RTEMS 4.11Annotated Report
Thu Dec 20 15:28:38 2012
020084dc <_API_extensions_Add_post_switch>:
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
20084dc: c2 02 00 00 ld [ %o0 ], %g1
20084e0: 80 a0 60 00 cmp %g1, 0
20084e4: 22 80 00 04 be,a 20084f4 <_API_extensions_Add_post_switch+0x18>
20084e8: c2 02 20 04 ld [ %o0 + 4 ], %g1
20084ec: 81 c3 e0 08 retl
20084f0: 01 00 00 00 nop
20084f4: 80 a0 60 00 cmp %g1, 0
20084f8: 12 bf ff fd bne 20084ec <_API_extensions_Add_post_switch+0x10><== NEVER TAKEN
20084fc: 03 00 80 73 sethi %hi(0x201cc00), %g1
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
2008500: 82 10 60 f4 or %g1, 0xf4, %g1 ! 201ccf4 <_API_extensions_Post_switch_list>
2008504: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_node->next = tail;
2008508: 86 00 60 04 add %g1, 4, %g3
tail->previous = the_node;
200850c: d0 20 60 08 st %o0, [ %g1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
2008510: c6 22 00 00 st %g3, [ %o0 ]
tail->previous = the_node;
old_last->next = the_node;
2008514: d0 20 80 00 st %o0, [ %g2 ]
the_node->previous = old_last;
2008518: 81 c3 e0 08 retl
200851c: c4 22 20 04 st %g2, [ %o0 + 4 ]
02008520 <_API_extensions_Run_postdriver>:
}
}
#endif
void _API_extensions_Run_postdriver( void )
{
2008520: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2008524: 39 00 80 73 sethi %hi(0x201cc00), %i4
2008528: fa 07 22 48 ld [ %i4 + 0x248 ], %i5 ! 201ce48 <_API_extensions_List>
200852c: b8 17 22 48 or %i4, 0x248, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2008530: b8 07 20 04 add %i4, 4, %i4
2008534: 80 a7 40 1c cmp %i5, %i4
2008538: 02 80 00 09 be 200855c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
200853c: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
2008540: c2 07 60 08 ld [ %i5 + 8 ], %g1
2008544: 9f c0 40 00 call %g1
2008548: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
200854c: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2008550: 80 a7 40 1c cmp %i5, %i4
2008554: 32 bf ff fc bne,a 2008544 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2008558: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
200855c: 81 c7 e0 08 ret
2008560: 81 e8 00 00 restore
02011b84 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2011b84: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2011b88: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2011b8c: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
/*
* Check if allocated_message_size is aligned to uintptr-size boundary.
* If not, it will increase allocated_message_size to multiplicity of pointer
* size.
*/
if (allocated_message_size & (sizeof(uintptr_t) - 1)) {
2011b90: 80 8e e0 03 btst 3, %i3
2011b94: 02 80 00 0b be 2011bc0 <_CORE_message_queue_Initialize+0x3c>
2011b98: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
allocated_message_size += sizeof(uintptr_t);
2011b9c: 96 06 e0 04 add %i3, 4, %o3
allocated_message_size &= ~(sizeof(uintptr_t) - 1);
2011ba0: 96 0a ff fc and %o3, -4, %o3
/*
* Check for an overflow. It can occur while increasing allocated_message_size
* to multiplicity of uintptr_t above.
*/
if (allocated_message_size < maximum_message_size)
2011ba4: 80 a6 c0 0b cmp %i3, %o3
2011ba8: 08 80 00 08 bleu 2011bc8 <_CORE_message_queue_Initialize+0x44>
2011bac: ba 02 e0 10 add %o3, 0x10, %i5
return false;
2011bb0: b0 10 20 00 clr %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011bb4: b0 0e 20 01 and %i0, 1, %i0
2011bb8: 81 c7 e0 08 ret
2011bbc: 81 e8 00 00 restore
/*
* Check if allocated_message_size is aligned to uintptr-size boundary.
* If not, it will increase allocated_message_size to multiplicity of pointer
* size.
*/
if (allocated_message_size & (sizeof(uintptr_t) - 1)) {
2011bc0: 96 10 00 1b mov %i3, %o3
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2011bc4: ba 02 e0 10 add %o3, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2011bc8: 90 10 20 00 clr %o0
2011bcc: 92 10 00 1a mov %i2, %o1
2011bd0: 94 10 20 00 clr %o2
2011bd4: 40 00 41 5f call 2022150 <__muldi3>
2011bd8: 96 10 00 1d mov %i5, %o3
if ( x > SIZE_MAX )
2011bdc: 80 a2 20 00 cmp %o0, 0
2011be0: 34 bf ff f5 bg,a 2011bb4 <_CORE_message_queue_Initialize+0x30>
2011be4: b0 10 20 00 clr %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2011be8: 40 00 0c c0 call 2014ee8 <_Workspace_Allocate>
2011bec: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2011bf0: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2011bf4: 80 a2 20 00 cmp %o0, 0
2011bf8: 02 bf ff ee be 2011bb0 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN
2011bfc: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2011c00: 90 06 20 60 add %i0, 0x60, %o0
2011c04: 94 10 00 1a mov %i2, %o2
2011c08: 7f ff ff c6 call 2011b20 <_Chain_Initialize>
2011c0c: 96 10 00 1d mov %i5, %o3
*/
RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority(
CORE_message_queue_Attributes *the_attribute
)
{
return
2011c10: c4 06 40 00 ld [ %i1 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2011c14: 82 06 20 50 add %i0, 0x50, %g1
2011c18: 84 18 a0 01 xor %g2, 1, %g2
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2011c1c: 80 a0 00 02 cmp %g0, %g2
2011c20: 84 06 20 54 add %i0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2011c24: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2011c28: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
2011c2c: 90 10 00 18 mov %i0, %o0
head->previous = NULL;
2011c30: c0 26 20 54 clr [ %i0 + 0x54 ]
2011c34: 92 60 3f ff subx %g0, -1, %o1
2011c38: 94 10 20 80 mov 0x80, %o2
2011c3c: 96 10 20 06 mov 6, %o3
2011c40: 40 00 0a 56 call 2014598 <_Thread_queue_Initialize>
2011c44: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011c48: b0 0e 20 01 and %i0, 1, %i0
2011c4c: 81 c7 e0 08 ret
2011c50: 81 e8 00 00 restore
02008880 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2008880: 9d e3 bf a0 save %sp, -96, %sp
* This routine returns true if thread dispatch indicates
* that we are in a critical section.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Dispatch_in_critical_section(void)
{
if ( _Thread_Dispatch_disable_level == 0 )
2008884: 3b 00 80 73 sethi %hi(0x201cc00), %i5
2008888: c2 07 60 80 ld [ %i5 + 0x80 ], %g1 ! 201cc80 <_Thread_Dispatch_disable_level>
200888c: 80 a0 60 00 cmp %g1, 0
2008890: 02 80 00 1f be 200890c <_CORE_mutex_Seize+0x8c>
2008894: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2008898: 80 a6 a0 00 cmp %i2, 0
200889c: 02 80 00 2c be 200894c <_CORE_mutex_Seize+0xcc>
20088a0: 90 10 00 18 mov %i0, %o0
20088a4: 03 00 80 73 sethi %hi(0x201cc00), %g1
20088a8: c2 00 62 8c ld [ %g1 + 0x28c ], %g1 ! 201ce8c <_System_state_Current>
20088ac: 80 a0 60 01 cmp %g1, 1
20088b0: 38 80 00 2e bgu,a 2008968 <_CORE_mutex_Seize+0xe8>
20088b4: 90 10 20 00 clr %o0
20088b8: 40 00 12 d0 call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock>
20088bc: 92 07 a0 54 add %fp, 0x54, %o1
20088c0: 80 a2 20 00 cmp %o0, 0
20088c4: 02 80 00 27 be 2008960 <_CORE_mutex_Seize+0xe0> <== ALWAYS TAKEN
20088c8: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
20088cc: c4 07 60 80 ld [ %i5 + 0x80 ], %g2
20088d0: 03 00 80 73 sethi %hi(0x201cc00), %g1
20088d4: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
20088d8: 86 10 20 01 mov 1, %g3
20088dc: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
20088e0: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
20088e4: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
++level;
20088e8: 82 00 a0 01 add %g2, 1, %g1
_Thread_Dispatch_disable_level = level;
20088ec: c2 27 60 80 st %g1, [ %i5 + 0x80 ]
20088f0: 7f ff e7 4b call 200261c <sparc_enable_interrupts>
20088f4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
20088f8: 90 10 00 18 mov %i0, %o0
20088fc: 7f ff ff ba call 20087e4 <_CORE_mutex_Seize_interrupt_blocking>
2008900: 92 10 00 1b mov %i3, %o1
2008904: 81 c7 e0 08 ret
2008908: 81 e8 00 00 restore
200890c: 90 10 00 18 mov %i0, %o0
2008910: 40 00 12 ba call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock>
2008914: 92 07 a0 54 add %fp, 0x54, %o1
2008918: 80 a2 20 00 cmp %o0, 0
200891c: 02 bf ff fa be 2008904 <_CORE_mutex_Seize+0x84>
2008920: 80 a6 a0 00 cmp %i2, 0
2008924: 12 bf ff ea bne 20088cc <_CORE_mutex_Seize+0x4c>
2008928: 01 00 00 00 nop
200892c: 7f ff e7 3c call 200261c <sparc_enable_interrupts>
2008930: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2008934: 03 00 80 73 sethi %hi(0x201cc00), %g1
2008938: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10>
200893c: 84 10 20 01 mov 1, %g2
2008940: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2008944: 81 c7 e0 08 ret
2008948: 81 e8 00 00 restore
200894c: 40 00 12 ab call 200d3f8 <_CORE_mutex_Seize_interrupt_trylock>
2008950: 92 07 a0 54 add %fp, 0x54, %o1
2008954: 80 a2 20 00 cmp %o0, 0
2008958: 12 bf ff f5 bne 200892c <_CORE_mutex_Seize+0xac> <== NEVER TAKEN
200895c: 01 00 00 00 nop
2008960: 81 c7 e0 08 ret
2008964: 81 e8 00 00 restore
2008968: 92 10 20 00 clr %o1
200896c: 40 00 01 c1 call 2009070 <_Internal_error_Occurred>
2008970: 94 10 20 12 mov 0x12, %o2
02008af0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2008af0: 9d e3 bf a0 save %sp, -96, %sp
2008af4: ba 10 00 18 mov %i0, %i5
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2008af8: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2008afc: 40 00 07 d8 call 200aa5c <_Thread_queue_Dequeue>
2008b00: 90 10 00 1d mov %i5, %o0
2008b04: 80 a2 20 00 cmp %o0, 0
2008b08: 02 80 00 04 be 2008b18 <_CORE_semaphore_Surrender+0x28>
2008b0c: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
2008b10: 81 c7 e0 08 ret
2008b14: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2008b18: 7f ff e6 bd call 200260c <sparc_disable_interrupts>
2008b1c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2008b20: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2008b24: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
2008b28: 80 a0 40 02 cmp %g1, %g2
2008b2c: 1a 80 00 05 bcc 2008b40 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
2008b30: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2008b34: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2008b38: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2008b3c: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2008b40: 7f ff e6 b7 call 200261c <sparc_enable_interrupts>
2008b44: 01 00 00 00 nop
}
return status;
}
2008b48: 81 c7 e0 08 ret
2008b4c: 81 e8 00 00 restore
020086b0 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
20086b0: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
20086b4: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
20086b8: ba 06 20 04 add %i0, 4, %i5
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
20086bc: 80 a6 a0 00 cmp %i2, 0
20086c0: 02 80 00 13 be 200870c <_Chain_Initialize+0x5c> <== NEVER TAKEN
20086c4: 92 06 bf ff add %i2, -1, %o1
20086c8: 86 10 00 09 mov %o1, %g3
20086cc: 82 10 00 19 mov %i1, %g1
20086d0: 84 10 00 18 mov %i0, %g2
current->next = next;
20086d4: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
20086d8: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
20086dc: 86 00 ff ff add %g3, -1, %g3
20086e0: 84 10 00 01 mov %g1, %g2
20086e4: 80 a0 ff ff cmp %g3, -1
20086e8: 12 bf ff fb bne 20086d4 <_Chain_Initialize+0x24>
20086ec: 82 00 40 1b add %g1, %i3, %g1
#include <rtems/system.h>
#include <rtems/score/address.h>
#include <rtems/score/chain.h>
#include <rtems/score/isr.h>
void _Chain_Initialize(
20086f0: 40 00 3e d1 call 2018234 <.umul>
20086f4: 90 10 00 1b mov %i3, %o0
20086f8: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
20086fc: fa 22 00 00 st %i5, [ %o0 ]
tail->previous = current;
2008700: d0 26 20 08 st %o0, [ %i0 + 8 ]
2008704: 81 c7 e0 08 ret
2008708: 81 e8 00 00 restore
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
200870c: 10 bf ff fc b 20086fc <_Chain_Initialize+0x4c> <== NOT EXECUTED
2008710: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
020076cc <_Event_Surrender>:
rtems_event_set event_in,
Event_Control *event,
Thread_blocking_operation_States *sync_state,
States_Control wait_state
)
{
20076cc: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set seized_events;
rtems_option option_set;
option_set = the_thread->Wait.option;
_ISR_Disable( level );
20076d0: 7f ff eb cf call 200260c <sparc_disable_interrupts>
20076d4: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
RTEMS_INLINE_ROUTINE void _Event_sets_Post(
rtems_event_set the_new_events,
rtems_event_set *the_event_set
)
{
*the_event_set |= the_new_events;
20076d8: c2 06 80 00 ld [ %i2 ], %g1
20076dc: b2 16 40 01 or %i1, %g1, %i1
20076e0: f2 26 80 00 st %i1, [ %i2 ]
_Event_sets_Post( event_in, &event->pending_events );
pending_events = event->pending_events;
event_condition = the_thread->Wait.count;
20076e4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
20076e8: 84 8e 40 01 andcc %i1, %g1, %g2
20076ec: 02 80 00 35 be 20077c0 <_Event_Surrender+0xf4>
20076f0: 07 00 80 73 sethi %hi(0x201cc00), %g3
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20076f4: 86 10 e2 90 or %g3, 0x290, %g3 ! 201ce90 <_Per_CPU_Information>
20076f8: c8 00 e0 08 ld [ %g3 + 8 ], %g4
20076fc: 80 a1 20 00 cmp %g4, 0
2007700: 32 80 00 1c bne,a 2007770 <_Event_Surrender+0xa4>
2007704: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
RTEMS_INLINE_ROUTINE bool _States_Are_set (
States_Control the_states,
States_Control mask
)
{
return ( (the_states & mask) != STATES_READY);
2007708: c6 06 20 10 ld [ %i0 + 0x10 ], %g3
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
200770c: 80 8f 00 03 btst %i4, %g3
2007710: 02 80 00 2c be 20077c0 <_Event_Surrender+0xf4>
2007714: 80 a0 40 02 cmp %g1, %g2
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2007718: 02 80 00 04 be 2007728 <_Event_Surrender+0x5c>
200771c: 80 8f 60 02 btst 2, %i5
2007720: 02 80 00 28 be 20077c0 <_Event_Surrender+0xf4> <== NEVER TAKEN
2007724: 01 00 00 00 nop
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007728: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
200772c: b2 2e 40 02 andn %i1, %g2, %i1
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
event->pending_events = _Event_sets_Clear(
2007730: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
2007734: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007738: c4 20 40 00 st %g2, [ %g1 ]
_ISR_Flash( level );
200773c: 7f ff eb b8 call 200261c <sparc_enable_interrupts>
2007740: 01 00 00 00 nop
2007744: 7f ff eb b2 call 200260c <sparc_disable_interrupts>
2007748: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200774c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
2007750: 80 a0 60 02 cmp %g1, 2
2007754: 02 80 00 1d be 20077c8 <_Event_Surrender+0xfc>
2007758: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200775c: 7f ff eb b0 call 200261c <sparc_enable_interrupts>
2007760: 33 04 01 ff sethi %hi(0x1007fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007764: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1007fff8 <RAM_END+0xdc7fff8>
2007768: 40 00 0a d8 call 200a2c8 <_Thread_Clear_state>
200776c: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2007770: 80 a6 00 03 cmp %i0, %g3
2007774: 32 bf ff e6 bne,a 200770c <_Event_Surrender+0x40>
2007778: c6 06 20 10 ld [ %i0 + 0x10 ], %g3
_Thread_Is_executing( the_thread ) &&
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200777c: c6 06 c0 00 ld [ %i3 ], %g3
2007780: 86 00 ff ff add %g3, -1, %g3
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2007784: 80 a0 e0 01 cmp %g3, 1
2007788: 38 bf ff e1 bgu,a 200770c <_Event_Surrender+0x40>
200778c: c6 06 20 10 ld [ %i0 + 0x10 ], %g3
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2007790: 80 a0 40 02 cmp %g1, %g2
2007794: 02 80 00 04 be 20077a4 <_Event_Surrender+0xd8>
2007798: 80 8f 60 02 btst 2, %i5
200779c: 02 80 00 09 be 20077c0 <_Event_Surrender+0xf4> <== NEVER TAKEN
20077a0: 01 00 00 00 nop
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20077a4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
20077a8: b2 2e 40 02 andn %i1, %g2, %i1
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((*sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
event->pending_events = _Event_sets_Clear(
20077ac: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
20077b0: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20077b4: c4 20 40 00 st %g2, [ %g1 ]
*sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20077b8: 82 10 20 03 mov 3, %g1
20077bc: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
20077c0: 7f ff eb 97 call 200261c <sparc_enable_interrupts>
20077c4: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
20077c8: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
20077cc: 7f ff eb 94 call 200261c <sparc_enable_interrupts>
20077d0: 33 04 01 ff sethi %hi(0x1007fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
20077d4: 40 00 0f 66 call 200b56c <_Watchdog_Remove>
20077d8: 90 06 20 48 add %i0, 0x48, %o0
20077dc: b2 16 63 f8 or %i1, 0x3f8, %i1
20077e0: 40 00 0a ba call 200a2c8 <_Thread_Clear_state>
20077e4: 81 e8 00 00 restore
020077e8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *arg
)
{
20077e8: 9d e3 bf 98 save %sp, -104, %sp
ISR_Level level;
Thread_blocking_operation_States *sync_state;
sync_state = arg;
the_thread = _Thread_Get( id, &location );
20077ec: 90 10 00 18 mov %i0, %o0
20077f0: 40 00 0b c7 call 200a70c <_Thread_Get>
20077f4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20077f8: c2 07 bf fc ld [ %fp + -4 ], %g1
20077fc: 80 a0 60 00 cmp %g1, 0
2007800: 12 80 00 15 bne 2007854 <_Event_Timeout+0x6c> <== NEVER TAKEN
2007804: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2007808: 7f ff eb 81 call 200260c <sparc_disable_interrupts>
200780c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007810: 03 00 80 73 sethi %hi(0x201cc00), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2007814: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 201cea0 <_Per_CPU_Information+0x10>
2007818: 80 a7 40 01 cmp %i5, %g1
200781c: 02 80 00 10 be 200785c <_Event_Timeout+0x74>
2007820: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
*sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2007824: 82 10 20 06 mov 6, %g1
2007828: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
200782c: 7f ff eb 7c call 200261c <sparc_enable_interrupts>
2007830: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007834: 90 10 00 1d mov %i5, %o0
2007838: 13 04 01 ff sethi %hi(0x1007fc00), %o1
200783c: 40 00 0a a3 call 200a2c8 <_Thread_Clear_state>
2007840: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1007fff8 <RAM_END+0xdc7fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2007844: 03 00 80 73 sethi %hi(0x201cc00), %g1
2007848: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level>
--level;
200784c: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
2007850: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
2007854: 81 c7 e0 08 ret
2007858: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
200785c: c2 06 40 00 ld [ %i1 ], %g1
2007860: 80 a0 60 01 cmp %g1, 1
2007864: 12 bf ff f1 bne 2007828 <_Event_Timeout+0x40>
2007868: 82 10 20 06 mov 6, %g1
*sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
200786c: 82 10 20 02 mov 2, %g1
2007870: 10 bf ff ed b 2007824 <_Event_Timeout+0x3c>
2007874: c2 26 40 00 st %g1, [ %i1 ]
0200d538 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200d538: 9d e3 bf 98 save %sp, -104, %sp
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200d53c: a2 06 60 04 add %i1, 4, %l1
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200d540: a0 10 00 18 mov %i0, %l0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200d544: 80 a6 40 11 cmp %i1, %l1
200d548: 18 80 00 85 bgu 200d75c <_Heap_Allocate_aligned_with_boundary+0x224>
200d54c: ea 06 20 10 ld [ %i0 + 0x10 ], %l5
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200d550: 80 a6 e0 00 cmp %i3, 0
200d554: 12 80 00 7c bne 200d744 <_Heap_Allocate_aligned_with_boundary+0x20c>
200d558: 80 a6 40 1b cmp %i1, %i3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200d55c: fa 04 20 08 ld [ %l0 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d560: 80 a4 00 1d cmp %l0, %i5
200d564: 02 80 00 18 be 200d5c4 <_Heap_Allocate_aligned_with_boundary+0x8c>
200d568: b8 10 20 00 clr %i4
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200d56c: ac 10 20 04 mov 4, %l6
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200d570: ae 05 60 07 add %l5, 7, %l7
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200d574: ac 25 80 19 sub %l6, %i1, %l6
200d578: 10 80 00 0b b 200d5a4 <_Heap_Allocate_aligned_with_boundary+0x6c>
200d57c: ec 27 bf fc st %l6, [ %fp + -4 ]
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
if ( alignment == 0 ) {
200d580: 12 80 00 18 bne 200d5e0 <_Heap_Allocate_aligned_with_boundary+0xa8>
200d584: b0 07 60 08 add %i5, 8, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200d588: 80 a6 20 00 cmp %i0, 0
200d58c: 12 80 00 4d bne 200d6c0 <_Heap_Allocate_aligned_with_boundary+0x188><== ALWAYS TAKEN
200d590: b8 07 20 01 inc %i4
break;
}
block = block->next;
200d594: fa 07 60 08 ld [ %i5 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d598: 80 a4 00 1d cmp %l0, %i5
200d59c: 22 80 00 0b be,a 200d5c8 <_Heap_Allocate_aligned_with_boundary+0x90>
200d5a0: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200d5a4: c2 07 60 04 ld [ %i5 + 4 ], %g1
200d5a8: 80 a4 40 01 cmp %l1, %g1
200d5ac: 0a bf ff f5 bcs 200d580 <_Heap_Allocate_aligned_with_boundary+0x48>
200d5b0: 80 a6 a0 00 cmp %i2, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200d5b4: fa 07 60 08 ld [ %i5 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d5b8: 80 a4 00 1d cmp %l0, %i5
200d5bc: 12 bf ff fa bne 200d5a4 <_Heap_Allocate_aligned_with_boundary+0x6c>
200d5c0: b8 07 20 01 inc %i4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200d5c4: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200d5c8: 80 a0 40 1c cmp %g1, %i4
200d5cc: 1a 80 00 03 bcc 200d5d8 <_Heap_Allocate_aligned_with_boundary+0xa0>
200d5d0: b0 10 20 00 clr %i0
stats->max_search = search_count;
200d5d4: f8 24 20 44 st %i4, [ %l0 + 0x44 ]
}
return (void *) alloc_begin;
200d5d8: 81 c7 e0 08 ret
200d5dc: 81 e8 00 00 restore
uintptr_t alignment,
uintptr_t boundary
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
200d5e0: e8 04 20 14 ld [ %l0 + 0x14 ], %l4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d5e4: a4 08 7f fe and %g1, -2, %l2
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200d5e8: c2 07 bf fc ld [ %fp + -4 ], %g1
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200d5ec: 84 25 c0 14 sub %l7, %l4, %g2
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200d5f0: a4 07 40 12 add %i5, %l2, %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d5f4: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200d5f8: b0 00 40 12 add %g1, %l2, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200d5fc: a4 00 80 12 add %g2, %l2, %l2
200d600: 40 00 2b f3 call 20185cc <.urem>
200d604: 90 10 00 18 mov %i0, %o0
200d608: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200d60c: 80 a4 80 18 cmp %l2, %i0
200d610: 1a 80 00 06 bcc 200d628 <_Heap_Allocate_aligned_with_boundary+0xf0>
200d614: a6 07 60 08 add %i5, 8, %l3
200d618: 90 10 00 12 mov %l2, %o0
200d61c: 40 00 2b ec call 20185cc <.urem>
200d620: 92 10 00 1a mov %i2, %o1
200d624: b0 24 80 08 sub %l2, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200d628: 80 a6 e0 00 cmp %i3, 0
200d62c: 02 80 00 37 be 200d708 <_Heap_Allocate_aligned_with_boundary+0x1d0>
200d630: 80 a4 c0 18 cmp %l3, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200d634: 86 06 00 19 add %i0, %i1, %g3
200d638: 92 10 00 1b mov %i3, %o1
200d63c: 90 10 00 03 mov %g3, %o0
200d640: 40 00 2b e3 call 20185cc <.urem>
200d644: c6 27 bf f8 st %g3, [ %fp + -8 ]
200d648: c6 07 bf f8 ld [ %fp + -8 ], %g3
200d64c: 90 20 c0 08 sub %g3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200d650: 80 a6 00 08 cmp %i0, %o0
200d654: 1a 80 00 2c bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d658: a4 04 c0 19 add %l3, %i1, %l2
200d65c: 80 a2 00 03 cmp %o0, %g3
200d660: 2a 80 00 12 bcs,a 200d6a8 <_Heap_Allocate_aligned_with_boundary+0x170>
200d664: 80 a4 80 08 cmp %l2, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200d668: 10 80 00 28 b 200d708 <_Heap_Allocate_aligned_with_boundary+0x1d0>
200d66c: 80 a4 c0 18 cmp %l3, %i0
200d670: 92 10 00 1a mov %i2, %o1
200d674: 40 00 2b d6 call 20185cc <.urem>
200d678: 90 10 00 18 mov %i0, %o0
200d67c: 92 10 00 1b mov %i3, %o1
200d680: b0 26 00 08 sub %i0, %o0, %i0
if ( boundary_line < boundary_floor ) {
return 0;
}
alloc_begin = boundary_line - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200d684: ac 06 00 19 add %i0, %i1, %l6
200d688: 40 00 2b d1 call 20185cc <.urem>
200d68c: 90 10 00 16 mov %l6, %o0
200d690: 90 25 80 08 sub %l6, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200d694: 80 a2 00 16 cmp %o0, %l6
200d698: 1a 80 00 1b bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d69c: 80 a6 00 08 cmp %i0, %o0
200d6a0: 1a 80 00 19 bcc 200d704 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d6a4: 80 a4 80 08 cmp %l2, %o0
if ( boundary_line < boundary_floor ) {
200d6a8: 08 bf ff f2 bleu 200d670 <_Heap_Allocate_aligned_with_boundary+0x138>
200d6ac: b0 22 00 19 sub %o0, %i1, %i0
return 0;
200d6b0: b0 10 20 00 clr %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200d6b4: 80 a6 20 00 cmp %i0, 0
200d6b8: 02 bf ff b7 be 200d594 <_Heap_Allocate_aligned_with_boundary+0x5c><== ALWAYS TAKEN
200d6bc: b8 07 20 01 inc %i4
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d6c0: c6 04 20 48 ld [ %l0 + 0x48 ], %g3
stats->searches += search_count;
200d6c4: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d6c8: 86 00 e0 01 inc %g3
stats->searches += search_count;
200d6cc: 84 00 80 1c add %g2, %i4, %g2
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d6d0: c6 24 20 48 st %g3, [ %l0 + 0x48 ]
stats->searches += search_count;
200d6d4: c4 24 20 4c st %g2, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200d6d8: 90 10 00 10 mov %l0, %o0
200d6dc: 92 10 00 1d mov %i5, %o1
200d6e0: 94 10 00 18 mov %i0, %o2
200d6e4: 7f ff ee 17 call 2008f40 <_Heap_Block_allocate>
200d6e8: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200d6ec: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200d6f0: 80 a0 40 1c cmp %g1, %i4
200d6f4: 2a bf ff b9 bcs,a 200d5d8 <_Heap_Allocate_aligned_with_boundary+0xa0>
200d6f8: f8 24 20 44 st %i4, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200d6fc: 81 c7 e0 08 ret
200d700: 81 e8 00 00 restore
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200d704: 80 a4 c0 18 cmp %l3, %i0
200d708: 18 bf ff ea bgu 200d6b0 <_Heap_Allocate_aligned_with_boundary+0x178>
200d70c: 82 10 3f f8 mov -8, %g1
200d710: 90 10 00 18 mov %i0, %o0
200d714: a4 20 40 1d sub %g1, %i5, %l2
200d718: 92 10 00 15 mov %l5, %o1
200d71c: 40 00 2b ac call 20185cc <.urem>
200d720: a4 04 80 18 add %l2, %i0, %l2
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200d724: 90 a4 80 08 subcc %l2, %o0, %o0
200d728: 02 bf ff 99 be 200d58c <_Heap_Allocate_aligned_with_boundary+0x54>
200d72c: 80 a6 20 00 cmp %i0, 0
200d730: 80 a2 00 14 cmp %o0, %l4
200d734: 1a bf ff 96 bcc 200d58c <_Heap_Allocate_aligned_with_boundary+0x54>
200d738: 80 a6 20 00 cmp %i0, 0
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
return 0;
200d73c: 10 bf ff de b 200d6b4 <_Heap_Allocate_aligned_with_boundary+0x17c>
200d740: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200d744: 18 80 00 06 bgu 200d75c <_Heap_Allocate_aligned_with_boundary+0x224>
200d748: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200d74c: 22 bf ff 84 be,a 200d55c <_Heap_Allocate_aligned_with_boundary+0x24>
200d750: b4 10 00 15 mov %l5, %i2
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200d754: 10 bf ff 83 b 200d560 <_Heap_Allocate_aligned_with_boundary+0x28>
200d758: fa 04 20 08 ld [ %l0 + 8 ], %i5
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
/* Integer overflow occured */
return NULL;
200d75c: 81 c7 e0 08 ret
200d760: 91 e8 20 00 restore %g0, 0, %o0
0200d770 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t unused __attribute__((unused))
)
{
200d770: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200d774: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200d778: c0 27 bf fc clr [ %fp + -4 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t unused __attribute__((unused))
)
{
200d77c: b8 10 00 18 mov %i0, %i4
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200d780: e2 06 20 20 ld [ %i0 + 0x20 ], %l1
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200d784: a0 06 40 1a add %i1, %i2, %l0
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200d788: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
200d78c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200d790: 80 a6 40 10 cmp %i1, %l0
200d794: 08 80 00 04 bleu 200d7a4 <_Heap_Extend+0x34>
200d798: f0 06 20 30 ld [ %i0 + 0x30 ], %i0
return 0;
200d79c: 81 c7 e0 08 ret
200d7a0: 91 e8 20 00 restore %g0, 0, %o0
}
extend_area_ok = _Heap_Get_first_and_last_block(
200d7a4: 90 10 00 19 mov %i1, %o0
200d7a8: 92 10 00 1a mov %i2, %o1
200d7ac: 94 10 00 12 mov %l2, %o2
200d7b0: 98 07 bf f8 add %fp, -8, %o4
200d7b4: 7f ff ed 78 call 2008d94 <_Heap_Get_first_and_last_block>
200d7b8: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200d7bc: 80 8a 20 ff btst 0xff, %o0
200d7c0: 02 bf ff f7 be 200d79c <_Heap_Extend+0x2c>
200d7c4: ba 10 00 11 mov %l1, %i5
200d7c8: aa 10 20 00 clr %l5
200d7cc: ac 10 20 00 clr %l6
200d7d0: a6 10 20 00 clr %l3
200d7d4: 10 80 00 10 b 200d814 <_Heap_Extend+0xa4>
200d7d8: a8 10 20 00 clr %l4
return 0;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200d7dc: 2a 80 00 02 bcs,a 200d7e4 <_Heap_Extend+0x74>
200d7e0: ac 10 00 1d mov %i5, %l6
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200d7e4: 80 a6 c0 19 cmp %i3, %i1
200d7e8: 22 80 00 1e be,a 200d860 <_Heap_Extend+0xf0>
200d7ec: e0 27 40 00 st %l0, [ %i5 ]
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200d7f0: 80 a6 40 1b cmp %i1, %i3
200d7f4: 38 80 00 02 bgu,a 200d7fc <_Heap_Extend+0x8c>
200d7f8: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d7fc: fa 02 20 04 ld [ %o0 + 4 ], %i5
200d800: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d804: ba 02 00 1d add %o0, %i5, %i5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200d808: 80 a4 40 1d cmp %l1, %i5
200d80c: 22 80 00 1c be,a 200d87c <_Heap_Extend+0x10c>
200d810: c2 07 20 18 ld [ %i4 + 0x18 ], %g1
return 0;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200d814: 80 a7 40 11 cmp %i5, %l1
200d818: 22 80 00 03 be,a 200d824 <_Heap_Extend+0xb4>
200d81c: f4 07 20 18 ld [ %i4 + 0x18 ], %i2
200d820: b4 10 00 1d mov %i5, %i2
uintptr_t const sub_area_end = start_block->prev_size;
200d824: f6 07 40 00 ld [ %i5 ], %i3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d828: 92 10 00 12 mov %l2, %o1
200d82c: 40 00 2c 21 call 20188b0 <.urem>
200d830: 90 10 00 1b mov %i3, %o0
200d834: 82 06 ff f8 add %i3, -8, %g1
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200d838: 80 a6 80 10 cmp %i2, %l0
200d83c: 0a 80 00 64 bcs 200d9cc <_Heap_Extend+0x25c>
200d840: 90 20 40 08 sub %g1, %o0, %o0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return 0;
}
if ( extend_area_end == sub_area_begin ) {
200d844: 80 a6 80 10 cmp %i2, %l0
200d848: 12 bf ff e5 bne 200d7dc <_Heap_Extend+0x6c>
200d84c: 80 a4 00 1b cmp %l0, %i3
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200d850: 80 a6 c0 19 cmp %i3, %i1
200d854: 12 bf ff e7 bne 200d7f0 <_Heap_Extend+0x80> <== ALWAYS TAKEN
200d858: a8 10 00 1d mov %i5, %l4
start_block->prev_size = extend_area_end;
200d85c: e0 27 40 00 st %l0, [ %i5 ] <== NOT EXECUTED
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d860: fa 02 20 04 ld [ %o0 + 4 ], %i5
200d864: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d868: ba 02 00 1d add %o0, %i5, %i5
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200d86c: 80 a4 40 1d cmp %l1, %i5
200d870: 12 bf ff e9 bne 200d814 <_Heap_Extend+0xa4> <== NEVER TAKEN
200d874: a6 10 00 08 mov %o0, %l3
if ( extend_area_begin < heap->area_begin ) {
200d878: c2 07 20 18 ld [ %i4 + 0x18 ], %g1
200d87c: 80 a6 40 01 cmp %i1, %g1
200d880: 3a 80 00 4e bcc,a 200d9b8 <_Heap_Extend+0x248>
200d884: c2 07 20 1c ld [ %i4 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200d888: f2 27 20 18 st %i1, [ %i4 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200d88c: c2 07 bf f8 ld [ %fp + -8 ], %g1
200d890: c4 07 bf fc ld [ %fp + -4 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200d894: c8 07 20 20 ld [ %i4 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200d898: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200d89c: e0 20 40 00 st %l0, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200d8a0: ba 10 e0 01 or %g3, 1, %i5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200d8a4: fa 20 60 04 st %i5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200d8a8: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200d8ac: 80 a1 00 01 cmp %g4, %g1
200d8b0: 08 80 00 3c bleu 200d9a0 <_Heap_Extend+0x230>
200d8b4: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200d8b8: c2 27 20 20 st %g1, [ %i4 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200d8bc: 80 a5 20 00 cmp %l4, 0
200d8c0: 02 80 00 47 be 200d9dc <_Heap_Extend+0x26c>
200d8c4: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200d8c8: fa 07 20 10 ld [ %i4 + 0x10 ], %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200d8cc: 92 10 00 1d mov %i5, %o1
200d8d0: 40 00 2b f8 call 20188b0 <.urem>
200d8d4: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200d8d8: 80 a2 20 00 cmp %o0, 0
200d8dc: 02 80 00 04 be 200d8ec <_Heap_Extend+0x17c>
200d8e0: c4 05 00 00 ld [ %l4 ], %g2
return value - remainder + alignment;
200d8e4: b2 06 40 1d add %i1, %i5, %i1
200d8e8: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200d8ec: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200d8f0: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200d8f4: 84 25 00 01 sub %l4, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200d8f8: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200d8fc: 90 10 00 1c mov %i4, %o0
200d900: 92 10 00 01 mov %g1, %o1
200d904: 7f ff ff 85 call 200d718 <_Heap_Free_block>
200d908: c4 26 7f fc st %g2, [ %i1 + -4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200d90c: 80 a4 e0 00 cmp %l3, 0
200d910: 02 80 00 3a be 200d9f8 <_Heap_Extend+0x288>
200d914: a0 04 3f f8 add %l0, -8, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d918: d2 07 20 10 ld [ %i4 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200d91c: a0 24 00 13 sub %l0, %l3, %l0
200d920: 40 00 2b e4 call 20188b0 <.urem>
200d924: 90 10 00 10 mov %l0, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200d928: c2 04 e0 04 ld [ %l3 + 4 ], %g1
200d92c: a0 24 00 08 sub %l0, %o0, %l0
200d930: 82 20 40 10 sub %g1, %l0, %g1
| HEAP_PREV_BLOCK_USED;
200d934: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d938: 84 04 00 13 add %l0, %l3, %g2
200d93c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d940: c2 04 e0 04 ld [ %l3 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200d944: 90 10 00 1c mov %i4, %o0
200d948: 82 08 60 01 and %g1, 1, %g1
200d94c: 92 10 00 13 mov %l3, %o1
block->size_and_flag = size | flag;
200d950: a0 14 00 01 or %l0, %g1, %l0
200d954: 7f ff ff 71 call 200d718 <_Heap_Free_block>
200d958: e0 24 e0 04 st %l0, [ %l3 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d95c: 80 a4 e0 00 cmp %l3, 0
200d960: 02 80 00 33 be 200da2c <_Heap_Extend+0x2bc>
200d964: 80 a5 20 00 cmp %l4, 0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200d968: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d96c: fa 07 20 20 ld [ %i4 + 0x20 ], %i5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d970: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200d974: c4 07 20 2c ld [ %i4 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d978: c6 07 20 30 ld [ %i4 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d97c: ba 27 40 01 sub %i5, %g1, %i5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d980: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
200d984: 88 17 40 04 or %i5, %g4, %g4
200d988: c8 20 60 04 st %g4, [ %g1 + 4 ]
200d98c: b0 20 c0 18 sub %g3, %i0, %i0
/* Statistics */
stats->size += extended_size;
200d990: 82 00 80 18 add %g2, %i0, %g1
200d994: c2 27 20 2c st %g1, [ %i4 + 0x2c ]
return extended_size;
}
200d998: 81 c7 e0 08 ret
200d99c: 81 e8 00 00 restore
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200d9a0: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
200d9a4: 80 a0 40 02 cmp %g1, %g2
200d9a8: 2a bf ff c5 bcs,a 200d8bc <_Heap_Extend+0x14c>
200d9ac: c4 27 20 24 st %g2, [ %i4 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200d9b0: 10 bf ff c4 b 200d8c0 <_Heap_Extend+0x150>
200d9b4: 80 a5 20 00 cmp %l4, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200d9b8: 80 a4 00 01 cmp %l0, %g1
200d9bc: 38 bf ff b4 bgu,a 200d88c <_Heap_Extend+0x11c>
200d9c0: e0 27 20 1c st %l0, [ %i4 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200d9c4: 10 bf ff b3 b 200d890 <_Heap_Extend+0x120>
200d9c8: c2 07 bf f8 ld [ %fp + -8 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200d9cc: 80 a6 40 1b cmp %i1, %i3
200d9d0: 1a bf ff 9e bcc 200d848 <_Heap_Extend+0xd8>
200d9d4: 80 a6 80 10 cmp %i2, %l0
200d9d8: 30 bf ff 71 b,a 200d79c <_Heap_Extend+0x2c>
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200d9dc: 80 a5 a0 00 cmp %l6, 0
200d9e0: 02 bf ff cc be 200d910 <_Heap_Extend+0x1a0>
200d9e4: 80 a4 e0 00 cmp %l3, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200d9e8: ac 25 80 02 sub %l6, %g2, %l6
200d9ec: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200d9f0: 10 bf ff c8 b 200d910 <_Heap_Extend+0x1a0>
200d9f4: ec 20 a0 04 st %l6, [ %g2 + 4 ]
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200d9f8: 80 a5 60 00 cmp %l5, 0
200d9fc: 02 bf ff d8 be 200d95c <_Heap_Extend+0x1ec>
200da00: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200da04: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200da08: c2 07 bf fc ld [ %fp + -4 ], %g1
200da0c: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200da10: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200da14: 84 10 80 03 or %g2, %g3, %g2
200da18: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200da1c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200da20: 84 10 a0 01 or %g2, 1, %g2
200da24: 10 bf ff ce b 200d95c <_Heap_Extend+0x1ec>
200da28: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200da2c: 32 bf ff d0 bne,a 200d96c <_Heap_Extend+0x1fc>
200da30: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200da34: d2 07 bf f8 ld [ %fp + -8 ], %o1
200da38: 7f ff ff 38 call 200d718 <_Heap_Free_block>
200da3c: 90 10 00 1c mov %i4, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200da40: 10 bf ff cb b 200d96c <_Heap_Extend+0x1fc>
200da44: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
0200d764 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200d764: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200d768: 80 a6 60 00 cmp %i1, 0
200d76c: 02 80 00 3c be 200d85c <_Heap_Free+0xf8>
200d770: 82 10 20 01 mov 1, %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d774: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200d778: 40 00 2b 95 call 20185cc <.urem>
200d77c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200d780: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d784: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200d788: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d78c: 80 a2 00 02 cmp %o0, %g2
200d790: 0a 80 00 30 bcs 200d850 <_Heap_Free+0xec>
200d794: 82 10 20 00 clr %g1
200d798: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
200d79c: 80 a2 00 04 cmp %o0, %g4
200d7a0: 38 80 00 2d bgu,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN
200d7a4: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d7a8: f6 02 20 04 ld [ %o0 + 4 ], %i3
200d7ac: ba 0e ff fe and %i3, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d7b0: 86 02 00 1d add %o0, %i5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d7b4: 80 a0 80 03 cmp %g2, %g3
200d7b8: 38 80 00 27 bgu,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN
200d7bc: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
200d7c0: 80 a1 00 03 cmp %g4, %g3
200d7c4: 2a 80 00 24 bcs,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN
200d7c8: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d7cc: f8 00 e0 04 ld [ %g3 + 4 ], %i4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200d7d0: 80 8f 20 01 btst 1, %i4
200d7d4: 02 80 00 1f be 200d850 <_Heap_Free+0xec> <== NEVER TAKEN
200d7d8: 80 a1 00 03 cmp %g4, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200d7dc: 02 80 00 23 be 200d868 <_Heap_Free+0x104>
200d7e0: b8 0f 3f fe and %i4, -2, %i4
200d7e4: 82 00 c0 1c add %g3, %i4, %g1
200d7e8: c2 00 60 04 ld [ %g1 + 4 ], %g1
200d7ec: 80 88 60 01 btst 1, %g1
200d7f0: 12 80 00 1f bne 200d86c <_Heap_Free+0x108>
200d7f4: 80 8e e0 01 btst 1, %i3
if ( !_Heap_Is_prev_used( block ) ) {
200d7f8: 02 80 00 20 be 200d878 <_Heap_Free+0x114>
200d7fc: b2 10 20 01 mov 1, %i1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200d800: c4 00 e0 08 ld [ %g3 + 8 ], %g2
Heap_Block *prev = old_block->prev;
200d804: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
new_block->next = next;
200d808: c4 22 20 08 st %g2, [ %o0 + 8 ]
new_block->prev = prev;
200d80c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200d810: b8 07 00 1d add %i4, %i5, %i4
next->prev = new_block;
200d814: d0 20 a0 0c st %o0, [ %g2 + 0xc ]
prev->next = new_block;
200d818: d0 20 60 08 st %o0, [ %g1 + 8 ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d81c: 84 17 20 01 or %i4, 1, %g2
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200d820: f8 22 00 1c st %i4, [ %o0 + %i4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d824: c4 22 20 04 st %g2, [ %o0 + 4 ]
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200d828: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200d82c: c4 06 20 40 ld [ %i0 + 0x40 ], %g2
++stats->frees;
stats->free_size += block_size;
200d830: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200d834: 82 00 60 01 inc %g1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200d838: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
stats->free_size += block_size;
200d83c: ba 00 c0 1d add %g3, %i5, %i5
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200d840: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200d844: c4 26 20 40 st %g2, [ %i0 + 0x40 ]
++stats->frees;
stats->free_size += block_size;
200d848: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
return( true );
200d84c: 82 10 20 01 mov 1, %g1
200d850: b0 08 60 ff and %g1, 0xff, %i0
200d854: 81 c7 e0 08 ret
200d858: 81 e8 00 00 restore
200d85c: b0 08 60 ff and %g1, 0xff, %i0
200d860: 81 c7 e0 08 ret
200d864: 81 e8 00 00 restore
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200d868: 80 8e e0 01 btst 1, %i3
200d86c: 32 80 00 1e bne,a 200d8e4 <_Heap_Free+0x180>
200d870: c4 06 20 08 ld [ %i0 + 8 ], %g2
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200d874: b2 10 20 00 clr %i1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
uintptr_t const prev_size = block->prev_size;
200d878: f4 02 00 00 ld [ %o0 ], %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d87c: b6 22 00 1a sub %o0, %i2, %i3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d880: 80 a0 80 1b cmp %g2, %i3
200d884: 18 bf ff f3 bgu 200d850 <_Heap_Free+0xec> <== NEVER TAKEN
200d888: 82 10 20 00 clr %g1
200d88c: 80 a1 00 1b cmp %g4, %i3
200d890: 2a bf ff f1 bcs,a 200d854 <_Heap_Free+0xf0> <== NEVER TAKEN
200d894: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d898: c4 06 e0 04 ld [ %i3 + 4 ], %g2
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200d89c: 80 88 a0 01 btst 1, %g2
200d8a0: 02 bf ff ec be 200d850 <_Heap_Free+0xec> <== NEVER TAKEN
200d8a4: 80 8e 60 ff btst 0xff, %i1
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200d8a8: 22 80 00 21 be,a 200d92c <_Heap_Free+0x1c8>
200d8ac: b4 07 40 1a add %i5, %i2, %i2
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200d8b0: c2 00 e0 08 ld [ %g3 + 8 ], %g1
Heap_Block *prev = block->prev;
200d8b4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200d8b8: c6 06 20 38 ld [ %i0 + 0x38 ], %g3
prev->next = next;
200d8bc: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200d8c0: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200d8c4: 82 00 ff ff add %g3, -1, %g1
200d8c8: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200d8cc: b8 07 40 1c add %i5, %i4, %i4
200d8d0: b4 07 00 1a add %i4, %i2, %i2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d8d4: 82 16 a0 01 or %i2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200d8d8: f4 26 c0 1a st %i2, [ %i3 + %i2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d8dc: 10 bf ff d3 b 200d828 <_Heap_Free+0xc4>
200d8e0: c2 26 e0 04 st %g1, [ %i3 + 4 ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200d8e4: 82 17 60 01 or %i5, 1, %g1
200d8e8: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d8ec: c8 00 e0 04 ld [ %g3 + 4 ], %g4
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200d8f0: f0 22 20 0c st %i0, [ %o0 + 0xc ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d8f4: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200d8f8: c4 22 20 08 st %g2, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200d8fc: d0 20 a0 0c st %o0, [ %g2 + 0xc ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d900: 84 09 3f fe and %g4, -2, %g2
next_block->prev_size = block_size;
200d904: fa 22 00 1d st %i5, [ %o0 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d908: c4 20 e0 04 st %g2, [ %g3 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200d90c: c4 06 20 3c ld [ %i0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200d910: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200d914: d0 26 20 08 st %o0, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200d918: 80 a0 40 02 cmp %g1, %g2
200d91c: 08 bf ff c3 bleu 200d828 <_Heap_Free+0xc4>
200d920: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200d924: 10 bf ff c1 b 200d828 <_Heap_Free+0xc4>
200d928: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200d92c: 82 16 a0 01 or %i2, 1, %g1
200d930: c2 26 e0 04 st %g1, [ %i3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d934: c2 00 e0 04 ld [ %g3 + 4 ], %g1
next_block->prev_size = size;
200d938: f4 22 00 1d st %i2, [ %o0 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200d93c: 82 08 7f fe and %g1, -2, %g1
200d940: 10 bf ff ba b 200d828 <_Heap_Free+0xc4>
200d944: c2 20 e0 04 st %g1, [ %g3 + 4 ]
02012594 <_Heap_Get_free_information>:
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2012594: c2 02 20 08 ld [ %o0 + 8 ], %g1
)
{
Heap_Block *the_block;
Heap_Block *const tail = _Heap_Free_list_tail(the_heap);
info->number = 0;
2012598: c0 22 40 00 clr [ %o1 ]
info->largest = 0;
201259c: c0 22 60 04 clr [ %o1 + 4 ]
info->total = 0;
20125a0: c0 22 60 08 clr [ %o1 + 8 ]
for(the_block = _Heap_Free_list_first(the_heap);
20125a4: 88 10 20 01 mov 1, %g4
20125a8: 9a 10 20 00 clr %o5
20125ac: 80 a2 00 01 cmp %o0, %g1
20125b0: 12 80 00 04 bne 20125c0 <_Heap_Get_free_information+0x2c> <== ALWAYS TAKEN
20125b4: 86 10 20 00 clr %g3
20125b8: 30 80 00 10 b,a 20125f8 <_Heap_Get_free_information+0x64><== NOT EXECUTED
20125bc: 88 10 00 0c mov %o4, %g4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20125c0: c4 00 60 04 ld [ %g1 + 4 ], %g2
20125c4: 98 01 20 01 add %g4, 1, %o4
20125c8: 84 08 bf fe and %g2, -2, %g2
/* As we always coalesce free blocks, prev block must have been used. */
_HAssert(_Heap_Is_prev_used(the_block));
info->number++;
info->total += the_size;
if ( info->largest < the_size )
20125cc: 80 a0 80 0d cmp %g2, %o5
20125d0: 08 80 00 03 bleu 20125dc <_Heap_Get_free_information+0x48>
20125d4: 86 00 c0 02 add %g3, %g2, %g3
info->largest = the_size;
20125d8: c4 22 60 04 st %g2, [ %o1 + 4 ]
info->largest = 0;
info->total = 0;
for(the_block = _Heap_Free_list_first(the_heap);
the_block != tail;
the_block = the_block->next)
20125dc: c2 00 60 08 ld [ %g1 + 8 ], %g1
info->number = 0;
info->largest = 0;
info->total = 0;
for(the_block = _Heap_Free_list_first(the_heap);
20125e0: 80 a2 00 01 cmp %o0, %g1
20125e4: 32 bf ff f6 bne,a 20125bc <_Heap_Get_free_information+0x28>
20125e8: da 02 60 04 ld [ %o1 + 4 ], %o5
20125ec: c8 22 40 00 st %g4, [ %o1 ]
20125f0: 81 c3 e0 08 retl
20125f4: c6 22 60 08 st %g3, [ %o1 + 8 ]
20125f8: 81 c3 e0 08 retl <== NOT EXECUTED
0200acc4 <_Heap_Greedy_allocate>:
Heap_Block *_Heap_Greedy_allocate(
Heap_Control *heap,
const uintptr_t *block_sizes,
size_t block_count
)
{
200acc4: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *allocated_blocks = NULL;
Heap_Block *blocks = NULL;
Heap_Block *current;
size_t i;
for (i = 0; i < block_count; ++i) {
200acc8: 80 a6 a0 00 cmp %i2, 0
200accc: 02 80 00 35 be 200ada0 <_Heap_Greedy_allocate+0xdc>
200acd0: b8 10 00 18 mov %i0, %i4
200acd4: ba 10 20 00 clr %i5
200acd8: b6 10 20 00 clr %i3
#include "config.h"
#endif
#include <rtems/score/heap.h>
Heap_Block *_Heap_Greedy_allocate(
200acdc: 83 2f 60 02 sll %i5, 2, %g1
* @brief See _Heap_Allocate_aligned_with_boundary() with alignment and
* boundary equals zero.
