=============================================================================== 020084dc <_API_extensions_Add_post_switch>: */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 20084dc: c2 02 00 00 ld [ %o0 ], %g1 20084e0: 80 a0 60 00 cmp %g1, 0 20084e4: 22 80 00 04 be,a 20084f4 <_API_extensions_Add_post_switch+0x18> 20084e8: c2 02 20 04 ld [ %o0 + 4 ], %g1 20084ec: 81 c3 e0 08 retl 20084f0: 01 00 00 00 nop 20084f4: 80 a0 60 00 cmp %g1, 0 20084f8: 12 bf ff fd bne 20084ec <_API_extensions_Add_post_switch+0x10><== NEVER TAKEN 20084fc: 03 00 80 73 sethi %hi(0x201cc00), %g1 Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008500: 82 10 60 f4 or %g1, 0xf4, %g1 ! 201ccf4 <_API_extensions_Post_switch_list> 2008504: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_node->next = tail; 2008508: 86 00 60 04 add %g1, 4, %g3 tail->previous = the_node; 200850c: d0 20 60 08 st %o0, [ %g1 + 8 ] ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; the_node->next = tail; 2008510: c6 22 00 00 st %g3, [ %o0 ] tail->previous = the_node; old_last->next = the_node; 2008514: d0 20 80 00 st %o0, [ %g2 ] the_node->previous = old_last; 2008518: 81 c3 e0 08 retl 200851c: c4 22 20 04 st %g2, [ %o0 + 4 ] =============================================================================== 02008520 <_API_extensions_Run_postdriver>: } } #endif void _API_extensions_Run_postdriver( void ) { 2008520: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2008524: 39 00 80 73 sethi %hi(0x201cc00), %i4 2008528: fa 07 22 48 ld [ %i4 + 0x248 ], %i5 ! 201ce48 <_API_extensions_List> 200852c: b8 17 22 48 or %i4, 0x248, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2008530: b8 07 20 04 add %i4, 4, %i4 2008534: 80 a7 40 1c cmp %i5, %i4 2008538: 02 80 00 09 be 200855c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 200853c: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 2008540: c2 07 60 08 ld [ %i5 + 8 ], %g1 2008544: 9f c0 40 00 call %g1 2008548: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 200854c: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2008550: 80 a7 40 1c cmp %i5, %i4 2008554: 32 bf ff fc bne,a 2008544 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2008558: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 200855c: 81 c7 e0 08 ret 2008560: 81 e8 00 00 restore =============================================================================== 02011b84 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2011b84: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2011b88: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2011b8c: f4 26 20 44 st %i2, [ %i0 + 0x44 ] /* * Check if allocated_message_size is aligned to uintptr-size boundary. * If not, it will increase allocated_message_size to multiplicity of pointer * size. */ if (allocated_message_size & (sizeof(uintptr_t) - 1)) { 2011b90: 80 8e e0 03 btst 3, %i3 2011b94: 02 80 00 0b be 2011bc0 <_CORE_message_queue_Initialize+0x3c> 2011b98: f6 26 20 4c st %i3, [ %i0 + 0x4c ] allocated_message_size += sizeof(uintptr_t); 2011b9c: 96 06 e0 04 add %i3, 4, %o3 allocated_message_size &= ~(sizeof(uintptr_t) - 1); 2011ba0: 96 0a ff fc and %o3, -4, %o3 /* * Check for an overflow. It can occur while increasing allocated_message_size * to multiplicity of uintptr_t above. */ if (allocated_message_size < maximum_message_size) 2011ba4: 80 a6 c0 0b cmp %i3, %o3 2011ba8: 08 80 00 08 bleu 2011bc8 <_CORE_message_queue_Initialize+0x44> 2011bac: ba 02 e0 10 add %o3, 0x10, %i5 return false; 2011bb0: b0 10 20 00 clr %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2011bb4: b0 0e 20 01 and %i0, 1, %i0 2011bb8: 81 c7 e0 08 ret 2011bbc: 81 e8 00 00 restore /* * Check if allocated_message_size is aligned to uintptr-size boundary. * If not, it will increase allocated_message_size to multiplicity of pointer * size. */ if (allocated_message_size & (sizeof(uintptr_t) - 1)) { 2011bc0: 96 10 00 1b mov %i3, %o3 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 2011bc4: ba 02 e0 10 add %o3, 0x10, %i5 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 2011bc8: 90 10 20 00 clr %o0 2011bcc: 92 10 00 1a mov %i2, %o1 2011bd0: 94 10 20 00 clr %o2 2011bd4: 40 00 41 5f call 2022150 <__muldi3> 2011bd8: 96 10 00 1d mov %i5, %o3 if ( x > SIZE_MAX ) 2011bdc: 80 a2 20 00 cmp %o0, 0 2011be0: 34 bf ff f5 bg,a 2011bb4 <_CORE_message_queue_Initialize+0x30> 2011be4: b0 10 20 00 clr %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2011be8: 40 00 0c c0 call 2014ee8 <_Workspace_Allocate> 2011bec: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2011bf0: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2011bf4: 80 a2 20 00 cmp %o0, 0 2011bf8: 02 bf ff ee be 2011bb0 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN 2011bfc: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2011c00: 90 06 20 60 add %i0, 0x60, %o0 2011c04: 94 10 00 1a mov %i2, %o2 2011c08: 7f ff ff c6 call 2011b20 <_Chain_Initialize> 2011c0c: 96 10 00 1d mov %i5, %o3 */ RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority( CORE_message_queue_Attributes *the_attribute ) { return 2011c10: c4 06 40 00 ld [ %i1 ], %g2 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2011c14: 82 06 20 50 add %i0, 0x50, %g1 2011c18: 84 18 a0 01 xor %g2, 1, %g2 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2011c1c: 80 a0 00 02 cmp %g0, %g2 2011c20: 84 06 20 54 add %i0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2011c24: c2 26 20 58 st %g1, [ %i0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2011c28: c4 26 20 50 st %g2, [ %i0 + 0x50 ] 2011c2c: 90 10 00 18 mov %i0, %o0 head->previous = NULL; 2011c30: c0 26 20 54 clr [ %i0 + 0x54 ] 2011c34: 92 60 3f ff subx %g0, -1, %o1 2011c38: 94 10 20 80 mov 0x80, %o2 2011c3c: 96 10 20 06 mov 6, %o3 2011c40: 40 00 0a 56 call 2014598 <_Thread_queue_Initialize> 2011c44: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2011c48: b0 0e 20 01 and %i0, 1, %i0 2011c4c: 81 c7 e0 08 ret 2011c50: 81 e8 00 00 restore =============================================================================== 02008880 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 2008880: 9d e3 bf a0 save %sp, -96, %sp * This routine returns true if thread dispatch indicates * that we are in a critical section. */ RTEMS_INLINE_ROUTINE bool _Thread_Dispatch_in_critical_section(void) { if ( _Thread_Dispatch_disable_level == 0 ) 2008884: 3b 00 80 73 sethi %hi(0x201cc00), %i5 2008888: c2 07 60 80 ld [ %i5 + 0x80 ], %g1 ! 201cc80 <_Thread_Dispatch_disable_level> 200888c: 80 a0 60 00 cmp %g1, 0 2008890: 02 80 00 1f be 200890c <_CORE_mutex_Seize+0x8c> 2008894: f8 27 a0 54 st %i4, [ %fp + 0x54 ] _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2008898: 80 a6 a0 00 cmp %i2, 0 200889c: 02 80 00 2c be 200894c <_CORE_mutex_Seize+0xcc> 20088a0: 90 10 00 18 mov %i0, %o0 20088a4: 03 00 80 73 sethi %hi(0x201cc00), %g1 20088a8: c2 00 62 8c ld [ %g1 + 0x28c ], %g1 ! 201ce8c <_System_state_Current> 20088ac: 80 a0 60 01 cmp %g1, 1 20088b0: 38 80 00 2e bgu,a 2008968 <_CORE_mutex_Seize+0xe8> 20088b4: 90 10 20 00 clr %o0 20088b8: 40 00 12 d0 call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock> 20088bc: 92 07 a0 54 add %fp, 0x54, %o1 20088c0: 80 a2 20 00 cmp %o0, 0 20088c4: 02 80 00 27 be 2008960 <_CORE_mutex_Seize+0xe0> <== ALWAYS TAKEN 20088c8: 01 00 00 00 nop * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 20088cc: c4 07 60 80 ld [ %i5 + 0x80 ], %g2 20088d0: 03 00 80 73 sethi %hi(0x201cc00), %g1 20088d4: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10> RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 20088d8: 86 10 20 01 mov 1, %g3 20088dc: c6 26 20 30 st %g3, [ %i0 + 0x30 ] 20088e0: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 20088e4: f2 20 60 20 st %i1, [ %g1 + 0x20 ] ++level; 20088e8: 82 00 a0 01 add %g2, 1, %g1 _Thread_Dispatch_disable_level = level; 20088ec: c2 27 60 80 st %g1, [ %i5 + 0x80 ] 20088f0: 7f ff e7 4b call 200261c 20088f4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 20088f8: 90 10 00 18 mov %i0, %o0 20088fc: 7f ff ff ba call 20087e4 <_CORE_mutex_Seize_interrupt_blocking> 2008900: 92 10 00 1b mov %i3, %o1 2008904: 81 c7 e0 08 ret 2008908: 81 e8 00 00 restore 200890c: 90 10 00 18 mov %i0, %o0 2008910: 40 00 12 ba call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock> 2008914: 92 07 a0 54 add %fp, 0x54, %o1 2008918: 80 a2 20 00 cmp %o0, 0 200891c: 02 bf ff fa be 2008904 <_CORE_mutex_Seize+0x84> 2008920: 80 a6 a0 00 cmp %i2, 0 2008924: 12 bf ff ea bne 20088cc <_CORE_mutex_Seize+0x4c> 2008928: 01 00 00 00 nop 200892c: 7f ff e7 3c call 200261c 2008930: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2008934: 03 00 80 73 sethi %hi(0x201cc00), %g1 2008938: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10> 200893c: 84 10 20 01 mov 1, %g2 2008940: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2008944: 81 c7 e0 08 ret 2008948: 81 e8 00 00 restore 200894c: 40 00 12 ab call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock> 2008950: 92 07 a0 54 add %fp, 0x54, %o1 2008954: 80 a2 20 00 cmp %o0, 0 2008958: 12 bf ff f5 bne 200892c <_CORE_mutex_Seize+0xac> <== NEVER TAKEN 200895c: 01 00 00 00 nop 2008960: 81 c7 e0 08 ret 2008964: 81 e8 00 00 restore 2008968: 92 10 20 00 clr %o1 200896c: 40 00 01 c1 call 2009070 <_Internal_error_Occurred> 2008970: 94 10 20 12 mov 0x12, %o2 =============================================================================== 02008af0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2008af0: 9d e3 bf a0 save %sp, -96, %sp 2008af4: ba 10 00 18 mov %i0, %i5 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2008af8: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2008afc: 40 00 07 d8 call 200aa5c <_Thread_queue_Dequeue> 2008b00: 90 10 00 1d mov %i5, %o0 2008b04: 80 a2 20 00 cmp %o0, 0 2008b08: 02 80 00 04 be 2008b18 <_CORE_semaphore_Surrender+0x28> 2008b0c: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 2008b10: 81 c7 e0 08 ret 2008b14: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2008b18: 7f ff e6 bd call 200260c 2008b1c: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2008b20: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 2008b24: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 2008b28: 80 a0 40 02 cmp %g1, %g2 2008b2c: 1a 80 00 05 bcc 2008b40 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 2008b30: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2008b34: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2008b38: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2008b3c: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2008b40: 7f ff e6 b7 call 200261c 2008b44: 01 00 00 00 nop } return status; } 2008b48: 81 c7 e0 08 ret 2008b4c: 81 e8 00 00 restore =============================================================================== 020086b0 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 20086b0: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 20086b4: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 20086b8: ba 06 20 04 add %i0, 4, %i5 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 20086bc: 80 a6 a0 00 cmp %i2, 0 20086c0: 02 80 00 13 be 200870c <_Chain_Initialize+0x5c> <== NEVER TAKEN 20086c4: 92 06 bf ff add %i2, -1, %o1 20086c8: 86 10 00 09 mov %o1, %g3 20086cc: 82 10 00 19 mov %i1, %g1 20086d0: 84 10 00 18 mov %i0, %g2 current->next = next; 20086d4: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 20086d8: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 20086dc: 86 00 ff ff add %g3, -1, %g3 20086e0: 84 10 00 01 mov %g1, %g2 20086e4: 80 a0 ff ff cmp %g3, -1 20086e8: 12 bf ff fb bne 20086d4 <_Chain_Initialize+0x24> 20086ec: 82 00 40 1b add %g1, %i3, %g1 #include #include #include #include void _Chain_Initialize( 20086f0: 40 00 3e d1 call 2018234 <.umul> 20086f4: 90 10 00 1b mov %i3, %o0 20086f8: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 20086fc: fa 22 00 00 st %i5, [ %o0 ] tail->previous = current; 2008700: d0 26 20 08 st %o0, [ %i0 + 8 ] 2008704: 81 c7 e0 08 ret 2008708: 81 e8 00 00 restore ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200870c: 10 bf ff fc b 20086fc <_Chain_Initialize+0x4c> <== NOT EXECUTED 2008710: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED =============================================================================== 020076cc <_Event_Surrender>: rtems_event_set event_in, Event_Control *event, Thread_blocking_operation_States *sync_state, States_Control wait_state ) { 20076cc: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set seized_events; rtems_option option_set; option_set = the_thread->Wait.option; _ISR_Disable( level ); 20076d0: 7f ff eb cf call 200260c 20076d4: fa 06 20 30 ld [ %i0 + 0x30 ], %i5 RTEMS_INLINE_ROUTINE void _Event_sets_Post( rtems_event_set the_new_events, rtems_event_set *the_event_set ) { *the_event_set |= the_new_events; 20076d8: c2 06 80 00 ld [ %i2 ], %g1 20076dc: b2 16 40 01 or %i1, %g1, %i1 20076e0: f2 26 80 00 st %i1, [ %i2 ] _Event_sets_Post( event_in, &event->pending_events ); pending_events = event->pending_events; event_condition = the_thread->Wait.count; 20076e4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20076e8: 84 8e 40 01 andcc %i1, %g1, %g2 20076ec: 02 80 00 35 be 20077c0 <_Event_Surrender+0xf4> 20076f0: 07 00 80 73 sethi %hi(0x201cc00), %g3 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20076f4: 86 10 e2 90 or %g3, 0x290, %g3 ! 201ce90 <_Per_CPU_Information> 20076f8: c8 00 e0 08 ld [ %g3 + 8 ], %g4 20076fc: 80 a1 20 00 cmp %g4, 0 2007700: 32 80 00 1c bne,a 2007770 <_Event_Surrender+0xa4> 2007704: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 RTEMS_INLINE_ROUTINE bool _States_Are_set ( States_Control the_states, States_Control mask ) { return ( (the_states & mask) != STATES_READY); 2007708: c6 06 20 10 ld [ %i0 + 0x10 ], %g3 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Are_set( the_thread->current_state, wait_state ) ) { 200770c: 80 8f 00 03 btst %i4, %g3 2007710: 02 80 00 2c be 20077c0 <_Event_Surrender+0xf4> 2007714: 80 a0 40 02 cmp %g1, %g2 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2007718: 02 80 00 04 be 2007728 <_Event_Surrender+0x5c> 200771c: 80 8f 60 02 btst 2, %i5 2007720: 02 80 00 28 be 20077c0 <_Event_Surrender+0xf4> <== NEVER TAKEN 2007724: 01 00 00 00 nop event->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2007728: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 200772c: b2 2e 40 02 andn %i1, %g2, %i1 /* * Otherwise, this is a normal send to another thread */ if ( _States_Are_set( the_thread->current_state, wait_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { event->pending_events = _Event_sets_Clear( 2007730: f2 26 80 00 st %i1, [ %i2 ] pending_events, seized_events ); the_thread->Wait.count = 0; 2007734: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2007738: c4 20 40 00 st %g2, [ %g1 ] _ISR_Flash( level ); 200773c: 7f ff eb b8 call 200261c 2007740: 01 00 00 00 nop 2007744: 7f ff eb b2 call 200260c 2007748: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200774c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2007750: 80 a0 60 02 cmp %g1, 2 2007754: 02 80 00 1d be 20077c8 <_Event_Surrender+0xfc> 2007758: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200775c: 7f ff eb b0 call 200261c 2007760: 33 04 01 ff sethi %hi(0x1007fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007764: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1007fff8 2007768: 40 00 0a d8 call 200a2c8 <_Thread_Clear_state> 200776c: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2007770: 80 a6 00 03 cmp %i0, %g3 2007774: 32 bf ff e6 bne,a 200770c <_Event_Surrender+0x40> 2007778: c6 06 20 10 ld [ %i0 + 0x10 ], %g3 _Thread_Is_executing( the_thread ) && ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200777c: c6 06 c0 00 ld [ %i3 ], %g3 2007780: 86 00 ff ff add %g3, -1, %g3 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2007784: 80 a0 e0 01 cmp %g3, 1 2007788: 38 bf ff e1 bgu,a 200770c <_Event_Surrender+0x40> 200778c: c6 06 20 10 ld [ %i0 + 0x10 ], %g3 ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2007790: 80 a0 40 02 cmp %g1, %g2 2007794: 02 80 00 04 be 20077a4 <_Event_Surrender+0xd8> 2007798: 80 8f 60 02 btst 2, %i5 200779c: 02 80 00 09 be 20077c0 <_Event_Surrender+0xf4> <== NEVER TAKEN 20077a0: 01 00 00 00 nop event->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20077a4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 20077a8: b2 2e 40 02 andn %i1, %g2, %i1 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { event->pending_events = _Event_sets_Clear( 20077ac: f2 26 80 00 st %i1, [ %i2 ] pending_events, seized_events ); the_thread->Wait.count = 0; 20077b0: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20077b4: c4 20 40 00 st %g2, [ %g1 ] *sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20077b8: 82 10 20 03 mov 3, %g1 20077bc: c2 26 c0 00 st %g1, [ %i3 ] _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20077c0: 7f ff eb 97 call 200261c 20077c4: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20077c8: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20077cc: 7f ff eb 94 call 200261c 20077d0: 33 04 01 ff sethi %hi(0x1007fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 20077d4: 40 00 0f 66 call 200b56c <_Watchdog_Remove> 20077d8: 90 06 20 48 add %i0, 0x48, %o0 20077dc: b2 16 63 f8 or %i1, 0x3f8, %i1 20077e0: 40 00 0a ba call 200a2c8 <_Thread_Clear_state> 20077e4: 81 e8 00 00 restore =============================================================================== 020077e8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *arg ) { 20077e8: 9d e3 bf 98 save %sp, -104, %sp ISR_Level level; Thread_blocking_operation_States *sync_state; sync_state = arg; the_thread = _Thread_Get( id, &location ); 20077ec: 90 10 00 18 mov %i0, %o0 20077f0: 40 00 0b c7 call 200a70c <_Thread_Get> 20077f4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20077f8: c2 07 bf fc ld [ %fp + -4 ], %g1 20077fc: 80 a0 60 00 cmp %g1, 0 2007800: 12 80 00 15 bne 2007854 <_Event_Timeout+0x6c> <== NEVER TAKEN 2007804: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2007808: 7f ff eb 81 call 200260c 200780c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007810: 03 00 80 73 sethi %hi(0x201cc00), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2007814: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10> 2007818: 80 a7 40 01 cmp %i5, %g1 200781c: 02 80 00 10 be 200785c <_Event_Timeout+0x74> 2007820: c0 27 60 24 clr [ %i5 + 0x24 ] if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) *sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2007824: 82 10 20 06 mov 6, %g1 2007828: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 200782c: 7f ff eb 7c call 200261c 2007830: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007834: 90 10 00 1d mov %i5, %o0 2007838: 13 04 01 ff sethi %hi(0x1007fc00), %o1 200783c: 40 00 0a a3 call 200a2c8 <_Thread_Clear_state> 2007840: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2007844: 03 00 80 73 sethi %hi(0x201cc00), %g1 2007848: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level> --level; 200784c: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 2007850: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 2007854: 81 c7 e0 08 ret 2007858: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 200785c: c2 06 40 00 ld [ %i1 ], %g1 2007860: 80 a0 60 01 cmp %g1, 1 2007864: 12 bf ff f1 bne 2007828 <_Event_Timeout+0x40> 2007868: 82 10 20 06 mov 6, %g1 *sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 200786c: 82 10 20 02 mov 2, %g1 2007870: 10 bf ff ed b 2007824 <_Event_Timeout+0x3c> 2007874: c2 26 40 00 st %g1, [ %i1 ] =============================================================================== 0200d538 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200d538: 9d e3 bf 98 save %sp, -104, %sp Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200d53c: a2 06 60 04 add %i1, 4, %l1 Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200d540: a0 10 00 18 mov %i0, %l0 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200d544: 80 a6 40 11 cmp %i1, %l1 200d548: 18 80 00 85 bgu 200d75c <_Heap_Allocate_aligned_with_boundary+0x224> 200d54c: ea 06 20 10 ld [ %i0 + 0x10 ], %l5 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200d550: 80 a6 e0 00 cmp %i3, 0 200d554: 12 80 00 7c bne 200d744 <_Heap_Allocate_aligned_with_boundary+0x20c> 200d558: 80 a6 40 1b cmp %i1, %i3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200d55c: fa 04 20 08 ld [ %l0 + 8 ], %i5 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200d560: 80 a4 00 1d cmp %l0, %i5 200d564: 02 80 00 18 be 200d5c4 <_Heap_Allocate_aligned_with_boundary+0x8c> 200d568: b8 10 20 00 clr %i4 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200d56c: ac 10 20 04 mov 4, %l6 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200d570: ae 05 60 07 add %l5, 7, %l7 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200d574: ac 25 80 19 sub %l6, %i1, %l6 200d578: 10 80 00 0b b 200d5a4 <_Heap_Allocate_aligned_with_boundary+0x6c> 200d57c: ec 27 bf fc st %l6, [ %fp + -4 ] * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { if ( alignment == 0 ) { 200d580: 12 80 00 18 bne 200d5e0 <_Heap_Allocate_aligned_with_boundary+0xa8> 200d584: b0 07 60 08 add %i5, 8, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200d588: 80 a6 20 00 cmp %i0, 0 200d58c: 12 80 00 4d bne 200d6c0 <_Heap_Allocate_aligned_with_boundary+0x188><== ALWAYS TAKEN 200d590: b8 07 20 01 inc %i4 break; } block = block->next; 200d594: fa 07 60 08 ld [ %i5 + 8 ], %i5 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200d598: 80 a4 00 1d cmp %l0, %i5 200d59c: 22 80 00 0b be,a 200d5c8 <_Heap_Allocate_aligned_with_boundary+0x90> 200d5a0: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200d5a4: c2 07 60 04 ld [ %i5 + 4 ], %g1 200d5a8: 80 a4 40 01 cmp %l1, %g1 200d5ac: 0a bf ff f5 bcs 200d580 <_Heap_Allocate_aligned_with_boundary+0x48> 200d5b0: 80 a6 a0 00 cmp %i2, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200d5b4: fa 07 60 08 ld [ %i5 + 8 ], %i5 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200d5b8: 80 a4 00 1d cmp %l0, %i5 200d5bc: 12 bf ff fa bne 200d5a4 <_Heap_Allocate_aligned_with_boundary+0x6c> 200d5c0: b8 07 20 01 inc %i4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200d5c4: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200d5c8: 80 a0 40 1c cmp %g1, %i4 200d5cc: 1a 80 00 03 bcc 200d5d8 <_Heap_Allocate_aligned_with_boundary+0xa0> 200d5d0: b0 10 20 00 clr %i0 stats->max_search = search_count; 200d5d4: f8 24 20 44 st %i4, [ %l0 + 0x44 ] } return (void *) alloc_begin; 200d5d8: 81 c7 e0 08 ret 200d5dc: 81 e8 00 00 restore uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; 200d5e0: e8 04 20 14 ld [ %l0 + 0x14 ], %l4 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d5e4: a4 08 7f fe and %g1, -2, %l2 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200d5e8: c2 07 bf fc ld [ %fp + -4 ], %g1 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200d5ec: 84 25 c0 14 sub %l7, %l4, %g2 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200d5f0: a4 07 40 12 add %i5, %l2, %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d5f4: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200d5f8: b0 00 40 12 add %g1, %l2, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200d5fc: a4 00 80 12 add %g2, %l2, %l2 200d600: 40 00 2b f3 call 20185cc <.urem> 200d604: 90 10 00 18 mov %i0, %o0 200d608: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200d60c: 80 a4 80 18 cmp %l2, %i0 200d610: 1a 80 00 06 bcc 200d628 <_Heap_Allocate_aligned_with_boundary+0xf0> 200d614: a6 07 60 08 add %i5, 8, %l3 200d618: 90 10 00 12 mov %l2, %o0 200d61c: 40 00 2b ec call 20185cc <.urem> 200d620: 92 10 00 1a mov %i2, %o1 200d624: b0 24 80 08 sub %l2, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200d628: 80 a6 e0 00 cmp %i3, 0 200d62c: 02 80 00 37 be 200d708 <_Heap_Allocate_aligned_with_boundary+0x1d0> 200d630: 80 a4 c0 18 cmp %l3, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200d634: 86 06 00 19 add %i0, %i1, %g3 200d638: 92 10 00 1b mov %i3, %o1 200d63c: 90 10 00 03 mov %g3, %o0 200d640: 40 00 2b e3 call 20185cc <.urem> 200d644: c6 27 bf f8 st %g3, [ %fp + -8 ] 200d648: c6 07 bf f8 ld [ %fp + -8 ], %g3 200d64c: 90 20 c0 08 sub %g3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200d650: 80 a6 00 08 cmp %i0, %o0 200d654: 1a 80 00 2c bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200d658: a4 04 c0 19 add %l3, %i1, %l2 200d65c: 80 a2 00 03 cmp %o0, %g3 200d660: 2a 80 00 12 bcs,a 200d6a8 <_Heap_Allocate_aligned_with_boundary+0x170> 200d664: 80 a4 80 08 cmp %l2, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200d668: 10 80 00 28 b 200d708 <_Heap_Allocate_aligned_with_boundary+0x1d0> 200d66c: 80 a4 c0 18 cmp %l3, %i0 200d670: 92 10 00 1a mov %i2, %o1 200d674: 40 00 2b d6 call 20185cc <.urem> 200d678: 90 10 00 18 mov %i0, %o0 200d67c: 92 10 00 1b mov %i3, %o1 200d680: b0 26 00 08 sub %i0, %o0, %i0 if ( boundary_line < boundary_floor ) { return 0; } alloc_begin = boundary_line - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200d684: ac 06 00 19 add %i0, %i1, %l6 200d688: 40 00 2b d1 call 20185cc <.urem> 200d68c: 90 10 00 16 mov %l6, %o0 200d690: 90 25 80 08 sub %l6, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200d694: 80 a2 00 16 cmp %o0, %l6 200d698: 1a 80 00 1b bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200d69c: 80 a6 00 08 cmp %i0, %o0 200d6a0: 1a 80 00 19 bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200d6a4: 80 a4 80 08 cmp %l2, %o0 if ( boundary_line < boundary_floor ) { 200d6a8: 08 bf ff f2 bleu 200d670 <_Heap_Allocate_aligned_with_boundary+0x138> 200d6ac: b0 22 00 19 sub %o0, %i1, %i0 return 0; 200d6b0: b0 10 20 00 clr %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200d6b4: 80 a6 20 00 cmp %i0, 0 200d6b8: 02 bf ff b7 be 200d594 <_Heap_Allocate_aligned_with_boundary+0x5c><== ALWAYS TAKEN 200d6bc: b8 07 20 01 inc %i4 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200d6c0: c6 04 20 48 ld [ %l0 + 0x48 ], %g3 stats->searches += search_count; 200d6c4: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200d6c8: 86 00 e0 01 inc %g3 stats->searches += search_count; 200d6cc: 84 00 80 1c add %g2, %i4, %g2 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200d6d0: c6 24 20 48 st %g3, [ %l0 + 0x48 ] stats->searches += search_count; 200d6d4: c4 24 20 4c st %g2, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200d6d8: 90 10 00 10 mov %l0, %o0 200d6dc: 92 10 00 1d mov %i5, %o1 200d6e0: 94 10 00 18 mov %i0, %o2 200d6e4: 7f ff ee 17 call 2008f40 <_Heap_Block_allocate> 200d6e8: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200d6ec: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200d6f0: 80 a0 40 1c cmp %g1, %i4 200d6f4: 2a bf ff b9 bcs,a 200d5d8 <_Heap_Allocate_aligned_with_boundary+0xa0> 200d6f8: f8 24 20 44 st %i4, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 200d6fc: 81 c7 e0 08 ret 200d700: 81 e8 00 00 restore boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200d704: 80 a4 c0 18 cmp %l3, %i0 200d708: 18 bf ff ea bgu 200d6b0 <_Heap_Allocate_aligned_with_boundary+0x178> 200d70c: 82 10 3f f8 mov -8, %g1 200d710: 90 10 00 18 mov %i0, %o0 200d714: a4 20 40 1d sub %g1, %i5, %l2 200d718: 92 10 00 15 mov %l5, %o1 200d71c: 40 00 2b ac call 20185cc <.urem> 200d720: a4 04 80 18 add %l2, %i0, %l2 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200d724: 90 a4 80 08 subcc %l2, %o0, %o0 200d728: 02 bf ff 99 be 200d58c <_Heap_Allocate_aligned_with_boundary+0x54> 200d72c: 80 a6 20 00 cmp %i0, 0 200d730: 80 a2 00 14 cmp %o0, %l4 200d734: 1a bf ff 96 bcc 200d58c <_Heap_Allocate_aligned_with_boundary+0x54> 200d738: 80 a6 20 00 cmp %i0, 0 uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { return 0; 200d73c: 10 bf ff de b 200d6b4 <_Heap_Allocate_aligned_with_boundary+0x17c> 200d740: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200d744: 18 80 00 06 bgu 200d75c <_Heap_Allocate_aligned_with_boundary+0x224> 200d748: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200d74c: 22 bf ff 84 be,a 200d55c <_Heap_Allocate_aligned_with_boundary+0x24> 200d750: b4 10 00 15 mov %l5, %i2 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200d754: 10 bf ff 83 b 200d560 <_Heap_Allocate_aligned_with_boundary+0x28> 200d758: fa 04 20 08 ld [ %l0 + 8 ], %i5 uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { /* Integer overflow occured */ return NULL; 200d75c: 81 c7 e0 08 ret 200d760: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200d770 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t unused __attribute__((unused)) ) { 200d770: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200d774: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200d778: c0 27 bf fc clr [ %fp + -4 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t unused __attribute__((unused)) ) { 200d77c: b8 10 00 18 mov %i0, %i4 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200d780: e2 06 20 20 ld [ %i0 + 0x20 ], %l1 Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200d784: a0 06 40 1a add %i1, %i2, %l0 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200d788: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 200d78c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200d790: 80 a6 40 10 cmp %i1, %l0 200d794: 08 80 00 04 bleu 200d7a4 <_Heap_Extend+0x34> 200d798: f0 06 20 30 ld [ %i0 + 0x30 ], %i0 return 0; 200d79c: 81 c7 e0 08 ret 200d7a0: 91 e8 20 00 restore %g0, 0, %o0 } extend_area_ok = _Heap_Get_first_and_last_block( 200d7a4: 90 10 00 19 mov %i1, %o0 200d7a8: 92 10 00 1a mov %i2, %o1 200d7ac: 94 10 00 12 mov %l2, %o2 200d7b0: 98 07 bf f8 add %fp, -8, %o4 200d7b4: 7f ff ed 78 call 2008d94 <_Heap_Get_first_and_last_block> 200d7b8: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200d7bc: 80 8a 20 ff btst 0xff, %o0 200d7c0: 02 bf ff f7 be 200d79c <_Heap_Extend+0x2c> 200d7c4: ba 10 00 11 mov %l1, %i5 200d7c8: aa 10 20 00 clr %l5 200d7cc: ac 10 20 00 clr %l6 200d7d0: a6 10 20 00 clr %l3 200d7d4: 10 80 00 10 b 200d814 <_Heap_Extend+0xa4> 200d7d8: a8 10 20 00 clr %l4 return 0; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200d7dc: 2a 80 00 02 bcs,a 200d7e4 <_Heap_Extend+0x74> 200d7e0: ac 10 00 1d mov %i5, %l6 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200d7e4: 80 a6 c0 19 cmp %i3, %i1 200d7e8: 22 80 00 1e be,a 200d860 <_Heap_Extend+0xf0> 200d7ec: e0 27 40 00 st %l0, [ %i5 ] start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200d7f0: 80 a6 40 1b cmp %i1, %i3 200d7f4: 38 80 00 02 bgu,a 200d7fc <_Heap_Extend+0x8c> 200d7f8: aa 10 00 08 mov %o0, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d7fc: fa 02 20 04 ld [ %o0 + 4 ], %i5 200d800: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d804: ba 02 00 1d add %o0, %i5, %i5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200d808: 80 a4 40 1d cmp %l1, %i5 200d80c: 22 80 00 1c be,a 200d87c <_Heap_Extend+0x10c> 200d810: c2 07 20 18 ld [ %i4 + 0x18 ], %g1 return 0; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200d814: 80 a7 40 11 cmp %i5, %l1 200d818: 22 80 00 03 be,a 200d824 <_Heap_Extend+0xb4> 200d81c: f4 07 20 18 ld [ %i4 + 0x18 ], %i2 200d820: b4 10 00 1d mov %i5, %i2 uintptr_t const sub_area_end = start_block->prev_size; 200d824: f6 07 40 00 ld [ %i5 ], %i3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d828: 92 10 00 12 mov %l2, %o1 200d82c: 40 00 2c 21 call 20188b0 <.urem> 200d830: 90 10 00 1b mov %i3, %o0 200d834: 82 06 ff f8 add %i3, -8, %g1 Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200d838: 80 a6 80 10 cmp %i2, %l0 200d83c: 0a 80 00 64 bcs 200d9cc <_Heap_Extend+0x25c> 200d840: 90 20 40 08 sub %g1, %o0, %o0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return 0; } if ( extend_area_end == sub_area_begin ) { 200d844: 80 a6 80 10 cmp %i2, %l0 200d848: 12 bf ff e5 bne 200d7dc <_Heap_Extend+0x6c> 200d84c: 80 a4 00 1b cmp %l0, %i3 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200d850: 80 a6 c0 19 cmp %i3, %i1 200d854: 12 bf ff e7 bne 200d7f0 <_Heap_Extend+0x80> <== ALWAYS TAKEN 200d858: a8 10 00 1d mov %i5, %l4 start_block->prev_size = extend_area_end; 200d85c: e0 27 40 00 st %l0, [ %i5 ] <== NOT EXECUTED - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d860: fa 02 20 04 ld [ %o0 + 4 ], %i5 200d864: ba 0f 7f fe and %i5, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d868: ba 02 00 1d add %o0, %i5, %i5 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200d86c: 80 a4 40 1d cmp %l1, %i5 200d870: 12 bf ff e9 bne 200d814 <_Heap_Extend+0xa4> <== NEVER TAKEN 200d874: a6 10 00 08 mov %o0, %l3 if ( extend_area_begin < heap->area_begin ) { 200d878: c2 07 20 18 ld [ %i4 + 0x18 ], %g1 200d87c: 80 a6 40 01 cmp %i1, %g1 200d880: 3a 80 00 4e bcc,a 200d9b8 <_Heap_Extend+0x248> 200d884: c2 07 20 1c ld [ %i4 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200d888: f2 27 20 18 st %i1, [ %i4 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200d88c: c2 07 bf f8 ld [ %fp + -8 ], %g1 200d890: c4 07 bf fc ld [ %fp + -4 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200d894: c8 07 20 20 ld [ %i4 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200d898: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200d89c: e0 20 40 00 st %l0, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200d8a0: ba 10 e0 01 or %g3, 1, %i5 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200d8a4: fa 20 60 04 st %i5, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200d8a8: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200d8ac: 80 a1 00 01 cmp %g4, %g1 200d8b0: 08 80 00 3c bleu 200d9a0 <_Heap_Extend+0x230> 200d8b4: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200d8b8: c2 27 20 20 st %g1, [ %i4 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200d8bc: 80 a5 20 00 cmp %l4, 0 200d8c0: 02 80 00 47 be 200d9dc <_Heap_Extend+0x26c> 200d8c4: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200d8c8: fa 07 20 10 ld [ %i4 + 0x10 ], %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200d8cc: 92 10 00 1d mov %i5, %o1 200d8d0: 40 00 2b f8 call 20188b0 <.urem> 200d8d4: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200d8d8: 80 a2 20 00 cmp %o0, 0 200d8dc: 02 80 00 04 be 200d8ec <_Heap_Extend+0x17c> 200d8e0: c4 05 00 00 ld [ %l4 ], %g2 return value - remainder + alignment; 200d8e4: b2 06 40 1d add %i1, %i5, %i1 200d8e8: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200d8ec: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200d8f0: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200d8f4: 84 25 00 01 sub %l4, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200d8f8: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200d8fc: 90 10 00 1c mov %i4, %o0 200d900: 92 10 00 01 mov %g1, %o1 200d904: 7f ff ff 85 call 200d718 <_Heap_Free_block> 200d908: c4 26 7f fc st %g2, [ %i1 + -4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200d90c: 80 a4 e0 00 cmp %l3, 0 200d910: 02 80 00 3a be 200d9f8 <_Heap_Extend+0x288> 200d914: a0 04 3f f8 add %l0, -8, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d918: d2 07 20 10 ld [ %i4 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200d91c: a0 24 00 13 sub %l0, %l3, %l0 200d920: 40 00 2b e4 call 20188b0 <.urem> 200d924: 90 10 00 10 mov %l0, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200d928: c2 04 e0 04 ld [ %l3 + 4 ], %g1 200d92c: a0 24 00 08 sub %l0, %o0, %l0 200d930: 82 20 40 10 sub %g1, %l0, %g1 | HEAP_PREV_BLOCK_USED; 200d934: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200d938: 84 04 00 13 add %l0, %l3, %g2 200d93c: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d940: c2 04 e0 04 ld [ %l3 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200d944: 90 10 00 1c mov %i4, %o0 200d948: 82 08 60 01 and %g1, 1, %g1 200d94c: 92 10 00 13 mov %l3, %o1 block->size_and_flag = size | flag; 200d950: a0 14 00 01 or %l0, %g1, %l0 200d954: 7f ff ff 71 call 200d718 <_Heap_Free_block> 200d958: e0 24 e0 04 st %l0, [ %l3 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200d95c: 80 a4 e0 00 cmp %l3, 0 200d960: 02 80 00 33 be 200da2c <_Heap_Extend+0x2bc> 200d964: 80 a5 20 00 cmp %l4, 0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200d968: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200d96c: fa 07 20 20 ld [ %i4 + 0x20 ], %i5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d970: c8 00 60 04 ld [ %g1 + 4 ], %g4 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200d974: c4 07 20 2c ld [ %i4 + 0x2c ], %g2 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200d978: c6 07 20 30 ld [ %i4 + 0x30 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200d97c: ba 27 40 01 sub %i5, %g1, %i5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d980: 88 09 20 01 and %g4, 1, %g4 block->size_and_flag = size | flag; 200d984: 88 17 40 04 or %i5, %g4, %g4 200d988: c8 20 60 04 st %g4, [ %g1 + 4 ] 200d98c: b0 20 c0 18 sub %g3, %i0, %i0 /* Statistics */ stats->size += extended_size; 200d990: 82 00 80 18 add %g2, %i0, %g1 200d994: c2 27 20 2c st %g1, [ %i4 + 0x2c ] return extended_size; } 200d998: 81 c7 e0 08 ret 200d99c: 81 e8 00 00 restore extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200d9a0: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 200d9a4: 80 a0 40 02 cmp %g1, %g2 200d9a8: 2a bf ff c5 bcs,a 200d8bc <_Heap_Extend+0x14c> 200d9ac: c4 27 20 24 st %g2, [ %i4 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200d9b0: 10 bf ff c4 b 200d8c0 <_Heap_Extend+0x150> 200d9b4: 80 a5 20 00 cmp %l4, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200d9b8: 80 a4 00 01 cmp %l0, %g1 200d9bc: 38 bf ff b4 bgu,a 200d88c <_Heap_Extend+0x11c> 200d9c0: e0 27 20 1c st %l0, [ %i4 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200d9c4: 10 bf ff b3 b 200d890 <_Heap_Extend+0x120> 200d9c8: c2 07 bf f8 ld [ %fp + -8 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200d9cc: 80 a6 40 1b cmp %i1, %i3 200d9d0: 1a bf ff 9e bcc 200d848 <_Heap_Extend+0xd8> 200d9d4: 80 a6 80 10 cmp %i2, %l0 200d9d8: 30 bf ff 71 b,a 200d79c <_Heap_Extend+0x2c> heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200d9dc: 80 a5 a0 00 cmp %l6, 0 200d9e0: 02 bf ff cc be 200d910 <_Heap_Extend+0x1a0> 200d9e4: 80 a4 e0 00 cmp %l3, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200d9e8: ac 25 80 02 sub %l6, %g2, %l6 200d9ec: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200d9f0: 10 bf ff c8 b 200d910 <_Heap_Extend+0x1a0> 200d9f4: ec 20 a0 04 st %l6, [ %g2 + 4 ] ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200d9f8: 80 a5 60 00 cmp %l5, 0 200d9fc: 02 bf ff d8 be 200d95c <_Heap_Extend+0x1ec> 200da00: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200da04: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200da08: c2 07 bf fc ld [ %fp + -4 ], %g1 200da0c: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200da10: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200da14: 84 10 80 03 or %g2, %g3, %g2 200da18: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200da1c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200da20: 84 10 a0 01 or %g2, 1, %g2 200da24: 10 bf ff ce b 200d95c <_Heap_Extend+0x1ec> 200da28: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200da2c: 32 bf ff d0 bne,a 200d96c <_Heap_Extend+0x1fc> 200da30: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200da34: d2 07 bf f8 ld [ %fp + -8 ], %o1 200da38: 7f ff ff 38 call 200d718 <_Heap_Free_block> 200da3c: 90 10 00 1c mov %i4, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 200da40: 10 bf ff cb b 200d96c <_Heap_Extend+0x1fc> 200da44: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 =============================================================================== 0200d764 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200d764: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200d768: 80 a6 60 00 cmp %i1, 0 200d76c: 02 80 00 3c be 200d85c <_Heap_Free+0xf8> 200d770: 82 10 20 01 mov 1, %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d774: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200d778: 40 00 2b 95 call 20185cc <.urem> 200d77c: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200d780: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200d784: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200d788: 90 27 40 08 sub %i5, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d78c: 80 a2 00 02 cmp %o0, %g2 200d790: 0a 80 00 30 bcs 200d850 <_Heap_Free+0xec> 200d794: 82 10 20 00 clr %g1 200d798: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 200d79c: 80 a2 00 04 cmp %o0, %g4 200d7a0: 38 80 00 2d bgu,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN 200d7a4: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d7a8: f6 02 20 04 ld [ %o0 + 4 ], %i3 200d7ac: ba 0e ff fe and %i3, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d7b0: 86 02 00 1d add %o0, %i5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d7b4: 80 a0 80 03 cmp %g2, %g3 200d7b8: 38 80 00 27 bgu,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN 200d7bc: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED 200d7c0: 80 a1 00 03 cmp %g4, %g3 200d7c4: 2a 80 00 24 bcs,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN 200d7c8: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d7cc: f8 00 e0 04 ld [ %g3 + 4 ], %i4 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200d7d0: 80 8f 20 01 btst 1, %i4 200d7d4: 02 80 00 1f be 200d850 <_Heap_Free+0xec> <== NEVER TAKEN 200d7d8: 80 a1 00 03 cmp %g4, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200d7dc: 02 80 00 23 be 200d868 <_Heap_Free+0x104> 200d7e0: b8 0f 3f fe and %i4, -2, %i4 200d7e4: 82 00 c0 1c add %g3, %i4, %g1 200d7e8: c2 00 60 04 ld [ %g1 + 4 ], %g1 200d7ec: 80 88 60 01 btst 1, %g1 200d7f0: 12 80 00 1f bne 200d86c <_Heap_Free+0x108> 200d7f4: 80 8e e0 01 btst 1, %i3 if ( !