_Run_postswitch(); 20083f8: 7f ff f9 8d call 2006a2c <_API_extensions_Run_postswitch> 20083fc: 01 00 00 00 nop } 2008400: 81 c7 e0 08 ret 2008404: 81 e8 00 00 restore =============================================================================== 0200843c <_Thread_Get>: Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 200843c: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 2008440: 80 a2 20 00 cmp %o0, 0 2008444: 12 80 00 0a bne 200846c <_Thread_Get+0x30> 2008448: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200844c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008450: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 2008454: 84 00 a0 01 inc %g2 2008458: c4 20 63 28 st %g2, [ %g1 + 0x328 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 200845c: 03 00 80 54 sethi %hi(0x2015000), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 2008460: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 2008464: 81 c3 e0 08 retl 2008468: d0 00 61 98 ld [ %g1 + 0x198 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 200846c: 87 32 20 18 srl %o0, 0x18, %g3 2008470: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008474: 84 00 ff ff add %g3, -1, %g2 2008478: 80 a0 a0 02 cmp %g2, 2 200847c: 28 80 00 16 bleu,a 20084d4 <_Thread_Get+0x98> 2008480: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 2008484: 82 10 20 01 mov 1, %g1 2008488: 10 80 00 09 b 20084ac <_Thread_Get+0x70> 200848c: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 2008490: 09 00 80 53 sethi %hi(0x2014c00), %g4 2008494: 88 11 22 8c or %g4, 0x28c, %g4 ! 2014e8c <_Objects_Information_table> 2008498: c6 01 00 03 ld [ %g4 + %g3 ], %g3 if ( !api_information ) { 200849c: 80 a0 e0 00 cmp %g3, 0 20084a0: 32 80 00 05 bne,a 20084b4 <_Thread_Get+0x78> <== ALWAYS TAKEN 20084a4: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 20084a8: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 20084ac: 81 c3 e0 08 retl 20084b0: 90 10 20 00 clr %o0 } information = api_information[ the_class ]; if ( !information ) { 20084b4: 80 a2 20 00 cmp %o0, 0 20084b8: 12 80 00 04 bne 20084c8 <_Thread_Get+0x8c> 20084bc: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 20084c0: 81 c3 e0 08 retl 20084c4: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 20084c8: 82 13 c0 00 mov %o7, %g1 20084cc: 7f ff fd 69 call 2007a70 <_Objects_Get> 20084d0: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 20084d4: 80 a0 a0 01 cmp %g2, 1 20084d8: 22 bf ff ee be,a 2008490 <_Thread_Get+0x54> 20084dc: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 20084e0: 10 bf ff ea b 2008488 <_Thread_Get+0x4c> 20084e4: 82 10 20 01 mov 1, %g1 =============================================================================== 0200dac8 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200dac8: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200dacc: 03 00 80 54 sethi %hi(0x2015000), %g1 200dad0: e0 00 61 98 ld [ %g1 + 0x198 ], %l0 ! 2015198 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200dad4: 3f 00 80 36 sethi %hi(0x200d800), %i7 200dad8: be 17 e2 c8 or %i7, 0x2c8, %i7 ! 200dac8 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200dadc: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0 _ISR_Set_level(level); 200dae0: 7f ff d1 bc call 20021d0 200dae4: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200dae8: 03 00 80 52 sethi %hi(0x2014800), %g1 doneConstructors = 1; 200daec: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200daf0: e2 08 63 dc ldub [ %g1 + 0x3dc ], %l1 doneConstructors = 1; 200daf4: c4 28 63 dc stb %g2, [ %g1 + 0x3dc ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200daf8: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 200dafc: 80 a0 60 00 cmp %g1, 0 200db00: 02 80 00 0c be 200db30 <_Thread_Handler+0x68> 200db04: 03 00 80 53 sethi %hi(0x2014c00), %g1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200db08: d0 00 63 ac ld [ %g1 + 0x3ac ], %o0 ! 2014fac <_Thread_Allocated_fp> 200db0c: 80 a4 00 08 cmp %l0, %o0 200db10: 02 80 00 08 be 200db30 <_Thread_Handler+0x68> 200db14: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200db18: 22 80 00 06 be,a 200db30 <_Thread_Handler+0x68> 200db1c: e0 20 63 ac st %l0, [ %g1 + 0x3ac ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200db20: 7f ff ef 66 call 20098b8 <_CPU_Context_save_fp> 200db24: 90 02 21 58 add %o0, 0x158, %o0 _Thread_Allocated_fp = executing; 200db28: 03 00 80 53 sethi %hi(0x2014c00), %g1 200db2c: e0 20 63 ac st %l0, [ %g1 + 0x3ac ] ! 2014fac <_Thread_Allocated_fp> /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200db30: 7f ff ee 00 call 2009330 <_User_extensions_Thread_begin> 200db34: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200db38: 7f ff ea 34 call 2008408 <_Thread_Enable_dispatch> 200db3c: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200db40: 80 a4 60 00 cmp %l1, 0 200db44: 32 80 00 05 bne,a 200db58 <_Thread_Handler+0x90> 200db48: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 INIT_NAME (); 200db4c: 40 00 1a 0f call 2014388 <_init> 200db50: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200db54: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 200db58: 80 a0 60 00 cmp %g1, 0 200db5c: 12 80 00 06 bne 200db74 <_Thread_Handler+0xac> <== NEVER TAKEN 200db60: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200db64: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 200db68: 9f c0 40 00 call %g1 200db6c: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200db70: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200db74: 7f ff ee 00 call 2009374 <_User_extensions_Thread_exitted> 200db78: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200db7c: 90 10 20 00 clr %o0 200db80: 92 10 20 01 mov 1, %o1 200db84: 7f ff e6 52 call 20074cc <_Internal_error_Occurred> 200db88: 94 10 20 05 mov 5, %o2 =============================================================================== 020084e8 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 20084e8: 9d e3 bf a0 save %sp, -96, %sp 20084ec: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 20084f0: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2 20084f4: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 20084f8: c0 26 61 60 clr [ %i1 + 0x160 ] 20084fc: c0 26 61 64 clr [ %i1 + 0x164 ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008500: c0 26 61 5c clr [ %i1 + 0x15c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008504: 90 10 00 19 mov %i1, %o0 2008508: 40 00 02 9f call 2008f84 <_Thread_Stack_Allocate> 200850c: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008510: 80 a2 00 1b cmp %o0, %i3 2008514: 0a 80 00 6b bcs 20086c0 <_Thread_Initialize+0x1d8> 2008518: 80 a2 20 00 cmp %o0, 0 200851c: 02 80 00 69 be 20086c0 <_Thread_Initialize+0x1d8> <== NEVER TAKEN 2008520: 80 8f 20 ff btst 0xff, %i4 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008524: c2 06 60 cc ld [ %i1 + 0xcc ], %g1 the_stack->size = size; 2008528: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200852c: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008530: 02 80 00 07 be 200854c <_Thread_Initialize+0x64> 2008534: a2 10 20 00 clr %l1 fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008538: 40 00 04 c2 call 2009840 <_Workspace_Allocate> 200853c: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008540: a2 92 20 00 orcc %o0, 0, %l1 2008544: 02 80 00 3e be 200863c <_Thread_Initialize+0x154> 2008548: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200854c: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008550: d0 00 63 bc ld [ %g1 + 0x3bc ], %o0 ! 2014fbc <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008554: e2 26 61 58 st %l1, [ %i1 + 0x158 ] the_thread->Start.fp_context = fp_area; 2008558: e2 26 60 c8 st %l1, [ %i1 + 0xc8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200855c: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008560: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008564: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 2008568: c0 26 60 6c clr [ %i1 + 0x6c ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200856c: 80 a2 20 00 cmp %o0, 0 2008570: 02 80 00 08 be 2008590 <_Thread_Initialize+0xa8> 2008574: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 2008578: 90 02 20 01 inc %o0 200857c: 40 00 04 b1 call 2009840 <_Workspace_Allocate> 2008580: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008584: b6 92 20 00 orcc %o0, 0, %i3 2008588: 22 80 00 2e be,a 2008640 <_Thread_Initialize+0x158> 200858c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 2008590: 80 a6 e0 00 cmp %i3, 0 2008594: 02 80 00 0b be 20085c0 <_Thread_Initialize+0xd8> 2008598: f6 26 61 68 st %i3, [ %i1 + 0x168 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200859c: 03 00 80 53 sethi %hi(0x2014c00), %g1 20085a0: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2014fbc <_Thread_Maximum_extensions> 20085a4: 10 80 00 04 b 20085b4 <_Thread_Initialize+0xcc> 20085a8: 82 10 20 00 clr %g1 20085ac: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 20085b0: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 20085b4: 80 a0 40 02 cmp %g1, %g2 20085b8: 08 bf ff fd bleu 20085ac <_Thread_Initialize+0xc4> 20085bc: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 20085c0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 20085c4: 90 10 00 19 mov %i1, %o0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 20085c8: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ] the_thread->Start.budget_callout = budget_callout; 20085cc: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 20085d0: 92 10 00 1d mov %i5, %o1 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 20085d4: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 20085d8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 20085dc: e4 2e 60 ac stb %l2, [ %i1 + 0xac ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 20085e0: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] the_thread->current_state = STATES_DORMANT; 20085e4: 82 10 20 01 mov 1, %g1 the_thread->Wait.queue = NULL; 20085e8: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 20085ec: c2 26 60 10 st %g1, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 20085f0: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 20085f4: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 20085f8: 40 00 01 c1 call 2008cfc <_Thread_Set_priority> 20085fc: fa 26 60 bc st %i5, [ %i1 + 0xbc ] _Thread_Stack_Free( the_thread ); return false; } 2008600: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008604: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008608: c0 26 60 84 clr [ %i1 + 0x84 ] 200860c: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008610: 83 28 60 02 sll %g1, 2, %g1 2008614: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008618: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 200861c: 90 10 00 19 mov %i1, %o0 2008620: 40 00 03 77 call 20093fc <_User_extensions_Thread_create> 2008624: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008628: 80 8a 20 ff btst 0xff, %o0 200862c: 22 80 00 05 be,a 2008640 <_Thread_Initialize+0x158> 2008630: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 2008634: 81 c7 e0 08 ret 2008638: 81 e8 00 00 restore return true; failed: if ( the_thread->libc_reent ) 200863c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 2008640: 80 a2 20 00 cmp %o0, 0 2008644: 22 80 00 05 be,a 2008658 <_Thread_Initialize+0x170> 2008648: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 _Workspace_Free( the_thread->libc_reent ); 200864c: 40 00 04 86 call 2009864 <_Workspace_Free> 2008650: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 2008654: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 2008658: 80 a2 20 00 cmp %o0, 0 200865c: 22 80 00 05 be,a 2008670 <_Thread_Initialize+0x188> 2008660: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 2008664: 40 00 04 80 call 2009864 <_Workspace_Free> 2008668: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 200866c: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 2008670: 80 a2 20 00 cmp %o0, 0 2008674: 02 80 00 05 be 2008688 <_Thread_Initialize+0x1a0> <== ALWAYS TAKEN 2008678: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 200867c: 40 00 04 7a call 2009864 <_Workspace_Free> <== NOT EXECUTED 2008680: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 2008684: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 2008688: 02 80 00 05 be 200869c <_Thread_Initialize+0x1b4> 200868c: 80 a4 60 00 cmp %l1, 0 (void) _Workspace_Free( extensions_area ); 2008690: 40 00 04 75 call 2009864 <_Workspace_Free> 2008694: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) 2008698: 80 a4 60 00 cmp %l1, 0 200869c: 02 80 00 05 be 20086b0 <_Thread_Initialize+0x1c8> 20086a0: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( fp_area ); 20086a4: 40 00 04 70 call 2009864 <_Workspace_Free> 20086a8: 90 10 00 11 mov %l1, %o0 #endif _Thread_Stack_Free( the_thread ); 20086ac: 90 10 00 19 mov %i1, %o0 20086b0: 40 00 02 4c call 2008fe0 <_Thread_Stack_Free> 20086b4: b0 10 20 00 clr %i0 return false; 20086b8: 81 c7 e0 08 ret 20086bc: 81 e8 00 00 restore } 20086c0: 81 c7 e0 08 ret 20086c4: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200c314 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200c314: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200c318: 7f ff d8 26 call 20023b0 200c31c: a0 10 00 18 mov %i0, %l0 200c320: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 200c324: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200c328: 80 88 60 02 btst 2, %g1 200c32c: 02 80 00 2e be 200c3e4 <_Thread_Resume+0xd0> <== NEVER TAKEN 200c330: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200c334: 80 a0 60 00 cmp %g1, 0 200c338: 12 80 00 2b bne 200c3e4 <_Thread_Resume+0xd0> 200c33c: c2 24 20 10 st %g1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 200c340: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200c344: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 200c348: c6 10 40 00 lduh [ %g1 ], %g3 200c34c: 84 10 c0 02 or %g3, %g2, %g2 200c350: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 200c354: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c358: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 200c35c: c4 10 60 9c lduh [ %g1 + 0x9c ], %g2 200c360: 84 10 c0 02 or %g3, %g2, %g2 200c364: c4 30 60 9c sth %g2, [ %g1 + 0x9c ] _Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 200c368: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200c36c: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 200c370: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 200c374: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 200c378: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 200c37c: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 200c380: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 200c384: 7f ff d8 0f call 20023c0 200c388: 01 00 00 00 nop 200c38c: 7f ff d8 09 call 20023b0 200c390: 01 00 00 00 nop if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 200c394: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c398: 82 10 62 5c or %g1, 0x25c, %g1 ! 2018e5c <_Per_CPU_Information> 200c39c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200c3a0: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 200c3a4: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 200c3a8: 80 a0 80 03 cmp %g2, %g3 200c3ac: 1a 80 00 0e bcc 200c3e4 <_Thread_Resume+0xd0> 200c3b0: 01 00 00 00 nop _Thread_Heir = the_thread; 200c3b4: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200c3b8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200c3bc: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 200c3c0: 80 a0 60 00 cmp %g1, 0 200c3c4: 32 80 00 05 bne,a 200c3d8 <_Thread_Resume+0xc4> 200c3c8: 84 10 20 01 mov 1, %g2 200c3cc: 80 a0 a0 00 cmp %g2, 0 200c3d0: 12 80 00 05 bne 200c3e4 <_Thread_Resume+0xd0> <== ALWAYS TAKEN 200c3d4: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Context_Switch_necessary = true; 200c3d8: 03 00 80 63 sethi %hi(0x2018c00), %g1 200c3dc: 82 10 62 5c or %g1, 0x25c, %g1 ! 2018e5c <_Per_CPU_Information> 200c3e0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 200c3e4: 7f ff d7 f7 call 20023c0 200c3e8: 81 e8 00 00 restore =============================================================================== 02009124 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) { 2009124: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2009128: 23 00 80 54 sethi %hi(0x2015000), %l1 200912c: a2 14 61 8c or %l1, 0x18c, %l1 ! 201518c <_Per_CPU_Information> 2009130: e0 04 60 0c ld [ %l1 + 0xc ], %l0 ready = executing->ready; _ISR_Disable( level ); 2009134: 7f ff e4 23 call 20021c0 2009138: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 200913c: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last); 2009140: c2 04 a0 08 ld [ %l2 + 8 ], %g1 if ( !_Chain_Has_only_one_node( ready ) ) { 2009144: c4 04 80 00 ld [ %l2 ], %g2 2009148: 80 a0 80 01 cmp %g2, %g1 200914c: 22 80 00 19 be,a 20091b0 <_Thread_Yield_processor+0x8c> 2009150: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2009154: c6 04 00 00 ld [ %l0 ], %g3 previous = the_node->previous; 2009158: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; previous->next = next; 200915c: c6 20 80 00 st %g3, [ %g2 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 2009160: c4 20 e0 04 st %g2, [ %g3 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2009164: 84 04 a0 04 add %l2, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 2009168: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 200916c: e0 24 a0 08 st %l0, [ %l2 + 8 ] old_last_node->next = the_node; 2009170: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last_node; 2009174: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 2009178: 7f ff e4 16 call 20021d0 200917c: 01 00 00 00 nop 2009180: 7f ff e4 10 call 20021c0 2009184: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 2009188: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 200918c: 80 a4 00 01 cmp %l0, %g1 2009190: 12 80 00 04 bne 20091a0 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN 2009194: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) ready->first; 2009198: c2 04 80 00 ld [ %l2 ], %g1 200919c: c2 24 60 10 st %g1, [ %l1 + 0x10 ] _Context_Switch_necessary = true; 20091a0: 03 00 80 54 sethi %hi(0x2015000), %g1 20091a4: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information> 20091a8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20091ac: 30 80 00 05 b,a 20091c0 <_Thread_Yield_processor+0x9c> } else if ( !_Thread_Is_heir( executing ) ) 20091b0: 80 a4 00 01 cmp %l0, %g1 20091b4: 02 80 00 03 be 20091c0 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN 20091b8: 82 10 20 01 mov 1, %g1 _Context_Switch_necessary = true; 20091bc: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 20091c0: 7f ff e4 04 call 20021d0 20091c4: 81 e8 00 00 restore =============================================================================== 0200c290 <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) { 200c290: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *new_first_node; Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level ); 200c294: 7f ff d7 cb call 20021c0 200c298: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 200c29c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 200c2a0: 03 00 00 ef sethi %hi(0x3bc00), %g1 200c2a4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 200c2a8: 80 88 80 01 btst %g2, %g1 200c2ac: 32 80 00 03 bne,a 200c2b8 <_Thread_queue_Extract_priority_helper+0x28> 200c2b0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 _ISR_Enable( level ); 200c2b4: 30 80 00 1a b,a 200c31c <_Thread_queue_Extract_priority_helper+0x8c> */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200c2b8: 88 06 60 3c add %i1, 0x3c, %g4 /* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next; 200c2bc: c4 06 40 00 ld [ %i1 ], %g2 previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) { 200c2c0: 80 a0 40 04 cmp %g1, %g4 200c2c4: 02 80 00 11 be 200c308 <_Thread_queue_Extract_priority_helper+0x78> 200c2c8: c6 06 60 04 ld [ %i1 + 4 ], %g3 new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; 200c2cc: c8 06 60 40 ld [ %i1 + 0x40 ], %g4 new_second_node = new_first_node->next; 