*/
RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size )
{
return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 );
200ace0: d2 06 40 01 ld [ %i1 + %g1 ], %o1
200ace4: 94 10 20 00 clr %o2
200ace8: 96 10 20 00 clr %o3
200acec: 40 00 1d 9e call 2012364 <_Heap_Allocate_aligned_with_boundary>
200acf0: 90 10 00 1c mov %i4, %o0
size_t i;
for (i = 0; i < block_count; ++i) {
void *next = _Heap_Allocate( heap, block_sizes [i] );
if ( next != NULL ) {
200acf4: 82 92 20 00 orcc %o0, 0, %g1
200acf8: 22 80 00 09 be,a 200ad1c <_Heap_Greedy_allocate+0x58> <== NEVER TAKEN
200acfc: ba 07 60 01 inc %i5 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ad00: d2 07 20 10 ld [ %i4 + 0x10 ], %o1
200ad04: 40 00 49 b2 call 201d3cc <.urem>
200ad08: b0 00 7f f8 add %g1, -8, %i0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200ad0c: 90 26 00 08 sub %i0, %o0, %o0
Heap_Block *next_block = _Heap_Block_of_alloc_area(
(uintptr_t) next,
heap->page_size
);
next_block->next = allocated_blocks;
200ad10: f6 22 20 08 st %i3, [ %o0 + 8 ]
200ad14: b6 10 00 08 mov %o0, %i3
Heap_Block *allocated_blocks = NULL;
Heap_Block *blocks = NULL;
Heap_Block *current;
size_t i;
for (i = 0; i < block_count; ++i) {
200ad18: ba 07 60 01 inc %i5
200ad1c: 80 a7 40 1a cmp %i5, %i2
200ad20: 12 bf ff f0 bne 200ace0 <_Heap_Greedy_allocate+0x1c>
200ad24: 83 2f 60 02 sll %i5, 2, %g1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200ad28: fa 07 20 08 ld [ %i4 + 8 ], %i5
next_block->next = allocated_blocks;
allocated_blocks = next_block;
}
}
while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) {
200ad2c: 80 a7 00 1d cmp %i4, %i5
200ad30: 02 80 00 17 be 200ad8c <_Heap_Greedy_allocate+0xc8> <== NEVER TAKEN
200ad34: b0 10 20 00 clr %i0
200ad38: 10 80 00 03 b 200ad44 <_Heap_Greedy_allocate+0x80>
200ad3c: b4 10 20 00 clr %i2
200ad40: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200ad44: d6 07 60 04 ld [ %i5 + 4 ], %o3
_Heap_Block_allocate(
200ad48: 92 10 00 1d mov %i5, %o1
200ad4c: 96 0a ff fe and %o3, -2, %o3
200ad50: 94 07 60 08 add %i5, 8, %o2
200ad54: 90 10 00 1c mov %i4, %o0
200ad58: 40 00 00 e0 call 200b0d8 <_Heap_Block_allocate>
200ad5c: 96 02 ff f8 add %o3, -8, %o3
current,
_Heap_Alloc_area_of_block( current ),
_Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE
);
current->next = blocks;
200ad60: f4 27 60 08 st %i2, [ %i5 + 8 ]
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200ad64: c2 07 20 08 ld [ %i4 + 8 ], %g1
next_block->next = allocated_blocks;
allocated_blocks = next_block;
}
}
while ( (current = _Heap_Free_list_first( heap )) != free_list_tail ) {
200ad68: 80 a7 00 01 cmp %i4, %g1
200ad6c: 12 bf ff f5 bne 200ad40 <_Heap_Greedy_allocate+0x7c>
200ad70: b4 10 00 1d mov %i5, %i2
200ad74: 10 80 00 06 b 200ad8c <_Heap_Greedy_allocate+0xc8>
200ad78: b0 10 00 1d mov %i5, %i0
}
while ( allocated_blocks != NULL ) {
current = allocated_blocks;
allocated_blocks = allocated_blocks->next;
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
200ad7c: 92 06 e0 08 add %i3, 8, %o1
200ad80: 90 10 00 1c mov %i4, %o0
200ad84: 40 00 1e 03 call 2012590 <_Heap_Free>
200ad88: b6 10 00 1a mov %i2, %i3
current->next = blocks;
blocks = current;
}
while ( allocated_blocks != NULL ) {
200ad8c: 80 a6 e0 00 cmp %i3, 0
200ad90: 32 bf ff fb bne,a 200ad7c <_Heap_Greedy_allocate+0xb8>
200ad94: f4 06 e0 08 ld [ %i3 + 8 ], %i2
allocated_blocks = allocated_blocks->next;
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
}
return blocks;
}
200ad98: 81 c7 e0 08 ret
200ad9c: 81 e8 00 00 restore
const uintptr_t *block_sizes,
size_t block_count
)
{
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *allocated_blocks = NULL;
200ada0: 10 bf ff e2 b 200ad28 <_Heap_Greedy_allocate+0x64>
200ada4: b6 10 20 00 clr %i3
0200ada8 <_Heap_Greedy_free>:
void _Heap_Greedy_free(
Heap_Control *heap,
Heap_Block *blocks
)
{
200ada8: 9d e3 bf a0 save %sp, -96, %sp
while ( blocks != NULL ) {
200adac: 80 a6 60 00 cmp %i1, 0
200adb0: 02 80 00 09 be 200add4 <_Heap_Greedy_free+0x2c> <== NEVER TAKEN
200adb4: 01 00 00 00 nop
Heap_Block *current = blocks;
blocks = blocks->next;
200adb8: fa 06 60 08 ld [ %i1 + 8 ], %i5
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
200adbc: 92 06 60 08 add %i1, 8, %o1
200adc0: 40 00 1d f4 call 2012590 <_Heap_Free>
200adc4: 90 10 00 18 mov %i0, %o0
void _Heap_Greedy_free(
Heap_Control *heap,
Heap_Block *blocks
)
{
while ( blocks != NULL ) {
200adc8: b2 97 60 00 orcc %i5, 0, %i1
200adcc: 32 bf ff fc bne,a 200adbc <_Heap_Greedy_free+0x14>
200add0: fa 06 60 08 ld [ %i1 + 8 ], %i5
200add4: 81 c7 e0 08 ret
200add8: 81 e8 00 00 restore
02012660 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
2012660: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
2012664: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *end = heap->last_block;
2012668: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
bool stop = false;
while ( !stop && current != end ) {
201266c: 80 a0 40 1c cmp %g1, %i4
2012670: 32 80 00 08 bne,a 2012690 <_Heap_Iterate+0x30> <== ALWAYS TAKEN
2012674: d2 00 60 04 ld [ %g1 + 4 ], %o1
2012678: 30 80 00 10 b,a 20126b8 <_Heap_Iterate+0x58> <== NOT EXECUTED
201267c: 90 1a 20 01 xor %o0, 1, %o0
2012680: 80 8a 20 ff btst 0xff, %o0
2012684: 02 80 00 0d be 20126b8 <_Heap_Iterate+0x58> <== NEVER TAKEN
2012688: 01 00 00 00 nop
201268c: d2 00 60 04 ld [ %g1 + 4 ], %o1
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
2012690: 90 10 00 01 mov %g1, %o0
2012694: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2012698: ba 00 40 09 add %g1, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
201269c: d4 07 60 04 ld [ %i5 + 4 ], %o2
20126a0: 96 10 00 1a mov %i2, %o3
20126a4: 9f c6 40 00 call %i1
20126a8: 94 0a a0 01 and %o2, 1, %o2
{
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
20126ac: 80 a7 00 1d cmp %i4, %i5
20126b0: 12 bf ff f3 bne 201267c <_Heap_Iterate+0x1c>
20126b4: 82 10 00 1d mov %i5, %g1
20126b8: 81 c7 e0 08 ret
20126bc: 81 e8 00 00 restore
0200da70 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
200da70: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200da74: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200da78: 40 00 2a d5 call 20185cc <.urem>
200da7c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200da80: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200da84: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200da88: 90 20 80 08 sub %g2, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200da8c: 80 a2 00 01 cmp %o0, %g1
200da90: 0a 80 00 16 bcs 200dae8 <_Heap_Size_of_alloc_area+0x78>
200da94: 84 10 20 00 clr %g2
200da98: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200da9c: 80 a2 00 03 cmp %o0, %g3
200daa0: 18 80 00 13 bgu 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200daa4: b0 08 a0 ff and %g2, 0xff, %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200daa8: c8 02 20 04 ld [ %o0 + 4 ], %g4
200daac: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200dab0: 90 02 00 04 add %o0, %g4, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200dab4: 80 a0 40 08 cmp %g1, %o0
200dab8: 18 80 00 0d bgu 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dabc: 01 00 00 00 nop
200dac0: 80 a0 c0 08 cmp %g3, %o0
200dac4: 0a 80 00 0a bcs 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dac8: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dacc: c2 02 20 04 ld [ %o0 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
200dad0: 80 88 60 01 btst 1, %g1
200dad4: 02 80 00 06 be 200daec <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dad8: 90 22 00 19 sub %o0, %i1, %o0
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
200dadc: 84 10 20 01 mov 1, %g2
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
200dae0: 90 02 20 04 add %o0, 4, %o0
200dae4: d0 26 80 00 st %o0, [ %i2 ]
200dae8: b0 08 a0 ff and %g2, 0xff, %i0
200daec: 81 c7 e0 08 ret
200daf0: 81 e8 00 00 restore
02009d10 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2009d10: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const page_size = heap->page_size;
2009d14: f6 06 20 10 ld [ %i0 + 0x10 ], %i3
uintptr_t const min_block_size = heap->min_block_size;
2009d18: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
2009d1c: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009d20: 80 a6 a0 00 cmp %i2, 0
2009d24: 02 80 00 0c be 2009d54 <_Heap_Walk+0x44>
2009d28: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009d2c: 03 00 80 7c sethi %hi(0x201f000), %g1
2009d30: c4 00 63 8c ld [ %g1 + 0x38c ], %g2 ! 201f38c <_System_state_Current>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009d34: 07 00 80 27 sethi %hi(0x2009c00), %g3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
2009d38: 82 10 20 01 mov 1, %g1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009d3c: 80 a0 a0 03 cmp %g2, 3
2009d40: 02 80 00 0c be 2009d70 <_Heap_Walk+0x60> <== ALWAYS TAKEN
2009d44: ae 10 e0 ac or %g3, 0xac, %l7
2009d48: b0 08 60 ff and %g1, 0xff, %i0
2009d4c: 81 c7 e0 08 ret
2009d50: 81 e8 00 00 restore
2009d54: 03 00 80 7c sethi %hi(0x201f000), %g1
2009d58: c4 00 63 8c ld [ %g1 + 0x38c ], %g2 ! 201f38c <_System_state_Current>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009d5c: 07 00 80 27 sethi %hi(0x2009c00), %g3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
2009d60: 82 10 20 01 mov 1, %g1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009d64: 80 a0 a0 03 cmp %g2, 3
2009d68: 12 bf ff f8 bne 2009d48 <_Heap_Walk+0x38>
2009d6c: ae 10 e0 a4 or %g3, 0xa4, %l7
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2009d70: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2009d74: c8 06 20 1c ld [ %i0 + 0x1c ], %g4
2009d78: c4 06 20 08 ld [ %i0 + 8 ], %g2
2009d7c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009d80: 90 10 00 19 mov %i1, %o0
2009d84: c8 23 a0 5c st %g4, [ %sp + 0x5c ]
2009d88: f8 23 a0 60 st %i4, [ %sp + 0x60 ]
2009d8c: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
2009d90: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2009d94: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2009d98: 92 10 20 00 clr %o1
2009d9c: 96 10 00 1b mov %i3, %o3
2009da0: 15 00 80 6f sethi %hi(0x201bc00), %o2
2009da4: 98 10 00 10 mov %l0, %o4
2009da8: 9f c5 c0 00 call %l7
2009dac: 94 12 a3 38 or %o2, 0x338, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2009db0: 80 a6 e0 00 cmp %i3, 0
2009db4: 02 80 00 2a be 2009e5c <_Heap_Walk+0x14c>
2009db8: 80 8e e0 07 btst 7, %i3
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2009dbc: 12 80 00 2f bne 2009e78 <_Heap_Walk+0x168>
2009dc0: 90 10 00 10 mov %l0, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009dc4: 7f ff df 6b call 2001b70 <.urem>
2009dc8: 92 10 00 1b mov %i3, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2009dcc: 80 a2 20 00 cmp %o0, 0
2009dd0: 12 80 00 32 bne 2009e98 <_Heap_Walk+0x188>
2009dd4: 90 07 20 08 add %i4, 8, %o0
2009dd8: 7f ff df 66 call 2001b70 <.urem>
2009ddc: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2009de0: 80 a2 20 00 cmp %o0, 0
2009de4: 32 80 00 35 bne,a 2009eb8 <_Heap_Walk+0x1a8>
2009de8: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009dec: ec 07 20 04 ld [ %i4 + 4 ], %l6
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2009df0: b4 8d a0 01 andcc %l6, 1, %i2
2009df4: 22 80 00 38 be,a 2009ed4 <_Heap_Walk+0x1c4>
2009df8: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009dfc: c2 04 60 04 ld [ %l1 + 4 ], %g1
2009e00: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2009e04: 82 04 40 01 add %l1, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009e08: fa 00 60 04 ld [ %g1 + 4 ], %i5
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
2009e0c: 80 8f 60 01 btst 1, %i5
2009e10: 02 80 00 0c be 2009e40 <_Heap_Walk+0x130>
2009e14: 80 a7 00 01 cmp %i4, %g1
);
return false;
}
if (
2009e18: 02 80 00 35 be 2009eec <_Heap_Walk+0x1dc>
2009e1c: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2009e20: 92 10 20 01 mov 1, %o1
2009e24: 15 00 80 70 sethi %hi(0x201c000), %o2
2009e28: 9f c5 c0 00 call %l7
2009e2c: 94 12 a0 b0 or %o2, 0xb0, %o2 ! 201c0b0 <__log2table+0x2d8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009e30: 82 10 20 00 clr %g1
2009e34: b0 08 60 ff and %g1, 0xff, %i0
2009e38: 81 c7 e0 08 ret
2009e3c: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
2009e40: 90 10 00 19 mov %i1, %o0
2009e44: 92 10 20 01 mov 1, %o1
2009e48: 15 00 80 70 sethi %hi(0x201c000), %o2
2009e4c: 9f c5 c0 00 call %l7
2009e50: 94 12 a0 98 or %o2, 0x98, %o2 ! 201c098 <__log2table+0x2c0>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009e54: 10 bf ff f8 b 2009e34 <_Heap_Walk+0x124>
2009e58: 82 10 20 00 clr %g1
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2009e5c: 90 10 00 19 mov %i1, %o0
2009e60: 92 10 20 01 mov 1, %o1
2009e64: 15 00 80 6f sethi %hi(0x201bc00), %o2
2009e68: 9f c5 c0 00 call %l7
2009e6c: 94 12 a3 d0 or %o2, 0x3d0, %o2 ! 201bfd0 <__log2table+0x1f8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009e70: 10 bf ff f1 b 2009e34 <_Heap_Walk+0x124>
2009e74: 82 10 20 00 clr %g1
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2009e78: 90 10 00 19 mov %i1, %o0
2009e7c: 92 10 20 01 mov 1, %o1
2009e80: 15 00 80 6f sethi %hi(0x201bc00), %o2
2009e84: 96 10 00 1b mov %i3, %o3
2009e88: 9f c5 c0 00 call %l7
2009e8c: 94 12 a3 e8 or %o2, 0x3e8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009e90: 10 bf ff e9 b 2009e34 <_Heap_Walk+0x124>
2009e94: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2009e98: 90 10 00 19 mov %i1, %o0
2009e9c: 92 10 20 01 mov 1, %o1
2009ea0: 15 00 80 70 sethi %hi(0x201c000), %o2
2009ea4: 96 10 00 10 mov %l0, %o3
2009ea8: 9f c5 c0 00 call %l7
2009eac: 94 12 a0 08 or %o2, 8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009eb0: 10 bf ff e1 b 2009e34 <_Heap_Walk+0x124>
2009eb4: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2009eb8: 92 10 20 01 mov 1, %o1
2009ebc: 15 00 80 70 sethi %hi(0x201c000), %o2
2009ec0: 96 10 00 1c mov %i4, %o3
2009ec4: 9f c5 c0 00 call %l7
2009ec8: 94 12 a0 30 or %o2, 0x30, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009ecc: 10 bf ff da b 2009e34 <_Heap_Walk+0x124>
2009ed0: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
2009ed4: 92 10 20 01 mov 1, %o1
2009ed8: 15 00 80 70 sethi %hi(0x201c000), %o2
2009edc: 9f c5 c0 00 call %l7
2009ee0: 94 12 a0 68 or %o2, 0x68, %o2 ! 201c068 <__log2table+0x290>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009ee4: 10 bf ff d4 b 2009e34 <_Heap_Walk+0x124>
2009ee8: 82 10 20 00 clr %g1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2009eec: fa 06 20 08 ld [ %i0 + 8 ], %i5
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2009ef0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2009ef4: 80 a6 00 1d cmp %i0, %i5
2009ef8: 02 80 00 0d be 2009f2c <_Heap_Walk+0x21c>
2009efc: da 06 20 20 ld [ %i0 + 0x20 ], %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009f00: 80 a3 40 1d cmp %o5, %i5
2009f04: 28 80 00 bf bleu,a 200a200 <_Heap_Walk+0x4f0> <== ALWAYS TAKEN
2009f08: e6 06 20 24 ld [ %i0 + 0x24 ], %l3
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
2009f0c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2009f10: 92 10 20 01 mov 1, %o1
2009f14: 15 00 80 70 sethi %hi(0x201c000), %o2
2009f18: 96 10 00 1d mov %i5, %o3
2009f1c: 9f c5 c0 00 call %l7
2009f20: 94 12 a0 e0 or %o2, 0xe0, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2009f24: 10 bf ff c4 b 2009e34 <_Heap_Walk+0x124>
2009f28: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009f2c: 27 00 80 70 sethi %hi(0x201c000), %l3
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2009f30: 25 00 80 70 sethi %hi(0x201c000), %l2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2009f34: aa 10 00 1c mov %i4, %l5
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2009f38: a6 14 e3 10 or %l3, 0x310, %l3
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2009f3c: a4 14 a2 f8 or %l2, 0x2f8, %l2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2009f40: 29 00 80 70 sethi %hi(0x201c000), %l4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2009f44: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2009f48: ba 05 80 15 add %l6, %l5, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2009f4c: 80 a3 40 1d cmp %o5, %i5
2009f50: 28 80 00 0b bleu,a 2009f7c <_Heap_Walk+0x26c> <== ALWAYS TAKEN
2009f54: de 06 20 24 ld [ %i0 + 0x24 ], %o7
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2009f58: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2009f5c: 92 10 20 01 mov 1, %o1
2009f60: 96 10 00 15 mov %l5, %o3
2009f64: 15 00 80 70 sethi %hi(0x201c000), %o2
2009f68: 98 10 00 1d mov %i5, %o4
2009f6c: 9f c5 c0 00 call %l7
2009f70: 94 12 a1 88 or %o2, 0x188, %o2
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
2009f74: 10 bf ff 75 b 2009d48 <_Heap_Walk+0x38>
2009f78: 82 10 20 00 clr %g1
2009f7c: 80 a3 c0 1d cmp %o7, %i5
2009f80: 0a bf ff f7 bcs 2009f5c <_Heap_Walk+0x24c>
2009f84: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2009f88: 9e 1d 40 11 xor %l5, %l1, %o7
2009f8c: 80 a0 00 0f cmp %g0, %o7
2009f90: 9a 40 20 00 addx %g0, 0, %o5
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009f94: 90 10 00 16 mov %l6, %o0
2009f98: da 27 bf fc st %o5, [ %fp + -4 ]
2009f9c: 7f ff de f5 call 2001b70 <.urem>
2009fa0: 92 10 00 1b mov %i3, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2009fa4: 80 a2 20 00 cmp %o0, 0
2009fa8: 02 80 00 18 be 200a008 <_Heap_Walk+0x2f8>
2009fac: da 07 bf fc ld [ %fp + -4 ], %o5
2009fb0: 80 8b 60 ff btst 0xff, %o5
2009fb4: 12 80 00 8b bne 200a1e0 <_Heap_Walk+0x4d0>
2009fb8: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2009fbc: de 07 60 04 ld [ %i5 + 4 ], %o7
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2009fc0: 80 8b e0 01 btst 1, %o7
2009fc4: 02 80 00 2b be 200a070 <_Heap_Walk+0x360>
2009fc8: 80 a6 a0 00 cmp %i2, 0
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2009fcc: 22 80 00 21 be,a 200a050 <_Heap_Walk+0x340>
2009fd0: da 05 40 00 ld [ %l5 ], %o5
(*printer)(
2009fd4: 90 10 00 19 mov %i1, %o0
2009fd8: 92 10 20 00 clr %o1
2009fdc: 94 10 00 12 mov %l2, %o2
2009fe0: 96 10 00 15 mov %l5, %o3
2009fe4: 9f c5 c0 00 call %l7
2009fe8: 98 10 00 16 mov %l6, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2009fec: 80 a7 00 1d cmp %i4, %i5
2009ff0: 02 80 00 51 be 200a134 <_Heap_Walk+0x424>
2009ff4: aa 10 00 1d mov %i5, %l5
2009ff8: ec 07 60 04 ld [ %i5 + 4 ], %l6
2009ffc: da 06 20 20 ld [ %i0 + 0x20 ], %o5
200a000: 10 bf ff d1 b 2009f44 <_Heap_Walk+0x234>
200a004: b4 0d a0 01 and %l6, 1, %i2
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
200a008: 80 a5 80 10 cmp %l6, %l0
200a00c: 0a 80 00 69 bcs 200a1b0 <_Heap_Walk+0x4a0>
200a010: 80 8b 60 ff btst 0xff, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
200a014: 80 a5 40 1d cmp %l5, %i5
200a018: 2a bf ff ea bcs,a 2009fc0 <_Heap_Walk+0x2b0>
200a01c: de 07 60 04 ld [ %i5 + 4 ], %o7
200a020: 80 8b 60 ff btst 0xff, %o5
200a024: 22 bf ff e7 be,a 2009fc0 <_Heap_Walk+0x2b0>
200a028: de 07 60 04 ld [ %i5 + 4 ], %o7
(*printer)(
200a02c: 90 10 00 19 mov %i1, %o0
200a030: 92 10 20 01 mov 1, %o1
200a034: 96 10 00 15 mov %l5, %o3
200a038: 15 00 80 70 sethi %hi(0x201c000), %o2
200a03c: 98 10 00 1d mov %i5, %o4
200a040: 9f c5 c0 00 call %l7
200a044: 94 12 a2 18 or %o2, 0x218, %o2
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
200a048: 10 bf ff 40 b 2009d48 <_Heap_Walk+0x38>
200a04c: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
200a050: 96 10 00 15 mov %l5, %o3
200a054: 90 10 00 19 mov %i1, %o0
200a058: 92 10 20 00 clr %o1
200a05c: 94 10 00 13 mov %l3, %o2
200a060: 9f c5 c0 00 call %l7
200a064: 98 10 00 16 mov %l6, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200a068: 10 bf ff e2 b 2009ff0 <_Heap_Walk+0x2e0>
200a06c: 80 a7 00 1d cmp %i4, %i5
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
200a070: da 05 60 0c ld [ %l5 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a074: de 06 20 08 ld [ %i0 + 8 ], %o7
200a078: 80 a3 c0 0d cmp %o7, %o5
200a07c: 02 80 00 3d be 200a170 <_Heap_Walk+0x460>
200a080: d8 06 20 0c ld [ %i0 + 0xc ], %o4
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
200a084: 80 a6 00 0d cmp %i0, %o5
200a088: 02 80 00 40 be 200a188 <_Heap_Walk+0x478>
200a08c: 96 15 22 c0 or %l4, 0x2c0, %o3
block->next,
block->next == last_free_block ?
200a090: de 05 60 08 ld [ %l5 + 8 ], %o7
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a094: 80 a3 00 0f cmp %o4, %o7
200a098: 02 80 00 33 be 200a164 <_Heap_Walk+0x454>
200a09c: 80 a6 00 0f cmp %i0, %o7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200a0a0: 02 80 00 37 be 200a17c <_Heap_Walk+0x46c>
200a0a4: 98 15 22 c0 or %l4, 0x2c0, %o4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a0a8: d6 23 a0 5c st %o3, [ %sp + 0x5c ]
200a0ac: d8 23 a0 64 st %o4, [ %sp + 0x64 ]
200a0b0: de 23 a0 60 st %o7, [ %sp + 0x60 ]
200a0b4: 90 10 00 19 mov %i1, %o0
200a0b8: 92 10 20 00 clr %o1
200a0bc: 15 00 80 70 sethi %hi(0x201c000), %o2
200a0c0: 96 10 00 15 mov %l5, %o3
200a0c4: 94 12 a2 50 or %o2, 0x250, %o2
200a0c8: 9f c5 c0 00 call %l7
200a0cc: 98 10 00 16 mov %l6, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
200a0d0: da 07 40 00 ld [ %i5 ], %o5
200a0d4: 80 a5 80 0d cmp %l6, %o5
200a0d8: 12 80 00 19 bne 200a13c <_Heap_Walk+0x42c>
200a0dc: 80 a6 a0 00 cmp %i2, 0
);
return false;
}
if ( !prev_used ) {
200a0e0: 02 80 00 2d be 200a194 <_Heap_Walk+0x484>
200a0e4: 90 10 00 19 mov %i1, %o0
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200a0e8: c4 06 20 08 ld [ %i0 + 8 ], %g2
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
200a0ec: 80 a6 00 02 cmp %i0, %g2
200a0f0: 02 80 00 0b be 200a11c <_Heap_Walk+0x40c> <== NEVER TAKEN
200a0f4: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
200a0f8: 80 a5 40 02 cmp %l5, %g2
200a0fc: 02 bf ff bd be 2009ff0 <_Heap_Walk+0x2e0>
200a100: 80 a7 00 1d cmp %i4, %i5
return true;
}
free_block = free_block->next;
200a104: c4 00 a0 08 ld [ %g2 + 8 ], %g2
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
200a108: 80 a6 00 02 cmp %i0, %g2
200a10c: 12 bf ff fc bne 200a0fc <_Heap_Walk+0x3ec>
200a110: 80 a5 40 02 cmp %l5, %g2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200a114: 90 10 00 19 mov %i1, %o0
200a118: 92 10 20 01 mov 1, %o1
200a11c: 15 00 80 70 sethi %hi(0x201c000), %o2
200a120: 96 10 00 15 mov %l5, %o3
200a124: 9f c5 c0 00 call %l7
200a128: 94 12 a3 38 or %o2, 0x338, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a12c: 10 bf ff 42 b 2009e34 <_Heap_Walk+0x124>
200a130: 82 10 20 00 clr %g1
}
block = next_block;
} while ( block != first_block );
return true;
200a134: 10 bf ff 05 b 2009d48 <_Heap_Walk+0x38>
200a138: 82 10 20 01 mov 1, %g1
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
200a13c: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
200a140: 90 10 00 19 mov %i1, %o0
200a144: 92 10 20 01 mov 1, %o1
200a148: 15 00 80 70 sethi %hi(0x201c000), %o2
200a14c: 96 10 00 15 mov %l5, %o3
200a150: 94 12 a2 88 or %o2, 0x288, %o2
200a154: 9f c5 c0 00 call %l7
200a158: 98 10 00 16 mov %l6, %o4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a15c: 10 bf ff 36 b 2009e34 <_Heap_Walk+0x124>
200a160: 82 10 20 00 clr %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a164: 03 00 80 6f sethi %hi(0x201bc00), %g1
200a168: 10 bf ff d0 b 200a0a8 <_Heap_Walk+0x398>
200a16c: 98 10 63 18 or %g1, 0x318, %o4 ! 201bf18 <__log2table+0x140>
200a170: 03 00 80 6f sethi %hi(0x201bc00), %g1
200a174: 10 bf ff c7 b 200a090 <_Heap_Walk+0x380>
200a178: 96 10 62 f8 or %g1, 0x2f8, %o3 ! 201bef8 <__log2table+0x120>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200a17c: 03 00 80 6f sethi %hi(0x201bc00), %g1
200a180: 10 bf ff ca b 200a0a8 <_Heap_Walk+0x398>
200a184: 98 10 63 28 or %g1, 0x328, %o4 ! 201bf28 <__log2table+0x150>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
200a188: 17 00 80 6f sethi %hi(0x201bc00), %o3
200a18c: 10 bf ff c1 b 200a090 <_Heap_Walk+0x380>
200a190: 96 12 e3 08 or %o3, 0x308, %o3 ! 201bf08 <__log2table+0x130>
return false;
}
if ( !prev_used ) {
(*printer)(
200a194: 92 10 20 01 mov 1, %o1
200a198: 15 00 80 70 sethi %hi(0x201c000), %o2
200a19c: 96 10 00 15 mov %l5, %o3
200a1a0: 9f c5 c0 00 call %l7
200a1a4: 94 12 a2 c8 or %o2, 0x2c8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a1a8: 10 bf ff 23 b 2009e34 <_Heap_Walk+0x124>
200a1ac: 82 10 20 00 clr %g1
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
200a1b0: 02 bf ff 9a be 200a018 <_Heap_Walk+0x308> <== NEVER TAKEN
200a1b4: 80 a5 40 1d cmp %l5, %i5
(*printer)(
200a1b8: 90 10 00 19 mov %i1, %o0
200a1bc: 92 10 20 01 mov 1, %o1
200a1c0: 96 10 00 15 mov %l5, %o3
200a1c4: 15 00 80 70 sethi %hi(0x201c000), %o2
200a1c8: 98 10 00 16 mov %l6, %o4
200a1cc: 94 12 a1 e8 or %o2, 0x1e8, %o2
200a1d0: 9f c5 c0 00 call %l7
200a1d4: 9a 10 00 10 mov %l0, %o5
block,
block_size,
min_block_size
);
return false;
200a1d8: 10 bf fe dc b 2009d48 <_Heap_Walk+0x38>
200a1dc: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
200a1e0: 92 10 20 01 mov 1, %o1
200a1e4: 96 10 00 15 mov %l5, %o3
200a1e8: 15 00 80 70 sethi %hi(0x201c000), %o2
200a1ec: 98 10 00 16 mov %l6, %o4
200a1f0: 9f c5 c0 00 call %l7
200a1f4: 94 12 a1 b8 or %o2, 0x1b8, %o2
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
200a1f8: 10 bf fe d4 b 2009d48 <_Heap_Walk+0x38>
200a1fc: 82 10 20 00 clr %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a200: 80 a4 c0 1d cmp %l3, %i5
200a204: 0a bf ff 43 bcs 2009f10 <_Heap_Walk+0x200> <== NEVER TAKEN
200a208: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200a20c: da 27 bf fc st %o5, [ %fp + -4 ]
200a210: 90 07 60 08 add %i5, 8, %o0
200a214: 7f ff de 57 call 2001b70 <.urem>
200a218: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
200a21c: 80 a2 20 00 cmp %o0, 0
200a220: 12 80 00 36 bne 200a2f8 <_Heap_Walk+0x5e8> <== NEVER TAKEN
200a224: da 07 bf fc ld [ %fp + -4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a228: c2 07 60 04 ld [ %i5 + 4 ], %g1
200a22c: 82 08 7f fe and %g1, -2, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a230: 82 07 40 01 add %i5, %g1, %g1
200a234: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
200a238: 80 88 60 01 btst 1, %g1
200a23c: 12 80 00 27 bne 200a2d8 <_Heap_Walk+0x5c8> <== NEVER TAKEN
200a240: a4 10 00 1d mov %i5, %l2
200a244: 10 80 00 19 b 200a2a8 <_Heap_Walk+0x598>
200a248: 82 10 00 18 mov %i0, %g1
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
200a24c: 80 a6 00 1d cmp %i0, %i5
200a250: 02 bf ff 37 be 2009f2c <_Heap_Walk+0x21c>
200a254: 80 a7 40 0d cmp %i5, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a258: 0a bf ff 2e bcs 2009f10 <_Heap_Walk+0x200>
200a25c: 90 10 00 19 mov %i1, %o0
200a260: 80 a7 40 13 cmp %i5, %l3
200a264: 18 bf ff 2c bgu 2009f14 <_Heap_Walk+0x204> <== NEVER TAKEN
200a268: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200a26c: da 27 bf fc st %o5, [ %fp + -4 ]
200a270: 90 07 60 08 add %i5, 8, %o0
200a274: 7f ff de 3f call 2001b70 <.urem>
200a278: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
200a27c: 80 a2 20 00 cmp %o0, 0
200a280: 12 80 00 1e bne 200a2f8 <_Heap_Walk+0x5e8>
200a284: da 07 bf fc ld [ %fp + -4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a288: de 07 60 04 ld [ %i5 + 4 ], %o7
200a28c: 82 10 00 12 mov %l2, %g1
200a290: 9e 0b ff fe and %o7, -2, %o7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a294: 9e 03 c0 1d add %o7, %i5, %o7
200a298: de 03 e0 04 ld [ %o7 + 4 ], %o7
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
200a29c: 80 8b e0 01 btst 1, %o7
200a2a0: 12 80 00 0e bne 200a2d8 <_Heap_Walk+0x5c8>
200a2a4: a4 10 00 1d mov %i5, %l2
);
return false;
}
if ( free_block->prev != prev_block ) {
200a2a8: d8 07 60 0c ld [ %i5 + 0xc ], %o4
200a2ac: 80 a3 00 01 cmp %o4, %g1
200a2b0: 22 bf ff e7 be,a 200a24c <_Heap_Walk+0x53c>
200a2b4: fa 07 60 08 ld [ %i5 + 8 ], %i5
(*printer)(
200a2b8: 90 10 00 19 mov %i1, %o0
200a2bc: 92 10 20 01 mov 1, %o1
200a2c0: 15 00 80 70 sethi %hi(0x201c000), %o2
200a2c4: 96 10 00 1d mov %i5, %o3
200a2c8: 9f c5 c0 00 call %l7
200a2cc: 94 12 a1 50 or %o2, 0x150, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a2d0: 10 bf fe d9 b 2009e34 <_Heap_Walk+0x124>
200a2d4: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
200a2d8: 90 10 00 19 mov %i1, %o0
200a2dc: 92 10 20 01 mov 1, %o1
200a2e0: 15 00 80 70 sethi %hi(0x201c000), %o2
200a2e4: 96 10 00 1d mov %i5, %o3
200a2e8: 9f c5 c0 00 call %l7
200a2ec: 94 12 a1 30 or %o2, 0x130, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a2f0: 10 bf fe d1 b 2009e34 <_Heap_Walk+0x124>
200a2f4: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
200a2f8: 90 10 00 19 mov %i1, %o0
200a2fc: 92 10 20 01 mov 1, %o1
200a300: 15 00 80 70 sethi %hi(0x201c000), %o2
200a304: 96 10 00 1d mov %i5, %o3
200a308: 9f c5 c0 00 call %l7
200a30c: 94 12 a1 00 or %o2, 0x100, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a310: 10 bf fe c9 b 2009e34 <_Heap_Walk+0x124>
200a314: 82 10 20 00 clr %g1
020083e0 <_IO_Initialize_all_drivers>:
_IO_Driver_address_table[index] = driver_table[index];
}
void _IO_Initialize_all_drivers( void )
{
20083e0: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
20083e4: 39 00 80 73 sethi %hi(0x201cc00), %i4
20083e8: c2 07 23 38 ld [ %i4 + 0x338 ], %g1 ! 201cf38 <_IO_Number_of_drivers>
20083ec: ba 10 20 00 clr %i5
20083f0: 80 a0 60 00 cmp %g1, 0
20083f4: 02 80 00 0b be 2008420 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
20083f8: b8 17 23 38 or %i4, 0x338, %i4
(void) rtems_io_initialize( major, 0, NULL );
20083fc: 90 10 00 1d mov %i5, %o0
2008400: 92 10 20 00 clr %o1
2008404: 40 00 13 dd call 200d378 <rtems_io_initialize>
2008408: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
200840c: c2 07 00 00 ld [ %i4 ], %g1
2008410: ba 07 60 01 inc %i5
2008414: 80 a0 40 1d cmp %g1, %i5
2008418: 18 bf ff fa bgu 2008400 <_IO_Initialize_all_drivers+0x20>
200841c: 90 10 00 1d mov %i5, %o0
2008420: 81 c7 e0 08 ret
2008424: 81 e8 00 00 restore
02008310 <_IO_Manager_initialization>:
#include <rtems/score/wkspace.h>
#include <string.h>
void _IO_Manager_initialization(void)
{
2008310: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = rtems_configuration_get_device_driver_table();
2008314: 03 00 80 68 sethi %hi(0x201a000), %g1
2008318: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 <Configuration>
drivers_in_table = rtems_configuration_get_number_of_device_drivers();
200831c: f8 00 60 38 ld [ %g1 + 0x38 ], %i4
number_of_drivers = rtems_configuration_get_maximum_drivers();
2008320: f6 00 60 34 ld [ %g1 + 0x34 ], %i3
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2008324: 80 a7 00 1b cmp %i4, %i3
2008328: 0a 80 00 08 bcs 2008348 <_IO_Manager_initialization+0x38>
200832c: fa 00 60 3c ld [ %g1 + 0x3c ], %i5
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
2008330: 03 00 80 73 sethi %hi(0x201cc00), %g1
2008334: fa 20 63 3c st %i5, [ %g1 + 0x33c ] ! 201cf3c <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
2008338: 03 00 80 73 sethi %hi(0x201cc00), %g1
200833c: f8 20 63 38 st %i4, [ %g1 + 0x338 ] ! 201cf38 <_IO_Number_of_drivers>
return;
2008340: 81 c7 e0 08 ret
2008344: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
2008348: 83 2e e0 03 sll %i3, 3, %g1
200834c: b5 2e e0 05 sll %i3, 5, %i2
2008350: b4 26 80 01 sub %i2, %g1, %i2
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
2008354: 40 00 0d 4a call 200b87c <_Workspace_Allocate_or_fatal_error>
2008358: 90 10 00 1a mov %i2, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
200835c: 03 00 80 73 sethi %hi(0x201cc00), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2008360: 33 00 80 73 sethi %hi(0x201cc00), %i1
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2008364: f6 20 63 38 st %i3, [ %g1 + 0x338 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2008368: d0 26 63 3c st %o0, [ %i1 + 0x33c ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
200836c: 92 10 20 00 clr %o1
2008370: 40 00 1e fc call 200ff60 <memset>
2008374: 94 10 00 1a mov %i2, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2008378: 80 a7 20 00 cmp %i4, 0
200837c: 02 bf ff f1 be 2008340 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
2008380: c8 06 63 3c ld [ %i1 + 0x33c ], %g4
#include <rtems/score/thread.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _IO_Manager_initialization(void)
2008384: 85 2f 20 03 sll %i4, 3, %g2
2008388: b7 2f 20 05 sll %i4, 5, %i3
200838c: 82 10 20 00 clr %g1
2008390: b6 26 c0 02 sub %i3, %g2, %i3
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
_IO_Driver_address_table[index] = driver_table[index];
2008394: c4 07 40 01 ld [ %i5 + %g1 ], %g2
2008398: 86 07 40 01 add %i5, %g1, %g3
200839c: c4 21 00 01 st %g2, [ %g4 + %g1 ]
20083a0: f8 00 e0 04 ld [ %g3 + 4 ], %i4
20083a4: 84 01 00 01 add %g4, %g1, %g2
20083a8: f8 20 a0 04 st %i4, [ %g2 + 4 ]
20083ac: f8 00 e0 08 ld [ %g3 + 8 ], %i4
20083b0: 82 00 60 18 add %g1, 0x18, %g1
20083b4: f8 20 a0 08 st %i4, [ %g2 + 8 ]
20083b8: f8 00 e0 0c ld [ %g3 + 0xc ], %i4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20083bc: 80 a0 40 1b cmp %g1, %i3
_IO_Driver_address_table[index] = driver_table[index];
20083c0: f8 20 a0 0c st %i4, [ %g2 + 0xc ]
20083c4: f8 00 e0 10 ld [ %g3 + 0x10 ], %i4
20083c8: f8 20 a0 10 st %i4, [ %g2 + 0x10 ]
20083cc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20083d0: 12 bf ff f1 bne 2008394 <_IO_Manager_initialization+0x84>
20083d4: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
20083d8: 81 c7 e0 08 ret
20083dc: 81 e8 00 00 restore
02009070 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009070: 9d e3 bf 90 save %sp, -112, %sp
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
2009074: 13 00 80 2c sethi %hi(0x200b000), %o1
2009078: 90 07 bf f4 add %fp, -12, %o0
200907c: 92 12 62 b4 or %o1, 0x2b4, %o1
Internal_errors_Source source,
bool is_internal,
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
2009080: f0 27 bf f4 st %i0, [ %fp + -12 ]
2009084: f2 2f bf f8 stb %i1, [ %fp + -8 ]
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
2009088: 40 00 08 96 call 200b2e0 <_User_extensions_Iterate>
200908c: f4 27 bf fc st %i2, [ %fp + -4 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
_Internal_errors_What_happened.the_source = the_source;
2009090: 05 00 80 73 sethi %hi(0x201cc00), %g2 <== NOT EXECUTED
2009094: 82 10 a2 80 or %g2, 0x280, %g1 ! 201ce80 <_Internal_errors_What_happened><== NOT EXECUTED
2009098: f0 20 a2 80 st %i0, [ %g2 + 0x280 ] <== NOT EXECUTED
_Internal_errors_What_happened.is_internal = is_internal;
200909c: f2 28 60 04 stb %i1, [ %g1 + 4 ] <== NOT EXECUTED
_Internal_errors_What_happened.the_error = the_error;
20090a0: f4 20 60 08 st %i2, [ %g1 + 8 ] <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
20090a4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
20090a8: 03 00 80 73 sethi %hi(0x201cc00), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
20090ac: 7f ff e5 58 call 200260c <sparc_disable_interrupts> <== NOT EXECUTED
20090b0: c4 20 62 8c st %g2, [ %g1 + 0x28c ] ! 201ce8c <_System_state_Current><== NOT EXECUTED
20090b4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
20090b8: 30 80 00 00 b,a 20090b8 <_Internal_error_Occurred+0x48> <== NOT EXECUTED
02009128 <_Objects_Allocate>:
#endif
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2009128: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
200912c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2009130: 80 a0 60 00 cmp %g1, 0
2009134: 02 80 00 26 be 20091cc <_Objects_Allocate+0xa4> <== NEVER TAKEN
2009138: ba 10 00 18 mov %i0, %i5
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
200913c: b8 06 20 20 add %i0, 0x20, %i4
2009140: 7f ff fd 4c call 2008670 <_Chain_Get>
2009144: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2009148: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
200914c: 80 a0 60 00 cmp %g1, 0
2009150: 02 80 00 16 be 20091a8 <_Objects_Allocate+0x80>
2009154: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2009158: 80 a2 20 00 cmp %o0, 0
200915c: 02 80 00 15 be 20091b0 <_Objects_Allocate+0x88>
2009160: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2009164: c4 07 60 08 ld [ %i5 + 8 ], %g2
2009168: d0 06 20 08 ld [ %i0 + 8 ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
200916c: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2009170: 03 00 00 3f sethi %hi(0xfc00), %g1
2009174: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff <PROM_START+0xffff>
2009178: 90 0a 00 01 and %o0, %g1, %o0
200917c: 82 08 80 01 and %g2, %g1, %g1
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2009180: 40 00 3c 67 call 201831c <.udiv>
2009184: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2009188: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
200918c: 91 2a 20 02 sll %o0, 2, %o0
2009190: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2009194: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2009198: 86 00 ff ff add %g3, -1, %g3
200919c: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
20091a0: 82 00 bf ff add %g2, -1, %g1
20091a4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
20091a8: 81 c7 e0 08 ret
20091ac: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
20091b0: 40 00 00 10 call 20091f0 <_Objects_Extend_information>
20091b4: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20091b8: 7f ff fd 2e call 2008670 <_Chain_Get>
20091bc: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
20091c0: b0 92 20 00 orcc %o0, 0, %i0
20091c4: 32 bf ff e9 bne,a 2009168 <_Objects_Allocate+0x40>
20091c8: c4 07 60 08 ld [ %i5 + 8 ], %g2
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
return NULL;
20091cc: 81 c7 e0 08 ret
20091d0: 91 e8 20 00 restore %g0, 0, %o0
020091f0 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
20091f0: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
20091f4: f2 06 20 34 ld [ %i0 + 0x34 ], %i1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20091f8: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
20091fc: 80 a6 60 00 cmp %i1, 0
2009200: 02 80 00 a1 be 2009484 <_Objects_Extend_information+0x294>
2009204: e2 16 20 10 lduh [ %i0 + 0x10 ], %l1
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2009208: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3
200920c: a3 2c 60 10 sll %l1, 0x10, %l1
2009210: 92 10 00 1b mov %i3, %o1
2009214: 40 00 3c 42 call 201831c <.udiv>
2009218: 91 34 60 10 srl %l1, 0x10, %o0
200921c: 91 2a 20 10 sll %o0, 0x10, %o0
2009220: b5 32 20 10 srl %o0, 0x10, %i2
for ( ; block < block_count; block++ ) {
2009224: 80 a6 a0 00 cmp %i2, 0
2009228: 02 80 00 af be 20094e4 <_Objects_Extend_information+0x2f4><== NEVER TAKEN
200922c: 90 10 00 1b mov %i3, %o0
if ( information->object_blocks[ block ] == NULL ) {
2009230: c2 06 40 00 ld [ %i1 ], %g1
2009234: 80 a0 60 00 cmp %g1, 0
2009238: 02 80 00 b1 be 20094fc <_Objects_Extend_information+0x30c><== NEVER TAKEN
200923c: b8 10 00 10 mov %l0, %i4
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2009240: 10 80 00 06 b 2009258 <_Objects_Extend_information+0x68>
2009244: ba 10 20 00 clr %i5
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2009248: c2 06 40 01 ld [ %i1 + %g1 ], %g1
200924c: 80 a0 60 00 cmp %g1, 0
2009250: 22 80 00 08 be,a 2009270 <_Objects_Extend_information+0x80>
2009254: b6 10 20 00 clr %i3
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2009258: ba 07 60 01 inc %i5
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
200925c: b8 07 00 1b add %i4, %i3, %i4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2009260: 80 a6 80 1d cmp %i2, %i5
2009264: 18 bf ff f9 bgu 2009248 <_Objects_Extend_information+0x58>
2009268: 83 2f 60 02 sll %i5, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
200926c: b6 10 20 01 mov 1, %i3
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2009270: b3 34 60 10 srl %l1, 0x10, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2009274: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2009278: b2 06 40 08 add %i1, %o0, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
200927c: 82 10 63 ff or %g1, 0x3ff, %g1
2009280: 80 a6 40 01 cmp %i1, %g1
2009284: 18 80 00 9c bgu 20094f4 <_Objects_Extend_information+0x304>
2009288: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
200928c: 40 00 3b ea call 2018234 <.umul>
2009290: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2009294: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2009298: 80 a0 60 00 cmp %g1, 0
200929c: 02 80 00 6d be 2009450 <_Objects_Extend_information+0x260>
20092a0: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
20092a4: 40 00 09 68 call 200b844 <_Workspace_Allocate>
20092a8: 01 00 00 00 nop
if ( !new_object_block )
20092ac: a2 92 20 00 orcc %o0, 0, %l1
20092b0: 02 80 00 91 be 20094f4 <_Objects_Extend_information+0x304>
20092b4: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
20092b8: 80 8e e0 ff btst 0xff, %i3
20092bc: 22 80 00 42 be,a 20093c4 <_Objects_Extend_information+0x1d4>
20092c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
if ( information->auto_extend ) {
20092c4: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
20092c8: b6 06 a0 01 add %i2, 1, %i3
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
if ( information->auto_extend ) {
20092cc: 80 a0 60 00 cmp %g1, 0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
20092d0: 91 2e e0 01 sll %i3, 1, %o0
20092d4: 90 02 00 1b add %o0, %i3, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
20092d8: 90 06 40 08 add %i1, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
20092dc: 90 02 00 10 add %o0, %l0, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
if ( information->auto_extend ) {
20092e0: 12 80 00 60 bne 2009460 <_Objects_Extend_information+0x270>
20092e4: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
return;
}
} else {
object_blocks = _Workspace_Allocate_or_fatal_error( block_size );
20092e8: 40 00 09 65 call 200b87c <_Workspace_Allocate_or_fatal_error>
20092ec: 01 00 00 00 nop
20092f0: a4 10 00 08 mov %o0, %l2
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
20092f4: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
/*
* Break the block into the various sections.
