RTEMS 4.11Annotated Report
Fri Jul 16 12:53:08 2010
0201767c <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
201767c: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017680: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017684: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017688: 80 a6 80 01 cmp %i2, %g1
201768c: 18 80 00 16 bgu 20176e4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
2017690: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
2017694: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2017698: 80 a0 60 00 cmp %g1, 0
201769c: 02 80 00 0b be 20176c8 <_CORE_message_queue_Broadcast+0x4c>
20176a0: a2 10 20 00 clr %l1
*count = 0;
20176a4: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
20176a8: 81 c7 e0 08 ret
20176ac: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
20176b0: 92 10 00 19 mov %i1, %o1
20176b4: 40 00 22 0d call 201fee8 <memcpy>
20176b8: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
20176bc: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
20176c0: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
20176c4: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
20176c8: 40 00 0a 57 call 201a024 <_Thread_queue_Dequeue>
20176cc: 90 10 00 10 mov %l0, %o0
20176d0: a4 92 20 00 orcc %o0, 0, %l2
20176d4: 32 bf ff f7 bne,a 20176b0 <_CORE_message_queue_Broadcast+0x34>
20176d8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
20176dc: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
20176e0: b0 10 20 00 clr %i0
}
20176e4: 81 c7 e0 08 ret
20176e8: 81 e8 00 00 restore
0200feb0 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200feb0: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
200feb4: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
200feb8: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
200febc: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
200fec0: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
200fec4: 80 8e e0 03 btst 3, %i3
200fec8: 02 80 00 07 be 200fee4 <_CORE_message_queue_Initialize+0x34>
200fecc: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
200fed0: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
200fed4: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
200fed8: 80 a4 80 1b cmp %l2, %i3
200fedc: 0a 80 00 22 bcs 200ff64 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200fee0: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
200fee4: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
200fee8: 92 10 00 1a mov %i2, %o1
200feec: 90 10 00 11 mov %l1, %o0
200fef0: 40 00 3d f5 call 201f6c4 <.umul>
200fef4: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
200fef8: 80 a2 00 12 cmp %o0, %l2
200fefc: 0a 80 00 1a bcs 200ff64 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
200ff00: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
200ff04: 40 00 0b ad call 2012db8 <_Workspace_Allocate>
200ff08: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
200ff0c: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
200ff10: 80 a2 20 00 cmp %o0, 0
200ff14: 02 80 00 14 be 200ff64 <_CORE_message_queue_Initialize+0xb4>
200ff18: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
200ff1c: 90 04 20 60 add %l0, 0x60, %o0
200ff20: 94 10 00 1a mov %i2, %o2
200ff24: 40 00 14 72 call 20150ec <_Chain_Initialize>
200ff28: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200ff2c: 82 04 20 54 add %l0, 0x54, %g1
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
200ff30: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
200ff34: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL;
the_chain->last = _Chain_Head(the_chain);
200ff38: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
200ff3c: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
200ff40: c0 24 20 54 clr [ %l0 + 0x54 ]
200ff44: 82 18 60 01 xor %g1, 1, %g1
200ff48: 80 a0 00 01 cmp %g0, %g1
200ff4c: 90 10 00 10 mov %l0, %o0
200ff50: 92 60 3f ff subx %g0, -1, %o1
200ff54: 94 10 20 80 mov 0x80, %o2
200ff58: 96 10 20 06 mov 6, %o3
200ff5c: 40 00 08 7e call 2012154 <_Thread_queue_Initialize>
200ff60: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
200ff64: 81 c7 e0 08 ret
200ff68: 81 e8 00 00 restore
0200ff6c <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200ff6c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
200ff70: 27 00 80 90 sethi %hi(0x2024000), %l3
200ff74: a6 14 e1 8c or %l3, 0x18c, %l3 ! 202418c <_Per_CPU_Information>
200ff78: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
200ff7c: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
200ff80: 7f ff de 16 call 20077d8 <sparc_disable_interrupts>
200ff84: c0 24 a0 34 clr [ %l2 + 0x34 ]
200ff88: 82 10 00 08 mov %o0, %g1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200ff8c: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200ff90: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
200ff94: 80 a4 40 02 cmp %l1, %g2
200ff98: 02 80 00 15 be 200ffec <_CORE_message_queue_Seize+0x80>
200ff9c: 86 06 20 50 add %i0, 0x50, %g3
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
200ffa0: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
200ffa4: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
200ffa8: 80 a4 60 00 cmp %l1, 0
200ffac: 02 80 00 10 be 200ffec <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
200ffb0: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
200ffb4: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
200ffb8: 82 00 7f ff add %g1, -1, %g1
200ffbc: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
200ffc0: 7f ff de 0a call 20077e8 <sparc_enable_interrupts>
200ffc4: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
200ffc8: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
200ffcc: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
200ffd0: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
200ffd4: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
200ffd8: 90 10 00 1a mov %i2, %o0
200ffdc: 40 00 1e f1 call 2017ba0 <memcpy>
200ffe0: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
200ffe4: 7f ff ff 83 call 200fdf0 <_Chain_Append>
200ffe8: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
200ffec: 80 8f 20 ff btst 0xff, %i4
200fff0: 32 80 00 08 bne,a 2010010 <_CORE_message_queue_Seize+0xa4>
200fff4: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
200fff8: 7f ff dd fc call 20077e8 <sparc_enable_interrupts>
200fffc: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
2010000: 82 10 20 04 mov 4, %g1
2010004: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
2010008: 81 c7 e0 08 ret
201000c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2010010: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
2010014: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
2010018: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
201001c: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
2010020: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
2010024: 90 10 00 01 mov %g1, %o0
2010028: 7f ff dd f0 call 20077e8 <sparc_enable_interrupts>
201002c: 35 00 80 48 sethi %hi(0x2012000), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
2010030: b2 10 00 1d mov %i5, %i1
2010034: 40 00 07 a0 call 2011eb4 <_Thread_queue_Enqueue_with_handler>
2010038: 95 ee a2 34 restore %i2, 0x234, %o2
02006d14 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2006d14: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2006d18: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006d1c: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 2014f28 <_Thread_Dispatch_disable_level>
2006d20: 80 a0 60 00 cmp %g1, 0
2006d24: 02 80 00 0d be 2006d58 <_CORE_mutex_Seize+0x44>
2006d28: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2006d2c: 80 8e a0 ff btst 0xff, %i2
2006d30: 02 80 00 0b be 2006d5c <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
2006d34: 90 10 00 18 mov %i0, %o0
2006d38: 03 00 80 54 sethi %hi(0x2015000), %g1
2006d3c: c2 00 60 ac ld [ %g1 + 0xac ], %g1 ! 20150ac <_System_state_Current>
2006d40: 80 a0 60 01 cmp %g1, 1
2006d44: 08 80 00 05 bleu 2006d58 <_CORE_mutex_Seize+0x44>
2006d48: 90 10 20 00 clr %o0
2006d4c: 92 10 20 00 clr %o1
2006d50: 40 00 01 df call 20074cc <_Internal_error_Occurred>
2006d54: 94 10 20 12 mov 0x12, %o2
2006d58: 90 10 00 18 mov %i0, %o0
2006d5c: 40 00 13 8e call 200bb94 <_CORE_mutex_Seize_interrupt_trylock>
2006d60: 92 07 a0 54 add %fp, 0x54, %o1
2006d64: 80 a2 20 00 cmp %o0, 0
2006d68: 02 80 00 0a be 2006d90 <_CORE_mutex_Seize+0x7c>
2006d6c: 80 8e a0 ff btst 0xff, %i2
2006d70: 35 00 80 54 sethi %hi(0x2015000), %i2
2006d74: 12 80 00 09 bne 2006d98 <_CORE_mutex_Seize+0x84>
2006d78: b4 16 a1 8c or %i2, 0x18c, %i2 ! 201518c <_Per_CPU_Information>
2006d7c: 7f ff ed 15 call 20021d0 <sparc_enable_interrupts>
2006d80: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006d84: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006d88: 84 10 20 01 mov 1, %g2
2006d8c: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2006d90: 81 c7 e0 08 ret
2006d94: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006d98: 82 10 20 01 mov 1, %g1
2006d9c: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
2006da0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
2006da4: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2006da8: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2006dac: 03 00 80 53 sethi %hi(0x2014c00), %g1
2006db0: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
2006db4: 84 00 a0 01 inc %g2
2006db8: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
2006dbc: 7f ff ed 05 call 20021d0 <sparc_enable_interrupts>
2006dc0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2006dc4: 90 10 00 18 mov %i0, %o0
2006dc8: 7f ff ff ba call 2006cb0 <_CORE_mutex_Seize_interrupt_blocking>
2006dcc: 92 10 00 1b mov %i3, %o1
2006dd0: 81 c7 e0 08 ret
2006dd4: 81 e8 00 00 restore
0200bb94 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
200bb94: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
200bb98: 03 00 80 54 sethi %hi(0x2015000), %g1
200bb9c: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 2015198 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200bba0: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200bba4: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200bba8: 80 a0 a0 00 cmp %g2, 0
200bbac: 02 80 00 2f be 200bc68 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
200bbb0: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200bbb4: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
200bbb8: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200bbbc: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
200bbc0: 84 10 20 01 mov 1, %g2
200bbc4: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
200bbc8: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200bbcc: 80 a0 a0 02 cmp %g2, 2
200bbd0: 02 80 00 05 be 200bbe4 <_CORE_mutex_Seize_interrupt_trylock+0x50>
200bbd4: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
200bbd8: 80 a0 a0 03 cmp %g2, 3
200bbdc: 12 80 00 07 bne 200bbf8 <_CORE_mutex_Seize_interrupt_trylock+0x64>
200bbe0: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200bbe4: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200bbe8: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200bbec: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
200bbf0: 02 80 00 03 be 200bbfc <_CORE_mutex_Seize_interrupt_trylock+0x68>
200bbf4: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200bbf8: 30 80 00 2b b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
200bbfc: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
200bc00: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
200bc04: 80 a1 00 02 cmp %g4, %g2
200bc08: 12 80 00 03 bne 200bc14 <_CORE_mutex_Seize_interrupt_trylock+0x80>
200bc0c: 01 00 00 00 nop
_ISR_Enable( *level_p );
200bc10: 30 80 00 25 b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
200bc14: 08 80 00 0f bleu 200bc50 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
200bc18: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200bc1c: 03 00 80 53 sethi %hi(0x2014c00), %g1
200bc20: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
200bc24: 84 00 a0 01 inc %g2
200bc28: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
200bc2c: 7f ff d9 69 call 20021d0 <sparc_enable_interrupts>
200bc30: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200bc34: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
200bc38: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
200bc3c: 7f ff f0 75 call 2007e10 <_Thread_Change_priority>
200bc40: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
200bc44: 7f ff f1 f1 call 2008408 <_Thread_Enable_dispatch>
200bc48: b0 10 20 00 clr %i0
200bc4c: 30 80 00 1d b,a 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200bc50: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
200bc54: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
200bc58: 84 10 20 01 mov 1, %g2
200bc5c: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
200bc60: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200bc64: 30 80 00 10 b,a 200bca4 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
200bc68: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
200bc6c: 80 a0 80 01 cmp %g2, %g1
200bc70: 12 80 00 14 bne 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200bc74: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200bc78: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
200bc7c: 80 a0 60 00 cmp %g1, 0
200bc80: 22 80 00 07 be,a 200bc9c <_CORE_mutex_Seize_interrupt_trylock+0x108>
200bc84: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
200bc88: 80 a0 60 01 cmp %g1, 1
200bc8c: 12 80 00 0d bne 200bcc0 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
200bc90: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200bc94: 10 80 00 08 b 200bcb4 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
200bc98: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
200bc9c: 82 00 60 01 inc %g1
200bca0: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200bca4: 7f ff d9 4b call 20021d0 <sparc_enable_interrupts>
200bca8: d0 06 40 00 ld [ %i1 ], %o0
return 0;
200bcac: 81 c7 e0 08 ret
200bcb0: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
200bcb4: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
200bcb8: 7f ff d9 46 call 20021d0 <sparc_enable_interrupts> <== NOT EXECUTED
200bcbc: b0 10 20 00 clr %i0 <== NOT EXECUTED
200bcc0: 81 c7 e0 08 ret
200bcc4: 81 e8 00 00 restore
02006f54 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2006f54: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2006f58: 90 10 00 18 mov %i0, %o0
2006f5c: 40 00 06 17 call 20087b8 <_Thread_queue_Dequeue>
2006f60: a0 10 00 18 mov %i0, %l0
2006f64: 80 a2 20 00 cmp %o0, 0
2006f68: 12 80 00 0e bne 2006fa0 <_CORE_semaphore_Surrender+0x4c>
2006f6c: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2006f70: 7f ff ec 94 call 20021c0 <sparc_disable_interrupts>
2006f74: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2006f78: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2006f7c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2006f80: 80 a0 40 02 cmp %g1, %g2
2006f84: 1a 80 00 05 bcc 2006f98 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
2006f88: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2006f8c: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2006f90: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2006f94: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2006f98: 7f ff ec 8e call 20021d0 <sparc_enable_interrupts>
2006f9c: 01 00 00 00 nop
}
return status;
}
2006fa0: 81 c7 e0 08 ret
2006fa4: 81 e8 00 00 restore
02005ba8 <_Event_Seize>:
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out
)
{
2005ba8: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events;
ISR_Level level;
RTEMS_API_Control *api;
Thread_blocking_operation_States sync_state;
executing = _Thread_Executing;
2005bac: 03 00 80 54 sethi %hi(0x2015000), %g1
2005bb0: e0 00 61 98 ld [ %g1 + 0x198 ], %l0 ! 2015198 <_Per_CPU_Information+0xc>
executing->Wait.return_code = RTEMS_SUCCESSFUL;
2005bb4: c0 24 20 34 clr [ %l0 + 0x34 ]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
_ISR_Disable( level );
2005bb8: 7f ff f1 82 call 20021c0 <sparc_disable_interrupts>
2005bbc: e4 04 21 60 ld [ %l0 + 0x160 ], %l2
pending_events = api->pending_events;
2005bc0: c2 04 80 00 ld [ %l2 ], %g1
seized_events = _Event_sets_Get( pending_events, event_in );
if ( !_Event_sets_Is_empty( seized_events ) &&
2005bc4: a2 8e 00 01 andcc %i0, %g1, %l1
2005bc8: 02 80 00 0f be 2005c04 <_Event_Seize+0x5c>
2005bcc: 80 8e 60 01 btst 1, %i1
2005bd0: 80 a4 40 18 cmp %l1, %i0
2005bd4: 22 80 00 06 be,a 2005bec <_Event_Seize+0x44>
2005bd8: 82 28 40 11 andn %g1, %l1, %g1
(seized_events == event_in || _Options_Is_any( option_set )) ) {
2005bdc: 80 8e 60 02 btst 2, %i1
2005be0: 22 80 00 09 be,a 2005c04 <_Event_Seize+0x5c> <== NEVER TAKEN
2005be4: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005be8: 82 28 40 11 andn %g1, %l1, %g1
api->pending_events =
2005bec: c2 24 80 00 st %g1, [ %l2 ]
_Event_sets_Clear( pending_events, seized_events );
_ISR_Enable( level );
2005bf0: 7f ff f1 78 call 20021d0 <sparc_enable_interrupts>
2005bf4: 01 00 00 00 nop
2005bf8: e2 26 c0 00 st %l1, [ %i3 ]
2005bfc: 81 c7 e0 08 ret
2005c00: 81 e8 00 00 restore
*event_out = seized_events;
return;
}
if ( _Options_Is_no_wait( option_set ) ) {
2005c04: 22 80 00 09 be,a 2005c28 <_Event_Seize+0x80>
2005c08: f2 24 20 30 st %i1, [ %l0 + 0x30 ]
_ISR_Enable( level );
2005c0c: 7f ff f1 71 call 20021d0 <sparc_enable_interrupts>
2005c10: 01 00 00 00 nop
executing->Wait.return_code = RTEMS_UNSATISFIED;
2005c14: 82 10 20 0d mov 0xd, %g1 ! d <PROM_START+0xd>
2005c18: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
*event_out = seized_events;
2005c1c: e2 26 c0 00 st %l1, [ %i3 ]
2005c20: 81 c7 e0 08 ret
2005c24: 81 e8 00 00 restore
*
* NOTE: Since interrupts are disabled, this isn't that much of an
* issue but better safe than sorry.
*/
executing->Wait.option = (uint32_t) option_set;
executing->Wait.count = (uint32_t) event_in;
2005c28: f0 24 20 24 st %i0, [ %l0 + 0x24 ]
executing->Wait.return_argument = event_out;
2005c2c: f6 24 20 28 st %i3, [ %l0 + 0x28 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2005c30: 84 10 20 01 mov 1, %g2
2005c34: 03 00 80 54 sethi %hi(0x2015000), %g1
2005c38: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ] ! 20151a8 <_Event_Sync_state>
_ISR_Enable( level );
2005c3c: 7f ff f1 65 call 20021d0 <sparc_enable_interrupts>
2005c40: 01 00 00 00 nop
if ( ticks ) {
2005c44: 80 a6 a0 00 cmp %i2, 0
2005c48: 02 80 00 0f be 2005c84 <_Event_Seize+0xdc>
2005c4c: 90 10 00 10 mov %l0, %o0
_Watchdog_Initialize(
2005c50: c2 04 20 08 ld [ %l0 + 8 ], %g1
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2005c54: 05 00 80 17 sethi %hi(0x2005c00), %g2
2005c58: 84 10 a2 5c or %g2, 0x25c, %g2 ! 2005e5c <_Event_Timeout>
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2005c5c: 11 00 80 53 sethi %hi(0x2014c00), %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2005c60: c0 24 20 50 clr [ %l0 + 0x50 ]
the_watchdog->routine = routine;
2005c64: c4 24 20 64 st %g2, [ %l0 + 0x64 ]
the_watchdog->id = id;
2005c68: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
the_watchdog->user_data = user_data;
2005c6c: c0 24 20 6c clr [ %l0 + 0x6c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2005c70: f4 24 20 54 st %i2, [ %l0 + 0x54 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2005c74: 90 12 23 f0 or %o0, 0x3f0, %o0
2005c78: 40 00 0e 2d call 200952c <_Watchdog_Insert>
2005c7c: 92 04 20 48 add %l0, 0x48, %o1
NULL
);
_Watchdog_Insert_ticks( &executing->Timer, ticks );
}
_Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
2005c80: 90 10 00 10 mov %l0, %o0
2005c84: 40 00 0c 38 call 2008d64 <_Thread_Set_state>
2005c88: 92 10 21 00 mov 0x100, %o1
_ISR_Disable( level );
2005c8c: 7f ff f1 4d call 20021c0 <sparc_disable_interrupts>
2005c90: 01 00 00 00 nop
sync_state = _Event_Sync_state;
2005c94: 03 00 80 54 sethi %hi(0x2015000), %g1
2005c98: f0 00 61 a8 ld [ %g1 + 0x1a8 ], %i0 ! 20151a8 <_Event_Sync_state>
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
2005c9c: c0 20 61 a8 clr [ %g1 + 0x1a8 ]
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
2005ca0: 80 a6 20 01 cmp %i0, 1
2005ca4: 12 80 00 04 bne 2005cb4 <_Event_Seize+0x10c>
2005ca8: b2 10 00 10 mov %l0, %i1
_ISR_Enable( level );
2005cac: 7f ff f1 49 call 20021d0 <sparc_enable_interrupts>
2005cb0: 91 e8 00 08 restore %g0, %o0, %o0
* An interrupt completed the thread's blocking request.