200c2d0: da 00 40 00 ld [ %g1 ], %o5 previous_node->next = new_first_node; next_node->previous = new_first_node; 200c2d4: c2 20 a0 04 st %g1, [ %g2 + 4 ] new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node; 200c2d8: c2 20 c0 00 st %g1, [ %g3 ] next_node->previous = new_first_node; new_first_node->next = next_node; 200c2dc: c4 20 40 00 st %g2, [ %g1 ] new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { 200c2e0: 80 a0 40 04 cmp %g1, %g4 200c2e4: 02 80 00 0b be 200c310 <_Thread_queue_Extract_priority_helper+0x80> 200c2e8: c6 20 60 04 st %g3, [ %g1 + 4 ] /* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n ); 200c2ec: 84 00 60 38 add %g1, 0x38, %g2 new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous = 200c2f0: c4 23 60 04 st %g2, [ %o5 + 4 ] _Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node; 200c2f4: da 20 60 38 st %o5, [ %g1 + 0x38 ] new_first_thread->Wait.Block2n.last = last_node; 200c2f8: c8 20 60 40 st %g4, [ %g1 + 0x40 ] 200c2fc: 82 00 60 3c add %g1, 0x3c, %g1 last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n ); 200c300: 10 80 00 04 b 200c310 <_Thread_queue_Extract_priority_helper+0x80> 200c304: c2 21 00 00 st %g1, [ %g4 ] } } else { previous_node->next = next_node; 200c308: c4 20 c0 00 st %g2, [ %g3 ] next_node->previous = previous_node; 200c30c: c6 20 a0 04 st %g3, [ %g2 + 4 ] /* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) { 200c310: 80 8e a0 ff btst 0xff, %i2 200c314: 22 80 00 04 be,a 200c324 <_Thread_queue_Extract_priority_helper+0x94> 200c318: c2 06 60 50 ld [ %i1 + 0x50 ], %g1 _ISR_Enable( level ); 200c31c: 7f ff d7 ad call 20021d0 200c320: 91 e8 00 08 restore %g0, %o0, %o0 return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200c324: 80 a0 60 02 cmp %g1, 2 200c328: 02 80 00 06 be 200c340 <_Thread_queue_Extract_priority_helper+0xb0><== NEVER TAKEN 200c32c: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200c330: 7f ff d7 a8 call 20021d0 200c334: b0 10 00 19 mov %i1, %i0 200c338: 10 80 00 08 b 200c358 <_Thread_queue_Extract_priority_helper+0xc8> 200c33c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 200c340: c2 26 60 50 st %g1, [ %i1 + 0x50 ] ! 1003fc50 <== NOT EXECUTED } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200c344: 7f ff d7 a3 call 20021d0 <== NOT EXECUTED 200c348: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED (void) _Watchdog_Remove( &the_thread->Timer ); 200c34c: 7f ff f4 d2 call 2009694 <_Watchdog_Remove> <== NOT EXECUTED 200c350: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED 200c354: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED 200c358: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 200c35c: 7f ff ef 26 call 2007ff4 <_Thread_Clear_state> 200c360: 81 e8 00 00 restore =============================================================================== 02008c48 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2008c48: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2008c4c: 80 a6 20 00 cmp %i0, 0 2008c50: 02 80 00 19 be 2008cb4 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008c54: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2008c58: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2008c5c: 80 a4 60 01 cmp %l1, 1 2008c60: 12 80 00 15 bne 2008cb4 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 2008c64: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2008c68: 7f ff e5 56 call 20021c0 2008c6c: 01 00 00 00 nop 2008c70: a0 10 00 08 mov %o0, %l0 2008c74: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2008c78: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008c7c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 2008c80: 80 88 80 01 btst %g2, %g1 2008c84: 02 80 00 0a be 2008cac <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 2008c88: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2008c8c: 92 10 00 19 mov %i1, %o1 2008c90: 94 10 20 01 mov 1, %o2 2008c94: 40 00 0d 7f call 200c290 <_Thread_queue_Extract_priority_helper> 2008c98: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2008c9c: 90 10 00 18 mov %i0, %o0 2008ca0: 92 10 00 19 mov %i1, %o1 2008ca4: 7f ff ff 4b call 20089d0 <_Thread_queue_Enqueue_priority> 2008ca8: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 2008cac: 7f ff e5 49 call 20021d0 2008cb0: 90 10 00 10 mov %l0, %o0 2008cb4: 81 c7 e0 08 ret 2008cb8: 81 e8 00 00 restore =============================================================================== 02008cbc <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008cbc: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008cc0: 90 10 00 18 mov %i0, %o0 2008cc4: 7f ff fd de call 200843c <_Thread_Get> 2008cc8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008ccc: c2 07 bf fc ld [ %fp + -4 ], %g1 2008cd0: 80 a0 60 00 cmp %g1, 0 2008cd4: 12 80 00 08 bne 2008cf4 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 2008cd8: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2008cdc: 40 00 0d a3 call 200c368 <_Thread_queue_Process_timeout> 2008ce0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2008ce4: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008ce8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level> 2008cec: 84 00 bf ff add %g2, -1, %g2 2008cf0: c4 20 63 28 st %g2, [ %g1 + 0x328 ] 2008cf4: 81 c7 e0 08 ret 2008cf8: 81 e8 00 00 restore =============================================================================== 02016a6c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 2016a6c: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016a70: 35 00 80 f0 sethi %hi(0x203c000), %i2 2016a74: a4 07 bf e8 add %fp, -24, %l2 2016a78: b2 07 bf f4 add %fp, -12, %i1 2016a7c: ac 07 bf f8 add %fp, -8, %l6 2016a80: a6 07 bf ec add %fp, -20, %l3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2016a84: ec 27 bf f4 st %l6, [ %fp + -12 ] the_chain->permanent_null = NULL; 2016a88: c0 27 bf f8 clr [ %fp + -8 ] the_chain->last = _Chain_Head(the_chain); 2016a8c: f2 27 bf fc st %i1, [ %fp + -4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2016a90: e6 27 bf e8 st %l3, [ %fp + -24 ] the_chain->permanent_null = NULL; 2016a94: c0 27 bf ec clr [ %fp + -20 ] the_chain->last = _Chain_Head(the_chain); 2016a98: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016a9c: aa 06 20 30 add %i0, 0x30, %l5 _Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); 2016aa0: a8 10 00 12 mov %l2, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016aa4: 37 00 80 ef sethi %hi(0x203bc00), %i3 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016aa8: a2 06 20 68 add %i0, 0x68, %l1 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016aac: b8 10 20 01 mov 1, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016ab0: ba 06 20 08 add %i0, 8, %i5 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016ab4: ae 06 20 40 add %i0, 0x40, %l7 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2016ab8: f2 26 20 78 st %i1, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016abc: c2 06 a0 a4 ld [ %i2 + 0xa4 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2016ac0: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016ac4: 94 10 00 14 mov %l4, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016ac8: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016acc: 90 10 00 15 mov %l5, %o0 2016ad0: 40 00 11 ce call 201b208 <_Watchdog_Adjust_to_chain> 2016ad4: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016ad8: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016adc: e0 06 e3 f4 ld [ %i3 + 0x3f4 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2016ae0: 80 a4 00 0a cmp %l0, %o2 2016ae4: 08 80 00 06 bleu 2016afc <_Timer_server_Body+0x90> 2016ae8: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016aec: 90 10 00 11 mov %l1, %o0 2016af0: 40 00 11 c6 call 201b208 <_Watchdog_Adjust_to_chain> 2016af4: 94 10 00 14 mov %l4, %o2 2016af8: 30 80 00 06 b,a 2016b10 <_Timer_server_Body+0xa4> } else if ( snapshot < last_snapshot ) { 2016afc: 1a 80 00 05 bcc 2016b10 <_Timer_server_Body+0xa4> 2016b00: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016b04: 92 10 20 01 mov 1, %o1 2016b08: 40 00 11 98 call 201b168 <_Watchdog_Adjust> 2016b0c: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 2016b10: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016b14: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016b18: 40 00 02 bc call 2017608 <_Chain_Get> 2016b1c: 01 00 00 00 nop if ( timer == NULL ) { 2016b20: 92 92 20 00 orcc %o0, 0, %o1 2016b24: 02 80 00 0c be 2016b54 <_Timer_server_Body+0xe8> 2016b28: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016b2c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016b30: 80 a0 60 01 cmp %g1, 1 2016b34: 02 80 00 05 be 2016b48 <_Timer_server_Body+0xdc> 2016b38: 90 10 00 15 mov %l5, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016b3c: 80 a0 60 03 cmp %g1, 3 2016b40: 12 bf ff f5 bne 2016b14 <_Timer_server_Body+0xa8> <== NEVER TAKEN 2016b44: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016b48: 40 00 11 e4 call 201b2d8 <_Watchdog_Insert> 2016b4c: 92 02 60 10 add %o1, 0x10, %o1 2016b50: 30 bf ff f1 b,a 2016b14 <_Timer_server_Body+0xa8> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016b54: 7f ff e3 7a call 200f93c 2016b58: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2016b5c: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016b60: 80 a0 40 16 cmp %g1, %l6 2016b64: 12 80 00 0a bne 2016b8c <_Timer_server_Body+0x120> <== NEVER TAKEN 2016b68: 01 00 00 00 nop ts->insert_chain = NULL; 2016b6c: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2016b70: 7f ff e3 77 call 200f94c 2016b74: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016b78: c2 07 bf e8 ld [ %fp + -24 ], %g1 2016b7c: 80 a0 40 13 cmp %g1, %l3 2016b80: 12 80 00 06 bne 2016b98 <_Timer_server_Body+0x12c> 2016b84: 01 00 00 00 nop 2016b88: 30 80 00 1a b,a 2016bf0 <_Timer_server_Body+0x184> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2016b8c: 7f ff e3 70 call 200f94c <== NOT EXECUTED 2016b90: 01 00 00 00 nop <== NOT EXECUTED 2016b94: 30 bf ff ca b,a 2016abc <_Timer_server_Body+0x50> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2016b98: 7f ff