*/
inactive_per_block = (uint32_t *) _Addresses_Add_offset(
object_blocks, block_count * sizeof(void*) );
20092f8: b7 2e e0 02 sll %i3, 2, %i3
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
20092fc: 80 a4 00 01 cmp %l0, %g1
2009300: a6 04 80 1b add %l2, %i3, %l3
2009304: 0a 80 00 67 bcs 20094a0 <_Objects_Extend_information+0x2b0>
2009308: b6 04 c0 1b add %l3, %i3, %i3
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
200930c: 85 2c 20 02 sll %l0, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2009310: 80 a4 20 00 cmp %l0, 0
2009314: 02 80 00 07 be 2009330 <_Objects_Extend_information+0x140><== NEVER TAKEN
2009318: 82 10 20 00 clr %g1
local_table[ index ] = NULL;
200931c: c0 20 40 1b clr [ %g1 + %i3 ]
2009320: 82 00 60 04 add %g1, 4, %g1
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2009324: 80 a0 40 02 cmp %g1, %g2
2009328: 32 bf ff fe bne,a 2009320 <_Objects_Extend_information+0x130><== NEVER TAKEN
200932c: c0 20 40 1b clr [ %g1 + %i3 ] <== NOT EXECUTED
2009330: b5 2e a0 02 sll %i2, 2, %i2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2009334: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2009338: c0 24 80 1a clr [ %l2 + %i2 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
200933c: 82 07 00 03 add %i4, %g3, %g1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2009340: 80 a7 00 01 cmp %i4, %g1
2009344: 1a 80 00 0b bcc 2009370 <_Objects_Extend_information+0x180><== NEVER TAKEN
2009348: c0 24 c0 1a clr [ %l3 + %i2 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
200934c: 85 2f 20 02 sll %i4, 2, %g2
2009350: 87 28 e0 02 sll %g3, 2, %g3
2009354: 84 06 c0 02 add %i3, %g2, %g2
2009358: 82 10 20 00 clr %g1
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
200935c: c0 20 80 01 clr [ %g2 + %g1 ]
2009360: 82 00 60 04 add %g1, 4, %g1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2009364: 80 a0 40 03 cmp %g1, %g3
2009368: 32 bf ff fe bne,a 2009360 <_Objects_Extend_information+0x170>
200936c: c0 20 80 01 clr [ %g2 + %g1 ]
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2009370: 7f ff e4 a7 call 200260c <sparc_disable_interrupts>
2009374: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2009378: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
200937c: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2009380: f4 06 20 34 ld [ %i0 + 0x34 ], %i2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2009384: f2 36 20 10 sth %i1, [ %i0 + 0x10 ]
2009388: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
200938c: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
2009390: e4 26 20 34 st %l2, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
2009394: e6 26 20 30 st %l3, [ %i0 + 0x30 ]
information->local_table = local_table;
2009398: f6 26 20 1c st %i3, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
200939c: 03 00 00 40 sethi %hi(0x10000), %g1
20093a0: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20093a4: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20093a8: b2 10 40 19 or %g1, %i1, %i1
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
20093ac: f2 26 20 0c st %i1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
20093b0: 7f ff e4 9b call 200261c <sparc_enable_interrupts>
20093b4: 01 00 00 00 nop
_Workspace_Free( old_tables );
20093b8: 40 00 09 2b call 200b864 <_Workspace_Free>
20093bc: 90 10 00 1a mov %i2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
20093c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20093c4: bb 2f 60 02 sll %i5, 2, %i5
20093c8: e2 20 40 1d st %l1, [ %g1 + %i5 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
20093cc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20093d0: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
20093d4: d2 00 40 1d ld [ %g1 + %i5 ], %o1
20093d8: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
20093dc: 90 07 bf f4 add %fp, -12, %o0
20093e0: 7f ff fc b4 call 20086b0 <_Chain_Initialize>
20093e4: 35 00 00 40 sethi %hi(0x10000), %i2
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
20093e8: 10 80 00 0d b 200941c <_Objects_Extend_information+0x22c>
20093ec: b6 06 20 20 add %i0, 0x20, %i3
the_object->id = _Objects_Build_id(
20093f0: c6 16 20 04 lduh [ %i0 + 4 ], %g3
20093f4: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20093f8: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20093fc: 84 10 80 1a or %g2, %i2, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2009400: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2009404: 84 10 80 1c or %g2, %i4, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2009408: 90 10 00 1b mov %i3, %o0
200940c: 92 10 00 01 mov %g1, %o1
index++;
2009410: b8 07 20 01 inc %i4
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2009414: 7f ff fc 8c call 2008644 <_Chain_Append>
2009418: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
200941c: 7f ff fc 95 call 2008670 <_Chain_Get>
2009420: 90 07 bf f4 add %fp, -12, %o0
2009424: 82 92 20 00 orcc %o0, 0, %g1
2009428: 32 bf ff f2 bne,a 20093f0 <_Objects_Extend_information+0x200>
200942c: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2009430: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2009434: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2009438: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
200943c: c8 20 c0 1d st %g4, [ %g3 + %i5 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2009440: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2009444: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2009448: 81 c7 e0 08 ret
200944c: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
2009450: 40 00 09 0b call 200b87c <_Workspace_Allocate_or_fatal_error>
2009454: 01 00 00 00 nop
2009458: 10 bf ff 98 b 20092b8 <_Objects_Extend_information+0xc8>
200945c: a2 10 00 08 mov %o0, %l1
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
if ( information->auto_extend ) {
object_blocks = _Workspace_Allocate( block_size );
2009460: 40 00 08 f9 call 200b844 <_Workspace_Allocate>
2009464: 01 00 00 00 nop
if ( !object_blocks ) {
2009468: a4 92 20 00 orcc %o0, 0, %l2
200946c: 32 bf ff a3 bne,a 20092f8 <_Objects_Extend_information+0x108>
2009470: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
_Workspace_Free( new_object_block );
2009474: 40 00 08 fc call 200b864 <_Workspace_Free>
2009478: 90 10 00 11 mov %l1, %o0
200947c: 81 c7 e0 08 ret
2009480: 81 e8 00 00 restore
2009484: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2009488: b8 10 00 10 mov %l0, %i4
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
200948c: b6 10 20 01 mov 1, %i3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2009490: ba 10 20 00 clr %i5
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
2009494: b4 10 20 00 clr %i2
2009498: 10 bf ff 76 b 2009270 <_Objects_Extend_information+0x80>
200949c: a3 2c 60 10 sll %l1, 0x10, %l1
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
20094a0: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
20094a4: b5 2e a0 02 sll %i2, 2, %i2
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
20094a8: 90 10 00 12 mov %l2, %o0
20094ac: 40 00 1a 70 call 200fe6c <memcpy>
20094b0: 94 10 00 1a mov %i2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
20094b4: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
20094b8: 94 10 00 1a mov %i2, %o2
20094bc: 40 00 1a 6c call 200fe6c <memcpy>
20094c0: 90 10 00 13 mov %l3, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
20094c4: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
20094c8: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
20094cc: 94 02 80 10 add %o2, %l0, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
20094d0: 90 10 00 1b mov %i3, %o0
20094d4: 40 00 1a 66 call 200fe6c <memcpy>
20094d8: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
20094dc: 10 bf ff 97 b 2009338 <_Objects_Extend_information+0x148>
20094e0: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20094e4: b8 10 00 10 mov %l0, %i4 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20094e8: b6 10 20 01 mov 1, %i3 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20094ec: 10 bf ff 61 b 2009270 <_Objects_Extend_information+0x80> <== NOT EXECUTED
20094f0: ba 10 20 00 clr %i5 <== NOT EXECUTED
20094f4: 81 c7 e0 08 ret
20094f8: 81 e8 00 00 restore
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
20094fc: b6 10 20 00 clr %i3 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2009500: 10 bf ff 5c b 2009270 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2009504: ba 10 20 00 clr %i5 <== NOT EXECUTED
020095b8 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
20095b8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
20095bc: 80 a6 60 00 cmp %i1, 0
20095c0: 02 80 00 19 be 2009624 <_Objects_Get_information+0x6c>
20095c4: 01 00 00 00 nop
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
20095c8: 40 00 11 4b call 200daf4 <_Objects_API_maximum_class>
20095cc: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
20095d0: 80 a2 20 00 cmp %o0, 0
20095d4: 02 80 00 14 be 2009624 <_Objects_Get_information+0x6c>
20095d8: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20095dc: 0a 80 00 12 bcs 2009624 <_Objects_Get_information+0x6c>
20095e0: 03 00 80 72 sethi %hi(0x201c800), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20095e4: b1 2e 20 02 sll %i0, 2, %i0
20095e8: 82 10 63 e4 or %g1, 0x3e4, %g1
20095ec: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20095f0: 80 a0 60 00 cmp %g1, 0
20095f4: 02 80 00 0c be 2009624 <_Objects_Get_information+0x6c> <== NEVER TAKEN
20095f8: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20095fc: f0 00 40 19 ld [ %g1 + %i1 ], %i0
if ( !info )
2009600: 80 a6 20 00 cmp %i0, 0
2009604: 02 80 00 08 be 2009624 <_Objects_Get_information+0x6c> <== NEVER TAKEN
2009608: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
200960c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2009610: 80 a0 60 00 cmp %g1, 0
2009614: 02 80 00 04 be 2009624 <_Objects_Get_information+0x6c>
2009618: 01 00 00 00 nop
return NULL;
#endif
return info;
}
200961c: 81 c7 e0 08 ret
2009620: 81 e8 00 00 restore
{
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
return NULL;
2009624: 81 c7 e0 08 ret
2009628: 91 e8 20 00 restore %g0, 0, %o0
0201737c <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
201737c: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2017380: 80 a6 60 00 cmp %i1, 0
2017384: 02 80 00 3d be 2017478 <_Objects_Get_name_as_string+0xfc>
2017388: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( name == NULL )
201738c: 02 80 00 3b be 2017478 <_Objects_Get_name_as_string+0xfc>
2017390: ba 96 20 00 orcc %i0, 0, %i5
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2017394: 02 80 00 36 be 201746c <_Objects_Get_name_as_string+0xf0>
2017398: 03 00 80 bf sethi %hi(0x202fc00), %g1
information = _Objects_Get_information_id( tmpId );
201739c: 7f ff e2 4b call 200fcc8 <_Objects_Get_information_id>
20173a0: 90 10 00 1d mov %i5, %o0
if ( !information )
20173a4: 80 a2 20 00 cmp %o0, 0
20173a8: 02 80 00 34 be 2017478 <_Objects_Get_name_as_string+0xfc>
20173ac: 92 10 00 1d mov %i5, %o1
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
20173b0: 7f ff e2 86 call 200fdc8 <_Objects_Get>
20173b4: 94 07 bf f4 add %fp, -12, %o2
switch ( location ) {
20173b8: c2 07 bf f4 ld [ %fp + -12 ], %g1
20173bc: 80 a0 60 00 cmp %g1, 0
20173c0: 32 80 00 2f bne,a 201747c <_Objects_Get_name_as_string+0x100>
20173c4: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
20173c8: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
20173cc: c0 2f bf fc clrb [ %fp + -4 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
20173d0: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
20173d4: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
20173d8: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
20173dc: c4 2f bf fa stb %g2, [ %fp + -6 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
20173e0: c6 2f bf f8 stb %g3, [ %fp + -8 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
20173e4: c8 2f bf f9 stb %g4, [ %fp + -7 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
20173e8: c2 2f bf fb stb %g1, [ %fp + -5 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
20173ec: b2 86 7f ff addcc %i1, -1, %i1
20173f0: 02 80 00 25 be 2017484 <_Objects_Get_name_as_string+0x108><== NEVER TAKEN
20173f4: 84 10 00 03 mov %g3, %g2
20173f8: 80 a0 e0 00 cmp %g3, 0
20173fc: 02 80 00 17 be 2017458 <_Objects_Get_name_as_string+0xdc>
2017400: 86 10 00 1a mov %i2, %g3
2017404: 39 00 80 bb sethi %hi(0x202ec00), %i4
2017408: 82 10 20 00 clr %g1
201740c: 10 80 00 06 b 2017424 <_Objects_Get_name_as_string+0xa8>
2017410: b8 17 21 08 or %i4, 0x108, %i4
2017414: fa 49 00 01 ldsb [ %g4 + %g1 ], %i5
2017418: 80 a7 60 00 cmp %i5, 0
201741c: 02 80 00 0f be 2017458 <_Objects_Get_name_as_string+0xdc>
2017420: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
2017424: fa 07 00 00 ld [ %i4 ], %i5
2017428: 88 08 a0 ff and %g2, 0xff, %g4
201742c: 88 07 40 04 add %i5, %g4, %g4
2017430: fa 49 20 01 ldsb [ %g4 + 1 ], %i5
2017434: 80 8f 60 97 btst 0x97, %i5
2017438: 12 80 00 03 bne 2017444 <_Objects_Get_name_as_string+0xc8>
201743c: 88 07 bf f8 add %fp, -8, %g4
2017440: 84 10 20 2a mov 0x2a, %g2
2017444: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2017448: 82 00 60 01 inc %g1
201744c: 80 a0 40 19 cmp %g1, %i1
2017450: 12 bf ff f1 bne 2017414 <_Objects_Get_name_as_string+0x98>
2017454: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
2017458: c0 28 c0 00 clrb [ %g3 ]
_Thread_Enable_dispatch();
201745c: 7f ff e6 8f call 2010e98 <_Thread_Enable_dispatch>
2017460: b0 10 00 1a mov %i2, %i0
return name;
}
return NULL; /* unreachable path */
}
2017464: 81 c7 e0 08 ret
2017468: 81 e8 00 00 restore
return NULL;
if ( name == NULL )
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
201746c: c2 00 63 a0 ld [ %g1 + 0x3a0 ], %g1
2017470: 10 bf ff cb b 201739c <_Objects_Get_name_as_string+0x20>
2017474: fa 00 60 08 ld [ %g1 + 8 ], %i5
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2017478: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
201747c: 81 c7 e0 08 ret
2017480: 91 e8 00 1a restore %g0, %i2, %o0
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2017484: 10 bf ff f5 b 2017458 <_Objects_Get_name_as_string+0xdc> <== NOT EXECUTED
2017488: 86 10 00 1a mov %i2, %g3 <== NOT EXECUTED
02019ac8 <_Objects_Get_next>:
Objects_Information *information,
Objects_Id id,
Objects_Locations *location_p,
Objects_Id *next_id_p
)
{
2019ac8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Control *object;
Objects_Id next_id;
if ( !information )
2019acc: 80 a6 20 00 cmp %i0, 0
2019ad0: 02 80 00 29 be 2019b74 <_Objects_Get_next+0xac>
2019ad4: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( !location_p )
2019ad8: 02 80 00 27 be 2019b74 <_Objects_Get_next+0xac>
2019adc: 80 a6 e0 00 cmp %i3, 0
return NULL;
if ( !next_id_p )
2019ae0: 02 80 00 25 be 2019b74 <_Objects_Get_next+0xac>
2019ae4: 83 2e 60 10 sll %i1, 0x10, %g1
return NULL;
if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX)
2019ae8: 80 a0 60 00 cmp %g1, 0
2019aec: 22 80 00 13 be,a 2019b38 <_Objects_Get_next+0x70>
2019af0: f2 06 20 08 ld [ %i0 + 8 ], %i1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019af4: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
2019af8: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019afc: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019b00: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019b04: 90 10 00 18 mov %i0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019b08: 80 a0 80 01 cmp %g2, %g1
2019b0c: 0a 80 00 13 bcs 2019b58 <_Objects_Get_next+0x90>
2019b10: 94 10 00 1a mov %i2, %o2
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019b14: 7f ff d8 ad call 200fdc8 <_Objects_Get>
2019b18: b2 06 60 01 inc %i1
next_id++;
} while (*location_p != OBJECTS_LOCAL);
2019b1c: c2 06 80 00 ld [ %i2 ], %g1
2019b20: 80 a0 60 00 cmp %g1, 0
2019b24: 32 bf ff f5 bne,a 2019af8 <_Objects_Get_next+0x30>
2019b28: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
*next_id_p = next_id;
2019b2c: f2 26 c0 00 st %i1, [ %i3 ]
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
}
2019b30: 81 c7 e0 08 ret
2019b34: 91 e8 00 08 restore %g0, %o0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019b38: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
2019b3c: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019b40: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019b44: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019b48: 90 10 00 18 mov %i0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019b4c: 80 a0 80 01 cmp %g2, %g1
2019b50: 1a bf ff f1 bcc 2019b14 <_Objects_Get_next+0x4c> <== ALWAYS TAKEN
2019b54: 94 10 00 1a mov %i2, %o2
{
*location_p = OBJECTS_ERROR;
2019b58: 82 10 20 01 mov 1, %g1
2019b5c: c2 26 80 00 st %g1, [ %i2 ]
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
2019b60: 90 10 20 00 clr %o0
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
2019b64: 82 10 3f ff mov -1, %g1
2019b68: c2 26 c0 00 st %g1, [ %i3 ]
return 0;
}
2019b6c: 81 c7 e0 08 ret
2019b70: 91 e8 00 08 restore %g0, %o0, %o0
{
Objects_Control *object;
Objects_Id next_id;
if ( !information )
return NULL;
2019b74: 10 bf ff ef b 2019b30 <_Objects_Get_next+0x68>
2019b78: 90 10 20 00 clr %o0
0201aaec <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201aaec: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
201aaf0: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201aaf4: 92 22 40 02 sub %o1, %g2, %o1
201aaf8: 92 02 60 01 inc %o1
if ( information->maximum >= index ) {
201aafc: 80 a2 40 01 cmp %o1, %g1
201ab00: 18 80 00 09 bgu 201ab24 <_Objects_Get_no_protection+0x38>
201ab04: 93 2a 60 02 sll %o1, 2, %o1
if ( (the_object = information->local_table[ index ]) != NULL ) {
201ab08: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
201ab0c: d0 00 40 09 ld [ %g1 + %o1 ], %o0
201ab10: 80 a2 20 00 cmp %o0, 0
201ab14: 02 80 00 05 be 201ab28 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
201ab18: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
201ab1c: 81 c3 e0 08 retl
201ab20: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
201ab24: 82 10 20 01 mov 1, %g1
return NULL;
201ab28: 90 10 20 00 clr %o0
}
201ab2c: 81 c3 e0 08 retl
201ab30: c2 22 80 00 st %g1, [ %o2 ]
0200fe3c <_Objects_Id_to_name>:
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
200fe3c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200fe40: 80 a6 20 00 cmp %i0, 0
200fe44: 12 80 00 06 bne 200fe5c <_Objects_Id_to_name+0x20>
200fe48: 83 36 20 18 srl %i0, 0x18, %g1
200fe4c: 03 00 80 bf sethi %hi(0x202fc00), %g1
200fe50: c2 00 63 a0 ld [ %g1 + 0x3a0 ], %g1 ! 202ffa0 <_Per_CPU_Information+0x10>
200fe54: f0 00 60 08 ld [ %g1 + 8 ], %i0
200fe58: 83 36 20 18 srl %i0, 0x18, %g1
200fe5c: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200fe60: 84 00 7f ff add %g1, -1, %g2
200fe64: 80 a0 a0 02 cmp %g2, 2
200fe68: 18 80 00 18 bgu 200fec8 <_Objects_Id_to_name+0x8c>
200fe6c: 83 28 60 02 sll %g1, 2, %g1
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
200fe70: 05 00 80 bf sethi %hi(0x202fc00), %g2
200fe74: 84 10 a0 a4 or %g2, 0xa4, %g2 ! 202fca4 <_Objects_Information_table>
200fe78: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200fe7c: 80 a0 60 00 cmp %g1, 0
200fe80: 02 80 00 12 be 200fec8 <_Objects_Id_to_name+0x8c>
200fe84: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200fe88: 85 28 a0 02 sll %g2, 2, %g2
200fe8c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
200fe90: 80 a2 20 00 cmp %o0, 0
200fe94: 02 80 00 0d be 200fec8 <_Objects_Id_to_name+0x8c> <== NEVER TAKEN
200fe98: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
200fe9c: 7f ff ff cb call 200fdc8 <_Objects_Get>
200fea0: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
200fea4: 80 a2 20 00 cmp %o0, 0
200fea8: 02 80 00 08 be 200fec8 <_Objects_Id_to_name+0x8c>
200feac: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
200feb0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
200feb4: b0 10 20 00 clr %i0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200feb8: 40 00 03 f8 call 2010e98 <_Thread_Enable_dispatch>
200febc: c2 26 40 00 st %g1, [ %i1 ]
200fec0: 81 c7 e0 08 ret
200fec4: 81 e8 00 00 restore
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
200fec8: 81 c7 e0 08 ret
200fecc: 91 e8 20 03 restore %g0, 3, %o0
020098a4 <_Objects_Shrink_information>:
#include <rtems/score/isr.h>
void _Objects_Shrink_information(
Objects_Information *information
)
{
20098a4: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
20098a8: f8 16 20 0a lduh [ %i0 + 0xa ], %i4
block_count = (information->maximum - index_base) /
20098ac: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3
20098b0: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
20098b4: 92 10 00 1b mov %i3, %o1
20098b8: 40 00 3a 99 call 201831c <.udiv>
20098bc: 90 22 00 1c sub %o0, %i4, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20098c0: 80 a2 20 00 cmp %o0, 0
20098c4: 02 80 00 36 be 200999c <_Objects_Shrink_information+0xf8> <== NEVER TAKEN
20098c8: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
20098cc: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
20098d0: c2 01 00 00 ld [ %g4 ], %g1
20098d4: 80 a6 c0 01 cmp %i3, %g1
20098d8: 02 80 00 0f be 2009914 <_Objects_Shrink_information+0x70> <== NEVER TAKEN
20098dc: 82 10 20 00 clr %g1
20098e0: 10 80 00 07 b 20098fc <_Objects_Shrink_information+0x58>
20098e4: ba 10 20 04 mov 4, %i5
20098e8: c4 01 00 1d ld [ %g4 + %i5 ], %g2
20098ec: 80 a6 c0 02 cmp %i3, %g2
20098f0: 02 80 00 0a be 2009918 <_Objects_Shrink_information+0x74>
20098f4: 86 07 60 04 add %i5, 4, %g3
20098f8: ba 10 00 03 mov %g3, %i5
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20098fc: 82 00 60 01 inc %g1
2009900: 80 a0 40 08 cmp %g1, %o0
2009904: 12 bf ff f9 bne 20098e8 <_Objects_Shrink_information+0x44>
2009908: b8 07 00 1b add %i4, %i3, %i4
200990c: 81 c7 e0 08 ret
2009910: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
2009914: ba 10 20 00 clr %i5 <== NOT EXECUTED
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2009918: 35 00 00 3f sethi %hi(0xfc00), %i2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200991c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
2009920: 10 80 00 05 b 2009934 <_Objects_Shrink_information+0x90>
2009924: b4 16 a3 ff or %i2, 0x3ff, %i2
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
2009928: 90 96 e0 00 orcc %i3, 0, %o0
200992c: 22 80 00 12 be,a 2009974 <_Objects_Shrink_information+0xd0>
2009930: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2009934: c2 02 20 08 ld [ %o0 + 8 ], %g1
2009938: 82 08 40 1a and %g1, %i2, %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
200993c: 80 a0 40 1c cmp %g1, %i4
2009940: 0a bf ff fa bcs 2009928 <_Objects_Shrink_information+0x84>
2009944: f6 02 00 00 ld [ %o0 ], %i3
(index < (index_base + information->allocation_size))) {
2009948: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
200994c: 84 07 00 02 add %i4, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2009950: 80 a0 40 02 cmp %g1, %g2
2009954: 3a bf ff f6 bcc,a 200992c <_Objects_Shrink_information+0x88>
2009958: 90 96 e0 00 orcc %i3, 0, %o0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
200995c: 40 00 0e 9e call 200d3d4 <_Chain_Extract>
2009960: 01 00 00 00 nop
}
}
while ( the_object );
2009964: 90 96 e0 00 orcc %i3, 0, %o0
2009968: 32 bf ff f4 bne,a 2009938 <_Objects_Shrink_information+0x94><== ALWAYS TAKEN
200996c: c2 02 20 08 ld [ %o0 + 8 ], %g1
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
2009970: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
2009974: 40 00 07 bc call 200b864 <_Workspace_Free>
2009978: d0 00 40 1d ld [ %g1 + %i5 ], %o0
information->object_blocks[ block ] = NULL;
200997c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
2009980: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
2009984: c0 20 40 1d clr [ %g1 + %i5 ]
information->inactive_per_block[ block ] = 0;
2009988: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
200998c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
2009990: c0 20 c0 1d clr [ %g3 + %i5 ]
information->inactive -= information->allocation_size;
2009994: 82 20 80 01 sub %g2, %g1, %g1
2009998: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
200999c: 81 c7 e0 08 ret
20099a0: 81 e8 00 00 restore
0200a8e8 <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200a8e8: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200a8ec: 80 a6 60 00 cmp %i1, 0
200a8f0: 02 80 00 4c be 200aa20 <_RBTree_Extract_unprotected+0x138>
200a8f4: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200a8f8: c2 06 20 08 ld [ %i0 + 8 ], %g1
200a8fc: 80 a0 40 19 cmp %g1, %i1
200a900: 02 80 00 56 be 200aa58 <_RBTree_Extract_unprotected+0x170>
200a904: 90 10 00 19 mov %i1, %o0
the_rbtree->first[RBT_LEFT] = next;
}
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200a908: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200a90c: 80 a0 40 19 cmp %g1, %i1
200a910: 02 80 00 56 be 200aa68 <_RBTree_Extract_unprotected+0x180>
200a914: 90 10 00 19 mov %i1, %o0
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200a918: fa 06 60 04 ld [ %i1 + 4 ], %i5
200a91c: 80 a7 60 00 cmp %i5, 0
200a920: 22 80 00 5a be,a 200aa88 <_RBTree_Extract_unprotected+0x1a0>
200a924: f8 06 60 08 ld [ %i1 + 8 ], %i4
200a928: c2 06 60 08 ld [ %i1 + 8 ], %g1
200a92c: 80 a0 60 00 cmp %g1, 0
200a930: 32 80 00 05 bne,a 200a944 <_RBTree_Extract_unprotected+0x5c>
200a934: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a938: 10 80 00 3c b 200aa28 <_RBTree_Extract_unprotected+0x140>
200a93c: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200a940: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a944: 80 a0 60 00 cmp %g1, 0
200a948: 32 bf ff fe bne,a 200a940 <_RBTree_Extract_unprotected+0x58>
200a94c: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200a950: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200a954: 80 a7 20 00 cmp %i4, 0
200a958: 02 80 00 48 be 200aa78 <_RBTree_Extract_unprotected+0x190>
200a95c: 01 00 00 00 nop
leaf->parent = target->parent;
200a960: c2 07 40 00 ld [ %i5 ], %g1
200a964: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200a968: c4 07 40 00 ld [ %i5 ], %g2
target->parent->child[dir] = leaf;
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200a96c: c2 06 40 00 ld [ %i1 ], %g1
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200a970: c8 00 a0 04 ld [ %g2 + 4 ], %g4
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200a974: c6 07 60 0c ld [ %i5 + 0xc ], %g3
dir = target != target->parent->child[0];
200a978: 88 1f 40 04 xor %i5, %g4, %g4
200a97c: 80 a0 00 04 cmp %g0, %g4
200a980: 88 40 20 00 addx %g0, 0, %g4
target->parent->child[dir] = leaf;
200a984: 89 29 20 02 sll %g4, 2, %g4
200a988: 84 00 80 04 add %g2, %g4, %g2
200a98c: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200a990: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a994: 84 18 80 19 xor %g2, %i1, %g2
200a998: 80 a0 00 02 cmp %g0, %g2
200a99c: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = target;
200a9a0: 85 28 a0 02 sll %g2, 2, %g2
200a9a4: 82 00 40 02 add %g1, %g2, %g1
200a9a8: fa 20 60 04 st %i5, [ %g1 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200a9ac: c2 06 60 08 ld [ %i1 + 8 ], %g1
200a9b0: c2 27 60 08 st %g1, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200a9b4: c2 06 60 08 ld [ %i1 + 8 ], %g1
200a9b8: 80 a0 60 00 cmp %g1, 0
200a9bc: 32 80 00 02 bne,a 200a9c4 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN
200a9c0: fa 20 40 00 st %i5, [ %g1 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200a9c4: c2 06 60 04 ld [ %i1 + 4 ], %g1
200a9c8: c2 27 60 04 st %g1, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200a9cc: c2 06 60 04 ld [ %i1 + 4 ], %g1
200a9d0: 80 a0 60 00 cmp %g1, 0
200a9d4: 32 80 00 02 bne,a 200a9dc <_RBTree_Extract_unprotected+0xf4>
200a9d8: fa 20 40 00 st %i5, [ %g1 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200a9dc: c4 06 40 00 ld [ %i1 ], %g2
target->color = the_node->color;
200a9e0: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200a9e4: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200a9e8: c2 27 60 0c st %g1, [ %i5 + 0xc ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200a9ec: 80 a0 e0 00 cmp %g3, 0
200a9f0: 32 80 00 06 bne,a 200aa08 <_RBTree_Extract_unprotected+0x120>
200a9f4: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200a9f8: 80 a7 20 00 cmp %i4, 0
200a9fc: 32 80 00 02 bne,a 200aa04 <_RBTree_Extract_unprotected+0x11c>
200aa00: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200aa04: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200aa08: c0 26 60 08 clr [ %i1 + 8 ]
200aa0c: c0 26 60 04 clr [ %i1 + 4 ]
200aa10: 80 a0 60 00 cmp %g1, 0
200aa14: 02 80 00 03 be 200aa20 <_RBTree_Extract_unprotected+0x138>
200aa18: c0 26 40 00 clr [ %i1 ]
200aa1c: c0 20 60 0c clr [ %g1 + 0xc ]
200aa20: 81 c7 e0 08 ret
200aa24: 81 e8 00 00 restore
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
leaf->parent = the_node->parent;
200aa28: c2 06 40 00 ld [ %i1 ], %g1
200aa2c: c2 27 00 00 st %g1, [ %i4 ]
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200aa30: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200aa34: c6 06 60 0c ld [ %i1 + 0xc ], %g3
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200aa38: c4 00 60 04 ld [ %g1 + 4 ], %g2
200aa3c: 84 18 80 19 xor %g2, %i1, %g2
200aa40: 80 a0 00 02 cmp %g0, %g2
200aa44: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = leaf;
200aa48: 85 28 a0 02 sll %g2, 2, %g2
200aa4c: 82 00 40 02 add %g1, %g2, %g1
200aa50: 10 bf ff e7 b 200a9ec <_RBTree_Extract_unprotected+0x104>
200aa54: f8 20 60 04 st %i4, [ %g1 + 4 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_RIGHT );
200aa58: 40 00 00 eb call 200ae04 <_RBTree_Next_unprotected>
200aa5c: 92 10 20 01 mov 1, %o1
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
RBTree_Node *next;
next = _RBTree_Successor_unprotected(the_node);
the_rbtree->first[RBT_LEFT] = next;
200aa60: 10 bf ff aa b 200a908 <_RBTree_Extract_unprotected+0x20>
200aa64: d0 26 20 08 st %o0, [ %i0 + 8 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_LEFT );
200aa68: 40 00 00 e7 call 200ae04 <_RBTree_Next_unprotected>
200aa6c: 92 10 20 00 clr %o1
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
RBTree_Node *previous;
previous = _RBTree_Predecessor_unprotected(the_node);
the_rbtree->first[RBT_RIGHT] = previous;
200aa70: 10 bf ff aa b 200a918 <_RBTree_Extract_unprotected+0x30>
200aa74: d0 26 20 0c st %o0, [ %i0 + 0xc ]
leaf = target->child[RBT_LEFT];
if(leaf) {
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200aa78: 7f ff fe d3 call 200a5c4 <_RBTree_Extract_validate_unprotected>
200aa7c: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200aa80: 10 bf ff bb b 200a96c <_RBTree_Extract_unprotected+0x84>
200aa84: c4 07 40 00 ld [ %i5 ], %g2
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
200aa88: 80 a7 20 00 cmp %i4, 0
200aa8c: 32 bf ff e8 bne,a 200aa2c <_RBTree_Extract_unprotected+0x144>
200aa90: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200aa94: 7f ff fe cc call 200a5c4 <_RBTree_Extract_validate_unprotected>
200aa98: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200aa9c: 10 bf ff e6 b 200aa34 <_RBTree_Extract_unprotected+0x14c>
200aaa0: c2 06 40 00 ld [ %i1 ], %g1
0200a5c4 <_RBTree_Extract_validate_unprotected>:
)
{
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
200a5c4: c2 02 00 00 ld [ %o0 ], %g1
if(!parent->parent) return;
200a5c8: c4 00 40 00 ld [ %g1 ], %g2
200a5cc: 80 a0 a0 00 cmp %g2, 0
200a5d0: 02 80 00 3f be 200a6cc <_RBTree_Extract_validate_unprotected+0x108>
200a5d4: 01 00 00 00 nop
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200a5d8: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a5dc: 80 a2 00 02 cmp %o0, %g2
200a5e0: 22 80 00 02 be,a 200a5e8 <_RBTree_Extract_validate_unprotected+0x24>
200a5e4: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a5e8: c6 02 20 0c ld [ %o0 + 0xc ], %g3
200a5ec: 80 a0 e0 01 cmp %g3, 1
200a5f0: 02 80 00 32 be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4>
200a5f4: 9a 10 20 01 mov 1, %o5
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
200a5f8: c6 00 40 00 ld [ %g1 ], %g3
200a5fc: 80 a0 e0 00 cmp %g3, 0
200a600: 02 80 00 2e be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4>
200a604: 80 a0 a0 00 cmp %g2, 0
200a608: 22 80 00 07 be,a 200a624 <_RBTree_Extract_validate_unprotected+0x60><== NEVER TAKEN
200a60c: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED
200a610: c8 00 a0 0c ld [ %g2 + 0xc ], %g4
200a614: 80 a1 20 01 cmp %g4, 1
200a618: 22 80 00 63 be,a 200a7a4 <_RBTree_Extract_validate_unprotected+0x1e0>
200a61c: d8 00 60 04 ld [ %g1 + 4 ], %o4
_RBTree_Rotate(parent, dir);
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200a620: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200a624: 80 a0 e0 00 cmp %g3, 0
200a628: 22 80 00 07 be,a 200a644 <_RBTree_Extract_validate_unprotected+0x80>
200a62c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a630: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200a634: 80 a0 e0 01 cmp %g3, 1
200a638: 22 80 00 29 be,a 200a6dc <_RBTree_Extract_validate_unprotected+0x118>
200a63c: c6 00 60 04 ld [ %g1 + 4 ], %g3
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
200a640: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a644: 80 a0 e0 00 cmp %g3, 0
200a648: 22 80 00 07 be,a 200a664 <_RBTree_Extract_validate_unprotected+0xa0>
200a64c: da 20 a0 0c st %o5, [ %g2 + 0xc ]
200a650: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200a654: 80 a0 e0 01 cmp %g3, 1
200a658: 22 80 00 21 be,a 200a6dc <_RBTree_Extract_validate_unprotected+0x118>
200a65c: c6 00 60 04 ld [ %g1 + 4 ], %g3
sibling->color = RBT_RED;
200a660: da 20 a0 0c st %o5, [ %g2 + 0xc ]
200a664: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200a668: 80 a0 a0 01 cmp %g2, 1
200a66c: 22 80 00 99 be,a 200a8d0 <_RBTree_Extract_validate_unprotected+0x30c>
200a670: c0 20 60 0c clr [ %g1 + 0xc ]
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
200a674: c6 00 40 00 ld [ %g1 ], %g3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a678: 80 a0 e0 00 cmp %g3, 0
200a67c: 02 80 00 6c be 200a82c <_RBTree_Extract_validate_unprotected+0x268><== NEVER TAKEN
200a680: 90 10 00 01 mov %g1, %o0
if(!(the_node->parent->parent)) return NULL;
200a684: c4 00 c0 00 ld [ %g3 ], %g2
200a688: 80 a0 a0 00 cmp %g2, 0
200a68c: 02 80 00 69 be 200a830 <_RBTree_Extract_validate_unprotected+0x26c>
200a690: 84 10 20 00 clr %g2
if(the_node == the_node->parent->child[RBT_LEFT])
200a694: c4 00 e0 04 ld [ %g3 + 4 ], %g2
200a698: 80 a0 40 02 cmp %g1, %g2
200a69c: 22 80 00 0e be,a 200a6d4 <_RBTree_Extract_validate_unprotected+0x110>
200a6a0: c4 00 e0 08 ld [ %g3 + 8 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a6a4: 82 10 00 03 mov %g3, %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a6a8: c6 02 20 0c ld [ %o0 + 0xc ], %g3
200a6ac: 80 a0 e0 01 cmp %g3, 1
200a6b0: 32 bf ff d3 bne,a 200a5fc <_RBTree_Extract_validate_unprotected+0x38><== ALWAYS TAKEN
200a6b4: c6 00 40 00 ld [ %g1 ], %g3
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a6b8: c2 02 00 00 ld [ %o0 ], %g1
200a6bc: c2 00 40 00 ld [ %g1 ], %g1
200a6c0: 80 a0 60 00 cmp %g1, 0
200a6c4: 02 80 00 5f be 200a840 <_RBTree_Extract_validate_unprotected+0x27c>
200a6c8: 01 00 00 00 nop
200a6cc: 81 c3 e0 08 retl
200a6d0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a6d4: 10 bf ff f5 b 200a6a8 <_RBTree_Extract_validate_unprotected+0xe4>
200a6d8: 82 10 00 03 mov %g3, %g1
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
200a6dc: 86 1a 00 03 xor %o0, %g3, %g3