* The blocking thread was satisfied by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
_Thread_blocking_operation_Cancel( sync_state, executing, level );
2005cb4: 40 00 08 42 call 2007dbc <_Thread_blocking_operation_Cancel>
2005cb8: 95 e8 00 08 restore %g0, %o0, %o2
02005d1c <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005d1c: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005d20: e2 06 21 60 ld [ %i0 + 0x160 ], %l1
option_set = (rtems_option) the_thread->Wait.option;
2005d24: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
2005d28: 7f ff f1 26 call 20021c0 <sparc_disable_interrupts>
2005d2c: a0 10 00 18 mov %i0, %l0
2005d30: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
2005d34: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2005d38: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2005d3c: 82 88 c0 02 andcc %g3, %g2, %g1
2005d40: 12 80 00 03 bne 2005d4c <_Event_Surrender+0x30>
2005d44: 09 00 80 54 sethi %hi(0x2015000), %g4
_ISR_Enable( level );
2005d48: 30 80 00 42 b,a 2005e50 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2005d4c: 88 11 21 8c or %g4, 0x18c, %g4 ! 201518c <_Per_CPU_Information>
2005d50: da 01 20 08 ld [ %g4 + 8 ], %o5
2005d54: 80 a3 60 00 cmp %o5, 0
2005d58: 22 80 00 1d be,a 2005dcc <_Event_Surrender+0xb0>
2005d5c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
2005d60: c8 01 20 0c ld [ %g4 + 0xc ], %g4
2005d64: 80 a4 00 04 cmp %l0, %g4
2005d68: 32 80 00 19 bne,a 2005dcc <_Event_Surrender+0xb0>
2005d6c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005d70: 09 00 80 54 sethi %hi(0x2015000), %g4
2005d74: da 01 21 a8 ld [ %g4 + 0x1a8 ], %o5 ! 20151a8 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2005d78: 80 a3 60 02 cmp %o5, 2
2005d7c: 02 80 00 07 be 2005d98 <_Event_Surrender+0x7c> <== NEVER TAKEN
2005d80: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2005d84: c8 01 21 a8 ld [ %g4 + 0x1a8 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2005d88: 80 a1 20 01 cmp %g4, 1
2005d8c: 32 80 00 10 bne,a 2005dcc <_Event_Surrender+0xb0>
2005d90: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2005d94: 80 a0 40 03 cmp %g1, %g3
2005d98: 02 80 00 04 be 2005da8 <_Event_Surrender+0x8c>
2005d9c: 80 8c a0 02 btst 2, %l2
2005da0: 02 80 00 0a be 2005dc8 <_Event_Surrender+0xac> <== NEVER TAKEN
2005da4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2005da8: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2005dac: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005db0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
2005db4: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005db8: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2005dbc: 84 10 20 03 mov 3, %g2
2005dc0: 03 00 80 54 sethi %hi(0x2015000), %g1
2005dc4: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ] ! 20151a8 <_Event_Sync_state>
}
_ISR_Enable( level );
2005dc8: 30 80 00 22 b,a 2005e50 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2005dcc: 80 89 21 00 btst 0x100, %g4
2005dd0: 02 80 00 20 be 2005e50 <_Event_Surrender+0x134>
2005dd4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2005dd8: 02 80 00 04 be 2005de8 <_Event_Surrender+0xcc>
2005ddc: 80 8c a0 02 btst 2, %l2
2005de0: 02 80 00 1c be 2005e50 <_Event_Surrender+0x134> <== NEVER TAKEN
2005de4: 01 00 00 00 nop
2005de8: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2005dec: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005df0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
2005df4: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2005df8: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
2005dfc: 7f ff f0 f5 call 20021d0 <sparc_enable_interrupts>
2005e00: 90 10 00 18 mov %i0, %o0
2005e04: 7f ff f0 ef call 20021c0 <sparc_disable_interrupts>
2005e08: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2005e0c: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
2005e10: 80 a0 60 02 cmp %g1, 2
2005e14: 02 80 00 06 be 2005e2c <_Event_Surrender+0x110>
2005e18: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2005e1c: 7f ff f0 ed call 20021d0 <sparc_enable_interrupts>
2005e20: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005e24: 10 80 00 08 b 2005e44 <_Event_Surrender+0x128>
2005e28: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2005e2c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2005e30: 7f ff f0 e8 call 20021d0 <sparc_enable_interrupts>
2005e34: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2005e38: 40 00 0e 17 call 2009694 <_Watchdog_Remove>
2005e3c: 90 04 20 48 add %l0, 0x48, %o0
2005e40: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2005e44: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2005e48: 40 00 08 6b call 2007ff4 <_Thread_Clear_state>
2005e4c: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2005e50: 7f ff f0 e0 call 20021d0 <sparc_enable_interrupts>
2005e54: 81 e8 00 00 restore
02005e5c <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2005e5c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2005e60: 90 10 00 18 mov %i0, %o0
2005e64: 40 00 09 76 call 200843c <_Thread_Get>
2005e68: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2005e6c: c2 07 bf fc ld [ %fp + -4 ], %g1
2005e70: 80 a0 60 00 cmp %g1, 0
2005e74: 12 80 00 1c bne 2005ee4 <_Event_Timeout+0x88> <== NEVER TAKEN
2005e78: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2005e7c: 7f ff f0 d1 call 20021c0 <sparc_disable_interrupts>
2005e80: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2005e84: 03 00 80 54 sethi %hi(0x2015000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2005e88: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 2015198 <_Per_CPU_Information+0xc>
2005e8c: 80 a4 00 01 cmp %l0, %g1
2005e90: 12 80 00 09 bne 2005eb4 <_Event_Timeout+0x58>
2005e94: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2005e98: 03 00 80 54 sethi %hi(0x2015000), %g1
2005e9c: c4 00 61 a8 ld [ %g1 + 0x1a8 ], %g2 ! 20151a8 <_Event_Sync_state>
2005ea0: 80 a0 a0 01 cmp %g2, 1
2005ea4: 32 80 00 05 bne,a 2005eb8 <_Event_Timeout+0x5c>
2005ea8: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2005eac: 84 10 20 02 mov 2, %g2
2005eb0: c4 20 61 a8 st %g2, [ %g1 + 0x1a8 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2005eb4: 82 10 20 06 mov 6, %g1
2005eb8: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2005ebc: 7f ff f0 c5 call 20021d0 <sparc_enable_interrupts>
2005ec0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2005ec4: 90 10 00 10 mov %l0, %o0
2005ec8: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2005ecc: 40 00 08 4a call 2007ff4 <_Thread_Clear_state>
2005ed0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2005ed4: 03 00 80 53 sethi %hi(0x2014c00), %g1
2005ed8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
2005edc: 84 00 bf ff add %g2, -1, %g2
2005ee0: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
2005ee4: 81 c7 e0 08 ret
2005ee8: 81 e8 00 00 restore
0200bd44 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200bd44: 9d e3 bf 98 save %sp, -104, %sp
200bd48: a0 10 00 18 mov %i0, %l0
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200bd4c: e4 06 20 08 ld [ %i0 + 8 ], %l2
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200bd50: ac 06 60 04 add %i1, 4, %l6
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
200bd54: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
200bd58: 80 a5 80 19 cmp %l6, %i1
200bd5c: 0a 80 00 67 bcs 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4>
200bd60: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200bd64: 80 a6 e0 00 cmp %i3, 0
200bd68: 02 80 00 08 be 200bd88 <_Heap_Allocate_aligned_with_boundary+0x44>
200bd6c: 82 05 20 07 add %l4, 7, %g1
if ( boundary < alloc_size ) {
200bd70: 80 a6 c0 19 cmp %i3, %i1
200bd74: 0a 80 00 61 bcs 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4>
200bd78: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200bd7c: 22 80 00 03 be,a 200bd88 <_Heap_Allocate_aligned_with_boundary+0x44>
200bd80: b4 10 00 14 mov %l4, %i2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200bd84: 82 05 20 07 add %l4, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
200bd88: b8 10 20 04 mov 4, %i4
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
200bd8c: a2 10 20 00 clr %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200bd90: c2 27 bf f8 st %g1, [ %fp + -8 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
200bd94: b8 27 00 19 sub %i4, %i1, %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bd98: 10 80 00 50 b 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194>
200bd9c: ba 10 3f f8 mov -8, %i5
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200bda0: 80 a6 00 16 cmp %i0, %l6
200bda4: 08 80 00 4c bleu 200bed4 <_Heap_Allocate_aligned_with_boundary+0x190>
200bda8: a2 04 60 01 inc %l1
if ( alignment == 0 ) {
200bdac: 80 a6 a0 00 cmp %i2, 0
200bdb0: 12 80 00 04 bne 200bdc0 <_Heap_Allocate_aligned_with_boundary+0x7c>
200bdb4: aa 04 a0 08 add %l2, 8, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
200bdb8: 10 80 00 3a b 200bea0 <_Heap_Allocate_aligned_with_boundary+0x15c>
200bdbc: b0 10 00 15 mov %l5, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200bdc0: c2 07 bf f8 ld [ %fp + -8 ], %g1
uintptr_t alignment,
uintptr_t boundary
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
200bdc4: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bdc8: b0 0e 3f fe and %i0, -2, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200bdcc: a6 20 40 17 sub %g1, %l7, %l3
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200bdd0: b0 04 80 18 add %l2, %i0, %i0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bdd4: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200bdd8: a6 04 c0 18 add %l3, %i0, %l3
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
uintptr_t alloc_begin = alloc_end - alloc_size;
200bddc: b0 07 00 18 add %i4, %i0, %i0
200bde0: 40 00 16 6c call 2011790 <.urem>
200bde4: 90 10 00 18 mov %i0, %o0
200bde8: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200bdec: 80 a6 00 13 cmp %i0, %l3
200bdf0: 08 80 00 07 bleu 200be0c <_Heap_Allocate_aligned_with_boundary+0xc8>
200bdf4: 80 a6 e0 00 cmp %i3, 0
200bdf8: 90 10 00 13 mov %l3, %o0
200bdfc: 40 00 16 65 call 2011790 <.urem>
200be00: 92 10 00 1a mov %i2, %o1
200be04: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200be08: 80 a6 e0 00 cmp %i3, 0
200be0c: 02 80 00 18 be 200be6c <_Heap_Allocate_aligned_with_boundary+0x128>
200be10: 80 a6 00 15 cmp %i0, %l5
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200be14: 82 05 40 19 add %l5, %i1, %g1
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200be18: a6 06 00 19 add %i0, %i1, %l3
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200be1c: 10 80 00 0a b 200be44 <_Heap_Allocate_aligned_with_boundary+0x100>
200be20: c2 27 bf fc st %g1, [ %fp + -4 ]
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200be24: 80 a2 00 01 cmp %o0, %g1
200be28: 0a 80 00 2b bcs 200bed4 <_Heap_Allocate_aligned_with_boundary+0x190>
200be2c: b0 22 00 19 sub %o0, %i1, %i0
200be30: 92 10 00 1a mov %i2, %o1
200be34: 40 00 16 57 call 2011790 <.urem>
200be38: 90 10 00 18 mov %i0, %o0
200be3c: b0 26 00 08 sub %i0, %o0, %i0
return 0;
}
alloc_begin = boundary_line - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200be40: a6 06 00 19 add %i0, %i1, %l3
200be44: 90 10 00 13 mov %l3, %o0
200be48: 40 00 16 52 call 2011790 <.urem>
200be4c: 92 10 00 1b mov %i3, %o1
200be50: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200be54: 80 a2 00 13 cmp %o0, %l3
200be58: 1a 80 00 04 bcc 200be68 <_Heap_Allocate_aligned_with_boundary+0x124>
200be5c: 80 a6 00 08 cmp %i0, %o0
200be60: 0a bf ff f1 bcs 200be24 <_Heap_Allocate_aligned_with_boundary+0xe0>
200be64: c2 07 bf fc ld [ %fp + -4 ], %g1
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200be68: 80 a6 00 15 cmp %i0, %l5
200be6c: 2a 80 00 1b bcs,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194>
200be70: e4 04 a0 08 ld [ %l2 + 8 ], %l2
200be74: a6 27 40 12 sub %i5, %l2, %l3
200be78: 90 10 00 18 mov %i0, %o0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200be7c: a6 04 c0 18 add %l3, %i0, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200be80: 40 00 16 44 call 2011790 <.urem>
200be84: 92 10 00 14 mov %l4, %o1
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200be88: 90 a4 c0 08 subcc %l3, %o0, %o0
200be8c: 02 80 00 06 be 200bea4 <_Heap_Allocate_aligned_with_boundary+0x160>
200be90: 80 a6 20 00 cmp %i0, 0
200be94: 80 a2 00 17 cmp %o0, %l7
200be98: 2a 80 00 10 bcs,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194>
200be9c: e4 04 a0 08 ld [ %l2 + 8 ], %l2
boundary
);
}
}
if ( alloc_begin != 0 ) {
200bea0: 80 a6 20 00 cmp %i0, 0
200bea4: 22 80 00 0d be,a 200bed8 <_Heap_Allocate_aligned_with_boundary+0x194><== NEVER TAKEN
200bea8: e4 04 a0 08 ld [ %l2 + 8 ], %l2 <== NOT EXECUTED
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200beac: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200beb0: 90 10 00 10 mov %l0, %o0
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200beb4: 82 00 40 11 add %g1, %l1, %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200beb8: 92 10 00 12 mov %l2, %o1
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200bebc: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200bec0: 94 10 00 18 mov %i0, %o2
200bec4: 7f ff ed 35 call 2007398 <_Heap_Block_allocate>
200bec8: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200becc: 10 80 00 08 b 200beec <_Heap_Allocate_aligned_with_boundary+0x1a8>
200bed0: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200bed4: e4 04 a0 08 ld [ %l2 + 8 ], %l2
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
200bed8: 80 a4 80 10 cmp %l2, %l0
200bedc: 32 bf ff b1 bne,a 200bda0 <_Heap_Allocate_aligned_with_boundary+0x5c>
200bee0: f0 04 a0 04 ld [ %l2 + 4 ], %i0
200bee4: b0 10 20 00 clr %i0
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200bee8: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200beec: 80 a0 40 11 cmp %g1, %l1
200bef0: 2a 80 00 02 bcs,a 200bef8 <_Heap_Allocate_aligned_with_boundary+0x1b4>
200bef4: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200bef8: 81 c7 e0 08 ret
200befc: 81 e8 00 00 restore
0200c1f0 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c1f0: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200c1f4: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200c1f8: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c1fc: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200c200: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200c204: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200c208: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c20c: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
200c210: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c214: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200c218: 80 a4 40 19 cmp %l1, %i1
200c21c: 0a 80 00 9f bcs 200c498 <_Heap_Extend+0x2a8>
200c220: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200c224: 90 10 00 19 mov %i1, %o0
200c228: 94 10 00 13 mov %l3, %o2
200c22c: 98 07 bf fc add %fp, -4, %o4
200c230: 7f ff ec 7b call 200741c <_Heap_Get_first_and_last_block>
200c234: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200c238: 80 8a 20 ff btst 0xff, %o0
200c23c: 02 80 00 97 be 200c498 <_Heap_Extend+0x2a8>
200c240: aa 10 00 12 mov %l2, %l5
200c244: ba 10 20 00 clr %i5
200c248: b8 10 20 00 clr %i4
200c24c: b0 10 20 00 clr %i0
200c250: ae 10 20 00 clr %l7
200c254: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c258: 80 a0 40 11 cmp %g1, %l1
200c25c: 1a 80 00 05 bcc 200c270 <_Heap_Extend+0x80>
200c260: ec 05 40 00 ld [ %l5 ], %l6
200c264: 80 a6 40 16 cmp %i1, %l6
200c268: 2a 80 00 8c bcs,a 200c498 <_Heap_Extend+0x2a8>
200c26c: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c270: 80 a4 40 01 cmp %l1, %g1
200c274: 02 80 00 06 be 200c28c <_Heap_Extend+0x9c>
200c278: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c27c: 2a 80 00 05 bcs,a 200c290 <_Heap_Extend+0xa0>
200c280: b8 10 00 15 mov %l5, %i4
200c284: 10 80 00 04 b 200c294 <_Heap_Extend+0xa4>
200c288: 90 10 00 16 mov %l6, %o0
200c28c: ae 10 00 15 mov %l5, %l7
200c290: 90 10 00 16 mov %l6, %o0
200c294: 40 00 16 79 call 2011c78 <.urem>
200c298: 92 10 00 13 mov %l3, %o1
200c29c: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c2a0: 80 a5 80 19 cmp %l6, %i1
200c2a4: 12 80 00 05 bne 200c2b8 <_Heap_Extend+0xc8>
200c2a8: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
200c2ac: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
200c2b0: 10 80 00 04 b 200c2c0 <_Heap_Extend+0xd0>
200c2b4: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c2b8: 2a 80 00 02 bcs,a 200c2c0 <_Heap_Extend+0xd0>
200c2bc: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c2c0: ea 02 20 04 ld [ %o0 + 4 ], %l5
200c2c4: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c2c8: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c2cc: 80 a5 40 12 cmp %l5, %l2
200c2d0: 12 bf ff e2 bne 200c258 <_Heap_Extend+0x68>
200c2d4: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
200c2d8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200c2dc: 80 a6 40 01 cmp %i1, %g1
200c2e0: 3a 80 00 04 bcc,a 200c2f0 <_Heap_Extend+0x100>
200c2e4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c2e8: 10 80 00 05 b 200c2fc <_Heap_Extend+0x10c>
200c2ec: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
200c2f0: 80 a0 40 11 cmp %g1, %l1
200c2f4: 2a 80 00 02 bcs,a 200c2fc <_Heap_Extend+0x10c>
200c2f8: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c2fc: c4 07 bf fc ld [ %fp + -4 ], %g2
200c300: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
200c304: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c308: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c30c: 88 10 e0 01 or %g3, 1, %g4
extend_last_block->prev_size = extend_first_block_size;
200c310: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c314: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c318: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
200c31c: 80 a0 c0 02 cmp %g3, %g2
200c320: 08 80 00 04 bleu 200c330 <_Heap_Extend+0x140>
200c324: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
200c328: 10 80 00 06 b 200c340 <_Heap_Extend+0x150>
200c32c: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200c330: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
200c334: 80 a0 80 01 cmp %g2, %g1
200c338: 2a 80 00 02 bcs,a 200c340 <_Heap_Extend+0x150>
200c33c: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c340: 80 a5 e0 00 cmp %l7, 0
200c344: 02 80 00 14 be 200c394 <_Heap_Extend+0x1a4>
200c348: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200c34c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200c350: 92 10 00 12 mov %l2, %o1
200c354: 40 00 16 49 call 2011c78 <.urem>
200c358: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c35c: 80 a2 20 00 cmp %o0, 0
200c360: 02 80 00 04 be 200c370 <_Heap_Extend+0x180> <== ALWAYS TAKEN
200c364: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
200c368: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
200c36c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200c370: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200c374: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200c378: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c37c: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
200c380: 90 10 00 10 mov %l0, %o0
200c384: 7f ff ff 90 call 200c1c4 <_Heap_Free_block>
200c388: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c38c: 10 80 00 09 b 200c3b0 <_Heap_Extend+0x1c0>
200c390: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200c394: 80 a7 20 00 cmp %i4, 0
200c398: 02 80 00 05 be 200c3ac <_Heap_Extend+0x1bc>
200c39c: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200c3a0: b8 27 00 01 sub %i4, %g1, %i4
200c3a4: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200c3a8: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200c3ac: 80 a6 20 00 cmp %i0, 0
200c3b0: 02 80 00 15 be 200c404 <_Heap_Extend+0x214>
200c3b4: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c3b8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200c3bc: a2 24 40 18 sub %l1, %i0, %l1
200c3c0: 40 00 16 2e call 2011c78 <.urem>
200c3c4: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200c3c8: c4 06 20 04 ld [ %i0 + 4 ], %g2
200c3cc: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c3d0: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
200c3d4: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
200c3d8: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200c3dc: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c3e0: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200c3e4: 90 10 00 10 mov %l0, %o0
200c3e8: 82 08 60 01 and %g1, 1, %g1
200c3ec: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
200c3f0: a2 14 40 01 or %l1, %g1, %l1
200c3f4: 7f ff ff 74 call 200c1c4 <_Heap_Free_block>
200c3f8: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c3fc: 10 80 00 0f b 200c438 <_Heap_Extend+0x248>
200c400: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200c404: 80 a7 60 00 cmp %i5, 0
200c408: 02 80 00 0b be 200c434 <_Heap_Extend+0x244>
200c40c: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c410: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
200c414: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200c418: 86 20 c0 1d sub %g3, %i5, %g3
200c41c: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c420: 84 10 c0 02 or %g3, %g2, %g2
200c424: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200c428: c4 00 60 04 ld [ %g1 + 4 ], %g2
200c42c: 84 10 a0 01 or %g2, 1, %g2
200c430: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200c434: 80 a6 20 00 cmp %i0, 0
200c438: 32 80 00 09 bne,a 200c45c <_Heap_Extend+0x26c>
200c43c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200c440: 80 a5 e0 00 cmp %l7, 0
200c444: 32 80 00 06 bne,a 200c45c <_Heap_Extend+0x26c>
200c448: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200c44c: d2 07 bf fc ld [ %fp + -4 ], %o1
200c450: 7f ff ff 5d call 200c1c4 <_Heap_Free_block>