e3 69 call 200f93c 2016b9c: 01 00 00 00 nop 2016ba0: 84 10 00 08 mov %o0, %g2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016ba4: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016ba8: 80 a4 00 13 cmp %l0, %l3 2016bac: 02 80 00 0e be 2016be4 <_Timer_server_Body+0x178> 2016bb0: 80 a4 20 00 cmp %l0, 0 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 2016bb4: c2 04 00 00 ld [ %l0 ], %g1 the_chain->first = new_first; 2016bb8: c2 27 bf e8 st %g1, [ %fp + -24 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 2016bbc: 02 80 00 0a be 2016be4 <_Timer_server_Body+0x178> <== NEVER TAKEN 2016bc0: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 2016bc4: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 2016bc8: 7f ff e3 61 call 200f94c 2016bcc: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2016bd0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016bd4: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 2016bd8: 9f c0 40 00 call %g1 2016bdc: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 2016be0: 30 bf ff ee b,a 2016b98 <_Timer_server_Body+0x12c> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016be4: 7f ff e3 5a call 200f94c 2016be8: 90 10 00 02 mov %g2, %o0 2016bec: 30 bf ff b3 b,a 2016ab8 <_Timer_server_Body+0x4c> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016bf0: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 2016bf4: 7f ff ff 6e call 20169ac <_Thread_Disable_dispatch> 2016bf8: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016bfc: d0 06 00 00 ld [ %i0 ], %o0 2016c00: 40 00 0e cf call 201a73c <_Thread_Set_state> 2016c04: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016c08: 7f ff ff 6f call 20169c4 <_Timer_server_Reset_interval_system_watchdog> 2016c0c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016c10: 7f ff ff 82 call 2016a18 <_Timer_server_Reset_tod_system_watchdog> 2016c14: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016c18: 40 00 0c 17 call 2019c74 <_Thread_Enable_dispatch> 2016c1c: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016c20: 90 10 00 1d mov %i5, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016c24: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016c28: 40 00 12 06 call 201b440 <_Watchdog_Remove> 2016c2c: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016c30: 40 00 12 04 call 201b440 <_Watchdog_Remove> 2016c34: 90 10 00 17 mov %l7, %o0 2016c38: 30 bf ff a0 b,a 2016ab8 <_Timer_server_Body+0x4c> =============================================================================== 02016c3c <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016c3c: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016c40: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016c44: 80 a0 60 00 cmp %g1, 0 2016c48: 12 80 00 49 bne 2016d6c <_Timer_server_Schedule_operation_method+0x130> 2016c4c: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 2016c50: 7f ff ff 57 call 20169ac <_Thread_Disable_dispatch> 2016c54: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016c58: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016c5c: 80 a0 60 01 cmp %g1, 1 2016c60: 12 80 00 1f bne 2016cdc <_Timer_server_Schedule_operation_method+0xa0> 2016c64: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016c68: 7f ff e3 35 call 200f93c 2016c6c: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016c70: 03 00 80 f0 sethi %hi(0x203c000), %g1 2016c74: c4 00 60 a4 ld [ %g1 + 0xa4 ], %g2 ! 203c0a4 <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016c78: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016c7c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016c80: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016c84: 80 a0 40 03 cmp %g1, %g3 2016c88: 02 80 00 08 be 2016ca8 <_Timer_server_Schedule_operation_method+0x6c> 2016c8c: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016c90: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016c94: 80 a3 40 04 cmp %o5, %g4 2016c98: 08 80 00 03 bleu 2016ca4 <_Timer_server_Schedule_operation_method+0x68> 2016c9c: 86 10 20 00 clr %g3 delta_interval -= delta; 2016ca0: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016ca4: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016ca8: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016cac: 7f ff e3 28 call 200f94c 2016cb0: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016cb4: 90 06 20 30 add %i0, 0x30, %o0 2016cb8: 40 00 11 88 call 201b2d8 <_Watchdog_Insert> 2016cbc: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016cc0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016cc4: 80 a0 60 00 cmp %g1, 0 2016cc8: 12 80 00 27 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128> 2016ccc: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016cd0: 7f ff ff 3d call 20169c4 <_Timer_server_Reset_interval_system_watchdog> 2016cd4: 90 10 00 18 mov %i0, %o0 2016cd8: 30 80 00 23 b,a 2016d64 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016cdc: 12 80 00 22 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128> 2016ce0: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016ce4: 7f ff e3 16 call 200f93c 2016ce8: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016cec: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016cf0: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016cf4: 03 00 80 ef sethi %hi(0x203bc00), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016cf8: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016cfc: 80 a0 80 03 cmp %g2, %g3 2016d00: 02 80 00 0d be 2016d34 <_Timer_server_Schedule_operation_method+0xf8> 2016d04: c2 00 63 f4 ld [ %g1 + 0x3f4 ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016d08: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 2016d0c: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016d10: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016d14: 08 80 00 07 bleu 2016d30 <_Timer_server_Schedule_operation_method+0xf4> 2016d18: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016d1c: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 2016d20: 80 a1 00 0d cmp %g4, %o5 2016d24: 08 80 00 03 bleu 2016d30 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 2016d28: 86 10 20 00 clr %g3 delta_interval -= delta; 2016d2c: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016d30: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016d34: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016d38: 7f ff e3 05 call 200f94c 2016d3c: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016d40: 90 06 20 68 add %i0, 0x68, %o0 2016d44: 40 00 11 65 call 201b2d8 <_Watchdog_Insert> 2016d48: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016d4c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016d50: 80 a0 60 00 cmp %g1, 0 2016d54: 12 80 00 04 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128> 2016d58: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016d5c: 7f ff ff 2f call 2016a18 <_Timer_server_Reset_tod_system_watchdog> 2016d60: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016d64: 40 00 0b c4 call 2019c74 <_Thread_Enable_dispatch> 2016d68: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016d6c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016d70: 40 00 02 10 call 20175b0 <_Chain_Append> 2016d74: 81 e8 00 00 restore =============================================================================== 0200b264 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200b264: c6 02 00 00 ld [ %o0 ], %g3 200b268: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200b26c: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200b270: 80 a0 c0 02 cmp %g3, %g2 200b274: 14 80 00 0b bg 200b2a0 <_Timespec_Greater_than+0x3c> 200b278: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200b27c: 80 a0 c0 02 cmp %g3, %g2 200b280: 06 80 00 08 bl 200b2a0 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 200b284: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200b288: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b28c: c2 02 60 04 ld [ %o1 + 4 ], %g1 200b290: 80 a0 80 01 cmp %g2, %g1 200b294: 14 80 00 03 bg 200b2a0 <_Timespec_Greater_than+0x3c> 200b298: 90 10 20 01 mov 1, %o0 200b29c: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200b2a0: 81 c3 e0 08 retl =============================================================================== 02009278 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009278: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 200927c: 03 00 80 51 sethi %hi(0x2014400), %g1 2009280: 82 10 60 88 or %g1, 0x88, %g1 ! 2014488 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2009284: 05 00 80 54 sethi %hi(0x2015000), %g2 initial_extensions = Configuration.User_extension_table; 2009288: e6 00 60 3c ld [ %g1 + 0x3c ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 200928c: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 2009290: 82 10 a1 48 or %g2, 0x148, %g1 2009294: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 2009298: c0 20 60 04 clr [ %g1 + 4 ] the_chain->last = _Chain_Head(the_chain); 200929c: c2 20 60 08 st %g1, [ %g1 + 8 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20092a0: c6 20 a1 48 st %g3, [ %g2 + 0x148 ] 20092a4: 05 00 80 53 sethi %hi(0x2014c00), %g2 20092a8: 82 10 a3 2c or %g2, 0x32c, %g1 ! 