200a6e0: 80 a0 00 03 cmp %g0, %g3
200a6e4: 9a 40 20 00 addx %g0, 0, %o5
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a6e8: 86 1b 60 01 xor %o5, 1, %g3
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
200a6ec: 87 28 e0 02 sll %g3, 2, %g3
200a6f0: 88 00 80 03 add %g2, %g3, %g4
200a6f4: c8 01 20 04 ld [ %g4 + 4 ], %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a6f8: 80 a1 20 00 cmp %g4, 0
200a6fc: 22 80 00 07 be,a 200a718 <_RBTree_Extract_validate_unprotected+0x154>
200a700: 9b 2b 60 02 sll %o5, 2, %o5
200a704: d8 01 20 0c ld [ %g4 + 0xc ], %o4
200a708: 80 a3 20 01 cmp %o4, 1
200a70c: 22 80 00 4f be,a 200a848 <_RBTree_Extract_validate_unprotected+0x284>
200a710: d6 00 60 0c ld [ %g1 + 0xc ], %o3
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
200a714: 9b 2b 60 02 sll %o5, 2, %o5
200a718: 98 00 80 0d add %g2, %o5, %o4
200a71c: c8 03 20 04 ld [ %o4 + 4 ], %g4
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
sibling->color = RBT_RED;
200a720: 96 10 20 01 mov 1, %o3
200a724: d6 20 a0 0c st %o3, [ %g2 + 0xc ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a728: 80 a1 20 00 cmp %g4, 0
200a72c: 02 80 00 15 be 200a780 <_RBTree_Extract_validate_unprotected+0x1bc><== NEVER TAKEN
200a730: c0 21 20 0c clr [ %g4 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a734: 96 01 00 03 add %g4, %g3, %o3
200a738: d4 02 e0 04 ld [ %o3 + 4 ], %o2
200a73c: d4 23 20 04 st %o2, [ %o4 + 4 ]
if (c->child[dir])
200a740: d8 02 e0 04 ld [ %o3 + 4 ], %o4
200a744: 80 a3 20 00 cmp %o4, 0
200a748: 32 80 00 02 bne,a 200a750 <_RBTree_Extract_validate_unprotected+0x18c>
200a74c: c4 23 00 00 st %g2, [ %o4 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a750: d8 00 80 00 ld [ %g2 ], %o4
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200a754: 96 01 00 03 add %g4, %g3, %o3
200a758: c4 22 e0 04 st %g2, [ %o3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a75c: d6 03 20 04 ld [ %o4 + 4 ], %o3
c->parent = the_node->parent;
200a760: d8 21 00 00 st %o4, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a764: 96 18 80 0b xor %g2, %o3, %o3
c->parent = the_node->parent;
the_node->parent = c;
200a768: c8 20 80 00 st %g4, [ %g2 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a76c: 80 a0 00 0b cmp %g0, %o3
200a770: 84 40 20 00 addx %g0, 0, %g2
200a774: 85 28 a0 02 sll %g2, 2, %g2
200a778: 98 03 00 02 add %o4, %g2, %o4
200a77c: c8 23 20 04 st %g4, [ %o4 + 4 ]
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
200a780: c8 00 60 0c ld [ %g1 + 0xc ], %g4
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
200a784: 84 00 40 03 add %g1, %g3, %g2
200a788: c4 00 a0 04 ld [ %g2 + 4 ], %g2
}
sibling->color = parent->color;
200a78c: c8 20 a0 0c st %g4, [ %g2 + 0xc ]
200a790: 88 00 80 03 add %g2, %g3, %g4
200a794: c8 01 20 04 ld [ %g4 + 4 ], %g4
parent->color = RBT_BLACK;
200a798: c0 20 60 0c clr [ %g1 + 0xc ]
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
200a79c: 10 80 00 33 b 200a868 <_RBTree_Extract_validate_unprotected+0x2a4>
200a7a0: c0 21 20 0c clr [ %g4 + 0xc ]
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
200a7a4: c8 20 60 0c st %g4, [ %g1 + 0xc ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200a7a8: 88 1b 00 08 xor %o4, %o0, %g4
200a7ac: 80 a0 00 04 cmp %g0, %g4
200a7b0: 94 40 20 00 addx %g0, 0, %o2
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a7b4: 96 1a a0 01 xor %o2, 1, %o3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a7b8: 97 2a e0 02 sll %o3, 2, %o3
200a7bc: 98 00 40 0b add %g1, %o3, %o4
200a7c0: c8 03 20 04 ld [ %o4 + 4 ], %g4
200a7c4: 80 a1 20 00 cmp %g4, 0
200a7c8: 02 80 00 1c be 200a838 <_RBTree_Extract_validate_unprotected+0x274><== NEVER TAKEN
200a7cc: c0 20 a0 0c clr [ %g2 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a7d0: 95 2a a0 02 sll %o2, 2, %o2
200a7d4: 84 01 00 0a add %g4, %o2, %g2
200a7d8: d2 00 a0 04 ld [ %g2 + 4 ], %o1
200a7dc: d2 23 20 04 st %o1, [ %o4 + 4 ]
if (c->child[dir])
200a7e0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
200a7e4: 80 a0 a0 00 cmp %g2, 0
200a7e8: 02 80 00 04 be 200a7f8 <_RBTree_Extract_validate_unprotected+0x234><== NEVER TAKEN
200a7ec: 94 01 00 0a add %g4, %o2, %o2
c->child[dir]->parent = the_node;
200a7f0: c2 20 80 00 st %g1, [ %g2 ]
200a7f4: c6 00 40 00 ld [ %g1 ], %g3
c->child[dir] = the_node;
200a7f8: c2 22 a0 04 st %g1, [ %o2 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a7fc: c4 00 e0 04 ld [ %g3 + 4 ], %g2
c->parent = the_node->parent;
200a800: c6 21 00 00 st %g3, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a804: 84 18 40 02 xor %g1, %g2, %g2
200a808: 80 a0 00 02 cmp %g0, %g2
200a80c: 84 40 20 00 addx %g0, 0, %g2
200a810: 85 28 a0 02 sll %g2, 2, %g2
200a814: 96 00 40 0b add %g1, %o3, %o3
200a818: 86 00 c0 02 add %g3, %g2, %g3
c->parent = the_node->parent;
the_node->parent = c;
200a81c: c8 20 40 00 st %g4, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a820: c8 20 e0 04 st %g4, [ %g3 + 4 ]
200a824: 10 bf ff 7f b 200a620 <_RBTree_Extract_validate_unprotected+0x5c>
200a828: c4 02 e0 04 ld [ %o3 + 4 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a82c: 84 10 20 00 clr %g2 <== NOT EXECUTED
200a830: 10 bf ff 9e b 200a6a8 <_RBTree_Extract_validate_unprotected+0xe4>
200a834: 82 10 00 03 mov %g3, %g1
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a838: 10 bf ff 7a b 200a620 <_RBTree_Extract_validate_unprotected+0x5c><== NOT EXECUTED
200a83c: 84 10 20 00 clr %g2 <== NOT EXECUTED
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a840: 81 c3 e0 08 retl
200a844: c0 22 20 0c clr [ %o0 + 0xc ]
200a848: 98 00 40 03 add %g1, %g3, %o4
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
200a84c: d6 20 a0 0c st %o3, [ %g2 + 0xc ]
parent->color = RBT_BLACK;
200a850: c0 20 60 0c clr [ %g1 + 0xc ]
200a854: c4 03 20 04 ld [ %o4 + 4 ], %g2
200a858: 80 a0 a0 00 cmp %g2, 0
200a85c: 02 bf ff 97 be 200a6b8 <_RBTree_Extract_validate_unprotected+0xf4><== NEVER TAKEN
200a860: c0 21 20 0c clr [ %g4 + 0xc ]
200a864: 9b 2b 60 02 sll %o5, 2, %o5
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a868: 88 00 80 0d add %g2, %o5, %g4
200a86c: d8 01 20 04 ld [ %g4 + 4 ], %o4
200a870: 86 00 40 03 add %g1, %g3, %g3
200a874: d8 20 e0 04 st %o4, [ %g3 + 4 ]
if (c->child[dir])
200a878: c6 01 20 04 ld [ %g4 + 4 ], %g3
200a87c: 80 a0 e0 00 cmp %g3, 0
200a880: 32 80 00 02 bne,a 200a888 <_RBTree_Extract_validate_unprotected+0x2c4>
200a884: c2 20 c0 00 st %g1, [ %g3 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a888: c6 00 40 00 ld [ %g1 ], %g3
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200a88c: 9a 00 80 0d add %g2, %o5, %o5
200a890: c2 23 60 04 st %g1, [ %o5 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a894: c8 00 e0 04 ld [ %g3 + 4 ], %g4
c->parent = the_node->parent;
200a898: c6 20 80 00 st %g3, [ %g2 ]
the_node->parent = c;
200a89c: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a8a0: 88 18 40 04 xor %g1, %g4, %g4
200a8a4: 80 a0 00 04 cmp %g0, %g4
200a8a8: 82 40 20 00 addx %g0, 0, %g1
200a8ac: 83 28 60 02 sll %g1, 2, %g1
200a8b0: 86 00 c0 01 add %g3, %g1, %g3
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a8b4: c2 02 00 00 ld [ %o0 ], %g1
200a8b8: c4 20 e0 04 st %g2, [ %g3 + 4 ]
200a8bc: c2 00 40 00 ld [ %g1 ], %g1
200a8c0: 80 a0 60 00 cmp %g1, 0
200a8c4: 12 bf ff 82 bne 200a6cc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN
200a8c8: 01 00 00 00 nop
200a8cc: 30 bf ff dd b,a 200a840 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED
200a8d0: c2 02 00 00 ld [ %o0 ], %g1
200a8d4: c2 00 40 00 ld [ %g1 ], %g1
200a8d8: 80 a0 60 00 cmp %g1, 0
200a8dc: 12 bf ff 7c bne 200a6cc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN
200a8e0: 01 00 00 00 nop
200a8e4: 30 bf ff d7 b,a 200a840 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED
0200b4dc <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
RBTree_Node *search_node
)
{
200b4dc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
200b4e0: 7f ff e1 ed call 2003c94 <sparc_disable_interrupts>
200b4e4: b8 10 00 18 mov %i0, %i4
200b4e8: b6 10 00 08 mov %o0, %i3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
200b4ec: fa 06 20 04 ld [ %i0 + 4 ], %i5
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
200b4f0: 80 a7 60 00 cmp %i5, 0
200b4f4: 02 80 00 15 be 200b548 <_RBTree_Find+0x6c> <== NEVER TAKEN
200b4f8: b0 10 20 00 clr %i0
compare_result = the_rbtree->compare_function(the_node, iter_node);
200b4fc: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
200b500: 92 10 00 1d mov %i5, %o1
200b504: 9f c0 40 00 call %g1
200b508: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
200b50c: 83 3a 20 1f sra %o0, 0x1f, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
200b510: 80 a2 20 00 cmp %o0, 0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
200b514: 82 20 40 08 sub %g1, %o0, %g1
200b518: 83 30 60 1f srl %g1, 0x1f, %g1
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200b51c: 83 28 60 02 sll %g1, 2, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
200b520: 12 80 00 06 bne 200b538 <_RBTree_Find+0x5c>
200b524: 82 07 40 01 add %i5, %g1, %g1
found = iter_node;
if ( the_rbtree->is_unique )
200b528: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
200b52c: 80 a0 a0 00 cmp %g2, 0
200b530: 12 80 00 0a bne 200b558 <_RBTree_Find+0x7c>
200b534: b0 10 00 1d mov %i5, %i0
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200b538: fa 00 60 04 ld [ %g1 + 4 ], %i5
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
200b53c: 80 a7 60 00 cmp %i5, 0
200b540: 32 bf ff f0 bne,a 200b500 <_RBTree_Find+0x24>
200b544: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
200b548: 7f ff e1 d7 call 2003ca4 <sparc_enable_interrupts>
200b54c: 90 10 00 1b mov %i3, %o0
return return_node;
}
200b550: 81 c7 e0 08 ret
200b554: 81 e8 00 00 restore
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
200b558: 7f ff e1 d3 call 2003ca4 <sparc_enable_interrupts>
200b55c: 90 10 00 1b mov %i3, %o0
return return_node;
}
200b560: 81 c7 e0 08 ret
200b564: 81 e8 00 00 restore
0200b948 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200b948: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200b94c: 80 a6 20 00 cmp %i0, 0
200b950: 02 80 00 0f be 200b98c <_RBTree_Initialize+0x44> <== NEVER TAKEN
200b954: 80 a6 e0 00 cmp %i3, 0
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200b958: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200b95c: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200b960: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200b964: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200b968: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b96c: 02 80 00 08 be 200b98c <_RBTree_Initialize+0x44> <== NEVER TAKEN
200b970: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert_unprotected(the_rbtree, next);
200b974: 92 10 00 1a mov %i2, %o1
200b978: 7f ff ff 0b call 200b5a4 <_RBTree_Insert_unprotected>
200b97c: 90 10 00 18 mov %i0, %o0
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200b980: b6 86 ff ff addcc %i3, -1, %i3
200b984: 12 bf ff fc bne 200b974 <_RBTree_Initialize+0x2c>
200b988: b4 06 80 1c add %i2, %i4, %i2
200b98c: 81 c7 e0 08 ret
200b990: 81 e8 00 00 restore
0200aac8 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200aac8: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
200aacc: 80 a6 60 00 cmp %i1, 0
200aad0: 02 80 00 9c be 200ad40 <_RBTree_Insert_unprotected+0x278>
200aad4: b8 10 00 18 mov %i0, %i4
RBTree_Node *iter_node = the_rbtree->root;
200aad8: fa 06 20 04 ld [ %i0 + 4 ], %i5
int compare_result;
if (!iter_node) { /* special case: first node inserted */
200aadc: 80 a7 60 00 cmp %i5, 0
200aae0: 32 80 00 05 bne,a 200aaf4 <_RBTree_Insert_unprotected+0x2c>
200aae4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
the_node->color = RBT_BLACK;
200aae8: 10 80 00 9a b 200ad50 <_RBTree_Insert_unprotected+0x288>
200aaec: c0 26 60 0c clr [ %i1 + 0xc ]
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
200aaf0: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
200aaf4: 92 10 00 1d mov %i5, %o1
200aaf8: 9f c0 40 00 call %g1
200aafc: 90 10 00 19 mov %i1, %o0
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200ab00: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200ab04: b6 38 00 08 xnor %g0, %o0, %i3
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200ab08: 80 a0 a0 00 cmp %g2, 0
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200ab0c: b7 36 e0 1f srl %i3, 0x1f, %i3
if (!iter_node->child[dir]) {
200ab10: 83 2e e0 02 sll %i3, 2, %g1
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200ab14: 02 80 00 05 be 200ab28 <_RBTree_Insert_unprotected+0x60>
200ab18: 82 07 40 01 add %i5, %g1, %g1
200ab1c: 80 a2 20 00 cmp %o0, 0
200ab20: 02 80 00 8a be 200ad48 <_RBTree_Insert_unprotected+0x280>
200ab24: 01 00 00 00 nop
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
200ab28: f0 00 60 04 ld [ %g1 + 4 ], %i0
200ab2c: 80 a6 20 00 cmp %i0, 0
200ab30: 32 bf ff f0 bne,a 200aaf0 <_RBTree_Insert_unprotected+0x28>
200ab34: ba 10 00 18 mov %i0, %i5
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
compare_result = the_rbtree->compare_function(
200ab38: c4 07 20 10 ld [ %i4 + 0x10 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200ab3c: b4 06 e0 02 add %i3, 2, %i2
200ab40: 87 2e a0 02 sll %i2, 2, %g3
200ab44: d2 07 00 03 ld [ %i4 + %g3 ], %o1
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200ab48: c0 26 60 08 clr [ %i1 + 8 ]
200ab4c: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
200ab50: f2 20 60 04 st %i1, [ %g1 + 4 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200ab54: 82 10 20 01 mov 1, %g1
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
200ab58: fa 26 40 00 st %i5, [ %i1 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200ab5c: c2 26 60 0c st %g1, [ %i1 + 0xc ]
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
compare_result = the_rbtree->compare_function(
200ab60: 9f c0 80 00 call %g2
200ab64: 90 10 00 19 mov %i1, %o0
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
200ab68: 80 a6 e0 00 cmp %i3, 0
200ab6c: 12 80 00 10 bne 200abac <_RBTree_Insert_unprotected+0xe4>
200ab70: 80 a2 20 00 cmp %o0, 0
200ab74: 06 80 00 10 bl 200abb4 <_RBTree_Insert_unprotected+0xec>
200ab78: b5 2e a0 02 sll %i2, 2, %i2
200ab7c: c2 06 40 00 ld [ %i1 ], %g1
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
g->color = RBT_RED;
200ab80: b4 10 20 01 mov 1, %i2
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200ab84: c4 00 40 00 ld [ %g1 ], %g2
200ab88: 86 90 a0 00 orcc %g2, 0, %g3
200ab8c: 22 80 00 06 be,a 200aba4 <_RBTree_Insert_unprotected+0xdc>
200ab90: c0 26 60 0c clr [ %i1 + 0xc ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200ab94: c8 00 60 0c ld [ %g1 + 0xc ], %g4
200ab98: 80 a1 20 01 cmp %g4, 1
200ab9c: 22 80 00 08 be,a 200abbc <_RBTree_Insert_unprotected+0xf4>
200aba0: f6 00 80 00 ld [ %g2 ], %i3
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200aba4: 81 c7 e0 08 ret
200aba8: 81 e8 00 00 restore
compare_result = the_rbtree->compare_function(
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
(dir && _RBTree_Is_greater(compare_result)) ) {
200abac: 04 bf ff f4 ble 200ab7c <_RBTree_Insert_unprotected+0xb4>
200abb0: b5 2e a0 02 sll %i2, 2, %i2
the_rbtree->first[dir] = the_node;
200abb4: 10 bf ff f2 b 200ab7c <_RBTree_Insert_unprotected+0xb4>
200abb8: f2 27 00 1a st %i1, [ %i4 + %i2 ]
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
200abbc: 80 a6 e0 00 cmp %i3, 0
200abc0: 02 80 00 0c be 200abf0 <_RBTree_Insert_unprotected+0x128> <== NEVER TAKEN
200abc4: c8 00 a0 04 ld [ %g2 + 4 ], %g4
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200abc8: 80 a1 00 01 cmp %g4, %g1
200abcc: 02 80 00 5b be 200ad38 <_RBTree_Insert_unprotected+0x270>
200abd0: ba 10 00 04 mov %g4, %i5
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200abd4: 80 a7 60 00 cmp %i5, 0
200abd8: 22 80 00 07 be,a 200abf4 <_RBTree_Insert_unprotected+0x12c>
200abdc: fa 00 60 04 ld [ %g1 + 4 ], %i5
200abe0: f8 07 60 0c ld [ %i5 + 0xc ], %i4
200abe4: 80 a7 20 01 cmp %i4, 1
200abe8: 22 80 00 4f be,a 200ad24 <_RBTree_Insert_unprotected+0x25c>
200abec: c0 20 60 0c clr [ %g1 + 0xc ]
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200abf0: fa 00 60 04 ld [ %g1 + 4 ], %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
200abf4: 88 18 40 04 xor %g1, %g4, %g4
200abf8: 80 a0 00 04 cmp %g0, %g4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200abfc: ba 1e 40 1d xor %i1, %i5, %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
200ac00: 88 40 20 00 addx %g0, 0, %g4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200ac04: 80 a0 00 1d cmp %g0, %i5
200ac08: ba 40 20 00 addx %g0, 0, %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200ac0c: 80 a7 40 04 cmp %i5, %g4
200ac10: 02 80 00 20 be 200ac90 <_RBTree_Insert_unprotected+0x1c8>
200ac14: 80 a0 00 04 cmp %g0, %g4
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200ac18: b6 60 3f ff subx %g0, -1, %i3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200ac1c: b7 2e e0 02 sll %i3, 2, %i3
200ac20: b6 00 40 1b add %g1, %i3, %i3
200ac24: fa 06 e0 04 ld [ %i3 + 4 ], %i5
200ac28: 80 a7 60 00 cmp %i5, 0
200ac2c: 02 80 00 16 be 200ac84 <_RBTree_Insert_unprotected+0x1bc> <== NEVER TAKEN
200ac30: b9 29 20 02 sll %g4, 2, %i4
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200ac34: 9e 07 40 1c add %i5, %i4, %o7
200ac38: da 03 e0 04 ld [ %o7 + 4 ], %o5
200ac3c: da 26 e0 04 st %o5, [ %i3 + 4 ]
if (c->child[dir])
200ac40: f6 03 e0 04 ld [ %o7 + 4 ], %i3
200ac44: 80 a6 e0 00 cmp %i3, 0
200ac48: 22 80 00 05 be,a 200ac5c <_RBTree_Insert_unprotected+0x194>
200ac4c: b6 07 40 1c add %i5, %i4, %i3
c->child[dir]->parent = the_node;
200ac50: c2 26 c0 00 st %g1, [ %i3 ]
200ac54: c4 00 40 00 ld [ %g1 ], %g2
c->child[dir] = the_node;
200ac58: b6 07 40 1c add %i5, %i4, %i3
200ac5c: c2 26 e0 04 st %g1, [ %i3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ac60: f6 00 a0 04 ld [ %g2 + 4 ], %i3
c->parent = the_node->parent;
200ac64: c4 27 40 00 st %g2, [ %i5 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ac68: b6 1e c0 01 xor %i3, %g1, %i3
c->parent = the_node->parent;
the_node->parent = c;
200ac6c: fa 20 40 00 st %i5, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ac70: 80 a0 00 1b cmp %g0, %i3
200ac74: 82 40 20 00 addx %g0, 0, %g1
200ac78: 83 28 60 02 sll %g1, 2, %g1
200ac7c: 84 00 80 01 add %g2, %g1, %g2
200ac80: fa 20 a0 04 st %i5, [ %g2 + 4 ]
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
200ac84: b2 06 40 1c add %i1, %i4, %i1
200ac88: f2 06 60 04 ld [ %i1 + 4 ], %i1
200ac8c: c2 06 40 00 ld [ %i1 ], %g1
}
the_node->parent->color = RBT_BLACK;
200ac90: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200ac94: 88 26 80 04 sub %i2, %g4, %g4
200ac98: ba 19 20 01 xor %g4, 1, %i5
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200ac9c: bb 2f 60 02 sll %i5, 2, %i5
200aca0: ba 00 c0 1d add %g3, %i5, %i5
200aca4: c4 07 60 04 ld [ %i5 + 4 ], %g2
200aca8: 80 a0 a0 00 cmp %g2, 0
200acac: 02 bf ff b6 be 200ab84 <_RBTree_Insert_unprotected+0xbc> <== NEVER TAKEN
200acb0: f4 20 e0 0c st %i2, [ %g3 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200acb4: 89 29 20 02 sll %g4, 2, %g4
200acb8: 82 00 80 04 add %g2, %g4, %g1
200acbc: f8 00 60 04 ld [ %g1 + 4 ], %i4
200acc0: f8 27 60 04 st %i4, [ %i5 + 4 ]
if (c->child[dir])
200acc4: c2 00 60 04 ld [ %g1 + 4 ], %g1
200acc8: 80 a0 60 00 cmp %g1, 0
200accc: 32 80 00 02 bne,a 200acd4 <_RBTree_Insert_unprotected+0x20c>
200acd0: c6 20 40 00 st %g3, [ %g1 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200acd4: fa 00 c0 00 ld [ %g3 ], %i5
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200acd8: 88 00 80 04 add %g2, %g4, %g4
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
c->parent = the_node->parent;
200acdc: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200ace0: c6 21 20 04 st %g3, [ %g4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ace4: c8 07 60 04 ld [ %i5 + 4 ], %g4
c->parent = the_node->parent;
the_node->parent = c;
200ace8: c4 20 c0 00 st %g2, [ %g3 ]
200acec: c2 06 40 00 ld [ %i1 ], %g1
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200acf0: 86 18 c0 04 xor %g3, %g4, %g3
200acf4: 80 a0 00 03 cmp %g0, %g3
200acf8: 86 40 20 00 addx %g0, 0, %g3
200acfc: 87 28 e0 02 sll %g3, 2, %g3
200ad00: ba 07 40 03 add %i5, %g3, %i5
200ad04: c4 27 60 04 st %g2, [ %i5 + 4 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200ad08: c4 00 40 00 ld [ %g1 ], %g2
200ad0c: 86 90 a0 00 orcc %g2, 0, %g3
200ad10: 32 bf ff a2 bne,a 200ab98 <_RBTree_Insert_unprotected+0xd0><== ALWAYS TAKEN
200ad14: c8 00 60 0c ld [ %g1 + 0xc ], %g4
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200ad18: c0 26 60 0c clr [ %i1 + 0xc ] <== NOT EXECUTED
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200ad1c: 81 c7 e0 08 ret <== NOT EXECUTED
200ad20: 81 e8 00 00 restore <== NOT EXECUTED
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
200ad24: c0 27 60 0c clr [ %i5 + 0xc ]
g->color = RBT_RED;
200ad28: f8 20 a0 0c st %i4, [ %g2 + 0xc ]
200ad2c: 82 10 00 1b mov %i3, %g1
200ad30: 10 bf ff 95 b 200ab84 <_RBTree_Insert_unprotected+0xbc>
200ad34: b2 10 00 02 mov %g2, %i1
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
return the_node->parent->child[RBT_RIGHT];
200ad38: 10 bf ff a7 b 200abd4 <_RBTree_Insert_unprotected+0x10c>
200ad3c: fa 00 a0 08 ld [ %g2 + 8 ], %i5
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
if(!the_node) return (RBTree_Node*)-1;
200ad40: 81 c7 e0 08 ret
200ad44: 91 e8 3f ff restore %g0, -1, %o0
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200ad48: 81 c7 e0 08 ret
200ad4c: 91 e8 00 1d restore %g0, %i5, %o0
RBTree_Node *iter_node = the_rbtree->root;
int compare_result;
if (!iter_node) { /* special case: first node inserted */
the_node->color = RBT_BLACK;
the_rbtree->root = the_node;
200ad50: f2 26 20 04 st %i1, [ %i0 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
200ad54: f2 26 20 0c st %i1, [ %i0 + 0xc ]
200ad58: f2 26 20 08 st %i1, [ %i0 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200ad5c: f0 26 40 00 st %i0, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200ad60: c0 26 60 08 clr [ %i1 + 8 ]
200ad64: c0 26 60 04 clr [ %i1 + 4 ]
} /* while(iter_node) */
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
200ad68: 81 c7 e0 08 ret
200ad6c: 91 e8 20 00 restore %g0, 0, %o0
0200ada0 <_RBTree_Iterate_unprotected>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
200ada0: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200ada4: 80 a0 00 19 cmp %g0, %i1
200ada8: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200adac: 82 00 60 02 add %g1, 2, %g1
200adb0: 83 28 60 02 sll %g1, 2, %g1
200adb4: fa 06 00 01 ld [ %i0 + %g1 ], %i5
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200adb8: 80 a7 60 00 cmp %i5, 0
200adbc: 12 80 00 06 bne 200add4 <_RBTree_Iterate_unprotected+0x34><== ALWAYS TAKEN
200adc0: 94 10 00 1b mov %i3, %o2
200adc4: 30 80 00 0e b,a 200adfc <_RBTree_Iterate_unprotected+0x5c><== NOT EXECUTED
200adc8: 80 8f 20 ff btst 0xff, %i4
200adcc: 02 80 00 0c be 200adfc <_RBTree_Iterate_unprotected+0x5c> <== NEVER TAKEN
200add0: 94 10 00 1b mov %i3, %o2
stop = (*visitor)( current, dir, visitor_arg );
200add4: 90 10 00 1d mov %i5, %o0
200add8: 9f c6 80 00 call %i2
200addc: 92 10 00 19 mov %i1, %o1
current = _RBTree_Next_unprotected( current, dir );
200ade0: 92 10 00 19 mov %i1, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200ade4: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next_unprotected( current, dir );
200ade8: 40 00 00 07 call 200ae04 <_RBTree_Next_unprotected>
200adec: 90 10 00 1d mov %i5, %o0
{
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200adf0: ba 92 20 00 orcc %o0, 0, %i5
200adf4: 12 bf ff f5 bne 200adc8 <_RBTree_Iterate_unprotected+0x28>
200adf8: b8 1f 20 01 xor %i4, 1, %i4
200adfc: 81 c7 e0 08 ret
200ae00: 81 e8 00 00 restore
02008bec <_RTEMS_signal_Post_switch_hook>:
#include <rtems/score/thread.h>
#include <rtems/score/apiext.h>
#include <rtems/rtems/tasks.h>
static void _RTEMS_signal_Post_switch_hook( Thread_Control *executing )
{
2008bec: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
2008bf0: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
if ( !api )
2008bf4: 80 a7 60 00 cmp %i5, 0
2008bf8: 02 80 00 1e be 2008c70 <_RTEMS_signal_Post_switch_hook+0x84><== NEVER TAKEN
2008bfc: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
2008c00: 7f ff ea 2c call 20034b0 <sparc_disable_interrupts>
2008c04: 01 00 00 00 nop
signal_set = asr->signals_posted;
2008c08: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
2008c0c: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
2008c10: 7f ff ea 2c call 20034c0 <sparc_enable_interrupts>
2008c14: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
2008c18: 80 a7 20 00 cmp %i4, 0
2008c1c: 32 80 00 04 bne,a 2008c2c <_RTEMS_signal_Post_switch_hook+0x40>
2008c20: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
2008c24: 81 c7 e0 08 ret
2008c28: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008c2c: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
2008c30: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008c34: 94 07 bf fc add %fp, -4, %o2
2008c38: 37 00 00 3f sethi %hi(0xfc00), %i3
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
2008c3c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008c40: 40 00 01 07 call 200905c <rtems_task_mode>
2008c44: 92 16 e3 ff or %i3, 0x3ff, %o1
(*asr->handler)( signal_set );
2008c48: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2008c4c: 9f c0 40 00 call %g1
2008c50: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
2008c54: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008c58: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
2008c5c: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
2008c60: 92 16 e3 ff or %i3, 0x3ff, %o1
2008c64: 94 07 bf fc add %fp, -4, %o2
2008c68: 40 00 00 fd call 200905c <rtems_task_mode>
2008c6c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
2008c70: 81 c7 e0 08 ret
2008c74: 81 e8 00 00 restore
02007fa0 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
2007fa0: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
2007fa4: 03 00 80 70 sethi %hi(0x201c000), %g1
2007fa8: 82 10 60 64 or %g1, 0x64, %g1 ! 201c064 <Configuration_RTEMS_API>
2007fac: fa 00 60 2c ld [ %g1 + 0x2c ], %i5
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
2007fb0: 80 a7 60 00 cmp %i5, 0
2007fb4: 02 80 00 18 be 2008014 <_RTEMS_tasks_Initialize_user_tasks_body+0x74>
2007fb8: f6 00 60 28 ld [ %g1 + 0x28 ], %i3
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2007fbc: 80 a6 e0 00 cmp %i3, 0
2007fc0: 02 80 00 15 be 2008014 <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN
2007fc4: b8 10 20 00 clr %i4
return_value = rtems_task_create(
2007fc8: d4 07 60 04 ld [ %i5 + 4 ], %o2
2007fcc: d0 07 40 00 ld [ %i5 ], %o0
2007fd0: d2 07 60 08 ld [ %i5 + 8 ], %o1
2007fd4: d6 07 60 14 ld [ %i5 + 0x14 ], %o3
2007fd8: d8 07 60 0c ld [ %i5 + 0xc ], %o4
2007fdc: 7f ff ff 70 call 2007d9c <rtems_task_create>
2007fe0: 9a 07 bf fc add %fp, -4, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2007fe4: 94 92 20 00 orcc %o0, 0, %o2
2007fe8: 12 80 00 0d bne 200801c <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2007fec: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2007ff0: d4 07 60 18 ld [ %i5 + 0x18 ], %o2
2007ff4: 40 00 00 0e call 200802c <rtems_task_start>
2007ff8: d2 07 60 10 ld [ %i5 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2007ffc: 94 92 20 00 orcc %o0, 0, %o2
2008000: 12 80 00 07 bne 200801c <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2008004: b8 07 20 01 inc %i4
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2008008: 80 a7 00 1b cmp %i4, %i3
200800c: 12 bf ff ef bne 2007fc8 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN
2008010: ba 07 60 1c add %i5, 0x1c, %i5
2008014: 81 c7 e0 08 ret
2008018: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
200801c: 90 10 20 01 mov 1, %o0
2008020: 40 00 04 14 call 2009070 <_Internal_error_Occurred>
2008024: 92 10 20 01 mov 1, %o1
0200d11c <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200d11c: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
200d120: 80 a0 60 00 cmp %g1, 0
200d124: 22 80 00 0c be,a 200d154 <_RTEMS_tasks_Switch_extension+0x38>
200d128: c2 02 61 5c ld [ %o1 + 0x15c ], %g1
tvp->tval = *tvp->ptr;
200d12c: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200d130: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200d134: c8 00 80 00 ld [ %g2 ], %g4
200d138: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
200d13c: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200d140: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200d144: 80 a0 60 00 cmp %g1, 0
200d148: 32 bf ff fa bne,a 200d130 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN
200d14c: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200d150: c2 02 61 5c ld [ %o1 + 0x15c ], %g1
while (tvp) {
200d154: 80 a0 60 00 cmp %g1, 0
200d158: 02 80 00 0d be 200d18c <_RTEMS_tasks_Switch_extension+0x70>
200d15c: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200d160: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200d164: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200d168: c8 00 80 00 ld [ %g2 ], %g4
200d16c: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
200d170: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200d174: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200d178: 80 a0 60 00 cmp %g1, 0
200d17c: 32 bf ff fa bne,a 200d164 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN
200d180: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
200d184: 81 c3 e0 08 retl
200d188: 01 00 00 00 nop
200d18c: 81 c3 e0 08 retl
020370cc <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
20370cc: 9d e3 bf 98 save %sp, -104, %sp
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
20370d0: 13 00 81 96 sethi %hi(0x2065800), %o1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
20370d4: f6 06 20 40 ld [ %i0 + 0x40 ], %i3
20370d8: 90 07 bf f8 add %fp, -8, %o0
20370dc: 7f ff 45 f8 call 20088bc <_TOD_Get_with_nanoseconds>
20370e0: 92 12 63 90 or %o1, 0x390, %o1
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20370e4: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
20370e8: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
20370ec: 03 00 81 97 sethi %hi(0x2065c00), %g1
20370f0: 82 10 62 50 or %g1, 0x250, %g1 ! 2065e50 <_Per_CPU_Information>
20370f4: de 00 60 10 ld [ %g1 + 0x10 ], %o7
20370f8: ba a0 c0 1d subcc %g3, %i5, %i5
20370fc: b8 60 80 1c subx %g2, %i4, %i4
2037100: f8 3e 40 00 std %i4, [ %i1 ]
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2037104: 88 10 20 01 mov 1, %g4
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
2037108: 80 a3 c0 1b cmp %o7, %i3
203710c: 02 80 00 05 be 2037120 <_Rate_monotonic_Get_status+0x54>
2037110: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
2037114: b0 09 20 01 and %g4, 1, %i0
2037118: 81 c7 e0 08 ret
203711c: 81 e8 00 00 restore
2037120: d8 18 60 20 ldd [ %g1 + 0x20 ], %o4
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2037124: f0 1e 20 48 ldd [ %i0 + 0x48 ], %i0
2037128: 86 a0 c0 0d subcc %g3, %o5, %g3
203712c: 84 60 80 0c subx %g2, %o4, %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2037130: 9a 87 40 03 addcc %i5, %g3, %o5
2037134: 98 47 00 02 addx %i4, %g2, %o4
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2037138: 80 a6 00 0c cmp %i0, %o4
203713c: 14 bf ff f6 bg 2037114 <_Rate_monotonic_Get_status+0x48> <== NEVER TAKEN
2037140: 88 10 20 00 clr %g4
2037144: 02 80 00 09 be 2037168 <_Rate_monotonic_Get_status+0x9c>
2037148: 80 a6 40 0d cmp %i1, %o5
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
203714c: 9a a3 40 19 subcc %o5, %i1, %o5
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2037150: 88 10 20 01 mov 1, %g4
2037154: 98 63 00 18 subx %o4, %i0, %o4
}
2037158: b0 09 20 01 and %g4, 1, %i0
203715c: d8 3e 80 00 std %o4, [ %i2 ]
2037160: 81 c7 e0 08 ret
2037164: 81 e8 00 00 restore
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2037168: 28 bf ff fa bleu,a 2037150 <_Rate_monotonic_Get_status+0x84>
203716c: 9a a3 40 19 subcc %o5, %i1, %o5
return false;
2037170: 10 bf ff e9 b 2037114 <_Rate_monotonic_Get_status+0x48>
2037174: 88 10 20 00 clr %g4
0203751c <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
203751c: 9d e3 bf 98 save %sp, -104, %sp
2037520: 11 00 81 98 sethi %hi(0x2066000), %o0
2037524: 92 10 00 18 mov %i0, %o1
2037528: 90 12 20 74 or %o0, 0x74, %o0
203752c: 7f ff 47 b8 call 200940c <_Objects_Get>
2037530: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2037534: c2 07 bf fc ld [ %fp + -4 ], %g1
2037538: 80 a0 60 00 cmp %g1, 0
203753c: 12 80 00 16 bne 2037594 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
2037540: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2037544: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2037548: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
203754c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2037550: 80 88 80 01 btst %g2, %g1
2037554: 22 80 00 08 be,a 2037574 <_Rate_monotonic_Timeout+0x58>
2037558: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
203755c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2037560: c2 07 60 08 ld [ %i5 + 8 ], %g1
2037564: 80 a0 80 01 cmp %g2, %g1
2037568: 02 80 00 19 be 20375cc <_Rate_monotonic_Timeout+0xb0>
203756c: 13 04 01 ff sethi %hi(0x1007fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2037570: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2037574: 80 a0 60 01 cmp %g1, 1
2037578: 02 80 00 09 be 203759c <_Rate_monotonic_Timeout+0x80>
203757c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2037580: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2037584: 03 00 81 97 sethi %hi(0x2065c00), %g1
2037588: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 2065c40 <_Thread_Dispatch_disable_level>
--level;
203758c: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
2037590: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
2037594: 81 c7 e0 08 ret
2037598: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
203759c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
20375a0: 90 10 00 1d mov %i5, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20375a4: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20375a8: 7f ff ff 43 call 20372b4 <_Rate_monotonic_Initiate_statistics>
20375ac: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20375b0: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20375b4: 11 00 81 97 sethi %hi(0x2065c00), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20375b8: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20375bc: 90 12 20 dc or %o0, 0xdc, %o0
20375c0: 7f ff 4e bb call 200b0ac <_Watchdog_Insert>
20375c4: 92 07 60 10 add %i5, 0x10, %o1
20375c8: 30 bf ff ef b,a 2037584 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20375cc: 7f ff 4a 6e call 2009f84 <_Thread_Clear_state>
20375d0: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
20375d4: 10 bf ff f5 b 20375a8 <_Rate_monotonic_Timeout+0x8c>
20375d8: 90 10 00 1d mov %i5, %o0
02037178 <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
2037178: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
203717c: c4 06 20 58 ld [ %i0 + 0x58 ], %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2037180: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
2037184: 84 00 a0 01 inc %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2037188: 80 a0 60 04 cmp %g1, 4
203718c: 02 80 00 32 be 2037254 <_Rate_monotonic_Update_statistics+0xdc>
2037190: c4 26 20 58 st %g2, [ %i0 + 0x58 ]
stats->missed_count++;
/*
* Grab status for time statistics.