200c454: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200c458: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c45c: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c460: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200c464: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c468: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200c46c: 84 10 c0 02 or %g3, %g2, %g2
200c470: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c474: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200c478: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200c47c: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
200c480: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
200c484: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200c488: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
200c48c: 02 80 00 03 be 200c498 <_Heap_Extend+0x2a8> <== NEVER TAKEN
200c490: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
200c494: e8 26 c0 00 st %l4, [ %i3 ]
200c498: 81 c7 e0 08 ret
200c49c: 81 e8 00 00 restore
0200bf00 <_Heap_Free>:
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200bf00: 9d e3 bf a0 save %sp, -96, %sp
200bf04: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200bf08: 40 00 16 22 call 2011790 <.urem>
200bf0c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200bf10: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200bf14: a2 06 7f f8 add %i1, -8, %l1
200bf18: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200bf1c: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bf20: 80 a2 00 0c cmp %o0, %o4
200bf24: 0a 80 00 05 bcs 200bf38 <_Heap_Free+0x38>
200bf28: 82 10 20 00 clr %g1
200bf2c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200bf30: 80 a0 40 08 cmp %g1, %o0
200bf34: 82 60 3f ff subx %g0, -1, %g1
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
uintptr_t next_block_size = 0;
bool next_is_free = false;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
200bf38: 80 a0 60 00 cmp %g1, 0
200bf3c: 02 80 00 6a be 200c0e4 <_Heap_Free+0x1e4>
200bf40: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bf44: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200bf48: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bf4c: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bf50: 80 a0 40 0c cmp %g1, %o4
200bf54: 0a 80 00 05 bcs 200bf68 <_Heap_Free+0x68> <== NEVER TAKEN
200bf58: 86 10 20 00 clr %g3
200bf5c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200bf60: 80 a0 c0 01 cmp %g3, %g1
200bf64: 86 60 3f ff subx %g0, -1, %g3
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
200bf68: 80 a0 e0 00 cmp %g3, 0
200bf6c: 02 80 00 5e be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bf70: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bf74: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200bf78: 80 89 20 01 btst 1, %g4
200bf7c: 02 80 00 5a be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bf80: 88 09 3f fe and %g4, -2, %g4
_HAssert( false );
return false;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200bf84: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bf88: 80 a0 40 09 cmp %g1, %o1
200bf8c: 02 80 00 07 be 200bfa8 <_Heap_Free+0xa8>
200bf90: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200bf94: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bf98: c6 00 e0 04 ld [ %g3 + 4 ], %g3
200bf9c: 86 08 e0 01 and %g3, 1, %g3
return false;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200bfa0: 80 a0 00 03 cmp %g0, %g3
200bfa4: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
200bfa8: 80 8b 60 01 btst 1, %o5
200bfac: 12 80 00 26 bne 200c044 <_Heap_Free+0x144>
200bfb0: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
200bfb4: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200bfb8: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200bfbc: 80 a0 c0 0c cmp %g3, %o4
200bfc0: 0a 80 00 04 bcs 200bfd0 <_Heap_Free+0xd0> <== NEVER TAKEN
200bfc4: 94 10 20 00 clr %o2
200bfc8: 80 a2 40 03 cmp %o1, %g3
200bfcc: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
200bfd0: 80 a2 a0 00 cmp %o2, 0
200bfd4: 02 80 00 44 be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bfd8: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200bfdc: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200bfe0: 80 8b 20 01 btst 1, %o4
200bfe4: 02 80 00 40 be 200c0e4 <_Heap_Free+0x1e4> <== NEVER TAKEN
200bfe8: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200bfec: 22 80 00 0f be,a 200c028 <_Heap_Free+0x128>
200bff0: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
200bff4: 88 00 80 04 add %g2, %g4, %g4
200bff8: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200bffc: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
200c000: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
200c004: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
200c008: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200c00c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
200c010: 82 00 7f ff add %g1, -1, %g1
200c014: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200c018: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c01c: 82 13 60 01 or %o5, 1, %g1
200c020: 10 80 00 27 b 200c0bc <_Heap_Free+0x1bc>
200c024: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c028: 88 13 60 01 or %o5, 1, %g4
200c02c: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c030: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
200c034: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c038: 86 08 ff fe and %g3, -2, %g3
200c03c: 10 80 00 20 b 200c0bc <_Heap_Free+0x1bc>
200c040: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200c044: 22 80 00 0d be,a 200c078 <_Heap_Free+0x178>
200c048: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
200c04c: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200c050: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
200c054: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
200c058: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
200c05c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
200c060: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
200c064: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c068: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200c06c: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c070: 10 80 00 13 b 200c0bc <_Heap_Free+0x1bc>
200c074: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200c078: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200c07c: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200c080: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200c084: 86 10 a0 01 or %g2, 1, %g3
200c088: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c08c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
200c090: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c094: 86 08 ff fe and %g3, -2, %g3
200c098: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c09c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
200c0a0: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c0a4: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200c0a8: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200c0ac: 80 a0 c0 01 cmp %g3, %g1
200c0b0: 1a 80 00 03 bcc 200c0bc <_Heap_Free+0x1bc>
200c0b4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200c0b8: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
200c0bc: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
200c0c0: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c0c4: 82 00 7f ff add %g1, -1, %g1
200c0c8: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
200c0cc: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
200c0d0: 82 00 60 01 inc %g1
200c0d4: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200c0d8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
200c0dc: 84 00 40 02 add %g1, %g2, %g2
200c0e0: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
200c0e4: 81 c7 e0 08 ret
200c0e8: 81 e8 00 00 restore
020131cc <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
20131cc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20131d0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
20131d4: 7f ff f9 6f call 2011790 <.urem>
20131d8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
20131dc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20131e0: a2 06 7f f8 add %i1, -8, %l1
20131e4: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20131e8: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20131ec: 80 a2 00 02 cmp %o0, %g2
20131f0: 0a 80 00 05 bcs 2013204 <_Heap_Size_of_alloc_area+0x38>
20131f4: 82 10 20 00 clr %g1
20131f8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
20131fc: 80 a0 40 08 cmp %g1, %o0
2013200: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
2013204: 80 a0 60 00 cmp %g1, 0
2013208: 02 80 00 15 be 201325c <_Heap_Size_of_alloc_area+0x90>
201320c: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2013210: e2 02 20 04 ld [ %o0 + 4 ], %l1
2013214: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2013218: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
201321c: 80 a4 40 02 cmp %l1, %g2
2013220: 0a 80 00 05 bcs 2013234 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
2013224: 82 10 20 00 clr %g1
2013228: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
201322c: 80 a0 40 11 cmp %g1, %l1
2013230: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
2013234: 80 a0 60 00 cmp %g1, 0
2013238: 02 80 00 09 be 201325c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
201323c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2013240: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2013244: 80 88 60 01 btst 1, %g1
2013248: 02 80 00 05 be 201325c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
201324c: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
return true;
2013250: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
2013254: a2 04 60 04 add %l1, 4, %l1
2013258: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
201325c: 81 c7 e0 08 ret
2013260: 81 e8 00 00 restore
02008334 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2008334: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008338: 23 00 80 20 sethi %hi(0x2008000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
200833c: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
2008340: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
2008344: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
2008348: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
200834c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008350: 80 8e a0 ff btst 0xff, %i2
2008354: 02 80 00 04 be 2008364 <_Heap_Walk+0x30>
2008358: a2 14 62 e0 or %l1, 0x2e0, %l1
200835c: 23 00 80 20 sethi %hi(0x2008000), %l1
2008360: a2 14 62 e8 or %l1, 0x2e8, %l1 ! 20082e8 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2008364: 03 00 80 5d sethi %hi(0x2017400), %g1
2008368: c2 00 63 3c ld [ %g1 + 0x33c ], %g1 ! 201773c <_System_state_Current>
200836c: 80 a0 60 03 cmp %g1, 3
2008370: 12 80 01 2d bne 2008824 <_Heap_Walk+0x4f0>
2008374: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008378: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200837c: da 04 20 18 ld [ %l0 + 0x18 ], %o5
2008380: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2008384: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008388: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
200838c: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
2008390: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2008394: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
2008398: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
200839c: 90 10 00 19 mov %i1, %o0
20083a0: 92 10 20 00 clr %o1
20083a4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083a8: 96 10 00 12 mov %l2, %o3
20083ac: 94 12 a2 88 or %o2, 0x288, %o2
20083b0: 9f c4 40 00 call %l1
20083b4: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
20083b8: 80 a4 a0 00 cmp %l2, 0
20083bc: 12 80 00 07 bne 20083d8 <_Heap_Walk+0xa4>
20083c0: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
20083c4: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083c8: 90 10 00 19 mov %i1, %o0
20083cc: 92 10 20 01 mov 1, %o1
20083d0: 10 80 00 38 b 20084b0 <_Heap_Walk+0x17c>
20083d4: 94 12 a3 20 or %o2, 0x320, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
20083d8: 22 80 00 08 be,a 20083f8 <_Heap_Walk+0xc4>
20083dc: 90 10 00 14 mov %l4, %o0
(*printer)(
20083e0: 15 00 80 53 sethi %hi(0x2014c00), %o2
20083e4: 90 10 00 19 mov %i1, %o0
20083e8: 92 10 20 01 mov 1, %o1
20083ec: 94 12 a3 38 or %o2, 0x338, %o2
20083f0: 10 80 01 0b b 200881c <_Heap_Walk+0x4e8>
20083f4: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20083f8: 7f ff e5 b3 call 2001ac4 <.urem>
20083fc: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008400: 80 a2 20 00 cmp %o0, 0
2008404: 22 80 00 08 be,a 2008424 <_Heap_Walk+0xf0>
2008408: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
200840c: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008410: 90 10 00 19 mov %i1, %o0
2008414: 92 10 20 01 mov 1, %o1
2008418: 94 12 a3 58 or %o2, 0x358, %o2
200841c: 10 80 01 00 b 200881c <_Heap_Walk+0x4e8>
2008420: 96 10 00 14 mov %l4, %o3
2008424: 7f ff e5 a8 call 2001ac4 <.urem>
2008428: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
200842c: 80 a2 20 00 cmp %o0, 0
2008430: 22 80 00 08 be,a 2008450 <_Heap_Walk+0x11c>
2008434: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008438: 15 00 80 53 sethi %hi(0x2014c00), %o2
200843c: 90 10 00 19 mov %i1, %o0
2008440: 92 10 20 01 mov 1, %o1
2008444: 94 12 a3 80 or %o2, 0x380, %o2
2008448: 10 80 00 f5 b 200881c <_Heap_Walk+0x4e8>
200844c: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008450: 80 88 60 01 btst 1, %g1
2008454: 32 80 00 07 bne,a 2008470 <_Heap_Walk+0x13c>
2008458: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
200845c: 15 00 80 53 sethi %hi(0x2014c00), %o2
2008460: 90 10 00 19 mov %i1, %o0
2008464: 92 10 20 01 mov 1, %o1
2008468: 10 80 00 12 b 20084b0 <_Heap_Walk+0x17c>
200846c: 94 12 a3 b8 or %o2, 0x3b8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008470: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008474: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008478: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
200847c: 80 88 60 01 btst 1, %g1
2008480: 12 80 00 07 bne 200849c <_Heap_Walk+0x168>
2008484: 80 a5 80 13 cmp %l6, %l3
(*printer)(
2008488: 15 00 80 53 sethi %hi(0x2014c00), %o2
200848c: 90 10 00 19 mov %i1, %o0
2008490: 92 10 20 01 mov 1, %o1
2008494: 10 80 00 07 b 20084b0 <_Heap_Walk+0x17c>
2008498: 94 12 a3 e8 or %o2, 0x3e8, %o2
);
return false;
}
if (
200849c: 02 80 00 08 be 20084bc <_Heap_Walk+0x188> <== ALWAYS TAKEN
20084a0: 15 00 80 54 sethi %hi(0x2015000), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20084a4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
20084a8: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
20084ac: 94 12 a0 00 mov %o2, %o2 <== NOT EXECUTED
20084b0: 9f c4 40 00 call %l1
20084b4: b0 10 20 00 clr %i0
20084b8: 30 80 00 db b,a 2008824 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
20084bc: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
20084c0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
20084c4: ae 10 00 10 mov %l0, %l7
20084c8: 10 80 00 32 b 2008590 <_Heap_Walk+0x25c>
20084cc: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20084d0: 80 a0 80 1c cmp %g2, %i4
20084d4: 18 80 00 05 bgu 20084e8 <_Heap_Walk+0x1b4>
20084d8: 82 10 20 00 clr %g1
20084dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
20084e0: 80 a0 40 1c cmp %g1, %i4
20084e4: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
20084e8: 80 a0 60 00 cmp %g1, 0
20084ec: 32 80 00 08 bne,a 200850c <_Heap_Walk+0x1d8>
20084f0: 90 07 20 08 add %i4, 8, %o0
(*printer)(
20084f4: 15 00 80 54 sethi %hi(0x2015000), %o2
20084f8: 96 10 00 1c mov %i4, %o3
20084fc: 90 10 00 19 mov %i1, %o0
2008500: 92 10 20 01 mov 1, %o1
2008504: 10 80 00 c6 b 200881c <_Heap_Walk+0x4e8>
2008508: 94 12 a0 30 or %o2, 0x30, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200850c: 7f ff e5 6e call 2001ac4 <.urem>
2008510: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
2008514: 80 a2 20 00 cmp %o0, 0
2008518: 22 80 00 08 be,a 2008538 <_Heap_Walk+0x204>
200851c: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008520: 15 00 80 54 sethi %hi(0x2015000), %o2
2008524: 96 10 00 1c mov %i4, %o3
2008528: 90 10 00 19 mov %i1, %o0
200852c: 92 10 20 01 mov 1, %o1
2008530: 10 80 00 bb b 200881c <_Heap_Walk+0x4e8>
2008534: 94 12 a0 50 or %o2, 0x50, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008538: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
200853c: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008540: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008544: 80 88 60 01 btst 1, %g1
2008548: 22 80 00 08 be,a 2008568 <_Heap_Walk+0x234>
200854c: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
2008550: 15 00 80 54 sethi %hi(0x2015000), %o2
2008554: 96 10 00 1c mov %i4, %o3
2008558: 90 10 00 19 mov %i1, %o0
200855c: 92 10 20 01 mov 1, %o1
2008560: 10 80 00 af b 200881c <_Heap_Walk+0x4e8>
2008564: 94 12 a0 80 or %o2, 0x80, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
2008568: 80 a3 00 17 cmp %o4, %l7
200856c: 22 80 00 08 be,a 200858c <_Heap_Walk+0x258>
2008570: ae 10 00 1c mov %i4, %l7
(*printer)(
2008574: 15 00 80 54 sethi %hi(0x2015000), %o2
2008578: 96 10 00 1c mov %i4, %o3
200857c: 90 10 00 19 mov %i1, %o0
2008580: 92 10 20 01 mov 1, %o1
2008584: 10 80 00 49 b 20086a8 <_Heap_Walk+0x374>
2008588: 94 12 a0 a0 or %o2, 0xa0, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
200858c: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008590: 80 a7 00 10 cmp %i4, %l0
2008594: 32 bf ff cf bne,a 20084d0 <_Heap_Walk+0x19c>
2008598: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
200859c: 35 00 80 54 sethi %hi(0x2015000), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20085a0: 31 00 80 54 sethi %hi(0x2015000), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20085a4: b4 16 a2 60 or %i2, 0x260, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20085a8: b0 16 22 48 or %i0, 0x248, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
20085ac: 37 00 80 54 sethi %hi(0x2015000), %i3
block = next_block;
} while ( block != first_block );
return true;
}
20085b0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20085b4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20085b8: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20085bc: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20085c0: 80 a0 c0 1d cmp %g3, %i5
20085c4: 18 80 00 05 bgu 20085d8 <_Heap_Walk+0x2a4> <== NEVER TAKEN
20085c8: 84 10 20 00 clr %g2
20085cc: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
20085d0: 80 a0 80 1d cmp %g2, %i5
20085d4: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
20085d8: 80 a0 a0 00 cmp %g2, 0
20085dc: 12 80 00 07 bne 20085f8 <_Heap_Walk+0x2c4>
20085e0: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
20085e4: 15 00 80 54 sethi %hi(0x2015000), %o2
20085e8: 90 10 00 19 mov %i1, %o0
20085ec: 92 10 20 01 mov 1, %o1
20085f0: 10 80 00 2c b 20086a0 <_Heap_Walk+0x36c>
20085f4: 94 12 a0 d8 or %o2, 0xd8, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
20085f8: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20085fc: c2 27 bf fc st %g1, [ %fp + -4 ]
2008600: b8 40 20 00 addx %g0, 0, %i4
2008604: 90 10 00 17 mov %l7, %o0
2008608: 7f ff e5 2f call 2001ac4 <.urem>
200860c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008610: 80 a2 20 00 cmp %o0, 0
2008614: 02 80 00 0c be 2008644 <_Heap_Walk+0x310>
2008618: c2 07 bf fc ld [ %fp + -4 ], %g1
200861c: 80 8f 20 ff btst 0xff, %i4
2008620: 02 80 00 0a be 2008648 <_Heap_Walk+0x314>
2008624: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
2008628: 15 00 80 54 sethi %hi(0x2015000), %o2
200862c: 90 10 00 19 mov %i1, %o0
2008630: 92 10 20 01 mov 1, %o1
2008634: 94 12 a1 08 or %o2, 0x108, %o2
2008638: 96 10 00 16 mov %l6, %o3
200863c: 10 80 00 1b b 20086a8 <_Heap_Walk+0x374>
2008640: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008644: 80 a5 c0 14 cmp %l7, %l4
2008648: 1a 80 00 0d bcc 200867c <_Heap_Walk+0x348>
200864c: 80 a7 40 16 cmp %i5, %l6
2008650: 80 8f 20 ff btst 0xff, %i4
2008654: 02 80 00 0a be 200867c <_Heap_Walk+0x348> <== NEVER TAKEN
2008658: 80 a7 40 16 cmp %i5, %l6
(*printer)(
200865c: 15 00 80 54 sethi %hi(0x2015000), %o2
2008660: 90 10 00 19 mov %i1, %o0
2008664: 92 10 20 01 mov 1, %o1
2008668: 94 12 a1 38 or %o2, 0x138, %o2
200866c: 96 10 00 16 mov %l6, %o3
2008670: 98 10 00 17 mov %l7, %o4
2008674: 10 80 00 3f b 2008770 <_Heap_Walk+0x43c>
2008678: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
200867c: 38 80 00 0e bgu,a 20086b4 <_Heap_Walk+0x380>
2008680: b8 08 60 01 and %g1, 1, %i4
2008684: 80 8f 20 ff btst 0xff, %i4
2008688: 02 80 00 0b be 20086b4 <_Heap_Walk+0x380>
200868c: b8 08 60 01 and %g1, 1, %i4
(*printer)(
2008690: 15 00 80 54 sethi %hi(0x2015000), %o2
2008694: 90 10 00 19 mov %i1, %o0
2008698: 92 10 20 01 mov 1, %o1
200869c: 94 12 a1 68 or %o2, 0x168, %o2
20086a0: 96 10 00 16 mov %l6, %o3
20086a4: 98 10 00 1d mov %i5, %o4
20086a8: 9f c4 40 00 call %l1
20086ac: b0 10 20 00 clr %i0
20086b0: 30 80 00 5d b,a 2008824 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20086b4: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
20086b8: 80 88 60 01 btst 1, %g1
20086bc: 12 80 00 3f bne 20087b8 <_Heap_Walk+0x484>
20086c0: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
20086c4: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20086c8: c2 04 20 08 ld [ %l0 + 8 ], %g1
20086cc: 05 00 80 53 sethi %hi(0x2014c00), %g2
block = next_block;
} while ( block != first_block );
return true;
}
20086d0: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20086d4: 80 a3 40 01 cmp %o5, %g1
20086d8: 02 80 00 07 be 20086f4 <_Heap_Walk+0x3c0>
20086dc: 86 10 a2 48 or %g2, 0x248, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
20086e0: 80 a3 40 10 cmp %o5, %l0
20086e4: 12 80 00 04 bne 20086f4 <_Heap_Walk+0x3c0>
20086e8: 86 16 e2 10 or %i3, 0x210, %g3
20086ec: 19 00 80 53 sethi %hi(0x2014c00), %o4
20086f0: 86 13 22 58 or %o4, 0x258, %g3 ! 2014e58 <C.0.4120+0x44>
block->next,
block->next == last_free_block ?