2014f2c <_User_extensions_Switches_list> 20092ac: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 20092b0: c0 20 60 04 clr [ %g1 + 4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20092b4: c6 20 a3 2c st %g3, [ %g2 + 0x32c ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 20092b8: 80 a4 e0 00 cmp %l3, 0 20092bc: 02 80 00 1b be 2009328 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 20092c0: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 20092c4: 83 2c a0 02 sll %l2, 2, %g1 20092c8: a1 2c a0 04 sll %l2, 4, %l0 20092cc: a0 24 00 01 sub %l0, %g1, %l0 20092d0: a0 04 00 12 add %l0, %l2, %l0 20092d4: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 20092d8: 40 00 01 6a call 2009880 <_Workspace_Allocate_or_fatal_error> 20092dc: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 20092e0: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 20092e4: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 20092e8: 92 10 20 00 clr %o1 20092ec: 40 00 14 fd call 200e6e0 20092f0: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 20092f4: 10 80 00 0b b 2009320 <_User_extensions_Handler_initialization+0xa8> 20092f8: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 20092fc: 90 04 60 14 add %l1, 0x14, %o0 2009300: 92 04 c0 09 add %l3, %o1, %o1 2009304: 40 00 14 b8 call 200e5e4 2009308: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 200930c: 90 10 00 11 mov %l1, %o0 2009310: 40 00 0c 7e call 200c508 <_User_extensions_Add_set> 2009314: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009318: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 200931c: 80 a4 00 12 cmp %l0, %l2 2009320: 0a bf ff f7 bcs 20092fc <_User_extensions_Handler_initialization+0x84> 2009324: 93 2c 20 05 sll %l0, 5, %o1 2009328: 81 c7 e0 08 ret 200932c: 81 e8 00 00 restore =============================================================================== 02009374 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009374: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009378: 23 00 80 54 sethi %hi(0x2015000), %l1 200937c: a2 14 61 48 or %l1, 0x148, %l1 ! 2015148 <_User_extensions_List> 2009380: 10 80 00 08 b 20093a0 <_User_extensions_Thread_exitted+0x2c> 2009384: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009388: 80 a0 60 00 cmp %g1, 0 200938c: 22 80 00 05 be,a 20093a0 <_User_extensions_Thread_exitted+0x2c> 2009390: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 2009394: 9f c0 40 00 call %g1 2009398: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 200939c: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 20093a0: 80 a4 00 11 cmp %l0, %l1 20093a4: 32 bf ff f9 bne,a 2009388 <_User_extensions_Thread_exitted+0x14> 20093a8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 20093ac: 81 c7 e0 08 ret 20093b0: 81 e8 00 00 restore =============================================================================== 0200b728 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200b728: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200b72c: 7f ff de b0 call 20031ec 200b730: a0 10 00 18 mov %i0, %l0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200b734: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200b738: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200b73c: 80 a0 40 11 cmp %g1, %l1 200b740: 02 80 00 1f be 200b7bc <_Watchdog_Adjust+0x94> 200b744: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200b748: 02 80 00 1a be 200b7b0 <_Watchdog_Adjust+0x88> 200b74c: a4 10 20 01 mov 1, %l2 200b750: 80 a6 60 01 cmp %i1, 1 200b754: 12 80 00 1a bne 200b7bc <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200b758: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200b75c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200b760: 10 80 00 07 b 200b77c <_Watchdog_Adjust+0x54> 200b764: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 200b768: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 200b76c: 80 a6 80 19 cmp %i2, %i1 200b770: 3a 80 00 05 bcc,a 200b784 <_Watchdog_Adjust+0x5c> 200b774: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 200b778: b4 26 40 1a sub %i1, %i2, %i2 break; 200b77c: 10 80 00 10 b 200b7bc <_Watchdog_Adjust+0x94> 200b780: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200b784: 7f ff de 9e call 20031fc 200b788: 01 00 00 00 nop _Watchdog_Tickle( header ); 200b78c: 40 00 00 92 call 200b9d4 <_Watchdog_Tickle> 200b790: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200b794: 7f ff de 96 call 20031ec 200b798: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 200b79c: c2 04 00 00 ld [ %l0 ], %g1 200b7a0: 80 a0 40 11 cmp %g1, %l1 200b7a4: 02 80 00 06 be 200b7bc <_Watchdog_Adjust+0x94> 200b7a8: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 200b7ac: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200b7b0: 80 a6 a0 00 cmp %i2, 0 200b7b4: 32 bf ff ed bne,a 200b768 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 200b7b8: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 200b7bc: 7f ff de 90 call 20031fc 200b7c0: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02009694 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009694: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009698: 7f ff e2 ca call 20021c0 200969c: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 20096a0: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 20096a4: 80 a6 20 01 cmp %i0, 1 20096a8: 22 80 00 1d be,a 200971c <_Watchdog_Remove+0x88> 20096ac: c0 24 20 08 clr [ %l0 + 8 ] 20096b0: 0a 80 00 1c bcs 2009720 <_Watchdog_Remove+0x8c> 20096b4: 03 00 80 54 sethi %hi(0x2015000), %g1 20096b8: 80 a6 20 03 cmp %i0, 3 20096bc: 18 80 00 19 bgu 2009720 <_Watchdog_Remove+0x8c> <== NEVER TAKEN 20096c0: 01 00 00 00 nop 20096c4: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 20096c8: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 20096cc: c4 00 40 00 ld [ %g1 ], %g2 20096d0: 80 a0 a0 00 cmp %g2, 0 20096d4: 02 80 00 07 be 20096f0 <_Watchdog_Remove+0x5c> 20096d8: 05 00 80 54 sethi %hi(0x2015000), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 20096dc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 20096e0: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 20096e4: 84 00 c0 02 add %g3, %g2, %g2 20096e8: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 20096ec: 05 00 80 54 sethi %hi(0x2015000), %g2 20096f0: c4 00 a0 60 ld [ %g2 + 0x60 ], %g2 ! 2015060 <_Watchdog_Sync_count> 20096f4: 80 a0 a0 00 cmp %g2, 0 20096f8: 22 80 00 07 be,a 2009714 <_Watchdog_Remove+0x80> 20096fc: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009700: 05 00 80 54 sethi %hi(0x2015000), %g2 2009704: c6 00 a1 94 ld [ %g2 + 0x194 ], %g3 ! 2015194 <_Per_CPU_Information+0x8> 2009708: 05 00 80 53 sethi %hi(0x2014c00), %g2 200970c: c6 20 a3 d4 st %g3, [ %g2 + 0x3d4 ] ! 2014fd4 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009710: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 2009714: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009718: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200971c: 03 00 80 54 sethi %hi(0x2015000), %g1 2009720: c2 00 60 64 ld [ %g1 + 0x64 ], %g1 ! 2015064 <_Watchdog_Ticks_since_boot> 2009724: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 2009728: 7f ff e2 aa call 20021d0 200972c: 01 00 00 00 nop return( previous_state ); } 2009730: 81 c7 e0 08 ret 2009734: 81 e8 00 00 restore =============================================================================== 0200af3c <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200af3c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200af40: 7f ff df 82 call 2002d48 200af44: a0 10 00 18 mov %i0, %l0 200af48: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 200af4c: 11 00 80 6e sethi %hi(0x201b800), %o0 200af50: 94 10 00 19 mov %i1, %o2 200af54: 90 12 22 58 or %o0, 0x258, %o0 200af58: 7f ff e6 05 call 200476c 200af5c: 92 10 00 10 mov %l0, %o1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200af60: e2 06 40 00 ld [ %i1 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200af64: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200af68: 80 a4 40 19 cmp %l1, %i1 200af6c: 02 80 00 0e be 200afa4 <_Watchdog_Report_chain+0x68> 200af70: 11 00 80 6e sethi %hi(0x201b800), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200af74: 92 10 00 11 mov %l1, %o1 200af78: 40 00 00 10 call 200afb8 <_Watchdog_Report> 200af7c: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next ) 200af80: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; 200af84: 80 a4 40 19 cmp %l1, %i1 200af88: 12 bf ff fc bne 200af78 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200af8c: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200af90: 11 00 80 6e sethi %hi(0x201b800), %o0 200af94: 92 10 00 10 mov %l0, %o1 200af98: 7f ff e5 f5 call 200476c 200af9c: 90 12 22 70 or %o0, 0x270, %o0 200afa0: 30 80 00 03 b,a 200afac <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 200afa4: 7f ff e5 f2 call 200476c 200afa8: 90 12 22 80 or %o0, 0x280, %o0 } _ISR_Enable( level ); 200afac: 7f ff df 6b call 2002d58 200afb0: 81 e8 00 00 restore =============================================================================== 020091bc : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 20091bc: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 20091c0: 80 a6 20 00 cmp %i0, 0 20091c4: 02 80 00 1d be 2009238 <== NEVER TAKEN 20091c8: 21 00 80 97 sethi %hi(0x2025c00), %l0 20091cc: a0 14 20 70 or %l0, 0x70, %l0 ! 2025c70 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 20091d0: a6 04 20 0c add %l0, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { if ( !_Objects_Information_table[ api_index ] ) 20091d4: c2 04 00 00 ld [ %l0 ], %g1 20091d8: 80 a0 60 00 cmp %g1, 0 20091dc: 22 80 00 14 be,a 200922c 20091e0: a0 04 20 04 add %l0, 4, %l0 continue; information = _Objects_Information_table[ api_index ][ 1 ]; 20091e4: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 20091e8: 80 a4 a0 00 cmp %l2, 0 20091ec: 12 80 00 0b bne 2009218 20091f0: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 20091f4: 10 80 00 0e b 200922c 20091f8: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 20091fc: 83 2c 60 02 sll %l1, 2, %g1 2009200: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 2009204: 80 a2 20 00 cmp %o0, 0 2009208: 02 80 00 04 be 2009218 200920c: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 2009210: 9f c6 00 00 call %i0 2009214: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009218: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 200921c: 80 a4 40 01 cmp %l1, %g1 2009220: 28 bf ff f7 bleu,a 20091fc 2009224: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 2009228: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200922c: 80 a4 00 13 cmp %l0, %l3 2009230: 32 bf ff ea bne,a 20091d8 2009234: c2 04 00 00 ld [ %l0 ], %g1 2009238: 81 c7 e0 08 ret 200923c: 81 e8 00 00 restore =============================================================================== 0201440c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 201440c: 9d e3 bf a0 save %sp, -96, %sp 2014410: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014414: 80 a4 20 00 cmp %l0, 0 2014418: 02 80 00 1f be 2014494 201441c: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014420: 80 a6 60 00 cmp %i1, 0 2014424: 02 80 00 1c be 2014494 2014428: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 201442c: 80 a7 60 00 cmp %i5, 0 2014430: 02 80 00 19 be 2014494 <== NEVER TAKEN 2014434: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014438: 02 80 00 32 be 2014500 201443c: 80 a6 a0 00 cmp %i2, 0 2014440: 02 80 00 30 be 2014500 2014444: 80 a6 80 1b cmp %i2, %i3 2014448: 0a 80 00 13 bcs 2014494 201444c: b0 10 20 08 mov 8, %i0 2014450: 80 8e e0 07 btst 7, %i3 2014454: 12 80 00 10 bne 2014494 2014458: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 201445c: 12 80 00 0e bne 2014494 2014460: b0 10 20 09 mov 9, %i0 2014464: 03 00 80 ef sethi %hi(0x203bc00), %g1 2014468: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 203bf68 <_Thread_Dispatch_disable_level> 201446c: 84 00 a0 01 inc %g2 2014470: c4 20 63 68 st %g2, [ %g1 + 0x368 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2014474: 25 00 80 ef sethi %hi(0x203bc00), %l2 2014478: 40 00 12 4a call 2018da0 <_Objects_Allocate> 201447c: 90 14 a1 74 or %l2, 0x174, %o0 ! 