_Heap_Is_prev_used( block ) ) { 200d7f8: 02 80 00 20 be 200d878 <_Heap_Free+0x114> 200d7fc: b2 10 20 01 mov 1, %i1 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 200d800: c4 00 e0 08 ld [ %g3 + 8 ], %g2 Heap_Block *prev = old_block->prev; 200d804: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 new_block->next = next; 200d808: c4 22 20 08 st %g2, [ %o0 + 8 ] new_block->prev = prev; 200d80c: c2 22 20 0c st %g1, [ %o0 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200d810: b8 07 00 1d add %i4, %i5, %i4 next->prev = new_block; 200d814: d0 20 a0 0c st %o0, [ %g2 + 0xc ] prev->next = new_block; 200d818: d0 20 60 08 st %o0, [ %g1 + 8 ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d81c: 84 17 20 01 or %i4, 1, %g2 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200d820: f8 22 00 1c st %i4, [ %o0 + %i4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d824: c4 22 20 04 st %g2, [ %o0 + 4 ] } } /* Statistics */ --stats->used_blocks; ++stats->frees; 200d828: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200d82c: c4 06 20 40 ld [ %i0 + 0x40 ], %g2 ++stats->frees; stats->free_size += block_size; 200d830: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 } } /* Statistics */ --stats->used_blocks; ++stats->frees; 200d834: 82 00 60 01 inc %g1 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200d838: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; stats->free_size += block_size; 200d83c: ba 00 c0 1d add %g3, %i5, %i5 } } /* Statistics */ --stats->used_blocks; ++stats->frees; 200d840: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200d844: c4 26 20 40 st %g2, [ %i0 + 0x40 ] ++stats->frees; stats->free_size += block_size; 200d848: fa 26 20 30 st %i5, [ %i0 + 0x30 ] return( true ); 200d84c: 82 10 20 01 mov 1, %g1 200d850: b0 08 60 ff and %g1, 0xff, %i0 200d854: 81 c7 e0 08 ret 200d858: 81 e8 00 00 restore 200d85c: b0 08 60 ff and %g1, 0xff, %i0 200d860: 81 c7 e0 08 ret 200d864: 81 e8 00 00 restore next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200d868: 80 8e e0 01 btst 1, %i3 200d86c: 32 80 00 1e bne,a 200d8e4 <_Heap_Free+0x180> 200d870: c4 06 20 08 ld [ %i0 + 8 ], %g2 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 200d874: b2 10 20 00 clr %i1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { uintptr_t const prev_size = block->prev_size; 200d878: f4 02 00 00 ld [ %o0 ], %i2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d87c: b6 22 00 1a sub %o0, %i2, %i3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200d880: 80 a0 80 1b cmp %g2, %i3 200d884: 18 bf ff f3 bgu 200d850 <_Heap_Free+0xec> <== NEVER TAKEN 200d888: 82 10 20 00 clr %g1 200d88c: 80 a1 00 1b cmp %g4, %i3 200d890: 2a bf ff f1 bcs,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN 200d894: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200d898: c4 06 e0 04 ld [ %i3 + 4 ], %g2 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200d89c: 80 88 a0 01 btst 1, %g2 200d8a0: 02 bf ff ec be 200d850 <_Heap_Free+0xec> <== NEVER TAKEN 200d8a4: 80 8e 60 ff btst 0xff, %i1 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200d8a8: 22 80 00 21 be,a 200d92c <_Heap_Free+0x1c8> 200d8ac: b4 07 40 1a add %i5, %i2, %i2 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 200d8b0: c2 00 e0 08 ld [ %g3 + 8 ], %g1 Heap_Block *prev = block->prev; 200d8b4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200d8b8: c6 06 20 38 ld [ %i0 + 0x38 ], %g3 prev->next = next; 200d8bc: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200d8c0: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200d8c4: 82 00 ff ff add %g3, -1, %g1 200d8c8: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200d8cc: b8 07 40 1c add %i5, %i4, %i4 200d8d0: b4 07 00 1a add %i4, %i2, %i2 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d8d4: 82 16 a0 01 or %i2, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200d8d8: f4 26 c0 1a st %i2, [ %i3 + %i2 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d8dc: 10 bf ff d3 b 200d828 <_Heap_Free+0xc4> 200d8e0: c2 26 e0 04 st %g1, [ %i3 + 4 ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200d8e4: 82 17 60 01 or %i5, 1, %g1 200d8e8: c2 22 20 04 st %g1, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d8ec: c8 00 e0 04 ld [ %g3 + 4 ], %g4 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200d8f0: f0 22 20 0c st %i0, [ %o0 + 0xc ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200d8f4: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200d8f8: c4 22 20 08 st %g2, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200d8fc: d0 20 a0 0c st %o0, [ %g2 + 0xc ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d900: 84 09 3f fe and %g4, -2, %g2 next_block->prev_size = block_size; 200d904: fa 22 00 1d st %i5, [ %o0 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d908: c4 20 e0 04 st %g2, [ %g3 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200d90c: c4 06 20 3c ld [ %i0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200d910: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200d914: d0 26 20 08 st %o0, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200d918: 80 a0 40 02 cmp %g1, %g2 200d91c: 08 bf ff c3 bleu 200d828 <_Heap_Free+0xc4> 200d920: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200d924: 10 bf ff c1 b 200d828 <_Heap_Free+0xc4> 200d928: c2 26 20 3c st %g1, [ %i0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200d92c: 82 16 a0 01 or %i2, 1, %g1 200d930: c2 26 e0 04 st %g1, [ %i3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d934: c2 00 e0 04 ld [ %g3 + 4 ], %g1 next_block->prev_size = size; 200d938: f4 22 00 1d st %i2, [ %o0 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200d93c: 82 08 7f fe and %g1, -2, %g1 200d940: 10 bf ff ba b 200d828 <_Heap_Free+0xc4> 200d944: c2 20 e0 04 st %g1, [ %g3 + 4 ] =============================================================================== 02012594 <_Heap_Get_free_information>: return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2012594: c2 02 20 08 ld [ %o0 + 8 ], %g1 ) { Heap_Block *the_block; Heap_Block *const tail = _Heap_Free_list_tail(the_heap); info->number = 0; 2012598: c0 22 40 00 clr [ %o1 ] info->largest = 0; 201259c: c0 22 60 04 clr [ %o1 + 4 ] info->total = 0; 20125a0: c0 22 60 08 clr [ %o1 + 8 ] for(the_block = _Heap_Free_list_first(the_heap); 20125a4: 88 10 20 01 mov 1, %g4 20125a8: 9a 10 20 00 clr %o5 20125ac: 80 a2 00 01 cmp %o0, %g1 20125b0: 12 80 00 04 bne 20125c0 <_Heap_Get_free_information+0x2c> <== ALWAYS TAKEN 20125b4: 86 10 20 00 clr %g3 20125b8: 30 80 00 10 b,a 20125f8 <_Heap_Get_free_information+0x64><== NOT EXECUTED 20125bc: 88 10 00 0c mov %o4, %g4 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20125c0: c4 00 60 04 ld [ %g1 + 4 ], %g2 20125c4: 98 01 20 01 add %g4, 1, %o4 20125c8: 84 08 bf fe and %g2, -2, %g2 /* As we always coalesce free blocks, prev block must have been used. */ _HAssert(_Heap_Is_prev_used(the_block)); info->number++; info->total += the_size; if ( info->largest < the_size ) 20125cc: 80 a0 80 0d cmp %g2, %o5 20125d0: 08 80 00 03 bleu 20125dc <_Heap_Get_free_information+0x48> 20125d4: 86 00 c0 02 add %g3, %g2, %g3 info->largest = the_size; 20125d8: c4 22 60 04 st %g2, [ %o1 + 4 ] info->largest = 0; info->total = 0; for(the_block = _Heap_Free_list_first(the_heap); the_block != tail; the_block = the_block->next) 20125dc: c2 00 60 08 ld [ %g1 + 8 ], %g1 info->number = 0; info->largest = 0; info->total = 0; for(the_block = _Heap_Free_list_first(the_heap); 20125e0: 80 a2 00 01 cmp %o0, %g1 20125e4: 32 bf ff f6 bne,a 20125bc <_Heap_Get_free_information+0x28> 20125e8: da 02 60 04 ld [ %o1 + 4 ], %o5 20125ec: c8 22 40 00 st %g4, [ %o1 ] 20125f0: 81 c3 e0 08 retl 20125f4: c6 22 60 08 st %g3, [ %o1 + 8 ] 20125f8: 81 c3 e0 08 retl <== NOT EXECUTED =============================================================================== 0200acc4 <_Heap_Greedy_allocate>: Heap_Block *_Heap_Greedy_allocate( Heap_Control *heap, const uintptr_t *block_sizes, size_t block_count ) { 200acc4: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200acc8: 80 a6 a0 00 cmp %i2, 0 200accc: 02 80 00 35 be 200ada0 <_Heap_Greedy_allocate+0xdc> 200acd0: b8 10 00 18 mov %i0, %i4 200acd4: ba 10 20 00 clr %i5 200acd8: b6 10 20 00 clr %i3 #include "config.h" #endif #include Heap_Block *_Heap_Greedy_allocate( 200acdc: 83 2f 60 02 sll %i5, 2, %g1 * @brief See _Heap_Allocate_aligned_with_boundary() with alignment and * boundary equals zero. */ RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size ) { return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 ); 200ace0: d2 06 40 01 ld [ %i1 + %g1 ], %o1 200ace4: 94 10 20 00 clr %o2 200ace8: 96 10 20 00 clr %o3 200acec: 40 00 1d 9e call 2012364 <_Heap_Allocate_aligned_with_boundary> 200acf0: 90 10 00 1c mov %i4, %o0 size_t i; for (i = 0; i < block_count; ++i) { void *next = _Heap_Allocate( heap, block_sizes [i] ); if ( next != NULL ) { 200acf4: 82 92 20 00 orcc %o0, 0, %g1 200acf8: 22 80 00 09 be,a 200ad1c <_Heap_Greedy_allocate+0x58> <== NEVER TAKEN 200acfc: ba 07 60 01 inc %i5 <== NOT EXECUTED RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ad00: d2 07 20 10 ld [ %i4 + 0x10 ], %o1 200ad04: 40 00 49 b2 call 201d3cc <.urem> 200ad08: b0 00 7f f8 add %g1, -8, %i0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200ad0c: 90 26 00 08 sub %i0, %o0, %o0 Heap_Block *next_block = _Heap_Block_of_alloc_area( (uintptr_t) next, heap->page_size ); next_block->next = allocated_blocks; 200ad10: f6 22 20 08 st %i3, [ %o0 + 8 ] 200ad14: b6 10 00 08 mov %o0, %i3 Heap_Block *allocated_blocks = NULL; Heap_Block *blocks = NULL; Heap_Block *current; size_t i; for (i = 0; i < block_count; ++i) { 200ad18: ba 07 60 01 inc %i5 200ad1c: 80 a7 40 1a cmp %i5, %i2 200ad20: 12 bf ff f0 bne 200ace0 <_Heap_Greedy_allocate+0x1c> 200ad24: 83 2f 60 02 sll %i5, 2, %g1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200ad28: fa 07 20 08 ld [ %i4 + 8 ], %i5 next_block->next = allocated_blocks; allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { 200ad2c: 80 a7 00 1d cmp %i4, %i5 200ad30: 02 80 00 17 be 200ad8c <_Heap_Greedy_allocate+0xc8> <== NEVER TAKEN 200ad34: b0 10 20 00 clr %i0 200ad38: 10 80 00 03 b 200ad44 <_Heap_Greedy_allocate+0x80> 200ad3c: b4 10 20 00 clr %i2 200ad40: ba 10 00 01 mov %g1, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200ad44: d6 07 60 04 ld [ %i5 + 4 ], %o3 _Heap_Block_allocate( 200ad48: 92 10 00 1d mov %i5, %o1 200ad4c: 96 0a ff fe and %o3, -2, %o3 200ad50: 94 07 60 08 add %i5, 8, %o2 200ad54: 90 10 00 1c mov %i4, %o0 200ad58: 40 00 00 e0 call 200b0d8 <_Heap_Block_allocate> 200ad5c: 96 02 ff f8 add %o3, -8, %o3 current, _Heap_Alloc_area_of_block( current ), _Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE ); current->next = blocks; 200ad60: f4 27 60 08 st %i2, [ %i5 + 8 ] return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200ad64: c2 07 20 08 ld [ %i4 + 8 ], %g1 next_block->next = allocated_blocks; allocated_blocks = next_block; } } while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) { 200ad68: 80 a7 00 01 cmp %i4, %g1 200ad6c: 12 bf ff f5 bne 200ad40 <_Heap_Greedy_allocate+0x7c> 200ad70: b4 10 00 1d mov %i5, %i2 200ad74: 10 80 00 06 b 200ad8c <_Heap_Greedy_allocate+0xc8> 200ad78: b0 10 00 1d mov %i5, %i0 } while ( allocated_blocks != NULL ) { current = allocated_blocks; allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); 200ad7c: 92 06 e0 08 add %i3, 8, %o1 200ad80: 90 10 00 1c mov %i4, %o0 200ad84: 40 00 1e 03 call 2012590 <_Heap_Free> 200ad88: b6 10 00 1a mov %i2, %i3 current->next = blocks; blocks = current; } while ( allocated_blocks != NULL ) { 200ad8c: 80 a6 e0 00 cmp %i3, 0 200ad90: 32 bf ff fb bne,a 200ad7c <_Heap_Greedy_allocate+0xb8> 200ad94: f4 06 e0 08 ld [ %i3 + 8 ], %i2 allocated_blocks = allocated_blocks->next; _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); } return blocks; } 200ad98: 81 c7 e0 08 ret 200ad9c: 81 e8 00 00 restore const uintptr_t *block_sizes, size_t block_count ) { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *allocated_blocks = NULL; 200ada0: 10 bf ff e2 b 200ad28 <_Heap_Greedy_allocate+0x64> 200ada4: b6 10 20 00 clr %i3 =============================================================================== 0200ada8 <_Heap_Greedy_free>: void _Heap_Greedy_free( Heap_Control *heap, Heap_Block *blocks ) { 200ada8: 9d e3 bf a0 save %sp, -96, %sp while ( blocks != NULL ) { 200adac: 80 a6 60 00 cmp %i1, 0 200adb0: 02 80 00 09 be 200add4 <_Heap_Greedy_free+0x2c> <== NEVER TAKEN 200adb4: 01 00 00 00 nop Heap_Block *current = blocks; blocks = blocks->next; 200adb8: fa 06 60 08 ld [ %i1 + 8 ], %i5 _Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) ); 200adbc: 92 06 60 08 add %i1, 8, %o1 200adc0: 40 00 1d f4 call 2012590 <_Heap_Free> 200adc4: 90 10 00 18 mov %i0, %o0 void _Heap_Greedy_free( Heap_Control *heap, Heap_Block *blocks ) { while ( blocks != NULL ) { 200adc8: b2 97 60 00 orcc %i5, 0, %i1 200adcc: 32 bf ff fc bne,a 200adbc <_Heap_Greedy_free+0x14> 200add0: fa 06 60 08 ld [ %i1 + 8 ], %i5 200add4: 81 c7 e0 08 ret 200add8: 81 e8 00 00 restore =============================================================================== 02012660 <_Heap_Iterate>: void _Heap_Iterate( Heap_Control *heap, Heap_Block_visitor visitor, void *visitor_arg ) { 2012660: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *current = heap->first_block; 2012664: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *end = heap->last_block; 2012668: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 bool stop = false; while ( !stop && current != end ) { 201266c: 80 a0 40 1c cmp %g1, %i4 2012670: 32 80 00 08 bne,a 2012690 <_Heap_Iterate+0x30> <== ALWAYS TAKEN 2012674: d2 00 60 04 ld [ %g1 + 4 ], %o1 2012678: 30 80 00 10 b,a 20126b8 <_Heap_Iterate+0x58> <== NOT EXECUTED 201267c: 90 1a 20 01 xor %o0, 1, %o0 2012680: 80 8a 20 ff btst 0xff, %o0 2012684: 02 80 00 0d be 20126b8 <_Heap_Iterate+0x58> <== NEVER TAKEN 2012688: 01 00 00 00 nop 201268c: d2 00 60 04 ld [ %g1 + 4 ], %o1 uintptr_t size = _Heap_Block_size( current ); Heap_Block *next = _Heap_Block_at( current, size ); bool used = _Heap_Is_prev_used( next ); stop = (*visitor)( current, size, used, visitor_arg ); 2012690: 90 10 00 01 mov %g1, %o0 2012694: 92 0a 7f fe and %o1, -2, %o1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2012698: ba 00 40 09 add %g1, %o1, %i5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 201269c: d4 07 60 04 ld [ %i5 + 4 ], %o2 20126a0: 96 10 00 1a mov %i2, %o3 20126a4: 9f c6 40 00 call %i1 20126a8: 94 0a a0 01 and %o2, 1, %o2 { Heap_Block *current = heap->first_block; Heap_Block *end = heap->last_block; bool stop = false; while ( !stop && current != end ) { 20126ac: 80 a7 00 1d cmp %i4, %i5 20126b0: 12 bf ff f3 bne 201267c <_Heap_Iterate+0x1c> 20126b4: 82 10 00 1d mov %i5, %g1 20126b8: 81 c7 e0 08 ret 20126bc: 81 e8 00 00 restore =============================================================================== 0200da70 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 200da70: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200da74: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200da78: 40 00 2a d5 call 20185cc <.urem> 200da7c: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200da80: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200da84: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200da88: 90 20 80 08 sub %g2, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200da8c: 80 a2 00 01 cmp %o0, %g1 200da90: 0a 80 00 16 bcs 200dae8 <_Heap_Size_of_alloc_area+0x78> 200da94: 84 10 20 00 clr %g2 200da98: c6 06 20 24 ld [ %i0 + 0x24 ], %g3 200da9c: 80 a2 00 03 cmp %o0, %g3 200daa0: 18 80 00 13 bgu 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 200daa4: b0 08 a0 ff and %g2, 0xff, %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200daa8: c8 02 20 04 ld [ %o0 + 4 ], %g4 200daac: 88 09 3f fe and %g4, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200dab0: 90 02 00 04 add %o0, %g4, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200dab4: 80 a0 40 08 cmp %g1, %o0 200dab8: 18 80 00 0d bgu 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 200dabc: 01 00 00 00 nop 200dac0: 80 a0 c0 08 cmp %g3, %o0 200dac4: 0a 80 00 0a bcs 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 200dac8: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200dacc: c2 02 20 04 ld [ %o0 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 200dad0: 80 88 60 01 btst 1, %g1 200dad4: 02 80 00 06 be 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 200dad8: 90 22 00 19 sub %o0, %i1, %o0 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 200dadc: 84 10 20 01 mov 1, %g2 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 200dae0: 90 02 20 04 add %o0, 4, %o0 200dae4: d0 26 80 00 st %o0, [ %i2 ] 200dae8: b0 08 a0 ff and %g2, 0xff, %i0 200daec: 81 c7 e0 08 ret 200daf0: 81 e8 00 00 restore =============================================================================== 02009d10 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2009d10: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const page_size = heap->page_size; 2009d14: f6 06 20 10 ld [ %i0 + 0x10 ], %i3 uintptr_t const min_block_size = heap->min_block_size; 2009d18: e0 06 20 14 ld [ %i0 + 0x14 ], %l0 Heap_Block *const first_block = heap->first_block; 2009d1c: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2009d20: 80 a6 a0 00 cmp %i2, 0 2009d24: 02 80 00 0c be 2009d54 <_Heap_Walk+0x44> 2009d28: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 if ( !_System_state_Is_up( _System_state_Get() ) ) { 2009d2c: 03 00 80 7c sethi %hi(0x201f000), %g1 2009d30: c4 00 63 8c ld [ %g1 + 0x38c ], %g2 ! 201f38c <_System_state_Current> uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2009d34: 07 00 80 27 sethi %hi(0x2009c00), %g3 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; 2009d38: 82 10 20 01 mov 1, %g1 Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { 2009d3c: 80 a0 a0 03 cmp %g2, 3 2009d40: 02 80 00 0c be 2009d70 <_Heap_Walk+0x60> <== ALWAYS TAKEN 2009d44: ae 10 e0 ac or %g3, 0xac, %l7 2009d48: b0 08 60 ff and %g1, 0xff, %i0 2009d4c: 81 c7 e0 08 ret 2009d50: 81 e8 00 00 restore 2009d54: 03 00 80 7c sethi %hi(0x201f000), %g1 2009d58: c4 00 63 8c ld [ %g1 + 0x38c ], %g2 ! 201f38c <_System_state_Current> uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2009d5c: 07 00 80 27 sethi %hi(0x2009c00), %g3 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; 2009d60: 82 10 20 01 mov 1, %g1 Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { 2009d64: 80 a0 a0 03 cmp %g2, 3 2009d68: 12 bf ff f8 bne 2009d48 <_Heap_Walk+0x38> 2009d6c: ae 10 e0 a4 or %g3, 0xa4, %l7 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2009d70: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2009d74: c8 06 20 1c ld [ %i0 + 0x1c ], %g4 2009d78: c4 06 20 08 ld [ %i0 + 8 ], %g2 2009d7c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009d80: 90 10 00 19 mov %i1, %o0 2009d84: c8 23 a0 5c st %g4, [ %sp + 0x5c ] 2009d88: f8 23 a0 60 st %i4, [ %sp + 0x60 ] 2009d8c: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 2009d90: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 2009d94: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2009d98: 92 10 20 00 clr %o1 2009d9c: 96 10 00 1b mov %i3, %o3 2009da0: 15 00 80 6f sethi %hi(0x201bc00), %o2 2009da4: 98 10 00 10 mov %l0, %o4 2009da8: 9f c5 c0 00 call %l7 2009dac: 94 12 a3 38 or %o2, 0x338, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2009db0: 80 a6 e0 00 cmp %i3, 0 2009db4: 02 80 00 2a be 2009e5c <_Heap_Walk+0x14c> 2009db8: 80 8e e0 07 btst 7, %i3 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2009dbc: 12 80 00 2f bne 2009e78 <_Heap_Walk+0x168> 2009dc0: 90 10 00 10 mov %l0, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009dc4: 7f ff df 6b call 2001b70 <.urem> 2009dc8: 92 10 00 1b mov %i3, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2009dcc: 80 a2 20 00 cmp %o0, 0 2009dd0: 12 80 00 32 bne 2009e98 <_Heap_Walk+0x188> 2009dd4: 90 07 20 08 add %i4, 8, %o0 2009dd8: 7f ff df 66 call 2001b70 <.urem> 2009ddc: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2009de0: 80 a2 20 00 cmp %o0, 0 2009de4: 32 80 00 35 bne,a 2009eb8 <_Heap_Walk+0x1a8> 2009de8: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009dec: ec 07 20 04 ld [ %i4 + 4 ], %l6 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2009df0: b4 8d a0 01 andcc %l6, 1, %i2 2009df4: 22 80 00 38 be,a 2009ed4 <_Heap_Walk+0x1c4> 2009df8: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009dfc: c2 04 60 04 ld [ %l1 + 4 ], %g1 2009e00: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2009e04: 82 04 40 01 add %l1, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009e08: fa 00 60 04 ld [ %g1 + 4 ], %i5 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2009e0c: 80 8f 60 01 btst 1, %i5 2009e10: 02 80 00 0c be 2009e40 <_Heap_Walk+0x130> 2009e14: 80 a7 00 01 cmp %i4, %g1 ); return false; } if ( 2009e18: 02 80 00 35 be 2009eec <_Heap_Walk+0x1dc> 2009e1c: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2009e20: 92 10 20 01 mov 1, %o1 2009e24: 15 00 80 70 sethi %hi(0x201c000), %o2 2009e28: 9f c5 c0 00 call %l7 2009e2c: 94 12 a0 b0 or %o2, 0xb0, %o2 ! 201c0b0 <__log2table+0x2d8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009e30: 82 10 20 00 clr %g1 2009e34: b0 08 60 ff and %g1, 0xff, %i0 2009e38: 81 c7 e0 08 ret 2009e3c: 81 e8 00 00 restore return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 2009e40: 90 10 00 19 mov %i1, %o0 2009e44: 92 10 20 01 mov 1, %o1 2009e48: 15 00 80 70 sethi %hi(0x201c000), %o2 2009e4c: 9f c5 c0 00 call %l7 2009e50: 94 12 a0 98 or %o2, 0x98, %o2 ! 201c098 <__log2table+0x2c0> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009e54: 10 bf ff f8 b 2009e34 <_Heap_Walk+0x124> 2009e58: 82 10 20 00 clr %g1 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2009e5c: 90 10 00 19 mov %i1, %o0 2009e60: 92 10 20 01 mov 1, %o1 2009e64: 15 00 80 6f sethi %hi(0x201bc00), %o2 2009e68: 9f c5 c0 00 call %l7 2009e6c: 94 12 a3 d0 or %o2, 0x3d0, %o2 ! 201bfd0 <__log2table+0x1f8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009e70: 10 bf ff f1 b 2009e34 <_Heap_Walk+0x124> 2009e74: 82 10 20 00 clr %g1 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2009e78: 90 10 00 19 mov %i1, %o0 2009e7c: 92 10 20 01 mov 1, %o1 2009e80: 15 00 80 6f sethi %hi(0x201bc00), %o2 2009e84: 96 10 00 1b mov %i3, %o3 2009e88: 9f c5 c0 00 call %l7 2009e8c: 94 12 a3 e8 or %o2, 0x3e8, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009e90: 10 bf ff e9 b 2009e34 <_Heap_Walk+0x124> 2009e94: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2009e98: 90 10 00 19 mov %i1, %o0 2009e9c: 92 10 20 01 mov 1, %o1 2009ea0: 15 00 80 70 sethi %hi(0x201c000), %o2 2009ea4: 96 10 00 10 mov %l0, %o3 2009ea8: 9f c5 c0 00 call %l7 2009eac: 94 12 a0 08 or %o2, 8, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009eb0: 10 bf ff e1 b 2009e34 <_Heap_Walk+0x124> 2009eb4: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2009eb8: 92 10 20 01 mov 1, %o1 2009ebc: 15 00 80 70 sethi %hi(0x201c000), %o2 2009ec0: 96 10 00 1c mov %i4, %o3 2009ec4: 9f c5 c0 00 call %l7 2009ec8: 94 12 a0 30 or %o2, 0x30, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009ecc: 10 bf ff da b 2009e34 <_Heap_Walk+0x124> 2009ed0: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2009ed4: 92 10 20 01 mov 1, %o1 2009ed8: 15 00 80 70 sethi %hi(0x201c000), %o2 2009edc: 9f c5 c0 00 call %l7 2009ee0: 94 12 a0 68 or %o2, 0x68, %o2 ! 201c068 <__log2table+0x290> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009ee4: 10 bf ff d4 b 2009e34 <_Heap_Walk+0x124> 2009ee8: 82 10 20 00 clr %g1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2009eec: fa 06 20 08 ld [ %i0 + 8 ], %i5 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 2009ef0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2009ef4: 80 a6 00 1d cmp %i0, %i5 2009ef8: 02 80 00 0d be 2009f2c <_Heap_Walk+0x21c> 2009efc: da 06 20 20 ld [ %i0 + 0x20 ], %o5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009f00: 80 a3 40 1d cmp %o5, %i5 2009f04: 28 80 00 bf bleu,a 200a200 <_Heap_Walk+0x4f0> <== ALWAYS TAKEN 2009f08: e6 06 20 24 ld [ %i0 + 0x24 ], %l3 if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 2009f0c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2009f10: 92 10 20 01 mov 1, %o1 2009f14: 15 00 80 70 sethi %hi(0x201c000), %o2 2009f18: 96 10 00 1d mov %i5, %o3 2009f1c: 9f c5 c0 00 call %l7 2009f20: 94 12 a0 e0 or %o2, 0xe0, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2009f24: 10 bf ff c4 b 2009e34 <_Heap_Walk+0x124> 2009f28: 82 10 20 00 clr %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2009f2c: 27 00 80 70 sethi %hi(0x201c000), %l3 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2009f30: 25 00 80 70 sethi %hi(0x201c000), %l2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2009f34: aa 10 00 1c mov %i4, %l5 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2009f38: a6 14 e3 10 or %l3, 0x310, %l3 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2009f3c: a4 14 a2 f8 or %l2, 0x2f8, %l2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2009f40: 29 00 80 70 sethi %hi(0x201c000), %l4 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2009f44: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2009f48: ba 05 80 15 add %l6, %l5, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2009f4c: 80 a3 40 1d cmp %o5, %i5 2009f50: 28 80 00 0b bleu,a 2009f7c <_Heap_Walk+0x26c> <== ALWAYS TAKEN 2009f54: de 06 20 24 ld [ %i0 + 0x24 ], %o7 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2009f58: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2009f5c: 92 10 20 01 mov 1, %o1 2009f60: 96 10 00 15 mov %l5, %o3 2009f64: 15 00 80 70 sethi %hi(0x201c000), %o2 2009f68: 98 10 00 1d mov %i5, %o4 2009f6c: 9f c5 c0 00 call %l7 2009f70: 94 12 a1 88 or %o2, 0x188, %o2 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2009f74: 10 bf ff 75 b 2009d48 <_Heap_Walk+0x38> 2009f78: 82 10 20 00 clr %g1 2009f7c: 80 a3 c0 1d cmp %o7, %i5 2009f80: 0a bf ff f7 bcs 2009f5c <_Heap_Walk+0x24c> 2009f84: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2009f88: 9e 1d 40 11 xor %l5, %l1, %o7 2009f8c: 80 a0 00 0f cmp %g0, %o7 2009f90: 9a 40 20 00 addx %g0, 0, %o5 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2009f94: 90 10 00 16 mov %l6, %o0 2009f98: da 27 bf fc st %o5, [ %fp + -4 ] 2009f9c: 7f ff de f5 call 2001b70 <.urem> 2009fa0: 92 10 00 1b mov %i3, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2009fa4: 80 a2 20 00 cmp %o0, 0 2009fa8: 02 80 00 18 be 200a008 <_Heap_Walk+0x2f8> 2009fac: da 07 bf fc ld [ %fp + -4 ], %o5 2009fb0: 80 8b 60 ff btst 0xff, %o5 2009fb4: 12 80 00 8b bne 200a1e0 <_Heap_Walk+0x4d0> 2009fb8: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2009fbc: de 07 60 04 ld [ %i5 + 4 ], %o7 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2009fc0: 80 8b e0 01 btst 1, %o7 2009fc4: 02 80 00 2b be 200a070 <_Heap_Walk+0x360> 2009fc8: 80 a6 a0 00 cmp %i2, 0 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2009fcc: 22 80 00 21 be,a 200a050 <_Heap_Walk+0x340> 2009fd0: da 05 40 00 ld [ %l5 ], %o5 (*printer)( 2009fd4: 90 10 00 19 mov %i1, %o0 2009fd8: 92 10 20 00 clr %o1 2009fdc: 94 10 00 12 mov %l2, %o2 2009fe0: 96 10 00 15 mov %l5, %o3 2009fe4: 9f c5 c0 00 call %l7 2009fe8: 98 10 00 16 mov %l6, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2009fec: 80 a7 00 1d cmp %i4, %i5 2009ff0: 02 80 00 51 be 200a134 <_Heap_Walk+0x424> 2009ff4: aa 10 00 1d mov %i5, %l5 2009ff8: ec 07 60 04 ld [ %i5 + 4 ], %l6 2009ffc: da 06 20 20 ld [ %i0 + 0x20 ], %o5 200a000: 10 bf ff d1 b 2009f44 <_Heap_Walk+0x234> 200a004: b4 0d a0 01 and %l6, 1, %i2 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 200a008: 80 a5 80 10 cmp %l6, %l0 200a00c: 0a 80 00 69 bcs 200a1b0 <_Heap_Walk+0x4a0> 200a010: 80 8b 60 ff btst 0xff, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 200a014: 80 a5 40 1d cmp %l5, %i5 200a018: 2a bf ff ea bcs,a 2009fc0 <_Heap_Walk+0x2b0> 200a01c: de 07 60 04 ld [ %i5 + 4 ], %o7 200a020: 80 8b 60 ff btst 0xff, %o5 200a024: 22 bf ff e7 be,a 2009fc0 <_Heap_Walk+0x2b0> 200a028: de 07 60 04 ld [ %i5 + 4 ], %o7 (*printer)( 200a02c: 90 10 00 19 mov %i1, %o0 200a030: 92 10 20 01 mov 1, %o1 200a034: 96 10 00 15 mov %l5, %o3 200a038: 15 00 80 70 sethi %hi(0x201c000), %o2 200a03c: 98 10 00 1d mov %i5, %o4 200a040: 9f c5 c0 00 call %l7 200a044: 94 12 a2 18 or %o2, 0x218, %o2 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 200a048: 10 bf ff 40 b 2009d48 <_Heap_Walk+0x38> 200a04c: 82 10 20 00 clr %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 200a050: 96 10 00 15 mov %l5, %o3 200a054: 90 10 00 19 mov %i1, %o0 200a058: 92 10 20 00 clr %o1 200a05c: 94 10 00 13 mov %l3, %o2 200a060: 9f c5 c0 00 call %l7 200a064: 98 10 00 16 mov %l6, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 200a068: 10 bf ff e2 b 2009ff0 <_Heap_Walk+0x2e0> 200a06c: 80 a7 00 1d cmp %i4, %i5 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 200a070: da 05 60 0c ld [ %l5 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200a074: de 06 20 08 ld [ %i0 + 8 ], %o7 200a078: 80 a3 c0 0d cmp %o7, %o5 200a07c: 02 80 00 3d be 200a170 <_Heap_Walk+0x460> 200a080: d8 06 20 0c ld [ %i0 + 0xc ], %o4 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200a084: 80 a6 00 0d cmp %i0, %o5 200a088: 02 80 00 40 be 200a188 <_Heap_Walk+0x478> 200a08c: 96 15 22 c0 or %l4, 0x2c0, %o3 block->next, block->next == last_free_block ? 200a090: de 05 60 08 ld [ %l5 + 8 ], %o7 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200a094: 80 a3 00 0f cmp %o4, %o7 200a098: 02 80 00 33 be 200a164 <_Heap_Walk+0x454> 200a09c: 80 a6 00 0f cmp %i0, %o7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 200a0a0: 02 80 00 37 be 200a17c <_Heap_Walk+0x46c> 200a0a4: 98 15 22 c0 or %l4, 0x2c0, %o4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200a0a8: d6 23 a0 5c st %o3, [ %sp + 0x5c ] 200a0ac: d8 23 a0 64 st %o4, [ %sp + 0x64 ] 200a0b0: de 23 a0 60 st %o7, [ %sp + 0x60 ] 200a0b4: 90 10 00 19 mov %i1, %o0 200a0b8: 92 10 20 00 clr %o1 200a0bc: 15 00 80 70 sethi %hi(0x201c000), %o2 200a0c0: 96 10 00 15 mov %l5, %o3 200a0c4: 94 12 a2 50 or %o2, 0x250, %o2 200a0c8: 9f c5 c0 00 call %l7 200a0cc: 98 10 00 16 mov %l6, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 200a0d0: da 07 40 00 ld [ %i5 ], %o5 200a0d4: 80 a5 80 0d cmp %l6, %o5 200a0d8: 12 80 00 19 bne 200a13c <_Heap_Walk+0x42c> 200a0dc: 80 a6 a0 00 cmp %i2, 0 ); return false; } if ( !prev_used ) { 200a0e0: 02 80 00 2d be 200a194 <_Heap_Walk+0x484> 200a0e4: 90 10 00 19 mov %i1, %o0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200a0e8: c4 06 20 08 ld [ %i0 + 8 ], %g2 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 200a0ec: 80 a6 00 02 cmp %i0, %g2 200a0f0: 02 80 00 0b be 200a11c <_Heap_Walk+0x40c> <== NEVER TAKEN 200a0f4: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 200a0f8: 80 a5 40 02 cmp %l5, %g2 200a0fc: 02 bf ff bd be 2009ff0 <_Heap_Walk+0x2e0> 200a100: 80 a7 00 1d cmp %i4, %i5 return true; } free_block = free_block->next; 200a104: c4 00 a0 08 ld [ %g2 + 8 ], %g2 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 200a108: 80 a6 00 02 cmp %i0, %g2 200a10c: 12 bf ff fc bne 200a0fc <_Heap_Walk+0x3ec> 200a110: 80 a5 40 02 cmp %l5, %g2 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 200a114: 90 10 00 19 mov %i1, %o0 200a118: 92 10 20 01 mov 1, %o1 200a11c: 15 00 80 70 sethi %hi(0x201c000), %o2 200a120: 96 10 00 15 mov %l5, %o3 200a124: 9f c5 c0 00 call %l7 200a128: 94 12 a3 38 or %o2, 0x338, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a12c: 10 bf ff 42 b 2009e34 <_Heap_Walk+0x124> 200a130: 82 10 20 00 clr %g1 } block = next_block; } while ( block != first_block ); return true; 200a134: 10 bf ff 05 b 2009d48 <_Heap_Walk+0x38> 200a138: 82 10 20 01 mov 1, %g1 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 200a13c: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 200a140: 90 10 00 19 mov %i1, %o0 200a144: 92 10 20 01 mov 1, %o1 200a148: 15 00 80 70 sethi %hi(0x201c000), %o2 200a14c: 96 10 00 15 mov %l5, %o3 200a150: 94 12 a2 88 or %o2, 0x288, %o2 200a154: 9f c5 c0 00 call %l7 200a158: 98 10 00 16 mov %l6, %o4 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a15c: 10 bf ff 36 b 2009e34 <_Heap_Walk+0x124> 200a160: 82 10 20 00 clr %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 200a164: 03 00 80 6f sethi %hi(0x201bc00), %g1 200a168: 10 bf ff d0 b 200a0a8 <_Heap_Walk+0x398> 200a16c: 98 10 63 18 or %g1, 0x318, %o4 ! 201bf18 <__log2table+0x140> 200a170: 03 00 80 6f sethi %hi(0x201bc00), %g1 200a174: 10 bf ff c7 b 200a090 <_Heap_Walk+0x380> 200a178: 96 10 62 f8 or %g1, 0x2f8, %o3 ! 201bef8 <__log2table+0x120> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 200a17c: 03 00 80 6f sethi %hi(0x201bc00), %g1 200a180: 10 bf ff ca b 200a0a8 <_Heap_Walk+0x398> 200a184: 98 10 63 28 or %g1, 0x328, %o4 ! 201bf28 <__log2table+0x150> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 200a188: 17 00 80 6f sethi %hi(0x201bc00), %o3 200a18c: 10 bf ff c1 b 200a090 <_Heap_Walk+0x380> 200a190: 96 12 e3 08 or %o3, 0x308, %o3 ! 201bf08 <__log2table+0x130> return false; } if ( !prev_used ) { (*printer)( 200a194: 92 10 20 01 mov 1, %o1 200a198: 15 00 80 70 sethi %hi(0x201c000), %o2 200a19c: 96 10 00 15 mov %l5, %o3 200a1a0: 9f c5 c0 00 call %l7 200a1a4: 94 12 a2 c8 or %o2, 0x2c8, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a1a8: 10 bf ff 23 b 2009e34 <_Heap_Walk+0x124> 200a1ac: 82 10 20 00 clr %g1 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 200a1b0: 02 bf ff 9a be 200a018 <_Heap_Walk+0x308> <== NEVER TAKEN 200a1b4: 80 a5 40 1d cmp %l5, %i5 (*printer)( 200a1b8: 90 10 00 19 mov %i1, %o0 200a1bc: 92 10 20 01 mov 1, %o1 200a1c0: 96 10 00 15 mov %l5, %o3 200a1c4: 15 00 80 70 sethi %hi(0x201c000), %o2 200a1c8: 98 10 00 16 mov %l6, %o4 200a1cc: 94 12 a1 e8 or %o2, 0x1e8, %o2 200a1d0: 9f c5 c0 00 call %l7 200a1d4: 9a 10 00 10 mov %l0, %o5 block, block_size, min_block_size ); return false; 200a1d8: 10 bf fe dc b 2009d48 <_Heap_Walk+0x38> 200a1dc: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 200a1e0: 92 10 20 01 mov 1, %o1 200a1e4: 96 10 00 15 mov %l5, %o3 200a1e8: 15 00 80 70 sethi %hi(0x201c000), %o2 200a1ec: 98 10 00 16 mov %l6, %o4 200a1f0: 9f c5 c0 00 call %l7 200a1f4: 94 12 a1 b8 or %o2, 0x1b8, %o2 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 200a1f8: 10 bf fe d4 b 2009d48 <_Heap_Walk+0x38> 200a1fc: 82 10 20 00 clr %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200a200: 80 a4 c0 1d cmp %l3, %i5 200a204: 0a bf ff 43 bcs 2009f10 <_Heap_Walk+0x200> <== NEVER TAKEN 200a208: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200a20c: da 27 bf fc st %o5, [ %fp + -4 ] 200a210: 90 07 60 08 add %i5, 8, %o0 200a214: 7f ff de 57 call 2001b70 <.urem> 200a218: 92 10 00 14 mov %l4, %o1 ); return false; } if ( 200a21c: 80 a2 20 00 cmp %o0, 0 200a220: 12 80 00 36 bne 200a2f8 <_Heap_Walk+0x5e8> <== NEVER TAKEN 200a224: da 07 bf fc ld [ %fp + -4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200a228: c2 07 60 04 ld [ %i5 + 4 ], %g1 200a22c: 82 08 7f fe and %g1, -2, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200a230: 82 07 40 01 add %i5, %g1, %g1 200a234: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 200a238: 80 88 60 01 btst 1, %g1 200a23c: 12 80 00 27 bne 200a2d8 <_Heap_Walk+0x5c8> <== NEVER TAKEN 200a240: a4 10 00 1d mov %i5, %l2 200a244: 10 80 00 19 b 200a2a8 <_Heap_Walk+0x598> 200a248: 82 10 00 18 mov %i0, %g1 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 200a24c: 80 a6 00 1d cmp %i0, %i5 200a250: 02 bf ff 37 be 2009f2c <_Heap_Walk+0x21c> 200a254: 80 a7 40 0d cmp %i5, %o5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200a258: 0a bf ff 2e bcs 2009f10 <_Heap_Walk+0x200> 200a25c: 90 10 00 19 mov %i1, %o0 200a260: 80 a7 40 13 cmp %i5, %l3 200a264: 18 bf ff 2c bgu 2009f14 <_Heap_Walk+0x204> <== NEVER TAKEN 200a268: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200a26c: da 27 bf fc st %o5, [ %fp + -4 ] 200a270: 90 07 60 08 add %i5, 8, %o0 200a274: 7f ff de 3f call 2001b70 <.urem> 200a278: 92 10 00 14 mov %l4, %o1 ); return false; } if ( 200a27c: 80 a2 20 00 cmp %o0, 0 200a280: 12 80 00 1e bne 200a2f8 <_Heap_Walk+0x5e8> 200a284: da 07 bf fc ld [ %fp + -4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200a288: de 07 60 04 ld [ %i5 + 4 ], %o7 200a28c: 82 10 00 12 mov %l2, %g1 200a290: 9e 0b ff fe and %o7, -2, %o7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200a294: 9e 03 c0 1d add %o7, %i5, %o7 200a298: de 03 e0 04 ld [ %o7 + 4 ], %o7 ); return false; } if ( _Heap_Is_used( free_block ) ) { 200a29c: 80 8b e0 01 btst 1, %o7 200a2a0: 12 80 00 0e bne 200a2d8 <_Heap_Walk+0x5c8> 200a2a4: a4 10 00 1d mov %i5, %l2 ); return false; } if ( free_block->prev != prev_block ) { 200a2a8: d8 07 60 0c ld [ %i5 + 0xc ], %o4 200a2ac: 80 a3 00 01 cmp %o4, %g1 200a2b0: 22 bf ff e7 be,a 200a24c <_Heap_Walk+0x53c> 200a2b4: fa 07 60 08 ld [ %i5 + 8 ], %i5 (*printer)( 200a2b8: 90 10 00 19 mov %i1, %o0 200a2bc: 92 10 20 01 mov 1, %o1 200a2c0: 15 00 80 70 sethi %hi(0x201c000), %o2 200a2c4: 96 10 00 1d mov %i5, %o3 200a2c8: 9f c5 c0 00 call %l7 200a2cc: 94 12 a1 50 or %o2, 0x150, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a2d0: 10 bf fe d9 b 2009e34 <_Heap_Walk+0x124> 200a2d4: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 200a2d8: 90 10 00 19 mov %i1, %o0 200a2dc: 92 10 20 01 mov 1, %o1 200a2e0: 15 00 80 70 sethi %hi(0x201c000), %o2 200a2e4: 96 10 00 1d mov %i5, %o3 200a2e8: 9f c5 c0 00 call %l7 200a2ec: 94 12 a1 30 or %o2, 0x130, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a2f0: 10 bf fe d1 b 2009e34 <_Heap_Walk+0x124> 200a2f4: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 200a2f8: 90 10 00 19 mov %i1, %o0 200a2fc: 92 10 20 01 mov 1, %o1 200a300: 15 00 80 70 sethi %hi(0x201c000), %o2 200a304: 96 10 00 1d mov %i5, %o3 200a308: 9f c5 c0 00 call %l7 200a30c: 94 12 a1 00 or %o2, 0x100, %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200a310: 10 bf fe c9 b 2009e34 <_Heap_Walk+0x124> 200a314: 82 10 20 00 clr %g1 =============================================================================== 020083e0 <_IO_Initialize_all_drivers>: _IO_Driver_address_table[index] = driver_table[index]; } void _IO_Initialize_all_drivers( void ) { 20083e0: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 20083e4: 39 00 80 73 sethi %hi(0x201cc00), %i4 20083e8: c2 07 23 38 ld [ %i4 + 0x338 ], %g1 ! 201cf38 <_IO_Number_of_drivers> 20083ec: ba 10 20 00 clr %i5 20083f0: 80 a0 60 00 cmp %g1, 0 20083f4: 02 80 00 0b be 2008420 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 20083f8: b8 17 23 38 or %i4, 0x338, %i4 (void) rtems_io_initialize( major, 0, NULL ); 20083fc: 90 10 00 1d mov %i5, %o0 2008400: 92 10 20 00 clr %o1 2008404: 40 00 13 dd call 200d378 2008408: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 200840c: c2 07 00 00 ld [ %i4 ], %g1 2008410: ba 07 60 01 inc %i5 2008414: 80 a0 40 1d cmp %g1, %i5 2008418: 18 bf ff fa bgu 2008400 <_IO_Initialize_all_drivers+0x20> 200841c: 90 10 00 1d mov %i5, %o0 2008420: 81 c7 e0 08 ret 2008424: 81 e8 00 00 restore =============================================================================== 02008310 <_IO_Manager_initialization>: #include #include void _IO_Manager_initialization(void) { 2008310: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = rtems_configuration_get_device_driver_table(); 2008314: 03 00 80 68 sethi %hi(0x201a000), %g1 2008318: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 drivers_in_table = rtems_configuration_get_number_of_device_drivers(); 200831c: f8 00 60 38 ld [ %g1 + 0x38 ], %i4 number_of_drivers = rtems_configuration_get_maximum_drivers(); 2008320: f6 00 60 34 ld [ %g1 + 0x34 ], %i3 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2008324: 80 a7 00 1b cmp %i4, %i3 2008328: 0a 80 00 08 bcs 2008348 <_IO_Manager_initialization+0x38> 200832c: fa 00 60 3c ld [ %g1 + 0x3c ], %i5 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 2008330: 03 00 80 73 sethi %hi(0x201cc00), %g1 2008334: fa 20 63 3c st %i5, [ %g1 + 0x33c ] ! 201cf3c <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 2008338: 03 00 80 73 sethi %hi(0x201cc00), %g1 200833c: f8 20 63 38 st %i4, [ %g1 + 0x338 ] ! 201cf38 <_IO_Number_of_drivers> return; 2008340: 81 c7 e0 08 ret 2008344: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 2008348: 83 2e e0 03 sll %i3, 3, %g1 200834c: b5 2e e0 05 sll %i3, 5, %i2 2008350: b4 26 80 01 sub %i2, %g1, %i2 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 2008354: 40 00 0d 4a call 200b87c <_Workspace_Allocate_or_fatal_error> 2008358: 90 10 00 1a mov %i2, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 200835c: 03 00 80 73 sethi %hi(0x201cc00), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2008360: 33 00 80 73 sethi %hi(0x201cc00), %i1 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2008364: f6 20 63 38 st %i3, [ %g1 + 0x338 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2008368: d0 26 63 3c st %o0, [ %i1 + 0x33c ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 200836c: 92 10 20 00 clr %o1 2008370: 40 00 1e fc call 200ff60 2008374: 94 10 00 1a mov %i2, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2008378: 80 a7 20 00 cmp %i4, 0 200837c: 02 bf ff f1 be 2008340 <_IO_Manager_initialization+0x30> <== NEVER TAKEN 2008380: c8 06 63 3c ld [ %i1 + 0x33c ], %g4 #include #include #include void _IO_Manager_initialization(void) 2008384: 85 2f 20 03 sll %i4, 3, %g2 2008388: b7 2f 20 05 sll %i4, 5, %i3 200838c: 82 10 20 00 clr %g1 2008390: b6 26 c0 02 sub %i3, %g2, %i3 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) _IO_Driver_address_table[index] = driver_table[index]; 2008394: c4 07 40 01 ld [ %i5 + %g1 ], %g2 2008398: 86 07 40 01 add %i5, %g1, %g3 200839c: c4 21 00 01 st %g2, [ %g4 + %g1 ] 20083a0: f8 00 e0 04 ld [ %g3 + 4 ], %i4 20083a4: 84 01 00 01 add %g4, %g1, %g2 20083a8: f8 20 a0 04 st %i4, [ %g2 + 4 ] 20083ac: f8 00 e0 08 ld [ %g3 + 8 ], %i4 20083b0: 82 00 60 18 add %g1, 0x18, %g1 20083b4: f8 20 a0 08 st %i4, [ %g2 + 8 ] 20083b8: f8 00 e0 0c ld [ %g3 + 0xc ], %i4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 20083bc: 80 a0 40 1b cmp %g1, %i3 _IO_Driver_address_table[index] = driver_table[index]; 20083c0: f8 20 a0 0c st %i4, [ %g2 + 0xc ] 20083c4: f8 00 e0 10 ld [ %g3 + 0x10 ], %i4 20083c8: f8 20 a0 10 st %i4, [ %g2 + 0x10 ] 20083cc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 20083d0: 12 bf ff f1 bne 2008394 <_IO_Manager_initialization+0x84> 20083d4: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 20083d8: 81 c7 e0 08 ret 20083dc: 81 e8 00 00 restore =============================================================================== 02009070 <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009070: 9d e3 bf 90 save %sp, -112, %sp Internal_errors_t error ) { User_extensions_Fatal_context ctx = { source, is_internal, error }; _User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor ); 2009074: 13 00 80 2c sethi %hi(0x200b000), %o1 2009078: 90 07 bf f4 add %fp, -12, %o0 200907c: 92 12 62 b4 or %o1, 0x2b4, %o1 Internal_errors_Source source, bool is_internal, Internal_errors_t error ) { User_extensions_Fatal_context ctx = { source, is_internal, error }; 2009080: f0 27 bf f4 st %i0, [ %fp + -12 ] 2009084: f2 2f bf f8 stb %i1, [ %fp + -8 ] _User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor ); 2009088: 40 00 08 96 call 200b2e0 <_User_extensions_Iterate> 200908c: f4 27 bf fc st %i2, [ %fp + -4 ] _User_extensions_Fatal( the_source, is_internal, the_error ); _Internal_errors_What_happened.the_source = the_source; 2009090: 05 00 80 73 sethi %hi(0x201cc00), %g2 <== NOT EXECUTED 2009094: 82 10 a2 80 or %g2, 0x280, %g1 ! 201ce80 <_Internal_errors_What_happened><== NOT EXECUTED 2009098: f0 20 a2 80 st %i0, [ %g2 + 0x280 ] <== NOT EXECUTED _Internal_errors_What_happened.is_internal = is_internal; 200909c: f2 28 60 04 stb %i1, [ %g1 + 4 ] <== NOT EXECUTED _Internal_errors_What_happened.the_error = the_error; 20090a0: f4 20 60 08 st %i2, [ %g1 + 8 ] <== NOT EXECUTED RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; 20090a4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 20090a8: 03 00 80 73 sethi %hi(0x201cc00), %g1 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); 20090ac: 7f ff e5 58 call 200260c <== NOT EXECUTED 20090b0: c4 20 62 8c st %g2, [ %g1 + 0x28c ] ! 