*/
valid_status =
2037194: 90 10 00 18 mov %i0, %o0
2037198: 92 07 bf f8 add %fp, -8, %o1
203719c: 7f ff ff cc call 20370cc <_Rate_monotonic_Get_status>
20371a0: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
20371a4: 80 8a 20 ff btst 0xff, %o0
20371a8: 02 80 00 21 be 203722c <_Rate_monotonic_Update_statistics+0xb4>
20371ac: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
20371b0: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
20371b4: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
20371b8: b6 87 40 03 addcc %i5, %g3, %i3
20371bc: b4 47 00 02 addx %i4, %g2, %i2
20371c0: 80 a0 40 02 cmp %g1, %g2
20371c4: 04 80 00 1c ble 2037234 <_Rate_monotonic_Update_statistics+0xbc>
20371c8: f4 3e 20 70 std %i2, [ %i0 + 0x70 ]
stats->min_cpu_time = executed;
20371cc: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
20371d0: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
20371d4: 80 a0 40 02 cmp %g1, %g2
20371d8: 26 80 00 05 bl,a 20371ec <_Rate_monotonic_Update_statistics+0x74><== NEVER TAKEN
20371dc: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
20371e0: 80 a0 40 02 cmp %g1, %g2
20371e4: 22 80 00 28 be,a 2037284 <_Rate_monotonic_Update_statistics+0x10c><== ALWAYS TAKEN
20371e8: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
20371ec: c4 1f bf f8 ldd [ %fp + -8 ], %g2
20371f0: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
20371f4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20371f8: b6 87 40 03 addcc %i5, %g3, %i3
20371fc: b4 47 00 02 addx %i4, %g2, %i2
2037200: 80 a0 40 02 cmp %g1, %g2
2037204: 14 80 00 1b bg 2037270 <_Rate_monotonic_Update_statistics+0xf8>
2037208: f4 3e 20 88 std %i2, [ %i0 + 0x88 ]
203720c: 80 a0 40 02 cmp %g1, %g2
2037210: 22 80 00 15 be,a 2037264 <_Rate_monotonic_Update_statistics+0xec><== ALWAYS TAKEN
2037214: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
2037218: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
203721c: 80 a0 40 02 cmp %g1, %g2
2037220: 16 80 00 1e bge 2037298 <_Rate_monotonic_Update_statistics+0x120><== ALWAYS TAKEN
2037224: 01 00 00 00 nop
stats->max_wall_time = since_last_period;
2037228: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
203722c: 81 c7 e0 08 ret
2037230: 81 e8 00 00 restore
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
2037234: 32 bf ff e8 bne,a 20371d4 <_Rate_monotonic_Update_statistics+0x5c><== NEVER TAKEN
2037238: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
203723c: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
2037240: 80 a0 40 03 cmp %g1, %g3
2037244: 28 bf ff e4 bleu,a 20371d4 <_Rate_monotonic_Update_statistics+0x5c>
2037248: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
203724c: 10 bf ff e1 b 20371d0 <_Rate_monotonic_Update_statistics+0x58>
2037250: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
*/
stats = &the_period->Statistics;
stats->count++;
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
stats->missed_count++;
2037254: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
2037258: 82 00 60 01 inc %g1
203725c: 10 bf ff ce b 2037194 <_Rate_monotonic_Update_statistics+0x1c>
2037260: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
2037264: 80 a0 40 03 cmp %g1, %g3
2037268: 28 bf ff ed bleu,a 203721c <_Rate_monotonic_Update_statistics+0xa4>
203726c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
2037270: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
2037274: 80 a0 40 02 cmp %g1, %g2
2037278: 06 bf ff ec bl 2037228 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
203727c: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
2037280: 30 80 00 06 b,a 2037298 <_Rate_monotonic_Update_statistics+0x120>
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
stats->min_cpu_time = executed;
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
2037284: 80 a0 40 03 cmp %g1, %g3
2037288: 3a bf ff da bcc,a 20371f0 <_Rate_monotonic_Update_statistics+0x78>
203728c: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
2037290: 10 bf ff d7 b 20371ec <_Rate_monotonic_Update_statistics+0x74>
2037294: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
2037298: 12 bf ff e5 bne 203722c <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
203729c: 01 00 00 00 nop
20372a0: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
20372a4: 80 a0 40 03 cmp %g1, %g3
20372a8: 2a bf ff e1 bcs,a 203722c <_Rate_monotonic_Update_statistics+0xb4>
20372ac: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
20372b0: 30 bf ff df b,a 203722c <_Rate_monotonic_Update_statistics+0xb4>
0200a578 <_Scheduler_CBS_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_CBS_Allocate(
Thread_Control *the_thread
)
{
200a578: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_CBS_Per_thread *schinfo;
sched = _Workspace_Allocate(sizeof(Scheduler_CBS_Per_thread));
200a57c: 40 00 07 30 call 200c23c <_Workspace_Allocate>
200a580: 90 10 20 1c mov 0x1c, %o0
if ( sched ) {
200a584: 80 a2 20 00 cmp %o0, 0
200a588: 02 80 00 06 be 200a5a0 <_Scheduler_CBS_Allocate+0x28> <== NEVER TAKEN
200a58c: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
200a590: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_CBS_Per_thread *)(the_thread->scheduler_info);
schinfo->edf_per_thread.thread = the_thread;
200a594: f0 22 00 00 st %i0, [ %o0 ]
schinfo->edf_per_thread.queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
200a598: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
schinfo->cbs_server = NULL;
200a59c: c0 22 20 18 clr [ %o0 + 0x18 ]
}
return sched;
}
200a5a0: 81 c7 e0 08 ret
200a5a4: 91 e8 00 08 restore %g0, %o0, %o0
0200b94c <_Scheduler_CBS_Budget_callout>:
Scheduler_CBS_Server **_Scheduler_CBS_Server_list;
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
200b94c: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200b950: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200b954: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200b958: 80 a0 40 09 cmp %g1, %o1
200b95c: 32 80 00 02 bne,a 200b964 <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
200b960: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200b964: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200b968: 80 a0 40 09 cmp %g1, %o1
200b96c: 02 80 00 04 be 200b97c <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
200b970: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200b974: 40 00 01 90 call 200bfb4 <_Thread_Change_priority>
200b978: 94 10 20 01 mov 1, %o2
/* Invoke callback function if any. */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
200b97c: fa 06 20 88 ld [ %i0 + 0x88 ], %i5
if ( sched_info->cbs_server->cbs_budget_overrun ) {
200b980: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b984: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200b988: 80 a0 a0 00 cmp %g2, 0
200b98c: 02 80 00 09 be 200b9b0 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
200b990: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
200b994: d0 00 40 00 ld [ %g1 ], %o0
200b998: 7f ff ff d5 call 200b8ec <_Scheduler_CBS_Get_server_id>
200b99c: 92 07 bf fc add %fp, -4, %o1
sched_info->cbs_server->task_id,
&server_id
);
sched_info->cbs_server->cbs_budget_overrun( server_id );
200b9a0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b9a4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200b9a8: 9f c0 40 00 call %g1
200b9ac: d0 07 bf fc ld [ %fp + -4 ], %o0
200b9b0: 81 c7 e0 08 ret
200b9b4: 81 e8 00 00 restore
0200b4a4 <_Scheduler_CBS_Cleanup>:
#include <rtems/config.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulercbs.h>
int _Scheduler_CBS_Cleanup (void)
{
200b4a4: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b4a8: 39 00 80 7e sethi %hi(0x201f800), %i4
200b4ac: c2 07 20 a0 ld [ %i4 + 0xa0 ], %g1 ! 201f8a0 <_Scheduler_CBS_Maximum_servers>
200b4b0: 80 a0 60 00 cmp %g1, 0
200b4b4: 02 80 00 18 be 200b514 <_Scheduler_CBS_Cleanup+0x70> <== NEVER TAKEN
200b4b8: 03 00 80 81 sethi %hi(0x2020400), %g1
200b4bc: 37 00 80 81 sethi %hi(0x2020400), %i3
200b4c0: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2 ! 20206e8 <_Scheduler_CBS_Server_list>
200b4c4: ba 10 20 00 clr %i5
200b4c8: b8 17 20 a0 or %i4, 0xa0, %i4
if ( _Scheduler_CBS_Server_list[ i ] )
200b4cc: 83 2f 60 02 sll %i5, 2, %g1
200b4d0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200b4d4: 80 a0 60 00 cmp %g1, 0
200b4d8: 02 80 00 05 be 200b4ec <_Scheduler_CBS_Cleanup+0x48>
200b4dc: 90 10 00 1d mov %i5, %o0
_Scheduler_CBS_Destroy_server( i );
200b4e0: 40 00 00 46 call 200b5f8 <_Scheduler_CBS_Destroy_server>
200b4e4: 01 00 00 00 nop
200b4e8: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2
int _Scheduler_CBS_Cleanup (void)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b4ec: c2 07 00 00 ld [ %i4 ], %g1
200b4f0: ba 07 60 01 inc %i5
200b4f4: 80 a0 40 1d cmp %g1, %i5
200b4f8: 18 bf ff f6 bgu 200b4d0 <_Scheduler_CBS_Cleanup+0x2c>
200b4fc: 83 2f 60 02 sll %i5, 2, %g1
if ( _Scheduler_CBS_Server_list[ i ] )
_Scheduler_CBS_Destroy_server( i );
}
_Workspace_Free( _Scheduler_CBS_Server_list );
return SCHEDULER_CBS_OK;
}
200b500: b0 10 20 00 clr %i0
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[ i ] )
_Scheduler_CBS_Destroy_server( i );
}
_Workspace_Free( _Scheduler_CBS_Server_list );
200b504: 40 00 08 60 call 200d684 <_Workspace_Free>
200b508: 90 10 00 02 mov %g2, %o0
return SCHEDULER_CBS_OK;
}
200b50c: 81 c7 e0 08 ret
200b510: 81 e8 00 00 restore
200b514: 10 bf ff fb b 200b500 <_Scheduler_CBS_Cleanup+0x5c> <== NOT EXECUTED
200b518: c4 00 62 e8 ld [ %g1 + 0x2e8 ], %g2 <== NOT EXECUTED
0200b51c <_Scheduler_CBS_Create_server>:
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200b51c: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200b520: c2 06 20 04 ld [ %i0 + 4 ], %g1
200b524: 80 a0 60 00 cmp %g1, 0
200b528: 04 80 00 30 ble 200b5e8 <_Scheduler_CBS_Create_server+0xcc>
200b52c: b8 10 00 18 mov %i0, %i4
200b530: c2 06 00 00 ld [ %i0 ], %g1
200b534: 80 a0 60 00 cmp %g1, 0
200b538: 04 80 00 2c ble 200b5e8 <_Scheduler_CBS_Create_server+0xcc>
200b53c: 03 00 80 7e sethi %hi(0x201f800), %g1
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b540: c8 00 60 a0 ld [ %g1 + 0xa0 ], %g4 ! 201f8a0 <_Scheduler_CBS_Maximum_servers>
200b544: 80 a1 20 00 cmp %g4, 0
200b548: 02 80 00 11 be 200b58c <_Scheduler_CBS_Create_server+0x70><== NEVER TAKEN
200b54c: 37 00 80 81 sethi %hi(0x2020400), %i3
if ( !_Scheduler_CBS_Server_list[i] )
200b550: fa 06 e2 e8 ld [ %i3 + 0x2e8 ], %i5 ! 20206e8 <_Scheduler_CBS_Server_list>
200b554: c2 07 40 00 ld [ %i5 ], %g1
200b558: 80 a0 60 00 cmp %g1, 0
200b55c: 02 80 00 21 be 200b5e0 <_Scheduler_CBS_Create_server+0xc4>
200b560: b0 10 20 00 clr %i0
200b564: 10 80 00 06 b 200b57c <_Scheduler_CBS_Create_server+0x60>
200b568: 82 10 20 00 clr %g1
200b56c: c6 07 40 02 ld [ %i5 + %g2 ], %g3
200b570: 80 a0 e0 00 cmp %g3, 0
200b574: 02 80 00 08 be 200b594 <_Scheduler_CBS_Create_server+0x78>
200b578: b0 10 00 02 mov %g2, %i0
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b57c: 82 00 60 01 inc %g1
200b580: 80 a0 40 04 cmp %g1, %g4
200b584: 12 bf ff fa bne 200b56c <_Scheduler_CBS_Create_server+0x50>
200b588: 85 28 60 02 sll %g1, 2, %g2
if ( !_Scheduler_CBS_Server_list[i] )
break;
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
200b58c: 81 c7 e0 08 ret
200b590: 91 e8 3f e6 restore %g0, -26, %o0
*server_id = i;
200b594: c2 26 80 00 st %g1, [ %i2 ]
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
200b598: 40 00 08 33 call 200d664 <_Workspace_Allocate>
200b59c: 90 10 20 10 mov 0x10, %o0
the_server = _Scheduler_CBS_Server_list[*server_id];
200b5a0: c2 06 80 00 ld [ %i2 ], %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b5a4: d0 27 40 18 st %o0, [ %i5 + %i0 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
200b5a8: c4 06 e2 e8 ld [ %i3 + 0x2e8 ], %g2
200b5ac: 83 28 60 02 sll %g1, 2, %g1
200b5b0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_server )
200b5b4: 80 a0 60 00 cmp %g1, 0
200b5b8: 02 80 00 0e be 200b5f0 <_Scheduler_CBS_Create_server+0xd4><== NEVER TAKEN
200b5bc: 86 10 3f ff mov -1, %g3
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b5c0: c4 07 00 00 ld [ %i4 ], %g2
200b5c4: c4 20 60 04 st %g2, [ %g1 + 4 ]
200b5c8: c4 07 20 04 ld [ %i4 + 4 ], %g2
the_server->task_id = -1;
200b5cc: c6 20 40 00 st %g3, [ %g1 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b5d0: c4 20 60 08 st %g2, [ %g1 + 8 ]
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
200b5d4: f2 20 60 0c st %i1, [ %g1 + 0xc ]
return SCHEDULER_CBS_OK;
200b5d8: 81 c7 e0 08 ret
200b5dc: 91 e8 20 00 restore %g0, 0, %o0
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( !_Scheduler_CBS_Server_list[i] )
200b5e0: 10 bf ff ed b 200b594 <_Scheduler_CBS_Create_server+0x78>
200b5e4: 82 10 20 00 clr %g1
if ( params->budget <= 0 ||
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200b5e8: 81 c7 e0 08 ret
200b5ec: 91 e8 3f ee restore %g0, -18, %o0
the_server->parameters = *params;
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
}
200b5f0: 81 c7 e0 08 ret <== NOT EXECUTED
200b5f4: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
0200b678 <_Scheduler_CBS_Detach_thread>:
int _Scheduler_CBS_Detach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
200b678: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
Scheduler_CBS_Per_thread *sched_info;
the_thread = _Thread_Get(task_id, &location);
200b67c: 92 07 bf fc add %fp, -4, %o1
200b680: 40 00 03 ab call 200c52c <_Thread_Get>
200b684: 90 10 00 19 mov %i1, %o0
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
200b688: ba 92 20 00 orcc %o0, 0, %i5
200b68c: 02 80 00 1e be 200b704 <_Scheduler_CBS_Detach_thread+0x8c>
200b690: 01 00 00 00 nop
_Thread_Enable_dispatch();
200b694: 40 00 03 9a call 200c4fc <_Thread_Enable_dispatch>
200b698: 01 00 00 00 nop
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
200b69c: 03 00 80 7e sethi %hi(0x201f800), %g1
200b6a0: c2 00 60 a0 ld [ %g1 + 0xa0 ], %g1 ! 201f8a0 <_Scheduler_CBS_Maximum_servers>
200b6a4: 80 a6 00 01 cmp %i0, %g1
200b6a8: 1a 80 00 17 bcc 200b704 <_Scheduler_CBS_Detach_thread+0x8c>
200b6ac: 03 00 80 81 sethi %hi(0x2020400), %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
200b6b0: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 20206e8 <_Scheduler_CBS_Server_list>
200b6b4: b1 2e 20 02 sll %i0, 2, %i0
200b6b8: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200b6bc: 80 a0 60 00 cmp %g1, 0
200b6c0: 02 80 00 13 be 200b70c <_Scheduler_CBS_Detach_thread+0x94>
200b6c4: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
200b6c8: c4 00 40 00 ld [ %g1 ], %g2
200b6cc: 80 a0 80 19 cmp %g2, %i1
200b6d0: 12 80 00 0d bne 200b704 <_Scheduler_CBS_Detach_thread+0x8c><== NEVER TAKEN
200b6d4: 84 10 3f ff mov -1, %g2
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b6d8: c8 07 60 88 ld [ %i5 + 0x88 ], %g4
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b6dc: c6 07 60 a0 ld [ %i5 + 0xa0 ], %g3
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
200b6e0: c4 20 40 00 st %g2, [ %g1 ]
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
200b6e4: c4 07 60 a4 ld [ %i5 + 0xa4 ], %g2
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b6e8: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b6ec: c0 21 20 18 clr [ %g4 + 0x18 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b6f0: c6 27 60 78 st %g3, [ %i5 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
200b6f4: c4 27 60 7c st %g2, [ %i5 + 0x7c ]
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b6f8: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
return SCHEDULER_CBS_OK;
200b6fc: 81 c7 e0 08 ret
200b700: 91 e8 20 00 restore %g0, 0, %o0
if ( the_thread ) {
_Thread_Enable_dispatch();
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200b704: 81 c7 e0 08 ret
200b708: 91 e8 3f ee restore %g0, -18, %o0
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
the_thread->is_preemptible = the_thread->Start.is_preemptible;
return SCHEDULER_CBS_OK;
}
200b70c: 81 c7 e0 08 ret
200b710: 91 e8 3f e7 restore %g0, -25, %o0
0200b8ec <_Scheduler_CBS_Get_server_id>:
rtems_id task_id,
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b8ec: 03 00 80 7e sethi %hi(0x201f800), %g1
200b8f0: c6 00 60 a0 ld [ %g1 + 0xa0 ], %g3 ! 201f8a0 <_Scheduler_CBS_Maximum_servers>
200b8f4: 80 a0 e0 00 cmp %g3, 0
200b8f8: 02 80 00 11 be 200b93c <_Scheduler_CBS_Get_server_id+0x50><== NEVER TAKEN
200b8fc: 03 00 80 81 sethi %hi(0x2020400), %g1
200b900: c8 00 62 e8 ld [ %g1 + 0x2e8 ], %g4 ! 20206e8 <_Scheduler_CBS_Server_list>
200b904: 82 10 20 00 clr %g1
#include <rtems/system.h>
#include <rtems/config.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulercbs.h>
int _Scheduler_CBS_Get_server_id (
200b908: 85 28 60 02 sll %g1, 2, %g2
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[i] &&
200b90c: c4 01 00 02 ld [ %g4 + %g2 ], %g2
200b910: 80 a0 a0 00 cmp %g2, 0
200b914: 22 80 00 07 be,a 200b930 <_Scheduler_CBS_Get_server_id+0x44>
200b918: 82 00 60 01 inc %g1
200b91c: c4 00 80 00 ld [ %g2 ], %g2
200b920: 80 a0 80 08 cmp %g2, %o0
200b924: 22 80 00 08 be,a 200b944 <_Scheduler_CBS_Get_server_id+0x58>
200b928: c2 22 40 00 st %g1, [ %o1 ]
rtems_id task_id,
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b92c: 82 00 60 01 inc %g1
200b930: 80 a0 40 03 cmp %g1, %g3
200b934: 12 bf ff f6 bne 200b90c <_Scheduler_CBS_Get_server_id+0x20>
200b938: 85 28 60 02 sll %g1, 2, %g2
*server_id = i;
return SCHEDULER_CBS_OK;
}
}
return SCHEDULER_CBS_ERROR_NOSERVER;
}
200b93c: 81 c3 e0 08 retl
200b940: 90 10 3f e7 mov -25, %o0
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[i] &&
_Scheduler_CBS_Server_list[i]->task_id == task_id ) {
*server_id = i;
return SCHEDULER_CBS_OK;
200b944: 81 c3 e0 08 retl
200b948: 90 10 20 00 clr %o0
0200b9b8 <_Scheduler_CBS_Initialize>:
}
}
int _Scheduler_CBS_Initialize(void)
{
200b9b8: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
200b9bc: 3b 00 80 7e sethi %hi(0x201f800), %i5
200b9c0: d0 07 60 a0 ld [ %i5 + 0xa0 ], %o0 ! 201f8a0 <_Scheduler_CBS_Maximum_servers>
}
int _Scheduler_CBS_Initialize(void)
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
200b9c4: 40 00 07 28 call 200d664 <_Workspace_Allocate>
200b9c8: 91 2a 20 02 sll %o0, 2, %o0
200b9cc: 09 00 80 81 sethi %hi(0x2020400), %g4
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
200b9d0: 80 a2 20 00 cmp %o0, 0
200b9d4: 02 80 00 10 be 200ba14 <_Scheduler_CBS_Initialize+0x5c> <== NEVER TAKEN
200b9d8: d0 21 22 e8 st %o0, [ %g4 + 0x2e8 ]
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b9dc: c6 07 60 a0 ld [ %i5 + 0xa0 ], %g3
200b9e0: 80 a0 e0 00 cmp %g3, 0
200b9e4: 12 80 00 05 bne 200b9f8 <_Scheduler_CBS_Initialize+0x40> <== ALWAYS TAKEN
200b9e8: 82 10 20 00 clr %g1
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200b9ec: 81 c7 e0 08 ret <== NOT EXECUTED
200b9f0: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
200b9f4: d0 01 22 e8 ld [ %g4 + 0x2e8 ], %o0
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
_Scheduler_CBS_Server_list[i] = NULL;
200b9f8: 85 28 60 02 sll %g1, 2, %g2
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200b9fc: 82 00 60 01 inc %g1
200ba00: 80 a0 40 03 cmp %g1, %g3
200ba04: 12 bf ff fc bne 200b9f4 <_Scheduler_CBS_Initialize+0x3c>
200ba08: c0 22 00 02 clr [ %o0 + %g2 ]
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200ba0c: 81 c7 e0 08 ret
200ba10: 91 e8 20 00 restore %g0, 0, %o0
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
200ba14: b0 10 3f ef mov -17, %i0 <== NOT EXECUTED
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
}
200ba18: 81 c7 e0 08 ret <== NOT EXECUTED
200ba1c: 81 e8 00 00 restore <== NOT EXECUTED
0200a5a8 <_Scheduler_CBS_Release_job>:
{
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info =
(Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
Scheduler_CBS_Server *serv_info =
(Scheduler_CBS_Server *) sched_info->cbs_server;
200a5a8: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
if (deadline) {
200a5ac: 80 a2 60 00 cmp %o1, 0
200a5b0: 02 80 00 11 be 200a5f4 <_Scheduler_CBS_Release_job+0x4c>
200a5b4: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
/* Initializing or shifting deadline. */
if (serv_info)
200a5b8: 80 a0 60 00 cmp %g1, 0
200a5bc: 02 80 00 13 be 200a608 <_Scheduler_CBS_Release_job+0x60>
200a5c0: 07 00 80 7a sethi %hi(0x201e800), %g3
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
200a5c4: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a5c8: d2 00 e1 cc ld [ %g3 + 0x1cc ], %o1
200a5cc: 92 02 40 02 add %o1, %g2, %o1
200a5d0: 05 20 00 00 sethi %hi(0x80000000), %g2
200a5d4: 92 2a 40 02 andn %o1, %g2, %o1
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
the_thread->cpu_time_budget = serv_info->parameters.budget;
200a5d8: c2 00 60 08 ld [ %g1 + 8 ], %g1
200a5dc: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
200a5e0: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
200a5e4: 94 10 20 01 mov 1, %o2
200a5e8: 82 13 c0 00 mov %o7, %g1
200a5ec: 40 00 01 38 call 200aacc <_Thread_Change_priority>
200a5f0: 9e 10 40 00 mov %g1, %o7
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
200a5f4: 80 a0 60 00 cmp %g1, 0
200a5f8: 12 bf ff f8 bne 200a5d8 <_Scheduler_CBS_Release_job+0x30> <== ALWAYS TAKEN
200a5fc: d2 02 20 ac ld [ %o0 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
the_thread->real_priority = new_priority;
200a600: 10 bf ff f9 b 200a5e4 <_Scheduler_CBS_Release_job+0x3c> <== NOT EXECUTED
200a604: d2 22 20 18 st %o1, [ %o0 + 0x18 ] <== NOT EXECUTED
/* Initializing or shifting deadline. */
if (serv_info)
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
200a608: 03 00 80 7a sethi %hi(0x201e800), %g1
200a60c: c2 00 61 cc ld [ %g1 + 0x1cc ], %g1 ! 201e9cc <_Watchdog_Ticks_since_boot>
200a610: 92 02 40 01 add %o1, %g1, %o1
200a614: 03 20 00 00 sethi %hi(0x80000000), %g1
200a618: 10 bf ff f2 b 200a5e0 <_Scheduler_CBS_Release_job+0x38>
200a61c: 92 2a 40 01 andn %o1, %g1, %o1
0200a620 <_Scheduler_CBS_Unblock>:
#include <rtems/score/schedulercbs.h>
void _Scheduler_CBS_Unblock(
Thread_Control *the_thread
)
{
200a620: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server *serv_info;
Priority_Control new_priority;
_Scheduler_EDF_Enqueue(the_thread);
200a624: 40 00 00 50 call 200a764 <_Scheduler_EDF_Enqueue>
200a628: 90 10 00 18 mov %i0, %o0
/* TODO: flash critical section? */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server;
200a62c: c2 06 20 88 ld [ %i0 + 0x88 ], %g1
200a630: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
200a634: 80 a7 60 00 cmp %i5, 0
200a638: 02 80 00 19 be 200a69c <_Scheduler_CBS_Unblock+0x7c>
200a63c: 03 00 80 7a sethi %hi(0x201e800), %g1
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a640: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
200a644: d0 00 61 cc ld [ %g1 + 0x1cc ], %o0
200a648: f8 06 20 18 ld [ %i0 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a64c: 40 00 3d 7c call 2019c3c <.umul>
200a650: 90 27 00 08 sub %i4, %o0, %o0
200a654: d2 06 20 74 ld [ %i0 + 0x74 ], %o1
200a658: b6 10 00 08 mov %o0, %i3
200a65c: 40 00 3d 78 call 2019c3c <.umul>
200a660: d0 07 60 08 ld [ %i5 + 8 ], %o0
200a664: 80 a6 c0 08 cmp %i3, %o0
200a668: 24 80 00 0e ble,a 200a6a0 <_Scheduler_CBS_Unblock+0x80>
200a66c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200a670: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200a674: 80 a7 00 09 cmp %i4, %o1
200a678: 32 80 00 02 bne,a 200a680 <_Scheduler_CBS_Unblock+0x60>
200a67c: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200a680: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
200a684: 80 a2 00 09 cmp %o0, %o1
200a688: 02 80 00 07 be 200a6a4 <_Scheduler_CBS_Unblock+0x84>
200a68c: 3b 00 80 7a sethi %hi(0x201e800), %i5
_Thread_Change_priority(the_thread, new_priority, true);
200a690: 90 10 00 18 mov %i0, %o0
200a694: 40 00 01 0e call 200aacc <_Thread_Change_priority>
200a698: 94 10 20 01 mov 1, %o2
200a69c: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
200a6a0: 3b 00 80 7a sethi %hi(0x201e800), %i5
200a6a4: ba 17 62 f0 or %i5, 0x2f0, %i5 ! 201eaf0 <_Per_CPU_Information>
200a6a8: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200a6ac: d2 00 60 14 ld [ %g1 + 0x14 ], %o1
200a6b0: 03 00 80 77 sethi %hi(0x201dc00), %g1
200a6b4: c2 00 61 04 ld [ %g1 + 0x104 ], %g1 ! 201dd04 <_Scheduler+0x30>
200a6b8: 9f c0 40 00 call %g1
200a6bc: 01 00 00 00 nop
200a6c0: 80 a2 20 00 cmp %o0, 0
200a6c4: 04 80 00 0a ble 200a6ec <_Scheduler_CBS_Unblock+0xcc>
200a6c8: 01 00 00 00 nop
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a6cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
200a6d0: f0 27 60 14 st %i0, [ %i5 + 0x14 ]
if ( _Thread_Executing->is_preemptible ||
200a6d4: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a6d8: 80 a0 60 00 cmp %g1, 0
200a6dc: 22 80 00 06 be,a 200a6f4 <_Scheduler_CBS_Unblock+0xd4>
200a6e0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a6e4: 82 10 20 01 mov 1, %g1
200a6e8: c2 2f 60 0c stb %g1, [ %i5 + 0xc ]
200a6ec: 81 c7 e0 08 ret
200a6f0: 81 e8 00 00 restore
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a6f4: 80 a0 60 00 cmp %g1, 0
200a6f8: 12 bf ff fd bne 200a6ec <_Scheduler_CBS_Unblock+0xcc> <== ALWAYS TAKEN
200a6fc: 82 10 20 01 mov 1, %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a700: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] <== NOT EXECUTED
200a704: 30 bf ff fa b,a 200a6ec <_Scheduler_CBS_Unblock+0xcc> <== NOT EXECUTED
0200a578 <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
200a578: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
200a57c: 40 00 07 07 call 200c198 <_Workspace_Allocate>
200a580: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
200a584: 80 a2 20 00 cmp %o0, 0
200a588: 02 80 00 05 be 200a59c <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
200a58c: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
200a590: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
200a594: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
200a598: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
200a59c: 81 c7 e0 08 ret
200a5a0: 91 e8 00 08 restore %g0, %o0, %o0
0200a75c <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
200a75c: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
200a760: 7f ff ff a8 call 200a600 <_Scheduler_EDF_Enqueue>
200a764: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
200a768: 3b 00 80 7a sethi %hi(0x201e800), %i5
200a76c: ba 17 62 40 or %i5, 0x240, %i5 ! 201ea40 <_Per_CPU_Information>
200a770: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200a774: d0 00 60 14 ld [ %g1 + 0x14 ], %o0
200a778: 03 00 80 77 sethi %hi(0x201dc00), %g1
200a77c: c2 00 60 54 ld [ %g1 + 0x54 ], %g1 ! 201dc54 <_Scheduler+0x30>
200a780: 9f c0 40 00 call %g1
200a784: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
200a788: 80 a2 20 00 cmp %o0, 0
200a78c: 26 80 00 04 bl,a 200a79c <_Scheduler_EDF_Unblock+0x40>
200a790: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a794: 81 c7 e0 08 ret
200a798: 81 e8 00 00 restore
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
200a79c: f0 27 60 14 st %i0, [ %i5 + 0x14 ]
if ( _Thread_Executing->is_preemptible ||
200a7a0: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a7a4: 80 a0 60 00 cmp %g1, 0
200a7a8: 22 80 00 06 be,a 200a7c0 <_Scheduler_EDF_Unblock+0x64>
200a7ac: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a7b0: 82 10 20 01 mov 1, %g1
200a7b4: c2 2f 60 0c stb %g1, [ %i5 + 0xc ]
200a7b8: 81 c7 e0 08 ret
200a7bc: 81 e8 00 00 restore
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a7c0: 80 a0 60 00 cmp %g1, 0
200a7c4: 12 bf ff f4 bne 200a794 <_Scheduler_EDF_Unblock+0x38> <== ALWAYS TAKEN
200a7c8: 82 10 20 01 mov 1, %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a7cc: c2 2f 60 0c stb %g1, [ %i5 + 0xc ] <== NOT EXECUTED
200a7d0: 30 bf ff fa b,a 200a7b8 <_Scheduler_EDF_Unblock+0x5c> <== NOT EXECUTED
0200a76c <_Scheduler_simple_Ready_queue_enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
200a76c: 03 00 80 74 sethi %hi(0x201d000), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a770: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 201d0e4 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
200a774: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
200a778: c2 00 40 00 ld [ %g1 ], %g1
200a77c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
200a780: 80 a0 80 03 cmp %g2, %g3
200a784: 3a 80 00 08 bcc,a 200a7a4 <_Scheduler_simple_Ready_queue_enqueue_first+0x38>
200a788: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
200a78c: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
200a790: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
200a794: 80 a0 80 03 cmp %g2, %g3
200a798: 2a bf ff fe bcs,a 200a790 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN
200a79c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
200a7a0: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
200a7a4: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
200a7a8: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
200a7ac: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
200a7b0: c4 22 00 00 st %g2, [ %o0 ]
before_node->previous = the_node;
200a7b4: 81 c3 e0 08 retl
200a7b8: d0 20 a0 04 st %o0, [ %g2 + 4 ]
02008814 <_TOD_Validate>:
};
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2008814: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2008818: 03 00 80 70 sethi %hi(0x201c000), %g1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
200881c: d2 00 62 bc ld [ %g1 + 0x2bc ], %o1 ! 201c2bc <Configuration+0xc>
2008820: 11 00 03 d0 sethi %hi(0xf4000), %o0
2008824: 40 00 47 26 call 201a4bc <.udiv>
2008828: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200882c: 80 a6 20 00 cmp %i0, 0
2008830: 02 80 00 2c be 20088e0 <_TOD_Validate+0xcc> <== NEVER TAKEN
2008834: 82 10 20 00 clr %g1
2008838: c4 06 20 18 ld [ %i0 + 0x18 ], %g2
200883c: 80 a2 00 02 cmp %o0, %g2
2008840: 28 80 00 26 bleu,a 20088d8 <_TOD_Validate+0xc4>
2008844: b0 08 60 01 and %g1, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
2008848: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
200884c: 80 a0 a0 3b cmp %g2, 0x3b
2008850: 38 80 00 22 bgu,a 20088d8 <_TOD_Validate+0xc4>
2008854: b0 08 60 01 and %g1, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2008858: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200885c: 80 a0 a0 3b cmp %g2, 0x3b
2008860: 38 80 00 1e bgu,a 20088d8 <_TOD_Validate+0xc4>
2008864: b0 08 60 01 and %g1, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2008868: c4 06 20 0c ld [ %i0 + 0xc ], %g2
200886c: 80 a0 a0 17 cmp %g2, 0x17
2008870: 38 80 00 1a bgu,a 20088d8 <_TOD_Validate+0xc4>
2008874: b0 08 60 01 and %g1, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2008878: c4 06 20 04 ld [ %i0 + 4 ], %g2
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
200887c: 80 a0 a0 00 cmp %g2, 0
2008880: 02 80 00 15 be 20088d4 <_TOD_Validate+0xc0> <== NEVER TAKEN
2008884: 80 a0 a0 0c cmp %g2, 0xc
(the_tod->month == 0) ||
2008888: 38 80 00 14 bgu,a 20088d8 <_TOD_Validate+0xc4>
200888c: b0 08 60 01 and %g1, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008890: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2008894: 80 a0 e7 c3 cmp %g3, 0x7c3
2008898: 28 80 00 10 bleu,a 20088d8 <_TOD_Validate+0xc4>
200889c: b0 08 60 01 and %g1, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
20088a0: c8 06 20 08 ld [ %i0 + 8 ], %g4
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20088a4: 80 a1 20 00 cmp %g4, 0
20088a8: 02 80 00 0b be 20088d4 <_TOD_Validate+0xc0> <== NEVER TAKEN
20088ac: 80 88 e0 03 btst 3, %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
20088b0: 32 80 00 0f bne,a 20088ec <_TOD_Validate+0xd8>
20088b4: 85 28 a0 02 sll %g2, 2, %g2
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
20088b8: 82 00 a0 0d add %g2, 0xd, %g1
20088bc: 05 00 80 75 sethi %hi(0x201d400), %g2
20088c0: 83 28 60 02 sll %g1, 2, %g1
20088c4: 84 10 a0 b0 or %g2, 0xb0, %g2
20088c8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
if ( the_tod->day > days_in_month )
20088cc: 80 a0 40 04 cmp %g1, %g4
20088d0: 82 60 3f ff subx %g0, -1, %g1
return false;
return true;
}
20088d4: b0 08 60 01 and %g1, 1, %i0
20088d8: 81 c7 e0 08 ret
20088dc: 81 e8 00 00 restore
20088e0: b0 08 60 01 and %g1, 1, %i0 <== NOT EXECUTED
20088e4: 81 c7 e0 08 ret <== NOT EXECUTED
20088e8: 81 e8 00 00 restore <== NOT EXECUTED
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20088ec: 03 00 80 75 sethi %hi(0x201d400), %g1
20088f0: 82 10 60 b0 or %g1, 0xb0, %g1 ! 201d4b0 <_TOD_Days_per_month>
20088f4: c2 00 40 02 ld [ %g1 + %g2 ], %g1
if ( the_tod->day > days_in_month )
20088f8: 80 a0 40 04 cmp %g1, %g4
20088fc: 10 bf ff f6 b 20088d4 <_TOD_Validate+0xc0>
2008900: 82 60 3f ff subx %g0, -1, %g1
0200a194 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
200a194: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
200a198: f6 06 20 10 ld [ %i0 + 0x10 ], %i3
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
200a19c: 40 00 03 b9 call 200b080 <_Thread_Set_transient>
200a1a0: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
200a1a4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a1a8: 80 a0 40 19 cmp %g1, %i1
200a1ac: 02 80 00 05 be 200a1c0 <_Thread_Change_priority+0x2c>
200a1b0: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
200a1b4: 90 10 00 18 mov %i0, %o0
200a1b8: 40 00 03 98 call 200b018 <_Thread_Set_priority>
200a1bc: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
200a1c0: 7f ff e1 13 call 200260c <sparc_disable_interrupts>
200a1c4: 01 00 00 00 nop
200a1c8: b2 10 00 08 mov %o0, %i1
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
200a1cc: f8 07 60 10 ld [ %i5 + 0x10 ], %i4
if ( state != STATES_TRANSIENT ) {
200a1d0: 80 a7 20 04 cmp %i4, 4
200a1d4: 02 80 00 18 be 200a234 <_Thread_Change_priority+0xa0>
200a1d8: 80 8e e0 04 btst 4, %i3
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
200a1dc: 02 80 00 0b be 200a208 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
200a1e0: 82 0f 3f fb and %i4, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
200a1e4: 7f ff e1 0e call 200261c <sparc_enable_interrupts> <== NOT EXECUTED
200a1e8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
200a1ec: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
200a1f0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
200a1f4: 80 8f 00 01 btst %i4, %g1 <== NOT EXECUTED
200a1f8: 32 80 00 0d bne,a 200a22c <_Thread_Change_priority+0x98> <== NOT EXECUTED
200a1fc: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED
200a200: 81 c7 e0 08 ret
200a204: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
200a208: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
200a20c: 7f ff e1 04 call 200261c <sparc_enable_interrupts>
200a210: 90 10 00 19 mov %i1, %o0
200a214: 03 00 00 ef sethi %hi(0x3bc00), %g1
200a218: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
200a21c: 80 8f 00 01 btst %i4, %g1
200a220: 02 bf ff f8 be 200a200 <_Thread_Change_priority+0x6c>
200a224: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
200a228: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
200a22c: 40 00 03 4b call 200af58 <_Thread_queue_Requeue>
200a230: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
200a234: 22 80 00 19 be,a 200a298 <_Thread_Change_priority+0x104> <== ALWAYS TAKEN
200a238: c0 27 60 10 clr [ %i5 + 0x10 ]
200a23c: 39 00 80 70 sethi %hi(0x201c000), %i4 <== NOT EXECUTED
200a240: b8 17 20 e4 or %i4, 0xe4, %i4 ! 201c0e4 <_Scheduler> <== NOT EXECUTED
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
200a244: 7f ff e0 f6 call 200261c <sparc_enable_interrupts>
200a248: 90 10 00 19 mov %i1, %o0
200a24c: 7f ff e0 f0 call 200260c <sparc_disable_interrupts>
200a250: 01 00 00 00 nop
200a254: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
200a258: c2 07 20 08 ld [ %i4 + 8 ], %g1
200a25c: 9f c0 40 00 call %g1
200a260: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
200a264: 03 00 80 73 sethi %hi(0x201cc00), %g1
200a268: 82 10 62 90 or %g1, 0x290, %g1 ! 201ce90 <_Per_CPU_Information>
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
200a26c: c4 18 60 10 ldd [ %g1 + 0x10 ], %g2
200a270: 80 a0 80 03 cmp %g2, %g3
200a274: 02 80 00 07 be 200a290 <_Thread_Change_priority+0xfc>
200a278: 01 00 00 00 nop
200a27c: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
200a280: 80 a0 a0 00 cmp %g2, 0
200a284: 02 80 00 03 be 200a290 <_Thread_Change_priority+0xfc>
200a288: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
200a28c: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
_ISR_Enable( level );
200a290: 7f ff e0 e3 call 200261c <sparc_enable_interrupts>
200a294: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
200a298: 39 00 80 70 sethi %hi(0x201c000), %i4
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
200a29c: 80 a6 a0 00 cmp %i2, 0
200a2a0: 02 80 00 06 be 200a2b8 <_Thread_Change_priority+0x124>
200a2a4: b8 17 20 e4 or %i4, 0xe4, %i4
200a2a8: c2 07 20 28 ld [ %i4 + 0x28 ], %g1
200a2ac: 9f c0 40 00 call %g1
200a2b0: 90 10 00 1d mov %i5, %o0
200a2b4: 30 bf ff e4 b,a 200a244 <_Thread_Change_priority+0xb0>
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
200a2b8: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
200a2bc: 9f c0 40 00 call %g1
200a2c0: 90 10 00 1d mov %i5, %o0
200a2c4: 30 bf ff e0 b,a 200a244 <_Thread_Change_priority+0xb0>
0200a4d8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200a4d8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200a4dc: 90 10 00 18 mov %i0, %o0
200a4e0: 40 00 00 8b call 200a70c <_Thread_Get>
200a4e4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a4e8: c2 07 bf fc ld [ %fp + -4 ], %g1
200a4ec: 80 a0 60 00 cmp %g1, 0
200a4f0: 12 80 00 08 bne 200a510 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
200a4f4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
200a4f8: 7f ff ff 74 call 200a2c8 <_Thread_Clear_state>
200a4fc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
200a500: 03 00 80 73 sethi %hi(0x201cc00), %g1
200a504: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level>
--level;
200a508: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
200a50c: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
200a510: 81 c7 e0 08 ret
200a514: 81 e8 00 00 restore
0200a518 <_Thread_Dispatch>:
#if defined(RTEMS_SMP)
#include <rtems/score/smp.h>
#endif
void _Thread_Dispatch( void )
{
200a518: 9d e3 bf 98 save %sp, -104, %sp
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
200a51c: 35 00 80 73 sethi %hi(0x201cc00), %i2
200a520: b4 16 a2 90 or %i2, 0x290, %i2 ! 201ce90 <_Per_CPU_Information>
_ISR_Disable( level );
200a524: 7f ff e0 3a call 200260c <sparc_disable_interrupts>
200a528: fa 06 a0 10 ld [ %i2 + 0x10 ], %i5
while ( _Thread_Dispatch_necessary == true ) {
200a52c: c2 0e a0 0c ldub [ %i2 + 0xc ], %g1
200a530: 80 a0 60 00 cmp %g1, 0
200a534: 02 80 00 55 be 200a688 <_Thread_Dispatch+0x170>
200a538: 31 00 80 73 sethi %hi(0x201cc00), %i0
heir = _Thread_Heir;
200a53c: f8 06 a0 14 ld [ %i2 + 0x14 ], %i4
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
200a540: 82 10 20 01 mov 1, %g1
200a544: c2 26 20 80 st %g1, [ %i0 + 0x80 ]
#ifndef RTEMS_SMP
_Thread_Dispatch_set_disable_level( 1 );
#endif
_Thread_Dispatch_necessary = false;
200a548: c0 2e a0 0c clrb [ %i2 + 0xc ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200a54c: 80 a7 40 1c cmp %i5, %i4
200a550: 02 80 00 4e be 200a688 <_Thread_Dispatch+0x170>
200a554: f8 26 a0 10 st %i4, [ %i2 + 0x10 ]
200a558: 21 00 80 70 sethi %hi(0x201c000), %l0
200a55c: 25 00 80 73 sethi %hi(0x201cc00), %l2
200a560: a0 14 22 b8 or %l0, 0x2b8, %l0
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
200a564: 23 00 80 72 sethi %hi(0x201c800), %l1
200a568: a4 14 a0 f0 or %l2, 0xf0, %l2
200a56c: b6 04 20 04 add %l0, 4, %i3
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a570: 29 00 80 72 sethi %hi(0x201c800), %l4
200a574: a2 14 63 d0 or %l1, 0x3d0, %l1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200a578: 33 00 80 73 sethi %hi(0x201cc00), %i1
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
200a57c: a6 10 20 01 mov 1, %l3
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
200a580: c2 07 20 78 ld [ %i4 + 0x78 ], %g1
200a584: 80 a0 60 01 cmp %g1, 1
200a588: 02 80 00 53 be 200a6d4 <_Thread_Dispatch+0x1bc>
200a58c: c2 05 23 e0 ld [ %l4 + 0x3e0 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
200a590: 7f ff e0 23 call 200261c <sparc_enable_interrupts>
200a594: 01 00 00 00 nop
200a598: 92 10 00 11 mov %l1, %o1
200a59c: 7f ff f9 6d call 2008b50 <_TOD_Get_with_nanoseconds>
200a5a0: 90 07 bf f8 add %fp, -8, %o0
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a5a4: d8 1e a0 20 ldd [ %i2 + 0x20 ], %o4
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a5a8: c4 1f 60 80 ldd [ %i5 + 0x80 ], %g2
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
200a5ac: d4 1f bf f8 ldd [ %fp + -8 ], %o2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200a5b0: c2 04 80 00 ld [ %l2 ], %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a5b4: 9a a2 c0 0d subcc %o3, %o5, %o5
200a5b8: 98 62 80 0c subx %o2, %o4, %o4
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a5bc: 92 80 c0 0d addcc %g3, %o5, %o1
200a5c0: 90 40 80 0c addx %g2, %o4, %o0
200a5c4: d0 3f 60 80 std %o0, [ %i5 + 0x80 ]
200a5c8: 80 a0 60 00 cmp %g1, 0
200a5cc: 02 80 00 06 be 200a5e4 <_Thread_Dispatch+0xcc> <== NEVER TAKEN
200a5d0: d4 3e a0 20 std %o2, [ %i2 + 0x20 ]
executing->libc_reent = *_Thread_libc_reent;
200a5d4: c4 00 40 00 ld [ %g1 ], %g2
200a5d8: c4 27 61 4c st %g2, [ %i5 + 0x14c ]
*_Thread_libc_reent = heir->libc_reent;
200a5dc: c4 07 21 4c ld [ %i4 + 0x14c ], %g2
200a5e0: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200a5e4: ea 04 00 00 ld [ %l0 ], %l5
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
200a5e8: 80 a5 40 1b cmp %l5, %i3
200a5ec: 02 80 00 0b be 200a618 <_Thread_Dispatch+0x100> <== NEVER TAKEN
200a5f0: 90 07 60 c0 add %i5, 0xc0, %o0
const User_extensions_Switch_control *extension =
(const User_extensions_Switch_control *) node;
(*extension->thread_switch)( executing, heir );
200a5f4: c2 05 60 08 ld [ %l5 + 8 ], %g1
200a5f8: 90 10 00 1d mov %i5, %o0
200a5fc: 9f c0 40 00 call %g1
200a600: 92 10 00 1c mov %i4, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next(
const Chain_Node *the_node
)
{
return the_node->next;
200a604: ea 05 40 00 ld [ %l5 ], %l5
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
200a608: 80 a5 40 1b cmp %l5, %i3
200a60c: 32 bf ff fb bne,a 200a5f8 <_Thread_Dispatch+0xe0>
200a610: c2 05 60 08 ld [ %l5 + 8 ], %g1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
200a614: 90 07 60 c0 add %i5, 0xc0, %o0
200a618: 40 00 04 e2 call 200b9a0 <_CPU_Context_switch>
200a61c: 92 07 20 c0 add %i4, 0xc0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200a620: c2 07 61 48 ld [ %i5 + 0x148 ], %g1
200a624: 80 a0 60 00 cmp %g1, 0
200a628: 02 80 00 0c be 200a658 <_Thread_Dispatch+0x140>
200a62c: d0 06 60 ec ld [ %i1 + 0xec ], %o0
200a630: 80 a7 40 08 cmp %i5, %o0
200a634: 02 80 00 09 be 200a658 <_Thread_Dispatch+0x140>
200a638: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200a63c: 02 80 00 04 be 200a64c <_Thread_Dispatch+0x134>
200a640: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200a644: 40 00 04 9d call 200b8b8 <_CPU_Context_save_fp>
200a648: 90 02 21 48 add %o0, 0x148, %o0
_Context_Restore_fp( &executing->fp_context );
200a64c: 40 00 04 b8 call 200b92c <_CPU_Context_restore_fp>
200a650: 90 07 61 48 add %i5, 0x148, %o0
_Thread_Allocated_fp = executing;
200a654: fa 26 60 ec st %i5, [ %i1 + 0xec ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
200a658: 7f ff df ed call 200260c <sparc_disable_interrupts>
200a65c: fa 06 a0 10 ld [ %i2 + 0x10 ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
200a660: c2 0e a0 0c ldub [ %i2 + 0xc ], %g1
200a664: 80 a0 60 00 cmp %g1, 0
200a668: 02 80 00 08 be 200a688 <_Thread_Dispatch+0x170>
200a66c: 01 00 00 00 nop
heir = _Thread_Heir;
200a670: f8 06 a0 14 ld [ %i2 + 0x14 ], %i4
200a674: e6 26 20 80 st %l3, [ %i0 + 0x80 ]
#ifndef RTEMS_SMP
_Thread_Dispatch_set_disable_level( 1 );
#endif
_Thread_Dispatch_necessary = false;
200a678: c0 2e a0 0c clrb [ %i2 + 0xc ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200a67c: 80 a7 00 1d cmp %i4, %i5
200a680: 12 bf ff c0 bne 200a580 <_Thread_Dispatch+0x68> <== ALWAYS TAKEN
200a684: f8 26 a0 10 st %i4, [ %i2 + 0x10 ]
200a688: c0 26 20 80 clr [ %i0 + 0x80 ]
post_switch:
#ifndef RTEMS_SMP
_Thread_Dispatch_set_disable_level( 0 );
#endif
_ISR_Enable( level );
200a68c: 7f ff df e4 call 200261c <sparc_enable_interrupts>
200a690: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200a694: 03 00 80 73 sethi %hi(0x201cc00), %g1
200a698: f8 00 60 f4 ld [ %g1 + 0xf4 ], %i4 ! 201ccf4 <_API_extensions_Post_switch_list>
200a69c: 82 10 60 f4 or %g1, 0xf4, %g1
{
const Chain_Control *chain = &_API_extensions_Post_switch_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
200a6a0: b6 00 60 04 add %g1, 4, %i3
200a6a4: 80 a7 00 1b cmp %i4, %i3
200a6a8: 02 80 00 09 be 200a6cc <_Thread_Dispatch+0x1b4>
200a6ac: 01 00 00 00 nop
const API_extensions_Post_switch_control *post_switch =
(const API_extensions_Post_switch_control *) node;
(*post_switch->hook)( executing );
200a6b0: c2 07 20 08 ld [ %i4 + 8 ], %g1
200a6b4: 9f c0 40 00 call %g1
200a6b8: 90 10 00 1d mov %i5, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next(
const Chain_Node *the_node
)
{
return the_node->next;
200a6bc: f8 07 00 00 ld [ %i4 ], %i4
{
const Chain_Control *chain = &_API_extensions_Post_switch_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
while ( node != tail ) {
200a6c0: 80 a7 00 1b cmp %i4, %i3
200a6c4: 32 bf ff fc bne,a 200a6b4 <_Thread_Dispatch+0x19c> <== NEVER TAKEN
200a6c8: c2 07 20 08 ld [ %i4 + 8 ], %g1 <== NOT EXECUTED
200a6cc: 81 c7 e0 08 ret
200a6d0: 81 e8 00 00 restore
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a6d4: 10 bf ff af b 200a590 <_Thread_Dispatch+0x78>
200a6d8: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
0200f348 <_Thread_Handler>:
#define INIT_NAME __main
#define EXECUTE_GLOBAL_CONSTRUCTORS
#endif
void _Thread_Handler( void )
{
200f348: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200f34c: 03 00 80 73 sethi %hi(0x201cc00), %g1
200f350: fa 00 62 a0 ld [ %g1 + 0x2a0 ], %i5 ! 201cea0 <_Per_CPU_Information+0x10>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200f354: 3f 00 80 3c sethi %hi(0x200f000), %i7
200f358: be 17 e3 48 or %i7, 0x348, %i7 ! 200f348 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200f35c: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level(level);
200f360: 7f ff cc af call 200261c <sparc_enable_interrupts>
200f364: 91 2a 20 08 sll %o0, 8, %o0
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200f368: c4 07 61 48 ld [ %i5 + 0x148 ], %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200f36c: 03 00 80 72 sethi %hi(0x201c800), %g1
doneConstructors = true;
200f370: 86 10 20 01 mov 1, %g3
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200f374: f6 08 61 78 ldub [ %g1 + 0x178 ], %i3
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200f378: 80 a0 a0 00 cmp %g2, 0
200f37c: 02 80 00 0c be 200f3ac <_Thread_Handler+0x64>
200f380: c6 28 61 78 stb %g3, [ %g1 + 0x178 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200f384: 39 00 80 73 sethi %hi(0x201cc00), %i4
200f388: d0 07 20 ec ld [ %i4 + 0xec ], %o0 ! 201ccec <_Thread_Allocated_fp>
200f38c: 80 a7 40 08 cmp %i5, %o0
200f390: 02 80 00 07 be 200f3ac <_Thread_Handler+0x64>
200f394: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200f398: 22 80 00 05 be,a 200f3ac <_Thread_Handler+0x64>
200f39c: fa 27 20 ec st %i5, [ %i4 + 0xec ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200f3a0: 7f ff f1 46 call 200b8b8 <_CPU_Context_save_fp>
200f3a4: 90 02 21 48 add %o0, 0x148, %o0
_Thread_Allocated_fp = executing;
200f3a8: fa 27 20 ec st %i5, [ %i4 + 0xec ]
);
}
static inline void _User_extensions_Thread_begin( Thread_Control *executing )
{
_User_extensions_Iterate(
200f3ac: 90 10 00 1d mov %i5, %o0
200f3b0: 13 00 80 2c sethi %hi(0x200b000), %o1
200f3b4: 7f ff ef cb call 200b2e0 <_User_extensions_Iterate>
200f3b8: 92 12 62 6c or %o1, 0x26c, %o1 ! 200b26c <_User_extensions_Thread_begin_visitor>
_User_extensions_Thread_begin( executing );
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200f3bc: 7f ff ec c8 call 200a6dc <_Thread_Enable_dispatch>
200f3c0: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200f3c4: 80 8e e0 ff btst 0xff, %i3
200f3c8: 02 80 00 0e be 200f400 <_Thread_Handler+0xb8>
200f3cc: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200f3d0: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200f3d4: 80 a0 60 00 cmp %g1, 0
200f3d8: 22 80 00 0e be,a 200f410 <_Thread_Handler+0xc8> <== ALWAYS TAKEN
200f3dc: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
}
}
static inline void _User_extensions_Thread_exitted( Thread_Control *executing )
{
_User_extensions_Iterate(
200f3e0: 90 10 00 1d mov %i5, %o0
200f3e4: 13 00 80 2c sethi %hi(0x200b000), %o1
200f3e8: 7f ff ef be call 200b2e0 <_User_extensions_Iterate>
200f3ec: 92 12 62 90 or %o1, 0x290, %o1 ! 200b290 <_User_extensions_Thread_exitted_visitor>
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
_Internal_error_Occurred(
200f3f0: 90 10 20 00 clr %o0
200f3f4: 92 10 20 01 mov 1, %o1
200f3f8: 7f ff e7 1e call 2009070 <_Internal_error_Occurred>