20086f4: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
20086f8: 19 00 80 53 sethi %hi(0x2014c00), %o4
20086fc: 80 a0 80 04 cmp %g2, %g4
2008700: 02 80 00 07 be 200871c <_Heap_Walk+0x3e8>
2008704: 82 13 22 68 or %o4, 0x268, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008708: 80 a0 80 10 cmp %g2, %l0
200870c: 12 80 00 04 bne 200871c <_Heap_Walk+0x3e8>
2008710: 82 16 e2 10 or %i3, 0x210, %g1
2008714: 09 00 80 53 sethi %hi(0x2014c00), %g4
2008718: 82 11 22 78 or %g4, 0x278, %g1 ! 2014e78 <C.0.4120+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200871c: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008720: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
2008724: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
2008728: 90 10 00 19 mov %i1, %o0
200872c: 92 10 20 00 clr %o1
2008730: 15 00 80 54 sethi %hi(0x2015000), %o2
2008734: 96 10 00 16 mov %l6, %o3
2008738: 94 12 a1 a0 or %o2, 0x1a0, %o2
200873c: 9f c4 40 00 call %l1
2008740: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008744: da 07 40 00 ld [ %i5 ], %o5
2008748: 80 a5 c0 0d cmp %l7, %o5
200874c: 02 80 00 0c be 200877c <_Heap_Walk+0x448>
2008750: 80 a7 20 00 cmp %i4, 0
(*printer)(
2008754: 15 00 80 54 sethi %hi(0x2015000), %o2
2008758: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
200875c: 90 10 00 19 mov %i1, %o0
2008760: 92 10 20 01 mov 1, %o1
2008764: 94 12 a1 d8 or %o2, 0x1d8, %o2
2008768: 96 10 00 16 mov %l6, %o3
200876c: 98 10 00 17 mov %l7, %o4
2008770: 9f c4 40 00 call %l1
2008774: b0 10 20 00 clr %i0
2008778: 30 80 00 2b b,a 2008824 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
200877c: 32 80 00 0a bne,a 20087a4 <_Heap_Walk+0x470>
2008780: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
2008784: 15 00 80 54 sethi %hi(0x2015000), %o2
2008788: 90 10 00 19 mov %i1, %o0
200878c: 92 10 20 01 mov 1, %o1
2008790: 10 80 00 22 b 2008818 <_Heap_Walk+0x4e4>
2008794: 94 12 a2 18 or %o2, 0x218, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
2008798: 02 80 00 19 be 20087fc <_Heap_Walk+0x4c8>
200879c: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
20087a0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
20087a4: 80 a0 40 10 cmp %g1, %l0
20087a8: 12 bf ff fc bne 2008798 <_Heap_Walk+0x464>
20087ac: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
20087b0: 10 80 00 17 b 200880c <_Heap_Walk+0x4d8>
20087b4: 15 00 80 54 sethi %hi(0x2015000), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
20087b8: 22 80 00 0a be,a 20087e0 <_Heap_Walk+0x4ac>
20087bc: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
20087c0: 90 10 00 19 mov %i1, %o0
20087c4: 92 10 20 00 clr %o1
20087c8: 94 10 00 18 mov %i0, %o2
20087cc: 96 10 00 16 mov %l6, %o3
20087d0: 9f c4 40 00 call %l1
20087d4: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20087d8: 10 80 00 09 b 20087fc <_Heap_Walk+0x4c8>
20087dc: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20087e0: 90 10 00 19 mov %i1, %o0
20087e4: 92 10 20 00 clr %o1
20087e8: 94 10 00 1a mov %i2, %o2
20087ec: 96 10 00 16 mov %l6, %o3
20087f0: 9f c4 40 00 call %l1
20087f4: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20087f8: 80 a7 40 13 cmp %i5, %l3
20087fc: 32 bf ff 6d bne,a 20085b0 <_Heap_Walk+0x27c>
2008800: ac 10 00 1d mov %i5, %l6
return true;
}
2008804: 81 c7 e0 08 ret
2008808: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200880c: 90 10 00 19 mov %i1, %o0
2008810: 92 10 20 01 mov 1, %o1
2008814: 94 12 a2 88 or %o2, 0x288, %o2
2008818: 96 10 00 16 mov %l6, %o3
200881c: 9f c4 40 00 call %l1
2008820: b0 10 20 00 clr %i0
2008824: 81 c7 e0 08 ret
2008828: 81 e8 00 00 restore
0200757c <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
200757c: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007580: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007584: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007588: 80 a0 60 00 cmp %g1, 0
200758c: 02 80 00 20 be 200760c <_Objects_Allocate+0x90> <== NEVER TAKEN
2007590: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007594: a2 04 20 20 add %l0, 0x20, %l1
2007598: 7f ff fd 86 call 2006bb0 <_Chain_Get>
200759c: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
20075a0: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
20075a4: 80 a0 60 00 cmp %g1, 0
20075a8: 02 80 00 19 be 200760c <_Objects_Allocate+0x90>
20075ac: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
20075b0: 80 a2 20 00 cmp %o0, 0
20075b4: 32 80 00 0a bne,a 20075dc <_Objects_Allocate+0x60>
20075b8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
20075bc: 40 00 00 1e call 2007634 <_Objects_Extend_information>
20075c0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20075c4: 7f ff fd 7b call 2006bb0 <_Chain_Get>
20075c8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
20075cc: b0 92 20 00 orcc %o0, 0, %i0
20075d0: 02 80 00 0f be 200760c <_Objects_Allocate+0x90>
20075d4: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
20075d8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
20075dc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
20075e0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
20075e4: 40 00 27 bf call 20114e0 <.udiv>
20075e8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20075ec: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
20075f0: 91 2a 20 02 sll %o0, 2, %o0
20075f4: c4 00 40 08 ld [ %g1 + %o0 ], %g2
20075f8: 84 00 bf ff add %g2, -1, %g2
20075fc: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
2007600: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
2007604: 82 00 7f ff add %g1, -1, %g1
2007608: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
200760c: 81 c7 e0 08 ret
2007610: 81 e8 00 00 restore
02007990 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint32_t the_class
)
{
2007990: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007994: 80 a6 60 00 cmp %i1, 0
2007998: 02 80 00 17 be 20079f4 <_Objects_Get_information+0x64>
200799c: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
20079a0: 40 00 11 d3 call 200c0ec <_Objects_API_maximum_class>
20079a4: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
20079a8: 80 a2 20 00 cmp %o0, 0
20079ac: 02 80 00 12 be 20079f4 <_Objects_Get_information+0x64>
20079b0: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20079b4: 18 80 00 10 bgu 20079f4 <_Objects_Get_information+0x64>
20079b8: 03 00 80 53 sethi %hi(0x2014c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20079bc: b1 2e 20 02 sll %i0, 2, %i0
20079c0: 82 10 62 8c or %g1, 0x28c, %g1
20079c4: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20079c8: 80 a0 60 00 cmp %g1, 0
20079cc: 02 80 00 0a be 20079f4 <_Objects_Get_information+0x64> <== NEVER TAKEN
20079d0: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20079d4: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
20079d8: 80 a4 20 00 cmp %l0, 0
20079dc: 02 80 00 06 be 20079f4 <_Objects_Get_information+0x64> <== NEVER TAKEN
20079e0: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20079e4: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
20079e8: 80 a0 00 01 cmp %g0, %g1
20079ec: 82 60 20 00 subx %g0, 0, %g1
20079f0: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
20079f4: 81 c7 e0 08 ret
20079f8: 91 e8 00 10 restore %g0, %l0, %o0
02019294 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019294: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
2019298: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201929c: 82 22 40 01 sub %o1, %g1, %g1
20192a0: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
20192a4: 80 a0 80 01 cmp %g2, %g1
20192a8: 0a 80 00 09 bcs 20192cc <_Objects_Get_no_protection+0x38>
20192ac: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
20192b0: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
20192b4: d0 00 80 01 ld [ %g2 + %g1 ], %o0
20192b8: 80 a2 20 00 cmp %o0, 0
20192bc: 02 80 00 05 be 20192d0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
20192c0: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
20192c4: 81 c3 e0 08 retl
20192c8: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
20192cc: 82 10 20 01 mov 1, %g1
return NULL;
20192d0: 90 10 20 00 clr %o0
}
20192d4: 81 c3 e0 08 retl
20192d8: c2 22 80 00 st %g1, [ %o2 ]
0200925c <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
200925c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009260: 92 96 20 00 orcc %i0, 0, %o1
2009264: 12 80 00 06 bne 200927c <_Objects_Id_to_name+0x20>
2009268: 83 32 60 18 srl %o1, 0x18, %g1
200926c: 03 00 80 74 sethi %hi(0x201d000), %g1
2009270: c2 00 62 68 ld [ %g1 + 0x268 ], %g1 ! 201d268 <_Per_CPU_Information+0xc>
2009274: d2 00 60 08 ld [ %g1 + 8 ], %o1
2009278: 83 32 60 18 srl %o1, 0x18, %g1
200927c: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2009280: 84 00 7f ff add %g1, -1, %g2
2009284: 80 a0 a0 02 cmp %g2, 2
2009288: 18 80 00 12 bgu 20092d0 <_Objects_Id_to_name+0x74>
200928c: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009290: 10 80 00 12 b 20092d8 <_Objects_Id_to_name+0x7c>
2009294: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2009298: 85 28 a0 02 sll %g2, 2, %g2
200929c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
20092a0: 80 a2 20 00 cmp %o0, 0
20092a4: 02 80 00 0b be 20092d0 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
20092a8: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
20092ac: 7f ff ff cf call 20091e8 <_Objects_Get>
20092b0: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
20092b4: 80 a2 20 00 cmp %o0, 0
20092b8: 02 80 00 06 be 20092d0 <_Objects_Id_to_name+0x74>
20092bc: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
20092c0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
20092c4: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
20092c8: 40 00 02 54 call 2009c18 <_Thread_Enable_dispatch>
20092cc: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
20092d0: 81 c7 e0 08 ret
20092d4: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20092d8: 05 00 80 73 sethi %hi(0x201cc00), %g2
20092dc: 84 10 a3 5c or %g2, 0x35c, %g2 ! 201cf5c <_Objects_Information_table>
20092e0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
20092e4: 80 a0 60 00 cmp %g1, 0
20092e8: 12 bf ff ec bne 2009298 <_Objects_Id_to_name+0x3c> <== ALWAYS TAKEN
20092ec: 85 32 60 1b srl %o1, 0x1b, %g2
20092f0: 30 bf ff f8 b,a 20092d0 <_Objects_Id_to_name+0x74> <== NOT EXECUTED
02007ae4 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007ae4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007ae8: 85 2f 20 10 sll %i4, 0x10, %g2
2007aec: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007af0: 07 00 80 53 sethi %hi(0x2014c00), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2007af4: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007af8: 86 10 e2 8c or %g3, 0x28c, %g3
2007afc: 85 2e 60 02 sll %i1, 2, %g2
2007b00: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
2007b04: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
2007b08: f4 36 20 04 sth %i2, [ %i0 + 4 ]
information->size = size;
information->local_table = 0;
2007b0c: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
2007b10: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
2007b14: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
2007b18: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
2007b1c: c0 36 20 10 clrh [ %i0 + 0x10 ]
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007b20: 85 2e a0 02 sll %i2, 2, %g2
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2007b24: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2007b28: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2007b2c: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
2007b30: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2007b34: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
2007b38: 80 a0 a0 00 cmp %g2, 0
2007b3c: 02 80 00 09 be 2007b60 <_Objects_Initialize_information+0x7c>
2007b40: b6 2e c0 03 andn %i3, %g3, %i3
2007b44: 80 a6 e0 00 cmp %i3, 0
2007b48: 12 80 00 07 bne 2007b64 <_Objects_Initialize_information+0x80>
2007b4c: 05 00 80 52 sethi %hi(0x2014800), %g2
_Internal_error_Occurred(
2007b50: 90 10 20 00 clr %o0
2007b54: 92 10 20 01 mov 1, %o1
2007b58: 7f ff fe 5d call 20074cc <_Internal_error_Occurred>
2007b5c: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
2007b60: 05 00 80 52 sethi %hi(0x2014800), %g2
2007b64: 84 10 a3 d4 or %g2, 0x3d4, %g2 ! 2014bd4 <null_local_table.3204>
2007b68: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b6c: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007b70: 80 a0 00 1b cmp %g0, %i3
2007b74: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007b78: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b7c: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
2007b80: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2007b84: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007b88: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007b8c: b4 16 80 02 or %i2, %g2, %i2
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2007b90: 80 88 60 03 btst 3, %g1
2007b94: 02 80 00 04 be 2007ba4 <_Objects_Initialize_information+0xc0><== ALWAYS TAKEN
2007b98: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2007b9c: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
2007ba0: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
2007ba4: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007ba8: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
2007bac: c0 26 20 24 clr [ %i0 + 0x24 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2007bb0: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
2007bb4: 82 06 20 20 add %i0, 0x20, %g1
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
2007bb8: 80 a6 e0 00 cmp %i3, 0
2007bbc: 02 80 00 04 be 2007bcc <_Objects_Initialize_information+0xe8>
2007bc0: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
2007bc4: 7f ff fe 9c call 2007634 <_Objects_Extend_information>
2007bc8: 81 e8 00 00 restore
2007bcc: 81 c7 e0 08 ret
2007bd0: 81 e8 00 00 restore
0200b8c4 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200b8c4: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200b8c8: e0 06 21 60 ld [ %i0 + 0x160 ], %l0
if ( !api )
200b8cc: 80 a4 20 00 cmp %l0, 0
200b8d0: 02 80 00 1d be 200b944 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
200b8d4: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200b8d8: 7f ff da 3a call 20021c0 <sparc_disable_interrupts>
200b8dc: 01 00 00 00 nop
signal_set = asr->signals_posted;
200b8e0: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
200b8e4: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200b8e8: 7f ff da 3a call 20021d0 <sparc_enable_interrupts>
200b8ec: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200b8f0: 80 a4 e0 00 cmp %l3, 0
200b8f4: 02 80 00 14 be 200b944 <_RTEMS_tasks_Post_switch_extension+0x80>
200b8f8: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
200b8fc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b900: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200b904: 82 00 60 01 inc %g1
200b908: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b90c: 94 10 00 11 mov %l1, %o2
200b910: 25 00 00 3f sethi %hi(0xfc00), %l2
200b914: 40 00 07 9c call 200d784 <rtems_task_mode>
200b918: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
200b91c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200b920: 9f c0 40 00 call %g1
200b924: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
200b928: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b92c: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b930: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b934: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200b938: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200b93c: 40 00 07 92 call 200d784 <rtems_task_mode>
200b940: 94 10 00 11 mov %l1, %o2
200b944: 81 c7 e0 08 ret
200b948: 81 e8 00 00 restore
020078d0 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
20078d0: 9d e3 bf 98 save %sp, -104, %sp
20078d4: 11 00 80 75 sethi %hi(0x201d400), %o0
20078d8: 92 10 00 18 mov %i0, %o1
20078dc: 90 12 20 d4 or %o0, 0xd4, %o0
20078e0: 40 00 07 cb call 200980c <_Objects_Get>
20078e4: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20078e8: c2 07 bf fc ld [ %fp + -4 ], %g1
20078ec: 80 a0 60 00 cmp %g1, 0
20078f0: 12 80 00 24 bne 2007980 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
20078f4: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
20078f8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
20078fc: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007900: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007904: 80 88 80 01 btst %g2, %g1
2007908: 22 80 00 0b be,a 2007934 <_Rate_monotonic_Timeout+0x64>
200790c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007910: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007914: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007918: 80 a0 80 01 cmp %g2, %g1
200791c: 32 80 00 06 bne,a 2007934 <_Rate_monotonic_Timeout+0x64>
2007920: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007924: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2007928: 40 00 09 1a call 2009d90 <_Thread_Clear_state>
200792c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
2007930: 30 80 00 06 b,a 2007948 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007934: 80 a0 60 01 cmp %g1, 1
2007938: 12 80 00 0d bne 200796c <_Rate_monotonic_Timeout+0x9c>
200793c: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007940: 82 10 20 03 mov 3, %g1
2007944: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007948: 7f ff fe 65 call 20072dc <_Rate_monotonic_Initiate_statistics>
200794c: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007950: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007954: 11 00 80 75 sethi %hi(0x201d400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007958: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200795c: 90 12 23 10 or %o0, 0x310, %o0
2007960: 40 00 0f 22 call 200b5e8 <_Watchdog_Insert>
2007964: 92 04 20 10 add %l0, 0x10, %o1
2007968: 30 80 00 02 b,a 2007970 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
200796c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007970: 03 00 80 75 sethi %hi(0x201d400), %g1
2007974: c4 00 62 48 ld [ %g1 + 0x248 ], %g2 ! 201d648 <_Thread_Dispatch_disable_level>
2007978: 84 00 bf ff add %g2, -1, %g2
200797c: c4 20 62 48 st %g2, [ %g1 + 0x248 ]
2007980: 81 c7 e0 08 ret
2007984: 81 e8 00 00 restore
020072e0 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20072e0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20072e4: 03 00 80 75 sethi %hi(0x201d400), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20072e8: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20072ec: d2 00 60 84 ld [ %g1 + 0x84 ], %o1
if ((!the_tod) ||
20072f0: 80 a4 20 00 cmp %l0, 0
20072f4: 02 80 00 2b be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN
20072f8: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
20072fc: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007300: 40 00 47 af call 20191bc <.udiv>
2007304: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007308: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200730c: 80 a0 40 08 cmp %g1, %o0
2007310: 1a 80 00 24 bcc 20073a0 <_TOD_Validate+0xc0>
2007314: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
2007318: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
200731c: 80 a0 60 3b cmp %g1, 0x3b
2007320: 18 80 00 20 bgu 20073a0 <_TOD_Validate+0xc0>
2007324: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2007328: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
200732c: 80 a0 60 3b cmp %g1, 0x3b
2007330: 18 80 00 1c bgu 20073a0 <_TOD_Validate+0xc0>
2007334: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2007338: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200733c: 80 a0 60 17 cmp %g1, 0x17
2007340: 18 80 00 18 bgu 20073a0 <_TOD_Validate+0xc0>
2007344: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2007348: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
200734c: 80 a0 60 00 cmp %g1, 0
2007350: 02 80 00 14 be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007354: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
2007358: 18 80 00 12 bgu 20073a0 <_TOD_Validate+0xc0>
200735c: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007360: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007364: 80 a0 e7 c3 cmp %g3, 0x7c3
2007368: 08 80 00 0e bleu 20073a0 <_TOD_Validate+0xc0>
200736c: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007370: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007374: 80 a0 a0 00 cmp %g2, 0
2007378: 02 80 00 0a be 20073a0 <_TOD_Validate+0xc0> <== NEVER TAKEN
200737c: 80 88 e0 03 btst 3, %g3
2007380: 07 00 80 70 sethi %hi(0x201c000), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007384: 12 80 00 03 bne 2007390 <_TOD_Validate+0xb0>
2007388: 86 10 e1 60 or %g3, 0x160, %g3 ! 201c160 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200738c: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2007390: 83 28 60 02 sll %g1, 2, %g1
2007394: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007398: 80 a0 40 02 cmp %g1, %g2
200739c: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
20073a0: 81 c7 e0 08 ret
20073a4: 81 e8 00 00 restore
02007e10 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2007e10: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
2007e14: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2007e18: 40 00 04 36 call 2008ef0 <_Thread_Set_transient>
2007e1c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2007e20: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007e24: 80 a0 40 19 cmp %g1, %i1
2007e28: 02 80 00 05 be 2007e3c <_Thread_Change_priority+0x2c>
2007e2c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2007e30: 90 10 00 18 mov %i0, %o0
2007e34: 40 00 03 b2 call 2008cfc <_Thread_Set_priority>
2007e38: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2007e3c: 7f ff e8 e1 call 20021c0 <sparc_disable_interrupts>
2007e40: 01 00 00 00 nop
2007e44: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2007e48: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
2007e4c: 80 a6 60 04 cmp %i1, 4
2007e50: 02 80 00 10 be 2007e90 <_Thread_Change_priority+0x80>
2007e54: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2007e58: 80 a4 60 00 cmp %l1, 0
2007e5c: 12 80 00 03 bne 2007e68 <_Thread_Change_priority+0x58> <== NEVER TAKEN
2007e60: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007e64: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
2007e68: 7f ff e8 da call 20021d0 <sparc_enable_interrupts>
2007e6c: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2007e70: 03 00 00 ef sethi %hi(0x3bc00), %g1
2007e74: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2007e78: 80 8e 40 01 btst %i1, %g1
2007e7c: 02 80 00 5c be 2007fec <_Thread_Change_priority+0x1dc>
2007e80: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2007e84: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
2007e88: 40 00 03 70 call 2008c48 <_Thread_queue_Requeue>
2007e8c: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2007e90: 80 a4 60 00 cmp %l1, 0
2007e94: 12 80 00 1c bne 2007f04 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
2007e98: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2007e9c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
2007ea0: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
2007ea4: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2007ea8: c0 24 20 10 clr [ %l0 + 0x10 ]
2007eac: 84 10 c0 02 or %g3, %g2, %g2
2007eb0: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2007eb4: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007eb8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
2007ebc: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2
_Priority_Add_to_bit_map( &the_thread->Priority_map );
if ( prepend_it )
2007ec0: 80 8e a0 ff btst 0xff, %i2
2007ec4: 84 10 c0 02 or %g3, %g2, %g2
2007ec8: c4 30 63 cc sth %g2, [ %g1 + 0x3cc ]
2007ecc: 02 80 00 08 be 2007eec <_Thread_Change_priority+0xdc>
2007ed0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2007ed4: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2007ed8: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2007edc: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
2007ee0: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
2007ee4: 10 80 00 08 b 2007f04 <_Thread_Change_priority+0xf4>
2007ee8: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2007eec: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2007ef0: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2007ef4: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
2007ef8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2007efc: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2007f00: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
2007f04: 7f ff e8 b3 call 20021d0 <sparc_enable_interrupts>
2007f08: 90 10 00 18 mov %i0, %o0
2007f0c: 7f ff e8 ad call 20021c0 <sparc_disable_interrupts>
2007f10: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_Get_highest() ].first;
2007f14: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007f18: da 00 62 84 ld [ %g1 + 0x284 ], %o5 ! 2014e84 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2007f1c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2007f20: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2 ! 2014fcc <_Priority_Major_bit_map>
2007f24: 03 00 80 4e sethi %hi(0x2013800), %g1
2007f28: 85 28 a0 10 sll %g2, 0x10, %g2
2007f2c: 87 30 a0 10 srl %g2, 0x10, %g3
2007f30: 80 a0 e0 ff cmp %g3, 0xff
2007f34: 18 80 00 05 bgu 2007f48 <_Thread_Change_priority+0x138>
2007f38: 82 10 63 30 or %g1, 0x330, %g1
2007f3c: c4 08 40 03 ldub [ %g1 + %g3 ], %g2
2007f40: 10 80 00 04 b 2007f50 <_Thread_Change_priority+0x140>
2007f44: 84 00 a0 08 add %g2, 8, %g2
2007f48: 85 30 a0 18 srl %g2, 0x18, %g2
2007f4c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2007f50: 83 28 a0 10 sll %g2, 0x10, %g1
2007f54: 07 00 80 54 sethi %hi(0x2015000), %g3
2007f58: 83 30 60 0f srl %g1, 0xf, %g1
2007f5c: 86 10 e0 40 or %g3, 0x40, %g3
2007f60: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3
2007f64: 03 00 80 4e sethi %hi(0x2013800), %g1
2007f68: 87 28 e0 10 sll %g3, 0x10, %g3
2007f6c: 89 30 e0 10 srl %g3, 0x10, %g4
2007f70: 80 a1 20 ff cmp %g4, 0xff
2007f74: 18 80 00 05 bgu 2007f88 <_Thread_Change_priority+0x178>
2007f78: 82 10 63 30 or %g1, 0x330, %g1
2007f7c: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
2007f80: 10 80 00 04 b 2007f90 <_Thread_Change_priority+0x180>
2007f84: 82 00 60 08 add %g1, 8, %g1
2007f88: 87 30 e0 18 srl %g3, 0x18, %g3
2007f8c: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
2007f90: 83 28 60 10 sll %g1, 0x10, %g1
2007f94: 83 30 60 10 srl %g1, 0x10, %g1
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2007f98: 85 28 a0 10 sll %g2, 0x10, %g2
2007f9c: 85 30 a0 0c srl %g2, 0xc, %g2
2007fa0: 84 00 40 02 add %g1, %g2, %g2
2007fa4: 83 28 a0 02 sll %g2, 2, %g1
2007fa8: 85 28 a0 04 sll %g2, 4, %g2
2007fac: 84 20 80 01 sub %g2, %g1, %g2
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
2007fb0: c6 03 40 02 ld [ %o5 + %g2 ], %g3
2007fb4: 03 00 80 54 sethi %hi(0x2015000), %g1
2007fb8: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2007fbc: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
2007fc0: 80 a0 80 03 cmp %g2, %g3
2007fc4: 02 80 00 08 be 2007fe4 <_Thread_Change_priority+0x1d4>
2007fc8: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
2007fcc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2007fd0: 80 a0 a0 00 cmp %g2, 0
2007fd4: 02 80 00 04 be 2007fe4 <_Thread_Change_priority+0x1d4>
2007fd8: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Context_Switch_necessary = true;
2007fdc: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
2007fe0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2007fe4: 7f ff e8 7b call 20021d0 <sparc_enable_interrupts>
2007fe8: 81 e8 00 00 restore
2007fec: 81 c7 e0 08 ret
2007ff0: 81 e8 00 00 restore
02007ff4 <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
2007ff4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
2007ff8: 7f ff e8 72 call 20021c0 <sparc_disable_interrupts>
2007ffc: a0 10 00 18 mov %i0, %l0