203bd74 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2014480: a2 92 20 00 orcc %o0, 0, %l1 2014484: 12 80 00 06 bne 201449c 2014488: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 201448c: 40 00 15 fa call 2019c74 <_Thread_Enable_dispatch> 2014490: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 2014494: 81 c7 e0 08 ret 2014498: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 201449c: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 20144a0: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 20144a4: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 20144a8: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 20144ac: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 20144b0: 40 00 5f 9d call 202c324 <.udiv> 20144b4: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20144b8: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 20144bc: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20144c0: 96 10 00 1b mov %i3, %o3 20144c4: a6 04 60 24 add %l1, 0x24, %l3 20144c8: 40 00 0c 5f call 2017644 <_Chain_Initialize> 20144cc: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 20144d0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 20144d4: a4 14 a1 74 or %l2, 0x174, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20144d8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 20144dc: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20144e0: 85 28 a0 02 sll %g2, 2, %g2 20144e4: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 20144e8: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 20144ec: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 20144f0: 40 00 15 e1 call 2019c74 <_Thread_Enable_dispatch> 20144f4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20144f8: 81 c7 e0 08 ret 20144fc: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 2014500: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014504: 81 c7 e0 08 ret 2014508: 81 e8 00 00 restore =============================================================================== 02007444 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007444: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 2007448: 11 00 80 75 sethi %hi(0x201d400), %o0 200744c: 92 10 00 18 mov %i0, %o1 2007450: 90 12 20 d4 or %o0, 0xd4, %o0 2007454: 40 00 08 ee call 200980c <_Objects_Get> 2007458: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 200745c: c2 07 bf fc ld [ %fp + -4 ], %g1 2007460: 80 a0 60 00 cmp %g1, 0 2007464: 12 80 00 66 bne 20075fc 2007468: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200746c: 25 00 80 76 sethi %hi(0x201d800), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007470: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 2007474: a4 14 a0 ac or %l2, 0xac, %l2 2007478: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 200747c: 80 a0 80 01 cmp %g2, %g1 2007480: 02 80 00 06 be 2007498 2007484: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2007488: 40 00 0b 47 call 200a1a4 <_Thread_Enable_dispatch> 200748c: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007490: 81 c7 e0 08 ret 2007494: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 2007498: 12 80 00 0e bne 20074d0 200749c: 01 00 00 00 nop switch ( the_period->state ) { 20074a0: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20074a4: 80 a0 60 04 cmp %g1, 4 20074a8: 18 80 00 06 bgu 20074c0 <== NEVER TAKEN 20074ac: b0 10 20 00 clr %i0 20074b0: 83 28 60 02 sll %g1, 2, %g1 20074b4: 05 00 80 6d sethi %hi(0x201b400), %g2 20074b8: 84 10 a2 dc or %g2, 0x2dc, %g2 ! 201b6dc 20074bc: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 20074c0: 40 00 0b 39 call 200a1a4 <_Thread_Enable_dispatch> 20074c4: 01 00 00 00 nop return( return_value ); 20074c8: 81 c7 e0 08 ret 20074cc: 81 e8 00 00 restore } _ISR_Disable( level ); 20074d0: 7f ff ef 01 call 20030d4 20074d4: 01 00 00 00 nop 20074d8: a6 10 00 08 mov %o0, %l3 switch ( the_period->state ) { 20074dc: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 20074e0: 80 a4 60 02 cmp %l1, 2 20074e4: 02 80 00 19 be 2007548 20074e8: 80 a4 60 04 cmp %l1, 4 20074ec: 02 80 00 33 be 20075b8 20074f0: 80 a4 60 00 cmp %l1, 0 20074f4: 12 80 00 44 bne 2007604 <== NEVER TAKEN 20074f8: 01 00 00 00 nop case RATE_MONOTONIC_INACTIVE: { _ISR_Enable( level ); 20074fc: 7f ff ee fa call 20030e4 2007500: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007504: 7f ff ff 76 call 20072dc <_Rate_monotonic_Initiate_statistics> 2007508: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 200750c: 82 10 20 02 mov 2, %g1 2007510: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007514: 03 00 80 1e sethi %hi(0x2007800), %g1 2007518: 82 10 60 d0 or %g1, 0xd0, %g1 ! 20078d0 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200751c: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 2007520: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 2007524: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 2007528: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 200752c: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007530: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007534: 11 00 80 75 sethi %hi(0x201d400), %o0 2007538: 92 04 20 10 add %l0, 0x10, %o1 200753c: 40 00 10 2b call 200b5e8 <_Watchdog_Insert> 2007540: 90 12 23 10 or %o0, 0x310, %o0 2007544: 30 80 00 19 b,a 20075a8 case RATE_MONOTONIC_ACTIVE: /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007548: 7f ff ff 81 call 200734c <_Rate_monotonic_Update_statistics> 200754c: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007550: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007554: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007558: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 200755c: 7f ff ee e2 call 20030e4 2007560: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007564: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 2007568: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 200756c: 13 00 00 10 sethi %hi(0x4000), %o1 2007570: 40 00 0d 64 call 200ab00 <_Thread_Set_state> 2007574: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007578: 7f ff ee d7 call 20030d4 200757c: 01 00 00 00 nop local_state = the_period->state; 2007580: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 2007584: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 2007588: 7f ff ee d7 call 20030e4 200758c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007590: 80 a4 e0 03 cmp %l3, 3 2007594: 12 80 00 05 bne 20075a8 2007598: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 200759c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 20075a0: 40 00 09 fc call 2009d90 <_Thread_Clear_state> 20075a4: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 20075a8: 40 00 0a ff call 200a1a4 <_Thread_Enable_dispatch> 20075ac: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20075b0: 81 c7 e0 08 ret 20075b4: 81 e8 00 00 restore case RATE_MONOTONIC_EXPIRED: /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20075b8: 7f ff ff 65 call 200734c <_Rate_monotonic_Update_statistics> 20075bc: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 20075c0: 7f ff ee c9 call 20030e4 20075c4: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20075c8: 82 10 20 02 mov 2, %g1 20075cc: 92 04 20 10 add %l0, 0x10, %o1 20075d0: 11 00 80 75 sethi %hi(0x201d400), %o0 20075d4: 90 12 23 10 or %o0, 0x310, %o0 ! 201d710 <_Watchdog_Ticks_chain> 20075d8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 20075dc: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20075e0: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20075e4: 40 00 10 01 call 200b5e8 <_Watchdog_Insert> 20075e8: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20075ec: 40 00 0a ee call 200a1a4 <_Thread_Enable_dispatch> 20075f0: 01 00 00 00 nop return RTEMS_TIMEOUT; 20075f4: 81 c7 e0 08 ret 20075f8: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20075fc: 81 c7 e0 08 ret 2007600: 91 e8 20 04 restore %g0, 4, %o0 } 2007604: 81 c7 e0 08 ret <== NOT EXECUTED 2007608: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED =============================================================================== 0200760c : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 200760c: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007610: 80 a6 60 00 cmp %i1, 0 2007614: 02 80 00 79 be 20077f8 <== NEVER TAKEN 2007618: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 200761c: 13 00 80 6d sethi %hi(0x201b400), %o1 2007620: 9f c6 40 00 call %i1 2007624: 92 12 62 f0 or %o1, 0x2f0, %o1 ! 201b6f0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007628: 90 10 00 18 mov %i0, %o0 200762c: 13 00 80 6d sethi %hi(0x201b400), %o1 2007630: 9f c6 40 00 call %i1 2007634: 92 12 63 10 or %o1, 0x310, %o1 ! 201b710 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007638: 90 10 00 18 mov %i0, %o0 200763c: 13 00 80 6d sethi %hi(0x201b400), %o1 2007640: 9f c6 40 00 call %i1 2007644: 92 12 63 38 or %o1, 0x338, %o1 ! 