201ce8c <_System_state_Current><== NOT EXECUTED 20090b4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 20090b8: 30 80 00 00 b,a 20090b8 <_Internal_error_Occurred+0x48> <== NOT EXECUTED =============================================================================== 02009128 <_Objects_Allocate>: #endif Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2009128: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 200912c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2009130: 80 a0 60 00 cmp %g1, 0 2009134: 02 80 00 26 be 20091cc <_Objects_Allocate+0xa4> <== NEVER TAKEN 2009138: ba 10 00 18 mov %i0, %i5 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 200913c: b8 06 20 20 add %i0, 0x20, %i4 2009140: 7f ff fd 4c call 2008670 <_Chain_Get> 2009144: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2009148: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 200914c: 80 a0 60 00 cmp %g1, 0 2009150: 02 80 00 16 be 20091a8 <_Objects_Allocate+0x80> 2009154: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2009158: 80 a2 20 00 cmp %o0, 0 200915c: 02 80 00 15 be 20091b0 <_Objects_Allocate+0x88> 2009160: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2009164: c4 07 60 08 ld [ %i5 + 8 ], %g2 2009168: d0 06 20 08 ld [ %i0 + 8 ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 200916c: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2009170: 03 00 00 3f sethi %hi(0xfc00), %g1 2009174: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff 2009178: 90 0a 00 01 and %o0, %g1, %o0 200917c: 82 08 80 01 and %g2, %g1, %g1 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2009180: 40 00 3c 67 call 201831c <.udiv> 2009184: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2009188: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 200918c: 91 2a 20 02 sll %o0, 2, %o0 2009190: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2009194: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2009198: 86 00 ff ff add %g3, -1, %g3 200919c: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 20091a0: 82 00 bf ff add %g2, -1, %g1 20091a4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 20091a8: 81 c7 e0 08 ret 20091ac: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 20091b0: 40 00 00 10 call 20091f0 <_Objects_Extend_information> 20091b4: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20091b8: 7f ff fd 2e call 2008670 <_Chain_Get> 20091bc: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 20091c0: b0 92 20 00 orcc %o0, 0, %i0 20091c4: 32 bf ff e9 bne,a 2009168 <_Objects_Allocate+0x40> 20091c8: c4 07 60 08 ld [ %i5 + 8 ], %g2 * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) return NULL; 20091cc: 81 c7 e0 08 ret 20091d0: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 020091f0 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 20091f0: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 20091f4: f2 06 20 34 ld [ %i0 + 0x34 ], %i1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20091f8: e0 16 20 0a lduh [ %i0 + 0xa ], %l0 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 20091fc: 80 a6 60 00 cmp %i1, 0 2009200: 02 80 00 a1 be 2009484 <_Objects_Extend_information+0x294> 2009204: e2 16 20 10 lduh [ %i0 + 0x10 ], %l1 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2009208: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3 200920c: a3 2c 60 10 sll %l1, 0x10, %l1 2009210: 92 10 00 1b mov %i3, %o1 2009214: 40 00 3c 42 call 201831c <.udiv> 2009218: 91 34 60 10 srl %l1, 0x10, %o0 200921c: 91 2a 20 10 sll %o0, 0x10, %o0 2009220: b5 32 20 10 srl %o0, 0x10, %i2 for ( ; block < block_count; block++ ) { 2009224: 80 a6 a0 00 cmp %i2, 0 2009228: 02 80 00 af be 20094e4 <_Objects_Extend_information+0x2f4><== NEVER TAKEN 200922c: 90 10 00 1b mov %i3, %o0 if ( information->object_blocks[ block ] == NULL ) { 2009230: c2 06 40 00 ld [ %i1 ], %g1 2009234: 80 a0 60 00 cmp %g1, 0 2009238: 02 80 00 b1 be 20094fc <_Objects_Extend_information+0x30c><== NEVER TAKEN 200923c: b8 10 00 10 mov %l0, %i4 * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2009240: 10 80 00 06 b 2009258 <_Objects_Extend_information+0x68> 2009244: ba 10 20 00 clr %i5 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2009248: c2 06 40 01 ld [ %i1 + %g1 ], %g1 200924c: 80 a0 60 00 cmp %g1, 0 2009250: 22 80 00 08 be,a 2009270 <_Objects_Extend_information+0x80> 2009254: b6 10 20 00 clr %i3 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2009258: ba 07 60 01 inc %i5 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 200925c: b8 07 00 1b add %i4, %i3, %i4 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2009260: 80 a6 80 1d cmp %i2, %i5 2009264: 18 bf ff f9 bgu 2009248 <_Objects_Extend_information+0x58> 2009268: 83 2f 60 02 sll %i5, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 200926c: b6 10 20 01 mov 1, %i3 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2009270: b3 34 60 10 srl %l1, 0x10, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2009274: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2009278: b2 06 40 08 add %i1, %o0, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 200927c: 82 10 63 ff or %g1, 0x3ff, %g1 2009280: 80 a6 40 01 cmp %i1, %g1 2009284: 18 80 00 9c bgu 20094f4 <_Objects_Extend_information+0x304> 2009288: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 200928c: 40 00 3b ea call 2018234 <.umul> 2009290: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2009294: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2009298: 80 a0 60 00 cmp %g1, 0 200929c: 02 80 00 6d be 2009450 <_Objects_Extend_information+0x260> 20092a0: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 20092a4: 40 00 09 68 call 200b844 <_Workspace_Allocate> 20092a8: 01 00 00 00 nop if ( !new_object_block ) 20092ac: a2 92 20 00 orcc %o0, 0, %l1 20092b0: 02 80 00 91 be 20094f4 <_Objects_Extend_information+0x304> 20092b4: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 20092b8: 80 8e e0 ff btst 0xff, %i3 20092bc: 22 80 00 42 be,a 20093c4 <_Objects_Extend_information+0x1d4> 20092c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); if ( information->auto_extend ) { 20092c4: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 */ /* * Up the block count and maximum */ block_count++; 20092c8: b6 06 a0 01 add %i2, 1, %i3 * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); if ( information->auto_extend ) { 20092cc: 80 a0 60 00 cmp %g1, 0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 20092d0: 91 2e e0 01 sll %i3, 1, %o0 20092d4: 90 02 00 1b add %o0, %i3, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 20092d8: 90 06 40 08 add %i1, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 20092dc: 90 02 00 10 add %o0, %l0, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); if ( information->auto_extend ) { 20092e0: 12 80 00 60 bne 2009460 <_Objects_Extend_information+0x270> 20092e4: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { _Workspace_Free( new_object_block ); return; } } else { object_blocks = _Workspace_Allocate_or_fatal_error( block_size ); 20092e8: 40 00 09 65 call 200b87c <_Workspace_Allocate_or_fatal_error> 20092ec: 01 00 00 00 nop 20092f0: a4 10 00 08 mov %o0, %l2 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 20092f4: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 /* * Break the block into the various sections. */ inactive_per_block = (uint32_t *) _Addresses_Add_offset( object_blocks, block_count * sizeof(void*) ); 20092f8: b7 2e e0 02 sll %i3, 2, %i3 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 20092fc: 80 a4 00 01 cmp %l0, %g1 2009300: a6 04 80 1b add %l2, %i3, %l3 2009304: 0a 80 00 67 bcs 20094a0 <_Objects_Extend_information+0x2b0> 2009308: b6 04 c0 1b add %l3, %i3, %i3 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 200930c: 85 2c 20 02 sll %l0, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2009310: 80 a4 20 00 cmp %l0, 0 2009314: 02 80 00 07 be 2009330 <_Objects_Extend_information+0x140><== NEVER TAKEN 2009318: 82 10 20 00 clr %g1 local_table[ index ] = NULL; 200931c: c0 20 40 1b clr [ %g1 + %i3 ] 2009320: 82 00 60 04 add %g1, 4, %g1 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2009324: 80 a0 40 02 cmp %g1, %g2 2009328: 32 bf ff fe bne,a 2009320 <_Objects_Extend_information+0x130><== NEVER TAKEN 200932c: c0 20 40 1b clr [ %g1 + %i3 ] <== NOT EXECUTED 2009330: b5 2e a0 02 sll %i2, 2, %i2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2009334: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2009338: c0 24 80 1a clr [ %l2 + %i2 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 200933c: 82 07 00 03 add %i4, %g3, %g1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2009340: 80 a7 00 01 cmp %i4, %g1 2009344: 1a 80 00 0b bcc 2009370 <_Objects_Extend_information+0x180><== NEVER TAKEN 2009348: c0 24 c0 1a clr [ %l3 + %i2 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 200934c: 85 2f 20 02 sll %i4, 2, %g2 2009350: 87 28 e0 02 sll %g3, 2, %g3 2009354: 84 06 c0 02 add %i3, %g2, %g2 2009358: 82 10 20 00 clr %g1 inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 200935c: c0 20 80 01 clr [ %g2 + %g1 ] 2009360: 82 00 60 04 add %g1, 4, %g1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2009364: 80 a0 40 03 cmp %g1, %g3 2009368: 32 bf ff fe bne,a 2009360 <_Objects_Extend_information+0x170> 200936c: c0 20 80 01 clr [ %g2 + %g1 ] index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2009370: 7f ff e4 a7 call 200260c 2009374: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2009378: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 200937c: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2009380: f4 06 20 34 ld [ %i0 + 0x34 ], %i2 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2009384: f2 36 20 10 sth %i1, [ %i0 + 0x10 ] 2009388: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 200938c: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 2009390: e4 26 20 34 st %l2, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2009394: e6 26 20 30 st %l3, [ %i0 + 0x30 ] information->local_table = local_table; 2009398: f6 26 20 1c st %i3, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 200939c: 03 00 00 40 sethi %hi(0x10000), %g1 20093a0: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20093a4: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20093a8: b2 10 40 19 or %g1, %i1, %i1 information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 20093ac: f2 26 20 0c st %i1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 20093b0: 7f ff e4 9b call 200261c 20093b4: 01 00 00 00 nop _Workspace_Free( old_tables ); 20093b8: 40 00 09 2b call 200b864 <_Workspace_Free> 20093bc: 90 10 00 1a mov %i2, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 20093c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20093c4: bb 2f 60 02 sll %i5, 2, %i5 20093c8: e2 20 40 1d st %l1, [ %g1 + %i5 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 20093cc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20093d0: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 20093d4: d2 00 40 1d ld [ %g1 + %i5 ], %o1 20093d8: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 20093dc: 90 07 bf f4 add %fp, -12, %o0 20093e0: 7f ff fc b4 call 20086b0 <_Chain_Initialize> 20093e4: 35 00 00 40 sethi %hi(0x10000), %i2 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 20093e8: 10 80 00 0d b 200941c <_Objects_Extend_information+0x22c> 20093ec: b6 06 20 20 add %i0, 0x20, %i3 the_object->id = _Objects_Build_id( 20093f0: c6 16 20 04 lduh [ %i0 + 4 ], %g3 20093f4: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20093f8: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20093fc: 84 10 80 1a or %g2, %i2, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2009400: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2009404: 84 10 80 1c or %g2, %i4, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2009408: 90 10 00 1b mov %i3, %o0 200940c: 92 10 00 01 mov %g1, %o1 index++; 2009410: b8 07 20 01 inc %i4 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2009414: 7f ff fc 8c call 2008644 <_Chain_Append> 2009418: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 200941c: 7f ff fc 95 call 2008670 <_Chain_Get> 2009420: 90 07 bf f4 add %fp, -12, %o0 2009424: 82 92 20 00 orcc %o0, 0, %g1 2009428: 32 bf ff f2 bne,a 20093f0 <_Objects_Extend_information+0x200> 200942c: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2009430: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2009434: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2009438: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 200943c: c8 20 c0 1d st %g4, [ %g3 + %i5 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2009440: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2009444: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2009448: 81 c7 e0 08 ret 200944c: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2009450: 40 00 09 0b call 200b87c <_Workspace_Allocate_or_fatal_error> 2009454: 01 00 00 00 nop 2009458: 10 bf ff 98 b 20092b8 <_Objects_Extend_information+0xc8> 200945c: a2 10 00 08 mov %o0, %l1 */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); if ( information->auto_extend ) { object_blocks = _Workspace_Allocate( block_size ); 2009460: 40 00 08 f9 call 200b844 <_Workspace_Allocate> 2009464: 01 00 00 00 nop if ( !object_blocks ) { 2009468: a4 92 20 00 orcc %o0, 0, %l2 200946c: 32 bf ff a3 bne,a 20092f8 <_Objects_Extend_information+0x108> 2009470: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 _Workspace_Free( new_object_block ); 2009474: 40 00 08 fc call 200b864 <_Workspace_Free> 2009478: 90 10 00 11 mov %l1, %o0 200947c: 81 c7 e0 08 ret 2009480: 81 e8 00 00 restore 2009484: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2009488: b8 10 00 10 mov %l0, %i4 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 200948c: b6 10 20 01 mov 1, %i3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2009490: ba 10 20 00 clr %i5 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 2009494: b4 10 20 00 clr %i2 2009498: 10 bf ff 76 b 2009270 <_Objects_Extend_information+0x80> 200949c: a3 2c 60 10 sll %l1, 0x10, %l1 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 20094a0: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 20094a4: b5 2e a0 02 sll %i2, 2, %i2 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 20094a8: 90 10 00 12 mov %l2, %o0 20094ac: 40 00 1a 70 call 200fe6c 20094b0: 94 10 00 1a mov %i2, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 20094b4: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 20094b8: 94 10 00 1a mov %i2, %o2 20094bc: 40 00 1a 6c call 200fe6c 20094c0: 90 10 00 13 mov %l3, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 20094c4: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 20094c8: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 20094cc: 94 02 80 10 add %o2, %l0, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 20094d0: 90 10 00 1b mov %i3, %o0 20094d4: 40 00 1a 66 call 200fe6c 20094d8: 95 2a a0 02 sll %o2, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 20094dc: 10 bf ff 97 b 2009338 <_Objects_Extend_information+0x148> 20094e0: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20094e4: b8 10 00 10 mov %l0, %i4 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20094e8: b6 10 20 01 mov 1, %i3 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20094ec: 10 bf ff 61 b 2009270 <_Objects_Extend_information+0x80> <== NOT EXECUTED 20094f0: ba 10 20 00 clr %i5 <== NOT EXECUTED 20094f4: 81 c7 e0 08 ret 20094f8: 81 e8 00 00 restore else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { do_extend = false; 20094fc: b6 10 20 00 clr %i3 <== NOT EXECUTED * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2009500: 10 bf ff 5c b 2009270 <_Objects_Extend_information+0x80> <== NOT EXECUTED 2009504: ba 10 20 00 clr %i5 <== NOT EXECUTED =============================================================================== 020095b8 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 20095b8: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 20095bc: 80 a6 60 00 cmp %i1, 0 20095c0: 02 80 00 19 be 2009624 <_Objects_Get_information+0x6c> 20095c4: 01 00 00 00 nop /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 20095c8: 40 00 11 4b call 200daf4 <_Objects_API_maximum_class> 20095cc: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 20095d0: 80 a2 20 00 cmp %o0, 0 20095d4: 02 80 00 14 be 2009624 <_Objects_Get_information+0x6c> 20095d8: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20095dc: 0a 80 00 12 bcs 2009624 <_Objects_Get_information+0x6c> 20095e0: 03 00 80 72 sethi %hi(0x201c800), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20095e4: b1 2e 20 02 sll %i0, 2, %i0 20095e8: 82 10 63 e4 or %g1, 0x3e4, %g1 20095ec: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20095f0: 80 a0 60 00 cmp %g1, 0 20095f4: 02 80 00 0c be 2009624 <_Objects_Get_information+0x6c> <== NEVER TAKEN 20095f8: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20095fc: f0 00 40 19 ld [ %g1 + %i1 ], %i0 if ( !info ) 2009600: 80 a6 20 00 cmp %i0, 0 2009604: 02 80 00 08 be 2009624 <_Objects_Get_information+0x6c> <== NEVER TAKEN 2009608: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 200960c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2009610: 80 a0 60 00 cmp %g1, 0 2009614: 02 80 00 04 be 2009624 <_Objects_Get_information+0x6c> 2009618: 01 00 00 00 nop return NULL; #endif return info; } 200961c: 81 c7 e0 08 ret 2009620: 81 e8 00 00 restore { Objects_Information *info; int the_class_api_maximum; if ( !the_class ) return NULL; 2009624: 81 c7 e0 08 ret 2009628: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0201737c <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 201737c: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2017380: 80 a6 60 00 cmp %i1, 0 2017384: 02 80 00 3d be 2017478 <_Objects_Get_name_as_string+0xfc> 2017388: 80 a6 a0 00 cmp %i2, 0 return NULL; if ( name == NULL ) 201738c: 02 80 00 3b be 2017478 <_Objects_Get_name_as_string+0xfc> 2017390: ba 96 20 00 orcc %i0, 0, %i5 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2017394: 02 80 00 36 be 201746c <_Objects_Get_name_as_string+0xf0> 2017398: 03 00 80 bf sethi %hi(0x202fc00), %g1 information = _Objects_Get_information_id( tmpId ); 201739c: 7f ff e2 4b call 200fcc8 <_Objects_Get_information_id> 20173a0: 90 10 00 1d mov %i5, %o0 if ( !information ) 20173a4: 80 a2 20 00 cmp %o0, 0 20173a8: 02 80 00 34 be 2017478 <_Objects_Get_name_as_string+0xfc> 20173ac: 92 10 00 1d mov %i5, %o1 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 20173b0: 7f ff e2 86 call 200fdc8 <_Objects_Get> 20173b4: 94 07 bf f4 add %fp, -12, %o2 switch ( location ) { 20173b8: c2 07 bf f4 ld [ %fp + -12 ], %g1 20173bc: 80 a0 60 00 cmp %g1, 0 20173c0: 32 80 00 2f bne,a 201747c <_Objects_Get_name_as_string+0x100> 20173c4: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 20173c8: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 20173cc: c0 2f bf fc clrb [ %fp + -4 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 20173d0: 87 30 60 18 srl %g1, 0x18, %g3 lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; 20173d4: 85 30 60 08 srl %g1, 8, %g2 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 20173d8: 89 30 60 10 srl %g1, 0x10, %g4 lname[ 2 ] = (u32_name >> 8) & 0xff; 20173dc: c4 2f bf fa stb %g2, [ %fp + -6 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 20173e0: c6 2f bf f8 stb %g3, [ %fp + -8 ] lname[ 1 ] = (u32_name >> 16) & 0xff; 20173e4: c8 2f bf f9 stb %g4, [ %fp + -7 ] lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; 20173e8: c2 2f bf fb stb %g1, [ %fp + -5 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 20173ec: b2 86 7f ff addcc %i1, -1, %i1 20173f0: 02 80 00 25 be 2017484 <_Objects_Get_name_as_string+0x108><== NEVER TAKEN 20173f4: 84 10 00 03 mov %g3, %g2 20173f8: 80 a0 e0 00 cmp %g3, 0 20173fc: 02 80 00 17 be 2017458 <_Objects_Get_name_as_string+0xdc> 2017400: 86 10 00 1a mov %i2, %g3 2017404: 39 00 80 bb sethi %hi(0x202ec00), %i4 2017408: 82 10 20 00 clr %g1 201740c: 10 80 00 06 b 2017424 <_Objects_Get_name_as_string+0xa8> 2017410: b8 17 21 08 or %i4, 0x108, %i4 2017414: fa 49 00 01 ldsb [ %g4 + %g1 ], %i5 2017418: 80 a7 60 00 cmp %i5, 0 201741c: 02 80 00 0f be 2017458 <_Objects_Get_name_as_string+0xdc> 2017420: c4 08 40 04 ldub [ %g1 + %g4 ], %g2 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2017424: fa 07 00 00 ld [ %i4 ], %i5 2017428: 88 08 a0 ff and %g2, 0xff, %g4 201742c: 88 07 40 04 add %i5, %g4, %g4 2017430: fa 49 20 01 ldsb [ %g4 + 1 ], %i5 2017434: 80 8f 60 97 btst 0x97, %i5 2017438: 12 80 00 03 bne 2017444 <_Objects_Get_name_as_string+0xc8> 201743c: 88 07 bf f8 add %fp, -8, %g4 2017440: 84 10 20 2a mov 0x2a, %g2 2017444: c4 28 c0 00 stb %g2, [ %g3 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2017448: 82 00 60 01 inc %g1 201744c: 80 a0 40 19 cmp %g1, %i1 2017450: 12 bf ff f1 bne 2017414 <_Objects_Get_name_as_string+0x98> 2017454: 86 00 e0 01 inc %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; 2017458: c0 28 c0 00 clrb [ %g3 ] _Thread_Enable_dispatch(); 201745c: 7f ff e6 8f call 2010e98 <_Thread_Enable_dispatch> 2017460: b0 10 00 1a mov %i2, %i0 return name; } return NULL; /* unreachable path */ } 2017464: 81 c7 e0 08 ret 2017468: 81 e8 00 00 restore return NULL; if ( name == NULL ) return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 201746c: c2 00 63 a0 ld [ %g1 + 0x3a0 ], %g1 2017470: 10 bf ff cb b 201739c <_Objects_Get_name_as_string+0x20> 2017474: fa 00 60 08 ld [ %g1 + 8 ], %i5 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2017478: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 201747c: 81 c7 e0 08 ret 2017480: 91 e8 00 1a restore %g0, %i2, %o0 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2017484: 10 bf ff f5 b 2017458 <_Objects_Get_name_as_string+0xdc> <== NOT EXECUTED 2017488: 86 10 00 1a mov %i2, %g3 <== NOT EXECUTED =============================================================================== 02019ac8 <_Objects_Get_next>: Objects_Information *information, Objects_Id id, Objects_Locations *location_p, Objects_Id *next_id_p ) { 2019ac8: 9d e3 bf a0 save %sp, -96, %sp Objects_Control *object; Objects_Id next_id; if ( !information ) 2019acc: 80 a6 20 00 cmp %i0, 0 2019ad0: 02 80 00 29 be 2019b74 <_Objects_Get_next+0xac> 2019ad4: 80 a6 a0 00 cmp %i2, 0 return NULL; if ( !location_p ) 2019ad8: 02 80 00 27 be 2019b74 <_Objects_Get_next+0xac> 2019adc: 80 a6 e0 00 cmp %i3, 0 return NULL; if ( !next_id_p ) 2019ae0: 02 80 00 25 be 2019b74 <_Objects_Get_next+0xac> 2019ae4: 83 2e 60 10 sll %i1, 0x10, %g1 return NULL; if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX) 2019ae8: 80 a0 60 00 cmp %g1, 0 2019aec: 22 80 00 13 be,a 2019b38 <_Objects_Get_next+0x70> 2019af0: f2 06 20 08 ld [ %i0 + 8 ], %i1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019af4: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2 2019af8: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2019afc: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019b00: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2019b04: 90 10 00 18 mov %i0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019b08: 80 a0 80 01 cmp %g2, %g1 2019b0c: 0a 80 00 13 bcs 2019b58 <_Objects_Get_next+0x90> 2019b10: 94 10 00 1a mov %i2, %o2 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2019b14: 7f ff d8 ad call 200fdc8 <_Objects_Get> 2019b18: b2 06 60 01 inc %i1 next_id++; } while (*location_p != OBJECTS_LOCAL); 2019b1c: c2 06 80 00 ld [ %i2 ], %g1 2019b20: 80 a0 60 00 cmp %g1, 0 2019b24: 32 bf ff f5 bne,a 2019af8 <_Objects_Get_next+0x30> 2019b28: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2 *next_id_p = next_id; 2019b2c: f2 26 c0 00 st %i1, [ %i3 ] return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; } 2019b30: 81 c7 e0 08 ret 2019b34: 91 e8 00 08 restore %g0, %o0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019b38: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2 2019b3c: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2019b40: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019b44: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2019b48: 90 10 00 18 mov %i0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2019b4c: 80 a0 80 01 cmp %g2, %g1 2019b50: 1a bf ff f1 bcc 2019b14 <_Objects_Get_next+0x4c> <== ALWAYS TAKEN 2019b54: 94 10 00 1a mov %i2, %o2 { *location_p = OBJECTS_ERROR; 2019b58: 82 10 20 01 mov 1, %g1 2019b5c: c2 26 80 00 st %g1, [ %i2 ] *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; 2019b60: 90 10 20 00 clr %o0 *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; 2019b64: 82 10 3f ff mov -1, %g1 2019b68: c2 26 c0 00 st %g1, [ %i3 ] return 0; } 2019b6c: 81 c7 e0 08 ret 2019b70: 91 e8 00 08 restore %g0, %o0, %o0 { Objects_Control *object; Objects_Id next_id; if ( !information ) return NULL; 2019b74: 10 bf ff ef b 2019b30 <_Objects_Get_next+0x68> 2019b78: 90 10 20 00 clr %o0 =============================================================================== 0201aaec <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201aaec: c4 02 20 08 ld [ %o0 + 8 ], %g2 if ( information->maximum >= index ) { 201aaf0: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201aaf4: 92 22 40 02 sub %o1, %g2, %o1 201aaf8: 92 02 60 01 inc %o1 if ( information->maximum >= index ) { 201aafc: 80 a2 40 01 cmp %o1, %g1 201ab00: 18 80 00 09 bgu 201ab24 <_Objects_Get_no_protection+0x38> 201ab04: 93 2a 60 02 sll %o1, 2, %o1 if ( (the_object = information->local_table[ index ]) != NULL ) { 201ab08: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 201ab0c: d0 00 40 09 ld [ %g1 + %o1 ], %o0 201ab10: 80 a2 20 00 cmp %o0, 0 201ab14: 02 80 00 05 be 201ab28 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 201ab18: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 201ab1c: 81 c3 e0 08 retl 201ab20: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 201ab24: 82 10 20 01 mov 1, %g1 return NULL; 201ab28: 90 10 20 00 clr %o0 } 201ab2c: 81 c3 e0 08 retl 201ab30: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 0200fe3c <_Objects_Id_to_name>: Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 200fe3c: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 200fe40: 80 a6 20 00 cmp %i0, 0 200fe44: 12 80 00 06 bne 200fe5c <_Objects_Id_to_name+0x20> 200fe48: 83 36 20 18 srl %i0, 0x18, %g1 200fe4c: 03 00 80 bf sethi %hi(0x202fc00), %g1 200fe50: c2 00 63 a0 ld [ %g1 + 0x3a0 ], %g1 ! 202ffa0 <_Per_CPU_Information+0x10> 200fe54: f0 00 60 08 ld [ %g1 + 8 ], %i0 200fe58: 83 36 20 18 srl %i0, 0x18, %g1 200fe5c: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 200fe60: 84 00 7f ff add %g1, -1, %g2 200fe64: 80 a0 a0 02 cmp %g2, 2 200fe68: 18 80 00 18 bgu 200fec8 <_Objects_Id_to_name+0x8c> 200fe6c: 83 28 60 02 sll %g1, 2, %g1 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 200fe70: 05 00 80 bf sethi %hi(0x202fc00), %g2 200fe74: 84 10 a0 a4 or %g2, 0xa4, %g2 ! 202fca4 <_Objects_Information_table> 200fe78: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200fe7c: 80 a0 60 00 cmp %g1, 0 200fe80: 02 80 00 12 be 200fec8 <_Objects_Id_to_name+0x8c> 200fe84: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 200fe88: 85 28 a0 02 sll %g2, 2, %g2 200fe8c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 200fe90: 80 a2 20 00 cmp %o0, 0 200fe94: 02 80 00 0d be 200fec8 <_Objects_Id_to_name+0x8c> <== NEVER TAKEN 200fe98: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 200fe9c: 7f ff ff cb call 200fdc8 <_Objects_Get> 200fea0: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 200fea4: 80 a2 20 00 cmp %o0, 0 200fea8: 02 80 00 08 be 200fec8 <_Objects_Id_to_name+0x8c> 200feac: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 200feb0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 200feb4: b0 10 20 00 clr %i0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 200feb8: 40 00 03 f8 call 2010e98 <_Thread_Enable_dispatch> 200febc: c2 26 40 00 st %g1, [ %i1 ] 200fec0: 81 c7 e0 08 ret 200fec4: 81 e8 00 00 restore tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; 200fec8: 81 c7 e0 08 ret 200fecc: 91 e8 20 03 restore %g0, 3, %o0 =============================================================================== 020098a4 <_Objects_Shrink_information>: #include void _Objects_Shrink_information( Objects_Information *information ) { 20098a4: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 20098a8: f8 16 20 0a lduh [ %i0 + 0xa ], %i4 block_count = (information->maximum - index_base) / 20098ac: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3 20098b0: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 20098b4: 92 10 00 1b mov %i3, %o1 20098b8: 40 00 3a 99 call 201831c <.udiv> 20098bc: 90 22 00 1c sub %o0, %i4, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20098c0: 80 a2 20 00 cmp %o0, 0 20098c4: 02 80 00 36 be 200999c <_Objects_Shrink_information+0xf8> <== NEVER TAKEN 20098c8: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 20098cc: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 20098d0: c2 01 00 00 ld [ %g4 ], %g1 20098d4: 80 a6 c0 01 cmp %i3, %g1 20098d8: 02 80 00 0f be 2009914 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 20098dc: 82 10 20 00 clr %g1 20098e0: 10 80 00 07 b 20098fc <_Objects_Shrink_information+0x58> 20098e4: ba 10 20 04 mov 4, %i5 20098e8: c4 01 00 1d ld [ %g4 + %i5 ], %g2 20098ec: 80 a6 c0 02 cmp %i3, %g2 20098f0: 02 80 00 0a be 2009918 <_Objects_Shrink_information+0x74> 20098f4: 86 07 60 04 add %i5, 4, %g3 20098f8: ba 10 00 03 mov %g3, %i5 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20098fc: 82 00 60 01 inc %g1 2009900: 80 a0 40 08 cmp %g1, %o0 2009904: 12 bf ff f9 bne 20098e8 <_Objects_Shrink_information+0x44> 2009908: b8 07 00 1b add %i4, %i3, %i4 200990c: 81 c7 e0 08 ret 2009910: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 2009914: ba 10 20 00 clr %i5 <== NOT EXECUTED * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2009918: 35 00 00 3f sethi %hi(0xfc00), %i2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200991c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 2009920: 10 80 00 05 b 2009934 <_Objects_Shrink_information+0x90> 2009924: b4 16 a3 ff or %i2, 0x3ff, %i2 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 2009928: 90 96 e0 00 orcc %i3, 0, %o0 200992c: 22 80 00 12 be,a 2009974 <_Objects_Shrink_information+0xd0> 2009930: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2009934: c2 02 20 08 ld [ %o0 + 8 ], %g1 2009938: 82 08 40 1a and %g1, %i2, %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 200993c: 80 a0 40 1c cmp %g1, %i4 2009940: 0a bf ff fa bcs 2009928 <_Objects_Shrink_information+0x84> 2009944: f6 02 00 00 ld [ %o0 ], %i3 (index < (index_base + information->allocation_size))) { 2009948: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 200994c: 84 07 00 02 add %i4, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2009950: 80 a0 40 02 cmp %g1, %g2 2009954: 3a bf ff f6 bcc,a 200992c <_Objects_Shrink_information+0x88> 2009958: 90 96 e0 00 orcc %i3, 0, %o0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 200995c: 40 00 0e 9e call 200d3d4 <_Chain_Extract> 2009960: 01 00 00 00 nop } } while ( the_object ); 2009964: 90 96 e0 00 orcc %i3, 0, %o0 2009968: 32 bf ff f4 bne,a 2009938 <_Objects_Shrink_information+0x94><== ALWAYS TAKEN 200996c: c2 02 20 08 ld [ %o0 + 8 ], %g1 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 2009970: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 2009974: 40 00 07 bc call 200b864 <_Workspace_Free> 2009978: d0 00 40 1d ld [ %g1 + %i5 ], %o0 information->object_blocks[ block ] = NULL; 200997c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 2009980: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 2009984: c0 20 40 1d clr [ %g1 + %i5 ] information->inactive_per_block[ block ] = 0; 2009988: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 200998c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 2009990: c0 20 c0 1d clr [ %g3 + %i5 ] information->inactive -= information->allocation_size; 2009994: 82 20 80 01 sub %g2, %g1, %g1 2009998: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 200999c: 81 c7 e0 08 ret 20099a0: 81 e8 00 00 restore =============================================================================== 0200a8e8 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200a8e8: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 200a8ec: 80 a6 60 00 cmp %i1, 0 200a8f0: 02 80 00 4c be 200aa20 <_RBTree_Extract_unprotected+0x138> 200a8f4: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 200a8f8: c2 06 20 08 ld [ %i0 + 8 ], %g1 200a8fc: 80 a0 40 19 cmp %g1, %i1 200a900: 02 80 00 56 be 200aa58 <_RBTree_Extract_unprotected+0x170> 200a904: 90 10 00 19 mov %i1, %o0 the_rbtree->first[RBT_LEFT] = next; } /* Check if max needs to be updated. min=max for 1 element trees so * do not use else if here. */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 200a908: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200a90c: 80 a0 40 19 cmp %g1, %i1 200a910: 02 80 00 56 be 200aa68 <_RBTree_Extract_unprotected+0x180> 200a914: 90 10 00 19 mov %i1, %o0 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200a918: fa 06 60 04 ld [ %i1 + 4 ], %i5 200a91c: 80 a7 60 00 cmp %i5, 0 200a920: 22 80 00 5a be,a 200aa88 <_RBTree_Extract_unprotected+0x1a0> 200a924: f8 06 60 08 ld [ %i1 + 8 ], %i4 200a928: c2 06 60 08 ld [ %i1 + 8 ], %g1 200a92c: 80 a0 60 00 cmp %g1, 0 200a930: 32 80 00 05 bne,a 200a944 <_RBTree_Extract_unprotected+0x5c> 200a934: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a938: 10 80 00 3c b 200aa28 <_RBTree_Extract_unprotected+0x140> 200a93c: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 200a940: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a944: 80 a0 60 00 cmp %g1, 0 200a948: 32 bf ff fe bne,a 200a940 <_RBTree_Extract_unprotected+0x58> 200a94c: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 200a950: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 200a954: 80 a7 20 00 cmp %i4, 0 200a958: 02 80 00 48 be 200aa78 <_RBTree_Extract_unprotected+0x190> 200a95c: 01 00 00 00 nop leaf->parent = target->parent; 200a960: c2 07 40 00 ld [ %i5 ], %g1 200a964: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 200a968: c4 07 40 00 ld [ %i5 ], %g2 target->parent->child[dir] = leaf; /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200a96c: c2 06 40 00 ld [ %i1 ], %g1 } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 200a970: c8 00 a0 04 ld [ %g2 + 4 ], %g4 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 200a974: c6 07 60 0c ld [ %i5 + 0xc ], %g3 dir = target != target->parent->child[0]; 200a978: 88 1f 40 04 xor %i5, %g4, %g4 200a97c: 80 a0 00 04 cmp %g0, %g4 200a980: 88 40 20 00 addx %g0, 0, %g4 target->parent->child[dir] = leaf; 200a984: 89 29 20 02 sll %g4, 2, %g4 200a988: 84 00 80 04 add %g2, %g4, %g2 200a98c: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200a990: c4 00 60 04 ld [ %g1 + 4 ], %g2 200a994: 84 18 80 19 xor %g2, %i1, %g2 200a998: 80 a0 00 02 cmp %g0, %g2 200a99c: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = target; 200a9a0: 85 28 a0 02 sll %g2, 2, %g2 200a9a4: 82 00 40 02 add %g1, %g2, %g1 200a9a8: fa 20 60 04 st %i5, [ %g1 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 200a9ac: c2 06 60 08 ld [ %i1 + 8 ], %g1 200a9b0: c2 27 60 08 st %g1, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 200a9b4: c2 06 60 08 ld [ %i1 + 8 ], %g1 200a9b8: 80 a0 60 00 cmp %g1, 0 200a9bc: 32 80 00 02 bne,a 200a9c4 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN 200a9c0: fa 20 40 00 st %i5, [ %g1 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 200a9c4: c2 06 60 04 ld [ %i1 + 4 ], %g1 200a9c8: c2 27 60 04 st %g1, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 200a9cc: c2 06 60 04 ld [ %i1 + 4 ], %g1 200a9d0: 80 a0 60 00 cmp %g1, 0 200a9d4: 32 80 00 02 bne,a 200a9dc <_RBTree_Extract_unprotected+0xf4> 200a9d8: fa 20 40 00 st %i5, [ %g1 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200a9dc: c4 06 40 00 ld [ %i1 ], %g2 target->color = the_node->color; 200a9e0: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200a9e4: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 200a9e8: c2 27 60 0c st %g1, [ %i5 + 0xc ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 200a9ec: 80 a0 e0 00 cmp %g3, 0 200a9f0: 32 80 00 06 bne,a 200aa08 <_RBTree_Extract_unprotected+0x120> 200a9f4: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 200a9f8: 80 a7 20 00 cmp %i4, 0 200a9fc: 32 80 00 02 bne,a 200aa04 <_RBTree_Extract_unprotected+0x11c> 200aa00: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 200aa04: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 200aa08: c0 26 60 08 clr [ %i1 + 8 ] 200aa0c: c0 26 60 04 clr [ %i1 + 4 ] 200aa10: 80 a0 60 00 cmp %g1, 0 200aa14: 02 80 00 03 be 200aa20 <_RBTree_Extract_unprotected+0x138> 200aa18: c0 26 40 00 clr [ %i1 ] 200aa1c: c0 20 60 0c clr [ %g1 + 0xc ] 200aa20: 81 c7 e0 08 ret 200aa24: 81 e8 00 00 restore * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { leaf->parent = the_node->parent; 200aa28: c2 06 40 00 ld [ %i1 ], %g1 200aa2c: c2 27 00 00 st %g1, [ %i4 ] _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200aa30: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 200aa34: c6 06 60 0c ld [ %i1 + 0xc ], %g3 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200aa38: c4 00 60 04 ld [ %g1 + 4 ], %g2 200aa3c: 84 18 80 19 xor %g2, %i1, %g2 200aa40: 80 a0 00 02 cmp %g0, %g2 200aa44: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = leaf; 200aa48: 85 28 a0 02 sll %g2, 2, %g2 200aa4c: 82 00 40 02 add %g1, %g2, %g1 200aa50: 10 bf ff e7 b 200a9ec <_RBTree_Extract_unprotected+0x104> 200aa54: f8 20 60 04 st %i4, [ %g1 + 4 ] */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_RIGHT ); 200aa58: 40 00 00 eb call 200ae04 <_RBTree_Next_unprotected> 200aa5c: 92 10 20 01 mov 1, %o1 /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { RBTree_Node *next; next = _RBTree_Successor_unprotected(the_node); the_rbtree->first[RBT_LEFT] = next; 200aa60: 10 bf ff aa b 200a908 <_RBTree_Extract_unprotected+0x20> 200aa64: d0 26 20 08 st %o0, [ %i0 + 8 ] */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected( const RBTree_Node *node ) { return _RBTree_Next_unprotected( node, RBT_LEFT ); 200aa68: 40 00 00 e7 call 200ae04 <_RBTree_Next_unprotected> 200aa6c: 92 10 20 00 clr %o1 /* Check if max needs to be updated. min=max for 1 element trees so * do not use else if here. */ if (the_node == the_rbtree->first[RBT_RIGHT]) { RBTree_Node *previous; previous = _RBTree_Predecessor_unprotected(the_node); the_rbtree->first[RBT_RIGHT] = previous; 200aa70: 10 bf ff aa b 200a918 <_RBTree_Extract_unprotected+0x30> 200aa74: d0 26 20 0c st %o0, [ %i0 + 0xc ] leaf = target->child[RBT_LEFT]; if(leaf) { leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 200aa78: 7f ff fe d3 call 200a5c4 <_RBTree_Extract_validate_unprotected> 200aa7c: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 200aa80: 10 bf ff bb b 200a96c <_RBTree_Extract_unprotected+0x84> 200aa84: c4 07 40 00 ld [ %i5 ], %g2 * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { 200aa88: 80 a7 20 00 cmp %i4, 0 200aa8c: 32 bf ff e8 bne,a 200aa2c <_RBTree_Extract_unprotected+0x144> 200aa90: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 200aa94: 7f ff fe cc call 200a5c4 <_RBTree_Extract_validate_unprotected> 200aa98: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200aa9c: 10 bf ff e6 b 200aa34 <_RBTree_Extract_unprotected+0x14c> 200aaa0: c2 06 40 00 ld [ %i1 ], %g1 =============================================================================== 0200a5c4 <_RBTree_Extract_validate_unprotected>: ) { RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 200a5c4: c2 02 00 00 ld [ %o0 ], %g1 if(!parent->parent) return; 200a5c8: c4 00 40 00 ld [ %g1 ], %g2 200a5cc: 80 a0 a0 00 cmp %g2, 0 200a5d0: 02 80 00 3f be 200a6cc <_RBTree_Extract_validate_unprotected+0x108> 200a5d4: 01 00 00 00 nop { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200a5d8: c4 00 60 04 ld [ %g1 + 4 ], %g2 200a5dc: 80 a2 00 02 cmp %o0, %g2 200a5e0: 22 80 00 02 be,a 200a5e8 <_RBTree_Extract_validate_unprotected+0x24> 200a5e4: c4 00 60 08 ld [ %g1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a5e8: c6 02 20 0c ld [ %o0 + 0xc ], %g3 200a5ec: 80 a0 e0 01 cmp %g3, 1 200a5f0: 02 80 00 32 be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4> 200a5f4: 9a 10 20 01 mov 1, %o5 sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 200a5f8: c6 00 40 00 ld [ %g1 ], %g3 200a5fc: 80 a0 e0 00 cmp %g3, 0 200a600: 02 80 00 2e be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4> 200a604: 80 a0 a0 00 cmp %g2, 0 200a608: 22 80 00 07 be,a 200a624 <_RBTree_Extract_validate_unprotected+0x60><== NEVER TAKEN 200a60c: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED 200a610: c8 00 a0 0c ld [ %g2 + 0xc ], %g4 200a614: 80 a1 20 01 cmp %g4, 1 200a618: 22 80 00 63 be,a 200a7a4 <_RBTree_Extract_validate_unprotected+0x1e0> 200a61c: d8 00 60 04 ld [ %g1 + 4 ], %o4 _RBTree_Rotate(parent, dir); sibling = parent->child[_RBTree_Opposite_direction(dir)]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 200a620: c6 00 a0 08 ld [ %g2 + 8 ], %g3 200a624: 80 a0 e0 00 cmp %g3, 0 200a628: 22 80 00 07 be,a 200a644 <_RBTree_Extract_validate_unprotected+0x80> 200a62c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a630: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 200a634: 80 a0 e0 01 cmp %g3, 1 200a638: 22 80 00 29 be,a 200a6dc <_RBTree_Extract_validate_unprotected+0x118> 200a63c: c6 00 60 04 ld [ %g1 + 4 ], %g3 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 200a640: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200a644: 80 a0 e0 00 cmp %g3, 0 200a648: 22 80 00 07 be,a 200a664 <_RBTree_Extract_validate_unprotected+0xa0> 200a64c: da 20 a0 0c st %o5, [ %g2 + 0xc ] 200a650: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 200a654: 80 a0 e0 01 cmp %g3, 1 200a658: 22 80 00 21 be,a 200a6dc <_RBTree_Extract_validate_unprotected+0x118> 200a65c: c6 00 60 04 ld [ %g1 + 4 ], %g3 sibling->color = RBT_RED; 200a660: da 20 a0 0c st %o5, [ %g2 + 0xc ] 200a664: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200a668: 80 a0 a0 01 cmp %g2, 1 200a66c: 22 80 00 99 be,a 200a8d0 <_RBTree_Extract_validate_unprotected+0x30c> 200a670: c0 20 60 0c clr [ %g1 + 0xc ] if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; 200a674: c6 00 40 00 ld [ %g1 ], %g3 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200a678: 80 a0 e0 00 cmp %g3, 0 200a67c: 02 80 00 6c be 200a82c <_RBTree_Extract_validate_unprotected+0x268><== NEVER TAKEN 200a680: 90 10 00 01 mov %g1, %o0 if(!(the_node->parent->parent)) return NULL; 200a684: c4 00 c0 00 ld [ %g3 ], %g2 200a688: 80 a0 a0 00 cmp %g2, 0 200a68c: 02 80 00 69 be 200a830 <_RBTree_Extract_validate_unprotected+0x26c> 200a690: 84 10 20 00 clr %g2 if(the_node == the_node->parent->child[RBT_LEFT]) 200a694: c4 00 e0 04 ld [ %g3 + 4 ], %g2 200a698: 80 a0 40 02 cmp %g1, %g2 200a69c: 22 80 00 0e be,a 200a6d4 <_RBTree_Extract_validate_unprotected+0x110> 200a6a0: c4 00 e0 08 ld [ %g3 + 8 ], %g2 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200a6a4: 82 10 00 03 mov %g3, %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a6a8: c6 02 20 0c ld [ %o0 + 0xc ], %g3 200a6ac: 80 a0 e0 01 cmp %g3, 1 200a6b0: 32 bf ff d3 bne,a 200a5fc <_RBTree_Extract_validate_unprotected+0x38><== ALWAYS TAKEN 200a6b4: c6 00 40 00 ld [ %g1 ], %g3 sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200a6b8: c2 02 00 00 ld [ %o0 ], %g1 200a6bc: c2 00 40 00 ld [ %g1 ], %g1 200a6c0: 80 a0 60 00 cmp %g1, 0 200a6c4: 02 80 00 5f be 200a840 <_RBTree_Extract_validate_unprotected+0x27c> 200a6c8: 01 00 00 00 nop 200a6cc: 81 c3 e0 08 retl 200a6d0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200a6d4: 10 bf ff f5 b 200a6a8 <_RBTree_Extract_validate_unprotected+0xe4> 200a6d8: 82 10 00 03 mov %g3, %g1 * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 200a6dc: 86 1a 00 03 xor %o0, %g3, %g3 200a6e0: 80 a0 00 03 cmp %g0, %g3 200a6e4: 9a 40 20 00 addx %g0, 0, %o5 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200a6e8: 86 1b 60 01 xor %o5, 1, %g3 if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) { 200a6ec: 87 28 e0 02 sll %g3, 2, %g3 200a6f0: 88 00 80 03 add %g2, %g3, %g4 200a6f4: c8 01 20 04 ld [ %g4 + 4 ], %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200a6f8: 80 a1 20 00 cmp %g4, 0 200a6fc: 22 80 00 07 be,a 200a718 <_RBTree_Extract_validate_unprotected+0x154> 200a700: 9b 2b 60 02 sll %o5, 2, %o5 200a704: d8 01 20 0c ld [ %g4 + 0xc ], %o4 200a708: 80 a3 20 01 cmp %o4, 1 200a70c: 22 80 00 4f be,a 200a848 <_RBTree_Extract_validate_unprotected+0x284> 200a710: d6 00 60 0c ld [ %g1 + 0xc ], %o3 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; 200a714: 9b 2b 60 02 sll %o5, 2, %o5 200a718: 98 00 80 0d add %g2, %o5, %o4 200a71c: c8 03 20 04 ld [ %o4 + 4 ], %g4 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) { sibling->color = RBT_RED; 200a720: 96 10 20 01 mov 1, %o3 200a724: d6 20 a0 0c st %o3, [ %g2 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200a728: 80 a1 20 00 cmp %g4, 0 200a72c: 02 80 00 15 be 200a780 <_RBTree_Extract_validate_unprotected+0x1bc><== NEVER TAKEN 200a730: c0 21 20 0c clr [ %g4 + 0xc ] c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200a734: 96 01 00 03 add %g4, %g3, %o3 200a738: d4 02 e0 04 ld [ %o3 + 4 ], %o2 200a73c: d4 23 20 04 st %o2, [ %o4 + 4 ] if (c->child[dir]) 200a740: d8 02 e0 04 ld [ %o3 + 4 ], %o4 200a744: 80 a3 20 00 cmp %o4, 0 200a748: 32 80 00 02 bne,a 200a750 <_RBTree_Extract_validate_unprotected+0x18c> 200a74c: c4 23 00 00 st %g2, [ %o4 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a750: d8 00 80 00 ld [ %g2 ], %o4 the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200a754: 96 01 00 03 add %g4, %g3, %o3 200a758: c4 22 e0 04 st %g2, [ %o3 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a75c: d6 03 20 04 ld [ %o4 + 4 ], %o3 c->parent = the_node->parent; 200a760: d8 21 00 00 st %o4, [ %g4 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a764: 96 18 80 0b xor %g2, %o3, %o3 c->parent = the_node->parent; the_node->parent = c; 200a768: c8 20 80 00 st %g4, [ %g2 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a76c: 80 a0 00 0b cmp %g0, %o3 200a770: 84 40 20 00 addx %g0, 0, %g2 200a774: 85 28 a0 02 sll %g2, 2, %g2 200a778: 98 03 00 02 add %o4, %g2, %o4 200a77c: c8 23 20 04 st %g4, [ %o4 + 4 ] sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir)); sibling = parent->child[_RBTree_Opposite_direction(dir)]; } sibling->color = parent->color; 200a780: c8 00 60 0c ld [ %g1 + 0xc ], %g4 dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) { sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir)); sibling = parent->child[_RBTree_Opposite_direction(dir)]; 200a784: 84 00 40 03 add %g1, %g3, %g2 200a788: c4 00 a0 04 ld [ %g2 + 4 ], %g2 } sibling->color = parent->color; 200a78c: c8 20 a0 0c st %g4, [ %g2 + 0xc ] 200a790: 88 00 80 03 add %g2, %g3, %g4 200a794: c8 01 20 04 ld [ %g4 + 4 ], %g4 parent->color = RBT_BLACK; 200a798: c0 20 60 0c clr [ %g1 + 0xc ] sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK; 200a79c: 10 80 00 33 b 200a868 <_RBTree_Extract_validate_unprotected+0x2a4> 200a7a0: c0 21 20 0c clr [ %g4 + 0xc ] * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 200a7a4: c8 20 60 0c st %g4, [ %g1 + 0xc ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 200a7a8: 88 1b 00 08 xor %o4, %o0, %g4 200a7ac: 80 a0 00 04 cmp %g0, %g4 200a7b0: 94 40 20 00 addx %g0, 0, %o2 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200a7b4: 96 1a a0 01 xor %o2, 1, %o3 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200a7b8: 97 2a e0 02 sll %o3, 2, %o3 200a7bc: 98 00 40 0b add %g1, %o3, %o4 200a7c0: c8 03 20 04 ld [ %o4 + 4 ], %g4 200a7c4: 80 a1 20 00 cmp %g4, 0 200a7c8: 02 80 00 1c be 200a838 <_RBTree_Extract_validate_unprotected+0x274><== NEVER TAKEN 200a7cc: c0 20 a0 0c clr [ %g2 + 0xc ] c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200a7d0: 95 2a a0 02 sll %o2, 2, %o2 200a7d4: 84 01 00 0a add %g4, %o2, %g2 200a7d8: d2 00 a0 04 ld [ %g2 + 4 ], %o1 200a7dc: d2 23 20 04 st %o1, [ %o4 + 4 ] if (c->child[dir]) 200a7e0: c4 00 a0 04 ld [ %g2 + 4 ], %g2 200a7e4: 80 a0 a0 00 cmp %g2, 0 200a7e8: 02 80 00 04 be 200a7f8 <_RBTree_Extract_validate_unprotected+0x234><== NEVER TAKEN 200a7ec: 94 01 00 0a add %g4, %o2, %o2 c->child[dir]->parent = the_node; 200a7f0: c2 20 80 00 st %g1, [ %g2 ] 200a7f4: c6 00 40 00 ld [ %g1 ], %g3 c->child[dir] = the_node; 200a7f8: c2 22 a0 04 st %g1, [ %o2 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a7fc: c4 00 e0 04 ld [ %g3 + 4 ], %g2 c->parent = the_node->parent; 200a800: c6 21 00 00 st %g3, [ %g4 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a804: 84 18 40 02 xor %g1, %g2, %g2 200a808: 80 a0 00 02 cmp %g0, %g2 200a80c: 84 40 20 00 addx %g0, 0, %g2 200a810: 85 28 a0 02 sll %g2, 2, %g2 200a814: 96 00 40 0b add %g1, %o3, %o3 200a818: 86 00 c0 02 add %g3, %g2, %g3 c->parent = the_node->parent; the_node->parent = c; 200a81c: c8 20 40 00 st %g4, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a820: c8 20 e0 04 st %g4, [ %g3 + 4 ] 200a824: 10 bf ff 7f b 200a620 <_RBTree_Extract_validate_unprotected+0x5c> 200a828: c4 02 e0 04 ld [ %o3 + 4 ], %g2 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( const RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200a82c: 84 10 20 00 clr %g2 <== NOT EXECUTED 200a830: 10 bf ff 9e b 200a6a8 <_RBTree_Extract_validate_unprotected+0xe4> 200a834: 82 10 00 03 mov %g3, %g1 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200a838: 10 bf ff 7a b 200a620 <_RBTree_Extract_validate_unprotected+0x5c><== NOT EXECUTED 200a83c: 84 10 20 00 clr %g2 <== NOT EXECUTED sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200a840: 81 c3 e0 08 retl 200a844: c0 22 20 0c clr [ %o0 + 0xc ] 200a848: 98 00 40 03 add %g1, %g3, %o4 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir)); sibling = parent->child[_RBTree_Opposite_direction(dir)]; } sibling->color = parent->color; 200a84c: d6 20 a0 0c st %o3, [ %g2 + 0xc ] parent->color = RBT_BLACK; 200a850: c0 20 60 0c clr [ %g1 + 0xc ] 200a854: c4 03 20 04 ld [ %o4 + 4 ], %g2 200a858: 80 a0 a0 00 cmp %g2, 0 200a85c: 02 bf ff 97 be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4><== NEVER TAKEN 200a860: c0 21 20 0c clr [ %g4 + 0xc ] 200a864: 9b 2b 60 02 sll %o5, 2, %o5 c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200a868: 88 00 80 0d add %g2, %o5, %g4 200a86c: d8 01 20 04 ld [ %g4 + 4 ], %o4 200a870: 86 00 40 03 add %g1, %g3, %g3 200a874: d8 20 e0 04 st %o4, [ %g3 + 4 ] if (c->child[dir]) 200a878: c6 01 20 04 ld [ %g4 + 4 ], %g3 200a87c: 80 a0 e0 00 cmp %g3, 0 200a880: 32 80 00 02 bne,a 200a888 <_RBTree_Extract_validate_unprotected+0x2c4> 