2008000: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
2008004: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
2008008: 80 8e 40 01 btst %i1, %g1
200800c: 02 80 00 2f be 20080c8 <_Thread_Clear_state+0xd4>
2008010: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear (
States_Control states_to_clear,
States_Control current_state
)
{
return (current_state & ~states_to_clear);
2008014: b2 28 40 19 andn %g1, %i1, %i1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
2008018: 80 a6 60 00 cmp %i1, 0
200801c: 12 80 00 2b bne 20080c8 <_Thread_Clear_state+0xd4>
2008020: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2008024: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
2008028: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
200802c: c6 10 40 00 lduh [ %g1 ], %g3
2008030: 84 10 c0 02 or %g3, %g2, %g2
2008034: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2008038: 03 00 80 53 sethi %hi(0x2014c00), %g1
200803c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
2008040: c4 10 63 cc lduh [ %g1 + 0x3cc ], %g2
2008044: 84 10 c0 02 or %g3, %g2, %g2
2008048: c4 30 63 cc sth %g2, [ %g1 + 0x3cc ]
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
200804c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2008050: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2008054: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
2008058: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
200805c: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2008060: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2008064: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
2008068: 7f ff e8 5a call 20021d0 <sparc_enable_interrupts>
200806c: 01 00 00 00 nop
2008070: 7f ff e8 54 call 20021c0 <sparc_disable_interrupts>
2008074: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
2008078: 03 00 80 54 sethi %hi(0x2015000), %g1
200807c: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
2008080: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2008084: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
2008088: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
200808c: 80 a0 80 03 cmp %g2, %g3
2008090: 1a 80 00 0e bcc 20080c8 <_Thread_Clear_state+0xd4>
2008094: 01 00 00 00 nop
_Thread_Heir = the_thread;
2008098: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200809c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
20080a0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
20080a4: 80 a0 60 00 cmp %g1, 0
20080a8: 32 80 00 05 bne,a 20080bc <_Thread_Clear_state+0xc8>
20080ac: 84 10 20 01 mov 1, %g2
20080b0: 80 a0 a0 00 cmp %g2, 0
20080b4: 12 80 00 05 bne 20080c8 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
20080b8: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
20080bc: 03 00 80 54 sethi %hi(0x2015000), %g1
20080c0: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
20080c4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
20080c8: 7f ff e8 42 call 20021d0 <sparc_enable_interrupts>
20080cc: 81 e8 00 00 restore
0200827c <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200827c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008280: 90 10 00 18 mov %i0, %o0
2008284: 40 00 00 6e call 200843c <_Thread_Get>
2008288: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200828c: c2 07 bf fc ld [ %fp + -4 ], %g1
2008290: 80 a0 60 00 cmp %g1, 0
2008294: 12 80 00 08 bne 20082b4 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
2008298: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
200829c: 7f ff ff 56 call 2007ff4 <_Thread_Clear_state>
20082a0: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
20082a4: 03 00 80 53 sethi %hi(0x2014c00), %g1
20082a8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
20082ac: 84 00 bf ff add %g2, -1, %g2
20082b0: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
20082b4: 81 c7 e0 08 ret
20082b8: 81 e8 00 00 restore
020082bc <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
20082bc: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
20082c0: 2d 00 80 54 sethi %hi(0x2015000), %l6
20082c4: 82 15 a1 8c or %l6, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
_ISR_Disable( level );
20082c8: 7f ff e7 be call 20021c0 <sparc_disable_interrupts>
20082cc: e0 00 60 0c ld [ %g1 + 0xc ], %l0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20082d0: 25 00 80 53 sethi %hi(0x2014c00), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
20082d4: 37 00 80 53 sethi %hi(0x2014c00), %i3
20082d8: b8 10 20 01 mov 1, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
20082dc: 3b 00 80 53 sethi %hi(0x2014c00), %i5
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
20082e0: aa 07 bf f8 add %fp, -8, %l5
_Timestamp_Subtract(
20082e4: a8 07 bf f0 add %fp, -16, %l4
20082e8: a4 14 a3 dc or %l2, 0x3dc, %l2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20082ec: 2f 00 80 53 sethi %hi(0x2014c00), %l7
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
20082f0: 10 80 00 39 b 20083d4 <_Thread_Dispatch+0x118>
20082f4: 27 00 80 53 sethi %hi(0x2014c00), %l3
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
20082f8: f8 26 e3 28 st %i4, [ %i3 + 0x328 ]
_Context_Switch_necessary = false;
20082fc: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008300: 80 a4 40 10 cmp %l1, %l0
2008304: 02 80 00 39 be 20083e8 <_Thread_Dispatch+0x12c>
2008308: e2 20 60 0c st %l1, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
200830c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008310: 80 a0 60 01 cmp %g1, 1
2008314: 12 80 00 03 bne 2008320 <_Thread_Dispatch+0x64>
2008318: c2 07 62 88 ld [ %i5 + 0x288 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200831c: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Enable( level );
2008320: 7f ff e7 ac call 20021d0 <sparc_enable_interrupts>
2008324: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008328: 40 00 0e 68 call 200bcc8 <_TOD_Get_uptime>
200832c: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008330: 90 10 00 12 mov %l2, %o0
2008334: 92 10 00 15 mov %l5, %o1
2008338: 40 00 03 be call 2009230 <_Timespec_Subtract>
200833c: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008340: 90 04 20 84 add %l0, 0x84, %o0
2008344: 40 00 03 a2 call 20091cc <_Timespec_Add_to>
2008348: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
200834c: c2 07 bf f8 ld [ %fp + -8 ], %g1
2008350: c2 24 80 00 st %g1, [ %l2 ]
2008354: c2 07 bf fc ld [ %fp + -4 ], %g1
2008358: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200835c: c2 05 e3 b0 ld [ %l7 + 0x3b0 ], %g1
2008360: 80 a0 60 00 cmp %g1, 0
2008364: 02 80 00 06 be 200837c <_Thread_Dispatch+0xc0> <== NEVER TAKEN
2008368: 90 10 00 10 mov %l0, %o0
executing->libc_reent = *_Thread_libc_reent;
200836c: c4 00 40 00 ld [ %g1 ], %g2
2008370: c4 24 21 5c st %g2, [ %l0 + 0x15c ]
*_Thread_libc_reent = heir->libc_reent;
2008374: c4 04 61 5c ld [ %l1 + 0x15c ], %g2
2008378: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
200837c: 40 00 04 5d call 20094f0 <_User_extensions_Thread_switch>
2008380: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008384: 90 04 20 d0 add %l0, 0xd0, %o0
2008388: 40 00 05 86 call 20099a0 <_CPU_Context_switch>
200838c: 92 04 60 d0 add %l1, 0xd0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008390: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
2008394: 80 a0 60 00 cmp %g1, 0
2008398: 02 80 00 0c be 20083c8 <_Thread_Dispatch+0x10c>
200839c: d0 04 e3 ac ld [ %l3 + 0x3ac ], %o0
20083a0: 80 a4 00 08 cmp %l0, %o0
20083a4: 02 80 00 09 be 20083c8 <_Thread_Dispatch+0x10c>
20083a8: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
20083ac: 02 80 00 04 be 20083bc <_Thread_Dispatch+0x100>
20083b0: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
20083b4: 40 00 05 41 call 20098b8 <_CPU_Context_save_fp>
20083b8: 90 02 21 58 add %o0, 0x158, %o0
_Context_Restore_fp( &executing->fp_context );
20083bc: 40 00 05 5c call 200992c <_CPU_Context_restore_fp>
20083c0: 90 04 21 58 add %l0, 0x158, %o0
_Thread_Allocated_fp = executing;
20083c4: e0 24 e3 ac st %l0, [ %l3 + 0x3ac ]
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
20083c8: 82 15 a1 8c or %l6, 0x18c, %g1
_ISR_Disable( level );
20083cc: 7f ff e7 7d call 20021c0 <sparc_disable_interrupts>
20083d0: e0 00 60 0c ld [ %g1 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
20083d4: 82 15 a1 8c or %l6, 0x18c, %g1
20083d8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
20083dc: 80 a0 a0 00 cmp %g2, 0
20083e0: 32 bf ff c6 bne,a 20082f8 <_Thread_Dispatch+0x3c>
20083e4: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
20083e8: 03 00 80 53 sethi %hi(0x2014c00), %g1
20083ec: c0 20 63 28 clr [ %g1 + 0x328 ] ! 2014f28 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
20083f0: 7f ff e7 78 call 20021d0 <sparc_enable_interrupts>
20083f4: 01 00 00 00 nop
_API_extensions_Run_postswitch();
20083f8: 7f ff f9 8d call 2006a2c <_API_extensions_Run_postswitch>
20083fc: 01 00 00 00 nop
}
2008400: 81 c7 e0 08 ret
2008404: 81 e8 00 00 restore
0200843c <_Thread_Get>:
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
200843c: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
2008440: 80 a2 20 00 cmp %o0, 0
2008444: 12 80 00 0a bne 200846c <_Thread_Get+0x30>
2008448: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200844c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008450: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
2008454: 84 00 a0 01 inc %g2
2008458: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
200845c: 03 00 80 54 sethi %hi(0x2015000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
2008460: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
2008464: 81 c3 e0 08 retl
2008468: d0 00 61 98 ld [ %g1 + 0x198 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
200846c: 87 32 20 18 srl %o0, 0x18, %g3
2008470: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008474: 84 00 ff ff add %g3, -1, %g2
2008478: 80 a0 a0 02 cmp %g2, 2
200847c: 28 80 00 16 bleu,a 20084d4 <_Thread_Get+0x98>
2008480: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
2008484: 82 10 20 01 mov 1, %g1
2008488: 10 80 00 09 b 20084ac <_Thread_Get+0x70>
200848c: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
2008490: 09 00 80 53 sethi %hi(0x2014c00), %g4
2008494: 88 11 22 8c or %g4, 0x28c, %g4 ! 2014e8c <_Objects_Information_table>
2008498: c6 01 00 03 ld [ %g4 + %g3 ], %g3
if ( !api_information ) {
200849c: 80 a0 e0 00 cmp %g3, 0
20084a0: 32 80 00 05 bne,a 20084b4 <_Thread_Get+0x78> <== ALWAYS TAKEN
20084a4: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
20084a8: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
20084ac: 81 c3 e0 08 retl
20084b0: 90 10 20 00 clr %o0
}
information = api_information[ the_class ];
if ( !information ) {
20084b4: 80 a2 20 00 cmp %o0, 0
20084b8: 12 80 00 04 bne 20084c8 <_Thread_Get+0x8c>
20084bc: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
20084c0: 81 c3 e0 08 retl
20084c4: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
20084c8: 82 13 c0 00 mov %o7, %g1
20084cc: 7f ff fd 69 call 2007a70 <_Objects_Get>
20084d0: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
20084d4: 80 a0 a0 01 cmp %g2, 1
20084d8: 22 bf ff ee be,a 2008490 <_Thread_Get+0x54>
20084dc: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
20084e0: 10 bf ff ea b 2008488 <_Thread_Get+0x4c>
20084e4: 82 10 20 01 mov 1, %g1
0200dac8 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200dac8: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200dacc: 03 00 80 54 sethi %hi(0x2015000), %g1
200dad0: e0 00 61 98 ld [ %g1 + 0x198 ], %l0 ! 2015198 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200dad4: 3f 00 80 36 sethi %hi(0x200d800), %i7
200dad8: be 17 e2 c8 or %i7, 0x2c8, %i7 ! 200dac8 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200dadc: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
200dae0: 7f ff d1 bc call 20021d0 <sparc_enable_interrupts>
200dae4: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200dae8: 03 00 80 52 sethi %hi(0x2014800), %g1
doneConstructors = 1;
200daec: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200daf0: e2 08 63 dc ldub [ %g1 + 0x3dc ], %l1
doneConstructors = 1;
200daf4: c4 28 63 dc stb %g2, [ %g1 + 0x3dc ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200daf8: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
200dafc: 80 a0 60 00 cmp %g1, 0
200db00: 02 80 00 0c be 200db30 <_Thread_Handler+0x68>
200db04: 03 00 80 53 sethi %hi(0x2014c00), %g1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200db08: d0 00 63 ac ld [ %g1 + 0x3ac ], %o0 ! 2014fac <_Thread_Allocated_fp>
200db0c: 80 a4 00 08 cmp %l0, %o0
200db10: 02 80 00 08 be 200db30 <_Thread_Handler+0x68>
200db14: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200db18: 22 80 00 06 be,a 200db30 <_Thread_Handler+0x68>
200db1c: e0 20 63 ac st %l0, [ %g1 + 0x3ac ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200db20: 7f ff ef 66 call 20098b8 <_CPU_Context_save_fp>
200db24: 90 02 21 58 add %o0, 0x158, %o0
_Thread_Allocated_fp = executing;
200db28: 03 00 80 53 sethi %hi(0x2014c00), %g1
200db2c: e0 20 63 ac st %l0, [ %g1 + 0x3ac ] ! 2014fac <_Thread_Allocated_fp>
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200db30: 7f ff ee 00 call 2009330 <_User_extensions_Thread_begin>
200db34: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200db38: 7f ff ea 34 call 2008408 <_Thread_Enable_dispatch>
200db3c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200db40: 80 a4 60 00 cmp %l1, 0
200db44: 32 80 00 05 bne,a 200db58 <_Thread_Handler+0x90>
200db48: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
200db4c: 40 00 1a 0f call 2014388 <_init>
200db50: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200db54: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
200db58: 80 a0 60 00 cmp %g1, 0
200db5c: 12 80 00 06 bne 200db74 <_Thread_Handler+0xac> <== NEVER TAKEN
200db60: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200db64: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
200db68: 9f c0 40 00 call %g1
200db6c: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200db70: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200db74: 7f ff ee 00 call 2009374 <_User_extensions_Thread_exitted>
200db78: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200db7c: 90 10 20 00 clr %o0
200db80: 92 10 20 01 mov 1, %o1
200db84: 7f ff e6 52 call 20074cc <_Internal_error_Occurred>
200db88: 94 10 20 05 mov 5, %o2
020084e8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
20084e8: 9d e3 bf a0 save %sp, -96, %sp
20084ec: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
20084f0: e4 0f a0 5f ldub [ %fp + 0x5f ], %l2
20084f4: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
20084f8: c0 26 61 60 clr [ %i1 + 0x160 ]
20084fc: c0 26 61 64 clr [ %i1 + 0x164 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008500: c0 26 61 5c clr [ %i1 + 0x15c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008504: 90 10 00 19 mov %i1, %o0
2008508: 40 00 02 9f call 2008f84 <_Thread_Stack_Allocate>
200850c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008510: 80 a2 00 1b cmp %o0, %i3
2008514: 0a 80 00 6b bcs 20086c0 <_Thread_Initialize+0x1d8>
2008518: 80 a2 20 00 cmp %o0, 0
200851c: 02 80 00 69 be 20086c0 <_Thread_Initialize+0x1d8> <== NEVER TAKEN
2008520: 80 8f 20 ff btst 0xff, %i4
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008524: c2 06 60 cc ld [ %i1 + 0xcc ], %g1
the_stack->size = size;
2008528: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200852c: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008530: 02 80 00 07 be 200854c <_Thread_Initialize+0x64>
2008534: a2 10 20 00 clr %l1
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008538: 40 00 04 c2 call 2009840 <_Workspace_Allocate>
200853c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008540: a2 92 20 00 orcc %o0, 0, %l1
2008544: 02 80 00 3e be 200863c <_Thread_Initialize+0x154>
2008548: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200854c: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008550: d0 00 63 bc ld [ %g1 + 0x3bc ], %o0 ! 2014fbc <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008554: e2 26 61 58 st %l1, [ %i1 + 0x158 ]
the_thread->Start.fp_context = fp_area;
2008558: e2 26 60 c8 st %l1, [ %i1 + 0xc8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200855c: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008560: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008564: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
2008568: c0 26 60 6c clr [ %i1 + 0x6c ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200856c: 80 a2 20 00 cmp %o0, 0
2008570: 02 80 00 08 be 2008590 <_Thread_Initialize+0xa8>
2008574: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
2008578: 90 02 20 01 inc %o0
200857c: 40 00 04 b1 call 2009840 <_Workspace_Allocate>
2008580: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2008584: b6 92 20 00 orcc %o0, 0, %i3
2008588: 22 80 00 2e be,a 2008640 <_Thread_Initialize+0x158>
200858c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
2008590: 80 a6 e0 00 cmp %i3, 0
2008594: 02 80 00 0b be 20085c0 <_Thread_Initialize+0xd8>
2008598: f6 26 61 68 st %i3, [ %i1 + 0x168 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200859c: 03 00 80 53 sethi %hi(0x2014c00), %g1
20085a0: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2014fbc <_Thread_Maximum_extensions>
20085a4: 10 80 00 04 b 20085b4 <_Thread_Initialize+0xcc>
20085a8: 82 10 20 00 clr %g1
20085ac: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
20085b0: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20085b4: 80 a0 40 02 cmp %g1, %g2
20085b8: 08 bf ff fd bleu 20085ac <_Thread_Initialize+0xc4>
20085bc: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
20085c0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
20085c4: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
20085c8: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
20085cc: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
20085d0: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
20085d4: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
20085d8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
20085dc: e4 2e 60 ac stb %l2, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
20085e0: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
20085e4: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
20085e8: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
20085ec: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
20085f0: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
20085f4: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
20085f8: 40 00 01 c1 call 2008cfc <_Thread_Set_priority>
20085fc: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread );
return false;
}
2008600: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008604: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008608: c0 26 60 84 clr [ %i1 + 0x84 ]
200860c: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008610: 83 28 60 02 sll %g1, 2, %g1
2008614: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008618: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
200861c: 90 10 00 19 mov %i1, %o0
2008620: 40 00 03 77 call 20093fc <_User_extensions_Thread_create>
2008624: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008628: 80 8a 20 ff btst 0xff, %o0
200862c: 22 80 00 05 be,a 2008640 <_Thread_Initialize+0x158>
2008630: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
2008634: 81 c7 e0 08 ret
2008638: 81 e8 00 00 restore
return true;
failed:
if ( the_thread->libc_reent )
200863c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
2008640: 80 a2 20 00 cmp %o0, 0
2008644: 22 80 00 05 be,a 2008658 <_Thread_Initialize+0x170>
2008648: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->libc_reent );
200864c: 40 00 04 86 call 2009864 <_Workspace_Free>
2008650: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
2008654: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
2008658: 80 a2 20 00 cmp %o0, 0
200865c: 22 80 00 05 be,a 2008670 <_Thread_Initialize+0x188>
2008660: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
2008664: 40 00 04 80 call 2009864 <_Workspace_Free>
2008668: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
200866c: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
2008670: 80 a2 20 00 cmp %o0, 0
2008674: 02 80 00 05 be 2008688 <_Thread_Initialize+0x1a0> <== ALWAYS TAKEN
2008678: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
200867c: 40 00 04 7a call 2009864 <_Workspace_Free> <== NOT EXECUTED
2008680: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
2008684: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008688: 02 80 00 05 be 200869c <_Thread_Initialize+0x1b4>
200868c: 80 a4 60 00 cmp %l1, 0
(void) _Workspace_Free( extensions_area );
2008690: 40 00 04 75 call 2009864 <_Workspace_Free>
2008694: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
2008698: 80 a4 60 00 cmp %l1, 0
200869c: 02 80 00 05 be 20086b0 <_Thread_Initialize+0x1c8>
20086a0: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( fp_area );
20086a4: 40 00 04 70 call 2009864 <_Workspace_Free>
20086a8: 90 10 00 11 mov %l1, %o0
#endif
_Thread_Stack_Free( the_thread );
20086ac: 90 10 00 19 mov %i1, %o0
20086b0: 40 00 02 4c call 2008fe0 <_Thread_Stack_Free>
20086b4: b0 10 20 00 clr %i0
return false;
20086b8: 81 c7 e0 08 ret
20086bc: 81 e8 00 00 restore
}
20086c0: 81 c7 e0 08 ret
20086c4: 91 e8 20 00 restore %g0, 0, %o0
0200c314 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200c314: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200c318: 7f ff d8 26 call 20023b0 <sparc_disable_interrupts>
200c31c: a0 10 00 18 mov %i0, %l0
200c320: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
200c324: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200c328: 80 88 60 02 btst 2, %g1
200c32c: 02 80 00 2e be 200c3e4 <_Thread_Resume+0xd0> <== NEVER TAKEN
200c330: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200c334: 80 a0 60 00 cmp %g1, 0
200c338: 12 80 00 2b bne 200c3e4 <_Thread_Resume+0xd0>
200c33c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
200c340: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200c344: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
200c348: c6 10 40 00 lduh [ %g1 ], %g3
200c34c: 84 10 c0 02 or %g3, %g2, %g2
200c350: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200c354: 03 00 80 63 sethi %hi(0x2018c00), %g1
200c358: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
200c35c: c4 10 60 9c lduh [ %g1 + 0x9c ], %g2
200c360: 84 10 c0 02 or %g3, %g2, %g2
200c364: c4 30 60 9c sth %g2, [ %g1 + 0x9c ]
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
200c368: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200c36c: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
200c370: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
200c374: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
200c378: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
200c37c: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
200c380: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
200c384: 7f ff d8 0f call 20023c0 <sparc_enable_interrupts>
200c388: 01 00 00 00 nop
200c38c: 7f ff d8 09 call 20023b0 <sparc_disable_interrupts>
200c390: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
200c394: 03 00 80 63 sethi %hi(0x2018c00), %g1
200c398: 82 10 62 5c or %g1, 0x25c, %g1 ! 2018e5c <_Per_CPU_Information>
200c39c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200c3a0: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
200c3a4: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
200c3a8: 80 a0 80 03 cmp %g2, %g3
200c3ac: 1a 80 00 0e bcc 200c3e4 <_Thread_Resume+0xd0>
200c3b0: 01 00 00 00 nop
_Thread_Heir = the_thread;
200c3b4: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200c3b8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200c3bc: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
200c3c0: 80 a0 60 00 cmp %g1, 0
200c3c4: 32 80 00 05 bne,a 200c3d8 <_Thread_Resume+0xc4>
200c3c8: 84 10 20 01 mov 1, %g2
200c3cc: 80 a0 a0 00 cmp %g2, 0
200c3d0: 12 80 00 05 bne 200c3e4 <_Thread_Resume+0xd0> <== ALWAYS TAKEN
200c3d4: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
200c3d8: 03 00 80 63 sethi %hi(0x2018c00), %g1
200c3dc: 82 10 62 5c or %g1, 0x25c, %g1 ! 2018e5c <_Per_CPU_Information>
200c3e0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
200c3e4: 7f ff d7 f7 call 20023c0 <sparc_enable_interrupts>
200c3e8: 81 e8 00 00 restore
02009124 <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
2009124: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
2009128: 23 00 80 54 sethi %hi(0x2015000), %l1
200912c: a2 14 61 8c or %l1, 0x18c, %l1 ! 201518c <_Per_CPU_Information>
2009130: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
2009134: 7f ff e4 23 call 20021c0 <sparc_disable_interrupts>
2009138: e4 04 20 8c ld [ %l0 + 0x8c ], %l2
200913c: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node(
const Chain_Control *the_chain
)
{
return (the_chain->first == the_chain->last);
2009140: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
2009144: c4 04 80 00 ld [ %l2 ], %g2
2009148: 80 a0 80 01 cmp %g2, %g1
200914c: 22 80 00 19 be,a 20091b0 <_Thread_Yield_processor+0x8c>
2009150: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
2009154: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
2009158: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
previous->next = next;
200915c: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
2009160: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2009164: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2009168: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
200916c: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
2009170: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
2009174: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
2009178: 7f ff e4 16 call 20021d0 <sparc_enable_interrupts>
200917c: 01 00 00 00 nop
2009180: 7f ff e4 10 call 20021c0 <sparc_disable_interrupts>
2009184: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
2009188: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
200918c: 80 a4 00 01 cmp %l0, %g1
2009190: 12 80 00 04 bne 20091a0 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
2009194: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
2009198: c2 04 80 00 ld [ %l2 ], %g1
200919c: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Context_Switch_necessary = true;
20091a0: 03 00 80 54 sethi %hi(0x2015000), %g1
20091a4: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
20091a8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
20091ac: 30 80 00 05 b,a 20091c0 <_Thread_Yield_processor+0x9c>
}
else if ( !_Thread_Is_heir( executing ) )
20091b0: 80 a4 00 01 cmp %l0, %g1
20091b4: 02 80 00 03 be 20091c0 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
20091b8: 82 10 20 01 mov 1, %g1
_Context_Switch_necessary = true;
20091bc: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
20091c0: 7f ff e4 04 call 20021d0 <sparc_enable_interrupts>
20091c4: 81 e8 00 00 restore
0200c290 <_Thread_queue_Extract_priority_helper>:
void _Thread_queue_Extract_priority_helper(
Thread_queue_Control *the_thread_queue __attribute__((unused)),
Thread_Control *the_thread,
bool requeuing
)
{
200c290: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *new_first_node;
Chain_Node *new_second_node;
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
200c294: 7f ff d7 cb call 20021c0 <sparc_disable_interrupts>
200c298: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
200c29c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200c2a0: 03 00 00 ef sethi %hi(0x3bc00), %g1
200c2a4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
200c2a8: 80 88 80 01 btst %g2, %g1
200c2ac: 32 80 00 03 bne,a 200c2b8 <_Thread_queue_Extract_priority_helper+0x28>
200c2b0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
_ISR_Enable( level );
200c2b4: 30 80 00 1a b,a 200c31c <_Thread_queue_Extract_priority_helper+0x8c>
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200c2b8: 88 06 60 3c add %i1, 0x3c, %g4
/*
* The thread was actually waiting on a thread queue so let's remove it.