200f3fc: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200f400: 40 00 33 04 call 201c010 <_init>
200f404: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200f408: 10 bf ff f3 b 200f3d4 <_Thread_Handler+0x8c>
200f40c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200f410: 9f c0 40 00 call %g1
200f414: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200f418: 10 bf ff f2 b 200f3e0 <_Thread_Handler+0x98>
200f41c: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
0200a9a8 <_Thread_Handler_initialization>:
#if defined(RTEMS_SMP)
#include <rtems/bspsmp.h>
#endif
void _Thread_Handler_initialization(void)
{
200a9a8: 9d e3 bf 98 save %sp, -104, %sp
uint32_t ticks_per_timeslice =
200a9ac: 03 00 80 68 sethi %hi(0x201a000), %g1
200a9b0: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a9b4: c6 00 60 28 ld [ %g1 + 0x28 ], %g3
#include <rtems/bspsmp.h>
#endif
void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice =
200a9b8: fa 00 60 14 ld [ %g1 + 0x14 ], %i5
rtems_configuration_get_ticks_per_timeslice();
uint32_t maximum_extensions =
200a9bc: f8 00 60 08 ld [ %g1 + 8 ], %i4
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200a9c0: 80 a0 e0 00 cmp %g3, 0
200a9c4: 02 80 00 21 be 200aa48 <_Thread_Handler_initialization+0xa0><== NEVER TAKEN
200a9c8: c4 00 60 24 ld [ %g1 + 0x24 ], %g2
200a9cc: c6 00 60 2c ld [ %g1 + 0x2c ], %g3
200a9d0: 80 a0 e0 00 cmp %g3, 0
200a9d4: 02 80 00 1d be 200aa48 <_Thread_Handler_initialization+0xa0>
200a9d8: 80 a0 a0 00 cmp %g2, 0
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
200a9dc: 22 80 00 05 be,a 200a9f0 <_Thread_Handler_initialization+0x48>
200a9e0: 03 00 80 73 sethi %hi(0x201cc00), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
200a9e4: 9f c0 80 00 call %g2
200a9e8: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 201cc04 <_Thread_BSP_context+0xc>
_Thread_Dispatch_necessary = false;
200a9ec: 03 00 80 73 sethi %hi(0x201cc00), %g1
200a9f0: 82 10 62 90 or %g1, 0x290, %g1 ! 201ce90 <_Per_CPU_Information>
200a9f4: c0 28 60 0c clrb [ %g1 + 0xc ]
_Thread_Executing = NULL;
200a9f8: c0 20 60 10 clr [ %g1 + 0x10 ]
_Thread_Heir = NULL;
200a9fc: c0 20 60 14 clr [ %g1 + 0x14 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Thread_Allocated_fp = NULL;
200aa00: 03 00 80 73 sethi %hi(0x201cc00), %g1
200aa04: c0 20 60 ec clr [ %g1 + 0xec ] ! 201ccec <_Thread_Allocated_fp>
#endif
_Thread_Maximum_extensions = maximum_extensions;
200aa08: 03 00 80 73 sethi %hi(0x201cc00), %g1
200aa0c: f8 20 61 00 st %i4, [ %g1 + 0x100 ] ! 201cd00 <_Thread_Maximum_extensions>
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
200aa10: 03 00 80 72 sethi %hi(0x201c800), %g1
200aa14: fa 20 63 e0 st %i5, [ %g1 + 0x3e0 ] ! 201cbe0 <_Thread_Ticks_per_timeslice>
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
200aa18: 82 10 20 08 mov 8, %g1
200aa1c: 11 00 80 73 sethi %hi(0x201cc00), %o0
200aa20: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200aa24: 90 12 21 74 or %o0, 0x174, %o0
200aa28: 92 10 20 01 mov 1, %o1
200aa2c: 94 10 20 01 mov 1, %o2
200aa30: 96 10 20 01 mov 1, %o3
200aa34: 98 10 21 60 mov 0x160, %o4
200aa38: 7f ff fb 37 call 2009714 <_Objects_Initialize_information>
200aa3c: 9a 10 20 00 clr %o5
200aa40: 81 c7 e0 08 ret
200aa44: 81 e8 00 00 restore
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
rtems_configuration_get_stack_free_hook() == NULL)
_Internal_error_Occurred(
200aa48: 90 10 20 00 clr %o0
200aa4c: 92 10 20 01 mov 1, %o1
200aa50: 7f ff f9 88 call 2009070 <_Internal_error_Occurred>
200aa54: 94 10 20 0e mov 0xe, %o2
0200a7b8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200a7b8: 9d e3 bf 98 save %sp, -104, %sp
200a7bc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
200a7c0: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200a7c4: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200a7c8: c0 26 61 50 clr [ %i1 + 0x150 ]
200a7cc: c0 26 61 54 clr [ %i1 + 0x154 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
200a7d0: c0 26 61 4c clr [ %i1 + 0x14c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200a7d4: 90 10 00 19 mov %i1, %o0
200a7d8: 40 00 02 39 call 200b0bc <_Thread_Stack_Allocate>
200a7dc: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
200a7e0: 80 a2 00 1b cmp %o0, %i3
200a7e4: 0a 80 00 4f bcs 200a920 <_Thread_Initialize+0x168>
200a7e8: 80 a2 20 00 cmp %o0, 0
200a7ec: 02 80 00 4d be 200a920 <_Thread_Initialize+0x168> <== NEVER TAKEN
200a7f0: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a7f4: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
200a7f8: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a7fc: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
200a800: 12 80 00 4c bne 200a930 <_Thread_Initialize+0x178>
200a804: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a808: 39 00 80 73 sethi %hi(0x201cc00), %i4
200a80c: c2 07 21 00 ld [ %i4 + 0x100 ], %g1 ! 201cd00 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
200a810: f6 26 61 48 st %i3, [ %i1 + 0x148 ]
the_thread->Start.fp_context = fp_area;
200a814: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200a818: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
200a81c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200a820: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a824: 80 a0 60 00 cmp %g1, 0
200a828: 12 80 00 4a bne 200a950 <_Thread_Initialize+0x198>
200a82c: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200a830: c0 26 61 58 clr [ %i1 + 0x158 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200a834: a2 10 20 00 clr %l1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a838: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
200a83c: 03 00 80 70 sethi %hi(0x201c000), %g1
200a840: c4 26 60 a0 st %g2, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
200a844: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
200a848: c2 00 60 fc ld [ %g1 + 0xfc ], %g1
200a84c: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a850: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200a854: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200a858: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
the_thread->current_state = STATES_DORMANT;
200a85c: b4 10 20 01 mov 1, %i2
the_thread->Wait.queue = NULL;
200a860: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
200a864: f4 26 60 10 st %i2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
200a868: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
200a86c: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200a870: fa 26 60 ac st %i5, [ %i1 + 0xac ]
200a874: 9f c0 40 00 call %g1
200a878: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
200a87c: b8 92 20 00 orcc %o0, 0, %i4
200a880: 22 80 00 17 be,a 200a8dc <_Thread_Initialize+0x124>
200a884: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
200a888: 90 10 00 19 mov %i1, %o0
200a88c: 40 00 01 e3 call 200b018 <_Thread_Set_priority>
200a890: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a894: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200a898: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
200a89c: c0 26 60 80 clr [ %i1 + 0x80 ]
200a8a0: c0 26 60 84 clr [ %i1 + 0x84 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200a8a4: 83 28 60 02 sll %g1, 2, %g1
200a8a8: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200a8ac: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* @{
*/
static inline bool _User_extensions_Thread_create( Thread_Control *created )
{
User_extensions_Thread_create_context ctx = { created, true };
200a8b0: f2 27 bf f8 st %i1, [ %fp + -8 ]
200a8b4: f4 2f bf fc stb %i2, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Thread_create_visitor );
200a8b8: 90 07 bf f8 add %fp, -8, %o0
200a8bc: 13 00 80 2c sethi %hi(0x200b000), %o1
200a8c0: 40 00 02 88 call 200b2e0 <_User_extensions_Iterate>
200a8c4: 92 12 61 b8 or %o1, 0x1b8, %o1 ! 200b1b8 <_User_extensions_Thread_create_visitor>
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
200a8c8: c2 0f bf fc ldub [ %fp + -4 ], %g1
200a8cc: 80 a0 60 00 cmp %g1, 0
200a8d0: 12 80 00 11 bne 200a914 <_Thread_Initialize+0x15c>
200a8d4: b0 10 20 01 mov 1, %i0
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
200a8d8: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
200a8dc: 40 00 03 e2 call 200b864 <_Workspace_Free>
200a8e0: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
200a8e4: 40 00 03 e0 call 200b864 <_Workspace_Free>
200a8e8: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
200a8ec: 40 00 03 de call 200b864 <_Workspace_Free>
200a8f0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
_Workspace_Free( extensions_area );
200a8f4: 40 00 03 dc call 200b864 <_Workspace_Free>
200a8f8: 90 10 00 11 mov %l1, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
200a8fc: 40 00 03 da call 200b864 <_Workspace_Free>
200a900: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200a904: 40 00 03 d8 call 200b864 <_Workspace_Free>
200a908: 90 10 00 1c mov %i4, %o0
_Thread_Stack_Free( the_thread );
200a90c: 40 00 01 fc call 200b0fc <_Thread_Stack_Free>
200a910: 90 10 00 19 mov %i1, %o0
200a914: b0 0e 20 ff and %i0, 0xff, %i0
200a918: 81 c7 e0 08 ret
200a91c: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
200a920: b0 10 20 00 clr %i0
200a924: b0 0e 20 ff and %i0, 0xff, %i0
200a928: 81 c7 e0 08 ret
200a92c: 81 e8 00 00 restore
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200a930: 40 00 03 c5 call 200b844 <_Workspace_Allocate>
200a934: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
200a938: b6 92 20 00 orcc %o0, 0, %i3
200a93c: 32 bf ff b4 bne,a 200a80c <_Thread_Initialize+0x54>
200a940: 39 00 80 73 sethi %hi(0x201cc00), %i4
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200a944: a2 10 20 00 clr %l1
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200a948: 10 bf ff e4 b 200a8d8 <_Thread_Initialize+0x120>
200a94c: b8 10 20 00 clr %i4
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
200a950: 90 00 60 01 add %g1, 1, %o0
200a954: 40 00 03 bc call 200b844 <_Workspace_Allocate>
200a958: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
200a95c: a2 92 20 00 orcc %o0, 0, %l1
200a960: 02 80 00 10 be 200a9a0 <_Thread_Initialize+0x1e8>
200a964: 86 10 00 11 mov %l1, %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200a968: e2 26 61 58 st %l1, [ %i1 + 0x158 ]
200a96c: c8 07 21 00 ld [ %i4 + 0x100 ], %g4
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a970: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200a974: 10 80 00 03 b 200a980 <_Thread_Initialize+0x1c8>
200a978: 82 10 20 00 clr %g1
200a97c: c6 06 61 58 ld [ %i1 + 0x158 ], %g3
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
200a980: 85 28 a0 02 sll %g2, 2, %g2
200a984: c0 20 c0 02 clr [ %g3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200a988: 82 00 60 01 inc %g1
200a98c: 80 a0 40 04 cmp %g1, %g4
200a990: 08 bf ff fb bleu 200a97c <_Thread_Initialize+0x1c4>
200a994: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a998: 10 bf ff a9 b 200a83c <_Thread_Initialize+0x84>
200a99c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200a9a0: 10 bf ff ce b 200a8d8 <_Thread_Initialize+0x120>
200a9a4: b8 10 20 00 clr %i4
0200af58 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200af58: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200af5c: 80 a6 20 00 cmp %i0, 0
200af60: 02 80 00 13 be 200afac <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
200af64: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200af68: fa 06 20 34 ld [ %i0 + 0x34 ], %i5
200af6c: 80 a7 60 01 cmp %i5, 1
200af70: 02 80 00 04 be 200af80 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
200af74: 01 00 00 00 nop
200af78: 81 c7 e0 08 ret <== NOT EXECUTED
200af7c: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
200af80: 7f ff dd a3 call 200260c <sparc_disable_interrupts>
200af84: 01 00 00 00 nop
200af88: b8 10 00 08 mov %o0, %i4
200af8c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
200af90: 03 00 00 ef sethi %hi(0x3bc00), %g1
200af94: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200af98: 80 88 80 01 btst %g2, %g1
200af9c: 12 80 00 06 bne 200afb4 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
200afa0: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
200afa4: 7f ff dd 9e call 200261c <sparc_enable_interrupts>
200afa8: 90 10 00 1c mov %i4, %o0
200afac: 81 c7 e0 08 ret
200afb0: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200afb4: 92 10 00 19 mov %i1, %o1
200afb8: 94 10 20 01 mov 1, %o2
200afbc: 40 00 0b 45 call 200dcd0 <_Thread_queue_Extract_priority_helper>
200afc0: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200afc4: 90 10 00 18 mov %i0, %o0
200afc8: 92 10 00 19 mov %i1, %o1
200afcc: 7f ff ff 35 call 200aca0 <_Thread_queue_Enqueue_priority>
200afd0: 94 07 bf fc add %fp, -4, %o2
200afd4: 30 bf ff f4 b,a 200afa4 <_Thread_queue_Requeue+0x4c>
0200afd8 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200afd8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200afdc: 90 10 00 18 mov %i0, %o0
200afe0: 7f ff fd cb call 200a70c <_Thread_Get>
200afe4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200afe8: c2 07 bf fc ld [ %fp + -4 ], %g1
200afec: 80 a0 60 00 cmp %g1, 0
200aff0: 12 80 00 08 bne 200b010 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
200aff4: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200aff8: 40 00 0b 6f call 200ddb4 <_Thread_queue_Process_timeout>
200affc: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
200b000: 03 00 80 73 sethi %hi(0x201cc00), %g1
200b004: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 201cc80 <_Thread_Dispatch_disable_level>
--level;
200b008: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = level;
200b00c: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
200b010: 81 c7 e0 08 ret
200b014: 81 e8 00 00 restore
020180c4 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20180c4: 9d e3 bf 88 save %sp, -120, %sp
20180c8: 21 00 80 ec sethi %hi(0x203b000), %l0
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20180cc: a4 07 bf e8 add %fp, -24, %l2
20180d0: b4 07 bf ec add %fp, -20, %i2
20180d4: b8 07 bf f4 add %fp, -12, %i4
20180d8: a2 07 bf f8 add %fp, -8, %l1
20180dc: 33 00 80 ec sethi %hi(0x203b000), %i1
20180e0: 27 00 80 ec sethi %hi(0x203b000), %l3
20180e4: f4 27 bf e8 st %i2, [ %fp + -24 ]
head->previous = NULL;
20180e8: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20180ec: e4 27 bf f0 st %l2, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20180f0: e2 27 bf f4 st %l1, [ %fp + -12 ]
head->previous = NULL;
20180f4: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
20180f8: f8 27 bf fc st %i4, [ %fp + -4 ]
20180fc: a0 14 21 dc or %l0, 0x1dc, %l0
2018100: b6 06 20 30 add %i0, 0x30, %i3
2018104: b2 16 60 38 or %i1, 0x38, %i1
2018108: ba 06 20 68 add %i0, 0x68, %i5
201810c: a6 14 e0 f0 or %l3, 0xf0, %l3
2018110: ac 06 20 08 add %i0, 8, %l6
2018114: aa 06 20 40 add %i0, 0x40, %l5
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2018118: a8 10 20 01 mov 1, %l4
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
201811c: e4 26 20 78 st %l2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2018120: c2 04 00 00 ld [ %l0 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2018124: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018128: 90 10 00 1b mov %i3, %o0
201812c: 92 20 40 09 sub %g1, %o1, %o1
2018130: 94 10 00 1c mov %i4, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2018134: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018138: 40 00 12 29 call 201c9dc <_Watchdog_Adjust_to_chain>
201813c: 01 00 00 00 nop
2018140: d0 1e 40 00 ldd [ %i1 ], %o0
2018144: 94 10 20 00 clr %o2
2018148: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
201814c: 40 00 4d 36 call 202b624 <__divdi3>
2018150: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2018154: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2018158: 80 a2 40 0a cmp %o1, %o2
201815c: 18 80 00 2b bgu 2018208 <_Timer_server_Body+0x144>
2018160: ae 10 00 09 mov %o1, %l7
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2018164: 80 a2 40 0a cmp %o1, %o2
2018168: 0a 80 00 20 bcs 20181e8 <_Timer_server_Body+0x124>
201816c: 90 10 00 1d mov %i5, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2018170: ee 26 20 74 st %l7, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2018174: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018178: 40 00 02 a6 call 2018c10 <_Chain_Get>
201817c: 01 00 00 00 nop
if ( timer == NULL ) {
2018180: 92 92 20 00 orcc %o0, 0, %o1
2018184: 02 80 00 10 be 20181c4 <_Timer_server_Body+0x100>
2018188: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201818c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2018190: 80 a0 60 01 cmp %g1, 1
2018194: 02 80 00 19 be 20181f8 <_Timer_server_Body+0x134>
2018198: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
201819c: 12 bf ff f6 bne 2018174 <_Timer_server_Body+0xb0> <== NEVER TAKEN
20181a0: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20181a4: 40 00 12 3a call 201ca8c <_Watchdog_Insert>
20181a8: 90 10 00 1d mov %i5, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20181ac: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
20181b0: 40 00 02 98 call 2018c10 <_Chain_Get>
20181b4: 01 00 00 00 nop
if ( timer == NULL ) {
20181b8: 92 92 20 00 orcc %o0, 0, %o1
20181bc: 32 bf ff f5 bne,a 2018190 <_Timer_server_Body+0xcc> <== NEVER TAKEN
20181c0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
20181c4: 7f ff dd 4d call 200f6f8 <sparc_disable_interrupts>
20181c8: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
20181cc: c2 07 bf e8 ld [ %fp + -24 ], %g1
20181d0: 80 a0 40 1a cmp %g1, %i2
20181d4: 02 80 00 12 be 201821c <_Timer_server_Body+0x158> <== ALWAYS TAKEN
20181d8: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
20181dc: 7f ff dd 4b call 200f708 <sparc_enable_interrupts> <== NOT EXECUTED
20181e0: 01 00 00 00 nop <== NOT EXECUTED
20181e4: 30 bf ff cf b,a 2018120 <_Timer_server_Body+0x5c> <== NOT EXECUTED
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20181e8: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
20181ec: 40 00 11 cc call 201c91c <_Watchdog_Adjust>
20181f0: 94 22 80 17 sub %o2, %l7, %o2
20181f4: 30 bf ff df b,a 2018170 <_Timer_server_Body+0xac>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
20181f8: 90 10 00 1b mov %i3, %o0
20181fc: 40 00 12 24 call 201ca8c <_Watchdog_Insert>
2018200: 92 02 60 10 add %o1, 0x10, %o1
2018204: 30 bf ff dc b,a 2018174 <_Timer_server_Body+0xb0>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018208: 92 22 40 0a sub %o1, %o2, %o1
201820c: 90 10 00 1d mov %i5, %o0
2018210: 40 00 11 f3 call 201c9dc <_Watchdog_Adjust_to_chain>
2018214: 94 10 00 1c mov %i4, %o2
2018218: 30 bf ff d6 b,a 2018170 <_Timer_server_Body+0xac>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
201821c: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2018220: 7f ff dd 3a call 200f708 <sparc_enable_interrupts>
2018224: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2018228: c2 07 bf f4 ld [ %fp + -12 ], %g1
201822c: 80 a0 40 11 cmp %g1, %l1
2018230: 12 80 00 0c bne 2018260 <_Timer_server_Body+0x19c>
2018234: 01 00 00 00 nop
2018238: 30 80 00 13 b,a 2018284 <_Timer_server_Body+0x1c0>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
201823c: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2018240: c2 27 bf f4 st %g1, [ %fp + -12 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2018244: c0 25 e0 08 clr [ %l7 + 8 ]
_ISR_Enable( level );
2018248: 7f ff dd 30 call 200f708 <sparc_enable_interrupts>
201824c: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2018250: d0 05 e0 20 ld [ %l7 + 0x20 ], %o0
2018254: c2 05 e0 1c ld [ %l7 + 0x1c ], %g1
2018258: 9f c0 40 00 call %g1
201825c: d2 05 e0 24 ld [ %l7 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2018260: 7f ff dd 26 call 200f6f8 <sparc_disable_interrupts>
2018264: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018268: ee 07 bf f4 ld [ %fp + -12 ], %l7
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
201826c: 80 a5 c0 11 cmp %l7, %l1
2018270: 32 bf ff f3 bne,a 201823c <_Timer_server_Body+0x178>
2018274: c2 05 c0 00 ld [ %l7 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2018278: 7f ff dd 24 call 200f708 <sparc_enable_interrupts>
201827c: 01 00 00 00 nop
2018280: 30 bf ff a7 b,a 201811c <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2018284: c0 2e 20 7c clrb [ %i0 + 0x7c ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2018288: c2 04 c0 00 ld [ %l3 ], %g1
++level;
201828c: 82 00 60 01 inc %g1
_Thread_Dispatch_disable_level = level;
2018290: c2 24 c0 00 st %g1, [ %l3 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2018294: d0 06 00 00 ld [ %i0 ], %o0
2018298: 40 00 10 b3 call 201c564 <_Thread_Set_state>
201829c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
20182a0: 7f ff ff 07 call 2017ebc <_Timer_server_Reset_interval_system_watchdog>
20182a4: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
20182a8: 7f ff ff 19 call 2017f0c <_Timer_server_Reset_tod_system_watchdog>
20182ac: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
20182b0: 40 00 0e 30 call 201bb70 <_Thread_Enable_dispatch>
20182b4: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
20182b8: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
20182bc: e8 2e 20 7c stb %l4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
20182c0: 40 00 12 52 call 201cc08 <_Watchdog_Remove>
20182c4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
20182c8: 40 00 12 50 call 201cc08 <_Watchdog_Remove>
20182cc: 90 10 00 15 mov %l5, %o0
20182d0: 30 bf ff 93 b,a 201811c <_Timer_server_Body+0x58>
02017f5c <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2017f5c: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2017f60: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2017f64: 80 a0 60 00 cmp %g1, 0
2017f68: 02 80 00 05 be 2017f7c <_Timer_server_Schedule_operation_method+0x20>
2017f6c: ba 10 00 19 mov %i1, %i5
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2017f70: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2017f74: 40 00 03 1c call 2018be4 <_Chain_Append>
2017f78: 81 e8 00 00 restore
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2017f7c: 03 00 80 ec sethi %hi(0x203b000), %g1
2017f80: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 203b0f0 <_Thread_Dispatch_disable_level>
++level;
2017f84: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
2017f88: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2017f8c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2017f90: 80 a0 60 01 cmp %g1, 1
2017f94: 02 80 00 2b be 2018040 <_Timer_server_Schedule_operation_method+0xe4>
2017f98: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2017f9c: 02 80 00 04 be 2017fac <_Timer_server_Schedule_operation_method+0x50>
2017fa0: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2017fa4: 40 00 0e f3 call 201bb70 <_Thread_Enable_dispatch>
2017fa8: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2017fac: 7f ff dd d3 call 200f6f8 <sparc_disable_interrupts>
2017fb0: 01 00 00 00 nop
2017fb4: b8 10 00 08 mov %o0, %i4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2017fb8: 03 00 80 ec sethi %hi(0x203b000), %g1
2017fbc: d0 18 60 38 ldd [ %g1 + 0x38 ], %o0 ! 203b038 <_TOD>
2017fc0: 94 10 20 00 clr %o2
2017fc4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2017fc8: 40 00 4d 97 call 202b624 <__divdi3>
2017fcc: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2017fd0: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2017fd4: c4 06 20 74 ld [ %i0 + 0x74 ], %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2017fd8: 86 06 20 6c add %i0, 0x6c, %g3
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2017fdc: 80 a0 40 03 cmp %g1, %g3
2017fe0: 02 80 00 0a be 2018008 <_Timer_server_Schedule_operation_method+0xac>
2017fe4: 80 a2 40 02 cmp %o1, %g2
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2017fe8: 08 80 00 34 bleu 20180b8 <_Timer_server_Schedule_operation_method+0x15c>
2017fec: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2017ff0: 84 22 40 02 sub %o1, %g2, %g2
if (delta_interval > delta) {
2017ff4: 80 a1 00 02 cmp %g4, %g2
2017ff8: 08 80 00 03 bleu 2018004 <_Timer_server_Schedule_operation_method+0xa8><== NEVER TAKEN
2017ffc: 86 10 20 00 clr %g3
delta_interval -= delta;
2018000: 86 21 00 02 sub %g4, %g2, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2018004: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2018008: d2 26 20 74 st %o1, [ %i0 + 0x74 ]
_ISR_Enable( level );
201800c: 7f ff dd bf call 200f708 <sparc_enable_interrupts>
2018010: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018014: 90 06 20 68 add %i0, 0x68, %o0
2018018: 40 00 12 9d call 201ca8c <_Watchdog_Insert>
201801c: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018020: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2018024: 80 a0 60 00 cmp %g1, 0
2018028: 12 bf ff df bne 2017fa4 <_Timer_server_Schedule_operation_method+0x48>
201802c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2018030: 7f ff ff b7 call 2017f0c <_Timer_server_Reset_tod_system_watchdog>
2018034: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2018038: 40 00 0e ce call 201bb70 <_Thread_Enable_dispatch>
201803c: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2018040: 7f ff dd ae call 200f6f8 <sparc_disable_interrupts>
2018044: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2018048: 05 00 80 ec sethi %hi(0x203b000), %g2
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201804c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
2018050: c4 00 a1 dc ld [ %g2 + 0x1dc ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2018054: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018058: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
201805c: 80 a0 40 03 cmp %g1, %g3
2018060: 02 80 00 08 be 2018080 <_Timer_server_Schedule_operation_method+0x124>
2018064: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2018068: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
201806c: 80 a1 00 1c cmp %g4, %i4
2018070: 1a 80 00 03 bcc 201807c <_Timer_server_Schedule_operation_method+0x120>
2018074: 86 10 20 00 clr %g3
delta_interval -= delta;
2018078: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
201807c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2018080: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2018084: 7f ff dd a1 call 200f708 <sparc_enable_interrupts>
2018088: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
201808c: 90 06 20 30 add %i0, 0x30, %o0
2018090: 40 00 12 7f call 201ca8c <_Watchdog_Insert>
2018094: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018098: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
201809c: 80 a0 60 00 cmp %g1, 0
20180a0: 12 bf ff c1 bne 2017fa4 <_Timer_server_Schedule_operation_method+0x48>
20180a4: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
20180a8: 7f ff ff 85 call 2017ebc <_Timer_server_Reset_interval_system_watchdog>
20180ac: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
20180b0: 40 00 0e b0 call 201bb70 <_Thread_Enable_dispatch>
20180b4: 81 e8 00 00 restore
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
20180b8: 84 01 00 02 add %g4, %g2, %g2
delta_interval += delta;
20180bc: 10 bf ff d2 b 2018004 <_Timer_server_Schedule_operation_method+0xa8>
20180c0: 86 20 80 09 sub %g2, %o1, %g3
0200ba10 <_Timespec_Add_to>:
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
200ba10: d8 02 00 00 ld [ %o0 ], %o4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
200ba14: c4 02 40 00 ld [ %o1 ], %g2
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
200ba18: c6 02 20 04 ld [ %o0 + 4 ], %g3
200ba1c: c2 02 60 04 ld [ %o1 + 4 ], %g1
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
200ba20: 98 03 00 02 add %o4, %g2, %o4
time->tv_nsec += add->tv_nsec;
200ba24: 82 00 c0 01 add %g3, %g1, %g1
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
200ba28: d8 22 00 00 st %o4, [ %o0 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
200ba2c: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
200ba30: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
200ba34: 80 a0 40 04 cmp %g1, %g4
200ba38: 08 80 00 0d bleu 200ba6c <_Timespec_Add_to+0x5c>
200ba3c: c2 22 20 04 st %g1, [ %o0 + 4 ]
200ba40: 98 03 20 01 inc %o4
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
200ba44: 1b 31 19 4d sethi %hi(0xc4653400), %o5
#include <sys/types.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
#include <rtems/score/watchdog.h>
uint32_t _Timespec_Add_to(
200ba48: 98 23 00 02 sub %o4, %g2, %o4
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
200ba4c: 9a 13 62 00 or %o5, 0x200, %o5
200ba50: 82 00 40 0d add %g1, %o5, %g1
#include <sys/types.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
#include <rtems/score/watchdog.h>
uint32_t _Timespec_Add_to(
200ba54: 86 03 00 02 add %o4, %g2, %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
200ba58: 80 a0 40 04 cmp %g1, %g4
200ba5c: 18 bf ff fd bgu 200ba50 <_Timespec_Add_to+0x40> <== NEVER TAKEN
200ba60: 84 00 a0 01 inc %g2
200ba64: c2 22 20 04 st %g1, [ %o0 + 4 ]
200ba68: c6 22 00 00 st %g3, [ %o0 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
200ba6c: 81 c3 e0 08 retl
200ba70: 90 10 00 02 mov %g2, %o0
0200ca5c <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200ca5c: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200ca60: d4 1e 40 00 ldd [ %i1 ], %o2
200ca64: 80 92 80 0b orcc %o2, %o3, %g0
200ca68: 22 80 00 2f be,a 200cb24 <_Timestamp64_Divide+0xc8> <== NEVER TAKEN
200ca6c: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200ca70: e0 1e 00 00 ldd [ %i0 ], %l0
200ca74: 83 2c 20 02 sll %l0, 2, %g1
200ca78: 89 34 60 1e srl %l1, 0x1e, %g4
200ca7c: 87 2c 60 02 sll %l1, 2, %g3
200ca80: 84 11 00 01 or %g4, %g1, %g2
200ca84: 83 30 e0 1b srl %g3, 0x1b, %g1
200ca88: 9b 28 e0 05 sll %g3, 5, %o5
200ca8c: 99 28 a0 05 sll %g2, 5, %o4
200ca90: 86 a3 40 03 subcc %o5, %g3, %g3
200ca94: 98 10 40 0c or %g1, %o4, %o4
200ca98: 84 63 00 02 subx %o4, %g2, %g2
200ca9c: 92 80 c0 11 addcc %g3, %l1, %o1
200caa0: 83 32 60 1e srl %o1, 0x1e, %g1
200caa4: 90 40 80 10 addx %g2, %l0, %o0
200caa8: b3 2a 60 02 sll %o1, 2, %i1
200caac: b1 2a 20 02 sll %o0, 2, %i0
200cab0: 86 82 40 19 addcc %o1, %i1, %g3
200cab4: b0 10 40 18 or %g1, %i0, %i0
200cab8: 83 30 e0 1e srl %g3, 0x1e, %g1
200cabc: 84 42 00 18 addx %o0, %i0, %g2
200cac0: bb 28 e0 02 sll %g3, 2, %i5
200cac4: b9 28 a0 02 sll %g2, 2, %i4
200cac8: 92 80 c0 1d addcc %g3, %i5, %o1
200cacc: b8 10 40 1c or %g1, %i4, %i4
200cad0: 87 32 60 1b srl %o1, 0x1b, %g3
200cad4: 90 40 80 1c addx %g2, %i4, %o0
200cad8: 83 2a 60 05 sll %o1, 5, %g1
200cadc: 85 2a 20 05 sll %o0, 5, %g2
200cae0: 92 10 00 01 mov %g1, %o1
200cae4: 40 00 37 ce call 201aa1c <__divdi3>
200cae8: 90 10 c0 02 or %g3, %g2, %o0
*_ival_percentage = answer / 1000;
200caec: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200caf0: b8 10 00 08 mov %o0, %i4
200caf4: ba 10 00 09 mov %o1, %i5
*_ival_percentage = answer / 1000;
200caf8: 40 00 37 c9 call 201aa1c <__divdi3>
200cafc: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
200cb00: 90 10 00 1c mov %i4, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
200cb04: d2 26 80 00 st %o1, [ %i2 ]
*_fval_percentage = answer % 1000;
200cb08: 94 10 20 00 clr %o2
200cb0c: 96 10 23 e8 mov 0x3e8, %o3
200cb10: 40 00 38 ae call 201adc8 <__moddi3>
200cb14: 92 10 00 1d mov %i5, %o1
200cb18: d2 26 c0 00 st %o1, [ %i3 ]
200cb1c: 81 c7 e0 08 ret
200cb20: 81 e8 00 00 restore
{
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
*_ival_percentage = 0;
*_fval_percentage = 0;
200cb24: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
200cb28: 81 c7 e0 08 ret <== NOT EXECUTED
200cb2c: 81 e8 00 00 restore <== NOT EXECUTED
0200b3b0 <_User_extensions_Handler_initialization>:
}
}
void _User_extensions_Handler_initialization(void)
{
200b3b0: 9d e3 bf 98 save %sp, -104, %sp
uint32_t number_of_initial_extensions =
200b3b4: 03 00 80 68 sethi %hi(0x201a000), %g1
200b3b8: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 201a0a8 <Configuration+0x40>
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
200b3bc: 80 a0 60 00 cmp %g1, 0
200b3c0: 02 80 00 0a be 200b3e8 <_User_extensions_Handler_initialization+0x38><== NEVER TAKEN
200b3c4: 91 28 60 02 sll %g1, 2, %o0
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
200b3c8: 83 28 60 04 sll %g1, 4, %g1
{
uint32_t number_of_initial_extensions =
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
User_extensions_Switch_control *initial_extension_switch_controls =
200b3cc: 40 00 01 2c call 200b87c <_Workspace_Allocate_or_fatal_error>
200b3d0: 90 20 40 08 sub %g1, %o0, %o0
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
200b3d4: 13 00 80 2c sethi %hi(0x200b000), %o1
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
200b3d8: d0 27 bf fc st %o0, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
200b3dc: 92 12 63 6c or %o1, 0x36c, %o1
200b3e0: 7f ff ff c0 call 200b2e0 <_User_extensions_Iterate>
200b3e4: 90 07 bf fc add %fp, -4, %o0
200b3e8: 81 c7 e0 08 ret
200b3ec: 81 e8 00 00 restore
0200b2e0 <_User_extensions_Iterate>:
void _User_extensions_Iterate(
void *arg,
User_extensions_Visitor visitor
)
{
200b2e0: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *executing = _Thread_Executing;
const User_extensions_Table *callouts_current =
200b2e4: 03 00 80 68 sethi %hi(0x201a000), %g1
200b2e8: 82 10 60 68 or %g1, 0x68, %g1 ! 201a068 <Configuration>
200b2ec: fa 00 60 44 ld [ %g1 + 0x44 ], %i5
rtems_configuration_get_user_extension_table();
const User_extensions_Table *callouts_end =
callouts_current + rtems_configuration_get_number_of_initial_extensions();
200b2f0: f6 00 60 40 ld [ %g1 + 0x40 ], %i3
void _User_extensions_Iterate(
void *arg,
User_extensions_Visitor visitor
)
{
Thread_Control *executing = _Thread_Executing;
200b2f4: 03 00 80 73 sethi %hi(0x201cc00), %g1
const User_extensions_Table *callouts_current =
rtems_configuration_get_user_extension_table();
const User_extensions_Table *callouts_end =
callouts_current + rtems_configuration_get_number_of_initial_extensions();
200b2f8: b7 2e e0 05 sll %i3, 5, %i3
)
{
Thread_Control *executing = _Thread_Executing;
const User_extensions_Table *callouts_current =
rtems_configuration_get_user_extension_table();
const User_extensions_Table *callouts_end =
200b2fc: b6 07 40 1b add %i5, %i3, %i3
callouts_current + rtems_configuration_get_number_of_initial_extensions();
const Chain_Node *node;
const Chain_Node *tail;
while ( callouts_current != callouts_end ) {
200b300: 80 a7 40 1b cmp %i5, %i3
200b304: 02 80 00 0a be 200b32c <_User_extensions_Iterate+0x4c> <== NEVER TAKEN
200b308: f8 00 62 a0 ld [ %g1 + 0x2a0 ], %i4
(*visitor)( executing, arg, callouts_current );
200b30c: 94 10 00 1d mov %i5, %o2
200b310: 90 10 00 1c mov %i4, %o0
200b314: 9f c6 40 00 call %i1
200b318: 92 10 00 18 mov %i0, %o1
++callouts_current;
200b31c: ba 07 60 20 add %i5, 0x20, %i5
const User_extensions_Table *callouts_end =
callouts_current + rtems_configuration_get_number_of_initial_extensions();
const Chain_Node *node;
const Chain_Node *tail;
while ( callouts_current != callouts_end ) {
200b320: 80 a6 c0 1d cmp %i3, %i5
200b324: 12 bf ff fb bne 200b310 <_User_extensions_Iterate+0x30>
200b328: 94 10 00 1d mov %i5, %o2
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b32c: 37 00 80 70 sethi %hi(0x201c000), %i3
200b330: fa 06 e2 ac ld [ %i3 + 0x2ac ], %i5 ! 201c2ac <_User_extensions_List>
200b334: b6 16 e2 ac or %i3, 0x2ac, %i3
++callouts_current;
}
node = _Chain_Immutable_first( &_User_extensions_List );
tail = _Chain_Immutable_tail( &_User_extensions_List );
while ( node != tail ) {
200b338: b6 06 e0 04 add %i3, 4, %i3
200b33c: 80 a7 40 1b cmp %i5, %i3
200b340: 02 80 00 09 be 200b364 <_User_extensions_Iterate+0x84>
200b344: 94 07 60 14 add %i5, 0x14, %o2
const User_extensions_Control *extension =
(const User_extensions_Control *) node;
(*visitor)( executing, arg, &extension->Callouts );
200b348: 90 10 00 1c mov %i4, %o0
200b34c: 9f c6 40 00 call %i1
200b350: 92 10 00 18 mov %i0, %o1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_next(
const Chain_Node *the_node
)
{
return the_node->next;
200b354: fa 07 40 00 ld [ %i5 ], %i5
++callouts_current;
}
node = _Chain_Immutable_first( &_User_extensions_List );
tail = _Chain_Immutable_tail( &_User_extensions_List );
while ( node != tail ) {
200b358: 80 a7 40 1b cmp %i5, %i3
200b35c: 12 bf ff fb bne 200b348 <_User_extensions_Iterate+0x68>
200b360: 94 07 60 14 add %i5, 0x14, %o2
200b364: 81 c7 e0 08 ret
200b368: 81 e8 00 00 restore
0200cda8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200cda8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200cdac: 7f ff d9 66 call 2003344 <sparc_disable_interrupts>
200cdb0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200cdb4: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200cdb8: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200cdbc: 80 a0 40 1c cmp %g1, %i4
200cdc0: 02 80 00 1f be 200ce3c <_Watchdog_Adjust+0x94>
200cdc4: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200cdc8: 12 80 00 1f bne 200ce44 <_Watchdog_Adjust+0x9c>
200cdcc: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200cdd0: 80 a6 a0 00 cmp %i2, 0
200cdd4: 02 80 00 1a be 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200cdd8: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200cddc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200cde0: 80 a6 80 02 cmp %i2, %g2
200cde4: 1a 80 00 0a bcc 200ce0c <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN
200cde8: b6 10 20 01 mov 1, %i3
_Watchdog_First( header )->delta_interval -= units;
200cdec: 10 80 00 1d b 200ce60 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
200cdf0: 84 20 80 1a sub %g2, %i2, %g2 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200cdf4: 02 80 00 12 be 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200cdf8: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200cdfc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200ce00: 80 a0 80 1a cmp %g2, %i2
200ce04: 38 80 00 17 bgu,a 200ce60 <_Watchdog_Adjust+0xb8>
200ce08: 84 20 80 1a sub %g2, %i2, %g2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200ce0c: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200ce10: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200ce14: 7f ff d9 50 call 2003354 <sparc_enable_interrupts>
200ce18: 01 00 00 00 nop
_Watchdog_Tickle( header );
200ce1c: 40 00 00 a8 call 200d0bc <_Watchdog_Tickle>
200ce20: 90 10 00 18 mov %i0, %o0
_ISR_Disable( level );
200ce24: 7f ff d9 48 call 2003344 <sparc_disable_interrupts>
200ce28: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200ce2c: c2 06 00 00 ld [ %i0 ], %g1
if ( _Chain_Is_empty( header ) )
200ce30: 80 a7 00 01 cmp %i4, %g1
200ce34: 12 bf ff f0 bne 200cdf4 <_Watchdog_Adjust+0x4c>
200ce38: 80 a6 a0 00 cmp %i2, 0
}
break;
}
}
_ISR_Enable( level );
200ce3c: 7f ff d9 46 call 2003354 <sparc_enable_interrupts>
200ce40: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200ce44: 12 bf ff fe bne 200ce3c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200ce48: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200ce4c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200ce50: b4 00 80 1a add %g2, %i2, %i2
200ce54: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200ce58: 7f ff d9 3f call 2003354 <sparc_enable_interrupts>
200ce5c: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200ce60: 10 bf ff f7 b 200ce3c <_Watchdog_Adjust+0x94>
200ce64: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
0201c9dc <_Watchdog_Adjust_to_chain>:
Chain_Control *header,
Watchdog_Interval units_arg,
Chain_Control *to_fire
)
{
201c9dc: 9d e3 bf a0 save %sp, -96, %sp
Watchdog_Interval units = units_arg;
ISR_Level level;
Watchdog_Control *first;
_ISR_Disable( level );
201c9e0: 7f ff cb 46 call 200f6f8 <sparc_disable_interrupts>
201c9e4: 01 00 00 00 nop
201c9e8: c2 06 00 00 ld [ %i0 ], %g1
201c9ec: ba 06 20 04 add %i0, 4, %i5
201c9f0: b8 06 a0 04 add %i2, 4, %i4
while ( 1 ) {
if ( _Chain_Is_empty( header ) ) {
201c9f4: 80 a7 40 01 cmp %i5, %g1
201c9f8: 02 80 00 20 be 201ca78 <_Watchdog_Adjust_to_chain+0x9c>
201c9fc: 01 00 00 00 nop
/*
* If it is longer than "units" until the first element on the chain
* fires, then bump it and quit.
*/
if ( units < first->delta_interval ) {
201ca00: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
201ca04: 80 a6 40 02 cmp %i1, %g2
201ca08: 2a 80 00 1e bcs,a 201ca80 <_Watchdog_Adjust_to_chain+0xa4>
201ca0c: 84 20 80 19 sub %g2, %i1, %g2
/*
* The first set happens in less than units, so take all of them
* off the chain and adjust units to reflect this.
*/
units -= first->delta_interval;
201ca10: b2 26 40 02 sub %i1, %g2, %i1
first->delta_interval = 0;
201ca14: c0 20 60 10 clr [ %g1 + 0x10 ]
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
201ca18: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
201ca1c: c6 00 40 00 ld [ %g1 ], %g3
previous = the_node->previous;
next->previous = previous;
201ca20: c4 20 e0 04 st %g2, [ %g3 + 4 ]
previous->next = next;
201ca24: c6 20 80 00 st %g3, [ %g2 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
201ca28: c4 06 a0 08 ld [ %i2 + 8 ], %g2
the_node->next = tail;
201ca2c: f8 20 40 00 st %i4, [ %g1 ]
tail->previous = the_node;
201ca30: c2 26 a0 08 st %g1, [ %i2 + 8 ]
old_last->next = the_node;
201ca34: c2 20 80 00 st %g1, [ %g2 ]
the_node->previous = old_last;
201ca38: c4 20 60 04 st %g2, [ %g1 + 4 ]
while ( 1 ) {
_Chain_Extract_unprotected( &first->Node );
_Chain_Append_unprotected( to_fire, &first->Node );
_ISR_Flash( level );
201ca3c: 7f ff cb 33 call 200f708 <sparc_enable_interrupts>
201ca40: 01 00 00 00 nop
201ca44: 7f ff cb 2d call 200f6f8 <sparc_disable_interrupts>
201ca48: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201ca4c: c2 06 00 00 ld [ %i0 ], %g1
if ( _Chain_Is_empty( header ) )
201ca50: 80 a7 40 01 cmp %i5, %g1
201ca54: 02 bf ff e9 be 201c9f8 <_Watchdog_Adjust_to_chain+0x1c>
201ca58: 01 00 00 00 nop
break;
first = _Watchdog_First( header );
if ( first->delta_interval != 0 )
201ca5c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
201ca60: 80 a0 a0 00 cmp %g2, 0
201ca64: 22 bf ff ee be,a 201ca1c <_Watchdog_Adjust_to_chain+0x40>
201ca68: c4 00 60 04 ld [ %g1 + 4 ], %g2
Watchdog_Control *first;
_ISR_Disable( level );
while ( 1 ) {
if ( _Chain_Is_empty( header ) ) {
201ca6c: 80 a7 40 01 cmp %i5, %g1
201ca70: 12 bf ff e6 bne 201ca08 <_Watchdog_Adjust_to_chain+0x2c> <== ALWAYS TAKEN
201ca74: 80 a6 40 02 cmp %i1, %g2
if ( first->delta_interval != 0 )
break;
}
}
_ISR_Enable( level );
201ca78: 7f ff cb 24 call 200f708 <sparc_enable_interrupts>
201ca7c: 91 e8 00 08 restore %g0, %o0, %o0
/*
* If it is longer than "units" until the first element on the chain
* fires, then bump it and quit.
*/
if ( units < first->delta_interval ) {
first->delta_interval -= units;
201ca80: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( first->delta_interval != 0 )
break;
}
}
_ISR_Enable( level );
201ca84: 7f ff cb 21 call 200f708 <sparc_enable_interrupts>
201ca88: 91 e8 00 08 restore %g0, %o0, %o0
0200b56c <_Watchdog_Remove>:
#include <rtems/score/watchdog.h>
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200b56c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200b570: 7f ff dc 27 call 200260c <sparc_disable_interrupts>
200b574: 01 00 00 00 nop
previous_state = the_watchdog->state;
200b578: fa 06 20 08 ld [ %i0 + 8 ], %i5
switch ( previous_state ) {
200b57c: 80 a7 60 01 cmp %i5, 1
200b580: 02 80 00 2a be 200b628 <_Watchdog_Remove+0xbc>
200b584: 03 00 80 73 sethi %hi(0x201cc00), %g1
200b588: 1a 80 00 09 bcc 200b5ac <_Watchdog_Remove+0x40>
200b58c: 80 a7 60 03 cmp %i5, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b590: 03 00 80 73 sethi %hi(0x201cc00), %g1
200b594: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201cd6c <_Watchdog_Ticks_since_boot>
200b598: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b59c: 7f ff dc 20 call 200261c <sparc_enable_interrupts>
200b5a0: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b5a4: 81 c7 e0 08 ret
200b5a8: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
200b5ac: 18 bf ff fa bgu 200b594 <_Watchdog_Remove+0x28> <== NEVER TAKEN
200b5b0: 03 00 80 73 sethi %hi(0x201cc00), %g1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next(
Watchdog_Control *the_watchdog
)
{
return ( (Watchdog_Control *) the_watchdog->Node.next );
200b5b4: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200b5b8: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200b5bc: c4 00 40 00 ld [ %g1 ], %g2
200b5c0: 80 a0 a0 00 cmp %g2, 0
200b5c4: 02 80 00 07 be 200b5e0 <_Watchdog_Remove+0x74>
200b5c8: 05 00 80 73 sethi %hi(0x201cc00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200b5cc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200b5d0: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200b5d4: 84 00 c0 02 add %g3, %g2, %g2
200b5d8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200b5dc: 05 00 80 73 sethi %hi(0x201cc00), %g2
200b5e0: c4 00 a1 68 ld [ %g2 + 0x168 ], %g2 ! 201cd68 <_Watchdog_Sync_count>
200b5e4: 80 a0 a0 00 cmp %g2, 0
200b5e8: 22 80 00 07 be,a 200b604 <_Watchdog_Remove+0x98>
200b5ec: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200b5f0: 05 00 80 73 sethi %hi(0x201cc00), %g2
200b5f4: c6 00 a2 98 ld [ %g2 + 0x298 ], %g3 ! 201ce98 <_Per_CPU_Information+0x8>
200b5f8: 05 00 80 73 sethi %hi(0x201cc00), %g2
200b5fc: c6 20 a1 08 st %g3, [ %g2 + 0x108 ] ! 201cd08 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200b600: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200b604: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200b608: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b60c: 03 00 80 73 sethi %hi(0x201cc00), %g1
200b610: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 201cd6c <_Watchdog_Ticks_since_boot>
200b614: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b618: 7f ff dc 01 call 200261c <sparc_enable_interrupts>
200b61c: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b620: 81 c7 e0 08 ret
200b624: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b628: c2 00 61 6c ld [ %g1 + 0x16c ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200b62c: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b630: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b634: 7f ff db fa call 200261c <sparc_enable_interrupts>
200b638: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b63c: 81 c7 e0 08 ret
200b640: 81 e8 00 00 restore
0200c7f4 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200c7f4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200c7f8: 7f ff d9 d1 call 2002f3c <sparc_disable_interrupts>
200c7fc: 01 00 00 00 nop
200c800: b6 10 00 08 mov %o0, %i3
printk( "Watchdog Chain: %s %p\n", name, header );
200c804: 11 00 80 73 sethi %hi(0x201cc00), %o0
200c808: 94 10 00 19 mov %i1, %o2
200c80c: 92 10 00 18 mov %i0, %o1
200c810: 7f ff e1 86 call 2004e28 <printk>
200c814: 90 12 21 98 or %o0, 0x198, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200c818: fa 06 40 00 ld [ %i1 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200c81c: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200c820: 80 a7 40 19 cmp %i5, %i1
200c824: 02 80 00 0f be 200c860 <_Watchdog_Report_chain+0x6c>
200c828: 11 00 80 73 sethi %hi(0x201cc00), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200c82c: 92 10 00 1d mov %i5, %o1
200c830: 40 00 00 0f call 200c86c <_Watchdog_Report>
200c834: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200c838: fa 07 40 00 ld [ %i5 ], %i5
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200c83c: 80 a7 40 19 cmp %i5, %i1
200c840: 12 bf ff fc bne 200c830 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200c844: 92 10 00 1d mov %i5, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200c848: 11 00 80 73 sethi %hi(0x201cc00), %o0
200c84c: 92 10 00 18 mov %i0, %o1
200c850: 7f ff e1 76 call 2004e28 <printk>
200c854: 90 12 21 b0 or %o0, 0x1b0, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200c858: 7f ff d9 bd call 2002f4c <sparc_enable_interrupts>
200c85c: 91 e8 00 1b restore %g0, %i3, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200c860: 7f ff e1 72 call 2004e28 <printk>
200c864: 90 12 21 c0 or %o0, 0x1c0, %o0
200c868: 30 bf ff fc b,a 200c858 <_Watchdog_Report_chain+0x64>
0200b644 <_Watchdog_Tickle>:
#include <rtems/score/watchdog.h>
void _Watchdog_Tickle(
Chain_Control *header
)
{
200b644: 9d e3 bf a0 save %sp, -96, %sp
* See the comment in watchdoginsert.c and watchdogadjust.c
* about why it's safe not to declare header a pointer to
* volatile data - till, 2003/7
*/
_ISR_Disable( level );
200b648: 7f ff db f1 call 200260c <sparc_disable_interrupts>
200b64c: 01 00 00 00 nop
200b650: b8 10 00 08 mov %o0, %i4
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b654: fa 06 00 00 ld [ %i0 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b658: b4 06 20 04 add %i0, 4, %i2
if ( _Chain_Is_empty( header ) )
200b65c: 80 a7 40 1a cmp %i5, %i2
200b660: 02 80 00 09 be 200b684 <_Watchdog_Tickle+0x40>
200b664: 01 00 00 00 nop
* to be inserted has already had its delta_interval adjusted to 0, and
* so is added to the head of the chain with a delta_interval of 0.