200a884: c2 20 c0 00 st %g1, [ %g3 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a888: c6 00 40 00 ld [ %g1 ], %g3 the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200a88c: 9a 00 80 0d add %g2, %o5, %o5 200a890: c2 23 60 04 st %g1, [ %o5 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a894: c8 00 e0 04 ld [ %g3 + 4 ], %g4 c->parent = the_node->parent; 200a898: c6 20 80 00 st %g3, [ %g2 ] the_node->parent = c; 200a89c: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200a8a0: 88 18 40 04 xor %g1, %g4, %g4 200a8a4: 80 a0 00 04 cmp %g0, %g4 200a8a8: 82 40 20 00 addx %g0, 0, %g1 200a8ac: 83 28 60 02 sll %g1, 2, %g1 200a8b0: 86 00 c0 01 add %g3, %g1, %g3 sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200a8b4: c2 02 00 00 ld [ %o0 ], %g1 200a8b8: c4 20 e0 04 st %g2, [ %g3 + 4 ] 200a8bc: c2 00 40 00 ld [ %g1 ], %g1 200a8c0: 80 a0 60 00 cmp %g1, 0 200a8c4: 12 bf ff 82 bne 200a6cc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN 200a8c8: 01 00 00 00 nop 200a8cc: 30 bf ff dd b,a 200a840 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED 200a8d0: c2 02 00 00 ld [ %o0 ], %g1 200a8d4: c2 00 40 00 ld [ %g1 ], %g1 200a8d8: 80 a0 60 00 cmp %g1, 0 200a8dc: 12 bf ff 7c bne 200a6cc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN 200a8e0: 01 00 00 00 nop 200a8e4: 30 bf ff d7 b,a 200a840 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED =============================================================================== 0200b4dc <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, RBTree_Node *search_node ) { 200b4dc: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 200b4e0: 7f ff e1 ed call 2003c94 200b4e4: b8 10 00 18 mov %i0, %i4 200b4e8: b6 10 00 08 mov %o0, %i3 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 200b4ec: fa 06 20 04 ld [ %i0 + 4 ], %i5 RBTree_Node* found = NULL; int compare_result; while (iter_node) { 200b4f0: 80 a7 60 00 cmp %i5, 0 200b4f4: 02 80 00 15 be 200b548 <_RBTree_Find+0x6c> <== NEVER TAKEN 200b4f8: b0 10 20 00 clr %i0 compare_result = the_rbtree->compare_function(the_node, iter_node); 200b4fc: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 200b500: 92 10 00 1d mov %i5, %o1 200b504: 9f c0 40 00 call %g1 200b508: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 200b50c: 83 3a 20 1f sra %o0, 0x1f, %g1 RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( _RBTree_Is_equal( compare_result ) ) { 200b510: 80 a2 20 00 cmp %o0, 0 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 200b514: 82 20 40 08 sub %g1, %o0, %g1 200b518: 83 30 60 1f srl %g1, 0x1f, %g1 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 200b51c: 83 28 60 02 sll %g1, 2, %g1 RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( _RBTree_Is_equal( compare_result ) ) { 200b520: 12 80 00 06 bne 200b538 <_RBTree_Find+0x5c> 200b524: 82 07 40 01 add %i5, %g1, %g1 found = iter_node; if ( the_rbtree->is_unique ) 200b528: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2 200b52c: 80 a0 a0 00 cmp %g2, 0 200b530: 12 80 00 0a bne 200b558 <_RBTree_Find+0x7c> 200b534: b0 10 00 1d mov %i5, %i0 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 200b538: fa 00 60 04 ld [ %g1 + 4 ], %i5 ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { 200b53c: 80 a7 60 00 cmp %i5, 0 200b540: 32 bf ff f0 bne,a 200b500 <_RBTree_Find+0x24> 200b544: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 200b548: 7f ff e1 d7 call 2003ca4 200b54c: 90 10 00 1b mov %i3, %o0 return return_node; } 200b550: 81 c7 e0 08 ret 200b554: 81 e8 00 00 restore RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 200b558: 7f ff e1 d3 call 2003ca4 200b55c: 90 10 00 1b mov %i3, %o0 return return_node; } 200b560: 81 c7 e0 08 ret 200b564: 81 e8 00 00 restore =============================================================================== 0200b948 <_RBTree_Initialize>: void *starting_address, size_t number_nodes, size_t node_size, bool is_unique ) { 200b948: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 200b94c: 80 a6 20 00 cmp %i0, 0 200b950: 02 80 00 0f be 200b98c <_RBTree_Initialize+0x44> <== NEVER TAKEN 200b954: 80 a6 e0 00 cmp %i3, 0 RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 200b958: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 200b95c: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 200b960: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 200b964: c0 26 20 0c clr [ %i0 + 0xc ] the_rbtree->compare_function = compare_function; 200b968: f2 26 20 10 st %i1, [ %i0 + 0x10 ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b96c: 02 80 00 08 be 200b98c <_RBTree_Initialize+0x44> <== NEVER TAKEN 200b970: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ] _RBTree_Insert_unprotected(the_rbtree, next); 200b974: 92 10 00 1a mov %i2, %o1 200b978: 7f ff ff 0b call 200b5a4 <_RBTree_Insert_unprotected> 200b97c: 90 10 00 18 mov %i0, %o0 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200b980: b6 86 ff ff addcc %i3, -1, %i3 200b984: 12 bf ff fc bne 200b974 <_RBTree_Initialize+0x2c> 200b988: b4 06 80 1c add %i2, %i4, %i2 200b98c: 81 c7 e0 08 ret 200b990: 81 e8 00 00 restore =============================================================================== 0200aac8 <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200aac8: 9d e3 bf a0 save %sp, -96, %sp if(!the_node) return (RBTree_Node*)-1; 200aacc: 80 a6 60 00 cmp %i1, 0 200aad0: 02 80 00 9c be 200ad40 <_RBTree_Insert_unprotected+0x278> 200aad4: b8 10 00 18 mov %i0, %i4 RBTree_Node *iter_node = the_rbtree->root; 200aad8: fa 06 20 04 ld [ %i0 + 4 ], %i5 int compare_result; if (!iter_node) { /* special case: first node inserted */ 200aadc: 80 a7 60 00 cmp %i5, 0 200aae0: 32 80 00 05 bne,a 200aaf4 <_RBTree_Insert_unprotected+0x2c> 200aae4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 the_node->color = RBT_BLACK; 200aae8: 10 80 00 9a b 200ad50 <_RBTree_Insert_unprotected+0x288> 200aaec: c0 26 60 0c clr [ %i1 + 0xc ] the_node->parent = (RBTree_Node *) the_rbtree; the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); 200aaf0: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 200aaf4: 92 10 00 1d mov %i5, %o1 200aaf8: 9f c0 40 00 call %g1 200aafc: 90 10 00 19 mov %i1, %o0 if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200ab00: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2 return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); 200ab04: b6 38 00 08 xnor %g0, %o0, %i3 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200ab08: 80 a0 a0 00 cmp %g2, 0 return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); 200ab0c: b7 36 e0 1f srl %i3, 0x1f, %i3 if (!iter_node->child[dir]) { 200ab10: 83 2e e0 02 sll %i3, 2, %g1 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200ab14: 02 80 00 05 be 200ab28 <_RBTree_Insert_unprotected+0x60> 200ab18: 82 07 40 01 add %i5, %g1, %g1 200ab1c: 80 a2 20 00 cmp %o0, 0 200ab20: 02 80 00 8a be 200ad48 <_RBTree_Insert_unprotected+0x280> 200ab24: 01 00 00 00 nop return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { 200ab28: f0 00 60 04 ld [ %g1 + 4 ], %i0 200ab2c: 80 a6 20 00 cmp %i0, 0 200ab30: 32 bf ff f0 bne,a 200aaf0 <_RBTree_Insert_unprotected+0x28> 200ab34: ba 10 00 18 mov %i0, %i5 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ compare_result = the_rbtree->compare_function( 200ab38: c4 07 20 10 ld [ %i4 + 0x10 ], %g2 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200ab3c: b4 06 e0 02 add %i3, 2, %i2 200ab40: 87 2e a0 02 sll %i2, 2, %g3 200ab44: d2 07 00 03 ld [ %i4 + %g3 ], %o1 compare_result = the_rbtree->compare_function(the_node, iter_node); if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200ab48: c0 26 60 08 clr [ %i1 + 8 ] 200ab4c: c0 26 60 04 clr [ %i1 + 4 ] the_node->color = RBT_RED; iter_node->child[dir] = the_node; 200ab50: f2 20 60 04 st %i1, [ %g1 + 4 ] if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 200ab54: 82 10 20 01 mov 1, %g1 iter_node->child[dir] = the_node; the_node->parent = iter_node; 200ab58: fa 26 40 00 st %i5, [ %i1 ] if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) return iter_node; RBTree_Direction dir = !_RBTree_Is_lesser( compare_result ); if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 200ab5c: c2 26 60 0c st %g1, [ %i1 + 0xc ] iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ compare_result = the_rbtree->compare_function( 200ab60: 9f c0 80 00 call %g2 200ab64: 90 10 00 19 mov %i1, %o0 the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || 200ab68: 80 a6 e0 00 cmp %i3, 0 200ab6c: 12 80 00 10 bne 200abac <_RBTree_Insert_unprotected+0xe4> 200ab70: 80 a2 20 00 cmp %o0, 0 200ab74: 06 80 00 10 bl 200abb4 <_RBTree_Insert_unprotected+0xec> 200ab78: b5 2e a0 02 sll %i2, 2, %i2 200ab7c: c2 06 40 00 ld [ %i1 ], %g1 if (dir != pdir) { _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; } the_node->parent->color = RBT_BLACK; g->color = RBT_RED; 200ab80: b4 10 20 01 mov 1, %i2 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( const RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200ab84: c4 00 40 00 ld [ %g1 ], %g2 200ab88: 86 90 a0 00 orcc %g2, 0, %g3 200ab8c: 22 80 00 06 be,a 200aba4 <_RBTree_Insert_unprotected+0xdc> 200ab90: c0 26 60 0c clr [ %i1 + 0xc ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200ab94: c8 00 60 0c ld [ %g1 + 0xc ], %g4 200ab98: 80 a1 20 01 cmp %g4, 1 200ab9c: 22 80 00 08 be,a 200abbc <_RBTree_Insert_unprotected+0xf4> 200aba0: f6 00 80 00 ld [ %g2 ], %i3 /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; } 200aba4: 81 c7 e0 08 ret 200aba8: 81 e8 00 00 restore compare_result = the_rbtree->compare_function( the_node, _RBTree_First(the_rbtree, dir) ); if ( (!dir && _RBTree_Is_lesser(compare_result)) || (dir && _RBTree_Is_greater(compare_result)) ) { 200abac: 04 bf ff f4 ble 200ab7c <_RBTree_Insert_unprotected+0xb4> 200abb0: b5 2e a0 02 sll %i2, 2, %i2 the_rbtree->first[dir] = the_node; 200abb4: 10 bf ff f2 b 200ab7c <_RBTree_Insert_unprotected+0xb4> 200abb8: f2 27 00 1a st %i1, [ %i4 + %i2 ] ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 200abbc: 80 a6 e0 00 cmp %i3, 0 200abc0: 02 80 00 0c be 200abf0 <_RBTree_Insert_unprotected+0x128> <== NEVER TAKEN 200abc4: c8 00 a0 04 ld [ %g2 + 4 ], %g4 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200abc8: 80 a1 00 01 cmp %g4, %g1 200abcc: 02 80 00 5b be 200ad38 <_RBTree_Insert_unprotected+0x270> 200abd0: ba 10 00 04 mov %g4, %i5 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200abd4: 80 a7 60 00 cmp %i5, 0 200abd8: 22 80 00 07 be,a 200abf4 <_RBTree_Insert_unprotected+0x12c> 200abdc: fa 00 60 04 ld [ %g1 + 4 ], %i5 200abe0: f8 07 60 0c ld [ %i5 + 0xc ], %i4 200abe4: 80 a7 20 01 cmp %i4, 1 200abe8: 22 80 00 4f be,a 200ad24 <_RBTree_Insert_unprotected+0x25c> 200abec: c0 20 60 0c clr [ %g1 + 0xc ] the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200abf0: fa 00 60 04 ld [ %g1 + 4 ], %i5 RBTree_Direction pdir = the_node->parent != g->child[0]; 200abf4: 88 18 40 04 xor %g1, %g4, %g4 200abf8: 80 a0 00 04 cmp %g0, %g4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200abfc: ba 1e 40 1d xor %i1, %i5, %i5 RBTree_Direction pdir = the_node->parent != g->child[0]; 200ac00: 88 40 20 00 addx %g0, 0, %g4 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200ac04: 80 a0 00 1d cmp %g0, %i5 200ac08: ba 40 20 00 addx %g0, 0, %i5 RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 200ac0c: 80 a7 40 04 cmp %i5, %g4 200ac10: 02 80 00 20 be 200ac90 <_RBTree_Insert_unprotected+0x1c8> 200ac14: 80 a0 00 04 cmp %g0, %g4 */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200ac18: b6 60 3f ff subx %g0, -1, %i3 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200ac1c: b7 2e e0 02 sll %i3, 2, %i3 200ac20: b6 00 40 1b add %g1, %i3, %i3 200ac24: fa 06 e0 04 ld [ %i3 + 4 ], %i5 200ac28: 80 a7 60 00 cmp %i5, 0 200ac2c: 02 80 00 16 be 200ac84 <_RBTree_Insert_unprotected+0x1bc> <== NEVER TAKEN 200ac30: b9 29 20 02 sll %g4, 2, %i4 c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200ac34: 9e 07 40 1c add %i5, %i4, %o7 200ac38: da 03 e0 04 ld [ %o7 + 4 ], %o5 200ac3c: da 26 e0 04 st %o5, [ %i3 + 4 ] if (c->child[dir]) 200ac40: f6 03 e0 04 ld [ %o7 + 4 ], %i3 200ac44: 80 a6 e0 00 cmp %i3, 0 200ac48: 22 80 00 05 be,a 200ac5c <_RBTree_Insert_unprotected+0x194> 200ac4c: b6 07 40 1c add %i5, %i4, %i3 c->child[dir]->parent = the_node; 200ac50: c2 26 c0 00 st %g1, [ %i3 ] 200ac54: c4 00 40 00 ld [ %g1 ], %g2 c->child[dir] = the_node; 200ac58: b6 07 40 1c add %i5, %i4, %i3 200ac5c: c2 26 e0 04 st %g1, [ %i3 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200ac60: f6 00 a0 04 ld [ %g2 + 4 ], %i3 c->parent = the_node->parent; 200ac64: c4 27 40 00 st %g2, [ %i5 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200ac68: b6 1e c0 01 xor %i3, %g1, %i3 c->parent = the_node->parent; the_node->parent = c; 200ac6c: fa 20 40 00 st %i5, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200ac70: 80 a0 00 1b cmp %g0, %i3 200ac74: 82 40 20 00 addx %g0, 0, %g1 200ac78: 83 28 60 02 sll %g1, 2, %g1 200ac7c: 84 00 80 01 add %g2, %g1, %g2 200ac80: fa 20 a0 04 st %i5, [ %g2 + 4 ] _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; 200ac84: b2 06 40 1c add %i1, %i4, %i1 200ac88: f2 06 60 04 ld [ %i1 + 4 ], %i1 200ac8c: c2 06 40 00 ld [ %i1 ], %g1 } the_node->parent->color = RBT_BLACK; 200ac90: c0 20 60 0c clr [ %g1 + 0xc ] g->color = RBT_RED; /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); 200ac94: 88 26 80 04 sub %i2, %g4, %g4 200ac98: ba 19 20 01 xor %g4, 1, %i5 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return; 200ac9c: bb 2f 60 02 sll %i5, 2, %i5 200aca0: ba 00 c0 1d add %g3, %i5, %i5 200aca4: c4 07 60 04 ld [ %i5 + 4 ], %g2 200aca8: 80 a0 a0 00 cmp %g2, 0 200acac: 02 bf ff b6 be 200ab84 <_RBTree_Insert_unprotected+0xbc> <== NEVER TAKEN 200acb0: f4 20 e0 0c st %i2, [ %g3 + 0xc ] c = the_node->child[_RBTree_Opposite_direction(dir)]; the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; 200acb4: 89 29 20 02 sll %g4, 2, %g4 200acb8: 82 00 80 04 add %g2, %g4, %g1 200acbc: f8 00 60 04 ld [ %g1 + 4 ], %i4 200acc0: f8 27 60 04 st %i4, [ %i5 + 4 ] if (c->child[dir]) 200acc4: c2 00 60 04 ld [ %g1 + 4 ], %g1 200acc8: 80 a0 60 00 cmp %g1, 0 200accc: 32 80 00 02 bne,a 200acd4 <_RBTree_Insert_unprotected+0x20c> 200acd0: c6 20 40 00 st %g3, [ %g1 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200acd4: fa 00 c0 00 ld [ %g3 ], %i5 the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200acd8: 88 00 80 04 add %g2, %g4, %g4 the_node->parent->child[the_node != the_node->parent->child[0]] = c; c->parent = the_node->parent; 200acdc: fa 20 80 00 st %i5, [ %g2 ] the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200ace0: c6 21 20 04 st %g3, [ %g4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200ace4: c8 07 60 04 ld [ %i5 + 4 ], %g4 c->parent = the_node->parent; the_node->parent = c; 200ace8: c4 20 c0 00 st %g2, [ %g3 ] 200acec: c2 06 40 00 ld [ %i1 ], %g1 if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200acf0: 86 18 c0 04 xor %g3, %g4, %g3 200acf4: 80 a0 00 03 cmp %g0, %g3 200acf8: 86 40 20 00 addx %g0, 0, %g3 200acfc: 87 28 e0 02 sll %g3, 2, %g3 200ad00: ba 07 40 03 add %i5, %g3, %i5 200ad04: c4 27 60 04 st %g2, [ %i5 + 4 ] */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( const RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200ad08: c4 00 40 00 ld [ %g1 ], %g2 200ad0c: 86 90 a0 00 orcc %g2, 0, %g3 200ad10: 32 bf ff a2 bne,a 200ab98 <_RBTree_Insert_unprotected+0xd0><== ALWAYS TAKEN 200ad14: c8 00 60 0c ld [ %g1 + 0xc ], %g4 } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200ad18: c0 26 60 0c clr [ %i1 + 0xc ] <== NOT EXECUTED /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; } 200ad1c: 81 c7 e0 08 ret <== NOT EXECUTED 200ad20: 81 e8 00 00 restore <== NOT EXECUTED g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; 200ad24: c0 27 60 0c clr [ %i5 + 0xc ] g->color = RBT_RED; 200ad28: f8 20 a0 0c st %i4, [ %g2 + 0xc ] 200ad2c: 82 10 00 1b mov %i3, %g1 200ad30: 10 bf ff 95 b 200ab84 <_RBTree_Insert_unprotected+0xbc> 200ad34: b2 10 00 02 mov %g2, %i1 if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) return the_node->parent->child[RBT_RIGHT]; 200ad38: 10 bf ff a7 b 200abd4 <_RBTree_Insert_unprotected+0x10c> 200ad3c: fa 00 a0 08 ld [ %g2 + 8 ], %i5 RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { if(!the_node) return (RBTree_Node*)-1; 200ad40: 81 c7 e0 08 ret 200ad44: 91 e8 3f ff restore %g0, -1, %o0 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) ) 200ad48: 81 c7 e0 08 ret 200ad4c: 91 e8 00 1d restore %g0, %i5, %o0 RBTree_Node *iter_node = the_rbtree->root; int compare_result; if (!iter_node) { /* special case: first node inserted */ the_node->color = RBT_BLACK; the_rbtree->root = the_node; 200ad50: f2 26 20 04 st %i1, [ %i0 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 200ad54: f2 26 20 0c st %i1, [ %i0 + 0xc ] 200ad58: f2 26 20 08 st %i1, [ %i0 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 200ad5c: f0 26 40 00 st %i0, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 200ad60: c0 26 60 08 clr [ %i1 + 8 ] 200ad64: c0 26 60 04 clr [ %i1 + 4 ] } /* while(iter_node) */ /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; 200ad68: 81 c7 e0 08 ret 200ad6c: 91 e8 20 00 restore %g0, 0, %o0 =============================================================================== 0200ada0 <_RBTree_Iterate_unprotected>: const RBTree_Control *rbtree, RBTree_Direction dir, RBTree_Visitor visitor, void *visitor_arg ) { 200ada0: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction( RBTree_Direction the_dir ) { return (RBTree_Direction) !((int) the_dir); 200ada4: 80 a0 00 19 cmp %g0, %i1 200ada8: 82 60 3f ff subx %g0, -1, %g1 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( const RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 200adac: 82 00 60 02 add %g1, 2, %g1 200adb0: 83 28 60 02 sll %g1, 2, %g1 200adb4: fa 06 00 01 ld [ %i0 + %g1 ], %i5 RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { 200adb8: 80 a7 60 00 cmp %i5, 0 200adbc: 12 80 00 06 bne 200add4 <_RBTree_Iterate_unprotected+0x34><== ALWAYS TAKEN 200adc0: 94 10 00 1b mov %i3, %o2 200adc4: 30 80 00 0e b,a 200adfc <_RBTree_Iterate_unprotected+0x5c><== NOT EXECUTED 200adc8: 80 8f 20 ff btst 0xff, %i4 200adcc: 02 80 00 0c be 200adfc <_RBTree_Iterate_unprotected+0x5c> <== NEVER TAKEN 200add0: 94 10 00 1b mov %i3, %o2 stop = (*visitor)( current, dir, visitor_arg ); 200add4: 90 10 00 1d mov %i5, %o0 200add8: 9f c6 80 00 call %i2 200addc: 92 10 00 19 mov %i1, %o1 current = _RBTree_Next_unprotected( current, dir ); 200ade0: 92 10 00 19 mov %i1, %o1 RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { stop = (*visitor)( current, dir, visitor_arg ); 200ade4: b8 10 00 08 mov %o0, %i4 current = _RBTree_Next_unprotected( current, dir ); 200ade8: 40 00 00 07 call 200ae04 <_RBTree_Next_unprotected> 200adec: 90 10 00 1d mov %i5, %o0 { RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir ); const RBTree_Node *current = _RBTree_First( rbtree, opp_dir ); bool stop = false; while ( !stop && current != NULL ) { 200adf0: ba 92 20 00 orcc %o0, 0, %i5 200adf4: 12 bf ff f5 bne 200adc8 <_RBTree_Iterate_unprotected+0x28> 200adf8: b8 1f 20 01 xor %i4, 1, %i4 200adfc: 81 c7 e0 08 ret 200ae00: 81 e8 00 00 restore =============================================================================== 02008bec <_RTEMS_signal_Post_switch_hook>: #include #include #include static void _RTEMS_signal_Post_switch_hook( Thread_Control *executing ) { 2008bec: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 2008bf0: fa 06 21 50 ld [ %i0 + 0x150 ], %i5 if ( !api ) 2008bf4: 80 a7 60 00 cmp %i5, 0 2008bf8: 02 80 00 1e be 2008c70 <_RTEMS_signal_Post_switch_hook+0x84><== NEVER TAKEN 2008bfc: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 2008c00: 7f ff ea 2c call 20034b0 2008c04: 01 00 00 00 nop signal_set = asr->signals_posted; 2008c08: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 2008c0c: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 2008c10: 7f ff ea 2c call 20034c0 2008c14: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 2008c18: 80 a7 20 00 cmp %i4, 0 2008c1c: 32 80 00 04 bne,a 2008c2c <_RTEMS_signal_Post_switch_hook+0x40> 2008c20: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 2008c24: 81 c7 e0 08 ret 2008c28: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008c2c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 2008c30: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008c34: 94 07 bf fc add %fp, -4, %o2 2008c38: 37 00 00 3f sethi %hi(0xfc00), %i3 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 2008c3c: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008c40: 40 00 01 07 call 200905c 2008c44: 92 16 e3 ff or %i3, 0x3ff, %o1 (*asr->handler)( signal_set ); 2008c48: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2008c4c: 9f c0 40 00 call %g1 2008c50: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 2008c54: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008c58: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 2008c5c: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 2008c60: 92 16 e3 ff or %i3, 0x3ff, %o1 2008c64: 94 07 bf fc add %fp, -4, %o2 2008c68: 40 00 00 fd call 200905c 2008c6c: c2 27 60 1c st %g1, [ %i5 + 0x1c ] 2008c70: 81 c7 e0 08 ret 2008c74: 81 e8 00 00 restore =============================================================================== 02007fa0 <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2007fa0: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2007fa4: 03 00 80 70 sethi %hi(0x201c000), %g1 2007fa8: 82 10 60 64 or %g1, 0x64, %g1 ! 201c064 2007fac: fa 00 60 2c ld [ %g1 + 0x2c ], %i5 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2007fb0: 80 a7 60 00 cmp %i5, 0 2007fb4: 02 80 00 18 be 2008014 <_RTEMS_tasks_Initialize_user_tasks_body+0x74> 2007fb8: f6 00 60 28 ld [ %g1 + 0x28 ], %i3 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2007fbc: 80 a6 e0 00 cmp %i3, 0 2007fc0: 02 80 00 15 be 2008014 <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN 2007fc4: b8 10 20 00 clr %i4 return_value = rtems_task_create( 2007fc8: d4 07 60 04 ld [ %i5 + 4 ], %o2 2007fcc: d0 07 40 00 ld [ %i5 ], %o0 2007fd0: d2 07 60 08 ld [ %i5 + 8 ], %o1 2007fd4: d6 07 60 14 ld [ %i5 + 0x14 ], %o3 2007fd8: d8 07 60 0c ld [ %i5 + 0xc ], %o4 2007fdc: 7f ff ff 70 call 2007d9c 2007fe0: 9a 07 bf fc add %fp, -4, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2007fe4: 94 92 20 00 orcc %o0, 0, %o2 2007fe8: 12 80 00 0d bne 200801c <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2007fec: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2007ff0: d4 07 60 18 ld [ %i5 + 0x18 ], %o2 2007ff4: 40 00 00 0e call 200802c 2007ff8: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2007ffc: 94 92 20 00 orcc %o0, 0, %o2 2008000: 12 80 00 07 bne 200801c <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2008004: b8 07 20 01 inc %i4 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2008008: 80 a7 00 1b cmp %i4, %i3 200800c: 12 bf ff ef bne 2007fc8 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN 2008010: ba 07 60 1c add %i5, 0x1c, %i5 2008014: 81 c7 e0 08 ret 2008018: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 200801c: 90 10 20 01 mov 1, %o0 2008020: 40 00 04 14 call 2009070 <_Internal_error_Occurred> 2008024: 92 10 20 01 mov 1, %o1 =============================================================================== 0200d11c <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200d11c: c2 02 21 5c ld [ %o0 + 0x15c ], %g1 while (tvp) { 200d120: 80 a0 60 00 cmp %g1, 0 200d124: 22 80 00 0c be,a 200d154 <_RTEMS_tasks_Switch_extension+0x38> 200d128: c2 02 61 5c ld [ %o1 + 0x15c ], %g1 tvp->tval = *tvp->ptr; 200d12c: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200d130: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200d134: c8 00 80 00 ld [ %g2 ], %g4 200d138: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; 200d13c: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200d140: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200d144: 80 a0 60 00 cmp %g1, 0 200d148: 32 bf ff fa bne,a 200d130 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN 200d14c: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200d150: c2 02 61 5c ld [ %o1 + 0x15c ], %g1 while (tvp) { 200d154: 80 a0 60 00 cmp %g1, 0 200d158: 02 80 00 0d be 200d18c <_RTEMS_tasks_Switch_extension+0x70> 200d15c: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200d160: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200d164: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200d168: c8 00 80 00 ld [ %g2 ], %g4 200d16c: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; 200d170: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200d174: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200d178: 80 a0 60 00 cmp %g1, 0 200d17c: 32 bf ff fa bne,a 200d164 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN 200d180: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED 200d184: 81 c3 e0 08 retl 200d188: 01 00 00 00 nop 200d18c: 81 c3 e0 08 retl =============================================================================== 020370cc <_Rate_monotonic_Get_status>: bool _Rate_monotonic_Get_status( Rate_monotonic_Control *the_period, Rate_monotonic_Period_time_t *wall_since_last_period, Thread_CPU_usage_t *cpu_since_last_period ) { 20370cc: 9d e3 bf 98 save %sp, -104, %sp */ static inline void _TOD_Get_uptime( Timestamp_Control *time ) { _TOD_Get_with_nanoseconds( time, &_TOD.uptime ); 20370d0: 13 00 81 96 sethi %hi(0x2065800), %o1 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ Timestamp_Control uptime; #endif Thread_Control *owning_thread = the_period->owner; 20370d4: f6 06 20 40 ld [ %i0 + 0x40 ], %i3 20370d8: 90 07 bf f8 add %fp, -8, %o0 20370dc: 7f ff 45 f8 call 20088bc <_TOD_Get_with_nanoseconds> 20370e0: 92 12 63 90 or %o1, 0x390, %o1 /* * Determine elapsed wall time since period initiated. */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20370e4: c4 1f bf f8 ldd [ %fp + -8 ], %g2 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 20370e8: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4 * Determine cpu usage since period initiated. */ used = owning_thread->cpu_time_used; #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ if (owning_thread == _Thread_Executing) { 20370ec: 03 00 81 97 sethi %hi(0x2065c00), %g1 20370f0: 82 10 62 50 or %g1, 0x250, %g1 ! 2065e50 <_Per_CPU_Information> 20370f4: de 00 60 10 ld [ %g1 + 0x10 ], %o7 20370f8: ba a0 c0 1d subcc %g3, %i5, %i5 20370fc: b8 60 80 1c subx %g2, %i4, %i4 2037100: f8 3e 40 00 std %i4, [ %i1 ] if (used < the_period->cpu_usage_period_initiated) return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; 2037104: 88 10 20 01 mov 1, %g4 * Determine cpu usage since period initiated. */ used = owning_thread->cpu_time_used; #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ if (owning_thread == _Thread_Executing) { 2037108: 80 a3 c0 1b cmp %o7, %i3 203710c: 02 80 00 05 be 2037120 <_Rate_monotonic_Get_status+0x54> 2037110: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4 return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; } 2037114: b0 09 20 01 and %g4, 1, %i0 2037118: 81 c7 e0 08 ret 203711c: 81 e8 00 00 restore 2037120: d8 18 60 20 ldd [ %g1 + 0x20 ], %o4 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2037124: f0 1e 20 48 ldd [ %i0 + 0x48 ], %i0 2037128: 86 a0 c0 0d subcc %g3, %o5, %g3 203712c: 84 60 80 0c subx %g2, %o4, %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 2037130: 9a 87 40 03 addcc %i5, %g3, %o5 2037134: 98 47 00 02 addx %i4, %g2, %o4 /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) 2037138: 80 a6 00 0c cmp %i0, %o4 203713c: 14 bf ff f6 bg 2037114 <_Rate_monotonic_Get_status+0x48> <== NEVER TAKEN 2037140: 88 10 20 00 clr %g4 2037144: 02 80 00 09 be 2037168 <_Rate_monotonic_Get_status+0x9c> 2037148: 80 a6 40 0d cmp %i1, %o5 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 203714c: 9a a3 40 19 subcc %o5, %i1, %o5 if (used < the_period->cpu_usage_period_initiated) return false; *cpu_since_last_period = used - the_period->cpu_usage_period_initiated; #endif return true; 2037150: 88 10 20 01 mov 1, %g4 2037154: 98 63 00 18 subx %o4, %i0, %o4 } 2037158: b0 09 20 01 and %g4, 1, %i0 203715c: d8 3e 80 00 std %o4, [ %i2 ] 2037160: 81 c7 e0 08 ret 2037164: 81 e8 00 00 restore /* * The cpu usage info was reset while executing. Can't * determine a status. */ if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated)) 2037168: 28 bf ff fa bleu,a 2037150 <_Rate_monotonic_Get_status+0x84> 203716c: 9a a3 40 19 subcc %o5, %i1, %o5 return false; 2037170: 10 bf ff e9 b 2037114 <_Rate_monotonic_Get_status+0x48> 2037174: 88 10 20 00 clr %g4 =============================================================================== 0203751c <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 203751c: 9d e3 bf 98 save %sp, -104, %sp 2037520: 11 00 81 98 sethi %hi(0x2066000), %o0 2037524: 92 10 00 18 mov %i0, %o1 2037528: 90 12 20 74 or %o0, 0x74, %o0 203752c: 7f ff 47 b8 call 200940c <_Objects_Get> 2037530: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2037534: c2 07 bf fc ld [ %fp + -4 ], %g1 2037538: 80 a0 60 00 cmp %g1, 0 203753c: 12 80 00 16 bne 2037594 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN 2037540: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 2037544: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2037548: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 203754c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2037550: 80 88 80 01 btst %g2, %g1 2037554: 22 80 00 08 be,a 2037574 <_Rate_monotonic_Timeout+0x58> 2037558: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 203755c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2037560: c2 07 60 08 ld [ %i5 + 8 ], %g1 2037564: 80 a0 80 01 cmp %g2, %g1 2037568: 02 80 00 19 be 20375cc <_Rate_monotonic_Timeout+0xb0> 203756c: 13 04 01 ff sethi %hi(0x1007fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2037570: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2037574: 80 a0 60 01 cmp %g1, 1 2037578: 02 80 00 09 be 203759c <_Rate_monotonic_Timeout+0x80> 203757c: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2037580: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2037584: 03 00 81 97 sethi %hi(0x2065c00), %g1 2037588: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 2065c40 <_Thread_Dispatch_disable_level> --level; 203758c: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 2037590: c4 20 60 40 st %g2, [ %g1 + 0x40 ] 2037594: 81 c7 e0 08 ret 2037598: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 203759c: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 20375a0: 90 10 00 1d mov %i5, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 20375a4: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 20375a8: 7f ff ff 43 call 20372b4 <_Rate_monotonic_Initiate_statistics> 20375ac: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20375b0: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20375b4: 11 00 81 97 sethi %hi(0x2065c00), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20375b8: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20375bc: 90 12 20 dc or %o0, 0xdc, %o0 20375c0: 7f ff 4e bb call 200b0ac <_Watchdog_Insert> 20375c4: 92 07 60 10 add %i5, 0x10, %o1 20375c8: 30 bf ff ef b,a 2037584 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 20375cc: 7f ff 4a 6e call 2009f84 <_Thread_Clear_state> 20375d0: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 20375d4: 10 bf ff f5 b 20375a8 <_Rate_monotonic_Timeout+0x8c> 20375d8: 90 10 00 1d mov %i5, %o0 =============================================================================== 02037178 <_Rate_monotonic_Update_statistics>: } static void _Rate_monotonic_Update_statistics( Rate_monotonic_Control *the_period ) { 2037178: 9d e3 bf 90 save %sp, -112, %sp /* * Update the counts. */ stats = &the_period->Statistics; stats->count++; 203717c: c4 06 20 58 ld [ %i0 + 0x58 ], %g2 if ( the_period->state == RATE_MONOTONIC_EXPIRED ) 2037180: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 /* * Update the counts. */ stats = &the_period->Statistics; stats->count++; 2037184: 84 00 a0 01 inc %g2 if ( the_period->state == RATE_MONOTONIC_EXPIRED ) 2037188: 80 a0 60 04 cmp %g1, 4 203718c: 02 80 00 32 be 2037254 <_Rate_monotonic_Update_statistics+0xdc> 2037190: c4 26 20 58 st %g2, [ %i0 + 0x58 ] stats->missed_count++; /* * Grab status for time statistics. */ valid_status = 2037194: 90 10 00 18 mov %i0, %o0 2037198: 92 07 bf f8 add %fp, -8, %o1 203719c: 7f ff ff cc call 20370cc <_Rate_monotonic_Get_status> 20371a0: 94 07 bf f0 add %fp, -16, %o2 _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) 20371a4: 80 8a 20 ff btst 0xff, %o0 20371a8: 02 80 00 21 be 203722c <_Rate_monotonic_Update_statistics+0xb4> 20371ac: c4 1f bf f0 ldd [ %fp + -16 ], %g2 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 20371b0: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4 * Update CPU time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_cpu_time, &executed ); if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) ) 20371b4: c2 06 20 60 ld [ %i0 + 0x60 ], %g1 20371b8: b6 87 40 03 addcc %i5, %g3, %i3 20371bc: b4 47 00 02 addx %i4, %g2, %i2 20371c0: 80 a0 40 02 cmp %g1, %g2 20371c4: 04 80 00 1c ble 2037234 <_Rate_monotonic_Update_statistics+0xbc> 20371c8: f4 3e 20 70 std %i2, [ %i0 + 0x70 ] stats->min_cpu_time = executed; 20371cc: c4 3e 20 60 std %g2, [ %i0 + 0x60 ] if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) ) 20371d0: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 20371d4: 80 a0 40 02 cmp %g1, %g2 20371d8: 26 80 00 05 bl,a 20371ec <_Rate_monotonic_Update_statistics+0x74><== NEVER TAKEN 20371dc: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED 20371e0: 80 a0 40 02 cmp %g1, %g2 20371e4: 22 80 00 28 be,a 2037284 <_Rate_monotonic_Update_statistics+0x10c><== ALWAYS TAKEN 20371e8: c2 06 20 6c ld [ %i0 + 0x6c ], %g1 /* * Update Wall time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_wall_time, &since_last_period ); 20371ec: c4 1f bf f8 ldd [ %fp + -8 ], %g2 20371f0: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4 if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) ) 20371f4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 20371f8: b6 87 40 03 addcc %i5, %g3, %i3 20371fc: b4 47 00 02 addx %i4, %g2, %i2 2037200: 80 a0 40 02 cmp %g1, %g2 2037204: 14 80 00 1b bg 2037270 <_Rate_monotonic_Update_statistics+0xf8> 2037208: f4 3e 20 88 std %i2, [ %i0 + 0x88 ] 203720c: 80 a0 40 02 cmp %g1, %g2 2037210: 22 80 00 15 be,a 2037264 <_Rate_monotonic_Update_statistics+0xec><== ALWAYS TAKEN 2037214: c2 06 20 7c ld [ %i0 + 0x7c ], %g1 stats->min_wall_time = since_last_period; if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) ) 2037218: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED 203721c: 80 a0 40 02 cmp %g1, %g2 2037220: 16 80 00 1e bge 2037298 <_Rate_monotonic_Update_statistics+0x120><== ALWAYS TAKEN 2037224: 01 00 00 00 nop stats->max_wall_time = since_last_period; 2037228: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED 203722c: 81 c7 e0 08 ret 2037230: 81 e8 00 00 restore * Update CPU time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_cpu_time, &executed ); if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) ) 2037234: 32 bf ff e8 bne,a 20371d4 <_Rate_monotonic_Update_statistics+0x5c><== NEVER TAKEN 2037238: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED 203723c: c2 06 20 64 ld [ %i0 + 0x64 ], %g1 2037240: 80 a0 40 03 cmp %g1, %g3 2037244: 28 bf ff e4 bleu,a 20371d4 <_Rate_monotonic_Update_statistics+0x5c> 2037248: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 stats->min_cpu_time = executed; 203724c: 10 bf ff e1 b 20371d0 <_Rate_monotonic_Update_statistics+0x58> 2037250: c4 3e 20 60 std %g2, [ %i0 + 0x60 ] */ stats = &the_period->Statistics; stats->count++; if ( the_period->state == RATE_MONOTONIC_EXPIRED ) stats->missed_count++; 2037254: c2 06 20 5c ld [ %i0 + 0x5c ], %g1 2037258: 82 00 60 01 inc %g1 203725c: 10 bf ff ce b 2037194 <_Rate_monotonic_Update_statistics+0x1c> 2037260: c2 26 20 5c st %g1, [ %i0 + 0x5c ] * Update Wall time */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Add_to( &stats->total_wall_time, &since_last_period ); if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) ) 2037264: 80 a0 40 03 cmp %g1, %g3 2037268: 28 bf ff ed bleu,a 203721c <_Rate_monotonic_Update_statistics+0xa4> 203726c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 stats->min_wall_time = since_last_period; if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) ) 2037270: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 2037274: 80 a0 40 02 cmp %g1, %g2 2037278: 06 bf ff ec bl 2037228 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN 203727c: c4 3e 20 78 std %g2, [ %i0 + 0x78 ] 2037280: 30 80 00 06 b,a 2037298 <_Rate_monotonic_Update_statistics+0x120> _Timestamp_Add_to( &stats->total_cpu_time, &executed ); if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) ) stats->min_cpu_time = executed; if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) ) 2037284: 80 a0 40 03 cmp %g1, %g3 2037288: 3a bf ff da bcc,a 20371f0 <_Rate_monotonic_Update_statistics+0x78> 203728c: c4 1f bf f8 ldd [ %fp + -8 ], %g2 stats->max_cpu_time = executed; 2037290: 10 bf ff d7 b 20371ec <_Rate_monotonic_Update_statistics+0x74> 2037294: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] _Timestamp_Add_to( &stats->total_wall_time, &since_last_period ); if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) ) stats->min_wall_time = since_last_period; if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) ) 2037298: 12 bf ff e5 bne 203722c <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN 203729c: 01 00 00 00 nop 20372a0: c2 06 20 84 ld [ %i0 + 0x84 ], %g1 20372a4: 80 a0 40 03 cmp %g1, %g3 20372a8: 2a bf ff e1 bcs,a 203722c <_Rate_monotonic_Update_statistics+0xb4> 20372ac: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] 20372b0: 30 bf ff df b,a 203722c <_Rate_monotonic_Update_statistics+0xb4> =============================================================================== 0200a578 <_Scheduler_CBS_Allocate>: #include void *_Scheduler_CBS_Allocate( Thread_Control *the_thread ) { 200a578: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_CBS_Per_thread *schinfo; sched = _Workspace_Allocate(sizeof(Scheduler_CBS_Per_thread)); 200a57c: 40 00 07 30 call 200c23c <_Workspace_Allocate> 200a580: 90 10 20 1c mov 0x1c, %o0 if ( sched ) { 200a584: 80 a2 20 00 cmp %o0, 0 200a588: 02 80 00 06 be 200a5a0 <_Scheduler_CBS_Allocate+0x28> <== NEVER TAKEN 200a58c: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 200a590: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_CBS_Per_thread *)(the_thread->scheduler_info); schinfo->edf_per_thread.thread = the_thread; 200a594: f0 22 00 00 st %i0, [ %o0 ] schinfo->edf_per_thread.queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 200a598: c2 22 20 14 st %g1, [ %o0 + 0x14 ] schinfo->cbs_server = NULL; 200a59c: c0 22 20 18 clr [ %o0 + 0x18 ] } return sched; } 200a5a0: 81 c7 e0 08 ret 200a5a4: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200b94c <_Scheduler_CBS_Budget_callout>: Scheduler_CBS_Server **_Scheduler_CBS_Server_list; void _Scheduler_CBS_Budget_callout( Thread_Control *the_thread ) { 200b94c: 9d e3 bf 98 save %sp, -104, %sp Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server_id server_id; /* Put violating task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200b950: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200b954: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200b958: 80 a0 40 09 cmp %g1, %o1 200b95c: 32 80 00 02 bne,a 200b964 <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN 200b960: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200b964: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200b968: 80 a0 40 09 cmp %g1, %o1 200b96c: 02 80 00 04 be 200b97c <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN 200b970: 90 10 00 18 mov %i0, %o0 _Thread_Change_priority(the_thread, new_priority, true); 200b974: 40 00 01 90 call 200bfb4 <_Thread_Change_priority> 200b978: 94 10 20 01 mov 1, %o2 /* Invoke callback function if any. */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; 200b97c: fa 06 20 88 ld [ %i0 + 0x88 ], %i5 if ( sched_info->cbs_server->cbs_budget_overrun ) { 200b980: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b984: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200b988: 80 a0 a0 00 cmp %g2, 0 200b98c: 02 80 00 09 be 200b9b0 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN 200b990: 01 00 00 00 nop _Scheduler_CBS_Get_server_id( 200b994: d0 00 40 00 ld [ %g1 ], %o0 200b998: 7f ff ff d5 call 200b8ec <_Scheduler_CBS_Get_server_id> 200b99c: 92 07 bf fc add %fp, -4, %o1 sched_info->cbs_server->task_id, &server_id ); sched_info->cbs_server->cbs_budget_overrun( server_id ); 200b9a0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200b9a4: c2 00 60 0c ld [ %g1 + 0xc ], %g1 200b9a8: 9f c0 40 00 call %g1 200b9ac: d0 07 bf fc ld [ %fp + -4 ], %o0 200b9b0: 81 c7 e0 08 ret 200b9b4: 81 e8 00 00 restore =============================================================================== 0200b4a4 <_Scheduler_CBS_Cleanup>: #include #include #include int _Scheduler_CBS_Cleanup (void) { 200b4a4: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b4a8: 39 00 80 7e sethi %hi(0x201f800), %i4 200b4ac: c2 07 20 a0 ld [ %i4 + 0xa0 ], %g1 ! 201f8a0 <_Scheduler_CBS_Maximum_servers> 200b4b0: 80 a0 60 00 cmp %g1, 0 200b4b4: 02 80 00 18 be 200b514 <_Scheduler_CBS_Cleanup+0x70> <== NEVER TAKEN 200b4b8: 03 00 80 81 sethi %hi(0x2020400), %g1 200b4bc: 37 00 80 81 sethi %hi(0x2020400), %i3 200b4c0: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2 ! 20206e8 <_Scheduler_CBS_Server_list> 200b4c4: ba 10 20 00 clr %i5 200b4c8: b8 17 20 a0 or %i4, 0xa0, %i4 if ( _Scheduler_CBS_Server_list[ i ] ) 200b4cc: 83 2f 60 02 sll %i5, 2, %g1 200b4d0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 200b4d4: 80 a0 60 00 cmp %g1, 0 200b4d8: 02 80 00 05 be 200b4ec <_Scheduler_CBS_Cleanup+0x48> 200b4dc: 90 10 00 1d mov %i5, %o0 _Scheduler_CBS_Destroy_server( i ); 200b4e0: 40 00 00 46 call 200b5f8 <_Scheduler_CBS_Destroy_server> 200b4e4: 01 00 00 00 nop 200b4e8: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2 int _Scheduler_CBS_Cleanup (void) { unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b4ec: c2 07 00 00 ld [ %i4 ], %g1 200b4f0: ba 07 60 01 inc %i5 200b4f4: 80 a0 40 1d cmp %g1, %i5 200b4f8: 18 bf ff f6 bgu 200b4d0 <_Scheduler_CBS_Cleanup+0x2c> 200b4fc: 83 2f 60 02 sll %i5, 2, %g1 if ( _Scheduler_CBS_Server_list[ i ] ) _Scheduler_CBS_Destroy_server( i ); } _Workspace_Free( _Scheduler_CBS_Server_list ); return SCHEDULER_CBS_OK; } 200b500: b0 10 20 00 clr %i0 for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { if ( _Scheduler_CBS_Server_list[ i ] ) _Scheduler_CBS_Destroy_server( i ); } _Workspace_Free( _Scheduler_CBS_Server_list ); 200b504: 40 00 08 60 call 200d684 <_Workspace_Free> 200b508: 90 10 00 02 mov %g2, %o0 return SCHEDULER_CBS_OK; } 200b50c: 81 c7 e0 08 ret 200b510: 81 e8 00 00 restore 200b514: 10 bf ff fb b 200b500 <_Scheduler_CBS_Cleanup+0x5c> <== NOT EXECUTED 200b518: c4 00 62 e8 ld [ %g1 + 0x2e8 ], %g2 <== NOT EXECUTED =============================================================================== 0200b51c <_Scheduler_CBS_Create_server>: int _Scheduler_CBS_Create_server ( Scheduler_CBS_Parameters *params, Scheduler_CBS_Budget_overrun budget_overrun_callback, rtems_id *server_id ) { 200b51c: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; Scheduler_CBS_Server *the_server; if ( params->budget <= 0 || 200b520: c2 06 20 04 ld [ %i0 + 4 ], %g1 200b524: 80 a0 60 00 cmp %g1, 0 200b528: 04 80 00 30 ble 200b5e8 <_Scheduler_CBS_Create_server+0xcc> 200b52c: b8 10 00 18 mov %i0, %i4 200b530: c2 06 00 00 ld [ %i0 ], %g1 200b534: 80 a0 60 00 cmp %g1, 0 200b538: 04 80 00 2c ble 200b5e8 <_Scheduler_CBS_Create_server+0xcc> 200b53c: 03 00 80 7e sethi %hi(0x201f800), %g1 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b540: c8 00 60 a0 ld [ %g1 + 0xa0 ], %g4 ! 201f8a0 <_Scheduler_CBS_Maximum_servers> 200b544: 80 a1 20 00 cmp %g4, 0 200b548: 02 80 00 11 be 200b58c <_Scheduler_CBS_Create_server+0x70><== NEVER TAKEN 200b54c: 37 00 80 81 sethi %hi(0x2020400), %i3 if ( !_Scheduler_CBS_Server_list[i] ) 200b550: fa 06 e2 e8 ld [ %i3 + 0x2e8 ], %i5 ! 20206e8 <_Scheduler_CBS_Server_list> 200b554: c2 07 40 00 ld [ %i5 ], %g1 200b558: 80 a0 60 00 cmp %g1, 0 200b55c: 02 80 00 21 be 200b5e0 <_Scheduler_CBS_Create_server+0xc4> 200b560: b0 10 20 00 clr %i0 200b564: 10 80 00 06 b 200b57c <_Scheduler_CBS_Create_server+0x60> 200b568: 82 10 20 00 clr %g1 200b56c: c6 07 40 02 ld [ %i5 + %g2 ], %g3 200b570: 80 a0 e0 00 cmp %g3, 0 200b574: 02 80 00 08 be 200b594 <_Scheduler_CBS_Create_server+0x78> 200b578: b0 10 00 02 mov %g2, %i0 params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b57c: 82 00 60 01 inc %g1 200b580: 80 a0 40 04 cmp %g1, %g4 200b584: 12 bf ff fa bne 200b56c <_Scheduler_CBS_Create_server+0x50> 200b588: 85 28 60 02 sll %g1, 2, %g2 if ( !