*/
next_node = the_node->next;
200c2bc: c4 06 40 00 ld [ %i1 ], %g2
previous_node = the_node->previous;
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
200c2c0: 80 a0 40 04 cmp %g1, %g4
200c2c4: 02 80 00 11 be 200c308 <_Thread_queue_Extract_priority_helper+0x78>
200c2c8: c6 06 60 04 ld [ %i1 + 4 ], %g3
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
200c2cc: c8 06 60 40 ld [ %i1 + 0x40 ], %g4
new_second_node = new_first_node->next;
200c2d0: da 00 40 00 ld [ %g1 ], %o5
previous_node->next = new_first_node;
next_node->previous = new_first_node;
200c2d4: c2 20 a0 04 st %g1, [ %g2 + 4 ]
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
previous_node->next = new_first_node;
200c2d8: c2 20 c0 00 st %g1, [ %g3 ]
next_node->previous = new_first_node;
new_first_node->next = next_node;
200c2dc: c4 20 40 00 st %g2, [ %g1 ]
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
200c2e0: 80 a0 40 04 cmp %g1, %g4
200c2e4: 02 80 00 0b be 200c310 <_Thread_queue_Extract_priority_helper+0x80>
200c2e8: c6 20 60 04 st %g3, [ %g1 + 4 ]
/* > two threads on 2-n */
new_second_node->previous =
_Chain_Head( &new_first_thread->Wait.Block2n );
200c2ec: 84 00 60 38 add %g1, 0x38, %g2
new_first_node->next = next_node;
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
/* > two threads on 2-n */
new_second_node->previous =
200c2f0: c4 23 60 04 st %g2, [ %o5 + 4 ]
_Chain_Head( &new_first_thread->Wait.Block2n );
new_first_thread->Wait.Block2n.first = new_second_node;
200c2f4: da 20 60 38 st %o5, [ %g1 + 0x38 ]
new_first_thread->Wait.Block2n.last = last_node;
200c2f8: c8 20 60 40 st %g4, [ %g1 + 0x40 ]
200c2fc: 82 00 60 3c add %g1, 0x3c, %g1
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
200c300: 10 80 00 04 b 200c310 <_Thread_queue_Extract_priority_helper+0x80>
200c304: c2 21 00 00 st %g1, [ %g4 ]
}
} else {
previous_node->next = next_node;
200c308: c4 20 c0 00 st %g2, [ %g3 ]
next_node->previous = previous_node;
200c30c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
200c310: 80 8e a0 ff btst 0xff, %i2
200c314: 22 80 00 04 be,a 200c324 <_Thread_queue_Extract_priority_helper+0x94>
200c318: c2 06 60 50 ld [ %i1 + 0x50 ], %g1
_ISR_Enable( level );
200c31c: 7f ff d7 ad call 20021d0 <sparc_enable_interrupts>
200c320: 91 e8 00 08 restore %g0, %o0, %o0
return;
}
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200c324: 80 a0 60 02 cmp %g1, 2
200c328: 02 80 00 06 be 200c340 <_Thread_queue_Extract_priority_helper+0xb0><== NEVER TAKEN
200c32c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200c330: 7f ff d7 a8 call 20021d0 <sparc_enable_interrupts>
200c334: b0 10 00 19 mov %i1, %i0
200c338: 10 80 00 08 b 200c358 <_Thread_queue_Extract_priority_helper+0xc8>
200c33c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
200c340: c2 26 60 50 st %g1, [ %i1 + 0x50 ] ! 1003fc50 <RAM_END+0xdc3fc50><== NOT EXECUTED
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
200c344: 7f ff d7 a3 call 20021d0 <sparc_enable_interrupts> <== NOT EXECUTED
200c348: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
200c34c: 7f ff f4 d2 call 2009694 <_Watchdog_Remove> <== NOT EXECUTED
200c350: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED
200c354: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED
200c358: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
200c35c: 7f ff ef 26 call 2007ff4 <_Thread_Clear_state>
200c360: 81 e8 00 00 restore
02008c48 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2008c48: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2008c4c: 80 a6 20 00 cmp %i0, 0
2008c50: 02 80 00 19 be 2008cb4 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008c54: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2008c58: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
2008c5c: 80 a4 60 01 cmp %l1, 1
2008c60: 12 80 00 15 bne 2008cb4 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
2008c64: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2008c68: 7f ff e5 56 call 20021c0 <sparc_disable_interrupts>
2008c6c: 01 00 00 00 nop
2008c70: a0 10 00 08 mov %o0, %l0
2008c74: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2008c78: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008c7c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
2008c80: 80 88 80 01 btst %g2, %g1
2008c84: 02 80 00 0a be 2008cac <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
2008c88: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2008c8c: 92 10 00 19 mov %i1, %o1
2008c90: 94 10 20 01 mov 1, %o2
2008c94: 40 00 0d 7f call 200c290 <_Thread_queue_Extract_priority_helper>
2008c98: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2008c9c: 90 10 00 18 mov %i0, %o0
2008ca0: 92 10 00 19 mov %i1, %o1
2008ca4: 7f ff ff 4b call 20089d0 <_Thread_queue_Enqueue_priority>
2008ca8: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
2008cac: 7f ff e5 49 call 20021d0 <sparc_enable_interrupts>
2008cb0: 90 10 00 10 mov %l0, %o0
2008cb4: 81 c7 e0 08 ret
2008cb8: 81 e8 00 00 restore
02008cbc <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008cbc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008cc0: 90 10 00 18 mov %i0, %o0
2008cc4: 7f ff fd de call 200843c <_Thread_Get>
2008cc8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008ccc: c2 07 bf fc ld [ %fp + -4 ], %g1
2008cd0: 80 a0 60 00 cmp %g1, 0
2008cd4: 12 80 00 08 bne 2008cf4 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2008cd8: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2008cdc: 40 00 0d a3 call 200c368 <_Thread_queue_Process_timeout>
2008ce0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2008ce4: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008ce8: c4 00 63 28 ld [ %g1 + 0x328 ], %g2 ! 2014f28 <_Thread_Dispatch_disable_level>
2008cec: 84 00 bf ff add %g2, -1, %g2
2008cf0: c4 20 63 28 st %g2, [ %g1 + 0x328 ]
2008cf4: 81 c7 e0 08 ret
2008cf8: 81 e8 00 00 restore
02016a6c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2016a6c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016a70: 35 00 80 f0 sethi %hi(0x203c000), %i2
2016a74: a4 07 bf e8 add %fp, -24, %l2
2016a78: b2 07 bf f4 add %fp, -12, %i1
2016a7c: ac 07 bf f8 add %fp, -8, %l6
2016a80: a6 07 bf ec add %fp, -20, %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016a84: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
2016a88: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
2016a8c: f2 27 bf fc st %i1, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016a90: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
2016a94: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
2016a98: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016a9c: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain );
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
2016aa0: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016aa4: 37 00 80 ef sethi %hi(0x203bc00), %i3
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016aa8: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016aac: b8 10 20 01 mov 1, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016ab0: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016ab4: ae 06 20 40 add %i0, 0x40, %l7
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016ab8: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016abc: c2 06 a0 a4 ld [ %i2 + 0xa4 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016ac0: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016ac4: 94 10 00 14 mov %l4, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016ac8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016acc: 90 10 00 15 mov %l5, %o0
2016ad0: 40 00 11 ce call 201b208 <_Watchdog_Adjust_to_chain>
2016ad4: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016ad8: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016adc: e0 06 e3 f4 ld [ %i3 + 0x3f4 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2016ae0: 80 a4 00 0a cmp %l0, %o2
2016ae4: 08 80 00 06 bleu 2016afc <_Timer_server_Body+0x90>
2016ae8: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016aec: 90 10 00 11 mov %l1, %o0
2016af0: 40 00 11 c6 call 201b208 <_Watchdog_Adjust_to_chain>
2016af4: 94 10 00 14 mov %l4, %o2
2016af8: 30 80 00 06 b,a 2016b10 <_Timer_server_Body+0xa4>
} else if ( snapshot < last_snapshot ) {
2016afc: 1a 80 00 05 bcc 2016b10 <_Timer_server_Body+0xa4>
2016b00: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016b04: 92 10 20 01 mov 1, %o1
2016b08: 40 00 11 98 call 201b168 <_Watchdog_Adjust>
2016b0c: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
2016b10: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016b14: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016b18: 40 00 02 bc call 2017608 <_Chain_Get>
2016b1c: 01 00 00 00 nop
if ( timer == NULL ) {
2016b20: 92 92 20 00 orcc %o0, 0, %o1
2016b24: 02 80 00 0c be 2016b54 <_Timer_server_Body+0xe8>
2016b28: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016b2c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016b30: 80 a0 60 01 cmp %g1, 1
2016b34: 02 80 00 05 be 2016b48 <_Timer_server_Body+0xdc>
2016b38: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016b3c: 80 a0 60 03 cmp %g1, 3
2016b40: 12 bf ff f5 bne 2016b14 <_Timer_server_Body+0xa8> <== NEVER TAKEN
2016b44: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016b48: 40 00 11 e4 call 201b2d8 <_Watchdog_Insert>
2016b4c: 92 02 60 10 add %o1, 0x10, %o1
2016b50: 30 bf ff f1 b,a 2016b14 <_Timer_server_Body+0xa8>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016b54: 7f ff e3 7a call 200f93c <sparc_disable_interrupts>
2016b58: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2016b5c: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016b60: 80 a0 40 16 cmp %g1, %l6
2016b64: 12 80 00 0a bne 2016b8c <_Timer_server_Body+0x120> <== NEVER TAKEN
2016b68: 01 00 00 00 nop
ts->insert_chain = NULL;
2016b6c: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2016b70: 7f ff e3 77 call 200f94c <sparc_enable_interrupts>
2016b74: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016b78: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016b7c: 80 a0 40 13 cmp %g1, %l3
2016b80: 12 80 00 06 bne 2016b98 <_Timer_server_Body+0x12c>
2016b84: 01 00 00 00 nop
2016b88: 30 80 00 1a b,a 2016bf0 <_Timer_server_Body+0x184>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016b8c: 7f ff e3 70 call 200f94c <sparc_enable_interrupts> <== NOT EXECUTED
2016b90: 01 00 00 00 nop <== NOT EXECUTED
2016b94: 30 bf ff ca b,a 2016abc <_Timer_server_Body+0x50> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016b98: 7f ff e3 69 call 200f93c <sparc_disable_interrupts>
2016b9c: 01 00 00 00 nop
2016ba0: 84 10 00 08 mov %o0, %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016ba4: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016ba8: 80 a4 00 13 cmp %l0, %l3
2016bac: 02 80 00 0e be 2016be4 <_Timer_server_Body+0x178>
2016bb0: 80 a4 20 00 cmp %l0, 0
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
2016bb4: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
2016bb8: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
2016bbc: 02 80 00 0a be 2016be4 <_Timer_server_Body+0x178> <== NEVER TAKEN
2016bc0: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
2016bc4: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016bc8: 7f ff e3 61 call 200f94c <sparc_enable_interrupts>
2016bcc: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2016bd0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2016bd4: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
2016bd8: 9f c0 40 00 call %g1
2016bdc: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
2016be0: 30 bf ff ee b,a 2016b98 <_Timer_server_Body+0x12c>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016be4: 7f ff e3 5a call 200f94c <sparc_enable_interrupts>
2016be8: 90 10 00 02 mov %g2, %o0
2016bec: 30 bf ff b3 b,a 2016ab8 <_Timer_server_Body+0x4c>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016bf0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
2016bf4: 7f ff ff 6e call 20169ac <_Thread_Disable_dispatch>
2016bf8: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016bfc: d0 06 00 00 ld [ %i0 ], %o0
2016c00: 40 00 0e cf call 201a73c <_Thread_Set_state>
2016c04: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016c08: 7f ff ff 6f call 20169c4 <_Timer_server_Reset_interval_system_watchdog>
2016c0c: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016c10: 7f ff ff 82 call 2016a18 <_Timer_server_Reset_tod_system_watchdog>
2016c14: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016c18: 40 00 0c 17 call 2019c74 <_Thread_Enable_dispatch>
2016c1c: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016c20: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016c24: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016c28: 40 00 12 06 call 201b440 <_Watchdog_Remove>
2016c2c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016c30: 40 00 12 04 call 201b440 <_Watchdog_Remove>
2016c34: 90 10 00 17 mov %l7, %o0
2016c38: 30 bf ff a0 b,a 2016ab8 <_Timer_server_Body+0x4c>
02016c3c <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016c3c: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016c40: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016c44: 80 a0 60 00 cmp %g1, 0
2016c48: 12 80 00 49 bne 2016d6c <_Timer_server_Schedule_operation_method+0x130>
2016c4c: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
2016c50: 7f ff ff 57 call 20169ac <_Thread_Disable_dispatch>
2016c54: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016c58: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016c5c: 80 a0 60 01 cmp %g1, 1
2016c60: 12 80 00 1f bne 2016cdc <_Timer_server_Schedule_operation_method+0xa0>
2016c64: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016c68: 7f ff e3 35 call 200f93c <sparc_disable_interrupts>
2016c6c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016c70: 03 00 80 f0 sethi %hi(0x203c000), %g1
2016c74: c4 00 60 a4 ld [ %g1 + 0xa4 ], %g2 ! 203c0a4 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016c78: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016c7c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016c80: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016c84: 80 a0 40 03 cmp %g1, %g3
2016c88: 02 80 00 08 be 2016ca8 <_Timer_server_Schedule_operation_method+0x6c>
2016c8c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016c90: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016c94: 80 a3 40 04 cmp %o5, %g4
2016c98: 08 80 00 03 bleu 2016ca4 <_Timer_server_Schedule_operation_method+0x68>
2016c9c: 86 10 20 00 clr %g3
delta_interval -= delta;
2016ca0: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016ca4: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016ca8: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016cac: 7f ff e3 28 call 200f94c <sparc_enable_interrupts>
2016cb0: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016cb4: 90 06 20 30 add %i0, 0x30, %o0
2016cb8: 40 00 11 88 call 201b2d8 <_Watchdog_Insert>
2016cbc: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016cc0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016cc4: 80 a0 60 00 cmp %g1, 0
2016cc8: 12 80 00 27 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128>
2016ccc: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016cd0: 7f ff ff 3d call 20169c4 <_Timer_server_Reset_interval_system_watchdog>
2016cd4: 90 10 00 18 mov %i0, %o0
2016cd8: 30 80 00 23 b,a 2016d64 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016cdc: 12 80 00 22 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128>
2016ce0: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016ce4: 7f ff e3 16 call 200f93c <sparc_disable_interrupts>
2016ce8: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016cec: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016cf0: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016cf4: 03 00 80 ef sethi %hi(0x203bc00), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016cf8: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016cfc: 80 a0 80 03 cmp %g2, %g3
2016d00: 02 80 00 0d be 2016d34 <_Timer_server_Schedule_operation_method+0xf8>
2016d04: c2 00 63 f4 ld [ %g1 + 0x3f4 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016d08: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
2016d0c: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016d10: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016d14: 08 80 00 07 bleu 2016d30 <_Timer_server_Schedule_operation_method+0xf4>
2016d18: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016d1c: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
2016d20: 80 a1 00 0d cmp %g4, %o5
2016d24: 08 80 00 03 bleu 2016d30 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
2016d28: 86 10 20 00 clr %g3
delta_interval -= delta;
2016d2c: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016d30: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016d34: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016d38: 7f ff e3 05 call 200f94c <sparc_enable_interrupts>
2016d3c: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016d40: 90 06 20 68 add %i0, 0x68, %o0
2016d44: 40 00 11 65 call 201b2d8 <_Watchdog_Insert>
2016d48: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016d4c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016d50: 80 a0 60 00 cmp %g1, 0
2016d54: 12 80 00 04 bne 2016d64 <_Timer_server_Schedule_operation_method+0x128>
2016d58: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016d5c: 7f ff ff 2f call 2016a18 <_Timer_server_Reset_tod_system_watchdog>
2016d60: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016d64: 40 00 0b c4 call 2019c74 <_Thread_Enable_dispatch>
2016d68: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016d6c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016d70: 40 00 02 10 call 20175b0 <_Chain_Append>
2016d74: 81 e8 00 00 restore
0200b264 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
200b264: c6 02 00 00 ld [ %o0 ], %g3
200b268: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
200b26c: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200b270: 80 a0 c0 02 cmp %g3, %g2
200b274: 14 80 00 0b bg 200b2a0 <_Timespec_Greater_than+0x3c>
200b278: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
200b27c: 80 a0 c0 02 cmp %g3, %g2
200b280: 06 80 00 08 bl 200b2a0 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
200b284: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
200b288: c4 00 60 04 ld [ %g1 + 4 ], %g2
200b28c: c2 02 60 04 ld [ %o1 + 4 ], %g1
200b290: 80 a0 80 01 cmp %g2, %g1
200b294: 14 80 00 03 bg 200b2a0 <_Timespec_Greater_than+0x3c>
200b298: 90 10 20 01 mov 1, %o0
200b29c: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
200b2a0: 81 c3 e0 08 retl
02009278 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009278: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200927c: 03 00 80 51 sethi %hi(0x2014400), %g1
2009280: 82 10 60 88 or %g1, 0x88, %g1 ! 2014488 <Configuration>
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2009284: 05 00 80 54 sethi %hi(0x2015000), %g2
initial_extensions = Configuration.User_extension_table;
2009288: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200928c: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
2009290: 82 10 a1 48 or %g2, 0x148, %g1
2009294: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
2009298: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
200929c: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
20092a0: c6 20 a1 48 st %g3, [ %g2 + 0x148 ]
20092a4: 05 00 80 53 sethi %hi(0x2014c00), %g2
20092a8: 82 10 a3 2c or %g2, 0x32c, %g1 ! 2014f2c <_User_extensions_Switches_list>
20092ac: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
20092b0: c0 20 60 04 clr [ %g1 + 4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
20092b4: c6 20 a3 2c st %g3, [ %g2 + 0x32c ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
20092b8: 80 a4 e0 00 cmp %l3, 0
20092bc: 02 80 00 1b be 2009328 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
20092c0: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
20092c4: 83 2c a0 02 sll %l2, 2, %g1
20092c8: a1 2c a0 04 sll %l2, 4, %l0
20092cc: a0 24 00 01 sub %l0, %g1, %l0
20092d0: a0 04 00 12 add %l0, %l2, %l0
20092d4: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
20092d8: 40 00 01 6a call 2009880 <_Workspace_Allocate_or_fatal_error>
20092dc: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
20092e0: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
20092e4: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
20092e8: 92 10 20 00 clr %o1
20092ec: 40 00 14 fd call 200e6e0 <memset>
20092f0: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
20092f4: 10 80 00 0b b 2009320 <_User_extensions_Handler_initialization+0xa8>
20092f8: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
20092fc: 90 04 60 14 add %l1, 0x14, %o0
2009300: 92 04 c0 09 add %l3, %o1, %o1
2009304: 40 00 14 b8 call 200e5e4 <memcpy>
2009308: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