*
* Steven Johnson - 12/2005 (gcc-3.2.3 -O3 on powerpc)
*/
if (the_watchdog->delta_interval != 0) {
200b668: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200b66c: 80 a0 60 00 cmp %g1, 0
200b670: 02 80 00 15 be 200b6c4 <_Watchdog_Tickle+0x80> <== NEVER TAKEN
200b674: 82 00 7f ff add %g1, -1, %g1
the_watchdog->delta_interval--;
if ( the_watchdog->delta_interval != 0 )
200b678: 80 a0 60 00 cmp %g1, 0
200b67c: 02 80 00 12 be 200b6c4 <_Watchdog_Tickle+0x80>
200b680: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
(the_watchdog->delta_interval == 0) );
leave:
_ISR_Enable(level);
200b684: 7f ff db e6 call 200261c <sparc_enable_interrupts>
200b688: 91 e8 00 1c restore %g0, %i4, %o0
_ISR_Enable( level );
switch( watchdog_state ) {
case WATCHDOG_ACTIVE:
(*the_watchdog->routine)(
200b68c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200b690: 9f c0 40 00 call %g1
200b694: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
case WATCHDOG_REMOVE_IT:
break;
}
_ISR_Disable( level );
200b698: 7f ff db dd call 200260c <sparc_disable_interrupts>
200b69c: 01 00 00 00 nop
200b6a0: b8 10 00 08 mov %o0, %i4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200b6a4: fa 06 00 00 ld [ %i0 ], %i5
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
(the_watchdog->delta_interval == 0) );
200b6a8: 80 a6 80 1d cmp %i2, %i5
200b6ac: 02 bf ff f6 be 200b684 <_Watchdog_Tickle+0x40>
200b6b0: 01 00 00 00 nop
}
_ISR_Disable( level );
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
200b6b4: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200b6b8: 80 a0 60 00 cmp %g1, 0
200b6bc: 12 bf ff f2 bne 200b684 <_Watchdog_Tickle+0x40>
200b6c0: 01 00 00 00 nop
if ( the_watchdog->delta_interval != 0 )
goto leave;
}
do {
watchdog_state = _Watchdog_Remove( the_watchdog );
200b6c4: 7f ff ff aa call 200b56c <_Watchdog_Remove>
200b6c8: 90 10 00 1d mov %i5, %o0
200b6cc: b6 10 00 08 mov %o0, %i3
_ISR_Enable( level );
200b6d0: 7f ff db d3 call 200261c <sparc_enable_interrupts>
200b6d4: 90 10 00 1c mov %i4, %o0
switch( watchdog_state ) {
200b6d8: 80 a6 e0 02 cmp %i3, 2
200b6dc: 12 bf ff ef bne 200b698 <_Watchdog_Tickle+0x54>
200b6e0: 01 00 00 00 nop
case WATCHDOG_ACTIVE:
(*the_watchdog->routine)(
200b6e4: 10 bf ff ea b 200b68c <_Watchdog_Tickle+0x48>
200b6e8: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
0200b6ec <_Workspace_Handler_initialization>:
void _Workspace_Handler_initialization(
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
200b6ec: 9d e3 bf 98 save %sp, -104, %sp
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
uintptr_t remaining = rtems_configuration_get_work_space_size();
200b6f0: 05 00 80 68 sethi %hi(0x201a000), %g2
200b6f4: 82 10 a0 68 or %g2, 0x68, %g1 ! 201a068 <Configuration>
200b6f8: c6 08 60 32 ldub [ %g1 + 0x32 ], %g3
200b6fc: f6 00 a0 68 ld [ %g2 + 0x68 ], %i3
200b700: 80 a0 e0 00 cmp %g3, 0
200b704: 12 80 00 03 bne 200b710 <_Workspace_Handler_initialization+0x24>
200b708: 84 10 20 00 clr %g2
200b70c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200b710: b6 00 80 1b add %g2, %i3, %i3
bool do_zero = rtems_configuration_get_do_zero_of_workspace();
200b714: c4 08 60 30 ldub [ %g1 + 0x30 ], %g2
bool unified = rtems_configuration_get_unified_work_area();
200b718: c2 08 60 31 ldub [ %g1 + 0x31 ], %g1
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
uintptr_t remaining = rtems_configuration_get_work_space_size();
bool do_zero = rtems_configuration_get_do_zero_of_workspace();
200b71c: c4 2f bf ff stb %g2, [ %fp + -1 ]
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200b720: 80 a6 60 00 cmp %i1, 0
200b724: 02 80 00 3c be 200b814 <_Workspace_Handler_initialization+0x128><== NEVER TAKEN
200b728: c2 2f bf fe stb %g1, [ %fp + -2 ]
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
200b72c: 23 00 80 23 sethi %hi(0x2008c00), %l1
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200b730: 27 00 80 73 sethi %hi(0x201cc00), %l3
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200b734: b8 10 20 00 clr %i4
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
200b738: a2 14 61 fc or %l1, 0x1fc, %l1
200b73c: a0 08 a0 ff and %g2, 0xff, %l0
if ( area->size > overhead ) {
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
200b740: a4 08 60 ff and %g1, 0xff, %l2
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200b744: 10 80 00 22 b 200b7cc <_Workspace_Handler_initialization+0xe0>
200b748: a6 14 e0 90 or %l3, 0x90, %l3
if ( do_zero ) {
memset( area->begin, 0, area->size );
}
if ( area->size > overhead ) {
200b74c: 80 a7 60 16 cmp %i5, 0x16
200b750: 28 80 00 1c bleu,a 200b7c0 <_Workspace_Handler_initialization+0xd4>
200b754: b8 07 20 01 inc %i4
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
200b758: 80 a4 a0 00 cmp %l2, 0
200b75c: 32 80 00 0a bne,a 200b784 <_Workspace_Handler_initialization+0x98>
200b760: d2 06 00 00 ld [ %i0 ], %o1
size = area->size;
} else {
if ( remaining > 0 ) {
200b764: 80 a6 e0 00 cmp %i3, 0
200b768: 22 80 00 22 be,a 200b7f0 <_Workspace_Handler_initialization+0x104><== NEVER TAKEN
200b76c: d2 06 00 00 ld [ %i0 ], %o1 <== NOT EXECUTED
size = remaining < area->size - overhead ?
200b770: 82 07 7f ea add %i5, -22, %g1
remaining + overhead : area->size;
200b774: 80 a0 40 1b cmp %g1, %i3
200b778: 38 80 00 02 bgu,a 200b780 <_Workspace_Handler_initialization+0x94><== ALWAYS TAKEN
200b77c: ba 06 e0 16 add %i3, 0x16, %i5
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200b780: d2 06 00 00 ld [ %i0 ], %o1
200b784: 94 10 00 1d mov %i5, %o2
200b788: 90 10 00 13 mov %l3, %o0
200b78c: 9f c4 40 00 call %l1
200b790: 96 10 20 08 mov 8, %o3
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
200b794: c2 06 00 00 ld [ %i0 ], %g1
area->size -= size;
200b798: c4 06 20 04 ld [ %i0 + 4 ], %g2
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
200b79c: 82 00 40 1d add %g1, %i5, %g1
area->size -= size;
200b7a0: ba 20 80 1d sub %g2, %i5, %i5
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
200b7a4: c2 26 00 00 st %g1, [ %i0 ]
area->size -= size;
if ( space_available < remaining ) {
200b7a8: 80 a2 00 1b cmp %o0, %i3
200b7ac: 1a 80 00 1f bcc 200b828 <_Workspace_Handler_initialization+0x13c><== ALWAYS TAKEN
200b7b0: fa 26 20 04 st %i5, [ %i0 + 4 ]
remaining -= space_available;
200b7b4: b6 26 c0 08 sub %i3, %o0, %i3 <== NOT EXECUTED
} else {
remaining = 0;
}
init_or_extend = extend;
200b7b8: a2 10 00 1a mov %i2, %l1 <== NOT EXECUTED
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200b7bc: b8 07 20 01 inc %i4
200b7c0: 80 a7 00 19 cmp %i4, %i1
200b7c4: 02 80 00 14 be 200b814 <_Workspace_Handler_initialization+0x128><== ALWAYS TAKEN
200b7c8: b0 06 20 08 add %i0, 8, %i0
Heap_Area *area = &areas [i];
if ( do_zero ) {
200b7cc: 80 a4 20 00 cmp %l0, 0
200b7d0: 22 bf ff df be,a 200b74c <_Workspace_Handler_initialization+0x60>
200b7d4: fa 06 20 04 ld [ %i0 + 4 ], %i5
memset( area->begin, 0, area->size );
200b7d8: d0 06 00 00 ld [ %i0 ], %o0
200b7dc: d4 06 20 04 ld [ %i0 + 4 ], %o2
200b7e0: 40 00 11 e0 call 200ff60 <memset>
200b7e4: 92 10 20 00 clr %o1
}
if ( area->size > overhead ) {
200b7e8: 10 bf ff d9 b 200b74c <_Workspace_Handler_initialization+0x60>
200b7ec: fa 06 20 04 ld [ %i0 + 4 ], %i5
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
200b7f0: 90 10 00 13 mov %l3, %o0 <== NOT EXECUTED
200b7f4: 94 10 20 00 clr %o2 <== NOT EXECUTED
200b7f8: 9f c4 40 00 call %l1 <== NOT EXECUTED
200b7fc: 96 10 20 08 mov 8, %o3 <== NOT EXECUTED
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200b800: b8 07 20 01 inc %i4 <== NOT EXECUTED
remaining -= space_available;
} else {
remaining = 0;
}
init_or_extend = extend;
200b804: a2 10 00 1a mov %i2, %l1 <== NOT EXECUTED
bool unified = rtems_configuration_get_unified_work_area();
uintptr_t page_size = CPU_HEAP_ALIGNMENT;
uintptr_t overhead = _Heap_Area_overhead( page_size );
size_t i;
for (i = 0; i < area_count; ++i) {
200b808: 80 a7 00 19 cmp %i4, %i1 <== NOT EXECUTED
200b80c: 12 bf ff f0 bne 200b7cc <_Workspace_Handler_initialization+0xe0><== NOT EXECUTED
200b810: b0 06 20 08 add %i0, 8, %i0 <== NOT EXECUTED
init_or_extend = extend;
}
}
if ( remaining > 0 ) {
200b814: 80 a6 e0 00 cmp %i3, 0
200b818: 12 80 00 07 bne 200b834 <_Workspace_Handler_initialization+0x148>
200b81c: 90 10 20 00 clr %o0
200b820: 81 c7 e0 08 ret
200b824: 81 e8 00 00 restore
remaining -= space_available;
} else {
remaining = 0;
}
init_or_extend = extend;
200b828: a2 10 00 1a mov %i2, %l1
area->size -= size;
if ( space_available < remaining ) {
remaining -= space_available;
} else {
remaining = 0;
200b82c: 10 bf ff e4 b 200b7bc <_Workspace_Handler_initialization+0xd0>
200b830: b6 10 20 00 clr %i3
init_or_extend = extend;
}
}
if ( remaining > 0 ) {
_Internal_error_Occurred(
200b834: 92 10 20 01 mov 1, %o1
200b838: 7f ff f6 0e call 2009070 <_Internal_error_Occurred>
200b83c: 94 10 20 02 mov 2, %o2
0200b650 <_Workspace_String_duplicate>:
char *_Workspace_String_duplicate(
const char *string,
size_t len
)
{
200b650: 9d e3 bf a0 save %sp, -96, %sp
char *dup = _Workspace_Allocate(len + 1);
200b654: 7f ff ff e2 call 200b5dc <_Workspace_Allocate>
200b658: 90 06 60 01 add %i1, 1, %o0
if (dup != NULL) {
200b65c: ba 92 20 00 orcc %o0, 0, %i5
200b660: 02 80 00 05 be 200b674 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN
200b664: 92 10 00 18 mov %i0, %o1
dup [len] = '\0';
200b668: c0 2f 40 19 clrb [ %i5 + %i1 ]
memcpy(dup, string, len);
200b66c: 40 00 12 0b call 200fe98 <memcpy>
200b670: 94 10 00 19 mov %i1, %o2
}
return dup;
}
200b674: 81 c7 e0 08 ret
200b678: 91 e8 00 1d restore %g0, %i5, %o0
02008bc8 <check_and_merge>:
rtems_rbtree_control *chunk_tree,
rtems_rbheap_chunk *a,
rtems_rbheap_chunk *b
)
{
if (b != NULL_PAGE && rtems_rbheap_is_chunk_free(b)) {
2008bc8: 80 a2 ff f8 cmp %o3, -8
2008bcc: 02 80 00 23 be 2008c58 <check_and_merge+0x90>
2008bd0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008bd4: c2 02 c0 00 ld [ %o3 ], %g1
2008bd8: 80 a0 60 00 cmp %g1, 0
2008bdc: 22 80 00 1c be,a 2008c4c <check_and_merge+0x84>
2008be0: c4 02 e0 04 ld [ %o3 + 4 ], %g2
if (b->begin < a->begin) {
2008be4: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3
2008be8: c4 02 a0 18 ld [ %o2 + 0x18 ], %g2
2008bec: 80 a0 c0 02 cmp %g3, %g2
2008bf0: 3a 80 00 07 bcc,a 2008c0c <check_and_merge+0x44>
2008bf4: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4
2008bf8: 84 10 00 0a mov %o2, %g2
2008bfc: c2 02 80 00 ld [ %o2 ], %g1
2008c00: 94 10 00 0b mov %o3, %o2
2008c04: 96 10 00 02 mov %g2, %o3
a = b;
b = t;
}
a->size += b->size;
2008c08: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4
2008c0c: c6 02 e0 1c ld [ %o3 + 0x1c ], %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2008c10: c4 02 e0 04 ld [ %o3 + 4 ], %g2
2008c14: 86 01 00 03 add %g4, %g3, %g3
2008c18: c6 22 a0 1c st %g3, [ %o2 + 0x1c ]
next->previous = previous;
previous->next = next;
2008c1c: c2 20 80 00 st %g1, [ %g2 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
2008c20: c4 20 60 04 st %g2, [ %g1 + 4 ]
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008c24: c2 02 00 00 ld [ %o0 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008c28: d0 22 e0 04 st %o0, [ %o3 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008c2c: d6 22 00 00 st %o3, [ %o0 ]
the_node->next = before_node;
2008c30: c2 22 c0 00 st %g1, [ %o3 ]
rtems_chain_extract_unprotected(&b->chain_node);
add_to_chain(free_chain, b);
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
2008c34: 90 10 00 09 mov %o1, %o0
before_node->previous = the_node;
2008c38: d6 20 60 04 st %o3, [ %g1 + 4 ]
2008c3c: 92 02 e0 08 add %o3, 8, %o1
2008c40: 82 13 c0 00 mov %o7, %g1
2008c44: 40 00 07 29 call 200a8e8 <_RBTree_Extract_unprotected>
2008c48: 9e 10 40 00 mov %g1, %o7
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008c4c: 80 a0 a0 00 cmp %g2, 0
2008c50: 32 bf ff e6 bne,a 2008be8 <check_and_merge+0x20> <== NEVER TAKEN
2008c54: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3 <== NOT EXECUTED
2008c58: 81 c3 e0 08 retl
020087d4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
20087d4: 9d e3 bf 98 save %sp, -104, %sp
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
20087d8: 40 00 01 97 call 2008e34 <_Chain_Get>
20087dc: 90 10 00 18 mov %i0, %o0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
20087e0: 92 10 20 00 clr %o1
20087e4: ba 10 00 08 mov %o0, %i5
20087e8: 94 10 00 1a mov %i2, %o2
20087ec: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20087f0: 80 a7 60 00 cmp %i5, 0
20087f4: 12 80 00 0a bne 200881c <rtems_chain_get_with_wait+0x48>
20087f8: 96 07 bf fc add %fp, -4, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
20087fc: 7f ff fc df call 2007b78 <rtems_event_receive>
2008800: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2008804: 80 a2 20 00 cmp %o0, 0
2008808: 02 bf ff f4 be 20087d8 <rtems_chain_get_with_wait+0x4> <== NEVER TAKEN
200880c: 01 00 00 00 nop
timeout,
&out
);
}
*node_ptr = node;
2008810: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008814: 81 c7 e0 08 ret
2008818: 91 e8 00 08 restore %g0, %o0, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
200881c: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2008820: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008824: 81 c7 e0 08 ret
2008828: 91 e8 00 08 restore %g0, %o0, %o0
0201151c <rtems_event_system_receive>:
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out
)
{
201151c: 9d e3 bf 98 save %sp, -104, %sp
rtems_status_code sc;
if ( event_out != NULL ) {
2011520: 80 a6 e0 00 cmp %i3, 0
2011524: 02 80 00 0a be 201154c <rtems_event_system_receive+0x30> <== NEVER TAKEN
2011528: 82 10 20 09 mov 9, %g1
Thread_Control *executing = _Thread_Executing;
201152c: 03 00 80 85 sethi %hi(0x2021400), %g1
2011530: fa 00 62 30 ld [ %g1 + 0x230 ], %i5 ! 2021630 <_Per_CPU_Information+0x10>
RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ];
Event_Control *event = &api->System_event;
if ( !_Event_sets_Is_empty( event_in ) ) {
2011534: 80 a6 20 00 cmp %i0, 0
2011538: 12 80 00 07 bne 2011554 <rtems_event_system_receive+0x38> <== ALWAYS TAKEN
201153c: da 07 61 50 ld [ %i5 + 0x150 ], %o5
);
_Thread_Enable_dispatch();
sc = executing->Wait.return_code;
} else {
*event_out = event->pending_events;
2011540: c4 03 60 04 ld [ %o5 + 4 ], %g2 <== NOT EXECUTED
sc = RTEMS_SUCCESSFUL;
2011544: 82 10 20 00 clr %g1 <== NOT EXECUTED
);
_Thread_Enable_dispatch();
sc = executing->Wait.return_code;
} else {
*event_out = event->pending_events;
2011548: c4 26 c0 00 st %g2, [ %i3 ] <== NOT EXECUTED
} else {
sc = RTEMS_INVALID_ADDRESS;
}
return sc;
}
201154c: 81 c7 e0 08 ret <== NOT EXECUTED
2011550: 91 e8 00 01 restore %g0, %g1, %o0 <== NOT EXECUTED
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2011554: 03 00 80 85 sethi %hi(0x2021400), %g1
2011558: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 2021410 <_Thread_Dispatch_disable_level>
++level;
201155c: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
2011560: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
RTEMS_API_Control *api = executing->API_Extensions[ THREAD_API_RTEMS ];
Event_Control *event = &api->System_event;
if ( !_Event_sets_Is_empty( event_in ) ) {
_Thread_Disable_dispatch();
_Event_Seize(
2011564: 03 00 01 00 sethi %hi(0x40000), %g1
2011568: 90 10 00 18 mov %i0, %o0
201156c: 92 10 00 19 mov %i1, %o1
2011570: 94 10 00 1a mov %i2, %o2
2011574: 96 10 00 1b mov %i3, %o3
2011578: 98 10 00 1d mov %i5, %o4
201157c: 9a 03 60 04 add %o5, 4, %o5
2011580: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2011584: 03 00 80 85 sethi %hi(0x2021400), %g1
2011588: 82 10 62 80 or %g1, 0x280, %g1 ! 2021680 <_System_event_Sync_state>
201158c: 7f ff dc f1 call 2008950 <_Event_Seize>
2011590: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
executing,
event,
&_System_event_Sync_state,
STATES_WAITING_FOR_SYSTEM_EVENT
);
_Thread_Enable_dispatch();
2011594: 7f ff e8 f4 call 200b964 <_Thread_Enable_dispatch>
2011598: 01 00 00 00 nop
sc = executing->Wait.return_code;
201159c: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
} else {
sc = RTEMS_INVALID_ADDRESS;
}
return sc;
}
20115a0: 81 c7 e0 08 ret
20115a4: 91 e8 00 01 restore %g0, %g1, %o0
02007d48 <rtems_event_system_send>:
rtems_status_code rtems_event_system_send(
rtems_id id,
rtems_event_set event_in
)
{
2007d48: 9d e3 bf 98 save %sp, -104, %sp
rtems_status_code sc;
Thread_Control *thread;
Objects_Locations location;
RTEMS_API_Control *api;
thread = _Thread_Get( id, &location );
2007d4c: 90 10 00 18 mov %i0, %o0
2007d50: 40 00 0a 6f call 200a70c <_Thread_Get>
2007d54: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2007d58: c2 07 bf fc ld [ %fp + -4 ], %g1
2007d5c: 80 a0 60 00 cmp %g1, 0
2007d60: 12 80 00 0d bne 2007d94 <rtems_event_system_send+0x4c> <== NEVER TAKEN
2007d64: 92 10 00 19 mov %i1, %o1
case OBJECTS_LOCAL:
api = thread->API_Extensions[ THREAD_API_RTEMS ];
_Event_Surrender(
2007d68: d4 02 21 50 ld [ %o0 + 0x150 ], %o2
2007d6c: 94 02 a0 04 add %o2, 4, %o2
2007d70: 19 00 01 00 sethi %hi(0x40000), %o4
2007d74: 17 00 80 73 sethi %hi(0x201cc00), %o3
2007d78: 96 12 e2 f0 or %o3, 0x2f0, %o3 ! 201cef0 <_System_event_Sync_state>
2007d7c: 7f ff fe 54 call 20076cc <_Event_Surrender>
2007d80: b0 10 20 00 clr %i0
event_in,
&api->System_event,
&_System_event_Sync_state,
STATES_WAITING_FOR_SYSTEM_EVENT
);
_Thread_Enable_dispatch();
2007d84: 40 00 0a 56 call 200a6dc <_Thread_Enable_dispatch>
2007d88: 01 00 00 00 nop
sc = RTEMS_SUCCESSFUL;
break;
2007d8c: 81 c7 e0 08 ret
2007d90: 81 e8 00 00 restore
sc = RTEMS_INVALID_ID;
break;
}
return sc;
}
2007d94: 81 c7 e0 08 ret <== NOT EXECUTED
2007d98: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
020097a0 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20097a0: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
20097a4: 03 00 80 85 sethi %hi(0x2021400), %g1
20097a8: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 2021628 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20097ac: ba 10 00 18 mov %i0, %i5
rtems_device_major_number major_limit = _IO_Number_of_drivers;
20097b0: 03 00 80 85 sethi %hi(0x2021400), %g1
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20097b4: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
20097b8: c8 00 62 c8 ld [ %g1 + 0x2c8 ], %g4
if ( rtems_interrupt_is_in_progress() )
20097bc: 80 a0 a0 00 cmp %g2, 0
20097c0: 12 80 00 1f bne 200983c <rtems_io_register_driver+0x9c>
20097c4: b0 10 20 12 mov 0x12, %i0
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
20097c8: 80 a6 a0 00 cmp %i2, 0
20097cc: 02 80 00 21 be 2009850 <rtems_io_register_driver+0xb0>
20097d0: 80 a6 60 00 cmp %i1, 0
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
20097d4: 02 80 00 1f be 2009850 <rtems_io_register_driver+0xb0>
20097d8: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20097dc: c4 06 40 00 ld [ %i1 ], %g2
20097e0: 80 a0 a0 00 cmp %g2, 0
20097e4: 22 80 00 18 be,a 2009844 <rtems_io_register_driver+0xa4>
20097e8: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
20097ec: 80 a1 00 1d cmp %g4, %i5
20097f0: 08 80 00 13 bleu 200983c <rtems_io_register_driver+0x9c>
20097f4: b0 10 20 0a mov 0xa, %i0
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
20097f8: 05 00 80 85 sethi %hi(0x2021400), %g2
20097fc: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 ! 2021410 <_Thread_Dispatch_disable_level>
++level;
2009800: 88 01 20 01 inc %g4
_Thread_Dispatch_disable_level = level;
2009804: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2009808: 80 a7 60 00 cmp %i5, 0
200980c: 02 80 00 13 be 2009858 <rtems_io_register_driver+0xb8>
2009810: 39 00 80 85 sethi %hi(0x2021400), %i4
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2009814: c8 07 22 cc ld [ %i4 + 0x2cc ], %g4 ! 20216cc <_IO_Driver_address_table>
2009818: 85 2f 60 03 sll %i5, 3, %g2
200981c: b7 2f 60 05 sll %i5, 5, %i3
2009820: 82 26 c0 02 sub %i3, %g2, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009824: f2 01 00 01 ld [ %g4 + %g1 ], %i1
2009828: 80 a6 60 00 cmp %i1, 0
200982c: 02 80 00 3a be 2009914 <rtems_io_register_driver+0x174>
2009830: 82 01 00 01 add %g4, %g1, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2009834: 40 00 08 4c call 200b964 <_Thread_Enable_dispatch>
2009838: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
200983c: 81 c7 e0 08 ret
2009840: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009844: 80 a0 a0 00 cmp %g2, 0
2009848: 12 bf ff ea bne 20097f0 <rtems_io_register_driver+0x50>
200984c: 80 a1 00 1d cmp %g4, %i5
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2009850: 81 c7 e0 08 ret
2009854: 91 e8 20 09 restore %g0, 9, %o0
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2009858: c8 00 62 c8 ld [ %g1 + 0x2c8 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
200985c: 80 a1 20 00 cmp %g4, 0
2009860: 02 80 00 33 be 200992c <rtems_io_register_driver+0x18c> <== NEVER TAKEN
2009864: c2 07 22 cc ld [ %i4 + 0x2cc ], %g1
2009868: 30 80 00 04 b,a 2009878 <rtems_io_register_driver+0xd8>
200986c: 80 a7 40 04 cmp %i5, %g4
2009870: 02 80 00 24 be 2009900 <rtems_io_register_driver+0x160>
2009874: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009878: c4 00 40 00 ld [ %g1 ], %g2
200987c: 80 a0 a0 00 cmp %g2, 0
2009880: 32 bf ff fb bne,a 200986c <rtems_io_register_driver+0xcc>
2009884: ba 07 60 01 inc %i5
2009888: c4 00 60 04 ld [ %g1 + 4 ], %g2
200988c: 80 a0 a0 00 cmp %g2, 0
2009890: 32 bf ff f7 bne,a 200986c <rtems_io_register_driver+0xcc>
2009894: ba 07 60 01 inc %i5
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2009898: fa 26 80 00 st %i5, [ %i2 ]
200989c: 85 2f 60 03 sll %i5, 3, %g2
if ( m != n )
20098a0: 80 a1 00 1d cmp %g4, %i5
20098a4: 02 80 00 18 be 2009904 <rtems_io_register_driver+0x164> <== NEVER TAKEN
20098a8: b7 2f 60 05 sll %i5, 5, %i3
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20098ac: c8 00 c0 00 ld [ %g3 ], %g4
20098b0: c2 07 22 cc ld [ %i4 + 0x2cc ], %g1
20098b4: 84 26 c0 02 sub %i3, %g2, %g2
20098b8: c8 20 40 02 st %g4, [ %g1 + %g2 ]
20098bc: c8 00 e0 04 ld [ %g3 + 4 ], %g4
20098c0: 82 00 40 02 add %g1, %g2, %g1
20098c4: c8 20 60 04 st %g4, [ %g1 + 4 ]
20098c8: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
20098cc: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20098d0: c4 20 60 08 st %g2, [ %g1 + 8 ]
20098d4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
20098d8: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20098dc: c4 20 60 0c st %g2, [ %g1 + 0xc ]
20098e0: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
20098e4: b0 10 00 1d mov %i5, %i0
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20098e8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
20098ec: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
20098f0: 40 00 08 1d call 200b964 <_Thread_Enable_dispatch>
20098f4: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
20098f8: 40 00 20 37 call 20119d4 <rtems_io_initialize>
20098fc: 81 e8 00 00 restore
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2009900: fa 26 80 00 st %i5, [ %i2 ]
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2009904: 40 00 08 18 call 200b964 <_Thread_Enable_dispatch>
2009908: b0 10 20 05 mov 5, %i0
return sc;
200990c: 81 c7 e0 08 ret
2009910: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009914: c2 00 60 04 ld [ %g1 + 4 ], %g1
2009918: 80 a0 60 00 cmp %g1, 0
200991c: 12 bf ff c6 bne 2009834 <rtems_io_register_driver+0x94>
2009920: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2009924: 10 bf ff e2 b 20098ac <rtems_io_register_driver+0x10c>
2009928: fa 26 80 00 st %i5, [ %i2 ]
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
200992c: 10 bf ff f6 b 2009904 <rtems_io_register_driver+0x164> <== NOT EXECUTED
2009930: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
0200a8d0 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200a8d0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200a8d4: 80 a6 20 00 cmp %i0, 0
200a8d8: 02 80 00 23 be 200a964 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
200a8dc: 37 00 80 7e sethi %hi(0x201f800), %i3
200a8e0: b6 16 e0 08 or %i3, 8, %i3 ! 201f808 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200a8e4: b4 06 e0 0c add %i3, 0xc, %i2
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200a8e8: c2 06 c0 00 ld [ %i3 ], %g1
200a8ec: 80 a0 60 00 cmp %g1, 0
200a8f0: 22 80 00 1a be,a 200a958 <rtems_iterate_over_all_threads+0x88>
200a8f4: b6 06 e0 04 add %i3, 4, %i3
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
200a8f8: f8 00 60 04 ld [ %g1 + 4 ], %i4
if ( !information )
200a8fc: 80 a7 20 00 cmp %i4, 0
200a900: 22 80 00 16 be,a 200a958 <rtems_iterate_over_all_threads+0x88>
200a904: b6 06 e0 04 add %i3, 4, %i3
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a908: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1
200a90c: 86 90 60 00 orcc %g1, 0, %g3
200a910: 22 80 00 12 be,a 200a958 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
200a914: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED
200a918: ba 10 20 01 mov 1, %i5
the_thread = (Thread_Control *)information->local_table[ i ];
200a91c: c4 07 20 1c ld [ %i4 + 0x1c ], %g2
200a920: 83 2f 60 02 sll %i5, 2, %g1
200a924: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_thread )
200a928: 90 90 60 00 orcc %g1, 0, %o0
200a92c: 02 80 00 05 be 200a940 <rtems_iterate_over_all_threads+0x70>
200a930: ba 07 60 01 inc %i5
continue;
(*routine)(the_thread);
200a934: 9f c6 00 00 call %i0
200a938: 01 00 00 00 nop
200a93c: c6 17 20 10 lduh [ %i4 + 0x10 ], %g3
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200a940: 83 28 e0 10 sll %g3, 0x10, %g1
200a944: 83 30 60 10 srl %g1, 0x10, %g1
200a948: 80 a0 40 1d cmp %g1, %i5
200a94c: 3a bf ff f5 bcc,a 200a920 <rtems_iterate_over_all_threads+0x50>
200a950: c4 07 20 1c ld [ %i4 + 0x1c ], %g2
200a954: b6 06 e0 04 add %i3, 4, %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200a958: 80 a6 c0 1a cmp %i3, %i2
200a95c: 32 bf ff e4 bne,a 200a8ec <rtems_iterate_over_all_threads+0x1c>
200a960: c2 06 c0 00 ld [ %i3 ], %g1
200a964: 81 c7 e0 08 ret
200a968: 81 e8 00 00 restore
02009528 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
2009528: 9d e3 bf a0 save %sp, -96, %sp
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
200952c: 80 a6 a0 00 cmp %i2, 0
2009530: 02 80 00 21 be 20095b4 <rtems_object_get_class_information+0x8c>
2009534: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
2009538: 93 2e 60 10 sll %i1, 0x10, %o1
200953c: 90 10 00 18 mov %i0, %o0
2009540: 40 00 07 b0 call 200b400 <_Objects_Get_information>
2009544: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
2009548: 80 a2 20 00 cmp %o0, 0
200954c: 02 80 00 1a be 20095b4 <rtems_object_get_class_information+0x8c>
2009550: 82 10 20 0a mov 0xa, %g1
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
2009554: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
2009558: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
200955c: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
2009560: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
2009564: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
2009568: c4 26 a0 04 st %g2, [ %i2 + 4 ]
info->auto_extend = obj_info->auto_extend;
200956c: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2009570: 80 a1 20 00 cmp %g4, 0
2009574: 02 80 00 12 be 20095bc <rtems_object_get_class_information+0x94><== NEVER TAKEN
2009578: c8 26 a0 08 st %g4, [ %i2 + 8 ]
200957c: fa 02 20 1c ld [ %o0 + 0x1c ], %i5
2009580: 86 10 20 01 mov 1, %g3
2009584: 82 10 20 01 mov 1, %g1
2009588: 84 10 20 00 clr %g2
if ( !obj_info->local_table[i] )
200958c: 87 28 e0 02 sll %g3, 2, %g3
2009590: c6 07 40 03 ld [ %i5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2009594: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
2009598: 80 a0 00 03 cmp %g0, %g3
200959c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20095a0: 80 a1 00 01 cmp %g4, %g1
20095a4: 1a bf ff fa bcc 200958c <rtems_object_get_class_information+0x64>
20095a8: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
20095ac: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
20095b0: 82 10 20 00 clr %g1
}
20095b4: 81 c7 e0 08 ret
20095b8: 91 e8 00 01 restore %g0, %g1, %o0
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20095bc: 84 10 20 00 clr %g2 <== NOT EXECUTED
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
return RTEMS_SUCCESSFUL;
20095c0: 82 10 20 00 clr %g1 <== NOT EXECUTED
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
20095c4: 10 bf ff fc b 20095b4 <rtems_object_get_class_information+0x8c><== NOT EXECUTED
20095c8: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] <== NOT EXECUTED
0201558c <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
201558c: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2015590: 80 a6 20 00 cmp %i0, 0
2015594: 12 80 00 04 bne 20155a4 <rtems_partition_create+0x18>
2015598: 82 10 20 03 mov 3, %g1
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
201559c: 81 c7 e0 08 ret
20155a0: 91 e8 00 01 restore %g0, %g1, %o0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
return RTEMS_INVALID_NAME;
if ( !starting_address )
20155a4: 80 a6 60 00 cmp %i1, 0
20155a8: 02 bf ff fd be 201559c <rtems_partition_create+0x10>
20155ac: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
20155b0: 80 a7 60 00 cmp %i5, 0
20155b4: 02 bf ff fa be 201559c <rtems_partition_create+0x10> <== NEVER TAKEN
20155b8: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20155bc: 02 bf ff f8 be 201559c <rtems_partition_create+0x10>
20155c0: 82 10 20 08 mov 8, %g1
20155c4: 80 a6 a0 00 cmp %i2, 0
20155c8: 02 bf ff f5 be 201559c <rtems_partition_create+0x10>
20155cc: 80 a6 80 1b cmp %i2, %i3
20155d0: 0a bf ff f3 bcs 201559c <rtems_partition_create+0x10>
20155d4: 80 8e e0 07 btst 7, %i3
20155d8: 12 bf ff f1 bne 201559c <rtems_partition_create+0x10>
20155dc: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
20155e0: 12 bf ff ef bne 201559c <rtems_partition_create+0x10>
20155e4: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
20155e8: 03 00 80 ec sethi %hi(0x203b000), %g1
20155ec: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 203b0f0 <_Thread_Dispatch_disable_level>
++level;
20155f0: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
20155f4: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
20155f8: 23 00 80 eb sethi %hi(0x203ac00), %l1
20155fc: 40 00 13 de call 201a574 <_Objects_Allocate>
2015600: 90 14 62 ec or %l1, 0x2ec, %o0 ! 203aeec <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2015604: a0 92 20 00 orcc %o0, 0, %l0
2015608: 02 80 00 1a be 2015670 <rtems_partition_create+0xe4>
201560c: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
2015610: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2015614: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2015618: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
201561c: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2015620: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2015624: 40 00 56 76 call 202affc <.udiv>
2015628: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
201562c: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2015630: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2015634: 96 10 00 1b mov %i3, %o3
2015638: b8 04 20 24 add %l0, 0x24, %i4
201563c: 40 00 0d 85 call 2018c50 <_Chain_Initialize>
2015640: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2015644: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2015648: a2 14 62 ec or %l1, 0x2ec, %l1
201564c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2015650: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2015654: 85 28 a0 02 sll %g2, 2, %g2
2015658: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
201565c: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2015660: 40 00 19 44 call 201bb70 <_Thread_Enable_dispatch>
2015664: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2015668: 10 bf ff cd b 201559c <rtems_partition_create+0x10>
201566c: 82 10 20 00 clr %g1
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2015670: 40 00 19 40 call 201bb70 <_Thread_Enable_dispatch>
2015674: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2015678: 10 bf ff c9 b 201559c <rtems_partition_create+0x10>
201567c: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
020157b0 <rtems_partition_return_buffer>:
rtems_status_code rtems_partition_return_buffer(
rtems_id id,
void *buffer
)
{
20157b0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Partition_Control *)
20157b4: 11 00 80 eb sethi %hi(0x203ac00), %o0
20157b8: 92 10 00 18 mov %i0, %o1
20157bc: 90 12 22 ec or %o0, 0x2ec, %o0
20157c0: 40 00 14 dd call 201ab34 <_Objects_Get>
20157c4: 94 07 bf fc add %fp, -4, %o2
register Partition_Control *the_partition;
Objects_Locations location;
the_partition = _Partition_Get( id, &location );
switch ( location ) {
20157c8: c2 07 bf fc ld [ %fp + -4 ], %g1
20157cc: 80 a0 60 00 cmp %g1, 0
20157d0: 12 80 00 19 bne 2015834 <rtems_partition_return_buffer+0x84>
20157d4: ba 10 00 08 mov %o0, %i5
)
{
void *starting;
void *ending;
starting = the_partition->starting_address;
20157d8: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
20157dc: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
20157e0: 82 02 00 01 add %o0, %g1, %g1
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
20157e4: 80 a6 40 01 cmp %i1, %g1
20157e8: 18 80 00 15 bgu 201583c <rtems_partition_return_buffer+0x8c><== NEVER TAKEN
20157ec: 80 a6 40 08 cmp %i1, %o0
20157f0: 0a 80 00 13 bcs 201583c <rtems_partition_return_buffer+0x8c>
20157f4: 01 00 00 00 nop
offset = (uint32_t) _Addresses_Subtract(
the_buffer,
the_partition->starting_address
);
return ((offset % the_partition->buffer_size) == 0);
20157f8: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
20157fc: 40 00 56 ac call 202b2ac <.urem>
2015800: 90 26 40 08 sub %i1, %o0, %o0
starting = the_partition->starting_address;
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
2015804: 80 a2 20 00 cmp %o0, 0
2015808: 12 80 00 0d bne 201583c <rtems_partition_return_buffer+0x8c>
201580c: 90 07 60 24 add %i5, 0x24, %o0
RTEMS_INLINE_ROUTINE void _Partition_Free_buffer (
Partition_Control *the_partition,
Chain_Node *the_buffer
)
{
_Chain_Append( &the_partition->Memory, the_buffer );
2015810: 40 00 0c f5 call 2018be4 <_Chain_Append>
2015814: 92 10 00 19 mov %i1, %o1
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
2015818: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
201581c: b0 10 20 00 clr %i0
switch ( location ) {
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
2015820: 82 00 7f ff add %g1, -1, %g1
_Thread_Enable_dispatch();
2015824: 40 00 18 d3 call 201bb70 <_Thread_Enable_dispatch>
2015828: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
201582c: 81 c7 e0 08 ret
2015830: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2015834: 81 c7 e0 08 ret
2015838: 91 e8 20 04 restore %g0, 4, %o0
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
201583c: 40 00 18 cd call 201bb70 <_Thread_Enable_dispatch>
2015840: b0 10 20 09 mov 9, %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015844: 81 c7 e0 08 ret
2015848: 81 e8 00 00 restore
02037340 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2037340: 9d e3 bf 98 save %sp, -104, %sp
2037344: 11 00 81 98 sethi %hi(0x2066000), %o0
2037348: 92 10 00 18 mov %i0, %o1
203734c: 90 12 20 74 or %o0, 0x74, %o0
2037350: 7f ff 48 2f call 200940c <_Objects_Get>
2037354: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2037358: c2 07 bf fc ld [ %fp + -4 ], %g1
203735c: 80 a0 60 00 cmp %g1, 0
2037360: 12 80 00 0d bne 2037394 <rtems_rate_monotonic_period+0x54>
2037364: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2037368: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
203736c: 39 00 81 97 sethi %hi(0x2065c00), %i4
2037370: b8 17 22 50 or %i4, 0x250, %i4 ! 2065e50 <_Per_CPU_Information>
2037374: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2037378: 80 a0 80 01 cmp %g2, %g1
203737c: 02 80 00 08 be 203739c <rtems_rate_monotonic_period+0x5c>
2037380: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2037384: 7f ff 4c 05 call 200a398 <_Thread_Enable_dispatch>
2037388: b0 10 20 17 mov 0x17, %i0
203738c: 81 c7 e0 08 ret
2037390: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2037394: 81 c7 e0 08 ret
2037398: 91 e8 20 04 restore %g0, 4, %o0
if ( !_Thread_Is_executing( the_period->owner ) ) {
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
203739c: 12 80 00 0e bne 20373d4 <rtems_rate_monotonic_period+0x94>
20373a0: 01 00 00 00 nop
switch ( the_period->state ) {
20373a4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20373a8: 80 a0 60 04 cmp %g1, 4
20373ac: 18 80 00 06 bgu 20373c4 <rtems_rate_monotonic_period+0x84><== NEVER TAKEN
20373b0: b0 10 20 00 clr %i0
20373b4: 83 28 60 02 sll %g1, 2, %g1
20373b8: 05 00 81 7e sethi %hi(0x205f800), %g2
20373bc: 84 10 a2 00 or %g2, 0x200, %g2 ! 205fa00 <CSWTCH.24>
20373c0: f0 00 80 01 ld [ %g2 + %g1 ], %i0
id,
NULL
);
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20373c4: 7f ff 4b f5 call 200a398 <_Thread_Enable_dispatch>
20373c8: 01 00 00 00 nop
20373cc: 81 c7 e0 08 ret
20373d0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
20373d4: 7f ff 2c 02 call 20023dc <sparc_disable_interrupts>
20373d8: 01 00 00 00 nop
20373dc: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
20373e0: f6 07 60 38 ld [ %i5 + 0x38 ], %i3
20373e4: 80 a6 e0 00 cmp %i3, 0
20373e8: 02 80 00 1c be 2037458 <rtems_rate_monotonic_period+0x118>
20373ec: 80 a6 e0 02 cmp %i3, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20373f0: 02 80 00 2e be 20374a8 <rtems_rate_monotonic_period+0x168>
20373f4: 80 a6 e0 04 cmp %i3, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20373f8: 12 bf ff e5 bne 203738c <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20373fc: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2037400: 7f ff ff 5e call 2037178 <_Rate_monotonic_Update_statistics>
2037404: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
2037408: 7f ff 2b f9 call 20023ec <sparc_enable_interrupts>
203740c: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2037410: 82 10 20 02 mov 2, %g1
2037414: 92 07 60 10 add %i5, 0x10, %o1
2037418: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
203741c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2037420: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2037424: 11 00 81 97 sethi %hi(0x2065c00), %o0
2037428: 7f ff 4f 21 call 200b0ac <_Watchdog_Insert>
203742c: 90 12 20 dc or %o0, 0xdc, %o0 ! 2065cdc <_Watchdog_Ticks_chain>
2037430: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
2037434: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2037438: 03 00 81 86 sethi %hi(0x2061800), %g1
203743c: c2 00 61 74 ld [ %g1 + 0x174 ], %g1 ! 2061974 <_Scheduler+0x34>
2037440: 9f c0 40 00 call %g1
2037444: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
2037448: 7f ff 4b d4 call 200a398 <_Thread_Enable_dispatch>
203744c: 01 00 00 00 nop
2037450: 81 c7 e0 08 ret
2037454: 81 e8 00 00 restore
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
2037458: 7f ff 2b e5 call 20023ec <sparc_enable_interrupts>
203745c: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2037460: 90 10 00 1d mov %i5, %o0
2037464: 7f ff ff 94 call 20372b4 <_Rate_monotonic_Initiate_statistics>
2037468: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
203746c: 82 10 20 02 mov 2, %g1
2037470: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2037474: 03 00 80 dd sethi %hi(0x2037400), %g1
2037478: 82 10 61 1c or %g1, 0x11c, %g1 ! 203751c <_Rate_monotonic_Timeout>
the_watchdog->id = id;
203747c: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2037480: 92 07 60 10 add %i5, 0x10, %o1
2037484: 11 00 81 97 sethi %hi(0x2065c00), %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2037488: c0 27 60 18 clr [ %i5 + 0x18 ]
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203748c: 90 12 20 dc or %o0, 0xdc, %o0
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
2037490: c0 27 60 34 clr [ %i5 + 0x34 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2037494: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2037498: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
203749c: 7f ff 4f 04 call 200b0ac <_Watchdog_Insert>
20374a0: b0 10 20 00 clr %i0
20374a4: 30 bf ff c8 b,a 20373c4 <rtems_rate_monotonic_period+0x84>
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20374a8: 7f ff ff 34 call 2037178 <_Rate_monotonic_Update_statistics>
20374ac: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20374b0: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20374b4: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20374b8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20374bc: 7f ff 2b cc call 20023ec <sparc_enable_interrupts>
20374c0: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20374c4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
20374c8: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20374cc: 90 10 00 01 mov %g1, %o0
20374d0: 13 00 00 10 sethi %hi(0x4000), %o1
20374d4: 7f ff 4e 08 call 200acf4 <_Thread_Set_state>
20374d8: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
20374dc: 7f ff 2b c0 call 20023dc <sparc_disable_interrupts>
20374e0: 01 00 00 00 nop
local_state = the_period->state;
20374e4: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
20374e8: f6 27 60 38 st %i3, [ %i5 + 0x38 ]
_ISR_Enable( level );
20374ec: 7f ff 2b c0 call 20023ec <sparc_enable_interrupts>
20374f0: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20374f4: 80 a6 a0 03 cmp %i2, 3
20374f8: 22 80 00 06 be,a 2037510 <rtems_rate_monotonic_period+0x1d0>
20374fc: d0 07 20 10 ld [ %i4 + 0x10 ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
2037500: 7f ff 4b a6 call 200a398 <_Thread_Enable_dispatch>
2037504: b0 10 20 00 clr %i0
2037508: 81 c7 e0 08 ret
203750c: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2037510: 7f ff 4a 9d call 2009f84 <_Thread_Clear_state>
2037514: 13 00 00 10 sethi %hi(0x4000), %o1
2037518: 30 bf ff fa b,a 2037500 <rtems_rate_monotonic_period+0x1c0>
0202900c <rtems_rate_monotonic_report_statistics_with_plugin>:
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
202900c: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2029010: 80 a6 60 00 cmp %i1, 0
2029014: 02 80 00 48 be 2029134 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2029018: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
202901c: 13 00 81 73 sethi %hi(0x205cc00), %o1
2029020: 9f c6 40 00 call %i1
2029024: 92 12 60 e0 or %o1, 0xe0, %o1 ! 205cce0 <_TOD_Days_per_month+0x68>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2029028: 90 10 00 18 mov %i0, %o0
202902c: 13 00 81 73 sethi %hi(0x205cc00), %o1
2029030: 9f c6 40 00 call %i1
2029034: 92 12 61 00 or %o1, 0x100, %o1 ! 205cd00 <_TOD_Days_per_month+0x88>
(*print)( context, "--- Wall times are in seconds ---\n" );
2029038: 90 10 00 18 mov %i0, %o0
202903c: 13 00 81 73 sethi %hi(0x205cc00), %o1
2029040: 9f c6 40 00 call %i1
2029044: 92 12 61 28 or %o1, 0x128, %o1 ! 205cd28 <_TOD_Days_per_month+0xb0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2029048: 90 10 00 18 mov %i0, %o0
202904c: 13 00 81 73 sethi %hi(0x205cc00), %o1
2029050: 9f c6 40 00 call %i1
2029054: 92 12 61 50 or %o1, 0x150, %o1 ! 205cd50 <_TOD_Days_per_month+0xd8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2029058: 90 10 00 18 mov %i0, %o0
202905c: 13 00 81 73 sethi %hi(0x205cc00), %o1
2029060: 9f c6 40 00 call %i1
2029064: 92 12 61 a0 or %o1, 0x1a0, %o1 ! 205cda0 <_TOD_Days_per_month+0x128>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029068: 39 00 81 98 sethi %hi(0x2066000), %i4
202906c: b8 17 20 74 or %i4, 0x74, %i4 ! 2066074 <_Rate_monotonic_Information>
2029070: fa 07 20 08 ld [ %i4 + 8 ], %i5
2029074: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2029078: 80 a7 40 01 cmp %i5, %g1
202907c: 18 80 00 2e bgu 2029134 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2029080: 35 00 81 73 sethi %hi(0x205cc00), %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2029084: 27 00 81 73 sethi %hi(0x205cc00), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2029088: 25 00 81 73 sethi %hi(0x205cc00), %l2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
202908c: 37 00 81 78 sethi %hi(0x205e000), %i3
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2029090: b4 16 a1 f0 or %i2, 0x1f0, %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2029094: a6 14 e2 08 or %l3, 0x208, %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2029098: a4 14 a2 28 or %l2, 0x228, %l2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
202909c: 10 80 00 06 b 20290b4 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
20290a0: b6 16 e2 b0 or %i3, 0x2b0, %i3
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20290a4: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20290a8: 80 a0 40 1d cmp %g1, %i5
20290ac: 0a 80 00 22 bcs 2029134 <rtems_rate_monotonic_report_statistics_with_plugin+0x128>