_Scheduler_CBS_Server_list[i] ) break; } if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; 200b58c: 81 c7 e0 08 ret 200b590: 91 e8 3f e6 restore %g0, -26, %o0 *server_id = i; 200b594: c2 26 80 00 st %g1, [ %i2 ] _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); 200b598: 40 00 08 33 call 200d664 <_Workspace_Allocate> 200b59c: 90 10 20 10 mov 0x10, %o0 the_server = _Scheduler_CBS_Server_list[*server_id]; 200b5a0: c2 06 80 00 ld [ %i2 ], %g1 if ( i == _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_FULL; *server_id = i; _Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *) 200b5a4: d0 27 40 18 st %o0, [ %i5 + %i0 ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; 200b5a8: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2 200b5ac: 83 28 60 02 sll %g1, 2, %g1 200b5b0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( !the_server ) 200b5b4: 80 a0 60 00 cmp %g1, 0 200b5b8: 02 80 00 0e be 200b5f0 <_Scheduler_CBS_Create_server+0xd4><== NEVER TAKEN 200b5bc: 86 10 3f ff mov -1, %g3 return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200b5c0: c4 07 00 00 ld [ %i4 ], %g2 200b5c4: c4 20 60 04 st %g2, [ %g1 + 4 ] 200b5c8: c4 07 20 04 ld [ %i4 + 4 ], %g2 the_server->task_id = -1; 200b5cc: c6 20 40 00 st %g3, [ %g1 ] _Workspace_Allocate( sizeof(Scheduler_CBS_Server) ); the_server = _Scheduler_CBS_Server_list[*server_id]; if ( !the_server ) return SCHEDULER_CBS_ERROR_NO_MEMORY; the_server->parameters = *params; 200b5d0: c4 20 60 08 st %g2, [ %g1 + 8 ] the_server->task_id = -1; the_server->cbs_budget_overrun = budget_overrun_callback; 200b5d4: f2 20 60 0c st %i1, [ %g1 + 0xc ] return SCHEDULER_CBS_OK; 200b5d8: 81 c7 e0 08 ret 200b5dc: 91 e8 20 00 restore %g0, 0, %o0 params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { if ( !_Scheduler_CBS_Server_list[i] ) 200b5e0: 10 bf ff ed b 200b594 <_Scheduler_CBS_Create_server+0x78> 200b5e4: 82 10 20 00 clr %g1 if ( params->budget <= 0 || params->deadline <= 0 || params->budget >= SCHEDULER_EDF_PRIO_MSB || params->deadline >= SCHEDULER_EDF_PRIO_MSB ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; 200b5e8: 81 c7 e0 08 ret 200b5ec: 91 e8 3f ee restore %g0, -18, %o0 the_server->parameters = *params; the_server->task_id = -1; the_server->cbs_budget_overrun = budget_overrun_callback; return SCHEDULER_CBS_OK; } 200b5f0: 81 c7 e0 08 ret <== NOT EXECUTED 200b5f4: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED =============================================================================== 0200b678 <_Scheduler_CBS_Detach_thread>: int _Scheduler_CBS_Detach_thread ( Scheduler_CBS_Server_id server_id, rtems_id task_id ) { 200b678: 9d e3 bf 98 save %sp, -104, %sp Objects_Locations location; Thread_Control *the_thread; Scheduler_CBS_Per_thread *sched_info; the_thread = _Thread_Get(task_id, &location); 200b67c: 92 07 bf fc add %fp, -4, %o1 200b680: 40 00 03 ab call 200c52c <_Thread_Get> 200b684: 90 10 00 19 mov %i1, %o0 /* The routine _Thread_Get may disable dispatch and not enable again. */ if ( the_thread ) { 200b688: ba 92 20 00 orcc %o0, 0, %i5 200b68c: 02 80 00 1e be 200b704 <_Scheduler_CBS_Detach_thread+0x8c> 200b690: 01 00 00 00 nop _Thread_Enable_dispatch(); 200b694: 40 00 03 9a call 200c4fc <_Thread_Enable_dispatch> 200b698: 01 00 00 00 nop } if ( server_id >= _Scheduler_CBS_Maximum_servers ) 200b69c: 03 00 80 7e sethi %hi(0x201f800), %g1 200b6a0: c2 00 60 a0 ld [ %g1 + 0xa0 ], %g1 ! 201f8a0 <_Scheduler_CBS_Maximum_servers> 200b6a4: 80 a6 00 01 cmp %i0, %g1 200b6a8: 1a 80 00 17 bcc 200b704 <_Scheduler_CBS_Detach_thread+0x8c> 200b6ac: 03 00 80 81 sethi %hi(0x2020400), %g1 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; if ( !the_thread ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; /* Server is not valid. */ if ( !_Scheduler_CBS_Server_list[server_id] ) 200b6b0: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 20206e8 <_Scheduler_CBS_Server_list> 200b6b4: b1 2e 20 02 sll %i0, 2, %i0 200b6b8: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200b6bc: 80 a0 60 00 cmp %g1, 0 200b6c0: 02 80 00 13 be 200b70c <_Scheduler_CBS_Detach_thread+0x94> 200b6c4: 01 00 00 00 nop return SCHEDULER_CBS_ERROR_NOSERVER; /* Thread and server are not attached. */ if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id ) 200b6c8: c4 00 40 00 ld [ %g1 ], %g2 200b6cc: 80 a0 80 19 cmp %g2, %i1 200b6d0: 12 80 00 0d bne 200b704 <_Scheduler_CBS_Detach_thread+0x8c><== NEVER TAKEN 200b6d4: 84 10 3f ff mov -1, %g2 return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; _Scheduler_CBS_Server_list[server_id]->task_id = -1; sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; sched_info->cbs_server = NULL; 200b6d8: c8 07 60 88 ld [ %i5 + 0x88 ], %g4 the_thread->budget_algorithm = the_thread->Start.budget_algorithm; 200b6dc: c6 07 60 a0 ld [ %i5 + 0xa0 ], %g3 return SCHEDULER_CBS_ERROR_NOSERVER; /* Thread and server are not attached. */ if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; _Scheduler_CBS_Server_list[server_id]->task_id = -1; 200b6e0: c4 20 40 00 st %g2, [ %g1 ] sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; sched_info->cbs_server = NULL; the_thread->budget_algorithm = the_thread->Start.budget_algorithm; the_thread->budget_callout = the_thread->Start.budget_callout; 200b6e4: c4 07 60 a4 ld [ %i5 + 0xa4 ], %g2 the_thread->is_preemptible = the_thread->Start.is_preemptible; 200b6e8: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1 if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; _Scheduler_CBS_Server_list[server_id]->task_id = -1; sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; sched_info->cbs_server = NULL; 200b6ec: c0 21 20 18 clr [ %g4 + 0x18 ] the_thread->budget_algorithm = the_thread->Start.budget_algorithm; 200b6f0: c6 27 60 78 st %g3, [ %i5 + 0x78 ] the_thread->budget_callout = the_thread->Start.budget_callout; 200b6f4: c4 27 60 7c st %g2, [ %i5 + 0x7c ] the_thread->is_preemptible = the_thread->Start.is_preemptible; 200b6f8: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ] return SCHEDULER_CBS_OK; 200b6fc: 81 c7 e0 08 ret 200b700: 91 e8 20 00 restore %g0, 0, %o0 if ( the_thread ) { _Thread_Enable_dispatch(); } if ( server_id >= _Scheduler_CBS_Maximum_servers ) return SCHEDULER_CBS_ERROR_INVALID_PARAMETER; 200b704: 81 c7 e0 08 ret 200b708: 91 e8 3f ee restore %g0, -18, %o0 the_thread->budget_algorithm = the_thread->Start.budget_algorithm; the_thread->budget_callout = the_thread->Start.budget_callout; the_thread->is_preemptible = the_thread->Start.is_preemptible; return SCHEDULER_CBS_OK; } 200b70c: 81 c7 e0 08 ret 200b710: 91 e8 3f e7 restore %g0, -25, %o0 =============================================================================== 0200b8ec <_Scheduler_CBS_Get_server_id>: rtems_id task_id, Scheduler_CBS_Server_id *server_id ) { unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b8ec: 03 00 80 7e sethi %hi(0x201f800), %g1 200b8f0: c6 00 60 a0 ld [ %g1 + 0xa0 ], %g3 ! 201f8a0 <_Scheduler_CBS_Maximum_servers> 200b8f4: 80 a0 e0 00 cmp %g3, 0 200b8f8: 02 80 00 11 be 200b93c <_Scheduler_CBS_Get_server_id+0x50><== NEVER TAKEN 200b8fc: 03 00 80 81 sethi %hi(0x2020400), %g1 200b900: c8 00 62 e8 ld [ %g1 + 0x2e8 ], %g4 ! 20206e8 <_Scheduler_CBS_Server_list> 200b904: 82 10 20 00 clr %g1 #include #include #include #include int _Scheduler_CBS_Get_server_id ( 200b908: 85 28 60 02 sll %g1, 2, %g2 Scheduler_CBS_Server_id *server_id ) { unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { if ( _Scheduler_CBS_Server_list[i] && 200b90c: c4 01 00 02 ld [ %g4 + %g2 ], %g2 200b910: 80 a0 a0 00 cmp %g2, 0 200b914: 22 80 00 07 be,a 200b930 <_Scheduler_CBS_Get_server_id+0x44> 200b918: 82 00 60 01 inc %g1 200b91c: c4 00 80 00 ld [ %g2 ], %g2 200b920: 80 a0 80 08 cmp %g2, %o0 200b924: 22 80 00 08 be,a 200b944 <_Scheduler_CBS_Get_server_id+0x58> 200b928: c2 22 40 00 st %g1, [ %o1 ] rtems_id task_id, Scheduler_CBS_Server_id *server_id ) { unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { 200b92c: 82 00 60 01 inc %g1 200b930: 80 a0 40 03 cmp %g1, %g3 200b934: 12 bf ff f6 bne 200b90c <_Scheduler_CBS_Get_server_id+0x20> 200b938: 85 28 60 02 sll %g1, 2, %g2 *server_id = i; return SCHEDULER_CBS_OK; } } return SCHEDULER_CBS_ERROR_NOSERVER; } 200b93c: 81 c3 e0 08 retl 200b940: 90 10 3f e7 mov -25, %o0 unsigned int i; for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) { if ( _Scheduler_CBS_Server_list[i] && _Scheduler_CBS_Server_list[i]->task_id == task_id ) { *server_id = i; return SCHEDULER_CBS_OK; 200b944: 81 c3 e0 08 retl 200b948: 90 10 20 00 clr %o0 =============================================================================== 0200b9b8 <_Scheduler_CBS_Initialize>: } } int _Scheduler_CBS_Initialize(void) { 200b9b8: 9d e3 bf a0 save %sp, -96, %sp unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); 200b9bc: 3b 00 80 7e sethi %hi(0x201f800), %i5 200b9c0: d0 07 60 a0 ld [ %i5 + 0xa0 ], %o0 ! 201f8a0 <_Scheduler_CBS_Maximum_servers> } int _Scheduler_CBS_Initialize(void) { unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( 200b9c4: 40 00 07 28 call 200d664 <_Workspace_Allocate> 200b9c8: 91 2a 20 02 sll %o0, 2, %o0 200b9cc: 09 00 80 81 sethi %hi(0x2020400), %g4 _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) 200b9d0: 80 a2 20 00 cmp %o0, 0 200b9d4: 02 80 00 10 be 200ba14 <_Scheduler_CBS_Initialize+0x5c> <== NEVER TAKEN 200b9d8: d0 21 22 e8 st %o0, [ %g4 + 0x2e8 ] return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b9dc: c6 07 60 a0 ld [ %i5 + 0xa0 ], %g3 200b9e0: 80 a0 e0 00 cmp %g3, 0 200b9e4: 12 80 00 05 bne 200b9f8 <_Scheduler_CBS_Initialize+0x40> <== ALWAYS TAKEN 200b9e8: 82 10 20 00 clr %g1 _Scheduler_CBS_Server_list[i] = NULL; } return SCHEDULER_CBS_OK; 200b9ec: 81 c7 e0 08 ret <== NOT EXECUTED 200b9f0: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED 200b9f4: d0 01 22 e8 ld [ %g4 + 0x2e8 ], %o0 _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { _Scheduler_CBS_Server_list[i] = NULL; 200b9f8: 85 28 60 02 sll %g1, 2, %g2 unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { 200b9fc: 82 00 60 01 inc %g1 200ba00: 80 a0 40 03 cmp %g1, %g3 200ba04: 12 bf ff fc bne 200b9f4 <_Scheduler_CBS_Initialize+0x3c> 200ba08: c0 22 00 02 clr [ %o0 + %g2 ] _Scheduler_CBS_Server_list[i] = NULL; } return SCHEDULER_CBS_OK; 200ba0c: 81 c7 e0 08 ret 200ba10: 91 e8 20 00 restore %g0, 0, %o0 { unsigned int i; _Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate( _Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) ); if ( !_Scheduler_CBS_Server_list ) return SCHEDULER_CBS_ERROR_NO_MEMORY; 200ba14: b0 10 3f ef mov -17, %i0 <== NOT EXECUTED for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) { _Scheduler_CBS_Server_list[i] = NULL; } return SCHEDULER_CBS_OK; } 200ba18: 81 c7 e0 08 ret <== NOT EXECUTED 200ba1c: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 0200a5a8 <_Scheduler_CBS_Release_job>: { Priority_Control new_priority; Scheduler_CBS_Per_thread *sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; Scheduler_CBS_Server *serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 200a5a8: c2 02 20 88 ld [ %o0 + 0x88 ], %g1 if (deadline) { 200a5ac: 80 a2 60 00 cmp %o1, 0 200a5b0: 02 80 00 11 be 200a5f4 <_Scheduler_CBS_Release_job+0x4c> 200a5b4: c2 00 60 18 ld [ %g1 + 0x18 ], %g1 /* Initializing or shifting deadline. */ if (serv_info) 200a5b8: 80 a0 60 00 cmp %g1, 0 200a5bc: 02 80 00 13 be 200a608 <_Scheduler_CBS_Release_job+0x60> 200a5c0: 07 00 80 7a sethi %hi(0x201e800), %g3 new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline) 200a5c4: c4 00 60 04 ld [ %g1 + 4 ], %g2 200a5c8: d2 00 e1 cc ld [ %g3 + 0x1cc ], %o1 200a5cc: 92 02 40 02 add %o1, %g2, %o1 200a5d0: 05 20 00 00 sethi %hi(0x80000000), %g2 200a5d4: 92 2a 40 02 andn %o1, %g2, %o1 new_priority = the_thread->Start.initial_priority; } /* Budget replenishment for the next job. */ if (serv_info) the_thread->cpu_time_budget = serv_info->parameters.budget; 200a5d8: c2 00 60 08 ld [ %g1 + 8 ], %g1 200a5dc: c2 22 20 74 st %g1, [ %o0 + 0x74 ] the_thread->real_priority = new_priority; 200a5e0: d2 22 20 18 st %o1, [ %o0 + 0x18 ] _Thread_Change_priority(the_thread, new_priority, true); 200a5e4: 94 10 20 01 mov 1, %o2 200a5e8: 82 13 c0 00 mov %o7, %g1 200a5ec: 40 00 01 38 call 200aacc <_Thread_Change_priority> 200a5f0: 9e 10 40 00 mov %g1, %o7 /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; } /* Budget replenishment for the next job. */ if (serv_info) 200a5f4: 80 a0 60 00 cmp %g1, 0 200a5f8: 12 bf ff f8 bne 200a5d8 <_Scheduler_CBS_Release_job+0x30> <== ALWAYS TAKEN 200a5fc: d2 02 20 ac ld [ %o0 + 0xac ], %o1 the_thread->cpu_time_budget = serv_info->parameters.budget; the_thread->real_priority = new_priority; 200a600: 10 bf ff f9 b 200a5e4 <_Scheduler_CBS_Release_job+0x3c> <== NOT EXECUTED 200a604: d2 22 20 18 st %o1, [ %o0 + 0x18 ] <== NOT EXECUTED /* Initializing or shifting deadline. */ if (serv_info) new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline) & ~SCHEDULER_EDF_PRIO_MSB; else new_priority = (_Watchdog_Ticks_since_boot + deadline) 200a608: 03 00 80 7a sethi %hi(0x201e800), %g1 200a60c: c2 00 61 cc ld [ %g1 + 0x1cc ], %g1 ! 201e9cc <_Watchdog_Ticks_since_boot> 200a610: 92 02 40 01 add %o1, %g1, %o1 200a614: 03 20 00 00 sethi %hi(0x80000000), %g1 200a618: 10 bf ff f2 b 200a5e0 <_Scheduler_CBS_Release_job+0x38> 200a61c: 92 2a 40 01 andn %o1, %g1, %o1 =============================================================================== 0200a620 <_Scheduler_CBS_Unblock>: #include void _Scheduler_CBS_Unblock( Thread_Control *the_thread ) { 200a620: 9d e3 bf a0 save %sp, -96, %sp Scheduler_CBS_Per_thread *sched_info; Scheduler_CBS_Server *serv_info; Priority_Control new_priority; _Scheduler_EDF_Enqueue(the_thread); 200a624: 40 00 00 50 call 200a764 <_Scheduler_EDF_Enqueue> 200a628: 90 10 00 18 mov %i0, %o0 /* TODO: flash critical section? */ sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info; serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server; 200a62c: c2 06 20 88 ld [ %i0 + 0x88 ], %g1 200a630: fa 00 60 18 ld [ %g1 + 0x18 ], %i5 * Late unblock rule for deadline-driven tasks. The remaining time to * deadline must be sufficient to serve the remaining computation time * without increased utilization of this task. It might cause a deadline * miss of another task. */ if (serv_info) { 200a634: 80 a7 60 00 cmp %i5, 0 200a638: 02 80 00 19 be 200a69c <_Scheduler_CBS_Unblock+0x7c> 200a63c: 03 00 80 7a sethi %hi(0x201e800), %g1 time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a640: d2 07 60 04 ld [ %i5 + 4 ], %o1 */ if (serv_info) { time_t deadline = serv_info->parameters.deadline; time_t budget = serv_info->parameters.budget; time_t deadline_left = the_thread->cpu_time_budget; time_t budget_left = the_thread->real_priority - 200a644: d0 00 61 cc ld [ %g1 + 0x1cc ], %o0 200a648: f8 06 20 18 ld [ %i0 + 0x18 ], %i4 _Watchdog_Ticks_since_boot; if ( deadline*budget_left > budget*deadline_left ) { 200a64c: 40 00 3d 7c call 2019c3c <.umul> 200a650: 90 27 00 08 sub %i4, %o0, %o0 200a654: d2 06 20 74 ld [ %i0 + 0x74 ], %o1 200a658: b6 10 00 08 mov %o0, %i3 200a65c: 40 00 3d 78 call 2019c3c <.umul> 200a660: d0 07 60 08 ld [ %i5 + 8 ], %o0 200a664: 80 a6 c0 08 cmp %i3, %o0 200a668: 24 80 00 0e ble,a 200a6a0 <_Scheduler_CBS_Unblock+0x80> 200a66c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0 /* Put late unblocked task to background until the end of period. */ new_priority = the_thread->Start.initial_priority; 200a670: d2 06 20 ac ld [ %i0 + 0xac ], %o1 if ( the_thread->real_priority != new_priority ) 200a674: 80 a7 00 09 cmp %i4, %o1 200a678: 32 80 00 02 bne,a 200a680 <_Scheduler_CBS_Unblock+0x60> 200a67c: d2 26 20 18 st %o1, [ %i0 + 0x18 ] the_thread->real_priority = new_priority; if ( the_thread->current_priority != new_priority ) 200a680: d0 06 20 14 ld [ %i0 + 0x14 ], %o0 200a684: 80 a2 00 09 cmp %o0, %o1 200a688: 02 80 00 07 be 200a6a4 <_Scheduler_CBS_Unblock+0x84> 200a68c: 3b 00 80 7a sethi %hi(0x201e800), %i5 _Thread_Change_priority(the_thread, new_priority, true); 200a690: 90 10 00 18 mov %i0, %o0 200a694: 40 00 01 0e call 200aacc <_Thread_Change_priority> 200a698: 94 10 20 01 mov 1, %o2 200a69c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, 200a6a0: 3b 00 80 7a sethi %hi(0x201e800), %i5 200a6a4: ba 17 62 f0 or %i5, 0x2f0, %i5 ! 201eaf0 <_Per_CPU_Information> 200a6a8: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200a6ac: d2 00 60 14 ld [ %g1 + 0x14 ], %o1 200a6b0: 03 00 80 77 sethi %hi(0x201dc00), %g1 200a6b4: c2 00 61 04 ld [ %g1 + 0x104 ], %g1 ! 201dd04 <_Scheduler+0x30> 200a6b8: 9f c0 40 00 call %g1 200a6bc: 01 00 00 00 nop 200a6c0: 80 a2 20 00 cmp %o0, 0 200a6c4: 04 80 00 0a ble 200a6ec <_Scheduler_CBS_Unblock+0xcc> 200a6c8: 01 00 00 00 nop _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a6cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; 200a6d0: f0 27 60 14 st %i0, [ %i5 + 0x14 ] if ( _Thread_Executing->is_preemptible || 200a6d4: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a6d8: 80 a0 60 00 cmp %g1, 0 200a6dc: 22 80 00 06 be,a 200a6f4 <_Scheduler_CBS_Unblock+0xd4> 200a6e0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a6e4: 82 10 20 01 mov 1, %g1 200a6e8: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] 200a6ec: 81 c7 e0 08 ret 200a6f0: 81 e8 00 00 restore * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority, _Thread_Heir->current_priority)) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a6f4: 80 a0 60 00 cmp %g1, 0 200a6f8: 12 bf ff fd bne 200a6ec <_Scheduler_CBS_Unblock+0xcc> <== ALWAYS TAKEN 200a6fc: 82 10 20 01 mov 1, %g1 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a700: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] <== NOT EXECUTED 200a704: 30 bf ff fa b,a 200a6ec <_Scheduler_CBS_Unblock+0xcc> <== NOT EXECUTED =============================================================================== 0200a578 <_Scheduler_EDF_Allocate>: #include void *_Scheduler_EDF_Allocate( Thread_Control *the_thread ) { 200a578: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_EDF_Per_thread *schinfo; sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) ); 200a57c: 40 00 07 07 call 200c198 <_Workspace_Allocate> 200a580: 90 10 20 18 mov 0x18, %o0 if ( sched ) { 200a584: 80 a2 20 00 cmp %o0, 0 200a588: 02 80 00 05 be 200a59c <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN 200a58c: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 200a590: d0 26 20 88 st %o0, [ %i0 + 0x88 ] schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info); schinfo->thread = the_thread; 200a594: f0 22 00 00 st %i0, [ %o0 ] schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 200a598: c2 22 20 14 st %g1, [ %o0 + 0x14 ] } return sched; } 200a59c: 81 c7 e0 08 ret 200a5a0: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200a75c <_Scheduler_EDF_Unblock>: #include void _Scheduler_EDF_Unblock( Thread_Control *the_thread ) { 200a75c: 9d e3 bf a0 save %sp, -96, %sp _Scheduler_EDF_Enqueue(the_thread); 200a760: 7f ff ff a8 call 200a600 <_Scheduler_EDF_Enqueue> 200a764: 90 10 00 18 mov %i0, %o0 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( 200a768: 3b 00 80 7a sethi %hi(0x201e800), %i5 200a76c: ba 17 62 40 or %i5, 0x240, %i5 ! 201ea40 <_Per_CPU_Information> 200a770: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200a774: d0 00 60 14 ld [ %g1 + 0x14 ], %o0 200a778: 03 00 80 77 sethi %hi(0x201dc00), %g1 200a77c: c2 00 60 54 ld [ %g1 + 0x54 ], %g1 ! 201dc54 <_Scheduler+0x30> 200a780: 9f c0 40 00 call %g1 200a784: d2 06 20 14 ld [ %i0 + 0x14 ], %o1 200a788: 80 a2 20 00 cmp %o0, 0 200a78c: 26 80 00 04 bl,a 200a79c <_Scheduler_EDF_Unblock+0x40> 200a790: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200a794: 81 c7 e0 08 ret 200a798: 81 e8 00 00 restore _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; 200a79c: f0 27 60 14 st %i0, [ %i5 + 0x14 ] if ( _Thread_Executing->is_preemptible || 200a7a0: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 200a7a4: 80 a0 60 00 cmp %g1, 0 200a7a8: 22 80 00 06 be,a 200a7c0 <_Scheduler_EDF_Unblock+0x64> 200a7ac: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a7b0: 82 10 20 01 mov 1, %g1 200a7b4: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] 200a7b8: 81 c7 e0 08 ret 200a7bc: 81 e8 00 00 restore */ if ( _Scheduler_Is_priority_lower_than( _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200a7c0: 80 a0 60 00 cmp %g1, 0 200a7c4: 12 bf ff f4 bne 200a794 <_Scheduler_EDF_Unblock+0x38> <== ALWAYS TAKEN 200a7c8: 82 10 20 01 mov 1, %g1 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200a7cc: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] <== NOT EXECUTED 200a7d0: 30 bf ff fa b,a 200a7b8 <_Scheduler_EDF_Unblock+0x5c> <== NOT EXECUTED =============================================================================== 0200a76c <_Scheduler_simple_Ready_queue_enqueue_first>: { Chain_Control *ready; Chain_Node *the_node; Thread_Control *current; ready = (Chain_Control *)_Scheduler.information; 200a76c: 03 00 80 74 sethi %hi(0x201d000), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a770: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 201d0e4 <_Scheduler> */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 200a774: c6 02 20 14 ld [ %o0 + 0x14 ], %g3 200a778: c2 00 40 00 ld [ %g1 ], %g1 200a77c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 200a780: 80 a0 80 03 cmp %g2, %g3 200a784: 3a 80 00 08 bcc,a 200a7a4 <_Scheduler_simple_Ready_queue_enqueue_first+0x38> 200a788: c2 00 60 04 ld [ %g1 + 4 ], %g1 * Do NOT need to check for end of chain because there is always * at least one task on the ready chain -- the IDLE task. It can * never block, should never attempt to obtain a semaphore or mutex, * and thus will always be there. */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { 200a78c: c2 00 40 00 ld [ %g1 ], %g1 current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 200a790: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 200a794: 80 a0 80 03 cmp %g2, %g3 200a798: 2a bf ff fe bcs,a 200a790 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN 200a79c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED current = (Thread_Control *)current->Object.Node.previous; 200a7a0: c2 00 60 04 ld [ %g1 + 4 ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 200a7a4: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 200a7a8: c2 22 20 04 st %g1, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 200a7ac: d0 20 40 00 st %o0, [ %g1 ] the_node->next = before_node; 200a7b0: c4 22 00 00 st %g2, [ %o0 ] before_node->previous = the_node; 200a7b4: 81 c3 e0 08 retl 200a7b8: d0 20 a0 04 st %o0, [ %g2 + 4 ] =============================================================================== 02008814 <_TOD_Validate>: }; bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2008814: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2008818: 03 00 80 70 sethi %hi(0x201c000), %g1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 200881c: d2 00 62 bc ld [ %g1 + 0x2bc ], %o1 ! 201c2bc 2008820: 11 00 03 d0 sethi %hi(0xf4000), %o0 2008824: 40 00 47 26 call 201a4bc <.udiv> 2008828: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200882c: 80 a6 20 00 cmp %i0, 0 2008830: 02 80 00 2c be 20088e0 <_TOD_Validate+0xcc> <== NEVER TAKEN 2008834: 82 10 20 00 clr %g1 2008838: c4 06 20 18 ld [ %i0 + 0x18 ], %g2 200883c: 80 a2 00 02 cmp %o0, %g2 2008840: 28 80 00 26 bleu,a 20088d8 <_TOD_Validate+0xc4> 2008844: b0 08 60 01 and %g1, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2008848: c4 06 20 14 ld [ %i0 + 0x14 ], %g2 200884c: 80 a0 a0 3b cmp %g2, 0x3b 2008850: 38 80 00 22 bgu,a 20088d8 <_TOD_Validate+0xc4> 2008854: b0 08 60 01 and %g1, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2008858: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200885c: 80 a0 a0 3b cmp %g2, 0x3b 2008860: 38 80 00 1e bgu,a 20088d8 <_TOD_Validate+0xc4> 2008864: b0 08 60 01 and %g1, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2008868: c4 06 20 0c ld [ %i0 + 0xc ], %g2 200886c: 80 a0 a0 17 cmp %g2, 0x17 2008870: 38 80 00 1a bgu,a 20088d8 <_TOD_Validate+0xc4> 2008874: b0 08 60 01 and %g1, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2008878: c4 06 20 04 ld [ %i0 + 4 ], %g2 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 200887c: 80 a0 a0 00 cmp %g2, 0 2008880: 02 80 00 15 be 20088d4 <_TOD_Validate+0xc0> <== NEVER TAKEN 2008884: 80 a0 a0 0c cmp %g2, 0xc (the_tod->month == 0) || 2008888: 38 80 00 14 bgu,a 20088d8 <_TOD_Validate+0xc4> 200888c: b0 08 60 01 and %g1, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2008890: c6 06 00 00 ld [ %i0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2008894: 80 a0 e7 c3 cmp %g3, 0x7c3 2008898: 28 80 00 10 bleu,a 20088d8 <_TOD_Validate+0xc4> 200889c: b0 08 60 01 and %g1, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 20088a0: c8 06 20 08 ld [ %i0 + 8 ], %g4 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 20088a4: 80 a1 20 00 cmp %g4, 0 20088a8: 02 80 00 0b be 20088d4 <_TOD_Validate+0xc0> <== NEVER TAKEN 20088ac: 80 88 e0 03 btst 3, %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 20088b0: 32 80 00 0f bne,a 20088ec <_TOD_Validate+0xd8> 20088b4: 85 28 a0 02 sll %g2, 2, %g2 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20088b8: 82 00 a0 0d add %g2, 0xd, %g1 20088bc: 05 00 80 75 sethi %hi(0x201d400), %g2 20088c0: 83 28 60 02 sll %g1, 2, %g1 20088c4: 84 10 a0 b0 or %g2, 0xb0, %g2 20088c8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; if ( the_tod->day > days_in_month ) 20088cc: 80 a0 40 04 cmp %g1, %g4 20088d0: 82 60 3f ff subx %g0, -1, %g1 return false; return true; } 20088d4: b0 08 60 01 and %g1, 1, %i0 20088d8: 81 c7 e0 08 ret 20088dc: 81 e8 00 00 restore 20088e0: b0 08 60 01 and %g1, 1, %i0 <== NOT EXECUTED 20088e4: 81 c7 e0 08 ret <== NOT EXECUTED 20088e8: 81 e8 00 00 restore <== NOT EXECUTED return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20088ec: 03 00 80 75 sethi %hi(0x201d400), %g1 20088f0: 82 10 60 b0 or %g1, 0xb0, %g1 ! 201d4b0 <_TOD_Days_per_month> 20088f4: c2 00 40 02 ld [ %g1 + %g2 ], %g1 if ( the_tod->day > days_in_month ) 20088f8: 80 a0 40 04 cmp %g1, %g4 20088fc: 10 bf ff f6 b 20088d4 <_TOD_Validate+0xc0> 2008900: 82 60 3f ff subx %g0, -1, %g1 =============================================================================== 0200a194 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 200a194: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 200a198: f6 06 20 10 ld [ %i0 + 0x10 ], %i3 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 200a19c: 40 00 03 b9 call 200b080 <_Thread_Set_transient> 200a1a0: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 200a1a4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 200a1a8: 80 a0 40 19 cmp %g1, %i1 200a1ac: 02 80 00 05 be 200a1c0 <_Thread_Change_priority+0x2c> 200a1b0: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 200a1b4: 90 10 00 18 mov %i0, %o0 200a1b8: 40 00 03 98 call 200b018 <_Thread_Set_priority> 200a1bc: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 200a1c0: 7f ff e1 13 call 200260c 200a1c4: 01 00 00 00 nop 200a1c8: b2 10 00 08 mov %o0, %i1 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 200a1cc: f8 07 60 10 ld [ %i5 + 0x10 ], %i4 if ( state != STATES_TRANSIENT ) { 200a1d0: 80 a7 20 04 cmp %i4, 4 200a1d4: 02 80 00 18 be 200a234 <_Thread_Change_priority+0xa0> 200a1d8: 80 8e e0 04 btst 4, %i3 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 200a1dc: 02 80 00 0b be 200a208 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 200a1e0: 82 0f 3f fb and %i4, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 200a1e4: 7f ff e1 0e call 200261c <== NOT EXECUTED 200a1e8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 200a1ec: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 200a1f0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 200a1f4: 80 8f 00 01 btst %i4, %g1 <== NOT EXECUTED 200a1f8: 32 80 00 0d bne,a 200a22c <_Thread_Change_priority+0x98> <== NOT EXECUTED 200a1fc: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED 200a200: 81 c7 e0 08 ret 200a204: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200a208: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 200a20c: 7f ff e1 04 call 200261c 200a210: 90 10 00 19 mov %i1, %o0 200a214: 03 00 00 ef sethi %hi(0x3bc00), %g1 200a218: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 200a21c: 80 8f 00 01 btst %i4, %g1 200a220: 02 bf ff f8 be 200a200 <_Thread_Change_priority+0x6c> 200a224: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 200a228: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 200a22c: 40 00 03 4b call 200af58 <_Thread_queue_Requeue> 200a230: 93 e8 00 1d restore %g0, %i5, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 200a234: 22 80 00 19 be,a 200a298 <_Thread_Change_priority+0x104> <== ALWAYS TAKEN 200a238: c0 27 60 10 clr [ %i5 + 0x10 ] 200a23c: 39 00 80 70 sethi %hi(0x201c000), %i4 <== NOT EXECUTED 200a240: b8 17 20 e4 or %i4, 0xe4, %i4 ! 201c0e4 <_Scheduler> <== NOT EXECUTED _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 200a244: 7f ff e0 f6 call 200261c 200a248: 90 10 00 19 mov %i1, %o0 200a24c: 7f ff e0 f0 call 200260c 200a250: 01 00 00 00 nop 200a254: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 200a258: c2 07 20 08 ld [ %i4 + 8 ], %g1 200a25c: 9f c0 40 00 call %g1 200a260: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 200a264: 03 00 80 73 sethi %hi(0x201cc00), %g1 200a268: 82 10 62 90 or %g1, 0x290, %g1 ! 201ce90 <_Per_CPU_Information> * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 200a26c: c4 18 60 10 ldd [ %g1 + 0x10 ], %g2 200a270: 80 a0 80 03 cmp %g2, %g3 200a274: 02 80 00 07 be 200a290 <_Thread_Change_priority+0xfc> 200a278: 01 00 00 00 nop 200a27c: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 200a280: 80 a0 a0 00 cmp %g2, 0 200a284: 02 80 00 03 be 200a290 <_Thread_Change_priority+0xfc> 200a288: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 200a28c: c4 28 60 0c stb %g2, [ %g1 + 0xc ] _ISR_Enable( level ); 200a290: 7f ff e0 e3 call 200261c 200a294: 81 e8 00 00 restore */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 200a298: 39 00 80 70 sethi %hi(0x201c000), %i4 * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 200a29c: 80 a6 a0 00 cmp %i2, 0 200a2a0: 02 80 00 06 be 200a2b8 <_Thread_Change_priority+0x124> 200a2a4: b8 17 20 e4 or %i4, 0xe4, %i4 200a2a8: c2 07 20 28 ld [ %i4 + 0x28 ], %g1 200a2ac: 9f c0 40 00 call %g1 200a2b0: 90 10 00 1d mov %i5, %o0 200a2b4: 30 bf ff e4 b,a 200a244 <_Thread_Change_priority+0xb0> */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 200a2b8: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 200a2bc: 9f c0 40 00 call %g1 200a2c0: 90 10 00 1d mov %i5, %o0 200a2c4: 30 bf ff e0 b,a 200a244 <_Thread_Change_priority+0xb0> =============================================================================== 0200a4d8 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 200a4d8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200a4dc: 90 10 00 18 mov %i0, %o0 200a4e0: 40 00 00 8b call 200a70c <_Thread_Get> 200a4e4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200a4e8: c2 07 bf fc ld [ %fp + -4 ], %g1 200a4ec: 80 a0 60 00 cmp %g1, 0 200a4f0: 12 80 00 08 bne 200a510 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 200a4f4: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 200a4f8: 7f ff ff 74 call 200a2c8 <_Thread_Clear_state> 200a4fc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 200a500: 03 00 80 73 sethi %hi(0x201cc00), %g1 200a504: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level> --level; 200a508: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 200a50c: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 200a510: 81 c7 e0 08 ret 200a514: 81 e8 00 00 restore =============================================================================== 0200a518 <_Thread_Dispatch>: #if defined(RTEMS_SMP) #include #endif void _Thread_Dispatch( void ) { 200a518: 9d e3 bf 98 save %sp, -104, %sp #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 200a51c: 35 00 80 73 sethi %hi(0x201cc00), %i2 200a520: b4 16 a2 90 or %i2, 0x290, %i2 ! 201ce90 <_Per_CPU_Information> _ISR_Disable( level ); 200a524: 7f ff e0 3a call 200260c 200a528: fa 06 a0 10 ld [ %i2 + 0x10 ], %i5 while ( _Thread_Dispatch_necessary == true ) { 200a52c: c2 0e a0 0c ldub [ %i2 + 0xc ], %g1 200a530: 80 a0 60 00 cmp %g1, 0 200a534: 02 80 00 55 be 200a688 <_Thread_Dispatch+0x170> 200a538: 31 00 80 73 sethi %hi(0x201cc00), %i0 heir = _Thread_Heir; 200a53c: f8 06 a0 14 ld [ %i2 + 0x14 ], %i4 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 200a540: 82 10 20 01 mov 1, %g1 200a544: c2 26 20 80 st %g1, [ %i0 + 0x80 ] #ifndef RTEMS_SMP _Thread_Dispatch_set_disable_level( 1 ); #endif _Thread_Dispatch_necessary = false; 200a548: c0 2e a0 0c clrb [ %i2 + 0xc ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 200a54c: 80 a7 40 1c cmp %i5, %i4 200a550: 02 80 00 4e be 200a688 <_Thread_Dispatch+0x170> 200a554: f8 26 a0 10 st %i4, [ %i2 + 0x10 ] 200a558: 21 00 80 70 sethi %hi(0x201c000), %l0 200a55c: 25 00 80 73 sethi %hi(0x201cc00), %l2 200a560: a0 14 22 b8 or %l0, 0x2b8, %l0 */ static inline void _TOD_Get_uptime( Timestamp_Control *time ) { _TOD_Get_with_nanoseconds( time, &_TOD.uptime ); 200a564: 23 00 80 72 sethi %hi(0x201c800), %l1 200a568: a4 14 a0 f0 or %l2, 0xf0, %l2 200a56c: b6 04 20 04 add %l0, 4, %i3 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 200a570: 29 00 80 72 sethi %hi(0x201c800), %l4 200a574: a2 14 63 d0 or %l1, 0x3d0, %l1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200a578: 33 00 80 73 sethi %hi(0x201cc00), %i1 * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 200a57c: a6 10 20 01 mov 1, %l3 */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 200a580: c2 07 20 78 ld [ %i4 + 0x78 ], %g1 200a584: 80 a0 60 01 cmp %g1, 1 200a588: 02 80 00 53 be 200a6d4 <_Thread_Dispatch+0x1bc> 200a58c: c2 05 23 e0 ld [ %l4 + 0x3e0 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 200a590: 7f ff e0 23 call 200261c 200a594: 01 00 00 00 nop 200a598: 92 10 00 11 mov %l1, %o1 200a59c: 7f ff f9 6d call 2008b50 <_TOD_Get_with_nanoseconds> 200a5a0: 90 07 bf f8 add %fp, -8, %o0 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 200a5a4: d8 1e a0 20 ldd [ %i2 + 0x20 ], %o4 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 200a5a8: c4 1f 60 80 ldd [ %i5 + 0x80 ], %g2 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 200a5ac: d4 1f bf f8 ldd [ %fp + -8 ], %o2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 200a5b0: c2 04 80 00 ld [ %l2 ], %g1 const Timestamp64_Control *_start, const Timestamp64_Control *_end, Timestamp64_Control *_result ) { *_result = *_end - *_start; 200a5b4: 9a a2 c0 0d subcc %o3, %o5, %o5 200a5b8: 98 62 80 0c subx %o2, %o4, %o4 static inline void _Timestamp64_implementation_Add_to( Timestamp64_Control *_time, const Timestamp64_Control *_add ) { *_time += *_add; 200a5bc: 92 80 c0 0d addcc %g3, %o5, %o1 200a5c0: 90 40 80 0c addx %g2, %o4, %o0 200a5c4: d0 3f 60 80 std %o0, [ %i5 + 0x80 ] 200a5c8: 80 a0 60 00 cmp %g1, 0 200a5cc: 02 80 00 06 be 200a5e4 <_Thread_Dispatch+0xcc> <== NEVER TAKEN 200a5d0: d4 3e a0 20 std %o2, [ %i2 + 0x20 ] executing->libc_reent = *_Thread_libc_reent; 200a5d4: c4 00 40 00 ld [ %g1 ], %g2 200a5d8: c4 27 61 4c st %g2, [ %i5 + 0x14c ] *_Thread_libc_reent = heir->libc_reent; 200a5dc: c4 07 21 4c ld [ %i4 + 0x14c ], %g2 200a5e0: c4 20 40 00 st %g2, [ %g1 ] */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200a5e4: ea 04 00 00 ld [ %l0 ], %l5 { const Chain_Control *chain = &_User_extensions_Switches_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 200a5e8: 80 a5 40 1b cmp %l5, %i3 200a5ec: 02 80 00 0b be 200a618 <_Thread_Dispatch+0x100> <== NEVER TAKEN 200a5f0: 90 07 60 c0 add %i5, 0xc0, %o0 const User_extensions_Switch_control *extension = (const User_extensions_Switch_control *) node; (*extension->thread_switch)( executing, heir ); 200a5f4: c2 05 60 08 ld [ %l5 + 8 ], %g1 200a5f8: 90 10 00 1d mov %i5, %o0 200a5fc: 9f c0 40 00 call %g1 200a600: 92 10 00 1c mov %i4, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next( const Chain_Node *the_node ) { return the_node->next; 200a604: ea 05 40 00 ld [ %l5 ], %l5 { const Chain_Control *chain = &_User_extensions_Switches_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 200a608: 80 a5 40 1b cmp %l5, %i3 200a60c: 32 bf ff fb bne,a 200a5f8 <_Thread_Dispatch+0xe0> 200a610: c2 05 60 08 ld [ %l5 + 8 ], %g1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 200a614: 90 07 60 c0 add %i5, 0xc0, %o0 200a618: 40 00 04 e2 call 200b9a0 <_CPU_Context_switch> 200a61c: 92 07 20 c0 add %i4, 0xc0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200a620: c2 07 61 48 ld [ %i5 + 0x148 ], %g1 200a624: 80 a0 60 00 cmp %g1, 0 200a628: 02 80 00 0c be 200a658 <_Thread_Dispatch+0x140> 200a62c: d0 06 60 ec ld [ %i1 + 0xec ], %o0 200a630: 80 a7 40 08 cmp %i5, %o0 200a634: 02 80 00 09 be 200a658 <_Thread_Dispatch+0x140> 200a638: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200a63c: 02 80 00 04 be 200a64c <_Thread_Dispatch+0x134> 200a640: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200a644: 40 00 04 9d call 200b8b8 <_CPU_Context_save_fp> 200a648: 90 02 21 48 add %o0, 0x148, %o0 _Context_Restore_fp( &executing->fp_context ); 200a64c: 40 00 04 b8 call 200b92c <_CPU_Context_restore_fp> 200a650: 90 07 61 48 add %i5, 0x148, %o0 _Thread_Allocated_fp = executing; 200a654: fa 26 60 ec st %i5, [ %i1 + 0xec ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 200a658: 7f ff df ed call 200260c 200a65c: fa 06 a0 10 ld [ %i2 + 0x10 ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 200a660: c2 0e a0 0c ldub [ %i2 + 0xc ], %g1 200a664: 80 a0 60 00 cmp %g1, 0 200a668: 02 80 00 08 be 200a688 <_Thread_Dispatch+0x170> 200a66c: 01 00 00 00 nop heir = _Thread_Heir; 200a670: f8 06 a0 14 ld [ %i2 + 0x14 ], %i4 200a674: e6 26 20 80 st %l3, [ %i0 + 0x80 ] #ifndef RTEMS_SMP _Thread_Dispatch_set_disable_level( 1 ); #endif _Thread_Dispatch_necessary = false; 200a678: c0 2e a0 0c clrb [ %i2 + 0xc ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 200a67c: 80 a7 00 1d cmp %i4, %i5 200a680: 12 bf ff c0 bne 200a580 <_Thread_Dispatch+0x68> <== ALWAYS TAKEN 200a684: f8 26 a0 10 st %i4, [ %i2 + 0x10 ] 200a688: c0 26 20 80 clr [ %i0 + 0x80 ] post_switch: #ifndef RTEMS_SMP _Thread_Dispatch_set_disable_level( 0 ); #endif _ISR_Enable( level ); 200a68c: 7f ff df e4 call 200261c 200a690: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200a694: 03 00 80 73 sethi %hi(0x201cc00), %g1 200a698: f8 00 60 f4 ld [ %g1 + 0xf4 ], %i4 ! 201ccf4 <_API_extensions_Post_switch_list> 200a69c: 82 10 60 f4 or %g1, 0xf4, %g1 { const Chain_Control *chain = &_API_extensions_Post_switch_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 200a6a0: b6 00 60 04 add %g1, 4, %i3 200a6a4: 80 a7 00 1b cmp %i4, %i3 200a6a8: 02 80 00 09 be 200a6cc <_Thread_Dispatch+0x1b4> 200a6ac: 01 00 00 00 nop const API_extensions_Post_switch_control *post_switch = (const API_extensions_Post_switch_control *) node; (*post_switch->hook)( executing ); 200a6b0: c2 07 20 08 ld [ %i4 + 8 ], %g1 200a6b4: 9f c0 40 00 call %g1 200a6b8: 90 10 00 1d mov %i5, %o0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next( const Chain_Node *the_node ) { return the_node->next; 200a6bc: f8 07 00 00 ld [ %i4 ], %i4 { const Chain_Control *chain = &_API_extensions_Post_switch_list; const Chain_Node *tail = _Chain_Immutable_tail( chain ); const Chain_Node *node = _Chain_Immutable_first( chain ); while ( node != tail ) { 200a6c0: 80 a7 00 1b cmp %i4, %i3 200a6c4: 32 bf ff fc bne,a 200a6b4 <_Thread_Dispatch+0x19c> <== NEVER TAKEN 200a6c8: c2 07 20 08 ld [ %i4 + 8 ], %g1 <== NOT EXECUTED 200a6cc: 81 c7 e0 08 ret 200a6d0: 81 e8 00 00 restore #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 200a6d4: 10 bf ff af b 200a590 <_Thread_Dispatch+0x78> 200a6d8: c2 27 20 74 st %g1, [ %i4 + 0x74 ] =============================================================================== 0200f348 <_Thread_Handler>: #define INIT_NAME __main #define EXECUTE_GLOBAL_CONSTRUCTORS #endif void _Thread_Handler( void ) { 200f348: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static bool doneConstructors; bool doCons; #endif executing = _Thread_Executing; 200f34c: 03 00 80 73 sethi %hi(0x201cc00), %g1 200f350: fa 00 62 a0 ld [ %g1 + 0x2a0 ], %i5 ! 201cea0 <_Per_CPU_Information+0x10> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200f354: 3f 00 80 3c sethi %hi(0x200f000), %i7 200f358: be 17 e3 48 or %i7, 0x348, %i7 ! 200f348 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200f35c: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0 _ISR_Set_level(level); 200f360: 7f ff cc af call 200261c 200f364: 91 2a 20 08 sll %o0, 8, %o0 #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200f368: c4 07 61 48 ld [ %i5 + 0x148 ], %g2 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200f36c: 03 00 80 72 sethi %hi(0x201c800), %g1 doneConstructors = true; 200f370: 86 10 20 01 mov 1, %g3 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200f374: f6 08 61 78 ldub [ %g1 + 0x178 ], %i3 #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200f378: 80 a0 a0 00 cmp %g2, 0 200f37c: 02 80 00 0c be 200f3ac <_Thread_Handler+0x64> 200f380: c6 28 61 78 stb %g3, [ %g1 + 0x178 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200f384: 39 00 80 73 sethi %hi(0x201cc00), %i4 200f388: d0 07 20 ec ld [ %i4 + 0xec ], %o0 ! 201ccec <_Thread_Allocated_fp> 200f38c: 80 a7 40 08 cmp %i5, %o0 200f390: 02 80 00 07 be 200f3ac <_Thread_Handler+0x64> 200f394: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200f398: 22 80 00 05 be,a 200f3ac <_Thread_Handler+0x64> 200f39c: fa 27 20 ec st %i5, [ %i4 + 0xec ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200f3a0: 7f ff f1 46 call 200b8b8 <_CPU_Context_save_fp> 200f3a4: 90 02 21 48 add %o0, 0x148, %o0 _Thread_Allocated_fp = executing; 200f3a8: fa 27 20 ec st %i5, [ %i4 + 0xec ] ); } static inline void _User_extensions_Thread_begin( Thread_Control *executing ) { _User_extensions_Iterate( 200f3ac: 90 10 00 1d mov %i5, %o0 200f3b0: 13 00 80 2c sethi %hi(0x200b000), %o1 200f3b4: 7f ff ef cb call 200b2e0 <_User_extensions_Iterate> 200f3b8: 92 12 62 6c or %o1, 0x26c, %o1 ! 200b26c <_User_extensions_Thread_begin_visitor> _User_extensions_Thread_begin( executing ); /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200f3bc: 7f ff ec c8 call 200a6dc <_Thread_Enable_dispatch> 200f3c0: 01 00 00 00 nop /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { 200f3c4: 80 8e e0 ff btst 0xff, %i3 200f3c8: 02 80 00 0e be 200f400 <_Thread_Handler+0xb8> 200f3cc: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200f3d0: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 200f3d4: 80 a0 60 00 cmp %g1, 0 200f3d8: 22 80 00 0e be,a 200f410 <_Thread_Handler+0xc8> <== ALWAYS TAKEN 200f3dc: c2 07 60 8c ld [ %i5 + 0x8c ], %g1 } } static inline void _User_extensions_Thread_exitted( Thread_Control *executing ) { _User_extensions_Iterate( 200f3e0: 90 10 00 1d mov %i5, %o0 200f3e4: 13 00 80 2c sethi %hi(0x200b000), %o1 200f3e8: 7f ff ef be call 200b2e0 <_User_extensions_Iterate> 200f3ec: 92 12 62 90 or %o1, 0x290, %o1 ! 200b290 <_User_extensions_Thread_exitted_visitor> * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); _Internal_error_Occurred( 200f3f0: 90 10 20 00 clr %o0 200f3f4: 92 10 20 01 mov 1, %o1 200f3f8: 7f ff e7 1e call 2009070 <_Internal_error_Occurred> 200f3fc: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200f400: 40 00 33 04 call 201c010 <_init> 200f404: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200f408: 10 bf ff f3 b 200f3d4 <_Thread_Handler+0x8c> 200f40c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200f410: 9f c0 40 00 call %g1 200f414: d0 07 60 98 ld [ %i5 + 0x98 ], %o0 #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200f418: 10 bf ff f2 b 200f3e0 <_Thread_Handler+0x98> 200f41c: d0 27 60 28 st %o0, [ %i5 + 0x28 ] =============================================================================== 0200a9a8 <_Thread_Handler_initialization>: #if defined(RTEMS_SMP) #include #endif void _Thread_Handler_initialization(void) { 200a9a8: 9d e3 bf 98 save %sp, -104, %sp uint32_t ticks_per_timeslice = 200a9ac: 03 00 80 68 sethi %hi(0x201a000), %g1 200a9b0: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a9b4: c6 00 60 28 ld [ %g1 + 0x28 ], %g3 #include #endif void _Thread_Handler_initialization(void) { uint32_t ticks_per_timeslice = 200a9b8: fa 00 60 14 ld [ %g1 + 0x14 ], %i5 rtems_configuration_get_ticks_per_timeslice(); uint32_t maximum_extensions = 200a9bc: f8 00 60 08 ld [ %g1 + 8 ], %i4 #if defined(RTEMS_MULTIPROCESSING) uint32_t maximum_proxies = _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || 200a9c0: 80 a0 e0 00 cmp %g3, 0 200a9c4: 02 80 00 21 be 200aa48 <_Thread_Handler_initialization+0xa0><== NEVER TAKEN 200a9c8: c4 00 60 24 ld [ %g1 + 0x24 ], %g2 200a9cc: c6 00 60 2c ld [ %g1 + 0x2c ], %g3 200a9d0: 80 a0 e0 00 cmp %g3, 0 200a9d4: 02 80 00 1d be 200aa48 <_Thread_Handler_initialization+0xa0> 200a9d8: 80 a0 a0 00 cmp %g2, 0 INTERNAL_ERROR_CORE, true, INTERNAL_ERROR_BAD_STACK_HOOK ); if ( stack_allocate_init_hook != NULL ) 200a9dc: 22 80 00 05 be,a 200a9f0 <_Thread_Handler_initialization+0x48> 200a9e0: 03 00 80 73 sethi %hi(0x201cc00), %g1 (*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() ); 200a9e4: 9f c0 80 00 call %g2 200a9e8: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 201cc04 <_Thread_BSP_context+0xc> _Thread_Dispatch_necessary = false; 200a9ec: 03 00 80 73 sethi %hi(0x201cc00), %g1 200a9f0: 82 10 62 90 or %g1, 0x290, %g1 ! 201ce90 <_Per_CPU_Information> 200a9f4: c0 28 60 0c clrb [ %g1 + 0xc ] _Thread_Executing = NULL; 200a9f8: c0 20 60 10 clr [ %g1 + 0x10 ] _Thread_Heir = NULL; 200a9fc: c0 20 60 14 clr [ %g1 + 0x14 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Thread_Allocated_fp = NULL; 200aa00: 03 00 80 73 sethi %hi(0x201cc00), %g1 200aa04: c0 20 60 ec clr [ %g1 + 0xec ] ! 201ccec <_Thread_Allocated_fp> #endif _Thread_Maximum_extensions = maximum_extensions; 200aa08: 03 00 80 73 sethi %hi(0x201cc00), %g1 200aa0c: f8 20 61 00 st %i4, [ %g1 + 0x100 ] ! 