200930c: 90 10 00 11 mov %l1, %o0
2009310: 40 00 0c 7e call 200c508 <_User_extensions_Add_set>
2009314: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
2009318: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200931c: 80 a4 00 12 cmp %l0, %l2
2009320: 0a bf ff f7 bcs 20092fc <_User_extensions_Handler_initialization+0x84>
2009324: 93 2c 20 05 sll %l0, 5, %o1
2009328: 81 c7 e0 08 ret
200932c: 81 e8 00 00 restore
02009374 <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009374: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009378: 23 00 80 54 sethi %hi(0x2015000), %l1
200937c: a2 14 61 48 or %l1, 0x148, %l1 ! 2015148 <_User_extensions_List>
2009380: 10 80 00 08 b 20093a0 <_User_extensions_Thread_exitted+0x2c>
2009384: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009388: 80 a0 60 00 cmp %g1, 0
200938c: 22 80 00 05 be,a 20093a0 <_User_extensions_Thread_exitted+0x2c>
2009390: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
2009394: 9f c0 40 00 call %g1
2009398: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200939c: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
20093a0: 80 a4 00 11 cmp %l0, %l1
20093a4: 32 bf ff f9 bne,a 2009388 <_User_extensions_Thread_exitted+0x14>
20093a8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
20093ac: 81 c7 e0 08 ret
20093b0: 81 e8 00 00 restore
0200b728 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200b728: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200b72c: 7f ff de b0 call 20031ec <sparc_disable_interrupts>
200b730: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200b734: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200b738: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200b73c: 80 a0 40 11 cmp %g1, %l1
200b740: 02 80 00 1f be 200b7bc <_Watchdog_Adjust+0x94>
200b744: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200b748: 02 80 00 1a be 200b7b0 <_Watchdog_Adjust+0x88>
200b74c: a4 10 20 01 mov 1, %l2
200b750: 80 a6 60 01 cmp %i1, 1
200b754: 12 80 00 1a bne 200b7bc <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200b758: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200b75c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200b760: 10 80 00 07 b 200b77c <_Watchdog_Adjust+0x54>
200b764: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
200b768: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
200b76c: 80 a6 80 19 cmp %i2, %i1
200b770: 3a 80 00 05 bcc,a 200b784 <_Watchdog_Adjust+0x5c>
200b774: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
200b778: b4 26 40 1a sub %i1, %i2, %i2
break;
200b77c: 10 80 00 10 b 200b7bc <_Watchdog_Adjust+0x94>
200b780: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200b784: 7f ff de 9e call 20031fc <sparc_enable_interrupts>
200b788: 01 00 00 00 nop
_Watchdog_Tickle( header );
200b78c: 40 00 00 92 call 200b9d4 <_Watchdog_Tickle>
200b790: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200b794: 7f ff de 96 call 20031ec <sparc_disable_interrupts>
200b798: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
200b79c: c2 04 00 00 ld [ %l0 ], %g1
200b7a0: 80 a0 40 11 cmp %g1, %l1
200b7a4: 02 80 00 06 be 200b7bc <_Watchdog_Adjust+0x94>
200b7a8: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200b7ac: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200b7b0: 80 a6 a0 00 cmp %i2, 0
200b7b4: 32 bf ff ed bne,a 200b768 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
200b7b8: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
200b7bc: 7f ff de 90 call 20031fc <sparc_enable_interrupts>
200b7c0: 91 e8 00 08 restore %g0, %o0, %o0
02009694 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009694: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009698: 7f ff e2 ca call 20021c0 <sparc_disable_interrupts>
200969c: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
20096a0: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
20096a4: 80 a6 20 01 cmp %i0, 1
20096a8: 22 80 00 1d be,a 200971c <_Watchdog_Remove+0x88>
20096ac: c0 24 20 08 clr [ %l0 + 8 ]
20096b0: 0a 80 00 1c bcs 2009720 <_Watchdog_Remove+0x8c>
20096b4: 03 00 80 54 sethi %hi(0x2015000), %g1
20096b8: 80 a6 20 03 cmp %i0, 3
20096bc: 18 80 00 19 bgu 2009720 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
20096c0: 01 00 00 00 nop
20096c4: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
20096c8: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
20096cc: c4 00 40 00 ld [ %g1 ], %g2
20096d0: 80 a0 a0 00 cmp %g2, 0
20096d4: 02 80 00 07 be 20096f0 <_Watchdog_Remove+0x5c>
20096d8: 05 00 80 54 sethi %hi(0x2015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
20096dc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20096e0: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
20096e4: 84 00 c0 02 add %g3, %g2, %g2
20096e8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
20096ec: 05 00 80 54 sethi %hi(0x2015000), %g2
20096f0: c4 00 a0 60 ld [ %g2 + 0x60 ], %g2 ! 2015060 <_Watchdog_Sync_count>
20096f4: 80 a0 a0 00 cmp %g2, 0
20096f8: 22 80 00 07 be,a 2009714 <_Watchdog_Remove+0x80>
20096fc: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009700: 05 00 80 54 sethi %hi(0x2015000), %g2
2009704: c6 00 a1 94 ld [ %g2 + 0x194 ], %g3 ! 2015194 <_Per_CPU_Information+0x8>
2009708: 05 00 80 53 sethi %hi(0x2014c00), %g2
200970c: c6 20 a3 d4 st %g3, [ %g2 + 0x3d4 ] ! 2014fd4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009710: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
2009714: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009718: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200971c: 03 00 80 54 sethi %hi(0x2015000), %g1
2009720: c2 00 60 64 ld [ %g1 + 0x64 ], %g1 ! 2015064 <_Watchdog_Ticks_since_boot>
2009724: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
2009728: 7f ff e2 aa call 20021d0 <sparc_enable_interrupts>
200972c: 01 00 00 00 nop
return( previous_state );
}
2009730: 81 c7 e0 08 ret
2009734: 81 e8 00 00 restore
0200af3c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200af3c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200af40: 7f ff df 82 call 2002d48 <sparc_disable_interrupts>
200af44: a0 10 00 18 mov %i0, %l0
200af48: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
200af4c: 11 00 80 6e sethi %hi(0x201b800), %o0
200af50: 94 10 00 19 mov %i1, %o2
200af54: 90 12 22 58 or %o0, 0x258, %o0
200af58: 7f ff e6 05 call 200476c <printk>
200af5c: 92 10 00 10 mov %l0, %o1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200af60: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200af64: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200af68: 80 a4 40 19 cmp %l1, %i1
200af6c: 02 80 00 0e be 200afa4 <_Watchdog_Report_chain+0x68>
200af70: 11 00 80 6e sethi %hi(0x201b800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200af74: 92 10 00 11 mov %l1, %o1
200af78: 40 00 00 10 call 200afb8 <_Watchdog_Report>
200af7c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
200af80: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
200af84: 80 a4 40 19 cmp %l1, %i1
200af88: 12 bf ff fc bne 200af78 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200af8c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200af90: 11 00 80 6e sethi %hi(0x201b800), %o0
200af94: 92 10 00 10 mov %l0, %o1
200af98: 7f ff e5 f5 call 200476c <printk>
200af9c: 90 12 22 70 or %o0, 0x270, %o0
200afa0: 30 80 00 03 b,a 200afac <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
200afa4: 7f ff e5 f2 call 200476c <printk>
200afa8: 90 12 22 80 or %o0, 0x280, %o0
}
_ISR_Enable( level );
200afac: 7f ff df 6b call 2002d58 <sparc_enable_interrupts>
200afb0: 81 e8 00 00 restore
020091bc <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
20091bc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
20091c0: 80 a6 20 00 cmp %i0, 0
20091c4: 02 80 00 1d be 2009238 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
20091c8: 21 00 80 97 sethi %hi(0x2025c00), %l0
20091cc: a0 14 20 70 or %l0, 0x70, %l0 ! 2025c70 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
20091d0: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
if ( !_Objects_Information_table[ api_index ] )
20091d4: c2 04 00 00 ld [ %l0 ], %g1
20091d8: 80 a0 60 00 cmp %g1, 0
20091dc: 22 80 00 14 be,a 200922c <rtems_iterate_over_all_threads+0x70>
20091e0: a0 04 20 04 add %l0, 4, %l0
continue;
information = _Objects_Information_table[ api_index ][ 1 ];
20091e4: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
20091e8: 80 a4 a0 00 cmp %l2, 0
20091ec: 12 80 00 0b bne 2009218 <rtems_iterate_over_all_threads+0x5c>
20091f0: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
20091f4: 10 80 00 0e b 200922c <rtems_iterate_over_all_threads+0x70>
20091f8: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
20091fc: 83 2c 60 02 sll %l1, 2, %g1
2009200: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
2009204: 80 a2 20 00 cmp %o0, 0
2009208: 02 80 00 04 be 2009218 <rtems_iterate_over_all_threads+0x5c>
200920c: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
2009210: 9f c6 00 00 call %i0
2009214: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009218: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
200921c: 80 a4 40 01 cmp %l1, %g1
2009220: 28 bf ff f7 bleu,a 20091fc <rtems_iterate_over_all_threads+0x40>
2009224: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
2009228: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200922c: 80 a4 00 13 cmp %l0, %l3
2009230: 32 bf ff ea bne,a 20091d8 <rtems_iterate_over_all_threads+0x1c>
2009234: c2 04 00 00 ld [ %l0 ], %g1
2009238: 81 c7 e0 08 ret
200923c: 81 e8 00 00 restore
0201440c <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
201440c: 9d e3 bf a0 save %sp, -96, %sp
2014410: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2014414: 80 a4 20 00 cmp %l0, 0
2014418: 02 80 00 1f be 2014494 <rtems_partition_create+0x88>
201441c: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
2014420: 80 a6 60 00 cmp %i1, 0
2014424: 02 80 00 1c be 2014494 <rtems_partition_create+0x88>
2014428: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
201442c: 80 a7 60 00 cmp %i5, 0
2014430: 02 80 00 19 be 2014494 <rtems_partition_create+0x88> <== NEVER TAKEN
2014434: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014438: 02 80 00 32 be 2014500 <rtems_partition_create+0xf4>
201443c: 80 a6 a0 00 cmp %i2, 0
2014440: 02 80 00 30 be 2014500 <rtems_partition_create+0xf4>
2014444: 80 a6 80 1b cmp %i2, %i3
2014448: 0a 80 00 13 bcs 2014494 <rtems_partition_create+0x88>
201444c: b0 10 20 08 mov 8, %i0
2014450: 80 8e e0 07 btst 7, %i3
2014454: 12 80 00 10 bne 2014494 <rtems_partition_create+0x88>
2014458: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
201445c: 12 80 00 0e bne 2014494 <rtems_partition_create+0x88>
2014460: b0 10 20 09 mov 9, %i0
2014464: 03 00 80 ef sethi %hi(0x203bc00), %g1
2014468: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 203bf68 <_Thread_Dispatch_disable_level>
201446c: 84 00 a0 01 inc %g2
2014470: c4 20 63 68 st %g2, [ %g1 + 0x368 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2014474: 25 00 80 ef sethi %hi(0x203bc00), %l2
2014478: 40 00 12 4a call 2018da0 <_Objects_Allocate>
201447c: 90 14 a1 74 or %l2, 0x174, %o0 ! 203bd74 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014480: a2 92 20 00 orcc %o0, 0, %l1
2014484: 12 80 00 06 bne 201449c <rtems_partition_create+0x90>
2014488: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
201448c: 40 00 15 fa call 2019c74 <_Thread_Enable_dispatch>
2014490: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
2014494: 81 c7 e0 08 ret
2014498: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
201449c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
20144a0: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
20144a4: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
20144a8: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
20144ac: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20144b0: 40 00 5f 9d call 202c324 <.udiv>
20144b4: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20144b8: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
20144bc: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20144c0: 96 10 00 1b mov %i3, %o3
20144c4: a6 04 60 24 add %l1, 0x24, %l3
20144c8: 40 00 0c 5f call 2017644 <_Chain_Initialize>
20144cc: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20144d0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
20144d4: a4 14 a1 74 or %l2, 0x174, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20144d8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20144dc: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20144e0: 85 28 a0 02 sll %g2, 2, %g2
20144e4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20144e8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
20144ec: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
20144f0: 40 00 15 e1 call 2019c74 <_Thread_Enable_dispatch>
20144f4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20144f8: 81 c7 e0 08 ret
20144fc: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
2014500: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014504: 81 c7 e0 08 ret
2014508: 81 e8 00 00 restore
02007444 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2007444: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
2007448: 11 00 80 75 sethi %hi(0x201d400), %o0
200744c: 92 10 00 18 mov %i0, %o1
2007450: 90 12 20 d4 or %o0, 0xd4, %o0
2007454: 40 00 08 ee call 200980c <_Objects_Get>
2007458: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
200745c: c2 07 bf fc ld [ %fp + -4 ], %g1
2007460: 80 a0 60 00 cmp %g1, 0
2007464: 12 80 00 66 bne 20075fc <rtems_rate_monotonic_period+0x1b8>
2007468: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
200746c: 25 00 80 76 sethi %hi(0x201d800), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007470: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
2007474: a4 14 a0 ac or %l2, 0xac, %l2
2007478: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
200747c: 80 a0 80 01 cmp %g2, %g1
2007480: 02 80 00 06 be 2007498 <rtems_rate_monotonic_period+0x54>
2007484: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007488: 40 00 0b 47 call 200a1a4 <_Thread_Enable_dispatch>
200748c: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007490: 81 c7 e0 08 ret
2007494: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
2007498: 12 80 00 0e bne 20074d0 <rtems_rate_monotonic_period+0x8c>
200749c: 01 00 00 00 nop
switch ( the_period->state ) {
20074a0: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20074a4: 80 a0 60 04 cmp %g1, 4
20074a8: 18 80 00 06 bgu 20074c0 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
20074ac: b0 10 20 00 clr %i0
20074b0: 83 28 60 02 sll %g1, 2, %g1
20074b4: 05 00 80 6d sethi %hi(0x201b400), %g2
20074b8: 84 10 a2 dc or %g2, 0x2dc, %g2 ! 201b6dc <CSWTCH.2>
20074bc: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
20074c0: 40 00 0b 39 call 200a1a4 <_Thread_Enable_dispatch>
20074c4: 01 00 00 00 nop
return( return_value );
20074c8: 81 c7 e0 08 ret
20074cc: 81 e8 00 00 restore
}
_ISR_Disable( level );
20074d0: 7f ff ef 01 call 20030d4 <sparc_disable_interrupts>
20074d4: 01 00 00 00 nop
20074d8: a6 10 00 08 mov %o0, %l3
switch ( the_period->state ) {
20074dc: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
20074e0: 80 a4 60 02 cmp %l1, 2
20074e4: 02 80 00 19 be 2007548 <rtems_rate_monotonic_period+0x104>
20074e8: 80 a4 60 04 cmp %l1, 4
20074ec: 02 80 00 33 be 20075b8 <rtems_rate_monotonic_period+0x174>
20074f0: 80 a4 60 00 cmp %l1, 0
20074f4: 12 80 00 44 bne 2007604 <rtems_rate_monotonic_period+0x1c0><== NEVER TAKEN
20074f8: 01 00 00 00 nop
case RATE_MONOTONIC_INACTIVE: {
_ISR_Enable( level );
20074fc: 7f ff ee fa call 20030e4 <sparc_enable_interrupts>
2007500: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2007504: 7f ff ff 76 call 20072dc <_Rate_monotonic_Initiate_statistics>
2007508: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
200750c: 82 10 20 02 mov 2, %g1
2007510: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007514: 03 00 80 1e sethi %hi(0x2007800), %g1
2007518: 82 10 60 d0 or %g1, 0xd0, %g1 ! 20078d0 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200751c: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
2007520: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
2007524: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
2007528: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
200752c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007530: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007534: 11 00 80 75 sethi %hi(0x201d400), %o0
2007538: 92 04 20 10 add %l0, 0x10, %o1
200753c: 40 00 10 2b call 200b5e8 <_Watchdog_Insert>
2007540: 90 12 23 10 or %o0, 0x310, %o0
2007544: 30 80 00 19 b,a 20075a8 <rtems_rate_monotonic_period+0x164>
case RATE_MONOTONIC_ACTIVE:
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007548: 7f ff ff 81 call 200734c <_Rate_monotonic_Update_statistics>
200754c: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007550: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007554: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007558: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
200755c: 7f ff ee e2 call 20030e4 <sparc_enable_interrupts>
2007560: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007564: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
2007568: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
200756c: 13 00 00 10 sethi %hi(0x4000), %o1
2007570: 40 00 0d 64 call 200ab00 <_Thread_Set_state>
2007574: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007578: 7f ff ee d7 call 20030d4 <sparc_disable_interrupts>
200757c: 01 00 00 00 nop
local_state = the_period->state;
2007580: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007584: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007588: 7f ff ee d7 call 20030e4 <sparc_enable_interrupts>
200758c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007590: 80 a4 e0 03 cmp %l3, 3
2007594: 12 80 00 05 bne 20075a8 <rtems_rate_monotonic_period+0x164>
2007598: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
200759c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
20075a0: 40 00 09 fc call 2009d90 <_Thread_Clear_state>
20075a4: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
20075a8: 40 00 0a ff call 200a1a4 <_Thread_Enable_dispatch>
20075ac: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20075b0: 81 c7 e0 08 ret
20075b4: 81 e8 00 00 restore
case RATE_MONOTONIC_EXPIRED:
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20075b8: 7f ff ff 65 call 200734c <_Rate_monotonic_Update_statistics>
20075bc: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
20075c0: 7f ff ee c9 call 20030e4 <sparc_enable_interrupts>
20075c4: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20075c8: 82 10 20 02 mov 2, %g1
20075cc: 92 04 20 10 add %l0, 0x10, %o1
20075d0: 11 00 80 75 sethi %hi(0x201d400), %o0
20075d4: 90 12 23 10 or %o0, 0x310, %o0 ! 201d710 <_Watchdog_Ticks_chain>
20075d8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
20075dc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20075e0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20075e4: 40 00 10 01 call 200b5e8 <_Watchdog_Insert>
20075e8: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20075ec: 40 00 0a ee call 200a1a4 <_Thread_Enable_dispatch>
20075f0: 01 00 00 00 nop
return RTEMS_TIMEOUT;
20075f4: 81 c7 e0 08 ret
20075f8: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20075fc: 81 c7 e0 08 ret
2007600: 91 e8 20 04 restore %g0, 4, %o0
}
2007604: 81 c7 e0 08 ret <== NOT EXECUTED
2007608: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
0200760c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
200760c: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007610: 80 a6 60 00 cmp %i1, 0
2007614: 02 80 00 79 be 20077f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
2007618: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
200761c: 13 00 80 6d sethi %hi(0x201b400), %o1
2007620: 9f c6 40 00 call %i1
2007624: 92 12 62 f0 or %o1, 0x2f0, %o1 ! 201b6f0 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007628: 90 10 00 18 mov %i0, %o0
200762c: 13 00 80 6d sethi %hi(0x201b400), %o1
2007630: 9f c6 40 00 call %i1
2007634: 92 12 63 10 or %o1, 0x310, %o1 ! 201b710 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007638: 90 10 00 18 mov %i0, %o0
200763c: 13 00 80 6d sethi %hi(0x201b400), %o1
2007640: 9f c6 40 00 call %i1
2007644: 92 12 63 38 or %o1, 0x338, %o1 ! 201b738 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007648: 90 10 00 18 mov %i0, %o0
200764c: 13 00 80 6d sethi %hi(0x201b400), %o1
2007650: 9f c6 40 00 call %i1
2007654: 92 12 63 60 or %o1, 0x360, %o1 ! 201b760 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007658: 90 10 00 18 mov %i0, %o0
200765c: 13 00 80 6d sethi %hi(0x201b400), %o1
2007660: 9f c6 40 00 call %i1