20290b0: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20290b4: 90 10 00 1d mov %i5, %o0
20290b8: 40 00 37 4c call 2036de8 <rtems_rate_monotonic_get_statistics>
20290bc: 92 07 bf c8 add %fp, -56, %o1
if ( status != RTEMS_SUCCESSFUL )
20290c0: 80 a2 20 00 cmp %o0, 0
20290c4: 32 bf ff f8 bne,a 20290a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
20290c8: c2 07 20 0c ld [ %i4 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
20290cc: 92 07 bf b0 add %fp, -80, %o1
20290d0: 40 00 37 b8 call 2036fb0 <rtems_rate_monotonic_get_status>
20290d4: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20290d8: d0 07 bf b0 ld [ %fp + -80 ], %o0
20290dc: 94 07 bf a0 add %fp, -96, %o2
20290e0: 7f ff 99 05 call 200f4f4 <rtems_object_get_name>
20290e4: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20290e8: d8 1f bf c8 ldd [ %fp + -56 ], %o4
20290ec: 92 10 00 1a mov %i2, %o1
20290f0: 94 10 00 1d mov %i5, %o2
20290f4: 90 10 00 18 mov %i0, %o0
20290f8: 9f c6 40 00 call %i1
20290fc: 96 07 bf a0 add %fp, -96, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2029100: c2 07 bf c8 ld [ %fp + -56 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2029104: 94 07 bf a8 add %fp, -88, %o2
2029108: 90 07 bf e0 add %fp, -32, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
202910c: 80 a0 60 00 cmp %g1, 0
2029110: 12 80 00 0b bne 202913c <rtems_rate_monotonic_report_statistics_with_plugin+0x130>
2029114: 92 10 00 1b mov %i3, %o1
(*print)( context, "\n" );
2029118: 9f c6 40 00 call %i1
202911c: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029120: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2029124: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029128: 80 a0 40 1d cmp %g1, %i5
202912c: 1a bf ff e3 bcc 20290b8 <rtems_rate_monotonic_report_statistics_with_plugin+0xac><== ALWAYS TAKEN
2029130: 90 10 00 1d mov %i5, %o0
2029134: 81 c7 e0 08 ret
2029138: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
202913c: 40 00 02 e2 call 2029cc4 <_Timespec_Divide_by_integer>
2029140: 92 10 00 01 mov %g1, %o1
(*print)( context,
2029144: d0 07 bf d4 ld [ %fp + -44 ], %o0
2029148: 40 00 ac c6 call 2054460 <.div>
202914c: 92 10 23 e8 mov 0x3e8, %o1
2029150: aa 10 00 08 mov %o0, %l5
2029154: d0 07 bf dc ld [ %fp + -36 ], %o0
2029158: 40 00 ac c2 call 2054460 <.div>
202915c: 92 10 23 e8 mov 0x3e8, %o1
2029160: c2 07 bf a8 ld [ %fp + -88 ], %g1
2029164: a2 10 00 08 mov %o0, %l1
2029168: d0 07 bf ac ld [ %fp + -84 ], %o0
202916c: e0 07 bf d0 ld [ %fp + -48 ], %l0
2029170: e8 07 bf d8 ld [ %fp + -40 ], %l4
2029174: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2029178: 40 00 ac ba call 2054460 <.div>
202917c: 92 10 23 e8 mov 0x3e8, %o1
2029180: 96 10 00 15 mov %l5, %o3
2029184: 98 10 00 14 mov %l4, %o4
2029188: 9a 10 00 11 mov %l1, %o5
202918c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2029190: 92 10 00 13 mov %l3, %o1
2029194: 94 10 00 10 mov %l0, %o2
2029198: 9f c6 40 00 call %i1
202919c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20291a0: d2 07 bf c8 ld [ %fp + -56 ], %o1
20291a4: 94 07 bf a8 add %fp, -88, %o2
20291a8: 40 00 02 c7 call 2029cc4 <_Timespec_Divide_by_integer>
20291ac: 90 07 bf f8 add %fp, -8, %o0
(*print)( context,
20291b0: d0 07 bf ec ld [ %fp + -20 ], %o0
20291b4: 40 00 ac ab call 2054460 <.div>
20291b8: 92 10 23 e8 mov 0x3e8, %o1
20291bc: a8 10 00 08 mov %o0, %l4
20291c0: d0 07 bf f4 ld [ %fp + -12 ], %o0
20291c4: 40 00 ac a7 call 2054460 <.div>
20291c8: 92 10 23 e8 mov 0x3e8, %o1
20291cc: c2 07 bf a8 ld [ %fp + -88 ], %g1
20291d0: a0 10 00 08 mov %o0, %l0
20291d4: d0 07 bf ac ld [ %fp + -84 ], %o0
20291d8: ea 07 bf e8 ld [ %fp + -24 ], %l5
20291dc: e2 07 bf f0 ld [ %fp + -16 ], %l1
20291e0: 92 10 23 e8 mov 0x3e8, %o1
20291e4: 40 00 ac 9f call 2054460 <.div>
20291e8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20291ec: 92 10 00 12 mov %l2, %o1
20291f0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20291f4: 94 10 00 15 mov %l5, %o2
20291f8: 90 10 00 18 mov %i0, %o0
20291fc: 96 10 00 14 mov %l4, %o3
2029200: 98 10 00 11 mov %l1, %o4
2029204: 9f c6 40 00 call %i1
2029208: 9a 10 00 10 mov %l0, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
202920c: 10 bf ff a6 b 20290a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
2029210: c2 07 20 0c ld [ %i4 + 0xc ], %g1
0202922c <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
202922c: 9d e3 bf a0 save %sp, -96, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t level = _Thread_Dispatch_disable_level;
2029230: 03 00 81 97 sethi %hi(0x2065c00), %g1
2029234: c4 00 60 40 ld [ %g1 + 0x40 ], %g2 ! 2065c40 <_Thread_Dispatch_disable_level>
++level;
2029238: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = level;
202923c: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029240: 39 00 81 98 sethi %hi(0x2066000), %i4
2029244: b8 17 20 74 or %i4, 0x74, %i4 ! 2066074 <_Rate_monotonic_Information>
2029248: fa 07 20 08 ld [ %i4 + 8 ], %i5
202924c: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2029250: 80 a7 40 01 cmp %i5, %g1
2029254: 18 80 00 09 bgu 2029278 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
2029258: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
202925c: 40 00 00 09 call 2029280 <rtems_rate_monotonic_reset_statistics>
2029260: 90 10 00 1d mov %i5, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2029264: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2029268: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
202926c: 80 a0 40 1d cmp %g1, %i5
2029270: 1a bf ff fb bcc 202925c <rtems_rate_monotonic_reset_all_statistics+0x30>
2029274: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2029278: 7f ff 84 48 call 200a398 <_Thread_Enable_dispatch>
202927c: 81 e8 00 00 restore
02008d90 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
2008d90: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
2008d94: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008d98: 90 10 00 19 mov %i1, %o0
2008d9c: 40 00 43 1b call 2019a08 <.urem>
2008da0: 92 10 00 1d mov %i5, %o1
if (excess > 0) {
2008da4: 80 a2 20 00 cmp %o0, 0
2008da8: 02 80 00 26 be 2008e40 <rtems_rbheap_allocate+0xb0> <== ALWAYS TAKEN
2008dac: b6 10 00 19 mov %i1, %i3
value += alignment - excess;
2008db0: ba 06 40 1d add %i1, %i5, %i5 <== NOT EXECUTED
2008db4: b6 27 40 08 sub %i5, %o0, %i3 <== NOT EXECUTED
2008db8: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED
2008dbc: 82 60 3f ff subx %g0, -1, %g1 <== NOT EXECUTED
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
2008dc0: 80 88 60 ff btst 0xff, %g1
2008dc4: 02 80 00 1d be 2008e38 <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
2008dc8: 80 a6 60 00 cmp %i1, 0
2008dcc: 02 80 00 1b be 2008e38 <rtems_rbheap_allocate+0xa8>
2008dd0: 82 06 20 04 add %i0, 4, %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2008dd4: fa 06 00 00 ld [ %i0 ], %i5
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2008dd8: 80 a7 40 01 cmp %i5, %g1
2008ddc: 02 80 00 17 be 2008e38 <rtems_rbheap_allocate+0xa8>
2008de0: 01 00 00 00 nop
rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current;
if (free_chunk->size >= size) {
2008de4: f8 07 60 1c ld [ %i5 + 0x1c ], %i4
2008de8: 80 a6 c0 1c cmp %i3, %i4
2008dec: 38 80 00 10 bgu,a 2008e2c <rtems_rbheap_allocate+0x9c>
2008df0: fa 07 40 00 ld [ %i5 ], %i5
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size);
if (free_chunk != NULL) {
2008df4: 80 a7 60 00 cmp %i5, 0
2008df8: 02 80 00 10 be 2008e38 <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
2008dfc: 80 a7 00 1b cmp %i4, %i3
uintptr_t free_size = free_chunk->size;
if (free_size > aligned_size) {
2008e00: 18 80 00 12 bgu 2008e48 <rtems_rbheap_allocate+0xb8>
2008e04: 01 00 00 00 nop
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
2008e08: c4 07 40 00 ld [ %i5 ], %g2
previous = the_node->previous;
2008e0c: c2 07 60 04 ld [ %i5 + 4 ], %g1
ptr = (void *) new_chunk->begin;
}
} else {
rtems_chain_extract_unprotected(&free_chunk->chain_node);
rtems_chain_set_off_chain(&free_chunk->chain_node);
ptr = (void *) free_chunk->begin;
2008e10: f0 07 60 18 ld [ %i5 + 0x18 ], %i0
next->previous = previous;
2008e14: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
2008e18: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
2008e1c: c0 27 60 04 clr [ %i5 + 4 ]
2008e20: c0 27 40 00 clr [ %i5 ]
}
}
}
return ptr;
}
2008e24: 81 c7 e0 08 ret
2008e28: 81 e8 00 00 restore
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2008e2c: 80 a0 40 1d cmp %g1, %i5
2008e30: 32 bf ff ee bne,a 2008de8 <rtems_rbheap_allocate+0x58> <== NEVER TAKEN
2008e34: f8 07 60 1c ld [ %i5 + 0x1c ], %i4 <== NOT EXECUTED
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
2008e38: 81 c7 e0 08 ret
2008e3c: 91 e8 20 00 restore %g0, 0, %o0
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
if (excess > 0) {
2008e40: 10 bf ff e0 b 2008dc0 <rtems_rbheap_allocate+0x30>
2008e44: 82 10 20 01 mov 1, %g1
if (free_chunk != NULL) {
uintptr_t free_size = free_chunk->size;
if (free_size > aligned_size) {
rtems_rbheap_chunk *new_chunk = get_chunk(control);
2008e48: 7f ff ff 46 call 2008b60 <get_chunk>
2008e4c: 90 10 00 18 mov %i0, %o0
if (new_chunk != NULL) {
2008e50: b4 92 20 00 orcc %o0, 0, %i2
2008e54: 02 bf ff f9 be 2008e38 <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
2008e58: b8 27 00 1b sub %i4, %i3, %i4
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
2008e5c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
rtems_rbheap_chunk *new_chunk = get_chunk(control);
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
2008e60: f8 27 60 1c st %i4, [ %i5 + 0x1c ]
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
2008e64: f6 26 a0 1c st %i3, [ %i2 + 0x1c ]
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
2008e68: b8 07 00 01 add %i4, %g1, %i4
2008e6c: c0 26 a0 04 clr [ %i2 + 4 ]
2008e70: f8 26 a0 18 st %i4, [ %i2 + 0x18 ]
2008e74: c0 26 80 00 clr [ %i2 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
2008e78: 90 06 20 18 add %i0, 0x18, %o0
2008e7c: 40 00 07 13 call 200aac8 <_RBTree_Insert_unprotected>
2008e80: 92 06 a0 08 add %i2, 8, %o1
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
rtems_chain_set_off_chain(&new_chunk->chain_node);
insert_into_tree(chunk_tree, new_chunk);
ptr = (void *) new_chunk->begin;
2008e84: f0 06 a0 18 ld [ %i2 + 0x18 ], %i0
2008e88: 81 c7 e0 08 ret
2008e8c: 81 e8 00 00 restore
02008fd4 <rtems_rbheap_extend_descriptors_with_malloc>:
/* Do nothing */
}
void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control)
{
2008fd4: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk));
2008fd8: 7f ff ec 63 call 2004164 <malloc> <== NOT EXECUTED
2008fdc: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED
if (chunk != NULL) {
2008fe0: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED
2008fe4: 02 80 00 07 be 2009000 <rtems_rbheap_extend_descriptors_with_malloc+0x2c><== NOT EXECUTED
2008fe8: 84 06 20 0c add %i0, 0xc, %g2 <== NOT EXECUTED
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008fec: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED
after_node->next = the_node;
2008ff0: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008ff4: c4 22 20 04 st %g2, [ %o0 + 4 ] <== NOT EXECUTED
before_node = after_node->next;
after_node->next = the_node;
the_node->next = before_node;
2008ff8: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED
before_node->previous = the_node;
2008ffc: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED
2009000: 81 c7 e0 08 ret <== NOT EXECUTED
2009004: 81 e8 00 00 restore <== NOT EXECUTED
02008e90 <rtems_rbheap_free>:
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
2008e90: 9d e3 bf 80 save %sp, -128, %sp
2008e94: b4 10 00 18 mov %i0, %i2
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (ptr != NULL) {
2008e98: 80 a6 60 00 cmp %i1, 0
2008e9c: 02 80 00 2a be 2008f44 <rtems_rbheap_free+0xb4>
2008ea0: b0 10 20 00 clr %i0
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
2008ea4: fa 06 a0 1c ld [ %i2 + 0x1c ], %i5
#define NULL_PAGE rtems_rbheap_chunk_of_node(NULL)
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
2008ea8: c0 27 bf fc clr [ %fp + -4 ]
2008eac: c0 27 bf e0 clr [ %fp + -32 ]
2008eb0: c0 27 bf e4 clr [ %fp + -28 ]
2008eb4: c0 27 bf e8 clr [ %fp + -24 ]
2008eb8: c0 27 bf ec clr [ %fp + -20 ]
2008ebc: c0 27 bf f0 clr [ %fp + -16 ]
2008ec0: c0 27 bf f4 clr [ %fp + -12 ]
2008ec4: f2 27 bf f8 st %i1, [ %fp + -8 ]
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2008ec8: 80 a7 60 00 cmp %i5, 0
2008ecc: 02 80 00 3e be 2008fc4 <rtems_rbheap_free+0x134> <== NEVER TAKEN
2008ed0: b8 06 a0 18 add %i2, 0x18, %i4
2008ed4: b6 10 20 00 clr %i3
compare_result = the_rbtree->compare_function(the_node, iter_node);
2008ed8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2008edc: 92 10 00 1d mov %i5, %o1
2008ee0: 9f c0 40 00 call %g1
2008ee4: 90 07 bf e8 add %fp, -24, %o0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
2008ee8: 83 3a 20 1f sra %o0, 0x1f, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
2008eec: 80 a2 20 00 cmp %o0, 0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
2008ef0: 82 20 40 08 sub %g1, %o0, %g1
2008ef4: 83 30 60 1f srl %g1, 0x1f, %g1
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
2008ef8: 83 28 60 02 sll %g1, 2, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
2008efc: 12 80 00 06 bne 2008f14 <rtems_rbheap_free+0x84>
2008f00: 82 07 40 01 add %i5, %g1, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2008f04: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
2008f08: 80 a0 a0 00 cmp %g2, 0
2008f0c: 12 80 00 10 bne 2008f4c <rtems_rbheap_free+0xbc> <== ALWAYS TAKEN
2008f10: b6 10 00 1d mov %i5, %i3
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
2008f14: fa 00 60 04 ld [ %g1 + 4 ], %i5
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2008f18: 80 a7 60 00 cmp %i5, 0
2008f1c: 32 bf ff f0 bne,a 2008edc <rtems_rbheap_free+0x4c>
2008f20: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
return rtems_rbheap_chunk_of_node(
2008f24: ba 06 ff f8 add %i3, -8, %i5
if (ptr != NULL) {
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr);
if (chunk != NULL_PAGE) {
2008f28: 80 a7 7f f8 cmp %i5, -8
2008f2c: 02 80 00 06 be 2008f44 <rtems_rbheap_free+0xb4>
2008f30: b0 10 20 04 mov 4, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008f34: c2 06 ff f8 ld [ %i3 + -8 ], %g1
2008f38: 80 a0 60 00 cmp %g1, 0
2008f3c: 02 80 00 06 be 2008f54 <rtems_rbheap_free+0xc4>
2008f40: b0 10 20 0e mov 0xe, %i0
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
2008f44: 81 c7 e0 08 ret
2008f48: 81 e8 00 00 restore
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
return rtems_rbheap_chunk_of_node(
2008f4c: 10 bf ff f7 b 2008f28 <rtems_rbheap_free+0x98>
2008f50: ba 06 ff f8 add %i3, -8, %i5
2008f54: c2 06 ff fc ld [ %i3 + -4 ], %g1
2008f58: 80 a0 60 00 cmp %g1, 0
2008f5c: 12 bf ff fa bne 2008f44 <rtems_rbheap_free+0xb4> <== NEVER TAKEN
2008f60: 92 10 20 00 clr %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2008f64: 40 00 07 a8 call 200ae04 <_RBTree_Next_unprotected>
2008f68: 90 10 00 1b mov %i3, %o0
2008f6c: 92 10 20 01 mov 1, %o1
2008f70: b2 10 00 08 mov %o0, %i1
2008f74: 40 00 07 a4 call 200ae04 <_RBTree_Next_unprotected>
2008f78: 90 10 00 1b mov %i3, %o0
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008f7c: 92 10 00 1c mov %i4, %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2008f80: 96 02 3f f8 add %o0, -8, %o3
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
2008f84: 94 10 00 1d mov %i5, %o2
2008f88: 7f ff ff 10 call 2008bc8 <check_and_merge>
2008f8c: 90 10 00 1a mov %i2, %o0
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008f90: c2 06 80 00 ld [ %i2 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008f94: f4 26 ff fc st %i2, [ %i3 + -4 ]
before_node = after_node->next;
after_node->next = the_node;
2008f98: fa 26 80 00 st %i5, [ %i2 ]
the_node->next = before_node;
2008f9c: c2 26 ff f8 st %g1, [ %i3 + -8 ]
before_node->previous = the_node;
2008fa0: fa 20 60 04 st %i5, [ %g1 + 4 ]
add_to_chain(free_chain, chunk);
check_and_merge(free_chain, chunk_tree, chunk, pred);
2008fa4: 90 10 00 1a mov %i2, %o0
2008fa8: 92 10 00 1c mov %i4, %o1
2008fac: 94 10 00 1d mov %i5, %o2
2008fb0: 96 06 7f f8 add %i1, -8, %o3
2008fb4: 7f ff ff 05 call 2008bc8 <check_and_merge>
2008fb8: b0 10 20 00 clr %i0
2008fbc: 81 c7 e0 08 ret
2008fc0: 81 e8 00 00 restore
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
2008fc4: 81 c7 e0 08 ret <== NOT EXECUTED
2008fc8: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
02008c60 <rtems_rbheap_initialize>:
uintptr_t area_size,
uintptr_t alignment,
rtems_rbheap_extend_descriptors extend_descriptors,
void *handler_arg
)
{
2008c60: 9d e3 bf a0 save %sp, -96, %sp
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (alignment > 0) {
2008c64: 80 a6 e0 00 cmp %i3, 0
2008c68: 12 80 00 04 bne 2008c78 <rtems_rbheap_initialize+0x18>
2008c6c: 82 10 20 0a mov 0xa, %g1
} else {
sc = RTEMS_INVALID_NUMBER;
}
return sc;
}
2008c70: 81 c7 e0 08 ret
2008c74: 91 e8 00 01 restore %g0, %g1, %o0
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008c78: 90 10 00 19 mov %i1, %o0
2008c7c: 92 10 00 1b mov %i3, %o1
2008c80: 40 00 43 62 call 2019a08 <.urem>
2008c84: b4 06 40 1a add %i1, %i2, %i2
if (excess > 0) {
2008c88: 80 a2 20 00 cmp %o0, 0
2008c8c: 32 80 00 09 bne,a 2008cb0 <rtems_rbheap_initialize+0x50>
2008c90: a0 06 40 1b add %i1, %i3, %l0
2008c94: 82 10 20 01 mov 1, %g1
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008c98: 80 88 60 ff btst 0xff, %g1
2008c9c: 12 80 00 0b bne 2008cc8 <rtems_rbheap_initialize+0x68> <== ALWAYS TAKEN
2008ca0: a0 10 00 19 mov %i1, %l0
insert_into_tree(chunk_tree, first);
} else {
sc = RTEMS_NO_MEMORY;
}
} else {
sc = RTEMS_INVALID_ADDRESS;
2008ca4: 82 10 20 09 mov 9, %g1 <== NOT EXECUTED
} else {
sc = RTEMS_INVALID_NUMBER;
}
return sc;
}
2008ca8: 81 c7 e0 08 ret
2008cac: 91 e8 00 01 restore %g0, %g1, %o0
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
if (excess > 0) {
value += alignment - excess;
2008cb0: a0 24 00 08 sub %l0, %o0, %l0
2008cb4: 80 a4 00 19 cmp %l0, %i1
2008cb8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008cbc: 80 88 60 ff btst 0xff, %g1
2008cc0: 02 bf ff fa be 2008ca8 <rtems_rbheap_initialize+0x48>
2008cc4: 82 10 20 09 mov 9, %g1
2008cc8: 80 a6 40 1a cmp %i1, %i2
2008ccc: 1a bf ff f7 bcc 2008ca8 <rtems_rbheap_initialize+0x48>
2008cd0: 82 10 20 09 mov 9, %g1
return value;
}
static uintptr_t align_down(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008cd4: 90 10 00 1a mov %i2, %o0
2008cd8: 40 00 43 4c call 2019a08 <.urem>
2008cdc: 92 10 00 1b mov %i3, %o1
return value - excess;
2008ce0: b4 26 80 08 sub %i2, %o0, %i2
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008ce4: 80 a4 00 1a cmp %l0, %i2
2008ce8: 1a bf ff e2 bcc 2008c70 <rtems_rbheap_initialize+0x10>
2008cec: 82 10 20 09 mov 9, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008cf0: 82 06 20 04 add %i0, 4, %g1
head->next = tail;
2008cf4: c2 26 00 00 st %g1, [ %i0 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008cf8: 82 06 20 0c add %i0, 0xc, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
2008cfc: c2 26 20 14 st %g1, [ %i0 + 0x14 ]
the_rbtree->permanent_null = NULL;
the_rbtree->root = NULL;
the_rbtree->first[0] = NULL;
the_rbtree->first[1] = NULL;
the_rbtree->compare_function = compare_function;
the_rbtree->is_unique = is_unique;
2008d00: 82 10 20 01 mov 1, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008d04: 84 06 20 10 add %i0, 0x10, %g2
2008d08: c2 2e 20 2c stb %g1, [ %i0 + 0x2c ]
{
the_rbtree->permanent_null = NULL;
the_rbtree->root = NULL;
the_rbtree->first[0] = NULL;
the_rbtree->first[1] = NULL;
the_rbtree->compare_function = compare_function;
2008d0c: 03 00 80 22 sethi %hi(0x2008800), %g1
2008d10: 82 10 63 50 or %g1, 0x350, %g1 ! 2008b50 <chunk_compare>
head->next = tail;
head->previous = NULL;
2008d14: c0 26 20 04 clr [ %i0 + 4 ]
2008d18: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
tail->previous = head;
2008d1c: f0 26 20 08 st %i0, [ %i0 + 8 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
2008d20: c0 26 20 10 clr [ %i0 + 0x10 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2008d24: c4 26 20 0c st %g2, [ %i0 + 0xc ]
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
2008d28: c0 26 20 18 clr [ %i0 + 0x18 ]
the_rbtree->root = NULL;
2008d2c: c0 26 20 1c clr [ %i0 + 0x1c ]
the_rbtree->first[0] = NULL;
2008d30: c0 26 20 20 clr [ %i0 + 0x20 ]
the_rbtree->first[1] = NULL;
2008d34: c0 26 20 24 clr [ %i0 + 0x24 ]
rtems_rbheap_chunk *first = NULL;
rtems_chain_initialize_empty(free_chain);
rtems_chain_initialize_empty(&control->spare_descriptor_chain);
rtems_rbtree_initialize_empty(chunk_tree, chunk_compare, true);
control->alignment = alignment;
2008d38: f6 26 20 30 st %i3, [ %i0 + 0x30 ]
control->handler_arg = handler_arg;
2008d3c: fa 26 20 38 st %i5, [ %i0 + 0x38 ]
control->extend_descriptors = extend_descriptors;
2008d40: f8 26 20 34 st %i4, [ %i0 + 0x34 ]
first = get_chunk(control);
2008d44: 7f ff ff 87 call 2008b60 <get_chunk>
2008d48: 90 10 00 18 mov %i0, %o0
first->begin = aligned_begin;
first->size = aligned_end - aligned_begin;
add_to_chain(free_chain, first);
insert_into_tree(chunk_tree, first);
} else {
sc = RTEMS_NO_MEMORY;
2008d4c: 82 10 20 1a mov 0x1a, %g1
control->alignment = alignment;
control->handler_arg = handler_arg;
control->extend_descriptors = extend_descriptors;
first = get_chunk(control);
if (first != NULL) {
2008d50: 80 a2 20 00 cmp %o0, 0
2008d54: 02 bf ff c7 be 2008c70 <rtems_rbheap_initialize+0x10>
2008d58: 92 10 00 08 mov %o0, %o1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008d5c: c2 06 00 00 ld [ %i0 ], %g1
first->begin = aligned_begin;
first->size = aligned_end - aligned_begin;
2008d60: b4 26 80 10 sub %i2, %l0, %i2
control->handler_arg = handler_arg;
control->extend_descriptors = extend_descriptors;
first = get_chunk(control);
if (first != NULL) {
first->begin = aligned_begin;
2008d64: e0 22 20 18 st %l0, [ %o0 + 0x18 ]
first->size = aligned_end - aligned_begin;
2008d68: f4 22 20 1c st %i2, [ %o0 + 0x1c ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008d6c: f0 22 20 04 st %i0, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008d70: d0 26 00 00 st %o0, [ %i0 ]
the_node->next = before_node;
2008d74: c2 22 00 00 st %g1, [ %o0 ]
before_node->previous = the_node;
2008d78: d0 20 60 04 st %o0, [ %g1 + 4 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
2008d7c: 92 02 60 08 add %o1, 8, %o1
2008d80: 40 00 07 52 call 200aac8 <_RBTree_Insert_unprotected>
2008d84: 90 06 20 18 add %i0, 0x18, %o0
uintptr_t alignment,
rtems_rbheap_extend_descriptors extend_descriptors,
void *handler_arg
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
2008d88: 10 bf ff ba b 2008c70 <rtems_rbheap_initialize+0x10>
2008d8c: 82 10 20 00 clr %g1
02016d64 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2016d64: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
2016d68: 80 a6 60 00 cmp %i1, 0
2016d6c: 12 80 00 04 bne 2016d7c <rtems_signal_send+0x18>
2016d70: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016d74: 81 c7 e0 08 ret
2016d78: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2016d7c: 90 10 00 18 mov %i0, %o0
2016d80: 40 00 13 88 call 201bba0 <_Thread_Get>
2016d84: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2016d88: c2 07 bf fc ld [ %fp + -4 ], %g1
2016d8c: 80 a0 60 00 cmp %g1, 0
2016d90: 12 80 00 20 bne 2016e10 <rtems_signal_send+0xac>
2016d94: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2016d98: fa 02 21 50 ld [ %o0 + 0x150 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2016d9c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2016da0: 80 a0 60 00 cmp %g1, 0
2016da4: 02 80 00 1e be 2016e1c <rtems_signal_send+0xb8>
2016da8: 01 00 00 00 nop
if ( asr->is_enabled ) {
2016dac: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2016db0: 80 a0 60 00 cmp %g1, 0
2016db4: 02 80 00 1e be 2016e2c <rtems_signal_send+0xc8>
2016db8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2016dbc: 7f ff e2 4f call 200f6f8 <sparc_disable_interrupts>
2016dc0: 01 00 00 00 nop
*signal_set |= signals;
2016dc4: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2016dc8: b2 10 40 19 or %g1, %i1, %i1
2016dcc: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2016dd0: 7f ff e2 4e call 200f708 <sparc_enable_interrupts>
2016dd4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2016dd8: 03 00 80 ec sethi %hi(0x203b000), %g1
2016ddc: 82 10 63 10 or %g1, 0x310, %g1 ! 203b310 <_Per_CPU_Information>
2016de0: c4 00 60 08 ld [ %g1 + 8 ], %g2
2016de4: 80 a0 a0 00 cmp %g2, 0
2016de8: 02 80 00 06 be 2016e00 <rtems_signal_send+0x9c>
2016dec: 01 00 00 00 nop
2016df0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
2016df4: 80 a7 00 02 cmp %i4, %g2
2016df8: 02 80 00 15 be 2016e4c <rtems_signal_send+0xe8> <== ALWAYS TAKEN
2016dfc: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2016e00: 40 00 13 5c call 201bb70 <_Thread_Enable_dispatch>
2016e04: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2016e08: 10 bf ff db b 2016d74 <rtems_signal_send+0x10>
2016e0c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2016e10: 82 10 20 04 mov 4, %g1
}
2016e14: 81 c7 e0 08 ret
2016e18: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2016e1c: 40 00 13 55 call 201bb70 <_Thread_Enable_dispatch>
2016e20: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2016e24: 10 bf ff d4 b 2016d74 <rtems_signal_send+0x10>
2016e28: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2016e2c: 7f ff e2 33 call 200f6f8 <sparc_disable_interrupts>
2016e30: 01 00 00 00 nop
*signal_set |= signals;
2016e34: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
2016e38: b2 10 40 19 or %g1, %i1, %i1
2016e3c: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
2016e40: 7f ff e2 32 call 200f708 <sparc_enable_interrupts>
2016e44: 01 00 00 00 nop
2016e48: 30 bf ff ee b,a 2016e00 <rtems_signal_send+0x9c>
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
if ( asr->is_enabled ) {
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
2016e4c: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
2016e50: 30 bf ff ec b,a 2016e00 <rtems_signal_send+0x9c>
020115a8 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
20115a8: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
20115ac: 80 a6 a0 00 cmp %i2, 0
20115b0: 02 80 00 3b be 201169c <rtems_task_mode+0xf4>
20115b4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
20115b8: 21 00 80 85 sethi %hi(0x2021400), %l0
20115bc: a0 14 22 20 or %l0, 0x220, %l0 ! 2021620 <_Per_CPU_Information>
20115c0: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
20115c4: c4 0f 60 70 ldub [ %i5 + 0x70 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
20115c8: c2 07 60 78 ld [ %i5 + 0x78 ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
20115cc: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
20115d0: f8 07 61 50 ld [ %i5 + 0x150 ], %i4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
20115d4: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
20115d8: 80 a0 60 00 cmp %g1, 0
20115dc: 12 80 00 40 bne 20116dc <rtems_task_mode+0x134>
20115e0: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20115e4: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
20115e8: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
20115ec: 7f ff ed c0 call 200ccec <_CPU_ISR_Get_level>
20115f0: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20115f4: a3 2c 60 0a sll %l1, 0xa, %l1
20115f8: 90 14 40 08 or %l1, %o0, %o0
old_mode |= _ISR_Get_level();
20115fc: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
2011600: 80 8e 61 00 btst 0x100, %i1
2011604: 02 80 00 06 be 201161c <rtems_task_mode+0x74>
2011608: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
201160c: 83 36 20 08 srl %i0, 8, %g1
2011610: 82 18 60 01 xor %g1, 1, %g1
2011614: 82 08 60 01 and %g1, 1, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
2011618: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
201161c: 80 8e 62 00 btst 0x200, %i1
2011620: 12 80 00 21 bne 20116a4 <rtems_task_mode+0xfc>
2011624: 80 8e 22 00 btst 0x200, %i0
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
2011628: 80 8e 60 0f btst 0xf, %i1
201162c: 12 80 00 27 bne 20116c8 <rtems_task_mode+0x120>
2011630: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
2011634: 80 8e 64 00 btst 0x400, %i1
2011638: 02 80 00 14 be 2011688 <rtems_task_mode+0xe0>
201163c: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
2011640: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
2011644: b1 36 20 0a srl %i0, 0xa, %i0
2011648: b0 1e 20 01 xor %i0, 1, %i0
201164c: b0 0e 20 01 and %i0, 1, %i0
if ( is_asr_enabled != asr->is_enabled ) {
2011650: 80 a6 00 01 cmp %i0, %g1
2011654: 22 80 00 0e be,a 201168c <rtems_task_mode+0xe4>
2011658: 03 00 80 85 sethi %hi(0x2021400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
201165c: 7f ff c5 b5 call 2002d30 <sparc_disable_interrupts>
2011660: f0 2f 20 08 stb %i0, [ %i4 + 8 ]
_signals = information->signals_pending;
2011664: c4 07 20 18 ld [ %i4 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
2011668: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
information->signals_posted = _signals;
201166c: c4 27 20 14 st %g2, [ %i4 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
2011670: c2 27 20 18 st %g1, [ %i4 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
2011674: 7f ff c5 b3 call 2002d40 <sparc_enable_interrupts>
2011678: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
201167c: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
2011680: 80 a0 00 01 cmp %g0, %g1
2011684: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
2011688: 03 00 80 85 sethi %hi(0x2021400), %g1
201168c: c4 00 62 1c ld [ %g1 + 0x21c ], %g2 ! 202161c <_System_state_Current>
2011690: 80 a0 a0 03 cmp %g2, 3
2011694: 02 80 00 1f be 2011710 <rtems_task_mode+0x168>
2011698: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
201169c: 81 c7 e0 08 ret
20116a0: 91 e8 00 01 restore %g0, %g1, %o0
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
20116a4: 22 bf ff e1 be,a 2011628 <rtems_task_mode+0x80>
20116a8: c0 27 60 78 clr [ %i5 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
20116ac: 03 00 80 84 sethi %hi(0x2021000), %g1
20116b0: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 ! 2021370 <_Thread_Ticks_per_timeslice>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
20116b4: 80 8e 60 0f btst 0xf, %i1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
20116b8: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
20116bc: 82 10 20 01 mov 1, %g1
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
20116c0: 02 bf ff dd be 2011634 <rtems_task_mode+0x8c>
20116c4: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
20116c8: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
20116cc: 7f ff c5 9d call 2002d40 <sparc_enable_interrupts>
20116d0: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
20116d4: 10 bf ff d9 b 2011638 <rtems_task_mode+0x90>
20116d8: 80 8e 64 00 btst 0x400, %i1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20116dc: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
20116e0: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20116e4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
20116e8: 7f ff ed 81 call 200ccec <_CPU_ISR_Get_level>
20116ec: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
20116f0: a3 2c 60 0a sll %l1, 0xa, %l1
20116f4: 90 14 40 08 or %l1, %o0, %o0
old_mode |= _ISR_Get_level();
20116f8: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
20116fc: 80 8e 61 00 btst 0x100, %i1
2011700: 02 bf ff c7 be 201161c <rtems_task_mode+0x74>
2011704: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
2011708: 10 bf ff c2 b 2011610 <rtems_task_mode+0x68>
201170c: 83 36 20 08 srl %i0, 8, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
2011710: 80 88 e0 ff btst 0xff, %g3
2011714: 12 80 00 0a bne 201173c <rtems_task_mode+0x194>
2011718: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
201171c: c6 04 20 14 ld [ %l0 + 0x14 ], %g3
2011720: 80 a0 80 03 cmp %g2, %g3
2011724: 02 bf ff de be 201169c <rtems_task_mode+0xf4>
2011728: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
201172c: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
2011730: 80 a0 a0 00 cmp %g2, 0
2011734: 02 bf ff da be 201169c <rtems_task_mode+0xf4> <== NEVER TAKEN
2011738: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
201173c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
2011740: c2 2c 20 0c stb %g1, [ %l0 + 0xc ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
2011744: 40 00 02 8d call 2012178 <_Thread_Dispatch>
2011748: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
201174c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
2011750: 81 c7 e0 08 ret
2011754: 91 e8 00 01 restore %g0, %g1, %o0
0200c6b4 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200c6b4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200c6b8: 80 a6 60 00 cmp %i1, 0
200c6bc: 02 80 00 08 be 200c6dc <rtems_task_set_priority+0x28>
200c6c0: 80 a6 a0 00 cmp %i2, 0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200c6c4: 03 00 80 82 sethi %hi(0x2020800), %g1
200c6c8: c4 08 62 dc ldub [ %g1 + 0x2dc ], %g2 ! 2020adc <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200c6cc: 80 a6 40 02 cmp %i1, %g2
200c6d0: 18 80 00 1e bgu 200c748 <rtems_task_set_priority+0x94>
200c6d4: 82 10 20 13 mov 0x13, %g1
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200c6d8: 80 a6 a0 00 cmp %i2, 0
200c6dc: 02 80 00 1b be 200c748 <rtems_task_set_priority+0x94>
200c6e0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200c6e4: 90 10 00 18 mov %i0, %o0
200c6e8: 40 00 0a 25 call 200ef7c <_Thread_Get>
200c6ec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200c6f0: c2 07 bf fc ld [ %fp + -4 ], %g1
200c6f4: 80 a0 60 00 cmp %g1, 0
200c6f8: 12 80 00 16 bne 200c750 <rtems_task_set_priority+0x9c>
200c6fc: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200c700: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200c704: 80 a6 60 00 cmp %i1, 0
200c708: 02 80 00 0d be 200c73c <rtems_task_set_priority+0x88>
200c70c: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200c710: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200c714: 80 a0 60 00 cmp %g1, 0
200c718: 02 80 00 06 be 200c730 <rtems_task_set_priority+0x7c>
200c71c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200c720: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200c724: 80 a6 40 01 cmp %i1, %g1
200c728: 1a 80 00 05 bcc 200c73c <rtems_task_set_priority+0x88> <== ALWAYS TAKEN
200c72c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200c730: 92 10 00 19 mov %i1, %o1
200c734: 40 00 08 b4 call 200ea04 <_Thread_Change_priority>
200c738: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200c73c: 40 00 0a 04 call 200ef4c <_Thread_Enable_dispatch>
200c740: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200c744: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200c748: 81 c7 e0 08 ret
200c74c: 91 e8 00 01 restore %g0, %g1, %o0
200c750: 81 c7 e0 08 ret
200c754: 91 e8 00 01 restore %g0, %g1, %o0
0200621c <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
200621c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
2006220: 80 a6 60 00 cmp %i1, 0
2006224: 02 80 00 1e be 200629c <rtems_task_variable_delete+0x80>
2006228: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
200622c: 90 10 00 18 mov %i0, %o0
2006230: 40 00 08 a1 call 20084b4 <_Thread_Get>
2006234: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2006238: c2 07 bf fc ld [ %fp + -4 ], %g1
200623c: 80 a0 60 00 cmp %g1, 0
2006240: 12 80 00 19 bne 20062a4 <rtems_task_variable_delete+0x88>
2006244: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
2006248: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
200624c: 80 a0 60 00 cmp %g1, 0
2006250: 02 80 00 10 be 2006290 <rtems_task_variable_delete+0x74>
2006254: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2006258: c4 00 60 04 ld [ %g1 + 4 ], %g2
200625c: 80 a0 80 19 cmp %g2, %i1
2006260: 32 80 00 09 bne,a 2006284 <rtems_task_variable_delete+0x68>
2006264: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2006268: 10 80 00 18 b 20062c8 <rtems_task_variable_delete+0xac>
200626c: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2006270: 80 a0 80 19 cmp %g2, %i1
2006274: 22 80 00 0e be,a 20062ac <rtems_task_variable_delete+0x90>
2006278: c4 02 40 00 ld [ %o1 ], %g2
200627c: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2006280: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
2006284: 80 a2 60 00 cmp %o1, 0
2006288: 32 bf ff fa bne,a 2006270 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
200628c: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2006290: 40 00 08 7d call 2008484 <_Thread_Enable_dispatch>
2006294: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
2006298: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200629c: 81 c7 e0 08 ret
20062a0: 91 e8 00 01 restore %g0, %g1, %o0
20062a4: 81 c7 e0 08 ret
20062a8: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
20062ac: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
20062b0: 40 00 00 2e call 2006368 <_RTEMS_Tasks_Invoke_task_variable_dtor>
20062b4: 01 00 00 00 nop
_Thread_Enable_dispatch();
20062b8: 40 00 08 73 call 2008484 <_Thread_Enable_dispatch>
20062bc: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20062c0: 10 bf ff f7 b 200629c <rtems_task_variable_delete+0x80>
20062c4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
20062c8: 92 10 00 01 mov %g1, %o1
20062cc: 10 bf ff f9 b 20062b0 <rtems_task_variable_delete+0x94>
20062d0: c4 22 21 5c st %g2, [ %o0 + 0x15c ]
020062d4 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20062d4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
20062d8: 80 a6 60 00 cmp %i1, 0
20062dc: 02 80 00 1b be 2006348 <rtems_task_variable_get+0x74>
20062e0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !result )
20062e4: 80 a6 a0 00 cmp %i2, 0
20062e8: 02 80 00 18 be 2006348 <rtems_task_variable_get+0x74>
20062ec: 90 10 00 18 mov %i0, %o0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
20062f0: 40 00 08 71 call 20084b4 <_Thread_Get>
20062f4: 92 07 bf fc add %fp, -4, %o1
switch (location) {
20062f8: c2 07 bf fc ld [ %fp + -4 ], %g1
20062fc: 80 a0 60 00 cmp %g1, 0
2006300: 12 80 00 14 bne 2006350 <rtems_task_variable_get+0x7c>
2006304: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
2006308: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
200630c: 80 a0 60 00 cmp %g1, 0
2006310: 32 80 00 07 bne,a 200632c <rtems_task_variable_get+0x58>
2006314: c4 00 60 04 ld [ %g1 + 4 ], %g2
2006318: 30 80 00 10 b,a 2006358 <rtems_task_variable_get+0x84>
200631c: 80 a0 60 00 cmp %g1, 0
2006320: 02 80 00 0e be 2006358 <rtems_task_variable_get+0x84> <== NEVER TAKEN
2006324: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2006328: c4 00 60 04 ld [ %g1 + 4 ], %g2
200632c: 80 a0 80 19 cmp %g2, %i1
2006330: 32 bf ff fb bne,a 200631c <rtems_task_variable_get+0x48>
2006334: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2006338: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
200633c: 40 00 08 52 call 2008484 <_Thread_Enable_dispatch>
2006340: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2006344: 82 10 20 00 clr %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2006348: 81 c7 e0 08 ret
200634c: 91 e8 00 01 restore %g0, %g1, %o0
2006350: 81 c7 e0 08 ret
2006354: 91 e8 00 01 restore %g0, %g1, %o0
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2006358: 40 00 08 4b call 2008484 <_Thread_Enable_dispatch>
200635c: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
2006360: 10 bf ff fa b 2006348 <rtems_task_variable_get+0x74>
2006364: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
02017850 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2017850: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2017854: 11 00 80 ec sethi %hi(0x203b000), %o0
2017858: 92 10 00 18 mov %i0, %o1
201785c: 90 12 23 b8 or %o0, 0x3b8, %o0
2017860: 40 00 0c b5 call 201ab34 <_Objects_Get>
2017864: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2017868: c2 07 bf fc ld [ %fp + -4 ], %g1
201786c: 80 a0 60 00 cmp %g1, 0
2017870: 12 80 00 0c bne 20178a0 <rtems_timer_cancel+0x50>
2017874: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2017878: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
201787c: 80 a0 60 04 cmp %g1, 4
2017880: 02 80 00 04 be 2017890 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2017884: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2017888: 40 00 14 e0 call 201cc08 <_Watchdog_Remove>
201788c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2017890: 40 00 10 b8 call 201bb70 <_Thread_Enable_dispatch>
2017894: b0 10 20 00 clr %i0
2017898: 81 c7 e0 08 ret
201789c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20178a0: 81 c7 e0 08 ret
20178a4: 91 e8 20 04 restore %g0, 4, %o0
02017da8 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2017da8: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2017dac: 03 00 80 ec sethi %hi(0x203b000), %g1
2017db0: fa 00 63 f8 ld [ %g1 + 0x3f8 ], %i5 ! 203b3f8 <_Timer_server>
if ( !timer_server )
2017db4: 80 a7 60 00 cmp %i5, 0
2017db8: 02 80 00 08 be 2017dd8 <rtems_timer_server_fire_when+0x30>
2017dbc: 82 10 20 0e mov 0xe, %g1
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
2017dc0: 39 00 80 ec sethi %hi(0x203b000), %i4
2017dc4: 82 17 20 38 or %i4, 0x38, %g1 ! 203b038 <_TOD>
2017dc8: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2
2017dcc: 80 a0 a0 00 cmp %g2, 0
2017dd0: 12 80 00 04 bne 2017de0 <rtems_timer_server_fire_when+0x38><== ALWAYS TAKEN
2017dd4: 82 10 20 0b mov 0xb, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2017dd8: 81 c7 e0 08 ret
2017ddc: 91 e8 00 01 restore %g0, %g1, %o0
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
return RTEMS_NOT_DEFINED;
if ( !routine )
2017de0: 80 a6 a0 00 cmp %i2, 0
2017de4: 02 bf ff fd be 2017dd8 <rtems_timer_server_fire_when+0x30>
2017de8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2017dec: 7f ff f3 1e call 2014a64 <_TOD_Validate>
2017df0: 90 10 00 19 mov %i1, %o0
2017df4: 80 8a 20 ff btst 0xff, %o0
2017df8: 12 80 00 04 bne 2017e08 <rtems_timer_server_fire_when+0x60>
2017dfc: 82 10 20 14 mov 0x14, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2017e00: 81 c7 e0 08 ret
2017e04: 91 e8 00 01 restore %g0, %g1, %o0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2017e08: 7f ff f2 dd call 201497c <_TOD_To_seconds>
2017e0c: 90 10 00 19 mov %i1, %o0
2017e10: b2 10 00 08 mov %o0, %i1
2017e14: d0 1f 20 38 ldd [ %i4 + 0x38 ], %o0
2017e18: 94 10 20 00 clr %o2
2017e1c: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2017e20: 40 00 4e 01 call 202b624 <__divdi3>
2017e24: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
if ( seconds <= _TOD_Seconds_since_epoch() )
2017e28: 80 a6 40 09 cmp %i1, %o1
2017e2c: 08 bf ff f5 bleu 2017e00 <rtems_timer_server_fire_when+0x58>
2017e30: 82 10 20 14 mov 0x14, %g1
2017e34: 92 10 00 18 mov %i0, %o1
2017e38: 11 00 80 ec sethi %hi(0x203b000), %o0
2017e3c: 94 07 bf fc add %fp, -4, %o2
2017e40: 40 00 0b 3d call 201ab34 <_Objects_Get>
2017e44: 90 12 23 b8 or %o0, 0x3b8, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2017e48: c2 07 bf fc ld [ %fp + -4 ], %g1
2017e4c: 80 a0 60 00 cmp %g1, 0
2017e50: 12 80 00 19 bne 2017eb4 <rtems_timer_server_fire_when+0x10c>
2017e54: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2017e58: 40 00 13 6c call 201cc08 <_Watchdog_Remove>
2017e5c: 90 02 20 10 add %o0, 0x10, %o0
2017e60: d0 1f 20 38 ldd [ %i4 + 0x38 ], %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2017e64: 82 10 20 03 mov 3, %g1
2017e68: 94 10 20 00 clr %o2
2017e6c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
2017e70: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2017e74: c0 24 20 18 clr [ %l0 + 0x18 ]
2017e78: 96 12 e2 00 or %o3, 0x200, %o3
the_watchdog->routine = routine;
2017e7c: f4 24 20 2c st %i2, [ %l0 + 0x2c ]
the_watchdog->id = id;
2017e80: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
2017e84: 40 00 4d e8 call 202b624 <__divdi3>
2017e88: f6 24 20 34 st %i3, [ %l0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
2017e8c: c2 07 60 04 ld [ %i5 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2017e90: b2 26 40 09 sub %i1, %o1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
2017e94: 90 10 00 1d mov %i5, %o0
2017e98: 92 10 00 10 mov %l0, %o1
2017e9c: 9f c0 40 00 call %g1
2017ea0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2017ea4: 40 00 0f 33 call 201bb70 <_Thread_Enable_dispatch>
2017ea8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2017eac: 10 bf ff cb b 2017dd8 <rtems_timer_server_fire_when+0x30>
2017eb0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2017eb4: 10 bf ff c9 b 2017dd8 <rtems_timer_server_fire_when+0x30>
2017eb8: 82 10 20 04 mov 4, %g1