201cd00 <_Thread_Maximum_extensions> _Thread_Ticks_per_timeslice = ticks_per_timeslice; 200aa10: 03 00 80 72 sethi %hi(0x201c800), %g1 200aa14: fa 20 63 e0 st %i5, [ %g1 + 0x3e0 ] ! 201cbe0 <_Thread_Ticks_per_timeslice> #if defined(RTEMS_MULTIPROCESSING) if ( _System_state_Is_multiprocessing ) maximum_internal_threads += 1; #endif _Objects_Initialize_information( 200aa18: 82 10 20 08 mov 8, %g1 200aa1c: 11 00 80 73 sethi %hi(0x201cc00), %o0 200aa20: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200aa24: 90 12 21 74 or %o0, 0x174, %o0 200aa28: 92 10 20 01 mov 1, %o1 200aa2c: 94 10 20 01 mov 1, %o2 200aa30: 96 10 20 01 mov 1, %o3 200aa34: 98 10 21 60 mov 0x160, %o4 200aa38: 7f ff fb 37 call 2009714 <_Objects_Initialize_information> 200aa3c: 9a 10 20 00 clr %o5 200aa40: 81 c7 e0 08 ret 200aa44: 81 e8 00 00 restore _Configuration_MP_table->maximum_proxies; #endif if ( rtems_configuration_get_stack_allocate_hook() == NULL || rtems_configuration_get_stack_free_hook() == NULL) _Internal_error_Occurred( 200aa48: 90 10 20 00 clr %o0 200aa4c: 92 10 20 01 mov 1, %o1 200aa50: 7f ff f9 88 call 2009070 <_Internal_error_Occurred> 200aa54: 94 10 20 0e mov 0xe, %o2 =============================================================================== 0200a7b8 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 200a7b8: 9d e3 bf 98 save %sp, -104, %sp 200a7bc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 200a7c0: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 200a7c4: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 200a7c8: c0 26 61 50 clr [ %i1 + 0x150 ] 200a7cc: c0 26 61 54 clr [ %i1 + 0x154 ] extensions_area = NULL; the_thread->libc_reent = NULL; 200a7d0: c0 26 61 4c clr [ %i1 + 0x14c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 200a7d4: 90 10 00 19 mov %i1, %o0 200a7d8: 40 00 02 39 call 200b0bc <_Thread_Stack_Allocate> 200a7dc: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 200a7e0: 80 a2 00 1b cmp %o0, %i3 200a7e4: 0a 80 00 4f bcs 200a920 <_Thread_Initialize+0x168> 200a7e8: 80 a2 20 00 cmp %o0, 0 200a7ec: 02 80 00 4d be 200a920 <_Thread_Initialize+0x168> <== NEVER TAKEN 200a7f0: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a7f4: c2 06 60 bc ld [ %i1 + 0xbc ], %g1 the_stack->size = size; 200a7f8: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200a7fc: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 200a800: 12 80 00 4c bne 200a930 <_Thread_Initialize+0x178> 200a804: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a808: 39 00 80 73 sethi %hi(0x201cc00), %i4 200a80c: c2 07 21 00 ld [ %i4 + 0x100 ], %g1 ! 201cd00 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 200a810: f6 26 61 48 st %i3, [ %i1 + 0x148 ] the_thread->Start.fp_context = fp_area; 200a814: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200a818: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 200a81c: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 200a820: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200a824: 80 a0 60 00 cmp %g1, 0 200a828: 12 80 00 4a bne 200a950 <_Thread_Initialize+0x198> 200a82c: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 200a830: c0 26 61 58 clr [ %i1 + 0x158 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200a834: a2 10 20 00 clr %l1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a838: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 200a83c: 03 00 80 70 sethi %hi(0x201c000), %g1 200a840: c4 26 60 a0 st %g2, [ %i1 + 0xa0 ] the_thread->Start.budget_callout = budget_callout; 200a844: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 200a848: c2 00 60 fc ld [ %g1 + 0xfc ], %g1 200a84c: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a850: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 200a854: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 200a858: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] the_thread->current_state = STATES_DORMANT; 200a85c: b4 10 20 01 mov 1, %i2 the_thread->Wait.queue = NULL; 200a860: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 200a864: f4 26 60 10 st %i2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 200a868: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 200a86c: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 200a870: fa 26 60 ac st %i5, [ %i1 + 0xac ] 200a874: 9f c0 40 00 call %g1 200a878: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 200a87c: b8 92 20 00 orcc %o0, 0, %i4 200a880: 22 80 00 17 be,a 200a8dc <_Thread_Initialize+0x124> 200a884: d0 06 61 4c ld [ %i1 + 0x14c ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 200a888: 90 10 00 19 mov %i1, %o0 200a88c: 40 00 01 e3 call 200b018 <_Thread_Set_priority> 200a890: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a894: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200a898: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 static inline void _Timestamp64_implementation_Set_to_zero( Timestamp64_Control *_time ) { *_time = 0; 200a89c: c0 26 60 80 clr [ %i1 + 0x80 ] 200a8a0: c0 26 60 84 clr [ %i1 + 0x84 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200a8a4: 83 28 60 02 sll %g1, 2, %g1 200a8a8: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200a8ac: e0 26 60 0c st %l0, [ %i1 + 0xc ] * @{ */ static inline bool _User_extensions_Thread_create( Thread_Control *created ) { User_extensions_Thread_create_context ctx = { created, true }; 200a8b0: f2 27 bf f8 st %i1, [ %fp + -8 ] 200a8b4: f4 2f bf fc stb %i2, [ %fp + -4 ] _User_extensions_Iterate( &ctx, _User_extensions_Thread_create_visitor ); 200a8b8: 90 07 bf f8 add %fp, -8, %o0 200a8bc: 13 00 80 2c sethi %hi(0x200b000), %o1 200a8c0: 40 00 02 88 call 200b2e0 <_User_extensions_Iterate> 200a8c4: 92 12 61 b8 or %o1, 0x1b8, %o1 ! 200b1b8 <_User_extensions_Thread_create_visitor> * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); if ( extension_status ) 200a8c8: c2 0f bf fc ldub [ %fp + -4 ], %g1 200a8cc: 80 a0 60 00 cmp %g1, 0 200a8d0: 12 80 00 11 bne 200a914 <_Thread_Initialize+0x15c> 200a8d4: b0 10 20 01 mov 1, %i0 return true; failed: _Workspace_Free( the_thread->libc_reent ); 200a8d8: d0 06 61 4c ld [ %i1 + 0x14c ], %o0 200a8dc: 40 00 03 e2 call 200b864 <_Workspace_Free> 200a8e0: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 200a8e4: 40 00 03 e0 call 200b864 <_Workspace_Free> 200a8e8: d0 06 61 50 ld [ %i1 + 0x150 ], %o0 200a8ec: 40 00 03 de call 200b864 <_Workspace_Free> 200a8f0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 _Workspace_Free( extensions_area ); 200a8f4: 40 00 03 dc call 200b864 <_Workspace_Free> 200a8f8: 90 10 00 11 mov %l1, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 200a8fc: 40 00 03 da call 200b864 <_Workspace_Free> 200a900: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 200a904: 40 00 03 d8 call 200b864 <_Workspace_Free> 200a908: 90 10 00 1c mov %i4, %o0 _Thread_Stack_Free( the_thread ); 200a90c: 40 00 01 fc call 200b0fc <_Thread_Stack_Free> 200a910: 90 10 00 19 mov %i1, %o0 200a914: b0 0e 20 ff and %i0, 0xff, %i0 200a918: 81 c7 e0 08 ret 200a91c: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 200a920: b0 10 20 00 clr %i0 200a924: b0 0e 20 ff and %i0, 0xff, %i0 200a928: 81 c7 e0 08 ret 200a92c: 81 e8 00 00 restore /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 200a930: 40 00 03 c5 call 200b844 <_Workspace_Allocate> 200a934: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 200a938: b6 92 20 00 orcc %o0, 0, %i3 200a93c: 32 bf ff b4 bne,a 200a80c <_Thread_Initialize+0x54> 200a940: 39 00 80 73 sethi %hi(0x201cc00), %i4 * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200a944: a2 10 20 00 clr %l1 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 200a948: 10 bf ff e4 b 200a8d8 <_Thread_Initialize+0x120> 200a94c: b8 10 20 00 clr %i4 /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( 200a950: 90 00 60 01 add %g1, 1, %o0 200a954: 40 00 03 bc call 200b844 <_Workspace_Allocate> 200a958: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 200a95c: a2 92 20 00 orcc %o0, 0, %l1 200a960: 02 80 00 10 be 200a9a0 <_Thread_Initialize+0x1e8> 200a964: 86 10 00 11 mov %l1, %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 200a968: e2 26 61 58 st %l1, [ %i1 + 0x158 ] 200a96c: c8 07 21 00 ld [ %i4 + 0x100 ], %g4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a970: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 200a974: 10 80 00 03 b 200a980 <_Thread_Initialize+0x1c8> 200a978: 82 10 20 00 clr %g1 200a97c: c6 06 61 58 ld [ %i1 + 0x158 ], %g3 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 200a980: 85 28 a0 02 sll %g2, 2, %g2 200a984: c0 20 c0 02 clr [ %g3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 200a988: 82 00 60 01 inc %g1 200a98c: 80 a0 40 04 cmp %g1, %g4 200a990: 08 bf ff fb bleu 200a97c <_Thread_Initialize+0x1c4> 200a994: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 200a998: 10 bf ff a9 b 200a83c <_Thread_Initialize+0x84> 200a99c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 200a9a0: 10 bf ff ce b 200a8d8 <_Thread_Initialize+0x120> 200a9a4: b8 10 20 00 clr %i4 =============================================================================== 0200af58 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 200af58: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 200af5c: 80 a6 20 00 cmp %i0, 0 200af60: 02 80 00 13 be 200afac <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 200af64: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 200af68: fa 06 20 34 ld [ %i0 + 0x34 ], %i5 200af6c: 80 a7 60 01 cmp %i5, 1 200af70: 02 80 00 04 be 200af80 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 200af74: 01 00 00 00 nop 200af78: 81 c7 e0 08 ret <== NOT EXECUTED 200af7c: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 200af80: 7f ff dd a3 call 200260c 200af84: 01 00 00 00 nop 200af88: b8 10 00 08 mov %o0, %i4 200af8c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 200af90: 03 00 00 ef sethi %hi(0x3bc00), %g1 200af94: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 200af98: 80 88 80 01 btst %g2, %g1 200af9c: 12 80 00 06 bne 200afb4 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 200afa0: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 200afa4: 7f ff dd 9e call 200261c 200afa8: 90 10 00 1c mov %i4, %o0 200afac: 81 c7 e0 08 ret 200afb0: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 200afb4: 92 10 00 19 mov %i1, %o1 200afb8: 94 10 20 01 mov 1, %o2 200afbc: 40 00 0b 45 call 200dcd0 <_Thread_queue_Extract_priority_helper> 200afc0: fa 26 20 30 st %i5, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 200afc4: 90 10 00 18 mov %i0, %o0 200afc8: 92 10 00 19 mov %i1, %o1 200afcc: 7f ff ff 35 call 200aca0 <_Thread_queue_Enqueue_priority> 200afd0: 94 07 bf fc add %fp, -4, %o2 200afd4: 30 bf ff f4 b,a 200afa4 <_Thread_queue_Requeue+0x4c> =============================================================================== 0200afd8 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 200afd8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 200afdc: 90 10 00 18 mov %i0, %o0 200afe0: 7f ff fd cb call 200a70c <_Thread_Get> 200afe4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200afe8: c2 07 bf fc ld [ %fp + -4 ], %g1 200afec: 80 a0 60 00 cmp %g1, 0 200aff0: 12 80 00 08 bne 200b010 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 200aff4: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 200aff8: 40 00 0b 6f call 200ddb4 <_Thread_queue_Process_timeout> 200affc: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 200b000: 03 00 80 73 sethi %hi(0x201cc00), %g1 200b004: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level> --level; 200b008: 84 00 bf ff add %g2, -1, %g2 _Thread_Dispatch_disable_level = level; 200b00c: c4 20 60 80 st %g2, [ %g1 + 0x80 ] 200b010: 81 c7 e0 08 ret 200b014: 81 e8 00 00 restore =============================================================================== 020180c4 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20180c4: 9d e3 bf 88 save %sp, -120, %sp 20180c8: 21 00 80 ec sethi %hi(0x203b000), %l0 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20180cc: a4 07 bf e8 add %fp, -24, %l2 20180d0: b4 07 bf ec add %fp, -20, %i2 20180d4: b8 07 bf f4 add %fp, -12, %i4 20180d8: a2 07 bf f8 add %fp, -8, %l1 20180dc: 33 00 80 ec sethi %hi(0x203b000), %i1 20180e0: 27 00 80 ec sethi %hi(0x203b000), %l3 20180e4: f4 27 bf e8 st %i2, [ %fp + -24 ] head->previous = NULL; 20180e8: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20180ec: e4 27 bf f0 st %l2, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20180f0: e2 27 bf f4 st %l1, [ %fp + -12 ] head->previous = NULL; 20180f4: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20180f8: f8 27 bf fc st %i4, [ %fp + -4 ] 20180fc: a0 14 21 dc or %l0, 0x1dc, %l0 2018100: b6 06 20 30 add %i0, 0x30, %i3 2018104: b2 16 60 38 or %i1, 0x38, %i1 2018108: ba 06 20 68 add %i0, 0x68, %i5 201810c: a6 14 e0 f0 or %l3, 0xf0, %l3 2018110: ac 06 20 08 add %i0, 8, %l6 2018114: aa 06 20 40 add %i0, 0x40, %l5 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2018118: a8 10 20 01 mov 1, %l4 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 201811c: e4 26 20 78 st %l2, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2018120: c2 04 00 00 ld [ %l0 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2018124: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018128: 90 10 00 1b mov %i3, %o0 201812c: 92 20 40 09 sub %g1, %o1, %o1 2018130: 94 10 00 1c mov %i4, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2018134: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018138: 40 00 12 29 call 201c9dc <_Watchdog_Adjust_to_chain> 201813c: 01 00 00 00 nop 2018140: d0 1e 40 00 ldd [ %i1 ], %o0 2018144: 94 10 20 00 clr %o2 2018148: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 201814c: 40 00 4d 36 call 202b624 <__divdi3> 2018150: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2018154: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2018158: 80 a2 40 0a cmp %o1, %o2 201815c: 18 80 00 2b bgu 2018208 <_Timer_server_Body+0x144> 2018160: ae 10 00 09 mov %o1, %l7 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2018164: 80 a2 40 0a cmp %o1, %o2 2018168: 0a 80 00 20 bcs 20181e8 <_Timer_server_Body+0x124> 201816c: 90 10 00 1d mov %i5, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2018170: ee 26 20 74 st %l7, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2018174: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2018178: 40 00 02 a6 call 2018c10 <_Chain_Get> 201817c: 01 00 00 00 nop if ( timer == NULL ) { 2018180: 92 92 20 00 orcc %o0, 0, %o1 2018184: 02 80 00 10 be 20181c4 <_Timer_server_Body+0x100> 2018188: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201818c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2018190: 80 a0 60 01 cmp %g1, 1 2018194: 02 80 00 19 be 20181f8 <_Timer_server_Body+0x134> 2018198: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 201819c: 12 bf ff f6 bne 2018174 <_Timer_server_Body+0xb0> <== NEVER TAKEN 20181a0: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20181a4: 40 00 12 3a call 201ca8c <_Watchdog_Insert> 20181a8: 90 10 00 1d mov %i5, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20181ac: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20181b0: 40 00 02 98 call 2018c10 <_Chain_Get> 20181b4: 01 00 00 00 nop if ( timer == NULL ) { 20181b8: 92 92 20 00 orcc %o0, 0, %o1 20181bc: 32 bf ff f5 bne,a 2018190 <_Timer_server_Body+0xcc> <== NEVER TAKEN 20181c0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20181c4: 7f ff dd 4d call 200f6f8 20181c8: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 20181cc: c2 07 bf e8 ld [ %fp + -24 ], %g1 20181d0: 80 a0 40 1a cmp %g1, %i2 20181d4: 02 80 00 12 be 201821c <_Timer_server_Body+0x158> <== ALWAYS TAKEN 20181d8: 01 00 00 00 nop ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 20181dc: 7f ff dd 4b call 200f708 <== NOT EXECUTED 20181e0: 01 00 00 00 nop <== NOT EXECUTED 20181e4: 30 bf ff cf b,a 2018120 <_Timer_server_Body+0x5c> <== NOT EXECUTED /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20181e8: 92 10 20 01 mov 1, %o1 ! 1 20181ec: 40 00 11 cc call 201c91c <_Watchdog_Adjust> 20181f0: 94 22 80 17 sub %o2, %l7, %o2 20181f4: 30 bf ff df b,a 2018170 <_Timer_server_Body+0xac> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20181f8: 90 10 00 1b mov %i3, %o0 20181fc: 40 00 12 24 call 201ca8c <_Watchdog_Insert> 2018200: 92 02 60 10 add %o1, 0x10, %o1 2018204: 30 bf ff dc b,a 2018174 <_Timer_server_Body+0xb0> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2018208: 92 22 40 0a sub %o1, %o2, %o1 201820c: 90 10 00 1d mov %i5, %o0 2018210: 40 00 11 f3 call 201c9dc <_Watchdog_Adjust_to_chain> 2018214: 94 10 00 1c mov %i4, %o2 2018218: 30 bf ff d6 b,a 2018170 <_Timer_server_Body+0xac> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 201821c: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2018220: 7f ff dd 3a call 200f708 2018224: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2018228: c2 07 bf f4 ld [ %fp + -12 ], %g1 201822c: 80 a0 40 11 cmp %g1, %l1 2018230: 12 80 00 0c bne 2018260 <_Timer_server_Body+0x19c> 2018234: 01 00 00 00 nop 2018238: 30 80 00 13 b,a 2018284 <_Timer_server_Body+0x1c0> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 201823c: f8 20 60 04 st %i4, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2018240: c2 27 bf f4 st %g1, [ %fp + -12 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 2018244: c0 25 e0 08 clr [ %l7 + 8 ] _ISR_Enable( level ); 2018248: 7f ff dd 30 call 200f708 201824c: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2018250: d0 05 e0 20 ld [ %l7 + 0x20 ], %o0 2018254: c2 05 e0 1c ld [ %l7 + 0x1c ], %g1 2018258: 9f c0 40 00 call %g1 201825c: d2 05 e0 24 ld [ %l7 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2018260: 7f ff dd 26 call 200f6f8 2018264: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2018268: ee 07 bf f4 ld [ %fp + -12 ], %l7 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 201826c: 80 a5 c0 11 cmp %l7, %l1 2018270: 32 bf ff f3 bne,a 201823c <_Timer_server_Body+0x178> 2018274: c2 05 c0 00 ld [ %l7 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2018278: 7f ff dd 24 call 200f708 201827c: 01 00 00 00 nop 2018280: 30 bf ff a7 b,a 201811c <_Timer_server_Body+0x58> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2018284: c0 2e 20 7c clrb [ %i0 + 0x7c ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2018288: c2 04 c0 00 ld [ %l3 ], %g1 ++level; 201828c: 82 00 60 01 inc %g1 _Thread_Dispatch_disable_level = level; 2018290: c2 24 c0 00 st %g1, [ %l3 ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2018294: d0 06 00 00 ld [ %i0 ], %o0 2018298: 40 00 10 b3 call 201c564 <_Thread_Set_state> 201829c: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 20182a0: 7f ff ff 07 call 2017ebc <_Timer_server_Reset_interval_system_watchdog> 20182a4: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 20182a8: 7f ff ff 19 call 2017f0c <_Timer_server_Reset_tod_system_watchdog> 20182ac: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 20182b0: 40 00 0e 30 call 201bb70 <_Thread_Enable_dispatch> 20182b4: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20182b8: 90 10 00 16 mov %l6, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 20182bc: e8 2e 20 7c stb %l4, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20182c0: 40 00 12 52 call 201cc08 <_Watchdog_Remove> 20182c4: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20182c8: 40 00 12 50 call 201cc08 <_Watchdog_Remove> 20182cc: 90 10 00 15 mov %l5, %o0 20182d0: 30 bf ff 93 b,a 201811c <_Timer_server_Body+0x58> =============================================================================== 02017f5c <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2017f5c: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2017f60: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2017f64: 80 a0 60 00 cmp %g1, 0 2017f68: 02 80 00 05 be 2017f7c <_Timer_server_Schedule_operation_method+0x20> 2017f6c: ba 10 00 19 mov %i1, %i5 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2017f70: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2017f74: 40 00 03 1c call 2018be4 <_Chain_Append> 2017f78: 81 e8 00 00 restore * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2017f7c: 03 00 80 ec sethi %hi(0x203b000), %g1 2017f80: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 203b0f0 <_Thread_Dispatch_disable_level> ++level; 2017f84: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 2017f88: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2017f8c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2017f90: 80 a0 60 01 cmp %g1, 1 2017f94: 02 80 00 2b be 2018040 <_Timer_server_Schedule_operation_method+0xe4> 2017f98: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2017f9c: 02 80 00 04 be 2017fac <_Timer_server_Schedule_operation_method+0x50> 2017fa0: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2017fa4: 40 00 0e f3 call 201bb70 <_Thread_Enable_dispatch> 2017fa8: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2017fac: 7f ff dd d3 call 200f6f8 2017fb0: 01 00 00 00 nop 2017fb4: b8 10 00 08 mov %o0, %i4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2017fb8: 03 00 80 ec sethi %hi(0x203b000), %g1 2017fbc: d0 18 60 38 ldd [ %g1 + 0x38 ], %o0 ! 203b038 <_TOD> 2017fc0: 94 10 20 00 clr %o2 2017fc4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2017fc8: 40 00 4d 97 call 202b624 <__divdi3> 2017fcc: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2017fd0: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; 2017fd4: c4 06 20 74 ld [ %i0 + 0x74 ], %g2 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2017fd8: 86 06 20 6c add %i0, 0x6c, %g3 if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2017fdc: 80 a0 40 03 cmp %g1, %g3 2017fe0: 02 80 00 0a be 2018008 <_Timer_server_Schedule_operation_method+0xac> 2017fe4: 80 a2 40 02 cmp %o1, %g2 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2017fe8: 08 80 00 34 bleu 20180b8 <_Timer_server_Schedule_operation_method+0x15c> 2017fec: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2017ff0: 84 22 40 02 sub %o1, %g2, %g2 if (delta_interval > delta) { 2017ff4: 80 a1 00 02 cmp %g4, %g2 2017ff8: 08 80 00 03 bleu 2018004 <_Timer_server_Schedule_operation_method+0xa8><== NEVER TAKEN 2017ffc: 86 10 20 00 clr %g3 delta_interval -= delta; 2018000: 86 21 00 02 sub %g4, %g2, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2018004: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2018008: d2 26 20 74 st %o1, [ %i0 + 0x74 ] _ISR_Enable( level ); 201800c: 7f ff dd bf call 200f708 2018010: 90 10 00 1c mov %i4, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2018014: 90 06 20 68 add %i0, 0x68, %o0 2018018: 40 00 12 9d call 201ca8c <_Watchdog_Insert> 201801c: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018020: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2018024: 80 a0 60 00 cmp %g1, 0 2018028: 12 bf ff df bne 2017fa4 <_Timer_server_Schedule_operation_method+0x48> 201802c: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2018030: 7f ff ff b7 call 2017f0c <_Timer_server_Reset_tod_system_watchdog> 2018034: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2018038: 40 00 0e ce call 201bb70 <_Thread_Enable_dispatch> 201803c: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2018040: 7f ff dd ae call 200f6f8 2018044: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2018048: 05 00 80 ec sethi %hi(0x203b000), %g2 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201804c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 2018050: c4 00 a1 dc ld [ %g2 + 0x1dc ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2018054: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2018058: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 201805c: 80 a0 40 03 cmp %g1, %g3 2018060: 02 80 00 08 be 2018080 <_Timer_server_Schedule_operation_method+0x124> 2018064: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2018068: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 if (delta_interval > delta) { 201806c: 80 a1 00 1c cmp %g4, %i4 2018070: 1a 80 00 03 bcc 201807c <_Timer_server_Schedule_operation_method+0x120> 2018074: 86 10 20 00 clr %g3 delta_interval -= delta; 2018078: 86 27 00 04 sub %i4, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 201807c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2018080: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2018084: 7f ff dd a1 call 200f708 2018088: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 201808c: 90 06 20 30 add %i0, 0x30, %o0 2018090: 40 00 12 7f call 201ca8c <_Watchdog_Insert> 2018094: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2018098: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 201809c: 80 a0 60 00 cmp %g1, 0 20180a0: 12 bf ff c1 bne 2017fa4 <_Timer_server_Schedule_operation_method+0x48> 20180a4: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 20180a8: 7f ff ff 85 call 2017ebc <_Timer_server_Reset_interval_system_watchdog> 20180ac: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 20180b0: 40 00 0e b0 call 201bb70 <_Thread_Enable_dispatch> 20180b4: 81 e8 00 00 restore } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 20180b8: 84 01 00 02 add %g4, %g2, %g2 delta_interval += delta; 20180bc: 10 bf ff d2 b 2018004 <_Timer_server_Schedule_operation_method+0xa8> 20180c0: 86 20 80 09 sub %g2, %o1, %g3 =============================================================================== 0200ba10 <_Timespec_Add_to>: ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 200ba10: d8 02 00 00 ld [ %o0 ], %o4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 200ba14: c4 02 40 00 ld [ %o1 ], %g2 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 200ba18: c6 02 20 04 ld [ %o0 + 4 ], %g3 200ba1c: c2 02 60 04 ld [ %o1 + 4 ], %g1 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 200ba20: 98 03 00 02 add %o4, %g2, %o4 time->tv_nsec += add->tv_nsec; 200ba24: 82 00 c0 01 add %g3, %g1, %g1 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 200ba28: d8 22 00 00 st %o4, [ %o0 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 200ba2c: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 200ba30: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 200ba34: 80 a0 40 04 cmp %g1, %g4 200ba38: 08 80 00 0d bleu 200ba6c <_Timespec_Add_to+0x5c> 200ba3c: c2 22 20 04 st %g1, [ %o0 + 4 ] 200ba40: 98 03 20 01 inc %o4 time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 200ba44: 1b 31 19 4d sethi %hi(0xc4653400), %o5 #include #include #include #include uint32_t _Timespec_Add_to( 200ba48: 98 23 00 02 sub %o4, %g2, %o4 time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 200ba4c: 9a 13 62 00 or %o5, 0x200, %o5 200ba50: 82 00 40 0d add %g1, %o5, %g1 #include #include #include #include uint32_t _Timespec_Add_to( 200ba54: 86 03 00 02 add %o4, %g2, %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 200ba58: 80 a0 40 04 cmp %g1, %g4 200ba5c: 18 bf ff fd bgu 200ba50 <_Timespec_Add_to+0x40> <== NEVER TAKEN 200ba60: 84 00 a0 01 inc %g2 200ba64: c2 22 20 04 st %g1, [ %o0 + 4 ] 200ba68: c6 22 00 00 st %g3, [ %o0 ] time->tv_sec++; seconds++; } return seconds; } 200ba6c: 81 c3 e0 08 retl 200ba70: 90 10 00 02 mov %g2, %o0 =============================================================================== 0200ca5c <_Timestamp64_Divide>: const Timestamp64_Control *_lhs, const Timestamp64_Control *_rhs, uint32_t *_ival_percentage, uint32_t *_fval_percentage ) { 200ca5c: 9d e3 bf a0 save %sp, -96, %sp Timestamp64_Control answer; if ( *_rhs == 0 ) { 200ca60: d4 1e 40 00 ldd [ %i1 ], %o2 200ca64: 80 92 80 0b orcc %o2, %o3, %g0 200ca68: 22 80 00 2f be,a 200cb24 <_Timestamp64_Divide+0xc8> <== NEVER TAKEN 200ca6c: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200ca70: e0 1e 00 00 ldd [ %i0 ], %l0 200ca74: 83 2c 20 02 sll %l0, 2, %g1 200ca78: 89 34 60 1e srl %l1, 0x1e, %g4 200ca7c: 87 2c 60 02 sll %l1, 2, %g3 200ca80: 84 11 00 01 or %g4, %g1, %g2 200ca84: 83 30 e0 1b srl %g3, 0x1b, %g1 200ca88: 9b 28 e0 05 sll %g3, 5, %o5 200ca8c: 99 28 a0 05 sll %g2, 5, %o4 200ca90: 86 a3 40 03 subcc %o5, %g3, %g3 200ca94: 98 10 40 0c or %g1, %o4, %o4 200ca98: 84 63 00 02 subx %o4, %g2, %g2 200ca9c: 92 80 c0 11 addcc %g3, %l1, %o1 200caa0: 83 32 60 1e srl %o1, 0x1e, %g1 200caa4: 90 40 80 10 addx %g2, %l0, %o0 200caa8: b3 2a 60 02 sll %o1, 2, %i1 200caac: b1 2a 20 02 sll %o0, 2, %i0 200cab0: 86 82 40 19 addcc %o1, %i1, %g3 200cab4: b0 10 40 18 or %g1, %i0, %i0 200cab8: 83 30 e0 1e srl %g3, 0x1e, %g1 200cabc: 84 42 00 18 addx %o0, %i0, %g2 200cac0: bb 28 e0 02 sll %g3, 2, %i5 200cac4: b9 28 a0 02 sll %g2, 2, %i4 200cac8: 92 80 c0 1d addcc %g3, %i5, %o1 200cacc: b8 10 40 1c or %g1, %i4, %i4 200cad0: 87 32 60 1b srl %o1, 0x1b, %g3 200cad4: 90 40 80 1c addx %g2, %i4, %o0 200cad8: 83 2a 60 05 sll %o1, 5, %g1 200cadc: 85 2a 20 05 sll %o0, 5, %g2 200cae0: 92 10 00 01 mov %g1, %o1 200cae4: 40 00 37 ce call 201aa1c <__divdi3> 200cae8: 90 10 c0 02 or %g3, %g2, %o0 *_ival_percentage = answer / 1000; 200caec: 94 10 20 00 clr %o2 * This looks odd but gives the results the proper precision. * * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; 200caf0: b8 10 00 08 mov %o0, %i4 200caf4: ba 10 00 09 mov %o1, %i5 *_ival_percentage = answer / 1000; 200caf8: 40 00 37 c9 call 201aa1c <__divdi3> 200cafc: 96 10 23 e8 mov 0x3e8, %o3 *_fval_percentage = answer % 1000; 200cb00: 90 10 00 1c mov %i4, %o0 * TODO: Rounding on the last digit of the fval. */ answer = (*_lhs * 100000) / *_rhs; *_ival_percentage = answer / 1000; 200cb04: d2 26 80 00 st %o1, [ %i2 ] *_fval_percentage = answer % 1000; 200cb08: 94 10 20 00 clr %o2 200cb0c: 96 10 23 e8 mov 0x3e8, %o3 200cb10: 40 00 38 ae call 201adc8 <__moddi3> 200cb14: 92 10 00 1d mov %i5, %o1 200cb18: d2 26 c0 00 st %o1, [ %i3 ] 200cb1c: 81 c7 e0 08 ret 200cb20: 81 e8 00 00 restore { Timestamp64_Control answer; if ( *_rhs == 0 ) { *_ival_percentage = 0; *_fval_percentage = 0; 200cb24: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED return; 200cb28: 81 c7 e0 08 ret <== NOT EXECUTED 200cb2c: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 0200b3b0 <_User_extensions_Handler_initialization>: } } void _User_extensions_Handler_initialization(void) { 200b3b0: 9d e3 bf 98 save %sp, -104, %sp uint32_t number_of_initial_extensions = 200b3b4: 03 00 80 68 sethi %hi(0x201a000), %g1 200b3b8: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 201a0a8 rtems_configuration_get_number_of_initial_extensions(); if ( number_of_initial_extensions > 0 ) { 200b3bc: 80 a0 60 00 cmp %g1, 0 200b3c0: 02 80 00 0a be 200b3e8 <_User_extensions_Handler_initialization+0x38><== NEVER TAKEN 200b3c4: 91 28 60 02 sll %g1, 2, %o0 User_extensions_Switch_control *initial_extension_switch_controls = _Workspace_Allocate_or_fatal_error( number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) 200b3c8: 83 28 60 04 sll %g1, 4, %g1 { uint32_t number_of_initial_extensions = rtems_configuration_get_number_of_initial_extensions(); if ( number_of_initial_extensions > 0 ) { User_extensions_Switch_control *initial_extension_switch_controls = 200b3cc: 40 00 01 2c call 200b87c <_Workspace_Allocate_or_fatal_error> 200b3d0: 90 20 40 08 sub %g1, %o0, %o0 number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) ); User_extensions_Switch_context ctx = { initial_extension_switch_controls }; _User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor ); 200b3d4: 13 00 80 2c sethi %hi(0x200b000), %o1 User_extensions_Switch_control *initial_extension_switch_controls = _Workspace_Allocate_or_fatal_error( number_of_initial_extensions * sizeof( *initial_extension_switch_controls ) ); User_extensions_Switch_context ctx = { initial_extension_switch_controls }; 200b3d8: d0 27 bf fc st %o0, [ %fp + -4 ] _User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor ); 200b3dc: 92 12 63 6c or %o1, 0x36c, %o1 200b3e0: 7f ff ff c0 call 200b2e0 <_User_extensions_Iterate> 200b3e4: 90 07 bf fc add %fp, -4, %o0 200b3e8: 81 c7 e0 08 ret 200b3ec: 81 e8 00 00 restore =============================================================================== 0200b2e0 <_User_extensions_Iterate>: void _User_extensions_Iterate( void *arg, User_extensions_Visitor visitor ) { 200b2e0: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *executing = _Thread_Executing; const User_extensions_Table *callouts_current = 200b2e4: 03 00 80 68 sethi %hi(0x201a000), %g1 200b2e8: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 200b2ec: fa 00 60 44 ld [ %g1 + 0x44 ], %i5 rtems_configuration_get_user_extension_table(); const User_extensions_Table *callouts_end = callouts_current + rtems_configuration_get_number_of_initial_extensions(); 200b2f0: f6 00 60 40 ld [ %g1 + 0x40 ], %i3 void _User_extensions_Iterate( void *arg, User_extensions_Visitor visitor ) { Thread_Control *executing = _Thread_Executing; 200b2f4: 03 00 80 73 sethi %hi(0x201cc00), %g1 const User_extensions_Table *callouts_current = rtems_configuration_get_user_extension_table(); const User_extensions_Table *callouts_end = callouts_current + rtems_configuration_get_number_of_initial_extensions(); 200b2f8: b7 2e e0 05 sll %i3, 5, %i3 ) { Thread_Control *executing = _Thread_Executing; const User_extensions_Table *callouts_current = rtems_configuration_get_user_extension_table(); const User_extensions_Table *callouts_end = 200b2fc: b6 07 40 1b add %i5, %i3, %i3 callouts_current + rtems_configuration_get_number_of_initial_extensions(); const Chain_Node *node; const Chain_Node *tail; while ( callouts_current != callouts_end ) { 200b300: 80 a7 40 1b cmp %i5, %i3 200b304: 02 80 00 0a be 200b32c <_User_extensions_Iterate+0x4c> <== NEVER TAKEN 200b308: f8 00 62 a0 ld [ %g1 + 0x2a0 ], %i4 (*visitor)( executing, arg, callouts_current ); 200b30c: 94 10 00 1d mov %i5, %o2 200b310: 90 10 00 1c mov %i4, %o0 200b314: 9f c6 40 00 call %i1 200b318: 92 10 00 18 mov %i0, %o1 ++callouts_current; 200b31c: ba 07 60 20 add %i5, 0x20, %i5 const User_extensions_Table *callouts_end = callouts_current + rtems_configuration_get_number_of_initial_extensions(); const Chain_Node *node; const Chain_Node *tail; while ( callouts_current != callouts_end ) { 200b320: 80 a6 c0 1d cmp %i3, %i5 200b324: 12 bf ff fb bne 200b310 <_User_extensions_Iterate+0x30> 200b328: 94 10 00 1d mov %i5, %o2 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b32c: 37 00 80 70 sethi %hi(0x201c000), %i3 200b330: fa 06 e2 ac ld [ %i3 + 0x2ac ], %i5 ! 201c2ac <_User_extensions_List> 200b334: b6 16 e2 ac or %i3, 0x2ac, %i3 ++callouts_current; } node = _Chain_Immutable_first( &_User_extensions_List ); tail = _Chain_Immutable_tail( &_User_extensions_List ); while ( node != tail ) { 200b338: b6 06 e0 04 add %i3, 4, %i3 200b33c: 80 a7 40 1b cmp %i5, %i3 200b340: 02 80 00 09 be 200b364 <_User_extensions_Iterate+0x84> 200b344: 94 07 60 14 add %i5, 0x14, %o2 const User_extensions_Control *extension = (const User_extensions_Control *) node; (*visitor)( executing, arg, &extension->Callouts ); 200b348: 90 10 00 1c mov %i4, %o0 200b34c: 9f c6 40 00 call %i1 200b350: 92 10 00 18 mov %i0, %o1 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next( const Chain_Node *the_node ) { return the_node->next; 200b354: fa 07 40 00 ld [ %i5 ], %i5 ++callouts_current; } node = _Chain_Immutable_first( &_User_extensions_List ); tail = _Chain_Immutable_tail( &_User_extensions_List ); while ( node != tail ) { 200b358: 80 a7 40 1b cmp %i5, %i3 200b35c: 12 bf ff fb bne 200b348 <_User_extensions_Iterate+0x68> 200b360: 94 07 60 14 add %i5, 0x14, %o2 200b364: 81 c7 e0 08 ret 200b368: 81 e8 00 00 restore =============================================================================== 0200cda8 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200cda8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200cdac: 7f ff d9 66 call 2003344 200cdb0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200cdb4: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200cdb8: b8 06 20 04 add %i0, 4, %i4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200cdbc: 80 a0 40 1c cmp %g1, %i4 200cdc0: 02 80 00 1f be 200ce3c <_Watchdog_Adjust+0x94> 200cdc4: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200cdc8: 12 80 00 1f bne 200ce44 <_Watchdog_Adjust+0x9c> 200cdcc: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200cdd0: 80 a6 a0 00 cmp %i2, 0 200cdd4: 02 80 00 1a be 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200cdd8: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200cddc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200cde0: 80 a6 80 02 cmp %i2, %g2 200cde4: 1a 80 00 0a bcc 200ce0c <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN 200cde8: b6 10 20 01 mov 1, %i3 _Watchdog_First( header )->delta_interval -= units; 200cdec: 10 80 00 1d b 200ce60 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED 200cdf0: 84 20 80 1a sub %g2, %i2, %g2 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200cdf4: 02 80 00 12 be 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200cdf8: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200cdfc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200ce00: 80 a0 80 1a cmp %g2, %i2 200ce04: 38 80 00 17 bgu,a 200ce60 <_Watchdog_Adjust+0xb8> 200ce08: 84 20 80 1a sub %g2, %i2, %g2 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200ce0c: f6 20 60 10 st %i3, [ %g1 + 0x10 ] while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 200ce10: b4 26 80 02 sub %i2, %g2, %i2 _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 200ce14: 7f ff d9 50 call 2003354 200ce18: 01 00 00 00 nop _Watchdog_Tickle( header ); 200ce1c: 40 00 00 a8 call 200d0bc <_Watchdog_Tickle> 200ce20: 90 10 00 18 mov %i0, %o0 _ISR_Disable( level ); 200ce24: 7f ff d9 48 call 2003344 200ce28: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200ce2c: c2 06 00 00 ld [ %i0 ], %g1 if ( _Chain_Is_empty( header ) ) 200ce30: 80 a7 00 01 cmp %i4, %g1 200ce34: 12 bf ff f0 bne 200cdf4 <_Watchdog_Adjust+0x4c> 200ce38: 80 a6 a0 00 cmp %i2, 0 } break; } } _ISR_Enable( level ); 200ce3c: 7f ff d9 46 call 2003354 200ce40: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200ce44: 12 bf ff fe bne 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200ce48: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200ce4c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200ce50: b4 00 80 1a add %g2, %i2, %i2 200ce54: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200ce58: 7f ff d9 3f call 2003354 200ce5c: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200ce60: 10 bf ff f7 b 200ce3c <_Watchdog_Adjust+0x94> 200ce64: c4 20 60 10 st %g2, [ %g1 + 0x10 ] =============================================================================== 0201c9dc <_Watchdog_Adjust_to_chain>: Chain_Control *header, Watchdog_Interval units_arg, Chain_Control *to_fire ) { 201c9dc: 9d e3 bf a0 save %sp, -96, %sp Watchdog_Interval units = units_arg; ISR_Level level; Watchdog_Control *first; _ISR_Disable( level ); 201c9e0: 7f ff cb 46 call 200f6f8 201c9e4: 01 00 00 00 nop 201c9e8: c2 06 00 00 ld [ %i0 ], %g1 201c9ec: ba 06 20 04 add %i0, 4, %i5 201c9f0: b8 06 a0 04 add %i2, 4, %i4 while ( 1 ) { if ( _Chain_Is_empty( header ) ) { 201c9f4: 80 a7 40 01 cmp %i5, %g1 201c9f8: 02 80 00 20 be 201ca78 <_Watchdog_Adjust_to_chain+0x9c> 201c9fc: 01 00 00 00 nop /* * If it is longer than "units" until the first element on the chain * fires, then bump it and quit. */ if ( units < first->delta_interval ) { 201ca00: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 201ca04: 80 a6 40 02 cmp %i1, %g2 201ca08: 2a 80 00 1e bcs,a 201ca80 <_Watchdog_Adjust_to_chain+0xa4> 201ca0c: 84 20 80 19 sub %g2, %i1, %g2 /* * The first set happens in less than units, so take all of them * off the chain and adjust units to reflect this. */ units -= first->delta_interval; 201ca10: b2 26 40 02 sub %i1, %g2, %i1 first->delta_interval = 0; 201ca14: c0 20 60 10 clr [ %g1 + 0x10 ] { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 201ca18: c4 00 60 04 ld [ %g1 + 4 ], %g2 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 201ca1c: c6 00 40 00 ld [ %g1 ], %g3 previous = the_node->previous; next->previous = previous; 201ca20: c4 20 e0 04 st %g2, [ %g3 + 4 ] previous->next = next; 201ca24: c6 20 80 00 st %g3, [ %g2 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 201ca28: c4 06 a0 08 ld [ %i2 + 8 ], %g2 the_node->next = tail; 201ca2c: f8 20 40 00 st %i4, [ %g1 ] tail->previous = the_node; 201ca30: c2 26 a0 08 st %g1, [ %i2 + 8 ] old_last->next = the_node; 201ca34: c2 20 80 00 st %g1, [ %g2 ] the_node->previous = old_last; 201ca38: c4 20 60 04 st %g2, [ %g1 + 4 ] while ( 1 ) { _Chain_Extract_unprotected( &first->Node ); _Chain_Append_unprotected( to_fire, &first->Node ); _ISR_Flash( level ); 201ca3c: 7f ff cb 33 call 200f708 201ca40: 01 00 00 00 nop 201ca44: 7f ff cb 2d call 200f6f8 201ca48: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201ca4c: c2 06 00 00 ld [ %i0 ], %g1 if ( _Chain_Is_empty( header ) ) 201ca50: 80 a7 40 01 cmp %i5, %g1 201ca54: 02 bf ff e9 be 201c9f8 <_Watchdog_Adjust_to_chain+0x1c> 201ca58: 01 00 00 00 nop break; first = _Watchdog_First( header ); if ( first->delta_interval != 0 ) 201ca5c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 201ca60: 80 a0 a0 00 cmp %g2, 0 201ca64: 22 bf ff ee be,a 201ca1c <_Watchdog_Adjust_to_chain+0x40> 201ca68: c4 00 60 04 ld [ %g1 + 4 ], %g2 Watchdog_Control *first; _ISR_Disable( level ); while ( 1 ) { if ( _Chain_Is_empty( header ) ) { 201ca6c: 80 a7 40 01 cmp %i5, %g1 201ca70: 12 bf ff e6 bne 201ca08 <_Watchdog_Adjust_to_chain+0x2c> <== ALWAYS TAKEN 201ca74: 80 a6 40 02 cmp %i1, %g2 if ( first->delta_interval != 0 ) break; } } _ISR_Enable( level ); 201ca78: 7f ff cb 24 call 200f708 201ca7c: 91 e8 00 08 restore %g0, %o0, %o0 /* * If it is longer than "units" until the first element on the chain * fires, then bump it and quit. */ if ( units < first->delta_interval ) { first->delta_interval -= units; 201ca80: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( first->delta_interval != 0 ) break; } } _ISR_Enable( level ); 201ca84: 7f ff cb 21 call 200f708 201ca88: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200b56c <_Watchdog_Remove>: #include Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200b56c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200b570: 7f ff dc 27 call 200260c 200b574: 01 00 00 00 nop previous_state = the_watchdog->state; 200b578: fa 06 20 08 ld [ %i0 + 8 ], %i5 switch ( previous_state ) { 200b57c: 80 a7 60 01 cmp %i5, 1 200b580: 02 80 00 2a be 200b628 <_Watchdog_Remove+0xbc> 200b584: 03 00 80 73 sethi %hi(0x201cc00), %g1 200b588: 1a 80 00 09 bcc 200b5ac <_Watchdog_Remove+0x40> 200b58c: 80 a7 60 03 cmp %i5, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200b590: 03 00 80 73 sethi %hi(0x201cc00), %g1 200b594: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201cd6c <_Watchdog_Ticks_since_boot> 200b598: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200b59c: 7f ff dc 20 call 200261c 200b5a0: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200b5a4: 81 c7 e0 08 ret 200b5a8: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 200b5ac: 18 bf ff fa bgu 200b594 <_Watchdog_Remove+0x28> <== NEVER TAKEN 200b5b0: 03 00 80 73 sethi %hi(0x201cc00), %g1 RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next( Watchdog_Control *the_watchdog ) { return ( (Watchdog_Control *) the_watchdog->Node.next ); 200b5b4: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200b5b8: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200b5bc: c4 00 40 00 ld [ %g1 ], %g2 200b5c0: 80 a0 a0 00 cmp %g2, 0 200b5c4: 02 80 00 07 be 200b5e0 <_Watchdog_Remove+0x74> 200b5c8: 05 00 80 73 sethi %hi(0x201cc00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200b5cc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200b5d0: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200b5d4: 84 00 c0 02 add %g3, %g2, %g2 200b5d8: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200b5dc: 05 00 80 73 sethi %hi(0x201cc00), %g2 200b5e0: c4 00 a1 68 ld [ %g2 + 0x168 ], %g2 ! 201cd68 <_Watchdog_Sync_count> 200b5e4: 80 a0 a0 00 cmp %g2, 0 200b5e8: 22 80 00 07 be,a 200b604 <_Watchdog_Remove+0x98> 200b5ec: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200b5f0: 05 00 80 73 sethi %hi(0x201cc00), %g2 200b5f4: c6 00 a2 98 ld [ %g2 + 0x298 ], %g3 ! 201ce98 <_Per_CPU_Information+0x8> 200b5f8: 05 00 80 73 sethi %hi(0x201cc00), %g2 200b5fc: c6 20 a1 08 st %g3, [ %g2 + 0x108 ] ! 