201b738 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007648: 90 10 00 18 mov %i0, %o0 200764c: 13 00 80 6d sethi %hi(0x201b400), %o1 2007650: 9f c6 40 00 call %i1 2007654: 92 12 63 60 or %o1, 0x360, %o1 ! 201b760 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007658: 90 10 00 18 mov %i0, %o0 200765c: 13 00 80 6d sethi %hi(0x201b400), %o1 2007660: 9f c6 40 00 call %i1 2007664: 92 12 63 b0 or %o1, 0x3b0, %o1 ! 201b7b0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007668: 3b 00 80 75 sethi %hi(0x201d400), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200766c: 2b 00 80 6e sethi %hi(0x201b800), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007670: 82 17 60 d4 or %i5, 0xd4, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007674: 27 00 80 6e sethi %hi(0x201b800), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007678: 35 00 80 6e sethi %hi(0x201b800), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 200767c: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007680: ae 07 bf a0 add %fp, -96, %l7 if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 2007684: ac 07 bf d8 add %fp, -40, %l6 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007688: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200768c: aa 15 60 00 mov %l5, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 2007690: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007694: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 2007698: a6 14 e0 18 or %l3, 0x18, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 200769c: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20076a0: 10 80 00 52 b 20077e8 20076a4: b4 16 a0 38 or %i2, 0x38, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20076a8: 40 00 18 88 call 200d8c8 20076ac: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 20076b0: 80 a2 20 00 cmp %o0, 0 20076b4: 32 80 00 4c bne,a 20077e4 20076b8: a0 04 20 01 inc %l0 continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 20076bc: 92 10 00 16 mov %l6, %o1 20076c0: 40 00 18 af call 200d97c 20076c4: 90 10 00 10 mov %l0, %o0 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20076c8: d0 07 bf d8 ld [ %fp + -40 ], %o0 20076cc: 92 10 20 05 mov 5, %o1 20076d0: 40 00 00 ae call 2007988 20076d4: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20076d8: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20076dc: 92 10 00 15 mov %l5, %o1 20076e0: 90 10 00 18 mov %i0, %o0 20076e4: 94 10 00 10 mov %l0, %o2 20076e8: 9f c6 40 00 call %i1 20076ec: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20076f0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20076f4: 80 a2 60 00 cmp %o1, 0 20076f8: 12 80 00 08 bne 2007718 20076fc: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 2007700: 90 10 00 18 mov %i0, %o0 2007704: 13 00 80 6a sethi %hi(0x201a800), %o1 2007708: 9f c6 40 00 call %i1 200770c: 92 12 62 08 or %o1, 0x208, %o1 ! 201aa08 <_rodata_start+0x158> continue; 2007710: 10 80 00 35 b 20077e4 2007714: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007718: 40 00 0e 91 call 200b15c <_Timespec_Divide_by_integer> 200771c: 90 10 00 14 mov %l4, %o0 (*print)( context, 2007720: d0 07 bf ac ld [ %fp + -84 ], %o0 2007724: 40 00 44 cb call 2018a50 <.div> 2007728: 92 10 23 e8 mov 0x3e8, %o1 200772c: 96 10 00 08 mov %o0, %o3 2007730: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007734: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007738: 40 00 44 c6 call 2018a50 <.div> 200773c: 92 10 23 e8 mov 0x3e8, %o1 2007740: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007744: b6 10 00 08 mov %o0, %i3 2007748: d0 07 bf f4 ld [ %fp + -12 ], %o0 200774c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007750: 40 00 44 c0 call 2018a50 <.div> 2007754: 92 10 23 e8 mov 0x3e8, %o1 2007758: d8 07 bf b0 ld [ %fp + -80 ], %o4 200775c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007760: d4 07 bf a8 ld [ %fp + -88 ], %o2 2007764: 9a 10 00 1b mov %i3, %o5 2007768: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 200776c: 92 10 00 13 mov %l3, %o1 2007770: 9f c6 40 00 call %i1 2007774: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007778: d2 07 bf a0 ld [ %fp + -96 ], %o1 200777c: 94 10 00 11 mov %l1, %o2 2007780: 40 00 0e 77 call 200b15c <_Timespec_Divide_by_integer> 2007784: 90 10 00 1c mov %i4, %o0 (*print)( context, 2007788: d0 07 bf c4 ld [ %fp + -60 ], %o0 200778c: 40 00 44 b1 call 2018a50 <.div> 2007790: 92 10 23 e8 mov 0x3e8, %o1 2007794: 96 10 00 08 mov %o0, %o3 2007798: d0 07 bf cc ld [ %fp + -52 ], %o0 200779c: d6 27 bf 9c st %o3, [ %fp + -100 ] 20077a0: 40 00 44 ac call 2018a50 <.div> 20077a4: 92 10 23 e8 mov 0x3e8, %o1 20077a8: c2 07 bf f0 ld [ %fp + -16 ], %g1 20077ac: b6 10 00 08 mov %o0, %i3 20077b0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20077b4: 92 10 23 e8 mov 0x3e8, %o1 20077b8: 40 00 44 a6 call 2018a50 <.div> 20077bc: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20077c0: d4 07 bf c0 ld [ %fp + -64 ], %o2 20077c4: d6 07 bf 9c ld [ %fp + -100 ], %o3 20077c8: d8 07 bf c8 ld [ %fp + -56 ], %o4 20077cc: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20077d0: 92 10 00 1a mov %i2, %o1 20077d4: 90 10 00 18 mov %i0, %o0 20077d8: 9f c6 40 00 call %i1 20077dc: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20077e0: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 20077e4: 82 17 60 d4 or %i5, 0xd4, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20077e8: c2 00 60 0c ld [ %g1 + 0xc ], %g1 20077ec: 80 a4 00 01 cmp %l0, %g1 20077f0: 08 bf ff ae bleu 20076a8 20077f4: 90 10 00 10 mov %l0, %o0 20077f8: 81 c7 e0 08 ret 20077fc: 81 e8 00 00 restore =============================================================================== 020159bc : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20159bc: 9d e3 bf 98 save %sp, -104, %sp 20159c0: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20159c4: 80 a6 60 00 cmp %i1, 0 20159c8: 02 80 00 2e be 2015a80 20159cc: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20159d0: 40 00 10 b6 call 2019ca8 <_Thread_Get> 20159d4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20159d8: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20159dc: a2 10 00 08 mov %o0, %l1 switch ( location ) { 20159e0: 80 a0 60 00 cmp %g1, 0 20159e4: 12 80 00 27 bne 2015a80 20159e8: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20159ec: e0 02 21 60 ld [ %o0 + 0x160 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20159f0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20159f4: 80 a0 60 00 cmp %g1, 0 20159f8: 02 80 00 24 be 2015a88 20159fc: 01 00 00 00 nop if ( asr->is_enabled ) { 2015a00: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 2015a04: 80 a0 60 00 cmp %g1, 0 2015a08: 02 80 00 15 be 2015a5c 2015a0c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015a10: 7f ff e7 cb call 200f93c 2015a14: 01 00 00 00 nop *signal_set |= signals; 2015a18: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2015a1c: b2 10 40 19 or %g1, %i1, %i1 2015a20: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 2015a24: 7f ff e7 ca call 200f94c 2015a28: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 2015a2c: 03 00 80 f0 sethi %hi(0x203c000), %g1 2015a30: 82 10 61 d4 or %g1, 0x1d4, %g1 ! 203c1d4 <_Per_CPU_Information> 2015a34: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015a38: 80 a0 a0 00 cmp %g2, 0 2015a3c: 02 80 00 0f be 2015a78 2015a40: 01 00 00 00 nop 2015a44: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015a48: 80 a4 40 02 cmp %l1, %g2 2015a4c: 12 80 00 0b bne 2015a78 <== NEVER TAKEN 2015a50: 84 10 20 01 mov 1, %g2 _Context_Switch_necessary = true; 2015a54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015a58: 30 80 00 08 b,a 2015a78 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015a5c: 7f ff e7 b8 call 200f93c 2015a60: 01 00 00 00 nop *signal_set |= signals; 2015a64: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2015a68: b2 10 40 19 or %g1, %i1, %i1 2015a6c: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 2015a70: 7f ff e7 b7 call 200f94c 2015a74: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015a78: 40 00 10 7f call 2019c74 <_Thread_Enable_dispatch> 2015a7c: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 2015a80: 81 c7 e0 08 ret 2015a84: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 2015a88: 40 00 10 7b call 2019c74 <_Thread_Enable_dispatch> 2015a8c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 2015a90: 81 c7 e0 08 ret 2015a94: 81 e8 00 00 restore =============================================================================== 0200d784 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200d784: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200d788: 80 a6 a0 00 cmp %i2, 0 200d78c: 02 80 00 5f be 200d908 200d790: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200d794: 03 00 80 54 sethi %hi(0x2015000), %g1 200d798: e2 00 61 98 ld [ %g1 + 0x198 ], %l1 ! 