2007664: 92 12 63 b0 or %o1, 0x3b0, %o1 ! 201b7b0 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007668: 3b 00 80 75 sethi %hi(0x201d400), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200766c: 2b 00 80 6e sethi %hi(0x201b800), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007670: 82 17 60 d4 or %i5, 0xd4, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007674: 27 00 80 6e sethi %hi(0x201b800), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007678: 35 00 80 6e sethi %hi(0x201b800), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
200767c: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007680: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
2007684: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007688: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200768c: aa 15 60 00 mov %l5, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007690: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007694: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
2007698: a6 14 e0 18 or %l3, 0x18, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
200769c: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20076a0: 10 80 00 52 b 20077e8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
20076a4: b4 16 a0 38 or %i2, 0x38, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20076a8: 40 00 18 88 call 200d8c8 <rtems_rate_monotonic_get_statistics>
20076ac: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
20076b0: 80 a2 20 00 cmp %o0, 0
20076b4: 32 80 00 4c bne,a 20077e4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
20076b8: a0 04 20 01 inc %l0
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
20076bc: 92 10 00 16 mov %l6, %o1
20076c0: 40 00 18 af call 200d97c <rtems_rate_monotonic_get_status>
20076c4: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20076c8: d0 07 bf d8 ld [ %fp + -40 ], %o0
20076cc: 92 10 20 05 mov 5, %o1
20076d0: 40 00 00 ae call 2007988 <rtems_object_get_name>
20076d4: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20076d8: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20076dc: 92 10 00 15 mov %l5, %o1
20076e0: 90 10 00 18 mov %i0, %o0
20076e4: 94 10 00 10 mov %l0, %o2
20076e8: 9f c6 40 00 call %i1
20076ec: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20076f0: d2 07 bf a0 ld [ %fp + -96 ], %o1
20076f4: 80 a2 60 00 cmp %o1, 0
20076f8: 12 80 00 08 bne 2007718 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
20076fc: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
2007700: 90 10 00 18 mov %i0, %o0
2007704: 13 00 80 6a sethi %hi(0x201a800), %o1
2007708: 9f c6 40 00 call %i1
200770c: 92 12 62 08 or %o1, 0x208, %o1 ! 201aa08 <_rodata_start+0x158>
continue;
2007710: 10 80 00 35 b 20077e4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
2007714: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007718: 40 00 0e 91 call 200b15c <_Timespec_Divide_by_integer>
200771c: 90 10 00 14 mov %l4, %o0
(*print)( context,
2007720: d0 07 bf ac ld [ %fp + -84 ], %o0
2007724: 40 00 44 cb call 2018a50 <.div>
2007728: 92 10 23 e8 mov 0x3e8, %o1
200772c: 96 10 00 08 mov %o0, %o3
2007730: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007734: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007738: 40 00 44 c6 call 2018a50 <.div>
200773c: 92 10 23 e8 mov 0x3e8, %o1
2007740: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007744: b6 10 00 08 mov %o0, %i3
2007748: d0 07 bf f4 ld [ %fp + -12 ], %o0
200774c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007750: 40 00 44 c0 call 2018a50 <.div>
2007754: 92 10 23 e8 mov 0x3e8, %o1
2007758: d8 07 bf b0 ld [ %fp + -80 ], %o4
200775c: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007760: d4 07 bf a8 ld [ %fp + -88 ], %o2
2007764: 9a 10 00 1b mov %i3, %o5
2007768: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
200776c: 92 10 00 13 mov %l3, %o1
2007770: 9f c6 40 00 call %i1
2007774: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007778: d2 07 bf a0 ld [ %fp + -96 ], %o1
200777c: 94 10 00 11 mov %l1, %o2
2007780: 40 00 0e 77 call 200b15c <_Timespec_Divide_by_integer>
2007784: 90 10 00 1c mov %i4, %o0
(*print)( context,
2007788: d0 07 bf c4 ld [ %fp + -60 ], %o0
200778c: 40 00 44 b1 call 2018a50 <.div>
2007790: 92 10 23 e8 mov 0x3e8, %o1
2007794: 96 10 00 08 mov %o0, %o3
2007798: d0 07 bf cc ld [ %fp + -52 ], %o0
200779c: d6 27 bf 9c st %o3, [ %fp + -100 ]
20077a0: 40 00 44 ac call 2018a50 <.div>
20077a4: 92 10 23 e8 mov 0x3e8, %o1
20077a8: c2 07 bf f0 ld [ %fp + -16 ], %g1
20077ac: b6 10 00 08 mov %o0, %i3
20077b0: d0 07 bf f4 ld [ %fp + -12 ], %o0
20077b4: 92 10 23 e8 mov 0x3e8, %o1
20077b8: 40 00 44 a6 call 2018a50 <.div>
20077bc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20077c0: d4 07 bf c0 ld [ %fp + -64 ], %o2
20077c4: d6 07 bf 9c ld [ %fp + -100 ], %o3
20077c8: d8 07 bf c8 ld [ %fp + -56 ], %o4
20077cc: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20077d0: 92 10 00 1a mov %i2, %o1
20077d4: 90 10 00 18 mov %i0, %o0
20077d8: 9f c6 40 00 call %i1
20077dc: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20077e0: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
20077e4: 82 17 60 d4 or %i5, 0xd4, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20077e8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
20077ec: 80 a4 00 01 cmp %l0, %g1
20077f0: 08 bf ff ae bleu 20076a8 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
20077f4: 90 10 00 10 mov %l0, %o0
20077f8: 81 c7 e0 08 ret
20077fc: 81 e8 00 00 restore
020159bc <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20159bc: 9d e3 bf 98 save %sp, -104, %sp
20159c0: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20159c4: 80 a6 60 00 cmp %i1, 0
20159c8: 02 80 00 2e be 2015a80 <rtems_signal_send+0xc4>
20159cc: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20159d0: 40 00 10 b6 call 2019ca8 <_Thread_Get>
20159d4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20159d8: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20159dc: a2 10 00 08 mov %o0, %l1
switch ( location ) {
20159e0: 80 a0 60 00 cmp %g1, 0
20159e4: 12 80 00 27 bne 2015a80 <rtems_signal_send+0xc4>
20159e8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20159ec: e0 02 21 60 ld [ %o0 + 0x160 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20159f0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20159f4: 80 a0 60 00 cmp %g1, 0
20159f8: 02 80 00 24 be 2015a88 <rtems_signal_send+0xcc>
20159fc: 01 00 00 00 nop
if ( asr->is_enabled ) {
2015a00: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
2015a04: 80 a0 60 00 cmp %g1, 0
2015a08: 02 80 00 15 be 2015a5c <rtems_signal_send+0xa0>
2015a0c: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015a10: 7f ff e7 cb call 200f93c <sparc_disable_interrupts>
2015a14: 01 00 00 00 nop
*signal_set |= signals;
2015a18: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2015a1c: b2 10 40 19 or %g1, %i1, %i1
2015a20: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
2015a24: 7f ff e7 ca call 200f94c <sparc_enable_interrupts>
2015a28: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2015a2c: 03 00 80 f0 sethi %hi(0x203c000), %g1
2015a30: 82 10 61 d4 or %g1, 0x1d4, %g1 ! 203c1d4 <_Per_CPU_Information>
2015a34: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015a38: 80 a0 a0 00 cmp %g2, 0
2015a3c: 02 80 00 0f be 2015a78 <rtems_signal_send+0xbc>
2015a40: 01 00 00 00 nop
2015a44: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015a48: 80 a4 40 02 cmp %l1, %g2
2015a4c: 12 80 00 0b bne 2015a78 <rtems_signal_send+0xbc> <== NEVER TAKEN
2015a50: 84 10 20 01 mov 1, %g2
_Context_Switch_necessary = true;
2015a54: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015a58: 30 80 00 08 b,a 2015a78 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015a5c: 7f ff e7 b8 call 200f93c <sparc_disable_interrupts>
2015a60: 01 00 00 00 nop
*signal_set |= signals;
2015a64: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015a68: b2 10 40 19 or %g1, %i1, %i1
2015a6c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
2015a70: 7f ff e7 b7 call 200f94c <sparc_enable_interrupts>
2015a74: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015a78: 40 00 10 7f call 2019c74 <_Thread_Enable_dispatch>
2015a7c: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
2015a80: 81 c7 e0 08 ret
2015a84: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
2015a88: 40 00 10 7b call 2019c74 <_Thread_Enable_dispatch>
2015a8c: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
2015a90: 81 c7 e0 08 ret
2015a94: 81 e8 00 00 restore
0200d784 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200d784: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200d788: 80 a6 a0 00 cmp %i2, 0
200d78c: 02 80 00 5f be 200d908 <rtems_task_mode+0x184>
200d790: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200d794: 03 00 80 54 sethi %hi(0x2015000), %g1
200d798: e2 00 61 98 ld [ %g1 + 0x198 ], %l1 ! 2015198 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d79c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d7a0: e0 04 61 60 ld [ %l1 + 0x160 ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d7a4: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d7a8: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200d7ac: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200d7b0: 80 a0 60 00 cmp %g1, 0
200d7b4: 02 80 00 03 be 200d7c0 <rtems_task_mode+0x3c>
200d7b8: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200d7bc: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d7c0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
200d7c4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200d7c8: 7f ff f1 80 call 2009dc8 <_CPU_ISR_Get_level>
200d7cc: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200d7d0: a7 2c e0 0a sll %l3, 0xa, %l3
200d7d4: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
200d7d8: a4 14 c0 12 or %l3, %l2, %l2
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200d7dc: 80 8e 61 00 btst 0x100, %i1
200d7e0: 02 80 00 06 be 200d7f8 <rtems_task_mode+0x74>
200d7e4: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200d7e8: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200d7ec: 80 a0 00 01 cmp %g0, %g1
200d7f0: 82 60 3f ff subx %g0, -1, %g1
200d7f4: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200d7f8: 80 8e 62 00 btst 0x200, %i1
200d7fc: 02 80 00 0b be 200d828 <rtems_task_mode+0xa4>
200d800: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200d804: 80 8e 22 00 btst 0x200, %i0
200d808: 22 80 00 07 be,a 200d824 <rtems_task_mode+0xa0>
200d80c: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200d810: 82 10 20 01 mov 1, %g1
200d814: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200d818: 03 00 80 53 sethi %hi(0x2014c00), %g1
200d81c: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 ! 2014e88 <_Thread_Ticks_per_timeslice>
200d820: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200d824: 80 8e 60 0f btst 0xf, %i1
200d828: 02 80 00 06 be 200d840 <rtems_task_mode+0xbc>
200d82c: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200d830: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200d834: 7f ff d2 67 call 20021d0 <sparc_enable_interrupts>
200d838: 91 2a 20 08 sll %o0, 8, %o0
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200d83c: 80 8e 64 00 btst 0x400, %i1
200d840: 02 80 00 14 be 200d890 <rtems_task_mode+0x10c>
200d844: 84 10 20 00 clr %g2
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d848: c6 0c 20 08 ldub [ %l0 + 8 ], %g3
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200d84c: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200d850: 80 a0 00 18 cmp %g0, %i0
200d854: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200d858: 80 a0 40 03 cmp %g1, %g3
200d85c: 22 80 00 0e be,a 200d894 <rtems_task_mode+0x110>
200d860: 03 00 80 54 sethi %hi(0x2015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200d864: 7f ff d2 57 call 20021c0 <sparc_disable_interrupts>
200d868: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
200d86c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
200d870: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
200d874: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200d878: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200d87c: 7f ff d2 55 call 20021d0 <sparc_enable_interrupts>
200d880: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200d884: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200d888: 80 a0 00 01 cmp %g0, %g1
200d88c: 84 40 20 00 addx %g0, 0, %g2
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) )
200d890: 03 00 80 54 sethi %hi(0x2015000), %g1
200d894: c6 00 60 ac ld [ %g1 + 0xac ], %g3 ! 20150ac <_System_state_Current>
200d898: 80 a0 e0 03 cmp %g3, 3
200d89c: 12 80 00 1b bne 200d908 <rtems_task_mode+0x184> <== NEVER TAKEN
200d8a0: 82 10 20 00 clr %g1
*/
RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void )
{
Thread_Control *executing;
executing = _Thread_Executing;
200d8a4: 07 00 80 54 sethi %hi(0x2015000), %g3
200d8a8: 86 10 e1 8c or %g3, 0x18c, %g3 ! 201518c <_Per_CPU_Information>
200d8ac: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
if ( !_States_Is_ready( executing->current_state ) ||
200d8b0: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
200d8b4: 80 a1 20 00 cmp %g4, 0
200d8b8: 32 80 00 0b bne,a 200d8e4 <rtems_task_mode+0x160> <== NEVER TAKEN
200d8bc: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED
200d8c0: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
200d8c4: 80 a0 40 03 cmp %g1, %g3
200d8c8: 02 80 00 0b be 200d8f4 <rtems_task_mode+0x170>
200d8cc: 80 88 a0 ff btst 0xff, %g2
( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
200d8d0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
200d8d4: 80 a0 60 00 cmp %g1, 0
200d8d8: 02 80 00 07 be 200d8f4 <rtems_task_mode+0x170> <== NEVER TAKEN
200d8dc: 80 88 a0 ff btst 0xff, %g2
_Context_Switch_necessary = true;
200d8e0: 84 10 20 01 mov 1, %g2
200d8e4: 03 00 80 54 sethi %hi(0x2015000), %g1
200d8e8: 82 10 61 8c or %g1, 0x18c, %g1 ! 201518c <_Per_CPU_Information>
200d8ec: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200d8f0: 30 80 00 03 b,a 200d8fc <rtems_task_mode+0x178>
if ( _Thread_Evaluate_mode() || needs_asr_dispatching )
200d8f4: 02 80 00 05 be 200d908 <rtems_task_mode+0x184>
200d8f8: 82 10 20 00 clr %g1
_Thread_Dispatch();
200d8fc: 7f ff ea 70 call 20082bc <_Thread_Dispatch>
200d900: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200d904: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200d908: 81 c7 e0 08 ret
200d90c: 91 e8 00 01 restore %g0, %g1, %o0
0200ac64 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200ac64: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200ac68: 80 a6 60 00 cmp %i1, 0
200ac6c: 02 80 00 07 be 200ac88 <rtems_task_set_priority+0x24>
200ac70: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200ac74: 03 00 80 63 sethi %hi(0x2018c00), %g1
200ac78: c2 08 61 f4 ldub [ %g1 + 0x1f4 ], %g1 ! 2018df4 <rtems_maximum_priority>
200ac7c: 80 a6 40 01 cmp %i1, %g1
200ac80: 18 80 00 1c bgu 200acf0 <rtems_task_set_priority+0x8c>
200ac84: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200ac88: 80 a6 a0 00 cmp %i2, 0
200ac8c: 02 80 00 19 be 200acf0 <rtems_task_set_priority+0x8c>
200ac90: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200ac94: 40 00 08 15 call 200cce8 <_Thread_Get>
200ac98: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200ac9c: c2 07 bf fc ld [ %fp + -4 ], %g1
200aca0: 80 a0 60 00 cmp %g1, 0
200aca4: 12 80 00 13 bne 200acf0 <rtems_task_set_priority+0x8c>
200aca8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200acac: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200acb0: 80 a6 60 00 cmp %i1, 0
200acb4: 02 80 00 0d be 200ace8 <rtems_task_set_priority+0x84>
200acb8: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200acbc: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200acc0: 80 a0 60 00 cmp %g1, 0
200acc4: 02 80 00 06 be 200acdc <rtems_task_set_priority+0x78>
200acc8: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200accc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200acd0: 80 a0 40 19 cmp %g1, %i1
200acd4: 08 80 00 05 bleu 200ace8 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200acd8: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200acdc: 92 10 00 19 mov %i1, %o1
200ace0: 40 00 06 77 call 200c6bc <_Thread_Change_priority>
200ace4: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200ace8: 40 00 07 f3 call 200ccb4 <_Thread_Enable_dispatch>
200acec: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200acf0: 81 c7 e0 08 ret
200acf4: 81 e8 00 00 restore
020163d4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
20163d4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
20163d8: 11 00 80 f0 sethi %hi(0x203c000), %o0
20163dc: 92 10 00 18 mov %i0, %o1
20163e0: 90 12 22 34 or %o0, 0x234, %o0
20163e4: 40 00 0b be call 20192dc <_Objects_Get>
20163e8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20163ec: c2 07 bf fc ld [ %fp + -4 ], %g1
20163f0: 80 a0 60 00 cmp %g1, 0
20163f4: 12 80 00 0c bne 2016424 <rtems_timer_cancel+0x50>
20163f8: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
20163fc: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2016400: 80 a0 60 04 cmp %g1, 4
2016404: 02 80 00 04 be 2016414 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2016408: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
201640c: 40 00 14 0d call 201b440 <_Watchdog_Remove>
2016410: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016414: 40 00 0e 18 call 2019c74 <_Thread_Enable_dispatch>
2016418: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
201641c: 81 c7 e0 08 ret
2016420: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016424: 81 c7 e0 08 ret
2016428: 91 e8 20 04 restore %g0, 4, %o0
020168bc <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20168bc: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
20168c0: 03 00 80 f0 sethi %hi(0x203c000), %g1
20168c4: e2 00 62 74 ld [ %g1 + 0x274 ], %l1 ! 203c274 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20168c8: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
20168cc: 80 a4 60 00 cmp %l1, 0
20168d0: 02 80 00 33 be 201699c <rtems_timer_server_fire_when+0xe0>
20168d4: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
20168d8: 03 00 80 ef sethi %hi(0x203bc00), %g1
20168dc: c2 08 63 78 ldub [ %g1 + 0x378 ], %g1 ! 203bf78 <_TOD_Is_set>
20168e0: 80 a0 60 00 cmp %g1, 0
20168e4: 02 80 00 2e be 201699c <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
20168e8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
20168ec: 80 a6 a0 00 cmp %i2, 0
20168f0: 02 80 00 2b be 201699c <rtems_timer_server_fire_when+0xe0>
20168f4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
20168f8: 90 10 00 19 mov %i1, %o0
20168fc: 7f ff f4 01 call 2013900 <_TOD_Validate>
2016900: b0 10 20 14 mov 0x14, %i0
2016904: 80 8a 20 ff btst 0xff, %o0
2016908: 02 80 00 27 be 20169a4 <rtems_timer_server_fire_when+0xe8>
201690c: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016910: 7f ff f3 c8 call 2013830 <_TOD_To_seconds>
2016914: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2016918: 27 00 80 ef sethi %hi(0x203bc00), %l3
201691c: c2 04 e3 f4 ld [ %l3 + 0x3f4 ], %g1 ! 203bff4 <_TOD_Now>
2016920: 80 a2 00 01 cmp %o0, %g1
2016924: 08 80 00 1e bleu 201699c <rtems_timer_server_fire_when+0xe0>
2016928: a4 10 00 08 mov %o0, %l2
201692c: 11 00 80 f0 sethi %hi(0x203c000), %o0
2016930: 92 10 00 10 mov %l0, %o1
2016934: 90 12 22 34 or %o0, 0x234, %o0
2016938: 40 00 0a 69 call 20192dc <_Objects_Get>
201693c: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016940: c2 07 bf fc ld [ %fp + -4 ], %g1
2016944: b2 10 00 08 mov %o0, %i1
2016948: 80 a0 60 00 cmp %g1, 0
201694c: 12 80 00 14 bne 201699c <rtems_timer_server_fire_when+0xe0>
2016950: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016954: 40 00 12 bb call 201b440 <_Watchdog_Remove>
2016958: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
201695c: 82 10 20 03 mov 3, %g1
2016960: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016964: c2 04 e3 f4 ld [ %l3 + 0x3f4 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016968: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201696c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016970: c2 04 60 04 ld [ %l1 + 4 ], %g1
2016974: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2016978: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
201697c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
2016980: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
2016984: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016988: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201698c: 9f c0 40 00 call %g1
2016990: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016994: 40 00 0c b8 call 2019c74 <_Thread_Enable_dispatch>
2016998: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201699c: 81 c7 e0 08 ret
20169a0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20169a4: 81 c7 e0 08 ret
20169a8: 81 e8 00 00 restore