201cd08 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200b600: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 200b604: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200b608: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200b60c: 03 00 80 73 sethi %hi(0x201cc00), %g1 200b610: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201cd6c <_Watchdog_Ticks_since_boot> 200b614: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200b618: 7f ff dc 01 call 200261c 200b61c: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200b620: 81 c7 e0 08 ret 200b624: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200b628: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 200b62c: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200b630: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200b634: 7f ff db fa call 200261c 200b638: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200b63c: 81 c7 e0 08 ret 200b640: 81 e8 00 00 restore =============================================================================== 0200c7f4 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200c7f4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200c7f8: 7f ff d9 d1 call 2002f3c 200c7fc: 01 00 00 00 nop 200c800: b6 10 00 08 mov %o0, %i3 printk( "Watchdog Chain: %s %p\n", name, header ); 200c804: 11 00 80 73 sethi %hi(0x201cc00), %o0 200c808: 94 10 00 19 mov %i1, %o2 200c80c: 92 10 00 18 mov %i0, %o1 200c810: 7f ff e1 86 call 2004e28 200c814: 90 12 21 98 or %o0, 0x198, %o0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200c818: fa 06 40 00 ld [ %i1 ], %i5 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200c81c: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200c820: 80 a7 40 19 cmp %i5, %i1 200c824: 02 80 00 0f be 200c860 <_Watchdog_Report_chain+0x6c> 200c828: 11 00 80 73 sethi %hi(0x201cc00), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200c82c: 92 10 00 1d mov %i5, %o1 200c830: 40 00 00 0f call 200c86c <_Watchdog_Report> 200c834: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200c838: fa 07 40 00 ld [ %i5 ], %i5 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200c83c: 80 a7 40 19 cmp %i5, %i1 200c840: 12 bf ff fc bne 200c830 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200c844: 92 10 00 1d mov %i5, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200c848: 11 00 80 73 sethi %hi(0x201cc00), %o0 200c84c: 92 10 00 18 mov %i0, %o1 200c850: 7f ff e1 76 call 2004e28 200c854: 90 12 21 b0 or %o0, 0x1b0, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200c858: 7f ff d9 bd call 2002f4c 200c85c: 91 e8 00 1b restore %g0, %i3, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200c860: 7f ff e1 72 call 2004e28 200c864: 90 12 21 c0 or %o0, 0x1c0, %o0 200c868: 30 bf ff fc b,a 200c858 <_Watchdog_Report_chain+0x64> =============================================================================== 0200b644 <_Watchdog_Tickle>: #include void _Watchdog_Tickle( Chain_Control *header ) { 200b644: 9d e3 bf a0 save %sp, -96, %sp * See the comment in watchdoginsert.c and watchdogadjust.c * about why it's safe not to declare header a pointer to * volatile data - till, 2003/7 */ _ISR_Disable( level ); 200b648: 7f ff db f1 call 200260c 200b64c: 01 00 00 00 nop 200b650: b8 10 00 08 mov %o0, %i4 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b654: fa 06 00 00 ld [ %i0 ], %i5 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b658: b4 06 20 04 add %i0, 4, %i2 if ( _Chain_Is_empty( header ) ) 200b65c: 80 a7 40 1a cmp %i5, %i2 200b660: 02 80 00 09 be 200b684 <_Watchdog_Tickle+0x40> 200b664: 01 00 00 00 nop * to be inserted has already had its delta_interval adjusted to 0, and * so is added to the head of the chain with a delta_interval of 0. * * Steven Johnson - 12/2005 (gcc-3.2.3 -O3 on powerpc) */ if (the_watchdog->delta_interval != 0) { 200b668: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200b66c: 80 a0 60 00 cmp %g1, 0 200b670: 02 80 00 15 be 200b6c4 <_Watchdog_Tickle+0x80> <== NEVER TAKEN 200b674: 82 00 7f ff add %g1, -1, %g1 the_watchdog->delta_interval--; if ( the_watchdog->delta_interval != 0 ) 200b678: 80 a0 60 00 cmp %g1, 0 200b67c: 02 80 00 12 be 200b6c4 <_Watchdog_Tickle+0x80> 200b680: c2 27 60 10 st %g1, [ %i5 + 0x10 ] the_watchdog = _Watchdog_First( header ); } while ( !_Chain_Is_empty( header ) && (the_watchdog->delta_interval == 0) ); leave: _ISR_Enable(level); 200b684: 7f ff db e6 call 200261c 200b688: 91 e8 00 1c restore %g0, %i4, %o0 _ISR_Enable( level ); switch( watchdog_state ) { case WATCHDOG_ACTIVE: (*the_watchdog->routine)( 200b68c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200b690: 9f c0 40 00 call %g1 200b694: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 case WATCHDOG_REMOVE_IT: break; } _ISR_Disable( level ); 200b698: 7f ff db dd call 200260c 200b69c: 01 00 00 00 nop 200b6a0: b8 10 00 08 mov %o0, %i4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200b6a4: fa 06 00 00 ld [ %i0 ], %i5 the_watchdog = _Watchdog_First( header ); } while ( !_Chain_Is_empty( header ) && (the_watchdog->delta_interval == 0) ); 200b6a8: 80 a6 80 1d cmp %i2, %i5 200b6ac: 02 bf ff f6 be 200b684 <_Watchdog_Tickle+0x40> 200b6b0: 01 00 00 00 nop } _ISR_Disable( level ); the_watchdog = _Watchdog_First( header ); } while ( !_Chain_Is_empty( header ) && 200b6b4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 200b6b8: 80 a0 60 00 cmp %g1, 0 200b6bc: 12 bf ff f2 bne 200b684 <_Watchdog_Tickle+0x40> 200b6c0: 01 00 00 00 nop if ( the_watchdog->delta_interval != 0 ) goto leave; } do { watchdog_state = _Watchdog_Remove( the_watchdog ); 200b6c4: 7f ff ff aa call 200b56c <_Watchdog_Remove> 200b6c8: 90 10 00 1d mov %i5, %o0 200b6cc: b6 10 00 08 mov %o0, %i3 _ISR_Enable( level ); 200b6d0: 7f ff db d3 call 200261c 200b6d4: 90 10 00 1c mov %i4, %o0 switch( watchdog_state ) { 200b6d8: 80 a6 e0 02 cmp %i3, 2 200b6dc: 12 bf ff ef bne 200b698 <_Watchdog_Tickle+0x54> 200b6e0: 01 00 00 00 nop case WATCHDOG_ACTIVE: (*the_watchdog->routine)( 200b6e4: 10 bf ff ea b 200b68c <_Watchdog_Tickle+0x48> 200b6e8: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 =============================================================================== 0200b6ec <_Workspace_Handler_initialization>: void _Workspace_Handler_initialization( Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { 200b6ec: 9d e3 bf 98 save %sp, -104, %sp Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; uintptr_t remaining = rtems_configuration_get_work_space_size(); 200b6f0: 05 00 80 68 sethi %hi(0x201a000), %g2 200b6f4: 82 10 a0 68 or %g2, 0x68, %g1 ! 201a068 200b6f8: c6 08 60 32 ldub [ %g1 + 0x32 ], %g3 200b6fc: f6 00 a0 68 ld [ %g2 + 0x68 ], %i3 200b700: 80 a0 e0 00 cmp %g3, 0 200b704: 12 80 00 03 bne 200b710 <_Workspace_Handler_initialization+0x24> 200b708: 84 10 20 00 clr %g2 200b70c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200b710: b6 00 80 1b add %g2, %i3, %i3 bool do_zero = rtems_configuration_get_do_zero_of_workspace(); 200b714: c4 08 60 30 ldub [ %g1 + 0x30 ], %g2 bool unified = rtems_configuration_get_unified_work_area(); 200b718: c2 08 60 31 ldub [ %g1 + 0x31 ], %g1 Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; uintptr_t remaining = rtems_configuration_get_work_space_size(); bool do_zero = rtems_configuration_get_do_zero_of_workspace(); 200b71c: c4 2f bf ff stb %g2, [ %fp + -1 ] bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200b720: 80 a6 60 00 cmp %i1, 0 200b724: 02 80 00 3c be 200b814 <_Workspace_Handler_initialization+0x128><== NEVER TAKEN 200b728: c2 2f bf fe stb %g1, [ %fp + -2 ] Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; 200b72c: 23 00 80 23 sethi %hi(0x2008c00), %l1 } else { size = 0; } } space_available = (*init_or_extend)( 200b730: 27 00 80 73 sethi %hi(0x201cc00), %l3 bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200b734: b8 10 20 00 clr %i4 Heap_Area *areas, size_t area_count, Heap_Initialization_or_extend_handler extend ) { Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize; 200b738: a2 14 61 fc or %l1, 0x1fc, %l1 200b73c: a0 08 a0 ff and %g2, 0xff, %l0 if ( area->size > overhead ) { uintptr_t space_available; uintptr_t size; if ( unified ) { 200b740: a4 08 60 ff and %g1, 0xff, %l2 } else { size = 0; } } space_available = (*init_or_extend)( 200b744: 10 80 00 22 b 200b7cc <_Workspace_Handler_initialization+0xe0> 200b748: a6 14 e0 90 or %l3, 0x90, %l3 if ( do_zero ) { memset( area->begin, 0, area->size ); } if ( area->size > overhead ) { 200b74c: 80 a7 60 16 cmp %i5, 0x16 200b750: 28 80 00 1c bleu,a 200b7c0 <_Workspace_Handler_initialization+0xd4> 200b754: b8 07 20 01 inc %i4 uintptr_t space_available; uintptr_t size; if ( unified ) { 200b758: 80 a4 a0 00 cmp %l2, 0 200b75c: 32 80 00 0a bne,a 200b784 <_Workspace_Handler_initialization+0x98> 200b760: d2 06 00 00 ld [ %i0 ], %o1 size = area->size; } else { if ( remaining > 0 ) { 200b764: 80 a6 e0 00 cmp %i3, 0 200b768: 22 80 00 22 be,a 200b7f0 <_Workspace_Handler_initialization+0x104><== NEVER TAKEN 200b76c: d2 06 00 00 ld [ %i0 ], %o1 <== NOT EXECUTED size = remaining < area->size - overhead ? 200b770: 82 07 7f ea add %i5, -22, %g1 remaining + overhead : area->size; 200b774: 80 a0 40 1b cmp %g1, %i3 200b778: 38 80 00 02 bgu,a 200b780 <_Workspace_Handler_initialization+0x94><== ALWAYS TAKEN 200b77c: ba 06 e0 16 add %i3, 0x16, %i5 } else { size = 0; } } space_available = (*init_or_extend)( 200b780: d2 06 00 00 ld [ %i0 ], %o1 200b784: 94 10 00 1d mov %i5, %o2 200b788: 90 10 00 13 mov %l3, %o0 200b78c: 9f c4 40 00 call %l1 200b790: 96 10 20 08 mov 8, %o3 area->begin, size, page_size ); area->begin = (char *) area->begin + size; 200b794: c2 06 00 00 ld [ %i0 ], %g1 area->size -= size; 200b798: c4 06 20 04 ld [ %i0 + 4 ], %g2 area->begin, size, page_size ); area->begin = (char *) area->begin + size; 200b79c: 82 00 40 1d add %g1, %i5, %g1 area->size -= size; 200b7a0: ba 20 80 1d sub %g2, %i5, %i5 area->begin, size, page_size ); area->begin = (char *) area->begin + size; 200b7a4: c2 26 00 00 st %g1, [ %i0 ] area->size -= size; if ( space_available < remaining ) { 200b7a8: 80 a2 00 1b cmp %o0, %i3 200b7ac: 1a 80 00 1f bcc 200b828 <_Workspace_Handler_initialization+0x13c><== ALWAYS TAKEN 200b7b0: fa 26 20 04 st %i5, [ %i0 + 4 ] remaining -= space_available; 200b7b4: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED } else { remaining = 0; } init_or_extend = extend; 200b7b8: a2 10 00 1a mov %i2, %l1 <== NOT EXECUTED bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200b7bc: b8 07 20 01 inc %i4 200b7c0: 80 a7 00 19 cmp %i4, %i1 200b7c4: 02 80 00 14 be 200b814 <_Workspace_Handler_initialization+0x128><== ALWAYS TAKEN 200b7c8: b0 06 20 08 add %i0, 8, %i0 Heap_Area *area = &areas [i]; if ( do_zero ) { 200b7cc: 80 a4 20 00 cmp %l0, 0 200b7d0: 22 bf ff df be,a 200b74c <_Workspace_Handler_initialization+0x60> 200b7d4: fa 06 20 04 ld [ %i0 + 4 ], %i5 memset( area->begin, 0, area->size ); 200b7d8: d0 06 00 00 ld [ %i0 ], %o0 200b7dc: d4 06 20 04 ld [ %i0 + 4 ], %o2 200b7e0: 40 00 11 e0 call 200ff60 200b7e4: 92 10 20 00 clr %o1 } if ( area->size > overhead ) { 200b7e8: 10 bf ff d9 b 200b74c <_Workspace_Handler_initialization+0x60> 200b7ec: fa 06 20 04 ld [ %i0 + 4 ], %i5 } else { size = 0; } } space_available = (*init_or_extend)( 200b7f0: 90 10 00 13 mov %l3, %o0 <== NOT EXECUTED 200b7f4: 94 10 20 00 clr %o2 <== NOT EXECUTED 200b7f8: 9f c4 40 00 call %l1 <== NOT EXECUTED 200b7fc: 96 10 20 08 mov 8, %o3 <== NOT EXECUTED bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200b800: b8 07 20 01 inc %i4 <== NOT EXECUTED remaining -= space_available; } else { remaining = 0; } init_or_extend = extend; 200b804: a2 10 00 1a mov %i2, %l1 <== NOT EXECUTED bool unified = rtems_configuration_get_unified_work_area(); uintptr_t page_size = CPU_HEAP_ALIGNMENT; uintptr_t overhead = _Heap_Area_overhead( page_size ); size_t i; for (i = 0; i < area_count; ++i) { 200b808: 80 a7 00 19 cmp %i4, %i1 <== NOT EXECUTED 200b80c: 12 bf ff f0 bne 200b7cc <_Workspace_Handler_initialization+0xe0><== NOT EXECUTED 200b810: b0 06 20 08 add %i0, 8, %i0 <== NOT EXECUTED init_or_extend = extend; } } if ( remaining > 0 ) { 200b814: 80 a6 e0 00 cmp %i3, 0 200b818: 12 80 00 07 bne 200b834 <_Workspace_Handler_initialization+0x148> 200b81c: 90 10 20 00 clr %o0 200b820: 81 c7 e0 08 ret 200b824: 81 e8 00 00 restore remaining -= space_available; } else { remaining = 0; } init_or_extend = extend; 200b828: a2 10 00 1a mov %i2, %l1 area->size -= size; if ( space_available < remaining ) { remaining -= space_available; } else { remaining = 0; 200b82c: 10 bf ff e4 b 200b7bc <_Workspace_Handler_initialization+0xd0> 200b830: b6 10 20 00 clr %i3 init_or_extend = extend; } } if ( remaining > 0 ) { _Internal_error_Occurred( 200b834: 92 10 20 01 mov 1, %o1 200b838: 7f ff f6 0e call 2009070 <_Internal_error_Occurred> 200b83c: 94 10 20 02 mov 2, %o2 =============================================================================== 0200b650 <_Workspace_String_duplicate>: char *_Workspace_String_duplicate( const char *string, size_t len ) { 200b650: 9d e3 bf a0 save %sp, -96, %sp char *dup = _Workspace_Allocate(len + 1); 200b654: 7f ff ff e2 call 200b5dc <_Workspace_Allocate> 200b658: 90 06 60 01 add %i1, 1, %o0 if (dup != NULL) { 200b65c: ba 92 20 00 orcc %o0, 0, %i5 200b660: 02 80 00 05 be 200b674 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN 200b664: 92 10 00 18 mov %i0, %o1 dup [len] = '\0'; 200b668: c0 2f 40 19 clrb [ %i5 + %i1 ] memcpy(dup, string, len); 200b66c: 40 00 12 0b call 200fe98 200b670: 94 10 00 19 mov %i1, %o2 } return dup; } 200b674: 81 c7 e0 08 ret 200b678: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02008bc8 : rtems_rbtree_control *chunk_tree, rtems_rbheap_chunk *a, rtems_rbheap_chunk *b ) { if (b != NULL_PAGE && rtems_rbheap_is_chunk_free(b)) { 2008bc8: 80 a2 ff f8 cmp %o3, -8 2008bcc: 02 80 00 23 be 2008c58 2008bd0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 2008bd4: c2 02 c0 00 ld [ %o3 ], %g1 2008bd8: 80 a0 60 00 cmp %g1, 0 2008bdc: 22 80 00 1c be,a 2008c4c 2008be0: c4 02 e0 04 ld [ %o3 + 4 ], %g2 if (b->begin < a->begin) { 2008be4: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3 2008be8: c4 02 a0 18 ld [ %o2 + 0x18 ], %g2 2008bec: 80 a0 c0 02 cmp %g3, %g2 2008bf0: 3a 80 00 07 bcc,a 2008c0c 2008bf4: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4 2008bf8: 84 10 00 0a mov %o2, %g2 2008bfc: c2 02 80 00 ld [ %o2 ], %g1 2008c00: 94 10 00 0b mov %o3, %o2 2008c04: 96 10 00 02 mov %g2, %o3 a = b; b = t; } a->size += b->size; 2008c08: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4 2008c0c: c6 02 e0 1c ld [ %o3 + 0x1c ], %g3 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2008c10: c4 02 e0 04 ld [ %o3 + 4 ], %g2 2008c14: 86 01 00 03 add %g4, %g3, %g3 2008c18: c6 22 a0 1c st %g3, [ %o2 + 0x1c ] next->previous = previous; previous->next = next; 2008c1c: c2 20 80 00 st %g1, [ %g2 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 2008c20: c4 20 60 04 st %g2, [ %g1 + 4 ] ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008c24: c2 02 00 00 ld [ %o0 ], %g1 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008c28: d0 22 e0 04 st %o0, [ %o3 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008c2c: d6 22 00 00 st %o3, [ %o0 ] the_node->next = before_node; 2008c30: c2 22 c0 00 st %g1, [ %o3 ] rtems_chain_extract_unprotected(&b->chain_node); add_to_chain(free_chain, b); _RBTree_Extract_unprotected(chunk_tree, &b->tree_node); 2008c34: 90 10 00 09 mov %o1, %o0 before_node->previous = the_node; 2008c38: d6 20 60 04 st %o3, [ %g1 + 4 ] 2008c3c: 92 02 e0 08 add %o3, 8, %o1 2008c40: 82 13 c0 00 mov %o7, %g1 2008c44: 40 00 07 29 call 200a8e8 <_RBTree_Extract_unprotected> 2008c48: 9e 10 40 00 mov %g1, %o7 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 2008c4c: 80 a0 a0 00 cmp %g2, 0 2008c50: 32 bf ff e6 bne,a 2008be8 <== NEVER TAKEN 2008c54: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3 <== NOT EXECUTED 2008c58: 81 c3 e0 08 retl =============================================================================== 020087d4 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 20087d4: 9d e3 bf 98 save %sp, -104, %sp */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 20087d8: 40 00 01 97 call 2008e34 <_Chain_Get> 20087dc: 90 10 00 18 mov %i0, %o0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 20087e0: 92 10 20 00 clr %o1 20087e4: ba 10 00 08 mov %o0, %i5 20087e8: 94 10 00 1a mov %i2, %o2 20087ec: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20087f0: 80 a7 60 00 cmp %i5, 0 20087f4: 12 80 00 0a bne 200881c 20087f8: 96 07 bf fc add %fp, -4, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 20087fc: 7f ff fc df call 2007b78 2008800: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2008804: 80 a2 20 00 cmp %o0, 0 2008808: 02 bf ff f4 be 20087d8 <== NEVER TAKEN 200880c: 01 00 00 00 nop timeout, &out ); } *node_ptr = node; 2008810: fa 26 c0 00 st %i5, [ %i3 ] return sc; } 2008814: 81 c7 e0 08 ret 2008818: 91 e8 00 08 restore %g0, %o0, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 200881c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2008820: fa 26 c0 00 st %i5, [ %i3 ] return sc; } 2008824: 81 c7 e0 08 ret 2008828: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0201151c : rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) { 201151c: 9d e3 bf 98 save %sp, -104, %sp rtems_status_code sc; if ( event_out != NULL ) { 2011520: 80 a6 e0 00 cmp %i3, 0 2011524: 02 80 00 0a be 201154c <== NEVER TAKEN 2011528: 82 10 20 09 mov 9, %g1 Thread_Control *executing = _Thread_Executing; 201152c: 03 00 80 85 sethi %hi(0x2021400), %g1 2011530: fa 00 62 30 ld [ %g1 + 0x230 ], %i5 ! 2021630 <_Per_CPU_Information+0x10> RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ]; Event_Control *event = &api->System_event; if ( !_Event_sets_Is_empty( event_in ) ) { 2011534: 80 a6 20 00 cmp %i0, 0 2011538: 12 80 00 07 bne 2011554 <== ALWAYS TAKEN 201153c: da 07 61 50 ld [ %i5 + 0x150 ], %o5 ); _Thread_Enable_dispatch(); sc = executing->Wait.return_code; } else { *event_out = event->pending_events; 2011540: c4 03 60 04 ld [ %o5 + 4 ], %g2 <== NOT EXECUTED sc = RTEMS_SUCCESSFUL; 2011544: 82 10 20 00 clr %g1 <== NOT EXECUTED ); _Thread_Enable_dispatch(); sc = executing->Wait.return_code; } else { *event_out = event->pending_events; 2011548: c4 26 c0 00 st %g2, [ %i3 ] <== NOT EXECUTED } else { sc = RTEMS_INVALID_ADDRESS; } return sc; } 201154c: 81 c7 e0 08 ret <== NOT EXECUTED 2011550: 91 e8 00 01 restore %g0, %g1, %o0 <== NOT EXECUTED * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2011554: 03 00 80 85 sethi %hi(0x2021400), %g1 2011558: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 2021410 <_Thread_Dispatch_disable_level> ++level; 201155c: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 2011560: c4 20 60 10 st %g2, [ %g1 + 0x10 ] RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ]; Event_Control *event = &api->System_event; if ( !_Event_sets_Is_empty( event_in ) ) { _Thread_Disable_dispatch(); _Event_Seize( 2011564: 03 00 01 00 sethi %hi(0x40000), %g1 2011568: 90 10 00 18 mov %i0, %o0 201156c: 92 10 00 19 mov %i1, %o1 2011570: 94 10 00 1a mov %i2, %o2 2011574: 96 10 00 1b mov %i3, %o3 2011578: 98 10 00 1d mov %i5, %o4 201157c: 9a 03 60 04 add %o5, 4, %o5 2011580: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2011584: 03 00 80 85 sethi %hi(0x2021400), %g1 2011588: 82 10 62 80 or %g1, 0x280, %g1 ! 2021680 <_System_event_Sync_state> 201158c: 7f ff dc f1 call 2008950 <_Event_Seize> 2011590: c2 23 a0 5c st %g1, [ %sp + 0x5c ] executing, event, &_System_event_Sync_state, STATES_WAITING_FOR_SYSTEM_EVENT ); _Thread_Enable_dispatch(); 2011594: 7f ff e8 f4 call 200b964 <_Thread_Enable_dispatch> 2011598: 01 00 00 00 nop sc = executing->Wait.return_code; 201159c: c2 07 60 34 ld [ %i5 + 0x34 ], %g1 } else { sc = RTEMS_INVALID_ADDRESS; } return sc; } 20115a0: 81 c7 e0 08 ret 20115a4: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 02007d48 : rtems_status_code rtems_event_system_send( rtems_id id, rtems_event_set event_in ) { 2007d48: 9d e3 bf 98 save %sp, -104, %sp rtems_status_code sc; Thread_Control *thread; Objects_Locations location; RTEMS_API_Control *api; thread = _Thread_Get( id, &location ); 2007d4c: 90 10 00 18 mov %i0, %o0 2007d50: 40 00 0a 6f call 200a70c <_Thread_Get> 2007d54: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2007d58: c2 07 bf fc ld [ %fp + -4 ], %g1 2007d5c: 80 a0 60 00 cmp %g1, 0 2007d60: 12 80 00 0d bne 2007d94 <== NEVER TAKEN 2007d64: 92 10 00 19 mov %i1, %o1 case OBJECTS_LOCAL: api = thread->API_Extensions[ THREAD_API_RTEMS ]; _Event_Surrender( 2007d68: d4 02 21 50 ld [ %o0 + 0x150 ], %o2 2007d6c: 94 02 a0 04 add %o2, 4, %o2 2007d70: 19 00 01 00 sethi %hi(0x40000), %o4 2007d74: 17 00 80 73 sethi %hi(0x201cc00), %o3 2007d78: 96 12 e2 f0 or %o3, 0x2f0, %o3 ! 201cef0 <_System_event_Sync_state> 2007d7c: 7f ff fe 54 call 20076cc <_Event_Surrender> 2007d80: b0 10 20 00 clr %i0 event_in, &api->System_event, &_System_event_Sync_state, STATES_WAITING_FOR_SYSTEM_EVENT ); _Thread_Enable_dispatch(); 2007d84: 40 00 0a 56 call 200a6dc <_Thread_Enable_dispatch> 2007d88: 01 00 00 00 nop sc = RTEMS_SUCCESSFUL; break; 2007d8c: 81 c7 e0 08 ret 2007d90: 81 e8 00 00 restore sc = RTEMS_INVALID_ID; break; } return sc; } 2007d94: 81 c7 e0 08 ret <== NOT EXECUTED 2007d98: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED =============================================================================== 020097a0 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 20097a0: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 20097a4: 03 00 80 85 sethi %hi(0x2021400), %g1 20097a8: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2021628 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 20097ac: ba 10 00 18 mov %i0, %i5 rtems_device_major_number major_limit = _IO_Number_of_drivers; 20097b0: 03 00 80 85 sethi %hi(0x2021400), %g1 rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 20097b4: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 20097b8: c8 00 62 c8 ld [ %g1 + 0x2c8 ], %g4 if ( rtems_interrupt_is_in_progress() ) 20097bc: 80 a0 a0 00 cmp %g2, 0 20097c0: 12 80 00 1f bne 200983c 20097c4: b0 10 20 12 mov 0x12, %i0 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 20097c8: 80 a6 a0 00 cmp %i2, 0 20097cc: 02 80 00 21 be 2009850 20097d0: 80 a6 60 00 cmp %i1, 0 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 20097d4: 02 80 00 1f be 2009850 20097d8: c8 26 80 00 st %g4, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20097dc: c4 06 40 00 ld [ %i1 ], %g2 20097e0: 80 a0 a0 00 cmp %g2, 0 20097e4: 22 80 00 18 be,a 2009844 20097e8: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 20097ec: 80 a1 00 1d cmp %g4, %i5 20097f0: 08 80 00 13 bleu 200983c 20097f4: b0 10 20 0a mov 0xa, %i0 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 20097f8: 05 00 80 85 sethi %hi(0x2021400), %g2 20097fc: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 ! 2021410 <_Thread_Dispatch_disable_level> ++level; 2009800: 88 01 20 01 inc %g4 _Thread_Dispatch_disable_level = level; 2009804: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2009808: 80 a7 60 00 cmp %i5, 0 200980c: 02 80 00 13 be 2009858 2009810: 39 00 80 85 sethi %hi(0x2021400), %i4 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 2009814: c8 07 22 cc ld [ %i4 + 0x2cc ], %g4 ! 20216cc <_IO_Driver_address_table> 2009818: 85 2f 60 03 sll %i5, 3, %g2 200981c: b7 2f 60 05 sll %i5, 5, %i3 2009820: 82 26 c0 02 sub %i3, %g2, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2009824: f2 01 00 01 ld [ %g4 + %g1 ], %i1 2009828: 80 a6 60 00 cmp %i1, 0 200982c: 02 80 00 3a be 2009914 2009830: 82 01 00 01 add %g4, %g1, %g1 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 2009834: 40 00 08 4c call 200b964 <_Thread_Enable_dispatch> 2009838: b0 10 20 0c mov 0xc, %i0 return RTEMS_RESOURCE_IN_USE; 200983c: 81 c7 e0 08 ret 2009840: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2009844: 80 a0 a0 00 cmp %g2, 0 2009848: 12 bf ff ea bne 20097f0 200984c: 80 a1 00 1d cmp %g4, %i5 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 2009850: 81 c7 e0 08 ret 2009854: 91 e8 20 09 restore %g0, 9, %o0 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2009858: c8 00 62 c8 ld [ %g1 + 0x2c8 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 200985c: 80 a1 20 00 cmp %g4, 0 2009860: 02 80 00 33 be 200992c <== NEVER TAKEN 2009864: c2 07 22 cc ld [ %i4 + 0x2cc ], %g1 2009868: 30 80 00 04 b,a 2009878 200986c: 80 a7 40 04 cmp %i5, %g4 2009870: 02 80 00 24 be 2009900 2009874: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2009878: c4 00 40 00 ld [ %g1 ], %g2 200987c: 80 a0 a0 00 cmp %g2, 0 2009880: 32 bf ff fb bne,a 200986c 2009884: ba 07 60 01 inc %i5 2009888: c4 00 60 04 ld [ %g1 + 4 ], %g2 200988c: 80 a0 a0 00 cmp %g2, 0 2009890: 32 bf ff f7 bne,a 200986c 2009894: ba 07 60 01 inc %i5 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2009898: fa 26 80 00 st %i5, [ %i2 ] 200989c: 85 2f 60 03 sll %i5, 3, %g2 if ( m != n ) 20098a0: 80 a1 00 1d cmp %g4, %i5 20098a4: 02 80 00 18 be 2009904 <== NEVER TAKEN 20098a8: b7 2f 60 05 sll %i5, 5, %i3 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 20098ac: c8 00 c0 00 ld [ %g3 ], %g4 20098b0: c2 07 22 cc ld [ %i4 + 0x2cc ], %g1 20098b4: 84 26 c0 02 sub %i3, %g2, %g2 20098b8: c8 20 40 02 st %g4, [ %g1 + %g2 ] 20098bc: c8 00 e0 04 ld [ %g3 + 4 ], %g4 20098c0: 82 00 40 02 add %g1, %g2, %g1 20098c4: c8 20 60 04 st %g4, [ %g1 + 4 ] 20098c8: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 20098cc: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 20098d0: c4 20 60 08 st %g2, [ %g1 + 8 ] 20098d4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 20098d8: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 20098dc: c4 20 60 0c st %g2, [ %g1 + 0xc ] 20098e0: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 20098e4: b0 10 00 1d mov %i5, %i0 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 20098e8: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 20098ec: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 20098f0: 40 00 08 1d call 200b964 <_Thread_Enable_dispatch> 20098f4: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 20098f8: 40 00 20 37 call 20119d4 20098fc: 81 e8 00 00 restore if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2009900: fa 26 80 00 st %i5, [ %i2 ] if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2009904: 40 00 08 18 call 200b964 <_Thread_Enable_dispatch> 2009908: b0 10 20 05 mov 5, %i0 return sc; 200990c: 81 c7 e0 08 ret 2009910: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2009914: c2 00 60 04 ld [ %g1 + 4 ], %g1 2009918: 80 a0 60 00 cmp %g1, 0 200991c: 12 bf ff c6 bne 2009834 2009920: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2009924: 10 bf ff e2 b 20098ac 2009928: fa 26 80 00 st %i5, [ %i2 ] if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 200992c: 10 bf ff f6 b 2009904 <== NOT EXECUTED 2009930: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED =============================================================================== 0200a8d0 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 200a8d0: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 200a8d4: 80 a6 20 00 cmp %i0, 0 200a8d8: 02 80 00 23 be 200a964 <== NEVER TAKEN 200a8dc: 37 00 80 7e sethi %hi(0x201f800), %i3 200a8e0: b6 16 e0 08 or %i3, 8, %i3 ! 201f808 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 200a8e4: b4 06 e0 0c add %i3, 0xc, %i2 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200a8e8: c2 06 c0 00 ld [ %i3 ], %g1 200a8ec: 80 a0 60 00 cmp %g1, 0 200a8f0: 22 80 00 1a be,a 200a958 200a8f4: b6 06 e0 04 add %i3, 4, %i3 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 200a8f8: f8 00 60 04 ld [ %g1 + 4 ], %i4 if ( !information ) 200a8fc: 80 a7 20 00 cmp %i4, 0 200a900: 22 80 00 16 be,a 200a958 200a904: b6 06 e0 04 add %i3, 4, %i3 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a908: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1 200a90c: 86 90 60 00 orcc %g1, 0, %g3 200a910: 22 80 00 12 be,a 200a958 <== NEVER TAKEN 200a914: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED 200a918: ba 10 20 01 mov 1, %i5 the_thread = (Thread_Control *)information->local_table[ i ]; 200a91c: c4 07 20 1c ld [ %i4 + 0x1c ], %g2 200a920: 83 2f 60 02 sll %i5, 2, %g1 200a924: c2 00 80 01 ld [ %g2 + %g1 ], %g1 if ( !the_thread ) 200a928: 90 90 60 00 orcc %g1, 0, %o0 200a92c: 02 80 00 05 be 200a940 200a930: ba 07 60 01 inc %i5 continue; (*routine)(the_thread); 200a934: 9f c6 00 00 call %i0 200a938: 01 00 00 00 nop 200a93c: c6 17 20 10 lduh [ %i4 + 0x10 ], %g3 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200a940: 83 28 e0 10 sll %g3, 0x10, %g1 200a944: 83 30 60 10 srl %g1, 0x10, %g1 200a948: 80 a0 40 1d cmp %g1, %i5 200a94c: 3a bf ff f5 bcc,a 200a920 200a950: c4 07 20 1c ld [ %i4 + 0x1c ], %g2 200a954: b6 06 e0 04 add %i3, 4, %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200a958: 80 a6 c0 1a cmp %i3, %i2 200a95c: 32 bf ff e4 bne,a 200a8ec 200a960: c2 06 c0 00 ld [ %i3 ], %g1 200a964: 81 c7 e0 08 ret 200a968: 81 e8 00 00 restore =============================================================================== 02009528 : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 2009528: 9d e3 bf a0 save %sp, -96, %sp int i; /* * Validate parameters and look up information structure. */ if ( !info ) 200952c: 80 a6 a0 00 cmp %i2, 0 2009530: 02 80 00 21 be 20095b4 2009534: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 2009538: 93 2e 60 10 sll %i1, 0x10, %o1 200953c: 90 10 00 18 mov %i0, %o0 2009540: 40 00 07 b0 call 200b400 <_Objects_Get_information> 2009544: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 2009548: 80 a2 20 00 cmp %o0, 0 200954c: 02 80 00 1a be 20095b4 2009550: 82 10 20 0a mov 0xa, %g1 * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 2009554: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2009558: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; 200955c: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; 2009560: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2009564: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; 2009568: c4 26 a0 04 st %g2, [ %i2 + 4 ] info->auto_extend = obj_info->auto_extend; 200956c: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2009570: 80 a1 20 00 cmp %g4, 0 2009574: 02 80 00 12 be 20095bc <== NEVER TAKEN 2009578: c8 26 a0 08 st %g4, [ %i2 + 8 ] 200957c: fa 02 20 1c ld [ %o0 + 0x1c ], %i5 2009580: 86 10 20 01 mov 1, %g3 2009584: 82 10 20 01 mov 1, %g1 2009588: 84 10 20 00 clr %g2 if ( !obj_info->local_table[i] ) 200958c: 87 28 e0 02 sll %g3, 2, %g3 2009590: c6 07 40 03 ld [ %i5 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2009594: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2009598: 80 a0 00 03 cmp %g0, %g3 200959c: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 20095a0: 80 a1 00 01 cmp %g4, %g1 20095a4: 1a bf ff fa bcc 200958c 20095a8: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 20095ac: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 20095b0: 82 10 20 00 clr %g1 } 20095b4: 81 c7 e0 08 ret 20095b8: 91 e8 00 01 restore %g0, %g1, %o0 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 20095bc: 84 10 20 00 clr %g2 <== NOT EXECUTED if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; return RTEMS_SUCCESSFUL; 20095c0: 82 10 20 00 clr %g1 <== NOT EXECUTED for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 20095c4: 10 bf ff fc b 20095b4 <== NOT EXECUTED 20095c8: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] <== NOT EXECUTED =============================================================================== 0201558c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 201558c: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2015590: 80 a6 20 00 cmp %i0, 0 2015594: 12 80 00 04 bne 20155a4 2015598: 82 10 20 03 mov 3, %g1 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 201559c: 81 c7 e0 08 ret 20155a0: 91 e8 00 01 restore %g0, %g1, %o0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) return RTEMS_INVALID_NAME; if ( !starting_address ) 20155a4: 80 a6 60 00 cmp %i1, 0 20155a8: 02 bf ff fd be 201559c 20155ac: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 20155b0: 80 a7 60 00 cmp %i5, 0 20155b4: 02 bf ff fa be 201559c <== NEVER TAKEN 20155b8: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20155bc: 02 bf ff f8 be 201559c 20155c0: 82 10 20 08 mov 8, %g1 20155c4: 80 a6 a0 00 cmp %i2, 0 20155c8: 02 bf ff f5 be 201559c 20155cc: 80 a6 80 1b cmp %i2, %i3 20155d0: 0a bf ff f3 bcs 201559c 20155d4: 80 8e e0 07 btst 7, %i3 20155d8: 12 bf ff f1 bne 201559c 20155dc: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20155e0: 12 bf ff ef bne 201559c 20155e4: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 20155e8: 03 00 80 ec sethi %hi(0x203b000), %g1 20155ec: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 203b0f0 <_Thread_Dispatch_disable_level> ++level; 20155f0: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 20155f4: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20155f8: 23 00 80 eb sethi %hi(0x203ac00), %l1 20155fc: 40 00 13 de call 201a574 <_Objects_Allocate> 2015600: 90 14 62 ec or %l1, 0x2ec, %o0 ! 203aeec <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2015604: a0 92 20 00 orcc %o0, 0, %l0 2015608: 02 80 00 1a be 2015670 201560c: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 2015610: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2015614: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2015618: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 201561c: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2015620: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2015624: 40 00 56 76 call 202affc <.udiv> 2015628: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 201562c: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2015630: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2015634: 96 10 00 1b mov %i3, %o3 2015638: b8 04 20 24 add %l0, 0x24, %i4 201563c: 40 00 0d 85 call 2018c50 <_Chain_Initialize> 2015640: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2015644: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2015648: a2 14 62 ec or %l1, 0x2ec, %l1 201564c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2015650: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2015654: 85 28 a0 02 sll %g2, 2, %g2 2015658: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 201565c: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2015660: 40 00 19 44 call 201bb70 <_Thread_Enable_dispatch> 2015664: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2015668: 10 bf ff cd b 201559c 201566c: 82 10 20 00 clr %g1 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2015670: 40 00 19 40 call 201bb70 <_Thread_Enable_dispatch> 2015674: 01 00 00 00 nop return RTEMS_TOO_MANY; 2015678: 10 bf ff c9 b 201559c 201567c: 82 10 20 05 mov 5, %g1 ! 5 =============================================================================== 020157b0 : rtems_status_code rtems_partition_return_buffer( rtems_id id, void *buffer ) { 20157b0: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get ( Objects_Id id, Objects_Locations *location ) { return (Partition_Control *) 20157b4: 11 00 80 eb sethi %hi(0x203ac00), %o0 20157b8: 92 10 00 18 mov %i0, %o1 20157bc: 90 12 22 ec or %o0, 0x2ec, %o0 20157c0: 40 00 14 dd call 201ab34 <_Objects_Get> 20157c4: 94 07 bf fc add %fp, -4, %o2 register Partition_Control *the_partition; Objects_Locations location; the_partition = _Partition_Get( id, &location ); switch ( location ) { 20157c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20157cc: 80 a0 60 00 cmp %g1, 0 20157d0: 12 80 00 19 bne 2015834 20157d4: ba 10 00 08 mov %o0, %i5 ) { void *starting; void *ending; starting = the_partition->starting_address; 20157d8: d0 02 20 10 ld [ %o0 + 0x10 ], %o0 20157dc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 20157e0: 82 02 00 01 add %o0, %g1, %g1 ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 20157e4: 80 a6 40 01 cmp %i1, %g1 20157e8: 18 80 00 15 bgu 201583c <== NEVER TAKEN 20157ec: 80 a6 40 08 cmp %i1, %o0 20157f0: 0a 80 00 13 bcs 201583c 20157f4: 01 00 00 00 nop offset = (uint32_t) _Addresses_Subtract( the_buffer, the_partition->starting_address ); return ((offset % the_partition->buffer_size) == 0); 20157f8: d2 07 60 18 ld [ %i5 + 0x18 ], %o1 20157fc: 40 00 56 ac call 202b2ac <.urem> 2015800: 90 26 40 08 sub %i1, %o0, %o0 starting = the_partition->starting_address; ending = _Addresses_Add_offset( starting, the_partition->length ); return ( _Addresses_Is_in_range( the_buffer, starting, ending ) && 2015804: 80 a2 20 00 cmp %o0, 0 2015808: 12 80 00 0d bne 201583c 201580c: 90 07 60 24 add %i5, 0x24, %o0 RTEMS_INLINE_ROUTINE void _Partition_Free_buffer ( Partition_Control *the_partition, Chain_Node *the_buffer ) { _Chain_Append( &the_partition->Memory, the_buffer ); 2015810: 40 00 0c f5 call 2018be4 <_Chain_Append> 2015814: 92 10 00 19 mov %i1, %o1 case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 2015818: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 201581c: b0 10 20 00 clr %i0 switch ( location ) { case OBJECTS_LOCAL: if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) { _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; 2015820: 82 00 7f ff add %g1, -1, %g1 _Thread_Enable_dispatch(); 2015824: 40 00 18 d3 call 201bb70 <_Thread_Enable_dispatch> 2015828: c2 27 60 20 st %g1, [ %i5 + 0x20 ] 201582c: 81 c7 e0 08 ret 2015830: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2015834: 81 c7 e0 08 ret 2015838: 91 e8 20 04 restore %g0, 4, %o0 _Partition_Free_buffer( the_partition, buffer ); the_partition->number_of_used_blocks -= 1; _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 201583c: 40 00 18 cd call 201bb70 <_Thread_Enable_dispatch> 2015840: b0 10 20 09 mov 9, %i0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015844: 81 c7 e0 08 ret 2015848: 81 e8 00 00 restore =============================================================================== 02037340 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2037340: 9d e3 bf 98 save %sp, -104, %sp 2037344: 11 00 81 98 sethi %hi(0x2066000), %o0 2037348: 92 10 00 18 mov %i0, %o1 203734c: 90 12 20 74 or %o0, 0x74, %o0 2037350: 7f ff 48 2f call 200940c <_Objects_Get> 2037354: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2037358: c2 07 bf fc ld [ %fp + -4 ], %g1 203735c: 80 a0 60 00 cmp %g1, 0 2037360: 12 80 00 0d bne 2037394 2037364: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2037368: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 203736c: 39 00 81 97 sethi %hi(0x2065c00), %i4 2037370: b8 17 22 50 or %i4, 0x250, %i4 ! 2065e50 <_Per_CPU_Information> 2037374: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 2037378: 80 a0 80 01 cmp %g2, %g1 203737c: 02 80 00 08 be 203739c 2037380: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2037384: 7f ff 4c 05 call 200a398 <_Thread_Enable_dispatch> 2037388: b0 10 20 17 mov 0x17, %i0 203738c: 81 c7 e0 08 ret 2037390: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2037394: 81 c7 e0 08 ret 2037398: 91 e8 20 04 restore %g0, 4, %o0 if ( !_Thread_Is_executing( the_period->owner ) ) { _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 203739c: 12 80 00 0e bne 20373d4 20373a0: 01 00 00 00 nop switch ( the_period->state ) { 20373a4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 20373a8: 80 a0 60 04 cmp %g1, 4 20373ac: 18 80 00 06 bgu 20373c4 <== NEVER TAKEN 20373b0: b0 10 20 00 clr %i0 20373b4: 83 28 60 02 sll %g1, 2, %g1 20373b8: 05 00 81 7e sethi %hi(0x205f800), %g2 20373bc: 84 10 a2 00 or %g2, 0x200, %g2 ! 205fa00 20373c0: f0 00 80 01 ld [ %g2 + %g1 ], %i0 id, NULL ); _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20373c4: 7f ff 4b f5 call 200a398 <_Thread_Enable_dispatch> 20373c8: 01 00 00 00 nop 20373cc: 81 c7 e0 08 ret 20373d0: 81 e8 00 00 restore } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 20373d4: 7f ff 2c 02 call 20023dc 20373d8: 01 00 00 00 nop 20373dc: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20373e0: f6 07 60 38 ld [ %i5 + 0x38 ], %i3 20373e4: 80 a6 e0 00 cmp %i3, 0 20373e8: 02 80 00 1c be 2037458 20373ec: 80 a6 e0 02 cmp %i3, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20373f0: 02 80 00 2e be 20374a8 20373f4: 80 a6 e0 04 cmp %i3, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20373f8: 12 bf ff e5 bne 203738c <== NEVER TAKEN 20373fc: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2037400: 7f ff ff 5e call 2037178 <_Rate_monotonic_Update_statistics> 2037404: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 2037408: 7f ff 2b f9 call 20023ec 203740c: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2037410: 82 10 20 02 mov 2, %g1 2037414: 92 07 60 10 add %i5, 0x10, %o1 2037418: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 203741c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2037420: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2037424: 11 00 81 97 sethi %hi(0x2065c00), %o0 2037428: 7f ff 4f 21 call 200b0ac <_Watchdog_Insert> 203742c: 90 12 20 dc or %o0, 0xdc, %o0 ! 2065cdc <_Watchdog_Ticks_chain> 2037430: d0 07 60 40 ld [ %i5 + 0x40 ], %o0 2037434: d2 07 60 3c ld [ %i5 + 0x3c ], %o1 2037438: 03 00 81 86 sethi %hi(0x2061800), %g1 203743c: c2 00 61 74 ld [ %g1 + 0x174 ], %g1 ! 2061974 <_Scheduler+0x34> 2037440: 9f c0 40 00 call %g1 2037444: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Scheduler_Release_job(the_period->owner, the_period->next_length); _Thread_Enable_dispatch(); 2037448: 7f ff 4b d4 call 200a398 <_Thread_Enable_dispatch> 203744c: 01 00 00 00 nop 2037450: 81 c7 e0 08 ret 2037454: 81 e8 00 00 restore return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 2037458: 7f ff 2b e5 call 20023ec 203745c: 01 00 00 00 nop the_period->next_length = length; /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2037460: 90 10 00 1d mov %i5, %o0 2037464: 7f ff ff 94 call 20372b4 <_Rate_monotonic_Initiate_statistics> 2037468: f2 27 60 3c st %i1, [ %i5 + 0x3c ] the_period->state = RATE_MONOTONIC_ACTIVE; 203746c: 82 10 20 02 mov 2, %g1 2037470: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2037474: 03 00 80 dd sethi %hi(0x2037400), %g1 2037478: 82 10 61 1c or %g1, 0x11c, %g1 ! 203751c <_Rate_monotonic_Timeout> the_watchdog->id = id; 203747c: f0 27 60 30 st %i0, [ %i5 + 0x30 ] ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2037480: 92 07 60 10 add %i5, 0x10, %o1 2037484: 11 00 81 97 sethi %hi(0x2065c00), %o0 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2037488: c0 27 60 18 clr [ %i5 + 0x18 ] ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203748c: 90 12 20 dc or %o0, 0xdc, %o0 ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 2037490: c0 27 60 34 clr [ %i5 + 0x34 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2037494: c2 27 60 2c st %g1, [ %i5 + 0x2c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2037498: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 203749c: 7f ff 4f 04 call 200b0ac <_Watchdog_Insert> 20374a0: b0 10 20 00 clr %i0 20374a4: 30 bf ff c8 b,a 20373c4 if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20374a8: 7f ff ff 34 call 2037178 <_Rate_monotonic_Update_statistics> 20374ac: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20374b0: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 20374b4: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20374b8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 20374bc: 7f ff 2b cc call 20023ec 20374c0: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 20374c4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 20374c8: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20374cc: 90 10 00 01 mov %g1, %o0 20374d0: 13 00 00 10 sethi %hi(0x4000), %o1 20374d4: 7f ff 4e 08 call 200acf4 <_Thread_Set_state> 20374d8: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 20374dc: 7f ff 2b c0 call 20023dc 20374e0: 01 00 00 00 nop local_state = the_period->state; 20374e4: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 20374e8: f6 27 60 38 st %i3, [ %i5 + 0x38 ] _ISR_Enable( level ); 20374ec: 7f ff 2b c0 call 20023ec 20374f0: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20374f4: 80 a6 a0 03 cmp %i2, 3 20374f8: 22 80 00 06 be,a 2037510 20374fc: d0 07 20 10 ld [ %i4 + 0x10 ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 2037500: 7f ff 4b a6 call 200a398 <_Thread_Enable_dispatch> 2037504: b0 10 20 00 clr %i0 2037508: 81 c7 e0 08 ret 203750c: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2037510: 7f ff 4a 9d call 2009f84 <_Thread_Clear_state> 2037514: 13 00 00 10 sethi %hi(0x4000), %o1 2037518: 30 bf ff fa b,a 2037500 =============================================================================== 0202900c : void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 202900c: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2029010: 80 a6 60 00 cmp %i1, 0 2029014: 02 80 00 48 be 2029134 <== NEVER TAKEN 2029018: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 202901c: 13 00 81 73 sethi %hi(0x205cc00), %o1 2029020: 9f c6 40 00 call %i1 2029024: 92 12 60 e0 or %o1, 0xe0, %o1 ! 205cce0 <_TOD_Days_per_month+0x68> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2029028: 90 10 00 18 mov %i0, %o0 202902c: 13 00 81 73 sethi %hi(0x205cc00), %o1 2029030: 9f c6 40 00 call %i1 2029034: 92 12 61 00 or %o1, 0x100, %o1 ! 205cd00 <_TOD_Days_per_month+0x88> (*print)( context, "--- Wall times are in seconds ---\n" ); 2029038: 90 10 00 18 mov %i0, %o0 202903c: 13 00 81 73 sethi %hi(0x205cc00), %o1 2029040: 9f c6 40 00 call %i1 2029044: 92 12 61 28 or %o1, 0x128, %o1 ! 205cd28 <_TOD_Days_per_month+0xb0> Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2029048: 90 10 00 18 mov %i0, %o0 202904c: 13 00 81 73 sethi %hi(0x205cc00), %o1 2029050: 9f c6 40 00 call %i1 2029054: 92 12 61 50 or %o1, 0x150, %o1 ! 205cd50 <_TOD_Days_per_month+0xd8> #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2029058: 90 10 00 18 mov %i0, %o0 202905c: 13 00 81 73 sethi %hi(0x205cc00), %o1 2029060: 9f c6 40 00 call %i1 2029064: 92 12 61 a0 or %o1, 0x1a0, %o1 ! 205cda0 <_TOD_Days_per_month+0x128> /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2029068: 39 00 81 98 sethi %hi(0x2066000), %i4 202906c: b8 17 20 74 or %i4, 0x74, %i4 ! 