2015198 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d79c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200d7a0: e0 04 61 60 ld [ %l1 + 0x160 ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7a4: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7a8: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200d7ac: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200d7b0: 80 a0 60 00 cmp %g1, 0 200d7b4: 02 80 00 03 be 200d7c0 200d7b8: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200d7bc: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d7c0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 200d7c4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200d7c8: 7f ff f1 80 call 2009dc8 <_CPU_ISR_Get_level> 200d7cc: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200d7d0: a7 2c e0 0a sll %l3, 0xa, %l3 200d7d4: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 200d7d8: a4 14 c0 12 or %l3, %l2, %l2 /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200d7dc: 80 8e 61 00 btst 0x100, %i1 200d7e0: 02 80 00 06 be 200d7f8 200d7e4: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200d7e8: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200d7ec: 80 a0 00 01 cmp %g0, %g1 200d7f0: 82 60 3f ff subx %g0, -1, %g1 200d7f4: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200d7f8: 80 8e 62 00 btst 0x200, %i1 200d7fc: 02 80 00 0b be 200d828 200d800: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200d804: 80 8e 22 00 btst 0x200, %i0 200d808: 22 80 00 07 be,a 200d824 200d80c: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200d810: 82 10 20 01 mov 1, %g1 200d814: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200d818: 03 00 80 53 sethi %hi(0x2014c00), %g1 200d81c: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 2014e88 <_Thread_Ticks_per_timeslice> 200d820: c2 24 60 78 st %g1, [ %l1 + 0x78 ] /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200d824: 80 8e 60 0f btst 0xf, %i1 200d828: 02 80 00 06 be 200d840 200d82c: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200d830: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200d834: 7f ff d2 67 call 20021d0 200d838: 91 2a 20 08 sll %o0, 8, %o0 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200d83c: 80 8e 64 00 btst 0x400, %i1 200d840: 02 80 00 14 be 200d890 200d844: 84 10 20 00 clr %g2 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d848: c6 0c 20 08 ldub [ %l0 + 8 ], %g3 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200d84c: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200d850: 80 a0 00 18 cmp %g0, %i0 200d854: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200d858: 80 a0 40 03 cmp %g1, %g3 200d85c: 22 80 00 0e be,a 200d894 200d860: 03 00 80 54 sethi %hi(0x2015000), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200d864: 7f ff d2 57 call 20021c0 200d868: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 200d86c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 200d870: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 200d874: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200d878: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200d87c: 7f ff d2 55 call 20021d0 200d880: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200d884: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200d888: 80 a0 00 01 cmp %g0, %g1 200d88c: 84 40 20 00 addx %g0, 0, %g2 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) 200d890: 03 00 80 54 sethi %hi(0x2015000), %g1 200d894: c6 00 60 ac ld [ %g1 + 0xac ], %g3 ! 20150ac <_System_state_Current> 200d898: 80 a0 e0 03 cmp %g3, 3 200d89c: 12 80 00 1b bne 200d908 <== NEVER TAKEN 200d8a0: 82 10 20 00 clr %g1 */ RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void ) { Thread_Control *executing; executing = _Thread_Executing; 200d8a4: 07 00 80 54 sethi %hi(0x2015000), %g3 200d8a8: 86 10 e1 8c or %g3, 0x18c, %g3 ! 201518c <_Per_CPU_Information> 200d8ac: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 if ( !_States_Is_ready( executing->current_state ) || 200d8b0: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 200d8b4: 80 a1 20 00 cmp %g4, 0 200d8b8: 32 80 00 0b bne,a 200d8e4 <== NEVER TAKEN 200d8bc: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED 200d8c0: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 200d8c4: 80 a0 40 03 cmp %g1, %g3 200d8c8: 02 80 00 0b be 200d8f4 200d8cc: 80 88 a0 ff btst 0xff, %g2 ( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) { 200d8d0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 200d8d4: 80 a0 60 00 cmp %g1, 0 200d8d8: 02 80 00 07 be 200d8f4 <== NEVER TAKEN 200d8dc: 80 88 a0 ff btst 0xff, %g2 _Context_Switch_necessary = true; 200d8e0: 84 10 20 01 mov 1, %g2 200d8e4: 03 00 80 54 sethi %hi(0x2015000), %g1 200d8e8: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information> 200d8ec: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200d8f0: 30 80 00 03 b,a 200d8fc if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) 200d8f4: 02 80 00 05 be 200d908 200d8f8: 82 10 20 00 clr %g1 _Thread_Dispatch(); 200d8fc: 7f ff ea 70 call 20082bc <_Thread_Dispatch> 200d900: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 200d904: 82 10 20 00 clr %g1 ! 0 } 200d908: 81 c7 e0 08 ret 200d90c: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200ac64 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200ac64: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200ac68: 80 a6 60 00 cmp %i1, 0 200ac6c: 02 80 00 07 be 200ac88 200ac70: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200ac74: 03 00 80 63 sethi %hi(0x2018c00), %g1 200ac78: c2 08 61 f4 ldub [ %g1 + 0x1f4 ], %g1 ! 2018df4 200ac7c: 80 a6 40 01 cmp %i1, %g1 200ac80: 18 80 00 1c bgu 200acf0 200ac84: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200ac88: 80 a6 a0 00 cmp %i2, 0 200ac8c: 02 80 00 19 be 200acf0 200ac90: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200ac94: 40 00 08 15 call 200cce8 <_Thread_Get> 200ac98: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200ac9c: c2 07 bf fc ld [ %fp + -4 ], %g1 200aca0: 80 a0 60 00 cmp %g1, 0 200aca4: 12 80 00 13 bne 200acf0 200aca8: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200acac: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200acb0: 80 a6 60 00 cmp %i1, 0 200acb4: 02 80 00 0d be 200ace8 200acb8: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200acbc: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200acc0: 80 a0 60 00 cmp %g1, 0 200acc4: 02 80 00 06 be 200acdc 200acc8: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200accc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200acd0: 80 a0 40 19 cmp %g1, %i1 200acd4: 08 80 00 05 bleu 200ace8 <== ALWAYS TAKEN 200acd8: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200acdc: 92 10 00 19 mov %i1, %o1 200ace0: 40 00 06 77 call 200c6bc <_Thread_Change_priority> 200ace4: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200ace8: 40 00 07 f3 call 200ccb4 <_Thread_Enable_dispatch> 200acec: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200acf0: 81 c7 e0 08 ret 200acf4: 81 e8 00 00 restore =============================================================================== 020163d4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 20163d4: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 20163d8: 11 00 80 f0 sethi %hi(0x203c000), %o0 20163dc: 92 10 00 18 mov %i0, %o1 20163e0: 90 12 22 34 or %o0, 0x234, %o0 20163e4: 40 00 0b be call 20192dc <_Objects_Get> 20163e8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20163ec: c2 07 bf fc ld [ %fp + -4 ], %g1 20163f0: 80 a0 60 00 cmp %g1, 0 20163f4: 12 80 00 0c bne 2016424 20163f8: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 20163fc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2016400: 80 a0 60 04 cmp %g1, 4 2016404: 02 80 00 04 be 2016414 <== NEVER TAKEN 2016408: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 201640c: 40 00 14 0d call 201b440 <_Watchdog_Remove> 2016410: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016414: 40 00 0e 18 call 2019c74 <_Thread_Enable_dispatch> 2016418: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 201641c: 81 c7 e0 08 ret 2016420: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016424: 81 c7 e0 08 ret 2016428: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 020168bc : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20168bc: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 20168c0: 03 00 80 f0 sethi %hi(0x203c000), %g1 20168c4: e2 00 62 74 ld [ %g1 + 0x274 ], %l1 ! 203c274 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20168c8: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 20168cc: 80 a4 60 00 cmp %l1, 0 20168d0: 02 80 00 33 be 201699c 20168d4: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 20168d8: 03 00 80 ef sethi %hi(0x203bc00), %g1 20168dc: c2 08 63 78 ldub [ %g1 + 0x378 ], %g1 ! 203bf78 <_TOD_Is_set> 20168e0: 80 a0 60 00 cmp %g1, 0 20168e4: 02 80 00 2e be 201699c <== NEVER TAKEN 20168e8: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 20168ec: 80 a6 a0 00 cmp %i2, 0 20168f0: 02 80 00 2b be 201699c 20168f4: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 20168f8: 90 10 00 19 mov %i1, %o0 20168fc: 7f ff f4 01 call 2013900 <_TOD_Validate> 2016900: b0 10 20 14 mov 0x14, %i0 2016904: 80 8a 20 ff btst 0xff, %o0 2016908: 02 80 00 27 be 20169a4 201690c: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016910: 7f ff f3 c8 call 2013830 <_TOD_To_seconds> 2016914: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2016918: 27 00 80 ef sethi %hi(0x203bc00), %l3 201691c: c2 04 e3 f4 ld [ %l3 + 0x3f4 ], %g1 ! 203bff4 <_TOD_Now> 2016920: 80 a2 00 01 cmp %o0, %g1 2016924: 08 80 00 1e bleu 201699c 2016928: a4 10 00 08 mov %o0, %l2 201692c: 11 00 80 f0 sethi %hi(0x203c000), %o0 2016930: 92 10 00 10 mov %l0, %o1 2016934: 90 12 22 34 or %o0, 0x234, %o0 2016938: 40 00 0a 69 call 20192dc <_Objects_Get> 201693c: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016940: c2 07 bf fc ld [ %fp + -4 ], %g1 2016944: b2 10 00 08 mov %o0, %i1 2016948: 80 a0 60 00 cmp %g1, 0 201694c: 12 80 00 14 bne 201699c 2016950: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016954: 40 00 12 bb call 201b440 <_Watchdog_Remove> 2016958: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 201695c: 82 10 20 03 mov 3, %g1 2016960: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016964: c2 04 e3 f4 ld [ %l3 + 0x3f4 ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016968: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201696c: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016970: c2 04 60 04 ld [ %l1 + 4 ], %g1 2016974: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016978: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 201697c: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 2016980: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 2016984: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016988: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 201698c: 9f c0 40 00 call %g1 2016990: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016994: 40 00 0c b8 call 2019c74 <_Thread_Enable_dispatch> 2016998: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201699c: 81 c7 e0 08 ret 20169a0: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20169a4: 81 c7 e0 08 ret 20169a8: 81 e8 00 00 restore