2066074 <_Rate_monotonic_Information> 2029070: fa 07 20 08 ld [ %i4 + 8 ], %i5 2029074: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2029078: 80 a7 40 01 cmp %i5, %g1 202907c: 18 80 00 2e bgu 2029134 <== NEVER TAKEN 2029080: 35 00 81 73 sethi %hi(0x205cc00), %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2029084: 27 00 81 73 sethi %hi(0x205cc00), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2029088: 25 00 81 73 sethi %hi(0x205cc00), %l2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 202908c: 37 00 81 78 sethi %hi(0x205e000), %i3 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2029090: b4 16 a1 f0 or %i2, 0x1f0, %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2029094: a6 14 e2 08 or %l3, 0x208, %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2029098: a4 14 a2 28 or %l2, 0x228, %l2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 202909c: 10 80 00 06 b 20290b4 20290a0: b6 16 e2 b0 or %i3, 0x2b0, %i3 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20290a4: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20290a8: 80 a0 40 1d cmp %g1, %i5 20290ac: 0a 80 00 22 bcs 2029134 20290b0: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20290b4: 90 10 00 1d mov %i5, %o0 20290b8: 40 00 37 4c call 2036de8 20290bc: 92 07 bf c8 add %fp, -56, %o1 if ( status != RTEMS_SUCCESSFUL ) 20290c0: 80 a2 20 00 cmp %o0, 0 20290c4: 32 bf ff f8 bne,a 20290a4 20290c8: c2 07 20 0c ld [ %i4 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20290cc: 92 07 bf b0 add %fp, -80, %o1 20290d0: 40 00 37 b8 call 2036fb0 20290d4: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20290d8: d0 07 bf b0 ld [ %fp + -80 ], %o0 20290dc: 94 07 bf a0 add %fp, -96, %o2 20290e0: 7f ff 99 05 call 200f4f4 20290e4: 92 10 20 05 mov 5, %o1 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20290e8: d8 1f bf c8 ldd [ %fp + -56 ], %o4 20290ec: 92 10 00 1a mov %i2, %o1 20290f0: 94 10 00 1d mov %i5, %o2 20290f4: 90 10 00 18 mov %i0, %o0 20290f8: 9f c6 40 00 call %i1 20290fc: 96 07 bf a0 add %fp, -96, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2029100: c2 07 bf c8 ld [ %fp + -56 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2029104: 94 07 bf a8 add %fp, -88, %o2 2029108: 90 07 bf e0 add %fp, -32, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 202910c: 80 a0 60 00 cmp %g1, 0 2029110: 12 80 00 0b bne 202913c 2029114: 92 10 00 1b mov %i3, %o1 (*print)( context, "\n" ); 2029118: 9f c6 40 00 call %i1 202911c: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2029120: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2029124: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2029128: 80 a0 40 1d cmp %g1, %i5 202912c: 1a bf ff e3 bcc 20290b8 <== ALWAYS TAKEN 2029130: 90 10 00 1d mov %i5, %o0 2029134: 81 c7 e0 08 ret 2029138: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 202913c: 40 00 02 e2 call 2029cc4 <_Timespec_Divide_by_integer> 2029140: 92 10 00 01 mov %g1, %o1 (*print)( context, 2029144: d0 07 bf d4 ld [ %fp + -44 ], %o0 2029148: 40 00 ac c6 call 2054460 <.div> 202914c: 92 10 23 e8 mov 0x3e8, %o1 2029150: aa 10 00 08 mov %o0, %l5 2029154: d0 07 bf dc ld [ %fp + -36 ], %o0 2029158: 40 00 ac c2 call 2054460 <.div> 202915c: 92 10 23 e8 mov 0x3e8, %o1 2029160: c2 07 bf a8 ld [ %fp + -88 ], %g1 2029164: a2 10 00 08 mov %o0, %l1 2029168: d0 07 bf ac ld [ %fp + -84 ], %o0 202916c: e0 07 bf d0 ld [ %fp + -48 ], %l0 2029170: e8 07 bf d8 ld [ %fp + -40 ], %l4 2029174: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2029178: 40 00 ac ba call 2054460 <.div> 202917c: 92 10 23 e8 mov 0x3e8, %o1 2029180: 96 10 00 15 mov %l5, %o3 2029184: 98 10 00 14 mov %l4, %o4 2029188: 9a 10 00 11 mov %l1, %o5 202918c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2029190: 92 10 00 13 mov %l3, %o1 2029194: 94 10 00 10 mov %l0, %o2 2029198: 9f c6 40 00 call %i1 202919c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 20291a0: d2 07 bf c8 ld [ %fp + -56 ], %o1 20291a4: 94 07 bf a8 add %fp, -88, %o2 20291a8: 40 00 02 c7 call 2029cc4 <_Timespec_Divide_by_integer> 20291ac: 90 07 bf f8 add %fp, -8, %o0 (*print)( context, 20291b0: d0 07 bf ec ld [ %fp + -20 ], %o0 20291b4: 40 00 ac ab call 2054460 <.div> 20291b8: 92 10 23 e8 mov 0x3e8, %o1 20291bc: a8 10 00 08 mov %o0, %l4 20291c0: d0 07 bf f4 ld [ %fp + -12 ], %o0 20291c4: 40 00 ac a7 call 2054460 <.div> 20291c8: 92 10 23 e8 mov 0x3e8, %o1 20291cc: c2 07 bf a8 ld [ %fp + -88 ], %g1 20291d0: a0 10 00 08 mov %o0, %l0 20291d4: d0 07 bf ac ld [ %fp + -84 ], %o0 20291d8: ea 07 bf e8 ld [ %fp + -24 ], %l5 20291dc: e2 07 bf f0 ld [ %fp + -16 ], %l1 20291e0: 92 10 23 e8 mov 0x3e8, %o1 20291e4: 40 00 ac 9f call 2054460 <.div> 20291e8: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20291ec: 92 10 00 12 mov %l2, %o1 20291f0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20291f4: 94 10 00 15 mov %l5, %o2 20291f8: 90 10 00 18 mov %i0, %o0 20291fc: 96 10 00 14 mov %l4, %o3 2029200: 98 10 00 11 mov %l1, %o4 2029204: 9f c6 40 00 call %i1 2029208: 9a 10 00 10 mov %l0, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202920c: 10 bf ff a6 b 20290a4 2029210: c2 07 20 0c ld [ %i4 + 0xc ], %g1 =============================================================================== 0202922c : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 202922c: 9d e3 bf a0 save %sp, -96, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { uint32_t level = _Thread_Dispatch_disable_level; 2029230: 03 00 81 97 sethi %hi(0x2065c00), %g1 2029234: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 2065c40 <_Thread_Dispatch_disable_level> ++level; 2029238: 84 00 a0 01 inc %g2 _Thread_Dispatch_disable_level = level; 202923c: c4 20 60 40 st %g2, [ %g1 + 0x40 ] /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2029240: 39 00 81 98 sethi %hi(0x2066000), %i4 2029244: b8 17 20 74 or %i4, 0x74, %i4 ! 2066074 <_Rate_monotonic_Information> 2029248: fa 07 20 08 ld [ %i4 + 8 ], %i5 202924c: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2029250: 80 a7 40 01 cmp %i5, %g1 2029254: 18 80 00 09 bgu 2029278 <== NEVER TAKEN 2029258: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 202925c: 40 00 00 09 call 2029280 2029260: 90 10 00 1d mov %i5, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2029264: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2029268: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 202926c: 80 a0 40 1d cmp %g1, %i5 2029270: 1a bf ff fb bcc 202925c 2029274: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2029278: 7f ff 84 48 call 200a398 <_Thread_Enable_dispatch> 202927c: 81 e8 00 00 restore =============================================================================== 02008d90 : return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { 2008d90: 9d e3 bf a0 save %sp, -96, %sp void *ptr = NULL; rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; 2008d94: fa 06 20 30 ld [ %i0 + 0x30 ], %i5 #include static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; 2008d98: 90 10 00 19 mov %i1, %o0 2008d9c: 40 00 43 1b call 2019a08 <.urem> 2008da0: 92 10 00 1d mov %i5, %o1 if (excess > 0) { 2008da4: 80 a2 20 00 cmp %o0, 0 2008da8: 02 80 00 26 be 2008e40 <== ALWAYS TAKEN 2008dac: b6 10 00 19 mov %i1, %i3 value += alignment - excess; 2008db0: ba 06 40 1d add %i1, %i5, %i5 <== NOT EXECUTED 2008db4: b6 27 40 08 sub %i5, %o0, %i3 <== NOT EXECUTED 2008db8: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED 2008dbc: 82 60 3f ff subx %g0, -1, %g1 <== NOT EXECUTED rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; uintptr_t alignment = control->alignment; uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { 2008dc0: 80 88 60 ff btst 0xff, %g1 2008dc4: 02 80 00 1d be 2008e38 <== NEVER TAKEN 2008dc8: 80 a6 60 00 cmp %i1, 0 2008dcc: 02 80 00 1b be 2008e38 2008dd0: 82 06 20 04 add %i0, 4, %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2008dd4: fa 06 00 00 ld [ %i0 ], %i5 { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); rtems_rbheap_chunk *big_enough = NULL; while (current != tail && big_enough == NULL) { 2008dd8: 80 a7 40 01 cmp %i5, %g1 2008ddc: 02 80 00 17 be 2008e38 2008de0: 01 00 00 00 nop rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current; if (free_chunk->size >= size) { 2008de4: f8 07 60 1c ld [ %i5 + 0x1c ], %i4 2008de8: 80 a6 c0 1c cmp %i3, %i4 2008dec: 38 80 00 10 bgu,a 2008e2c 2008df0: fa 07 40 00 ld [ %i5 ], %i5 uintptr_t aligned_size = align_up(alignment, size); if (size > 0 && size <= aligned_size) { rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size); if (free_chunk != NULL) { 2008df4: 80 a7 60 00 cmp %i5, 0 2008df8: 02 80 00 10 be 2008e38 <== NEVER TAKEN 2008dfc: 80 a7 00 1b cmp %i4, %i3 uintptr_t free_size = free_chunk->size; if (free_size > aligned_size) { 2008e00: 18 80 00 12 bgu 2008e48 2008e04: 01 00 00 00 nop ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2008e08: c4 07 40 00 ld [ %i5 ], %g2 previous = the_node->previous; 2008e0c: c2 07 60 04 ld [ %i5 + 4 ], %g1 ptr = (void *) new_chunk->begin; } } else { rtems_chain_extract_unprotected(&free_chunk->chain_node); rtems_chain_set_off_chain(&free_chunk->chain_node); ptr = (void *) free_chunk->begin; 2008e10: f0 07 60 18 ld [ %i5 + 0x18 ], %i0 next->previous = previous; 2008e14: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2008e18: c4 20 40 00 st %g2, [ %g1 ] */ RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain( Chain_Node *node ) { node->next = node->previous = NULL; 2008e1c: c0 27 60 04 clr [ %i5 + 4 ] 2008e20: c0 27 40 00 clr [ %i5 ] } } } return ptr; } 2008e24: 81 c7 e0 08 ret 2008e28: 81 e8 00 00 restore { rtems_chain_node *current = rtems_chain_first(free_chain); const rtems_chain_node *tail = rtems_chain_tail(free_chain); rtems_rbheap_chunk *big_enough = NULL; while (current != tail && big_enough == NULL) { 2008e2c: 80 a0 40 1d cmp %g1, %i5 2008e30: 32 bf ff ee bne,a 2008de8 <== NEVER TAKEN 2008e34: f8 07 60 1c ld [ %i5 + 0x1c ], %i4 <== NOT EXECUTED return big_enough; } void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size) { void *ptr = NULL; 2008e38: 81 c7 e0 08 ret 2008e3c: 91 e8 20 00 restore %g0, 0, %o0 static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; if (excess > 0) { 2008e40: 10 bf ff e0 b 2008dc0 2008e44: 82 10 20 01 mov 1, %g1 if (free_chunk != NULL) { uintptr_t free_size = free_chunk->size; if (free_size > aligned_size) { rtems_rbheap_chunk *new_chunk = get_chunk(control); 2008e48: 7f ff ff 46 call 2008b60 2008e4c: 90 10 00 18 mov %i0, %o0 if (new_chunk != NULL) { 2008e50: b4 92 20 00 orcc %o0, 0, %i2 2008e54: 02 bf ff f9 be 2008e38 <== NEVER TAKEN 2008e58: b8 27 00 1b sub %i4, %i3, %i4 uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 2008e5c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 rtems_rbheap_chunk *new_chunk = get_chunk(control); if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; 2008e60: f8 27 60 1c st %i4, [ %i5 + 0x1c ] new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; 2008e64: f6 26 a0 1c st %i3, [ %i2 + 0x1c ] if (new_chunk != NULL) { uintptr_t new_free_size = free_size - aligned_size; free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; 2008e68: b8 07 00 01 add %i4, %g1, %i4 2008e6c: c0 26 a0 04 clr [ %i2 + 4 ] 2008e70: f8 26 a0 18 st %i4, [ %i2 + 0x18 ] 2008e74: c0 26 80 00 clr [ %i2 ] static void insert_into_tree( rtems_rbtree_control *tree, rtems_rbheap_chunk *chunk ) { _RBTree_Insert_unprotected(tree, &chunk->tree_node); 2008e78: 90 06 20 18 add %i0, 0x18, %o0 2008e7c: 40 00 07 13 call 200aac8 <_RBTree_Insert_unprotected> 2008e80: 92 06 a0 08 add %i2, 8, %o1 free_chunk->size = new_free_size; new_chunk->begin = free_chunk->begin + new_free_size; new_chunk->size = aligned_size; rtems_chain_set_off_chain(&new_chunk->chain_node); insert_into_tree(chunk_tree, new_chunk); ptr = (void *) new_chunk->begin; 2008e84: f0 06 a0 18 ld [ %i2 + 0x18 ], %i0 2008e88: 81 c7 e0 08 ret 2008e8c: 81 e8 00 00 restore =============================================================================== 02008fd4 : /* Do nothing */ } void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control) { 2008fd4: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk)); 2008fd8: 7f ff ec 63 call 2004164 <== NOT EXECUTED 2008fdc: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED if (chunk != NULL) { 2008fe0: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED 2008fe4: 02 80 00 07 be 2009000 <== NOT EXECUTED 2008fe8: 84 06 20 0c add %i0, 0xc, %g2 <== NOT EXECUTED ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008fec: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED after_node->next = the_node; 2008ff0: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008ff4: c4 22 20 04 st %g2, [ %o0 + 4 ] <== NOT EXECUTED before_node = after_node->next; after_node->next = the_node; the_node->next = before_node; 2008ff8: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED before_node->previous = the_node; 2008ffc: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED 2009000: 81 c7 e0 08 ret <== NOT EXECUTED 2009004: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 02008e90 : _RBTree_Extract_unprotected(chunk_tree, &b->tree_node); } } rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr) { 2008e90: 9d e3 bf 80 save %sp, -128, %sp 2008e94: b4 10 00 18 mov %i0, %i2 rtems_status_code sc = RTEMS_SUCCESSFUL; if (ptr != NULL) { 2008e98: 80 a6 60 00 cmp %i1, 0 2008e9c: 02 80 00 2a be 2008f44 2008ea0: b0 10 20 00 clr %i0 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 2008ea4: fa 06 a0 1c ld [ %i2 + 0x1c ], %i5 #define NULL_PAGE rtems_rbheap_chunk_of_node(NULL) static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key) { rtems_rbheap_chunk chunk = { .begin = key }; 2008ea8: c0 27 bf fc clr [ %fp + -4 ] 2008eac: c0 27 bf e0 clr [ %fp + -32 ] 2008eb0: c0 27 bf e4 clr [ %fp + -28 ] 2008eb4: c0 27 bf e8 clr [ %fp + -24 ] 2008eb8: c0 27 bf ec clr [ %fp + -20 ] 2008ebc: c0 27 bf f0 clr [ %fp + -16 ] 2008ec0: c0 27 bf f4 clr [ %fp + -12 ] 2008ec4: f2 27 bf f8 st %i1, [ %fp + -8 ] RBTree_Node* found = NULL; int compare_result; while (iter_node) { 2008ec8: 80 a7 60 00 cmp %i5, 0 2008ecc: 02 80 00 3e be 2008fc4 <== NEVER TAKEN 2008ed0: b8 06 a0 18 add %i2, 0x18, %i4 2008ed4: b6 10 20 00 clr %i3 compare_result = the_rbtree->compare_function(the_node, iter_node); 2008ed8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 2008edc: 92 10 00 1d mov %i5, %o1 2008ee0: 9f c0 40 00 call %g1 2008ee4: 90 07 bf e8 add %fp, -24, %o0 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 2008ee8: 83 3a 20 1f sra %o0, 0x1f, %g1 RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( _RBTree_Is_equal( compare_result ) ) { 2008eec: 80 a2 20 00 cmp %o0, 0 RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater( int compare_result ) { return compare_result > 0; 2008ef0: 82 20 40 08 sub %g1, %o0, %g1 2008ef4: 83 30 60 1f srl %g1, 0x1f, %g1 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 2008ef8: 83 28 60 02 sll %g1, 2, %g1 RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { compare_result = the_rbtree->compare_function(the_node, iter_node); if ( _RBTree_Is_equal( compare_result ) ) { 2008efc: 12 80 00 06 bne 2008f14 2008f00: 82 07 40 01 add %i5, %g1, %g1 found = iter_node; if ( the_rbtree->is_unique ) 2008f04: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2 2008f08: 80 a0 a0 00 cmp %g2, 0 2008f0c: 12 80 00 10 bne 2008f4c <== ALWAYS TAKEN 2008f10: b6 10 00 1d mov %i5, %i3 break; } RBTree_Direction dir = (RBTree_Direction) _RBTree_Is_greater( compare_result ); iter_node = iter_node->child[dir]; 2008f14: fa 00 60 04 ld [ %g1 + 4 ], %i5 ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { 2008f18: 80 a7 60 00 cmp %i5, 0 2008f1c: 32 bf ff f0 bne,a 2008edc 2008f20: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 return rtems_rbheap_chunk_of_node( 2008f24: ba 06 ff f8 add %i3, -8, %i5 if (ptr != NULL) { rtems_chain_control *free_chain = &control->free_chunk_chain; rtems_rbtree_control *chunk_tree = &control->chunk_tree; rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr); if (chunk != NULL_PAGE) { 2008f28: 80 a7 7f f8 cmp %i5, -8 2008f2c: 02 80 00 06 be 2008f44 2008f30: b0 10 20 04 mov 4, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain( const Chain_Node *node ) { return (node->next == NULL) && (node->previous == NULL); 2008f34: c2 06 ff f8 ld [ %i3 + -8 ], %g1 2008f38: 80 a0 60 00 cmp %g1, 0 2008f3c: 02 80 00 06 be 2008f54 2008f40: b0 10 20 0e mov 0xe, %i0 sc = RTEMS_INVALID_ID; } } return sc; } 2008f44: 81 c7 e0 08 ret 2008f48: 81 e8 00 00 restore static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key) { rtems_rbheap_chunk chunk = { .begin = key }; return rtems_rbheap_chunk_of_node( 2008f4c: 10 bf ff f7 b 2008f28 2008f50: ba 06 ff f8 add %i3, -8, %i5 2008f54: c2 06 ff fc ld [ %i3 + -4 ], %g1 2008f58: 80 a0 60 00 cmp %g1, 0 2008f5c: 12 bf ff fa bne 2008f44 <== NEVER TAKEN 2008f60: 92 10 20 00 clr %o1 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 2008f64: 40 00 07 a8 call 200ae04 <_RBTree_Next_unprotected> 2008f68: 90 10 00 1b mov %i3, %o0 2008f6c: 92 10 20 01 mov 1, %o1 2008f70: b2 10 00 08 mov %o0, %i1 2008f74: 40 00 07 a4 call 200ae04 <_RBTree_Next_unprotected> 2008f78: 90 10 00 1b mov %i3, %o0 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008f7c: 92 10 00 1c mov %i4, %o1 static rtems_rbheap_chunk *get_next( const rtems_rbheap_chunk *chunk, RBTree_Direction dir ) { return rtems_rbheap_chunk_of_node( 2008f80: 96 02 3f f8 add %o0, -8, %o3 if (chunk != NULL_PAGE) { if (!rtems_rbheap_is_chunk_free(chunk)) { rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT); rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT); check_and_merge(free_chain, chunk_tree, chunk, succ); 2008f84: 94 10 00 1d mov %i5, %o2 2008f88: 7f ff ff 10 call 2008bc8 2008f8c: 90 10 00 1a mov %i2, %o0 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008f90: c2 06 80 00 ld [ %i2 ], %g1 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008f94: f4 26 ff fc st %i2, [ %i3 + -4 ] before_node = after_node->next; after_node->next = the_node; 2008f98: fa 26 80 00 st %i5, [ %i2 ] the_node->next = before_node; 2008f9c: c2 26 ff f8 st %g1, [ %i3 + -8 ] before_node->previous = the_node; 2008fa0: fa 20 60 04 st %i5, [ %g1 + 4 ] add_to_chain(free_chain, chunk); check_and_merge(free_chain, chunk_tree, chunk, pred); 2008fa4: 90 10 00 1a mov %i2, %o0 2008fa8: 92 10 00 1c mov %i4, %o1 2008fac: 94 10 00 1d mov %i5, %o2 2008fb0: 96 06 7f f8 add %i1, -8, %o3 2008fb4: 7f ff ff 05 call 2008bc8 2008fb8: b0 10 20 00 clr %i0 2008fbc: 81 c7 e0 08 ret 2008fc0: 81 e8 00 00 restore sc = RTEMS_INVALID_ID; } } return sc; } 2008fc4: 81 c7 e0 08 ret <== NOT EXECUTED 2008fc8: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED =============================================================================== 02008c60 : uintptr_t area_size, uintptr_t alignment, rtems_rbheap_extend_descriptors extend_descriptors, void *handler_arg ) { 2008c60: 9d e3 bf a0 save %sp, -96, %sp rtems_status_code sc = RTEMS_SUCCESSFUL; if (alignment > 0) { 2008c64: 80 a6 e0 00 cmp %i3, 0 2008c68: 12 80 00 04 bne 2008c78 2008c6c: 82 10 20 0a mov 0xa, %g1 } else { sc = RTEMS_INVALID_NUMBER; } return sc; } 2008c70: 81 c7 e0 08 ret 2008c74: 91 e8 00 01 restore %g0, %g1, %o0 #include static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; 2008c78: 90 10 00 19 mov %i1, %o0 2008c7c: 92 10 00 1b mov %i3, %o1 2008c80: 40 00 43 62 call 2019a08 <.urem> 2008c84: b4 06 40 1a add %i1, %i2, %i2 if (excess > 0) { 2008c88: 80 a2 20 00 cmp %o0, 0 2008c8c: 32 80 00 09 bne,a 2008cb0 2008c90: a0 06 40 1b add %i1, %i3, %l0 2008c94: 82 10 20 01 mov 1, %g1 uintptr_t begin = (uintptr_t) area_begin; uintptr_t end = begin + area_size; uintptr_t aligned_begin = align_up(alignment, begin); uintptr_t aligned_end = align_down(alignment, end); if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) { 2008c98: 80 88 60 ff btst 0xff, %g1 2008c9c: 12 80 00 0b bne 2008cc8 <== ALWAYS TAKEN 2008ca0: a0 10 00 19 mov %i1, %l0 insert_into_tree(chunk_tree, first); } else { sc = RTEMS_NO_MEMORY; } } else { sc = RTEMS_INVALID_ADDRESS; 2008ca4: 82 10 20 09 mov 9, %g1 <== NOT EXECUTED } else { sc = RTEMS_INVALID_NUMBER; } return sc; } 2008ca8: 81 c7 e0 08 ret 2008cac: 91 e8 00 01 restore %g0, %g1, %o0 static uintptr_t align_up(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; if (excess > 0) { value += alignment - excess; 2008cb0: a0 24 00 08 sub %l0, %o0, %l0 2008cb4: 80 a4 00 19 cmp %l0, %i1 2008cb8: 82 60 3f ff subx %g0, -1, %g1 uintptr_t begin = (uintptr_t) area_begin; uintptr_t end = begin + area_size; uintptr_t aligned_begin = align_up(alignment, begin); uintptr_t aligned_end = align_down(alignment, end); if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) { 2008cbc: 80 88 60 ff btst 0xff, %g1 2008cc0: 02 bf ff fa be 2008ca8 2008cc4: 82 10 20 09 mov 9, %g1 2008cc8: 80 a6 40 1a cmp %i1, %i2 2008ccc: 1a bf ff f7 bcc 2008ca8 2008cd0: 82 10 20 09 mov 9, %g1 return value; } static uintptr_t align_down(uintptr_t alignment, uintptr_t value) { uintptr_t excess = value % alignment; 2008cd4: 90 10 00 1a mov %i2, %o0 2008cd8: 40 00 43 4c call 2019a08 <.urem> 2008cdc: 92 10 00 1b mov %i3, %o1 return value - excess; 2008ce0: b4 26 80 08 sub %i2, %o0, %i2 uintptr_t begin = (uintptr_t) area_begin; uintptr_t end = begin + area_size; uintptr_t aligned_begin = align_up(alignment, begin); uintptr_t aligned_end = align_down(alignment, end); if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) { 2008ce4: 80 a4 00 1a cmp %l0, %i2 2008ce8: 1a bf ff e2 bcc 2008c70 2008cec: 82 10 20 09 mov 9, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2008cf0: 82 06 20 04 add %i0, 4, %g1 head->next = tail; 2008cf4: c2 26 00 00 st %g1, [ %i0 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2008cf8: 82 06 20 0c add %i0, 0xc, %g1 head->next = tail; head->previous = NULL; tail->previous = head; 2008cfc: c2 26 20 14 st %g1, [ %i0 + 0x14 ] the_rbtree->permanent_null = NULL; the_rbtree->root = NULL; the_rbtree->first[0] = NULL; the_rbtree->first[1] = NULL; the_rbtree->compare_function = compare_function; the_rbtree->is_unique = is_unique; 2008d00: 82 10 20 01 mov 1, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2008d04: 84 06 20 10 add %i0, 0x10, %g2 2008d08: c2 2e 20 2c stb %g1, [ %i0 + 0x2c ] { the_rbtree->permanent_null = NULL; the_rbtree->root = NULL; the_rbtree->first[0] = NULL; the_rbtree->first[1] = NULL; the_rbtree->compare_function = compare_function; 2008d0c: 03 00 80 22 sethi %hi(0x2008800), %g1 2008d10: 82 10 63 50 or %g1, 0x350, %g1 ! 2008b50 head->next = tail; head->previous = NULL; 2008d14: c0 26 20 04 clr [ %i0 + 4 ] 2008d18: c2 26 20 28 st %g1, [ %i0 + 0x28 ] tail->previous = head; 2008d1c: f0 26 20 08 st %i0, [ %i0 + 8 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 2008d20: c0 26 20 10 clr [ %i0 + 0x10 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2008d24: c4 26 20 0c st %g2, [ %i0 + 0xc ] RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 2008d28: c0 26 20 18 clr [ %i0 + 0x18 ] the_rbtree->root = NULL; 2008d2c: c0 26 20 1c clr [ %i0 + 0x1c ] the_rbtree->first[0] = NULL; 2008d30: c0 26 20 20 clr [ %i0 + 0x20 ] the_rbtree->first[1] = NULL; 2008d34: c0 26 20 24 clr [ %i0 + 0x24 ] rtems_rbheap_chunk *first = NULL; rtems_chain_initialize_empty(free_chain); rtems_chain_initialize_empty(&control->spare_descriptor_chain); rtems_rbtree_initialize_empty(chunk_tree, chunk_compare, true); control->alignment = alignment; 2008d38: f6 26 20 30 st %i3, [ %i0 + 0x30 ] control->handler_arg = handler_arg; 2008d3c: fa 26 20 38 st %i5, [ %i0 + 0x38 ] control->extend_descriptors = extend_descriptors; 2008d40: f8 26 20 34 st %i4, [ %i0 + 0x34 ] first = get_chunk(control); 2008d44: 7f ff ff 87 call 2008b60 2008d48: 90 10 00 18 mov %i0, %o0 first->begin = aligned_begin; first->size = aligned_end - aligned_begin; add_to_chain(free_chain, first); insert_into_tree(chunk_tree, first); } else { sc = RTEMS_NO_MEMORY; 2008d4c: 82 10 20 1a mov 0x1a, %g1 control->alignment = alignment; control->handler_arg = handler_arg; control->extend_descriptors = extend_descriptors; first = get_chunk(control); if (first != NULL) { 2008d50: 80 a2 20 00 cmp %o0, 0 2008d54: 02 bf ff c7 be 2008c70 2008d58: 92 10 00 08 mov %o0, %o1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008d5c: c2 06 00 00 ld [ %i0 ], %g1 first->begin = aligned_begin; first->size = aligned_end - aligned_begin; 2008d60: b4 26 80 10 sub %i2, %l0, %i2 control->handler_arg = handler_arg; control->extend_descriptors = extend_descriptors; first = get_chunk(control); if (first != NULL) { first->begin = aligned_begin; 2008d64: e0 22 20 18 st %l0, [ %o0 + 0x18 ] first->size = aligned_end - aligned_begin; 2008d68: f4 22 20 1c st %i2, [ %o0 + 0x1c ] Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008d6c: f0 22 20 04 st %i0, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008d70: d0 26 00 00 st %o0, [ %i0 ] the_node->next = before_node; 2008d74: c2 22 00 00 st %g1, [ %o0 ] before_node->previous = the_node; 2008d78: d0 20 60 04 st %o0, [ %g1 + 4 ] static void insert_into_tree( rtems_rbtree_control *tree, rtems_rbheap_chunk *chunk ) { _RBTree_Insert_unprotected(tree, &chunk->tree_node); 2008d7c: 92 02 60 08 add %o1, 8, %o1 2008d80: 40 00 07 52 call 200aac8 <_RBTree_Insert_unprotected> 2008d84: 90 06 20 18 add %i0, 0x18, %o0 uintptr_t alignment, rtems_rbheap_extend_descriptors extend_descriptors, void *handler_arg ) { rtems_status_code sc = RTEMS_SUCCESSFUL; 2008d88: 10 bf ff ba b 2008c70 2008d8c: 82 10 20 00 clr %g1 =============================================================================== 02016d64 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2016d64: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 2016d68: 80 a6 60 00 cmp %i1, 0 2016d6c: 12 80 00 04 bne 2016d7c 2016d70: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016d74: 81 c7 e0 08 ret 2016d78: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2016d7c: 90 10 00 18 mov %i0, %o0 2016d80: 40 00 13 88 call 201bba0 <_Thread_Get> 2016d84: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2016d88: c2 07 bf fc ld [ %fp + -4 ], %g1 2016d8c: 80 a0 60 00 cmp %g1, 0 2016d90: 12 80 00 20 bne 2016e10 2016d94: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2016d98: fa 02 21 50 ld [ %o0 + 0x150 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2016d9c: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2016da0: 80 a0 60 00 cmp %g1, 0 2016da4: 02 80 00 1e be 2016e1c 2016da8: 01 00 00 00 nop if ( asr->is_enabled ) { 2016dac: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2016db0: 80 a0 60 00 cmp %g1, 0 2016db4: 02 80 00 1e be 2016e2c 2016db8: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016dbc: 7f ff e2 4f call 200f6f8 2016dc0: 01 00 00 00 nop *signal_set |= signals; 2016dc4: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2016dc8: b2 10 40 19 or %g1, %i1, %i1 2016dcc: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2016dd0: 7f ff e2 4e call 200f708 2016dd4: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 2016dd8: 03 00 80 ec sethi %hi(0x203b000), %g1 2016ddc: 82 10 63 10 or %g1, 0x310, %g1 ! 203b310 <_Per_CPU_Information> 2016de0: c4 00 60 08 ld [ %g1 + 8 ], %g2 2016de4: 80 a0 a0 00 cmp %g2, 0 2016de8: 02 80 00 06 be 2016e00 2016dec: 01 00 00 00 nop 2016df0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 2016df4: 80 a7 00 02 cmp %i4, %g2 2016df8: 02 80 00 15 be 2016e4c <== ALWAYS TAKEN 2016dfc: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2016e00: 40 00 13 5c call 201bb70 <_Thread_Enable_dispatch> 2016e04: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2016e08: 10 bf ff db b 2016d74 2016e0c: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2016e10: 82 10 20 04 mov 4, %g1 } 2016e14: 81 c7 e0 08 ret 2016e18: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 2016e1c: 40 00 13 55 call 201bb70 <_Thread_Enable_dispatch> 2016e20: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2016e24: 10 bf ff d4 b 2016d74 2016e28: 82 10 20 0b mov 0xb, %g1 ! b rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2016e2c: 7f ff e2 33 call 200f6f8 2016e30: 01 00 00 00 nop *signal_set |= signals; 2016e34: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2016e38: b2 10 40 19 or %g1, %i1, %i1 2016e3c: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2016e40: 7f ff e2 32 call 200f708 2016e44: 01 00 00 00 nop 2016e48: 30 bf ff ee b,a 2016e00 if ( ! _ASR_Is_null_handler( asr->handler ) ) { if ( asr->is_enabled ) { _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) _Thread_Dispatch_necessary = true; 2016e4c: c4 28 60 0c stb %g2, [ %g1 + 0xc ] 2016e50: 30 bf ff ec b,a 2016e00 =============================================================================== 020115a8 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 20115a8: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 20115ac: 80 a6 a0 00 cmp %i2, 0 20115b0: 02 80 00 3b be 201169c 20115b4: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 20115b8: 21 00 80 85 sethi %hi(0x2021400), %l0 20115bc: a0 14 22 20 or %l0, 0x220, %l0 ! 2021620 <_Per_CPU_Information> 20115c0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 20115c4: c4 0f 60 70 ldub [ %i5 + 0x70 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 20115c8: c2 07 60 78 ld [ %i5 + 0x78 ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 20115cc: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 20115d0: f8 07 61 50 ld [ %i5 + 0x150 ], %i4 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 20115d4: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 20115d8: 80 a0 60 00 cmp %g1, 0 20115dc: 12 80 00 40 bne 20116dc 20115e0: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20115e4: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 20115e8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 20115ec: 7f ff ed c0 call 200ccec <_CPU_ISR_Get_level> 20115f0: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20115f4: a3 2c 60 0a sll %l1, 0xa, %l1 20115f8: 90 14 40 08 or %l1, %o0, %o0 old_mode |= _ISR_Get_level(); 20115fc: b6 12 00 1b or %o0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 2011600: 80 8e 61 00 btst 0x100, %i1 2011604: 02 80 00 06 be 201161c 2011608: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 201160c: 83 36 20 08 srl %i0, 8, %g1 2011610: 82 18 60 01 xor %g1, 1, %g1 2011614: 82 08 60 01 and %g1, 1, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 2011618: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 201161c: 80 8e 62 00 btst 0x200, %i1 2011620: 12 80 00 21 bne 20116a4 2011624: 80 8e 22 00 btst 0x200, %i0 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 2011628: 80 8e 60 0f btst 0xf, %i1 201162c: 12 80 00 27 bne 20116c8 2011630: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 2011634: 80 8e 64 00 btst 0x400, %i1 2011638: 02 80 00 14 be 2011688 201163c: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 2011640: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; 2011644: b1 36 20 0a srl %i0, 0xa, %i0 2011648: b0 1e 20 01 xor %i0, 1, %i0 201164c: b0 0e 20 01 and %i0, 1, %i0 if ( is_asr_enabled != asr->is_enabled ) { 2011650: 80 a6 00 01 cmp %i0, %g1 2011654: 22 80 00 0e be,a 201168c 2011658: 03 00 80 85 sethi %hi(0x2021400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 201165c: 7f ff c5 b5 call 2002d30 2011660: f0 2f 20 08 stb %i0, [ %i4 + 8 ] _signals = information->signals_pending; 2011664: c4 07 20 18 ld [ %i4 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 2011668: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 information->signals_posted = _signals; 201166c: c4 27 20 14 st %g2, [ %i4 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 2011670: c2 27 20 18 st %g1, [ %i4 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 2011674: 7f ff c5 b3 call 2002d40 2011678: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 201167c: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 2011680: 80 a0 00 01 cmp %g0, %g1 2011684: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 2011688: 03 00 80 85 sethi %hi(0x2021400), %g1 201168c: c4 00 62 1c ld [ %g1 + 0x21c ], %g2 ! 202161c <_System_state_Current> 2011690: 80 a0 a0 03 cmp %g2, 3 2011694: 02 80 00 1f be 2011710 2011698: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 201169c: 81 c7 e0 08 ret 20116a0: 91 e8 00 01 restore %g0, %g1, %o0 */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { 20116a4: 22 bf ff e1 be,a 2011628 20116a8: c0 27 60 78 clr [ %i5 + 0x78 ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 20116ac: 03 00 80 84 sethi %hi(0x2021000), %g1 20116b0: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 ! 2021370 <_Thread_Ticks_per_timeslice> } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 20116b4: 80 8e 60 0f btst 0xf, %i1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 20116b8: c2 27 60 74 st %g1, [ %i5 + 0x74 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 20116bc: 82 10 20 01 mov 1, %g1 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 20116c0: 02 bf ff dd be 2011634 20116c4: c2 27 60 78 st %g1, [ %i5 + 0x78 ] */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 20116c8: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 20116cc: 7f ff c5 9d call 2002d40 20116d0: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 20116d4: 10 bf ff d9 b 2011638 20116d8: 80 8e 64 00 btst 0x400, %i1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20116dc: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 20116e0: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20116e4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 20116e8: 7f ff ed 81 call 200ccec <_CPU_ISR_Get_level> 20116ec: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 20116f0: a3 2c 60 0a sll %l1, 0xa, %l1 20116f4: 90 14 40 08 or %l1, %o0, %o0 old_mode |= _ISR_Get_level(); 20116f8: b6 12 00 1b or %o0, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 20116fc: 80 8e 61 00 btst 0x100, %i1 2011700: 02 bf ff c7 be 201161c 2011704: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 2011708: 10 bf ff c2 b 2011610 201170c: 83 36 20 08 srl %i0, 8, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 2011710: 80 88 e0 ff btst 0xff, %g3 2011714: 12 80 00 0a bne 201173c 2011718: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 201171c: c6 04 20 14 ld [ %l0 + 0x14 ], %g3 2011720: 80 a0 80 03 cmp %g2, %g3 2011724: 02 bf ff de be 201169c 2011728: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 201172c: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2 2011730: 80 a0 a0 00 cmp %g2, 0 2011734: 02 bf ff da be 201169c <== NEVER TAKEN 2011738: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 201173c: 82 10 20 01 mov 1, %g1 ! 1 2011740: c2 2c 20 0c stb %g1, [ %l0 + 0xc ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 2011744: 40 00 02 8d call 2012178 <_Thread_Dispatch> 2011748: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 201174c: 82 10 20 00 clr %g1 ! 0 } 2011750: 81 c7 e0 08 ret 2011754: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200c6b4 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200c6b4: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200c6b8: 80 a6 60 00 cmp %i1, 0 200c6bc: 02 80 00 08 be 200c6dc 200c6c0: 80 a6 a0 00 cmp %i2, 0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200c6c4: 03 00 80 82 sethi %hi(0x2020800), %g1 200c6c8: c4 08 62 dc ldub [ %g1 + 0x2dc ], %g2 ! 2020adc */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200c6cc: 80 a6 40 02 cmp %i1, %g2 200c6d0: 18 80 00 1e bgu 200c748 200c6d4: 82 10 20 13 mov 0x13, %g1 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200c6d8: 80 a6 a0 00 cmp %i2, 0 200c6dc: 02 80 00 1b be 200c748 200c6e0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200c6e4: 90 10 00 18 mov %i0, %o0 200c6e8: 40 00 0a 25 call 200ef7c <_Thread_Get> 200c6ec: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200c6f0: c2 07 bf fc ld [ %fp + -4 ], %g1 200c6f4: 80 a0 60 00 cmp %g1, 0 200c6f8: 12 80 00 16 bne 200c750 200c6fc: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200c700: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200c704: 80 a6 60 00 cmp %i1, 0 200c708: 02 80 00 0d be 200c73c 200c70c: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200c710: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200c714: 80 a0 60 00 cmp %g1, 0 200c718: 02 80 00 06 be 200c730 200c71c: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200c720: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200c724: 80 a6 40 01 cmp %i1, %g1 200c728: 1a 80 00 05 bcc 200c73c <== ALWAYS TAKEN 200c72c: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200c730: 92 10 00 19 mov %i1, %o1 200c734: 40 00 08 b4 call 200ea04 <_Thread_Change_priority> 200c738: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200c73c: 40 00 0a 04 call 200ef4c <_Thread_Enable_dispatch> 200c740: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 200c744: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200c748: 81 c7 e0 08 ret 200c74c: 91 e8 00 01 restore %g0, %g1, %o0 200c750: 81 c7 e0 08 ret 200c754: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200621c : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 200621c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 2006220: 80 a6 60 00 cmp %i1, 0 2006224: 02 80 00 1e be 200629c 2006228: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 200622c: 90 10 00 18 mov %i0, %o0 2006230: 40 00 08 a1 call 20084b4 <_Thread_Get> 2006234: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2006238: c2 07 bf fc ld [ %fp + -4 ], %g1 200623c: 80 a0 60 00 cmp %g1, 0 2006240: 12 80 00 19 bne 20062a4 2006244: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 2006248: c2 02 21 5c ld [ %o0 + 0x15c ], %g1 while (tvp) { 200624c: 80 a0 60 00 cmp %g1, 0 2006250: 02 80 00 10 be 2006290 2006254: 01 00 00 00 nop if (tvp->ptr == ptr) { 2006258: c4 00 60 04 ld [ %g1 + 4 ], %g2 200625c: 80 a0 80 19 cmp %g2, %i1 2006260: 32 80 00 09 bne,a 2006284 2006264: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2006268: 10 80 00 18 b 20062c8 200626c: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2006270: 80 a0 80 19 cmp %g2, %i1 2006274: 22 80 00 0e be,a 20062ac 2006278: c4 02 40 00 ld [ %o1 ], %g2 200627c: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 2006280: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 2006284: 80 a2 60 00 cmp %o1, 0 2006288: 32 bf ff fa bne,a 2006270 <== ALWAYS TAKEN 200628c: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2006290: 40 00 08 7d call 2008484 <_Thread_Enable_dispatch> 2006294: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 2006298: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200629c: 81 c7 e0 08 ret 20062a0: 91 e8 00 01 restore %g0, %g1, %o0 20062a4: 81 c7 e0 08 ret 20062a8: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 20062ac: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 20062b0: 40 00 00 2e call 2006368 <_RTEMS_Tasks_Invoke_task_variable_dtor> 20062b4: 01 00 00 00 nop _Thread_Enable_dispatch(); 20062b8: 40 00 08 73 call 2008484 <_Thread_Enable_dispatch> 20062bc: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20062c0: 10 bf ff f7 b 200629c 20062c4: 82 10 20 00 clr %g1 ! 0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 20062c8: 92 10 00 01 mov %g1, %o1 20062cc: 10 bf ff f9 b 20062b0 20062d0: c4 22 21 5c st %g2, [ %o0 + 0x15c ] =============================================================================== 020062d4 : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 20062d4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 20062d8: 80 a6 60 00 cmp %i1, 0 20062dc: 02 80 00 1b be 2006348 20062e0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !result ) 20062e4: 80 a6 a0 00 cmp %i2, 0 20062e8: 02 80 00 18 be 2006348 20062ec: 90 10 00 18 mov %i0, %o0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 20062f0: 40 00 08 71 call 20084b4 <_Thread_Get> 20062f4: 92 07 bf fc add %fp, -4, %o1 switch (location) { 20062f8: c2 07 bf fc ld [ %fp + -4 ], %g1 20062fc: 80 a0 60 00 cmp %g1, 0 2006300: 12 80 00 14 bne 2006350 2006304: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 2006308: c2 02 21 5c ld [ %o0 + 0x15c ], %g1 while (tvp) { 200630c: 80 a0 60 00 cmp %g1, 0 2006310: 32 80 00 07 bne,a 200632c 2006314: c4 00 60 04 ld [ %g1 + 4 ], %g2 2006318: 30 80 00 10 b,a 2006358 200631c: 80 a0 60 00 cmp %g1, 0 2006320: 02 80 00 0e be 2006358 <== NEVER TAKEN 2006324: 01 00 00 00 nop if (tvp->ptr == ptr) { 2006328: c4 00 60 04 ld [ %g1 + 4 ], %g2 200632c: 80 a0 80 19 cmp %g2, %i1 2006330: 32 bf ff fb bne,a 200631c 2006334: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 2006338: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); 200633c: 40 00 08 52 call 2008484 <_Thread_Enable_dispatch> 2006340: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2006344: 82 10 20 00 clr %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2006348: 81 c7 e0 08 ret 200634c: 91 e8 00 01 restore %g0, %g1, %o0 2006350: 81 c7 e0 08 ret 2006354: 91 e8 00 01 restore %g0, %g1, %o0 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2006358: 40 00 08 4b call 2008484 <_Thread_Enable_dispatch> 200635c: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 2006360: 10 bf ff fa b 2006348 2006364: 82 10 20 09 mov 9, %g1 ! 9 =============================================================================== 02017850 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2017850: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2017854: 11 00 80 ec sethi %hi(0x203b000), %o0 2017858: 92 10 00 18 mov %i0, %o1 201785c: 90 12 23 b8 or %o0, 0x3b8, %o0 2017860: 40 00 0c b5 call 201ab34 <_Objects_Get> 2017864: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2017868: c2 07 bf fc ld [ %fp + -4 ], %g1 201786c: 80 a0 60 00 cmp %g1, 0 2017870: 12 80 00 0c bne 20178a0 2017874: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2017878: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 201787c: 80 a0 60 04 cmp %g1, 4 2017880: 02 80 00 04 be 2017890 <== NEVER TAKEN 2017884: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2017888: 40 00 14 e0 call 201cc08 <_Watchdog_Remove> 201788c: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2017890: 40 00 10 b8 call 201bb70 <_Thread_Enable_dispatch> 2017894: b0 10 20 00 clr %i0 2017898: 81 c7 e0 08 ret 201789c: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20178a0: 81 c7 e0 08 ret 20178a4: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02017da8 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2017da8: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2017dac: 03 00 80 ec sethi %hi(0x203b000), %g1 2017db0: fa 00 63 f8 ld [ %g1 + 0x3f8 ], %i5 ! 203b3f8 <_Timer_server> if ( !timer_server ) 2017db4: 80 a7 60 00 cmp %i5, 0 2017db8: 02 80 00 08 be 2017dd8 2017dbc: 82 10 20 0e mov 0xe, %g1 return RTEMS_INCORRECT_STATE; if ( !_TOD.is_set ) 2017dc0: 39 00 80 ec sethi %hi(0x203b000), %i4 2017dc4: 82 17 20 38 or %i4, 0x38, %g1 ! 203b038 <_TOD> 2017dc8: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2 2017dcc: 80 a0 a0 00 cmp %g2, 0 2017dd0: 12 80 00 04 bne 2017de0 <== ALWAYS TAKEN 2017dd4: 82 10 20 0b mov 0xb, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2017dd8: 81 c7 e0 08 ret 2017ddc: 91 e8 00 01 restore %g0, %g1, %o0 return RTEMS_INCORRECT_STATE; if ( !_TOD.is_set ) return RTEMS_NOT_DEFINED; if ( !routine ) 2017de0: 80 a6 a0 00 cmp %i2, 0 2017de4: 02 bf ff fd be 2017dd8 2017de8: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2017dec: 7f ff f3 1e call 2014a64 <_TOD_Validate> 2017df0: 90 10 00 19 mov %i1, %o0 2017df4: 80 8a 20 ff btst 0xff, %o0 2017df8: 12 80 00 04 bne 2017e08 2017dfc: 82 10 20 14 mov 0x14, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2017e00: 81 c7 e0 08 ret 2017e04: 91 e8 00 01 restore %g0, %g1, %o0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2017e08: 7f ff f2 dd call 201497c <_TOD_To_seconds> 2017e0c: 90 10 00 19 mov %i1, %o0 2017e10: b2 10 00 08 mov %o0, %i1 2017e14: d0 1f 20 38 ldd [ %i4 + 0x38 ], %o0 2017e18: 94 10 20 00 clr %o2 2017e1c: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 2017e20: 40 00 4e 01 call 202b624 <__divdi3> 2017e24: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 if ( seconds <= _TOD_Seconds_since_epoch() ) 2017e28: 80 a6 40 09 cmp %i1, %o1 2017e2c: 08 bf ff f5 bleu 2017e00 2017e30: 82 10 20 14 mov 0x14, %g1 2017e34: 92 10 00 18 mov %i0, %o1 2017e38: 11 00 80 ec sethi %hi(0x203b000), %o0 2017e3c: 94 07 bf fc add %fp, -4, %o2 2017e40: 40 00 0b 3d call 201ab34 <_Objects_Get> 2017e44: 90 12 23 b8 or %o0, 0x3b8, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2017e48: c2 07 bf fc ld [ %fp + -4 ], %g1 2017e4c: 80 a0 60 00 cmp %g1, 0 2017e50: 12 80 00 19 bne 2017eb4 2017e54: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2017e58: 40 00 13 6c call 201cc08 <_Watchdog_Remove> 2017e5c: 90 02 20 10 add %o0, 0x10, %o0 2017e60: d0 1f 20 38 ldd [ %i4 + 0x38 ], %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2017e64: 82 10 20 03 mov 3, %g1 2017e68: 94 10 20 00 clr %o2 2017e6c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] 2017e70: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2017e74: c0 24 20 18 clr [ %l0 + 0x18 ] 2017e78: 96 12 e2 00 or %o3, 0x200, %o3 the_watchdog->routine = routine; 2017e7c: f4 24 20 2c st %i2, [ %l0 + 0x2c ] the_watchdog->id = id; 2017e80: f0 24 20 30 st %i0, [ %l0 + 0x30 ] 2017e84: 40 00 4d e8 call 202b624 <__divdi3> 2017e88: f6 24 20 34 st %i3, [ %l0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); (*timer_server->schedule_operation)( timer_server, the_timer ); 2017e8c: c2 07 60 04 ld [ %i5 + 4 ], %g1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2017e90: b2 26 40 09 sub %i1, %o1, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 2017e94: 90 10 00 1d mov %i5, %o0 2017e98: 92 10 00 10 mov %l0, %o1 2017e9c: 9f c0 40 00 call %g1 2017ea0: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); 2017ea4: 40 00 0f 33 call 201bb70 <_Thread_Enable_dispatch> 2017ea8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2017eac: 10 bf ff cb b 2017dd8 2017eb0: 82 10 20 00 clr %g1 ! 0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2017eb4: 10 bf ff c9 b 2017dd8 2017eb8: 82 10 20 04 mov 4, %g1